ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.321 by root, Thu Dec 31 06:50:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
129#ifndef _WIN32 177#ifndef _WIN32
130# include <sys/time.h> 178# include <sys/time.h>
131# include <sys/wait.h> 179# include <sys/wait.h>
132# include <unistd.h> 180# include <unistd.h>
133#else 181#else
182# include <io.h>
134# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 184# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
138# endif 187# endif
139#endif 188#endif
140 189
141/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
142 226
143#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
144# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
145#endif 233#endif
146 234
147#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
149#endif 245#endif
150 246
151#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
153#endif 249#endif
159# define EV_USE_POLL 1 255# define EV_USE_POLL 1
160# endif 256# endif
161#endif 257#endif
162 258
163#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
164# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
165#endif 265#endif
166 266
167#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
169#endif 269#endif
171#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 272# define EV_USE_PORT 0
173#endif 273#endif
174 274
175#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
176# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
177#endif 281#endif
178 282
179#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 284# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
190# else 294# else
191# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
192# endif 296# endif
193#endif 297#endif
194 298
195/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 348
197#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
200#endif 352#endif
202#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
205#endif 357#endif
206 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
207#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 382# include <winsock.h>
209#endif 383#endif
210 384
211#if !EV_STAT_ENABLE 385#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
213#endif 390# endif
214 391# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 392# ifdef O_CLOEXEC
216# include <sys/inotify.h> 393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
217#endif 397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
218 435
219/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
443
444/*
445 * This is used to avoid floating point rounding problems.
446 * It is added to ev_rt_now when scheduling periodics
447 * to ensure progress, time-wise, even when rounding
448 * errors are against us.
449 * This value is good at least till the year 4000.
450 * Better solutions welcome.
451 */
452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 453
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 456
225#if __GNUC__ >= 3 457#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 460#else
236# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
240#endif 466#endif
241 467
242#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
244 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
247 485
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
250 488
251typedef ev_watcher *W; 489typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
254 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
256 515
257#ifdef _WIN32 516#ifdef _WIN32
258# include "ev_win32.c" 517# include "ev_win32.c"
259#endif 518#endif
260 519
267{ 526{
268 syserr_cb = cb; 527 syserr_cb = cb;
269} 528}
270 529
271static void noinline 530static void noinline
272syserr (const char *msg) 531ev_syserr (const char *msg)
273{ 532{
274 if (!msg) 533 if (!msg)
275 msg = "(libev) system error"; 534 msg = "(libev) system error";
276 535
277 if (syserr_cb) 536 if (syserr_cb)
281 perror (msg); 540 perror (msg);
282 abort (); 541 abort ();
283 } 542 }
284} 543}
285 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
286static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 561
288void 562void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 564{
291 alloc = cb; 565 alloc = cb;
292} 566}
293 567
294inline_speed void * 568inline_speed void *
295ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
296{ 570{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
298 572
299 if (!ptr && size) 573 if (!ptr && size)
300 { 574 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 576 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
310 584
311/*****************************************************************************/ 585/*****************************************************************************/
312 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
313typedef struct 591typedef struct
314{ 592{
315 WL head; 593 WL head;
316 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
318#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 602 SOCKET handle;
320#endif 603#endif
321} ANFD; 604} ANFD;
322 605
606/* stores the pending event set for a given watcher */
323typedef struct 607typedef struct
324{ 608{
325 W w; 609 W w;
326 int events; 610 int events; /* the pending event set for the given watcher */
327} ANPENDING; 611} ANPENDING;
328 612
329#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
330typedef struct 615typedef struct
331{ 616{
332 WL head; 617 WL head;
333} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
334#endif 639#endif
335 640
336#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
337 642
338 struct ev_loop 643 struct ev_loop
357 662
358 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
359 664
360#endif 665#endif
361 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
362/*****************************************************************************/ 679/*****************************************************************************/
363 680
681#ifndef EV_HAVE_EV_TIME
364ev_tstamp 682ev_tstamp
365ev_time (void) 683ev_time (void)
366{ 684{
367#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
368 struct timespec ts; 688 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 691 }
692#endif
693
372 struct timeval tv; 694 struct timeval tv;
373 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 697}
698#endif
377 699
378ev_tstamp inline_size 700inline_size ev_tstamp
379get_clock (void) 701get_clock (void)
380{ 702{
381#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
383 { 705 {
396{ 718{
397 return ev_rt_now; 719 return ev_rt_now;
398} 720}
399#endif 721#endif
400 722
401#define array_roundsize(type,n) (((n) | 4) & ~3) 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
758array_nextsize (int elem, int cur, int cnt)
759{
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
768 {
769 ncur *= elem;
770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
771 ncur = ncur - sizeof (void *) * 4;
772 ncur /= elem;
773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 787
403#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 789 if (expect_false ((cnt) > (cur))) \
405 { \ 790 { \
406 int newcnt = cur; \ 791 int ocur_ = (cur); \
407 do \ 792 (base) = (type *)array_realloc \
408 { \ 793 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 794 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 795 }
417 796
797#if 0
418#define array_slim(type,stem) \ 798#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 800 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 801 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 804 }
805#endif
425 806
426#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 809
429/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
430 817
431void noinline 818void noinline
432ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
433{ 820{
434 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
435 823
436 if (expect_false (w_->pending)) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
437 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 832 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 833}
447 834
448void inline_size 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 852{
451 int i; 853 int i;
452 854
453 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
455} 857}
456 858
457/*****************************************************************************/ 859/*****************************************************************************/
458 860
459void inline_size 861inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
474{ 863{
475 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
476 ev_io *w; 865 ev_io *w;
477 866
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 871 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
484 } 873 }
485} 874}
486 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
487void 887void
488ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 889{
890 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
491} 892}
492 893
493void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
494fd_reify (EV_P) 897fd_reify (EV_P)
495{ 898{
496 int i; 899 int i;
497 900
498 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
499 { 902 {
500 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
502 ev_io *w; 905 ev_io *w;
503 906
504 int events = 0; 907 unsigned char events = 0;
505 908
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 910 events |= (unsigned char)w->events;
508 911
509#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
510 if (events) 913 if (events)
511 { 914 {
512 unsigned long argp; 915 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 918 }
516#endif 919#endif
517 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
518 anfd->reify = 0; 925 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
522 } 931 }
523 932
524 fdchangecnt = 0; 933 fdchangecnt = 0;
525} 934}
526 935
527void inline_size 936/* something about the given fd changed */
937inline_size void
528fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
529{ 939{
530 if (expect_false (anfds [fd].reify)) 940 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
534 942
943 if (expect_true (!reify))
944 {
535 ++fdchangecnt; 945 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
538} 949}
539 950
540void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
541fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
542{ 954{
543 ev_io *w; 955 ev_io *w;
544 956
545 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 961 }
550} 962}
551 963
552int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
553fd_valid (int fd) 966fd_valid (int fd)
554{ 967{
555#ifdef _WIN32 968#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
557#else 970#else
565{ 978{
566 int fd; 979 int fd;
567 980
568 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 982 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
572} 985}
573 986
574/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 988static void noinline
579 992
580 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 994 if (anfds [fd].events)
582 { 995 {
583 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
584 return; 997 break;
585 } 998 }
586} 999}
587 1000
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1002static void noinline
593 1006
594 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1008 if (anfds [fd].events)
596 { 1009 {
597 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1013 }
600} 1014}
601 1015
602/*****************************************************************************/ 1016/*****************************************************************************/
603 1017
604void inline_speed 1018/*
605upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
606{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
608 1023
609 while (k && heap [k >> 1]->at > w->at) 1024/*
610 { 1025 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 1027 * which is more cache-efficient.
613 k >>= 1; 1028 * the difference is about 5% with 50000+ watchers.
614 } 1029 */
1030#if EV_USE_4HEAP
615 1031
616 heap [k] = w; 1032#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
618 1036
619} 1037/* away from the root */
620 1038inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
623{ 1040{
624 WT w = heap [k]; 1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
625 1043
626 while (k < (N >> 1)) 1044 for (;;)
627 { 1045 {
628 int j = k << 1; 1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 1049
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 1052 {
632 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
634 break; 1066 break;
635 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
636 heap [k] = heap [j]; 1106 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 1107 ev_active (ANHE_w (heap [k])) = k;
1108
638 k = j; 1109 k = c;
639 } 1110 }
640 1111
641 heap [k] = w; 1112 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (he)) = k;
643} 1114}
1115#endif
644 1116
645void inline_size 1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
646adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
647{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
648 upheap (heap, k); 1144 upheap (heap, k);
1145 else
649 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
650} 1159}
651 1160
652/*****************************************************************************/ 1161/*****************************************************************************/
653 1162
1163/* associate signal watchers to a signal signal */
654typedef struct 1164typedef struct
655{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
656 WL head; 1170 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG; 1171} ANSIG;
659 1172
660static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
661static int signalmax;
662 1174
663static int sigpipe [2]; 1175/*****************************************************************************/
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 1176
667void inline_size 1177/* used to prepare libev internal fd's */
668signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
669{ 1179inline_speed void
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1180fd_intern (int fd)
732{ 1181{
733#ifdef _WIN32 1182#ifdef _WIN32
734 int arg = 1; 1183 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else 1185#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1188#endif
740} 1189}
741 1190
742static void noinline 1191static void noinline
743siginit (EV_P) 1192evpipe_init (EV_P)
744{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
745 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
747 1217
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
751} 1288}
752 1289
753/*****************************************************************************/ 1290/*****************************************************************************/
754 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
755static ev_child *childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
756 1354
757#ifndef _WIN32 1355#ifndef _WIN32
758 1356
759static ev_signal childev; 1357static ev_signal childev;
760 1358
761void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
763{ 1366{
764 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1369
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
767 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
768 { 1374 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1376 w->rpid = pid;
771 w->rstatus = status; 1377 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1379 }
1380 }
774} 1381}
775 1382
776#ifndef WCONTINUED 1383#ifndef WCONTINUED
777# define WCONTINUED 0 1384# define WCONTINUED 0
778#endif 1385#endif
779 1386
1387/* called on sigchld etc., calls waitpid */
780static void 1388static void
781childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
782{ 1390{
783 int pid, status; 1391 int pid, status;
784 1392
787 if (!WCONTINUED 1395 if (!WCONTINUED
788 || errno != EINVAL 1396 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1398 return;
791 1399
792 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1403
796 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1407}
800 1408
801#endif 1409#endif
802 1410
803/*****************************************************************************/ 1411/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
868#endif 1476#endif
869#ifdef __APPLE__ 1477#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1481#endif
873 1482
874 return flags; 1483 return flags;
875} 1484}
876 1485
877unsigned int 1486unsigned int
878ev_embeddable_backends (void) 1487ev_embeddable_backends (void)
879{ 1488{
880 return EVBACKEND_EPOLL 1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1490
882 | EVBACKEND_PORT; 1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
883} 1496}
884 1497
885unsigned int 1498unsigned int
886ev_backend (EV_P) 1499ev_backend (EV_P)
887{ 1500{
888 return backend; 1501 return backend;
889} 1502}
890 1503
1504#if EV_MINIMAL < 2
891unsigned int 1505unsigned int
892ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
893{ 1507{
894 return loop_count; 1508 return loop_count;
895} 1509}
896 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
897static void noinline 1554static void noinline
898loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
899{ 1556{
900 if (!backend) 1557 if (!backend)
901 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
902#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
903 { 1571 {
904 struct timespec ts; 1572 struct timespec ts;
1573
905 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
906 have_monotonic = 1; 1575 have_monotonic = 1;
907 } 1576 }
908#endif 1577#endif
909
910 ev_rt_now = ev_time ();
911 mn_now = get_clock ();
912 now_floor = mn_now;
913 rtmn_diff = ev_rt_now - mn_now;
914 1578
915 /* pid check not overridable via env */ 1579 /* pid check not overridable via env */
916#ifndef _WIN32 1580#ifndef _WIN32
917 if (flags & EVFLAG_FORKCHECK) 1581 if (flags & EVFLAG_FORKCHECK)
918 curpid = getpid (); 1582 curpid = getpid ();
921 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
922 && !enable_secure () 1586 && !enable_secure ()
923 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
924 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
925 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1611#endif
1612
926 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
927 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
928
929 backend = 0;
930 backend_fd = -1;
931#if EV_USE_INOTIFY
932 fs_fd = -2;
933#endif
934 1615
935#if EV_USE_PORT 1616#if EV_USE_PORT
936 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
937#endif 1618#endif
938#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
946#endif 1627#endif
947#if EV_USE_SELECT 1628#if EV_USE_SELECT
948 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
949#endif 1630#endif
950 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
951 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
952 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
953 } 1636 }
954} 1637}
955 1638
1639/* free up a loop structure */
956static void noinline 1640static void noinline
957loop_destroy (EV_P) 1641loop_destroy (EV_P)
958{ 1642{
959 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
960 1666
961#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
962 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
963 close (fs_fd); 1669 close (fs_fd);
964#endif 1670#endif
981#if EV_USE_SELECT 1687#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1688 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1689#endif
984 1690
985 for (i = NUMPRI; i--; ) 1691 for (i = NUMPRI; i--; )
1692 {
986 array_free (pending, [i]); 1693 array_free (pending, [i]);
1694#if EV_IDLE_ENABLE
1695 array_free (idle, [i]);
1696#endif
1697 }
1698
1699 ev_free (anfds); anfds = 0; anfdmax = 0;
987 1700
988 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
989 array_free (fdchange, EMPTY0); 1703 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1704 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1706 array_free (periodic, EMPTY);
993#endif 1707#endif
1708#if EV_FORK_ENABLE
994 array_free (idle, EMPTY0); 1709 array_free (fork, EMPTY);
1710#endif
995 array_free (prepare, EMPTY0); 1711 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
997 1716
998 backend = 0; 1717 backend = 0;
999} 1718}
1000 1719
1720#if EV_USE_INOTIFY
1001void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1722#endif
1002 1723
1003void inline_size 1724inline_size void
1004loop_fork (EV_P) 1725loop_fork (EV_P)
1005{ 1726{
1006#if EV_USE_PORT 1727#if EV_USE_PORT
1007 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1008#endif 1729#endif
1014#endif 1735#endif
1015#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1016 infy_fork (EV_A); 1737 infy_fork (EV_A);
1017#endif 1738#endif
1018 1739
1019 if (ev_is_active (&sigev)) 1740 if (ev_is_active (&pipe_w))
1020 { 1741 {
1021 /* default loop */ 1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
1022 1748
1023 ev_ref (EV_A); 1749 ev_ref (EV_A);
1024 ev_io_stop (EV_A_ &sigev); 1750 ev_io_stop (EV_A_ &pipe_w);
1025 close (sigpipe [0]);
1026 close (sigpipe [1]);
1027 1751
1028 while (pipe (sigpipe)) 1752#if EV_USE_EVENTFD
1029 syserr ("(libev) error creating pipe"); 1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
1030 1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
1031 siginit (EV_A); 1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
1032 } 1766 }
1033 1767
1034 postfork = 0; 1768 postfork = 0;
1035} 1769}
1036 1770
1037#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
1038struct ev_loop * 1773struct ev_loop *
1039ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1040{ 1775{
1041 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1042 1777
1043 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1044
1045 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1046 1780
1047 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1048 return loop; 1782 return EV_A;
1049 1783
1050 return 0; 1784 return 0;
1051} 1785}
1052 1786
1053void 1787void
1058} 1792}
1059 1793
1060void 1794void
1061ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1062{ 1796{
1063 postfork = 1; 1797 postfork = 1; /* must be in line with ev_default_fork */
1064} 1798}
1799#endif /* multiplicity */
1065 1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
1066#endif 1900#endif
1067 1901
1068#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1069struct ev_loop * 1903struct ev_loop *
1070ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
1071#else 1905#else
1072int 1906int
1073ev_default_loop (unsigned int flags) 1907ev_default_loop (unsigned int flags)
1074#endif 1908#endif
1075{ 1909{
1076 if (sigpipe [0] == sigpipe [1])
1077 if (pipe (sigpipe))
1078 return 0;
1079
1080 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1081 { 1911 {
1082#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1083 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1084#else 1914#else
1085 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1086#endif 1916#endif
1087 1917
1088 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1089 1919
1090 if (ev_backend (EV_A)) 1920 if (ev_backend (EV_A))
1091 { 1921 {
1092 siginit (EV_A);
1093
1094#ifndef _WIN32 1922#ifndef _WIN32
1095 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
1096 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
1097 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
1098 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
1107 1935
1108void 1936void
1109ev_default_destroy (void) 1937ev_default_destroy (void)
1110{ 1938{
1111#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1112 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1113#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1114 1944
1115#ifndef _WIN32 1945#ifndef _WIN32
1116 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1117 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1118#endif 1948#endif
1119 1949
1120 ev_ref (EV_A); /* signal watcher */
1121 ev_io_stop (EV_A_ &sigev);
1122
1123 close (sigpipe [0]); sigpipe [0] = 0;
1124 close (sigpipe [1]); sigpipe [1] = 0;
1125
1126 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
1127} 1951}
1128 1952
1129void 1953void
1130ev_default_fork (void) 1954ev_default_fork (void)
1131{ 1955{
1132#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1133 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1134#endif 1958#endif
1135 1959
1136 if (backend) 1960 postfork = 1; /* must be in line with ev_loop_fork */
1137 postfork = 1;
1138} 1961}
1139 1962
1140/*****************************************************************************/ 1963/*****************************************************************************/
1141 1964
1142int inline_size 1965void
1143any_pending (EV_P) 1966ev_invoke (EV_P_ void *w, int revents)
1967{
1968 EV_CB_INVOKE ((W)w, revents);
1969}
1970
1971unsigned int
1972ev_pending_count (EV_P)
1144{ 1973{
1145 int pri; 1974 int pri;
1975 unsigned int count = 0;
1146 1976
1147 for (pri = NUMPRI; pri--; ) 1977 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri]) 1978 count += pendingcnt [pri];
1149 return 1;
1150 1979
1151 return 0; 1980 return count;
1152} 1981}
1153 1982
1154void inline_speed 1983void noinline
1155call_pending (EV_P) 1984ev_invoke_pending (EV_P)
1156{ 1985{
1157 int pri; 1986 int pri;
1158 1987
1159 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1160 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1161 { 1990 {
1162 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1163 1992
1164 if (expect_true (p->w))
1165 {
1166 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1167 1995
1168 p->w->pending = 0; 1996 p->w->pending = 0;
1169 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1170 } 1998 EV_FREQUENT_CHECK;
1171 } 1999 }
1172} 2000}
1173 2001
1174void inline_size 2002#if EV_IDLE_ENABLE
2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
2006idle_reify (EV_P)
2007{
2008 if (expect_false (idleall))
2009 {
2010 int pri;
2011
2012 for (pri = NUMPRI; pri--; )
2013 {
2014 if (pendingcnt [pri])
2015 break;
2016
2017 if (idlecnt [pri])
2018 {
2019 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2020 break;
2021 }
2022 }
2023 }
2024}
2025#endif
2026
2027/* make timers pending */
2028inline_size void
1175timers_reify (EV_P) 2029timers_reify (EV_P)
1176{ 2030{
2031 EV_FREQUENT_CHECK;
2032
1177 while (timercnt && ((WT)timers [0])->at <= mn_now) 2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1178 { 2034 {
1179 ev_timer *w = timers [0]; 2035 do
1180
1181 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1182
1183 /* first reschedule or stop timer */
1184 if (w->repeat)
1185 { 2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
1186 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1187 2049
1188 ((WT)w)->at += w->repeat; 2050 ANHE_at_cache (timers [HEAP0]);
1189 if (((WT)w)->at < mn_now)
1190 ((WT)w)->at = mn_now;
1191
1192 downheap ((WT *)timers, timercnt, 0); 2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
1193 } 2058 }
1194 else 2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1195 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1196 2060
1197 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
1198 } 2062 }
1199} 2063}
1200 2064
1201#if EV_PERIODIC_ENABLE 2065#if EV_PERIODIC_ENABLE
1202void inline_size 2066/* make periodics pending */
2067inline_size void
1203periodics_reify (EV_P) 2068periodics_reify (EV_P)
1204{ 2069{
2070 EV_FREQUENT_CHECK;
2071
1205 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1206 { 2073 {
1207 ev_periodic *w = periodics [0]; 2074 int feed_count = 0;
1208 2075
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2076 do
1210
1211 /* first reschedule or stop timer */
1212 if (w->reschedule_cb)
1213 { 2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
1217 } 2116 }
1218 else if (w->interval) 2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1219 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1222 downheap ((WT *)periodics, periodiccnt, 0);
1223 }
1224 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1226 2118
1227 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2119 feed_reverse_done (EV_A_ EV_PERIODIC);
1228 } 2120 }
1229} 2121}
1230 2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1231static void noinline 2125static void noinline
1232periodics_reschedule (EV_P) 2126periodics_reschedule (EV_P)
1233{ 2127{
1234 int i; 2128 int i;
1235 2129
1236 /* adjust periodics after time jump */ 2130 /* adjust periodics after time jump */
1237 for (i = 0; i < periodiccnt; ++i) 2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1238 { 2132 {
1239 ev_periodic *w = periodics [i]; 2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1240 2134
1241 if (w->reschedule_cb) 2135 if (w->reschedule_cb)
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1243 else if (w->interval) 2137 else if (w->interval)
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
1245 } 2154 {
1246 2155 ANHE *he = timers + i + HEAP0;
1247 /* now rebuild the heap */ 2156 ANHE_w (*he)->at += adjust;
1248 for (i = periodiccnt >> 1; i--; ) 2157 ANHE_at_cache (*he);
1249 downheap ((WT *)periodics, periodiccnt, i); 2158 }
1250} 2159}
1251#endif
1252 2160
1253int inline_size 2161/* fetch new monotonic and realtime times from the kernel */
1254time_update_monotonic (EV_P) 2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
2164time_update (EV_P_ ev_tstamp max_block)
1255{ 2165{
2166#if EV_USE_MONOTONIC
2167 if (expect_true (have_monotonic))
2168 {
2169 int i;
2170 ev_tstamp odiff = rtmn_diff;
2171
1256 mn_now = get_clock (); 2172 mn_now = get_clock ();
1257 2173
2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2175 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2176 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 2177 {
1260 ev_rt_now = rtmn_diff + mn_now; 2178 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 2179 return;
1262 } 2180 }
1263 else 2181
1264 {
1265 now_floor = mn_now; 2182 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 2183 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 2184
1271void inline_size 2185 /* loop a few times, before making important decisions.
1272time_update (EV_P) 2186 * on the choice of "4": one iteration isn't enough,
1273{ 2187 * in case we get preempted during the calls to
1274 int i; 2188 * ev_time and get_clock. a second call is almost guaranteed
1275 2189 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 2190 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 2191 * in the unlikely event of having been preempted here.
1278 { 2192 */
1279 if (time_update_monotonic (EV_A)) 2193 for (i = 4; --i; )
1280 { 2194 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1294 2196
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1296 return; /* all is well */ 2198 return; /* all is well */
1297 2199
1298 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 2201 mn_now = get_clock ();
1300 now_floor = mn_now; 2202 now_floor = mn_now;
1301 } 2203 }
1302 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1303# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1305# endif 2209# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 2210 }
1310 else 2211 else
1311#endif 2212#endif
1312 { 2213 {
1313 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1314 2215
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1317#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1319#endif 2222#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i)
1323 ((WT)timers [i])->at += ev_rt_now - mn_now;
1324 } 2223 }
1325 2224
1326 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1327 } 2226 }
1328} 2227}
1329 2228
1330void 2229void
1331ev_ref (EV_P)
1332{
1333 ++activecnt;
1334}
1335
1336void
1337ev_unref (EV_P)
1338{
1339 --activecnt;
1340}
1341
1342static int loop_done;
1343
1344void
1345ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1346{ 2231{
1347 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2232#if EV_MINIMAL < 2
1348 ? EVUNLOOP_ONE 2233 ++loop_depth;
1349 : EVUNLOOP_CANCEL; 2234#endif
1350 2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
1351 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1352 2241
1353 do 2242 do
1354 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
1355#ifndef _WIN32 2248#ifndef _WIN32
1356 if (expect_false (curpid)) /* penalise the forking check even more */ 2249 if (expect_false (curpid)) /* penalise the forking check even more */
1357 if (expect_false (getpid () != curpid)) 2250 if (expect_false (getpid () != curpid))
1358 { 2251 {
1359 curpid = getpid (); 2252 curpid = getpid ();
1365 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1366 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1367 if (forkcnt) 2260 if (forkcnt)
1368 { 2261 {
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1371 } 2264 }
1372#endif 2265#endif
1373 2266
1374 /* queue check watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1376 { 2269 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1379 } 2272 }
1380 2273
1381 if (expect_false (!activecnt)) 2274 if (expect_false (loop_done))
1382 break; 2275 break;
1383 2276
1384 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1385 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1386 loop_fork (EV_A); 2279 loop_fork (EV_A);
1388 /* update fd-related kernel structures */ 2281 /* update fd-related kernel structures */
1389 fd_reify (EV_A); 2282 fd_reify (EV_A);
1390 2283
1391 /* calculate blocking time */ 2284 /* calculate blocking time */
1392 { 2285 {
1393 ev_tstamp block; 2286 ev_tstamp waittime = 0.;
2287 ev_tstamp sleeptime = 0.;
1394 2288
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1396 block = 0.; /* do not block at all */
1397 else
1398 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1399 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A); 2295 time_update (EV_A_ 1e100);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409 2296
1410 block = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1411 2298
1412 if (timercnt) 2299 if (timercnt)
1413 { 2300 {
1414 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1415 if (block > to) block = to; 2302 if (waittime > to) waittime = to;
1416 } 2303 }
1417 2304
1418#if EV_PERIODIC_ENABLE 2305#if EV_PERIODIC_ENABLE
1419 if (periodiccnt) 2306 if (periodiccnt)
1420 { 2307 {
1421 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1422 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1423 } 2310 }
1424#endif 2311#endif
1425 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
2314 if (expect_false (waittime < timeout_blocktime))
2315 waittime = timeout_blocktime;
2316
2317 /* extra check because io_blocktime is commonly 0 */
1426 if (expect_false (block < 0.)) block = 0.; 2318 if (expect_false (io_blocktime))
2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
2327 ev_sleep (sleeptime);
2328 waittime -= sleeptime;
2329 }
2330 }
1427 } 2331 }
1428 2332
2333#if EV_MINIMAL < 2
1429 ++loop_count; 2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1430 backend_poll (EV_A_ block); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2339
2340 /* update ev_rt_now, do magic */
2341 time_update (EV_A_ waittime + sleeptime);
1431 } 2342 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 2343
1436 /* queue pending timers and reschedule them */ 2344 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 2345 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 2346#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 2347 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 2348#endif
1441 2349
2350#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 2351 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 2352 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2353#endif
1445 2354
1446 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1449 2358
1450 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1451
1452 } 2360 }
1453 while (expect_true (activecnt && !loop_done)); 2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1454 2366
1455 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
1456 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1457} 2373}
1458 2374
1459void 2375void
1460ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1461{ 2377{
1462 loop_done = how; 2378 loop_done = how;
1463} 2379}
1464 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1465/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1466 2420
1467void inline_size 2421inline_size void
1468wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1469{ 2423{
1470 elem->next = *head; 2424 elem->next = *head;
1471 *head = elem; 2425 *head = elem;
1472} 2426}
1473 2427
1474void inline_size 2428inline_size void
1475wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1476{ 2430{
1477 while (*head) 2431 while (*head)
1478 { 2432 {
1479 if (*head == elem) 2433 if (expect_true (*head == elem))
1480 { 2434 {
1481 *head = elem->next; 2435 *head = elem->next;
1482 return; 2436 break;
1483 } 2437 }
1484 2438
1485 head = &(*head)->next; 2439 head = &(*head)->next;
1486 } 2440 }
1487} 2441}
1488 2442
1489void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
1490ev_clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1491{ 2446{
1492 if (w->pending) 2447 if (w->pending)
1493 { 2448 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1495 w->pending = 0; 2450 w->pending = 0;
1496 } 2451 }
1497} 2452}
1498 2453
1499void inline_speed 2454int
2455ev_clear_pending (EV_P_ void *w)
2456{
2457 W w_ = (W)w;
2458 int pending = w_->pending;
2459
2460 if (expect_true (pending))
2461 {
2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
2464 w_->pending = 0;
2465 return p->events;
2466 }
2467 else
2468 return 0;
2469}
2470
2471inline_size void
2472pri_adjust (EV_P_ W w)
2473{
2474 int pri = ev_priority (w);
2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2477 ev_set_priority (w, pri);
2478}
2479
2480inline_speed void
1500ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1501{ 2482{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2483 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 2484 w->active = active;
1506 ev_ref (EV_A); 2485 ev_ref (EV_A);
1507} 2486}
1508 2487
1509void inline_size 2488inline_size void
1510ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1511{ 2490{
1512 ev_unref (EV_A); 2491 ev_unref (EV_A);
1513 w->active = 0; 2492 w->active = 0;
1514} 2493}
1515 2494
1516/*****************************************************************************/ 2495/*****************************************************************************/
1517 2496
1518void 2497void noinline
1519ev_io_start (EV_P_ ev_io *w) 2498ev_io_start (EV_P_ ev_io *w)
1520{ 2499{
1521 int fd = w->fd; 2500 int fd = w->fd;
1522 2501
1523 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1524 return; 2503 return;
1525 2504
1526 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1527 2509
1528 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1531 2513
1532 fd_change (EV_A_ fd); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1533} 2515 w->events &= ~EV__IOFDSET;
1534 2516
1535void 2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
1536ev_io_stop (EV_P_ ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1537{ 2522{
1538 ev_clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1540 return; 2525 return;
1541 2526
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 2528
2529 EV_FREQUENT_CHECK;
2530
1544 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1545 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1546 2533
1547 fd_change (EV_A_ w->fd); 2534 fd_change (EV_A_ w->fd, 1);
1548}
1549 2535
1550void 2536 EV_FREQUENT_CHECK;
2537}
2538
2539void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1552{ 2541{
1553 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
1554 return; 2543 return;
1555 2544
1556 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1557 2546
1558 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1559 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1560 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1561 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1562 timers [timercnt - 1] = w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1563 upheap ((WT *)timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1564 2557
2558 EV_FREQUENT_CHECK;
2559
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1566} 2561}
1567 2562
1568void 2563void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1570{ 2565{
1571 ev_clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1573 return; 2568 return;
1574 2569
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2570 EV_FREQUENT_CHECK;
1576 2571
1577 { 2572 {
1578 int active = ((W)w)->active; 2573 int active = ev_active (w);
1579 2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
1580 if (expect_true (--active < --timercnt)) 2579 if (expect_true (active < timercnt + HEAP0))
1581 { 2580 {
1582 timers [active] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1583 adjustheap ((WT *)timers, timercnt, active); 2582 adjustheap (timers, timercnt, active);
1584 } 2583 }
1585 } 2584 }
1586 2585
1587 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1588 2589
1589 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1590} 2591}
1591 2592
1592void 2593void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1594{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1595 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1596 { 2599 {
1597 if (w->repeat) 2600 if (w->repeat)
1598 { 2601 {
1599 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1600 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1601 } 2605 }
1602 else 2606 else
1603 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1604 } 2608 }
1605 else if (w->repeat) 2609 else if (w->repeat)
1606 { 2610 {
1607 w->at = w->repeat; 2611 ev_at (w) = w->repeat;
1608 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1609 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1610} 2622}
1611 2623
1612#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
1613void 2625void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 2627{
1616 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
1617 return; 2629 return;
1618 2630
1619 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 2633 else if (w->interval)
1622 { 2634 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 2638 }
2639 else
2640 ev_at (w) = w->offset;
1627 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1632 2650
2651 EV_FREQUENT_CHECK;
2652
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1634} 2654}
1635 2655
1636void 2656void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 2658{
1639 ev_clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1641 return; 2661 return;
1642 2662
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2663 EV_FREQUENT_CHECK;
1644 2664
1645 { 2665 {
1646 int active = ((W)w)->active; 2666 int active = ev_active (w);
1647 2667
2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2669
2670 --periodiccnt;
2671
1648 if (expect_true (--active < --periodiccnt)) 2672 if (expect_true (active < periodiccnt + HEAP0))
1649 { 2673 {
1650 periodics [active] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1651 adjustheap ((WT *)periodics, periodiccnt, active); 2675 adjustheap (periodics, periodiccnt, active);
1652 } 2676 }
1653 } 2677 }
1654 2678
2679 EV_FREQUENT_CHECK;
2680
1655 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1656} 2682}
1657 2683
1658void 2684void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 2686{
1661 /* TODO: use adjustheap and recalculation */ 2687 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 2688 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 2689 ev_periodic_start (EV_A_ w);
1666 2692
1667#ifndef SA_RESTART 2693#ifndef SA_RESTART
1668# define SA_RESTART 0 2694# define SA_RESTART 0
1669#endif 2695#endif
1670 2696
1671void 2697void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1673{ 2699{
1674#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif
1677 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
1678 return; 2701 return;
1679 2702
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2704
2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2716 {
2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2718 if (sigfd < 0 && errno == EINVAL)
2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2720
2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2724
2725 sigemptyset (&sigfd_set);
2726
2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
1681 2743
1682 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
1685 2746
1686 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
1687 { 2751 {
1688#if _WIN32 2752# if _WIN32
2753 evpipe_init (EV_A);
2754
1689 signal (w->signum, sighandler); 2755 signal (w->signum, ev_sighandler);
1690#else 2756# else
1691 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
1692 sa.sa_handler = sighandler; 2761 sa.sa_handler = ev_sighandler;
1693 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
1694 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1695 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1696#endif 2769#endif
1697 } 2770 }
1698}
1699 2771
1700void 2772 EV_FREQUENT_CHECK;
2773}
2774
2775void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 2776ev_signal_stop (EV_P_ ev_signal *w)
1702{ 2777{
1703 ev_clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
1705 return; 2780 return;
1706 2781
2782 EV_FREQUENT_CHECK;
2783
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
1709 2786
1710 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805#endif
1711 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
1712} 2810}
1713 2811
1714void 2812void
1715ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
1716{ 2814{
1717#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
1718 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1719#endif 2817#endif
1720 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1721 return; 2819 return;
1722 2820
2821 EV_FREQUENT_CHECK;
2822
1723 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1724 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
1725} 2827}
1726 2828
1727void 2829void
1728ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
1729{ 2831{
1730 ev_clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1732 return; 2834 return;
1733 2835
2836 EV_FREQUENT_CHECK;
2837
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
1736} 2842}
1737 2843
1738#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
1739 2845
1740# ifdef _WIN32 2846# ifdef _WIN32
1741# undef lstat 2847# undef lstat
1742# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
1743# endif 2849# endif
1744 2850
1745#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1746#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
1747 2854
1748static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1749 2856
1750#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
1751# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
1753static void noinline 2860static void noinline
1754infy_add (EV_P_ ev_stat *w) 2861infy_add (EV_P_ ev_stat *w)
1755{ 2862{
1756 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1757 2864
1758 if (w->wd < 0) 2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1759 { 2885 }
1760 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1761 2890
1762 /* monitor some parent directory for speedup hints */ 2891 /* if path is not there, monitor some parent directory for speedup hints */
2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2893 /* but an efficiency issue only */
1763 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1764 { 2895 {
1765 char path [4096]; 2896 char path [4096];
1766 strcpy (path, w->path); 2897 strcpy (path, w->path);
1767 2898
1770 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1771 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1772 2903
1773 char *pend = strrchr (path, '/'); 2904 char *pend = strrchr (path, '/');
1774 2905
1775 if (!pend) 2906 if (!pend || pend == path)
1776 break; /* whoops, no '/', complain to your admin */ 2907 break;
1777 2908
1778 *pend = 0; 2909 *pend = 0;
1779 w->wd = inotify_add_watch (fs_fd, path, mask); 2910 w->wd = inotify_add_watch (fs_fd, path, mask);
1780 } 2911 }
1781 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1782 } 2913 }
1783 } 2914 }
1784 else
1785 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1786 2915
1787 if (w->wd >= 0) 2916 if (w->wd >= 0)
1788 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1789} 2923}
1790 2924
1791static void noinline 2925static void noinline
1792infy_del (EV_P_ ev_stat *w) 2926infy_del (EV_P_ ev_stat *w)
1793{ 2927{
1807 2941
1808static void noinline 2942static void noinline
1809infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2943infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1810{ 2944{
1811 if (slot < 0) 2945 if (slot < 0)
1812 /* overflow, need to check for all hahs slots */ 2946 /* overflow, need to check for all hash slots */
1813 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1814 infy_wd (EV_A_ slot, wd, ev); 2948 infy_wd (EV_A_ slot, wd, ev);
1815 else 2949 else
1816 { 2950 {
1817 WL w_; 2951 WL w_;
1823 2957
1824 if (w->wd == wd || wd == -1) 2958 if (w->wd == wd || wd == -1)
1825 { 2959 {
1826 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1827 { 2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1828 w->wd = -1; 2963 w->wd = -1;
1829 infy_add (EV_A_ w); /* re-add, no matter what */ 2964 infy_add (EV_A_ w); /* re-add, no matter what */
1830 } 2965 }
1831 2966
1832 stat_timer_cb (EV_A_ &w->timer, 0); 2967 stat_timer_cb (EV_A_ &w->timer, 0);
1845 2980
1846 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1847 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1848} 2983}
1849 2984
1850void inline_size 2985inline_size void
2986check_2625 (EV_P)
2987{
2988 /* kernels < 2.6.25 are borked
2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2990 */
2991 struct utsname buf;
2992 int major, minor, micro;
2993
2994 if (uname (&buf))
2995 return;
2996
2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2998 return;
2999
3000 if (major < 2
3001 || (major == 2 && minor < 6)
3002 || (major == 2 && minor == 6 && micro < 25))
3003 return;
3004
3005 fs_2625 = 1;
3006}
3007
3008inline_size int
3009infy_newfd (void)
3010{
3011#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015#endif
3016 return inotify_init ();
3017}
3018
3019inline_size void
1851infy_init (EV_P) 3020infy_init (EV_P)
1852{ 3021{
1853 if (fs_fd != -2) 3022 if (fs_fd != -2)
1854 return; 3023 return;
1855 3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
1856 fs_fd = inotify_init (); 3029 fs_fd = infy_newfd ();
1857 3030
1858 if (fs_fd >= 0) 3031 if (fs_fd >= 0)
1859 { 3032 {
3033 fd_intern (fs_fd);
1860 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1861 ev_set_priority (&fs_w, EV_MAXPRI); 3035 ev_set_priority (&fs_w, EV_MAXPRI);
1862 ev_io_start (EV_A_ &fs_w); 3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
1863 } 3038 }
1864} 3039}
1865 3040
1866void inline_size 3041inline_size void
1867infy_fork (EV_P) 3042infy_fork (EV_P)
1868{ 3043{
1869 int slot; 3044 int slot;
1870 3045
1871 if (fs_fd < 0) 3046 if (fs_fd < 0)
1872 return; 3047 return;
1873 3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
1874 close (fs_fd); 3051 close (fs_fd);
1875 fs_fd = inotify_init (); 3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
1876 3061
1877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1878 { 3063 {
1879 WL w_ = fs_hash [slot].head; 3064 WL w_ = fs_hash [slot].head;
1880 fs_hash [slot].head = 0; 3065 fs_hash [slot].head = 0;
1887 w->wd = -1; 3072 w->wd = -1;
1888 3073
1889 if (fs_fd >= 0) 3074 if (fs_fd >= 0)
1890 infy_add (EV_A_ w); /* re-add, no matter what */ 3075 infy_add (EV_A_ w); /* re-add, no matter what */
1891 else 3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1892 ev_timer_start (EV_A_ &w->timer); 3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
1893 } 3083 }
1894
1895 } 3084 }
1896} 3085}
1897 3086
3087#endif
3088
3089#ifdef _WIN32
3090# define EV_LSTAT(p,b) _stati64 (p, b)
3091#else
3092# define EV_LSTAT(p,b) lstat (p, b)
1898#endif 3093#endif
1899 3094
1900void 3095void
1901ev_stat_stat (EV_P_ ev_stat *w) 3096ev_stat_stat (EV_P_ ev_stat *w)
1902{ 3097{
1909static void noinline 3104static void noinline
1910stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3105stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1911{ 3106{
1912 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1913 3108
1914 /* we copy this here each the time so that */ 3109 ev_statdata prev = w->attr;
1915 /* prev has the old value when the callback gets invoked */
1916 w->prev = w->attr;
1917 ev_stat_stat (EV_A_ w); 3110 ev_stat_stat (EV_A_ w);
1918 3111
1919 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1920 if ( 3113 if (
1921 w->prev.st_dev != w->attr.st_dev 3114 prev.st_dev != w->attr.st_dev
1922 || w->prev.st_ino != w->attr.st_ino 3115 || prev.st_ino != w->attr.st_ino
1923 || w->prev.st_mode != w->attr.st_mode 3116 || prev.st_mode != w->attr.st_mode
1924 || w->prev.st_nlink != w->attr.st_nlink 3117 || prev.st_nlink != w->attr.st_nlink
1925 || w->prev.st_uid != w->attr.st_uid 3118 || prev.st_uid != w->attr.st_uid
1926 || w->prev.st_gid != w->attr.st_gid 3119 || prev.st_gid != w->attr.st_gid
1927 || w->prev.st_rdev != w->attr.st_rdev 3120 || prev.st_rdev != w->attr.st_rdev
1928 || w->prev.st_size != w->attr.st_size 3121 || prev.st_size != w->attr.st_size
1929 || w->prev.st_atime != w->attr.st_atime 3122 || prev.st_atime != w->attr.st_atime
1930 || w->prev.st_mtime != w->attr.st_mtime 3123 || prev.st_mtime != w->attr.st_mtime
1931 || w->prev.st_ctime != w->attr.st_ctime 3124 || prev.st_ctime != w->attr.st_ctime
1932 ) { 3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
1933 #if EV_USE_INOTIFY 3131 #if EV_USE_INOTIFY
3132 if (fs_fd >= 0)
3133 {
1934 infy_del (EV_A_ w); 3134 infy_del (EV_A_ w);
1935 infy_add (EV_A_ w); 3135 infy_add (EV_A_ w);
1936 ev_stat_stat (EV_A_ w); /* avoid race... */ 3136 ev_stat_stat (EV_A_ w); /* avoid race... */
3137 }
1937 #endif 3138 #endif
1938 3139
1939 ev_feed_event (EV_A_ w, EV_STAT); 3140 ev_feed_event (EV_A_ w, EV_STAT);
1940 } 3141 }
1941} 3142}
1944ev_stat_start (EV_P_ ev_stat *w) 3145ev_stat_start (EV_P_ ev_stat *w)
1945{ 3146{
1946 if (expect_false (ev_is_active (w))) 3147 if (expect_false (ev_is_active (w)))
1947 return; 3148 return;
1948 3149
1949 /* since we use memcmp, we need to clear any padding data etc. */
1950 memset (&w->prev, 0, sizeof (ev_statdata));
1951 memset (&w->attr, 0, sizeof (ev_statdata));
1952
1953 ev_stat_stat (EV_A_ w); 3150 ev_stat_stat (EV_A_ w);
1954 3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1955 if (w->interval < MIN_STAT_INTERVAL) 3153 w->interval = MIN_STAT_INTERVAL;
1956 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1957 3154
1958 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1959 ev_set_priority (&w->timer, ev_priority (w)); 3156 ev_set_priority (&w->timer, ev_priority (w));
1960 3157
1961#if EV_USE_INOTIFY 3158#if EV_USE_INOTIFY
1962 infy_init (EV_A); 3159 infy_init (EV_A);
1963 3160
1964 if (fs_fd >= 0) 3161 if (fs_fd >= 0)
1965 infy_add (EV_A_ w); 3162 infy_add (EV_A_ w);
1966 else 3163 else
1967#endif 3164#endif
3165 {
1968 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
1969 3169
1970 ev_start (EV_A_ (W)w, 1); 3170 ev_start (EV_A_ (W)w, 1);
3171
3172 EV_FREQUENT_CHECK;
1971} 3173}
1972 3174
1973void 3175void
1974ev_stat_stop (EV_P_ ev_stat *w) 3176ev_stat_stop (EV_P_ ev_stat *w)
1975{ 3177{
1976 ev_clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
1978 return; 3180 return;
1979 3181
3182 EV_FREQUENT_CHECK;
3183
1980#if EV_USE_INOTIFY 3184#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 3185 infy_del (EV_A_ w);
1982#endif 3186#endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
1983 ev_timer_stop (EV_A_ &w->timer); 3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
1984 3193
1985 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
1986}
1987#endif
1988 3195
3196 EV_FREQUENT_CHECK;
3197}
3198#endif
3199
3200#if EV_IDLE_ENABLE
1989void 3201void
1990ev_idle_start (EV_P_ ev_idle *w) 3202ev_idle_start (EV_P_ ev_idle *w)
1991{ 3203{
1992 if (expect_false (ev_is_active (w))) 3204 if (expect_false (ev_is_active (w)))
1993 return; 3205 return;
1994 3206
3207 pri_adjust (EV_A_ (W)w);
3208
3209 EV_FREQUENT_CHECK;
3210
3211 {
3212 int active = ++idlecnt [ABSPRI (w)];
3213
3214 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 3215 ev_start (EV_A_ (W)w, active);
3216
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3217 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 3218 idles [ABSPRI (w)][active - 1] = w;
3219 }
3220
3221 EV_FREQUENT_CHECK;
1998} 3222}
1999 3223
2000void 3224void
2001ev_idle_stop (EV_P_ ev_idle *w) 3225ev_idle_stop (EV_P_ ev_idle *w)
2002{ 3226{
2003 ev_clear_pending (EV_A_ (W)w); 3227 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 3228 if (expect_false (!ev_is_active (w)))
2005 return; 3229 return;
2006 3230
3231 EV_FREQUENT_CHECK;
3232
2007 { 3233 {
2008 int active = ((W)w)->active; 3234 int active = ev_active (w);
2009 idles [active - 1] = idles [--idlecnt]; 3235
2010 ((W)idles [active - 1])->active = active; 3236 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3237 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3238
3239 ev_stop (EV_A_ (W)w);
3240 --idleall;
2011 } 3241 }
2012 3242
2013 ev_stop (EV_A_ (W)w); 3243 EV_FREQUENT_CHECK;
2014} 3244}
3245#endif
2015 3246
2016void 3247void
2017ev_prepare_start (EV_P_ ev_prepare *w) 3248ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 3249{
2019 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
2020 return; 3251 return;
3252
3253 EV_FREQUENT_CHECK;
2021 3254
2022 ev_start (EV_A_ (W)w, ++preparecnt); 3255 ev_start (EV_A_ (W)w, ++preparecnt);
2023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3256 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2024 prepares [preparecnt - 1] = w; 3257 prepares [preparecnt - 1] = w;
3258
3259 EV_FREQUENT_CHECK;
2025} 3260}
2026 3261
2027void 3262void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 3263ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 3264{
2030 ev_clear_pending (EV_A_ (W)w); 3265 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 3266 if (expect_false (!ev_is_active (w)))
2032 return; 3267 return;
2033 3268
3269 EV_FREQUENT_CHECK;
3270
2034 { 3271 {
2035 int active = ((W)w)->active; 3272 int active = ev_active (w);
3273
2036 prepares [active - 1] = prepares [--preparecnt]; 3274 prepares [active - 1] = prepares [--preparecnt];
2037 ((W)prepares [active - 1])->active = active; 3275 ev_active (prepares [active - 1]) = active;
2038 } 3276 }
2039 3277
2040 ev_stop (EV_A_ (W)w); 3278 ev_stop (EV_A_ (W)w);
3279
3280 EV_FREQUENT_CHECK;
2041} 3281}
2042 3282
2043void 3283void
2044ev_check_start (EV_P_ ev_check *w) 3284ev_check_start (EV_P_ ev_check *w)
2045{ 3285{
2046 if (expect_false (ev_is_active (w))) 3286 if (expect_false (ev_is_active (w)))
2047 return; 3287 return;
3288
3289 EV_FREQUENT_CHECK;
2048 3290
2049 ev_start (EV_A_ (W)w, ++checkcnt); 3291 ev_start (EV_A_ (W)w, ++checkcnt);
2050 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3292 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2051 checks [checkcnt - 1] = w; 3293 checks [checkcnt - 1] = w;
3294
3295 EV_FREQUENT_CHECK;
2052} 3296}
2053 3297
2054void 3298void
2055ev_check_stop (EV_P_ ev_check *w) 3299ev_check_stop (EV_P_ ev_check *w)
2056{ 3300{
2057 ev_clear_pending (EV_A_ (W)w); 3301 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 3302 if (expect_false (!ev_is_active (w)))
2059 return; 3303 return;
2060 3304
3305 EV_FREQUENT_CHECK;
3306
2061 { 3307 {
2062 int active = ((W)w)->active; 3308 int active = ev_active (w);
3309
2063 checks [active - 1] = checks [--checkcnt]; 3310 checks [active - 1] = checks [--checkcnt];
2064 ((W)checks [active - 1])->active = active; 3311 ev_active (checks [active - 1]) = active;
2065 } 3312 }
2066 3313
2067 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2068} 3317}
2069 3318
2070#if EV_EMBED_ENABLE 3319#if EV_EMBED_ENABLE
2071void noinline 3320void noinline
2072ev_embed_sweep (EV_P_ ev_embed *w) 3321ev_embed_sweep (EV_P_ ev_embed *w)
2073{ 3322{
2074 ev_loop (w->loop, EVLOOP_NONBLOCK); 3323 ev_loop (w->other, EVLOOP_NONBLOCK);
2075} 3324}
2076 3325
2077static void 3326static void
2078embed_cb (EV_P_ ev_io *io, int revents) 3327embed_io_cb (EV_P_ ev_io *io, int revents)
2079{ 3328{
2080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3329 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2081 3330
2082 if (ev_cb (w)) 3331 if (ev_cb (w))
2083 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3332 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2084 else 3333 else
2085 ev_embed_sweep (loop, w); 3334 ev_loop (w->other, EVLOOP_NONBLOCK);
2086} 3335}
3336
3337static void
3338embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3339{
3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3341
3342 {
3343 EV_P = w->other;
3344
3345 while (fdchangecnt)
3346 {
3347 fd_reify (EV_A);
3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3349 }
3350 }
3351}
3352
3353static void
3354embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3355{
3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3357
3358 ev_embed_stop (EV_A_ w);
3359
3360 {
3361 EV_P = w->other;
3362
3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3365 }
3366
3367 ev_embed_start (EV_A_ w);
3368}
3369
3370#if 0
3371static void
3372embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3373{
3374 ev_idle_stop (EV_A_ idle);
3375}
3376#endif
2087 3377
2088void 3378void
2089ev_embed_start (EV_P_ ev_embed *w) 3379ev_embed_start (EV_P_ ev_embed *w)
2090{ 3380{
2091 if (expect_false (ev_is_active (w))) 3381 if (expect_false (ev_is_active (w)))
2092 return; 3382 return;
2093 3383
2094 { 3384 {
2095 struct ev_loop *loop = w->loop; 3385 EV_P = w->other;
2096 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2097 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2098 } 3388 }
3389
3390 EV_FREQUENT_CHECK;
2099 3391
2100 ev_set_priority (&w->io, ev_priority (w)); 3392 ev_set_priority (&w->io, ev_priority (w));
2101 ev_io_start (EV_A_ &w->io); 3393 ev_io_start (EV_A_ &w->io);
2102 3394
3395 ev_prepare_init (&w->prepare, embed_prepare_cb);
3396 ev_set_priority (&w->prepare, EV_MINPRI);
3397 ev_prepare_start (EV_A_ &w->prepare);
3398
3399 ev_fork_init (&w->fork, embed_fork_cb);
3400 ev_fork_start (EV_A_ &w->fork);
3401
3402 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3403
2103 ev_start (EV_A_ (W)w, 1); 3404 ev_start (EV_A_ (W)w, 1);
3405
3406 EV_FREQUENT_CHECK;
2104} 3407}
2105 3408
2106void 3409void
2107ev_embed_stop (EV_P_ ev_embed *w) 3410ev_embed_stop (EV_P_ ev_embed *w)
2108{ 3411{
2109 ev_clear_pending (EV_A_ (W)w); 3412 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 3413 if (expect_false (!ev_is_active (w)))
2111 return; 3414 return;
2112 3415
3416 EV_FREQUENT_CHECK;
3417
2113 ev_io_stop (EV_A_ &w->io); 3418 ev_io_stop (EV_A_ &w->io);
3419 ev_prepare_stop (EV_A_ &w->prepare);
3420 ev_fork_stop (EV_A_ &w->fork);
2114 3421
2115 ev_stop (EV_A_ (W)w); 3422 EV_FREQUENT_CHECK;
2116} 3423}
2117#endif 3424#endif
2118 3425
2119#if EV_FORK_ENABLE 3426#if EV_FORK_ENABLE
2120void 3427void
2121ev_fork_start (EV_P_ ev_fork *w) 3428ev_fork_start (EV_P_ ev_fork *w)
2122{ 3429{
2123 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
2124 return; 3431 return;
3432
3433 EV_FREQUENT_CHECK;
2125 3434
2126 ev_start (EV_A_ (W)w, ++forkcnt); 3435 ev_start (EV_A_ (W)w, ++forkcnt);
2127 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3436 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2128 forks [forkcnt - 1] = w; 3437 forks [forkcnt - 1] = w;
3438
3439 EV_FREQUENT_CHECK;
2129} 3440}
2130 3441
2131void 3442void
2132ev_fork_stop (EV_P_ ev_fork *w) 3443ev_fork_stop (EV_P_ ev_fork *w)
2133{ 3444{
2134 ev_clear_pending (EV_A_ (W)w); 3445 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 3446 if (expect_false (!ev_is_active (w)))
2136 return; 3447 return;
2137 3448
3449 EV_FREQUENT_CHECK;
3450
2138 { 3451 {
2139 int active = ((W)w)->active; 3452 int active = ev_active (w);
3453
2140 forks [active - 1] = forks [--forkcnt]; 3454 forks [active - 1] = forks [--forkcnt];
2141 ((W)forks [active - 1])->active = active; 3455 ev_active (forks [active - 1]) = active;
2142 } 3456 }
2143 3457
2144 ev_stop (EV_A_ (W)w); 3458 ev_stop (EV_A_ (W)w);
3459
3460 EV_FREQUENT_CHECK;
3461}
3462#endif
3463
3464#if EV_ASYNC_ENABLE
3465void
3466ev_async_start (EV_P_ ev_async *w)
3467{
3468 if (expect_false (ev_is_active (w)))
3469 return;
3470
3471 evpipe_init (EV_A);
3472
3473 EV_FREQUENT_CHECK;
3474
3475 ev_start (EV_A_ (W)w, ++asynccnt);
3476 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3477 asyncs [asynccnt - 1] = w;
3478
3479 EV_FREQUENT_CHECK;
3480}
3481
3482void
3483ev_async_stop (EV_P_ ev_async *w)
3484{
3485 clear_pending (EV_A_ (W)w);
3486 if (expect_false (!ev_is_active (w)))
3487 return;
3488
3489 EV_FREQUENT_CHECK;
3490
3491 {
3492 int active = ev_active (w);
3493
3494 asyncs [active - 1] = asyncs [--asynccnt];
3495 ev_active (asyncs [active - 1]) = active;
3496 }
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501}
3502
3503void
3504ev_async_send (EV_P_ ev_async *w)
3505{
3506 w->sent = 1;
3507 evpipe_write (EV_A_ &async_pending);
2145} 3508}
2146#endif 3509#endif
2147 3510
2148/*****************************************************************************/ 3511/*****************************************************************************/
2149 3512
2159once_cb (EV_P_ struct ev_once *once, int revents) 3522once_cb (EV_P_ struct ev_once *once, int revents)
2160{ 3523{
2161 void (*cb)(int revents, void *arg) = once->cb; 3524 void (*cb)(int revents, void *arg) = once->cb;
2162 void *arg = once->arg; 3525 void *arg = once->arg;
2163 3526
2164 ev_io_stop (EV_A_ &once->io); 3527 ev_io_stop (EV_A_ &once->io);
2165 ev_timer_stop (EV_A_ &once->to); 3528 ev_timer_stop (EV_A_ &once->to);
2166 ev_free (once); 3529 ev_free (once);
2167 3530
2168 cb (revents, arg); 3531 cb (revents, arg);
2169} 3532}
2170 3533
2171static void 3534static void
2172once_cb_io (EV_P_ ev_io *w, int revents) 3535once_cb_io (EV_P_ ev_io *w, int revents)
2173{ 3536{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3537 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3538
3539 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2175} 3540}
2176 3541
2177static void 3542static void
2178once_cb_to (EV_P_ ev_timer *w, int revents) 3543once_cb_to (EV_P_ ev_timer *w, int revents)
2179{ 3544{
2180 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3545 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3546
3547 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2181} 3548}
2182 3549
2183void 3550void
2184ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3551ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2185{ 3552{
2207 ev_timer_set (&once->to, timeout, 0.); 3574 ev_timer_set (&once->to, timeout, 0.);
2208 ev_timer_start (EV_A_ &once->to); 3575 ev_timer_start (EV_A_ &once->to);
2209 } 3576 }
2210} 3577}
2211 3578
3579/*****************************************************************************/
3580
3581#if EV_WALK_ENABLE
3582void
3583ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584{
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
3591 {
3592 wn = wl->next;
3593
3594#if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601#endif
3602#if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606#endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
3612 }
3613
3614 if (types & (EV_TIMER | EV_STAT))
3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616#if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3619 {
3620 if (types & EV_STAT)
3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3622 }
3623 else
3624#endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628#if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632#endif
3633
3634#if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639#endif
3640
3641#if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652#endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656#if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658#endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682/* EV_STAT 0x00001000 /* stat data changed */
3683/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3684}
3685#endif
3686
3687#if EV_MULTIPLICITY
3688 #include "ev_wrap.h"
3689#endif
3690
2212#ifdef __cplusplus 3691#ifdef __cplusplus
2213} 3692}
2214#endif 3693#endif
2215 3694

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines