ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC vs.
Revision 1.321 by root, Thu Dec 31 06:50:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
129#ifndef _WIN32 177#ifndef _WIN32
130# include <sys/time.h> 178# include <sys/time.h>
131# include <sys/wait.h> 179# include <sys/wait.h>
132# include <unistd.h> 180# include <unistd.h>
133#else 181#else
182# include <io.h>
134# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 184# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
138# endif 187# endif
139#endif 188#endif
140 189
141/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
142 226
143#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
144# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
145#endif 233#endif
146 234
147#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
149#endif 245#endif
150 246
151#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
153#endif 249#endif
159# define EV_USE_POLL 1 255# define EV_USE_POLL 1
160# endif 256# endif
161#endif 257#endif
162 258
163#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
164# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
165#endif 265#endif
166 266
167#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
169#endif 269#endif
171#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 272# define EV_USE_PORT 0
173#endif 273#endif
174 274
175#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
176# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
177#endif 281#endif
178 282
179#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 284# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
190# else 294# else
191# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
192# endif 296# endif
193#endif 297#endif
194 298
195/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 348
197#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
200#endif 352#endif
202#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
205#endif 357#endif
206 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
207#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 382# include <winsock.h>
209#endif 383#endif
210 384
211#if !EV_STAT_ENABLE 385#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
213#endif 390# endif
214 391# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 392# ifdef O_CLOEXEC
216# include <sys/inotify.h> 393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
217#endif 397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
218 435
219/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
220 443
221/* 444/*
222 * This is used to avoid floating point rounding problems. 445 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 446 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 447 * to ensure progress, time-wise, even when rounding
228 */ 451 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230 453
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 456
235#if __GNUC__ >= 3 457#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
238#else 460#else
239# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
240# define noinline 462# define noinline
241# if __STDC_VERSION__ < 199901L 463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 464# define inline
243# endif 465# endif
244#endif 466#endif
245 467
246#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
251# define inline_speed static noinline 473# define inline_speed static noinline
252#else 474#else
253# define inline_speed static inline 475# define inline_speed static inline
254#endif 476#endif
255 477
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
258 485
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
261 488
262typedef ev_watcher *W; 489typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
265 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
267 515
268#ifdef _WIN32 516#ifdef _WIN32
269# include "ev_win32.c" 517# include "ev_win32.c"
270#endif 518#endif
271 519
278{ 526{
279 syserr_cb = cb; 527 syserr_cb = cb;
280} 528}
281 529
282static void noinline 530static void noinline
283syserr (const char *msg) 531ev_syserr (const char *msg)
284{ 532{
285 if (!msg) 533 if (!msg)
286 msg = "(libev) system error"; 534 msg = "(libev) system error";
287 535
288 if (syserr_cb) 536 if (syserr_cb)
292 perror (msg); 540 perror (msg);
293 abort (); 541 abort ();
294 } 542 }
295} 543}
296 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
297static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 561
299void 562void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 564{
302 alloc = cb; 565 alloc = cb;
303} 566}
304 567
305inline_speed void * 568inline_speed void *
306ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
307{ 570{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
309 572
310 if (!ptr && size) 573 if (!ptr && size)
311 { 574 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 576 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
321 584
322/*****************************************************************************/ 585/*****************************************************************************/
323 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
324typedef struct 591typedef struct
325{ 592{
326 WL head; 593 WL head;
327 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
329#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 602 SOCKET handle;
331#endif 603#endif
332} ANFD; 604} ANFD;
333 605
606/* stores the pending event set for a given watcher */
334typedef struct 607typedef struct
335{ 608{
336 W w; 609 W w;
337 int events; 610 int events; /* the pending event set for the given watcher */
338} ANPENDING; 611} ANPENDING;
339 612
340#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
341typedef struct 615typedef struct
342{ 616{
343 WL head; 617 WL head;
344} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
345#endif 639#endif
346 640
347#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
348 642
349 struct ev_loop 643 struct ev_loop
368 662
369 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
370 664
371#endif 665#endif
372 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
373/*****************************************************************************/ 679/*****************************************************************************/
374 680
681#ifndef EV_HAVE_EV_TIME
375ev_tstamp 682ev_tstamp
376ev_time (void) 683ev_time (void)
377{ 684{
378#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
379 struct timespec ts; 688 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 691 }
692#endif
693
383 struct timeval tv; 694 struct timeval tv;
384 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 697}
698#endif
388 699
389ev_tstamp inline_size 700inline_size ev_tstamp
390get_clock (void) 701get_clock (void)
391{ 702{
392#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
394 { 705 {
407{ 718{
408 return ev_rt_now; 719 return ev_rt_now;
409} 720}
410#endif 721#endif
411 722
412int inline_size 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
413array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
414{ 759{
415 int ncur = cur + 1; 760 int ncur = cur + 1;
416 761
417 do 762 do
418 ncur <<= 1; 763 ncur <<= 1;
419 while (cnt > ncur); 764 while (cnt > ncur);
420 765
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 768 {
424 ncur *= elem; 769 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 771 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 772 ncur /= elem;
428 } 773 }
429 774
430 return ncur; 775 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 779array_realloc (int elem, void *base, int *cur, int cnt)
435{ 780{
436 *cur = array_nextsize (elem, *cur, cnt); 781 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 782 return ev_realloc (base, elem * *cur);
438} 783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 787
440#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 789 if (expect_false ((cnt) > (cur))) \
442 { \ 790 { \
443 int ocur_ = (cur); \ 791 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 804 }
457#endif 805#endif
458 806
459#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 809
462/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
463 817
464void noinline 818void noinline
465ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
466{ 820{
467 W w_ = (W)w; 821 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 830 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 831 pendings [pri][w_->pending - 1].events = revents;
478 } 832 }
479} 833}
480 834
481void inline_speed 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 852{
484 int i; 853 int i;
485 854
486 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
488} 857}
489 858
490/*****************************************************************************/ 859/*****************************************************************************/
491 860
492void inline_size 861inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
507{ 863{
508 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
509 ev_io *w; 865 ev_io *w;
510 866
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 871 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
517 } 873 }
518} 874}
519 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
520void 887void
521ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 889{
523 if (fd >= 0 && fd < anfdmax) 890 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
525} 892}
526 893
527void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
528fd_reify (EV_P) 897fd_reify (EV_P)
529{ 898{
530 int i; 899 int i;
531 900
532 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
533 { 902 {
534 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
536 ev_io *w; 905 ev_io *w;
537 906
538 int events = 0; 907 unsigned char events = 0;
539 908
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 910 events |= (unsigned char)w->events;
542 911
543#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
544 if (events) 913 if (events)
545 { 914 {
546 unsigned long argp; 915 unsigned long arg;
547 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 918 }
550#endif 919#endif
551 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
552 anfd->reify = 0; 925 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
556 } 931 }
557 932
558 fdchangecnt = 0; 933 fdchangecnt = 0;
559} 934}
560 935
561void inline_size 936/* something about the given fd changed */
937inline_size void
562fd_change (EV_P_ int fd, int flags) 938fd_change (EV_P_ int fd, int flags)
563{ 939{
564 unsigned char reify = anfds [fd].reify; 940 unsigned char reify = anfds [fd].reify;
565 anfds [fd].reify |= flags | 1; 941 anfds [fd].reify |= flags;
566 942
567 if (expect_true (!reify)) 943 if (expect_true (!reify))
568 { 944 {
569 ++fdchangecnt; 945 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
572 } 948 }
573} 949}
574 950
575void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
576fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
577{ 954{
578 ev_io *w; 955 ev_io *w;
579 956
580 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 961 }
585} 962}
586 963
587int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
588fd_valid (int fd) 966fd_valid (int fd)
589{ 967{
590#ifdef _WIN32 968#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
592#else 970#else
600{ 978{
601 int fd; 979 int fd;
602 980
603 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 982 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
607} 985}
608 986
609/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 988static void noinline
614 992
615 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 994 if (anfds [fd].events)
617 { 995 {
618 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
619 return; 997 break;
620 } 998 }
621} 999}
622 1000
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 1002static void noinline
628 1006
629 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 1008 if (anfds [fd].events)
631 { 1009 {
632 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
633 fd_change (EV_A_ fd, EV_IOFDSET); 1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 1013 }
635} 1014}
636 1015
637/*****************************************************************************/ 1016/*****************************************************************************/
638 1017
639void inline_speed 1018/*
640upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
641{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
642 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
643 1023
644 while (k) 1024/*
645 { 1025 * at the moment we allow libev the luxury of two heaps,
646 int p = (k - 1) >> 1; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030#if EV_USE_4HEAP
647 1031
648 if (heap [p]->at <= w->at) 1032#define DHEAP 4
1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037/* away from the root */
1038inline_speed void
1039downheap (ANHE *heap, int N, int k)
1040{
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
649 break; 1066 break;
650 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114}
1115#endif
1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
651 heap [k] = heap [p]; 1130 heap [k] = heap [p];
652 ((W)heap [k])->active = k + 1; 1131 ev_active (ANHE_w (heap [k])) = k;
653 k = p; 1132 k = p;
654 } 1133 }
655 1134
656 heap [k] = w; 1135 heap [k] = he;
657 ((W)heap [k])->active = k + 1; 1136 ev_active (ANHE_w (he)) = k;
658} 1137}
659 1138
660void inline_speed 1139/* move an element suitably so it is in a correct place */
661downheap (WT *heap, int N, int k) 1140inline_size void
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
690{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
691 upheap (heap, k); 1144 upheap (heap, k);
1145 else
692 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
693} 1159}
694 1160
695/*****************************************************************************/ 1161/*****************************************************************************/
696 1162
1163/* associate signal watchers to a signal signal */
697typedef struct 1164typedef struct
698{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
699 WL head; 1170 WL head;
700 sig_atomic_t volatile gotsig;
701} ANSIG; 1171} ANSIG;
702 1172
703static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
704static int signalmax;
705 1174
706static int sigpipe [2]; 1175/*****************************************************************************/
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 1176
710void inline_size 1177/* used to prepare libev internal fd's */
711signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
712{ 1179inline_speed void
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772
773void inline_speed
774fd_intern (int fd) 1180fd_intern (int fd)
775{ 1181{
776#ifdef _WIN32 1182#ifdef _WIN32
777 int arg = 1; 1183 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else 1185#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1188#endif
783} 1189}
784 1190
785static void noinline 1191static void noinline
786siginit (EV_P) 1192evpipe_init (EV_P)
787{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
788 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
790 1217
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
794} 1288}
795 1289
796/*****************************************************************************/ 1290/*****************************************************************************/
797 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
798static WL childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
799 1354
800#ifndef _WIN32 1355#ifndef _WIN32
801 1356
802static ev_signal childev; 1357static ev_signal childev;
803 1358
804void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
806{ 1366{
807 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1369
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
810 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
811 { 1374 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1376 w->rpid = pid;
814 w->rstatus = status; 1377 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1379 }
1380 }
817} 1381}
818 1382
819#ifndef WCONTINUED 1383#ifndef WCONTINUED
820# define WCONTINUED 0 1384# define WCONTINUED 0
821#endif 1385#endif
822 1386
1387/* called on sigchld etc., calls waitpid */
823static void 1388static void
824childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
825{ 1390{
826 int pid, status; 1391 int pid, status;
827 1392
830 if (!WCONTINUED 1395 if (!WCONTINUED
831 || errno != EINVAL 1396 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1398 return;
834 1399
835 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1403
839 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1407}
843 1408
844#endif 1409#endif
845 1410
846/*****************************************************************************/ 1411/*****************************************************************************/
908 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
911#endif 1476#endif
912#ifdef __APPLE__ 1477#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
914 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
915#endif 1481#endif
916 1482
917 return flags; 1483 return flags;
918} 1484}
919 1485
920unsigned int 1486unsigned int
921ev_embeddable_backends (void) 1487ev_embeddable_backends (void)
922{ 1488{
923 return EVBACKEND_EPOLL 1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1490
925 | EVBACKEND_PORT; 1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
926} 1496}
927 1497
928unsigned int 1498unsigned int
929ev_backend (EV_P) 1499ev_backend (EV_P)
930{ 1500{
931 return backend; 1501 return backend;
932} 1502}
933 1503
1504#if EV_MINIMAL < 2
934unsigned int 1505unsigned int
935ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
936{ 1507{
937 return loop_count; 1508 return loop_count;
938} 1509}
939 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
940static void noinline 1554static void noinline
941loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
942{ 1556{
943 if (!backend) 1557 if (!backend)
944 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
945#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
946 { 1571 {
947 struct timespec ts; 1572 struct timespec ts;
1573
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1575 have_monotonic = 1;
950 } 1576 }
951#endif 1577#endif
952
953 ev_rt_now = ev_time ();
954 mn_now = get_clock ();
955 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now;
957 1578
958 /* pid check not overridable via env */ 1579 /* pid check not overridable via env */
959#ifndef _WIN32 1580#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1581 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1582 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1586 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1611#endif
1612
969 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1615
978#if EV_USE_PORT 1616#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1618#endif
981#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
989#endif 1627#endif
990#if EV_USE_SELECT 1628#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1630#endif
993 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
994 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
996 } 1636 }
997} 1637}
998 1638
1639/* free up a loop structure */
999static void noinline 1640static void noinline
1000loop_destroy (EV_P) 1641loop_destroy (EV_P)
1001{ 1642{
1002 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1003 1666
1004#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
1006 close (fs_fd); 1669 close (fs_fd);
1007#endif 1670#endif
1031#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1695 array_free (idle, [i]);
1033#endif 1696#endif
1034 } 1697 }
1035 1698
1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1700
1036 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1037 array_free (fdchange, EMPTY); 1703 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1704 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1706 array_free (periodic, EMPTY);
1041#endif 1707#endif
1708#if EV_FORK_ENABLE
1709 array_free (fork, EMPTY);
1710#endif
1042 array_free (prepare, EMPTY); 1711 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
1044 1716
1045 backend = 0; 1717 backend = 0;
1046} 1718}
1047 1719
1720#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1722#endif
1049 1723
1050void inline_size 1724inline_size void
1051loop_fork (EV_P) 1725loop_fork (EV_P)
1052{ 1726{
1053#if EV_USE_PORT 1727#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif 1729#endif
1061#endif 1735#endif
1062#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1737 infy_fork (EV_A);
1064#endif 1738#endif
1065 1739
1066 if (ev_is_active (&sigev)) 1740 if (ev_is_active (&pipe_w))
1067 { 1741 {
1068 /* default loop */ 1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
1069 1748
1070 ev_ref (EV_A); 1749 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1750 ev_io_stop (EV_A_ &pipe_w);
1072 close (sigpipe [0]);
1073 close (sigpipe [1]);
1074 1751
1075 while (pipe (sigpipe)) 1752#if EV_USE_EVENTFD
1076 syserr ("(libev) error creating pipe"); 1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
1077 1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
1078 siginit (EV_A); 1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
1079 } 1766 }
1080 1767
1081 postfork = 0; 1768 postfork = 0;
1082} 1769}
1083 1770
1084#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
1085struct ev_loop * 1773struct ev_loop *
1086ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1087{ 1775{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1777
1090 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1091
1092 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1093 1780
1094 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1095 return loop; 1782 return EV_A;
1096 1783
1097 return 0; 1784 return 0;
1098} 1785}
1099 1786
1100void 1787void
1105} 1792}
1106 1793
1107void 1794void
1108ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1109{ 1796{
1110 postfork = 1; 1797 postfork = 1; /* must be in line with ev_default_fork */
1111} 1798}
1799#endif /* multiplicity */
1112 1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
1113#endif 1900#endif
1114 1901
1115#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1116struct ev_loop * 1903struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
1118#else 1905#else
1119int 1906int
1120ev_default_loop (unsigned int flags) 1907ev_default_loop (unsigned int flags)
1121#endif 1908#endif
1122{ 1909{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1128 { 1911 {
1129#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1131#else 1914#else
1132 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1133#endif 1916#endif
1134 1917
1135 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1136 1919
1137 if (ev_backend (EV_A)) 1920 if (ev_backend (EV_A))
1138 { 1921 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1922#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154 1935
1155void 1936void
1156ev_default_destroy (void) 1937ev_default_destroy (void)
1157{ 1938{
1158#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1160#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1161 1944
1162#ifndef _WIN32 1945#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1165#endif 1948#endif
1166 1949
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
1174} 1951}
1175 1952
1176void 1953void
1177ev_default_fork (void) 1954ev_default_fork (void)
1178{ 1955{
1179#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1181#endif 1958#endif
1182 1959
1183 if (backend) 1960 postfork = 1; /* must be in line with ev_loop_fork */
1184 postfork = 1;
1185} 1961}
1186 1962
1187/*****************************************************************************/ 1963/*****************************************************************************/
1188 1964
1189void 1965void
1190ev_invoke (EV_P_ void *w, int revents) 1966ev_invoke (EV_P_ void *w, int revents)
1191{ 1967{
1192 EV_CB_INVOKE ((W)w, revents); 1968 EV_CB_INVOKE ((W)w, revents);
1193} 1969}
1194 1970
1195void inline_speed 1971unsigned int
1196call_pending (EV_P) 1972ev_pending_count (EV_P)
1973{
1974 int pri;
1975 unsigned int count = 0;
1976
1977 for (pri = NUMPRI; pri--; )
1978 count += pendingcnt [pri];
1979
1980 return count;
1981}
1982
1983void noinline
1984ev_invoke_pending (EV_P)
1197{ 1985{
1198 int pri; 1986 int pri;
1199 1987
1200 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1201 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1202 { 1990 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1204 1992
1205 if (expect_true (p->w))
1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1208 1995
1209 p->w->pending = 0; 1996 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1211 } 1998 EV_FREQUENT_CHECK;
1212 } 1999 }
1213} 2000}
1214 2001
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = (ev_timer *)timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap (timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = (ev_periodic *)periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap (periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap (periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = (ev_periodic *)periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap (periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE 2002#if EV_IDLE_ENABLE
1296void inline_size 2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
1297idle_reify (EV_P) 2006idle_reify (EV_P)
1298{ 2007{
1299 if (expect_false (idleall)) 2008 if (expect_false (idleall))
1300 { 2009 {
1301 int pri; 2010 int pri;
1313 } 2022 }
1314 } 2023 }
1315} 2024}
1316#endif 2025#endif
1317 2026
1318void inline_speed 2027/* make timers pending */
2028inline_size void
2029timers_reify (EV_P)
2030{
2031 EV_FREQUENT_CHECK;
2032
2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2034 {
2035 do
2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2049
2050 ANHE_at_cache (timers [HEAP0]);
2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
2058 }
2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2060
2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
2062 }
2063}
2064
2065#if EV_PERIODIC_ENABLE
2066/* make periodics pending */
2067inline_size void
2068periodics_reify (EV_P)
2069{
2070 EV_FREQUENT_CHECK;
2071
2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2073 {
2074 int feed_count = 0;
2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121}
2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125static void noinline
2126periodics_reschedule (EV_P)
2127{
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
1319time_update (EV_P_ ev_tstamp max_block) 2164time_update (EV_P_ ev_tstamp max_block)
1320{ 2165{
1321 int i;
1322
1323#if EV_USE_MONOTONIC 2166#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic)) 2167 if (expect_true (have_monotonic))
1325 { 2168 {
2169 int i;
1326 ev_tstamp odiff = rtmn_diff; 2170 ev_tstamp odiff = rtmn_diff;
1327 2171
1328 mn_now = get_clock (); 2172 mn_now = get_clock ();
1329 2173
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1348 */ 2192 */
1349 for (i = 4; --i; ) 2193 for (i = 4; --i; )
1350 { 2194 {
1351 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1352 2196
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 2198 return; /* all is well */
1355 2199
1356 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 2201 mn_now = get_clock ();
1358 now_floor = mn_now; 2202 now_floor = mn_now;
1359 } 2203 }
1360 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1361# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1363# endif 2209# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 } 2210 }
1367 else 2211 else
1368#endif 2212#endif
1369 { 2213 {
1370 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1371 2215
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1374#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1376#endif 2222#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2223 }
1381 2224
1382 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1383 } 2226 }
1384} 2227}
1385 2228
1386void 2229void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1402{ 2231{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2232#if EV_MINIMAL < 2
1404 ? EVUNLOOP_ONE 2233 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2234#endif
1406 2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2241
1409 do 2242 do
1410 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
1411#ifndef _WIN32 2248#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2249 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2250 if (expect_false (getpid () != curpid))
1414 { 2251 {
1415 curpid = getpid (); 2252 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1423 if (forkcnt) 2260 if (forkcnt)
1424 { 2261 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1427 } 2264 }
1428#endif 2265#endif
1429 2266
1430 /* queue prepare watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1432 { 2269 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1435 } 2272 }
1436 2273
1437 if (expect_false (!activecnt)) 2274 if (expect_false (loop_done))
1438 break; 2275 break;
1439 2276
1440 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1442 loop_fork (EV_A); 2279 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2281 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2282 fd_reify (EV_A);
1446 2283
1447 /* calculate blocking time */ 2284 /* calculate blocking time */
1448 { 2285 {
1449 ev_tstamp block; 2286 ev_tstamp waittime = 0.;
2287 ev_tstamp sleeptime = 0.;
1450 2288
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1455 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 2295 time_update (EV_A_ 1e100);
1457 2296
1458 block = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1459 2298
1460 if (timercnt) 2299 if (timercnt)
1461 { 2300 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 2302 if (waittime > to) waittime = to;
1464 } 2303 }
1465 2304
1466#if EV_PERIODIC_ENABLE 2305#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2306 if (periodiccnt)
1468 { 2307 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1471 } 2310 }
1472#endif 2311#endif
1473 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
2314 if (expect_false (waittime < timeout_blocktime))
2315 waittime = timeout_blocktime;
2316
2317 /* extra check because io_blocktime is commonly 0 */
1474 if (expect_false (block < 0.)) block = 0.; 2318 if (expect_false (io_blocktime))
2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
2327 ev_sleep (sleeptime);
2328 waittime -= sleeptime;
2329 }
2330 }
1475 } 2331 }
1476 2332
2333#if EV_MINIMAL < 2
1477 ++loop_count; 2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1478 backend_poll (EV_A_ block); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1479 2339
1480 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2341 time_update (EV_A_ waittime + sleeptime);
1482 } 2342 }
1483 2343
1484 /* queue pending timers and reschedule them */ 2344 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2345 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2346#if EV_PERIODIC_ENABLE
1494 2354
1495 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2358
1499 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1500
1501 } 2360 }
1502 while (expect_true (activecnt && !loop_done)); 2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1503 2366
1504 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1506} 2373}
1507 2374
1508void 2375void
1509ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1510{ 2377{
1511 loop_done = how; 2378 loop_done = how;
1512} 2379}
1513 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1514/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1515 2420
1516void inline_size 2421inline_size void
1517wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1518{ 2423{
1519 elem->next = *head; 2424 elem->next = *head;
1520 *head = elem; 2425 *head = elem;
1521} 2426}
1522 2427
1523void inline_size 2428inline_size void
1524wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1525{ 2430{
1526 while (*head) 2431 while (*head)
1527 { 2432 {
1528 if (*head == elem) 2433 if (expect_true (*head == elem))
1529 { 2434 {
1530 *head = elem->next; 2435 *head = elem->next;
1531 return; 2436 break;
1532 } 2437 }
1533 2438
1534 head = &(*head)->next; 2439 head = &(*head)->next;
1535 } 2440 }
1536} 2441}
1537 2442
1538void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
1539clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1540{ 2446{
1541 if (w->pending) 2447 if (w->pending)
1542 { 2448 {
1543 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1544 w->pending = 0; 2450 w->pending = 0;
1545 } 2451 }
1546} 2452}
1547 2453
1548int 2454int
1552 int pending = w_->pending; 2458 int pending = w_->pending;
1553 2459
1554 if (expect_true (pending)) 2460 if (expect_true (pending))
1555 { 2461 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
1557 w_->pending = 0; 2464 w_->pending = 0;
1558 p->w = 0;
1559 return p->events; 2465 return p->events;
1560 } 2466 }
1561 else 2467 else
1562 return 0; 2468 return 0;
1563} 2469}
1564 2470
1565void inline_size 2471inline_size void
1566pri_adjust (EV_P_ W w) 2472pri_adjust (EV_P_ W w)
1567{ 2473{
1568 int pri = w->priority; 2474 int pri = ev_priority (w);
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri; 2477 ev_set_priority (w, pri);
1572} 2478}
1573 2479
1574void inline_speed 2480inline_speed void
1575ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1576{ 2482{
1577 pri_adjust (EV_A_ w); 2483 pri_adjust (EV_A_ w);
1578 w->active = active; 2484 w->active = active;
1579 ev_ref (EV_A); 2485 ev_ref (EV_A);
1580} 2486}
1581 2487
1582void inline_size 2488inline_size void
1583ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1584{ 2490{
1585 ev_unref (EV_A); 2491 ev_unref (EV_A);
1586 w->active = 0; 2492 w->active = 0;
1587} 2493}
1594 int fd = w->fd; 2500 int fd = w->fd;
1595 2501
1596 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1597 return; 2503 return;
1598 2504
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1600 2509
1601 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add (&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1604 2513
1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1606 w->events &= ~ EV_IOFDSET; 2515 w->events &= ~EV__IOFDSET;
2516
2517 EV_FREQUENT_CHECK;
1607} 2518}
1608 2519
1609void noinline 2520void noinline
1610ev_io_stop (EV_P_ ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1611{ 2522{
1612 clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1613 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1614 return; 2525 return;
1615 2526
1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2528
2529 EV_FREQUENT_CHECK;
1617 2530
1618 wlist_del (&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1619 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1620 2533
1621 fd_change (EV_A_ w->fd, 0); 2534 fd_change (EV_A_ w->fd, 1);
2535
2536 EV_FREQUENT_CHECK;
1622} 2537}
1623 2538
1624void noinline 2539void noinline
1625ev_timer_start (EV_P_ ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1626{ 2541{
1627 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
1628 return; 2543 return;
1629 2544
1630 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1631 2546
1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1633 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1634 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1636 timers [timercnt - 1] = (WT)w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1637 upheap (timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1638 2557
2558 EV_FREQUENT_CHECK;
2559
1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1640} 2561}
1641 2562
1642void noinline 2563void noinline
1643ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1644{ 2565{
1645 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1646 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1647 return; 2568 return;
1648 2569
1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2570 EV_FREQUENT_CHECK;
1650 2571
1651 { 2572 {
1652 int active = ((W)w)->active; 2573 int active = ev_active (w);
1653 2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
1654 if (expect_true (--active < --timercnt)) 2579 if (expect_true (active < timercnt + HEAP0))
1655 { 2580 {
1656 timers [active] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1657 adjustheap (timers, timercnt, active); 2582 adjustheap (timers, timercnt, active);
1658 } 2583 }
1659 } 2584 }
1660 2585
1661 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1662 2589
1663 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1664} 2591}
1665 2592
1666void noinline 2593void noinline
1667ev_timer_again (EV_P_ ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1668{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1669 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1670 { 2599 {
1671 if (w->repeat) 2600 if (w->repeat)
1672 { 2601 {
1673 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1674 adjustheap (timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1675 } 2605 }
1676 else 2606 else
1677 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1678 } 2608 }
1679 else if (w->repeat) 2609 else if (w->repeat)
1680 { 2610 {
1681 w->at = w->repeat; 2611 ev_at (w) = w->repeat;
1682 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1683 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1684} 2622}
1685 2623
1686#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
1687void noinline 2625void noinline
1688ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1689{ 2627{
1690 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
1691 return; 2629 return;
1692 2630
1693 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1695 else if (w->interval) 2633 else if (w->interval)
1696 { 2634 {
1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1698 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1700 } 2638 }
1701 else 2639 else
1702 ((WT)w)->at = w->offset; 2640 ev_at (w) = w->offset;
1703 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1704 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1706 periodics [periodiccnt - 1] = (WT)w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1707 upheap (periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1708 2650
2651 EV_FREQUENT_CHECK;
2652
1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1710} 2654}
1711 2655
1712void noinline 2656void noinline
1713ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1714{ 2658{
1715 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1717 return; 2661 return;
1718 2662
1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2663 EV_FREQUENT_CHECK;
1720 2664
1721 { 2665 {
1722 int active = ((W)w)->active; 2666 int active = ev_active (w);
1723 2667
2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2669
2670 --periodiccnt;
2671
1724 if (expect_true (--active < --periodiccnt)) 2672 if (expect_true (active < periodiccnt + HEAP0))
1725 { 2673 {
1726 periodics [active] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1727 adjustheap (periodics, periodiccnt, active); 2675 adjustheap (periodics, periodiccnt, active);
1728 } 2676 }
1729 } 2677 }
1730 2678
2679 EV_FREQUENT_CHECK;
2680
1731 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1732} 2682}
1733 2683
1734void noinline 2684void noinline
1735ev_periodic_again (EV_P_ ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1745#endif 2695#endif
1746 2696
1747void noinline 2697void noinline
1748ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1749{ 2699{
1750#if EV_MULTIPLICITY
1751 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1752#endif
1753 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
1754 return; 2701 return;
1755 2702
1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1757 2704
2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
1758 { 2716 {
1759#ifndef _WIN32 2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1760 sigset_t full, prev; 2718 if (sigfd < 0 && errno == EINVAL)
1761 sigfillset (&full); 2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1762 sigprocmask (SIG_SETMASK, &full, &prev);
1763#endif
1764 2720
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
1766 2724
1767#ifndef _WIN32 2725 sigemptyset (&sigfd_set);
1768 sigprocmask (SIG_SETMASK, &prev, 0); 2726
1769#endif 2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
1770 } 2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
1771 2743
1772 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
1773 wlist_add (&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
1774 2746
1775 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
1776 { 2751 {
1777#if _WIN32 2752# if _WIN32
2753 evpipe_init (EV_A);
2754
1778 signal (w->signum, sighandler); 2755 signal (w->signum, ev_sighandler);
1779#else 2756# else
1780 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
1781 sa.sa_handler = sighandler; 2761 sa.sa_handler = ev_sighandler;
1782 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
1783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1784 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1785#endif 2769#endif
1786 } 2770 }
2771
2772 EV_FREQUENT_CHECK;
1787} 2773}
1788 2774
1789void noinline 2775void noinline
1790ev_signal_stop (EV_P_ ev_signal *w) 2776ev_signal_stop (EV_P_ ev_signal *w)
1791{ 2777{
1792 clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
1794 return; 2780 return;
1795 2781
2782 EV_FREQUENT_CHECK;
2783
1796 wlist_del (&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
1797 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
1798 2786
1799 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805#endif
1800 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
1801} 2810}
1802 2811
1803void 2812void
1804ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
1805{ 2814{
1806#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
1807 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1808#endif 2817#endif
1809 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1810 return; 2819 return;
1811 2820
2821 EV_FREQUENT_CHECK;
2822
1812 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
1814} 2827}
1815 2828
1816void 2829void
1817ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
1818{ 2831{
1819 clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1821 return; 2834 return;
1822 2835
2836 EV_FREQUENT_CHECK;
2837
1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1824 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
1825} 2842}
1826 2843
1827#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
1828 2845
1829# ifdef _WIN32 2846# ifdef _WIN32
1830# undef lstat 2847# undef lstat
1831# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
1832# endif 2849# endif
1833 2850
1834#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1835#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
1836 2854
1837static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1838 2856
1839#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
1840# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
1842static void noinline 2860static void noinline
1843infy_add (EV_P_ ev_stat *w) 2861infy_add (EV_P_ ev_stat *w)
1844{ 2862{
1845 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1846 2864
1847 if (w->wd < 0) 2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1848 { 2885 }
1849 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1850 2890
1851 /* monitor some parent directory for speedup hints */ 2891 /* if path is not there, monitor some parent directory for speedup hints */
2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2893 /* but an efficiency issue only */
1852 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1853 { 2895 {
1854 char path [4096]; 2896 char path [4096];
1855 strcpy (path, w->path); 2897 strcpy (path, w->path);
1856 2898
1859 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1860 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1861 2903
1862 char *pend = strrchr (path, '/'); 2904 char *pend = strrchr (path, '/');
1863 2905
1864 if (!pend) 2906 if (!pend || pend == path)
1865 break; /* whoops, no '/', complain to your admin */ 2907 break;
1866 2908
1867 *pend = 0; 2909 *pend = 0;
1868 w->wd = inotify_add_watch (fs_fd, path, mask); 2910 w->wd = inotify_add_watch (fs_fd, path, mask);
1869 } 2911 }
1870 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1871 } 2913 }
1872 } 2914 }
1873 else
1874 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1875 2915
1876 if (w->wd >= 0) 2916 if (w->wd >= 0)
1877 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1878} 2923}
1879 2924
1880static void noinline 2925static void noinline
1881infy_del (EV_P_ ev_stat *w) 2926infy_del (EV_P_ ev_stat *w)
1882{ 2927{
1896 2941
1897static void noinline 2942static void noinline
1898infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2943infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1899{ 2944{
1900 if (slot < 0) 2945 if (slot < 0)
1901 /* overflow, need to check for all hahs slots */ 2946 /* overflow, need to check for all hash slots */
1902 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1903 infy_wd (EV_A_ slot, wd, ev); 2948 infy_wd (EV_A_ slot, wd, ev);
1904 else 2949 else
1905 { 2950 {
1906 WL w_; 2951 WL w_;
1912 2957
1913 if (w->wd == wd || wd == -1) 2958 if (w->wd == wd || wd == -1)
1914 { 2959 {
1915 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1916 { 2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1917 w->wd = -1; 2963 w->wd = -1;
1918 infy_add (EV_A_ w); /* re-add, no matter what */ 2964 infy_add (EV_A_ w); /* re-add, no matter what */
1919 } 2965 }
1920 2966
1921 stat_timer_cb (EV_A_ &w->timer, 0); 2967 stat_timer_cb (EV_A_ &w->timer, 0);
1934 2980
1935 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1936 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1937} 2983}
1938 2984
1939void inline_size 2985inline_size void
2986check_2625 (EV_P)
2987{
2988 /* kernels < 2.6.25 are borked
2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2990 */
2991 struct utsname buf;
2992 int major, minor, micro;
2993
2994 if (uname (&buf))
2995 return;
2996
2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2998 return;
2999
3000 if (major < 2
3001 || (major == 2 && minor < 6)
3002 || (major == 2 && minor == 6 && micro < 25))
3003 return;
3004
3005 fs_2625 = 1;
3006}
3007
3008inline_size int
3009infy_newfd (void)
3010{
3011#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015#endif
3016 return inotify_init ();
3017}
3018
3019inline_size void
1940infy_init (EV_P) 3020infy_init (EV_P)
1941{ 3021{
1942 if (fs_fd != -2) 3022 if (fs_fd != -2)
1943 return; 3023 return;
1944 3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
1945 fs_fd = inotify_init (); 3029 fs_fd = infy_newfd ();
1946 3030
1947 if (fs_fd >= 0) 3031 if (fs_fd >= 0)
1948 { 3032 {
3033 fd_intern (fs_fd);
1949 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1950 ev_set_priority (&fs_w, EV_MAXPRI); 3035 ev_set_priority (&fs_w, EV_MAXPRI);
1951 ev_io_start (EV_A_ &fs_w); 3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
1952 } 3038 }
1953} 3039}
1954 3040
1955void inline_size 3041inline_size void
1956infy_fork (EV_P) 3042infy_fork (EV_P)
1957{ 3043{
1958 int slot; 3044 int slot;
1959 3045
1960 if (fs_fd < 0) 3046 if (fs_fd < 0)
1961 return; 3047 return;
1962 3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
1963 close (fs_fd); 3051 close (fs_fd);
1964 fs_fd = inotify_init (); 3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
1965 3061
1966 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1967 { 3063 {
1968 WL w_ = fs_hash [slot].head; 3064 WL w_ = fs_hash [slot].head;
1969 fs_hash [slot].head = 0; 3065 fs_hash [slot].head = 0;
1976 w->wd = -1; 3072 w->wd = -1;
1977 3073
1978 if (fs_fd >= 0) 3074 if (fs_fd >= 0)
1979 infy_add (EV_A_ w); /* re-add, no matter what */ 3075 infy_add (EV_A_ w); /* re-add, no matter what */
1980 else 3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1981 ev_timer_start (EV_A_ &w->timer); 3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
1982 } 3083 }
1983
1984 } 3084 }
1985} 3085}
1986 3086
3087#endif
3088
3089#ifdef _WIN32
3090# define EV_LSTAT(p,b) _stati64 (p, b)
3091#else
3092# define EV_LSTAT(p,b) lstat (p, b)
1987#endif 3093#endif
1988 3094
1989void 3095void
1990ev_stat_stat (EV_P_ ev_stat *w) 3096ev_stat_stat (EV_P_ ev_stat *w)
1991{ 3097{
1998static void noinline 3104static void noinline
1999stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3105stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2000{ 3106{
2001 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2002 3108
2003 /* we copy this here each the time so that */ 3109 ev_statdata prev = w->attr;
2004 /* prev has the old value when the callback gets invoked */
2005 w->prev = w->attr;
2006 ev_stat_stat (EV_A_ w); 3110 ev_stat_stat (EV_A_ w);
2007 3111
2008 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2009 if ( 3113 if (
2010 w->prev.st_dev != w->attr.st_dev 3114 prev.st_dev != w->attr.st_dev
2011 || w->prev.st_ino != w->attr.st_ino 3115 || prev.st_ino != w->attr.st_ino
2012 || w->prev.st_mode != w->attr.st_mode 3116 || prev.st_mode != w->attr.st_mode
2013 || w->prev.st_nlink != w->attr.st_nlink 3117 || prev.st_nlink != w->attr.st_nlink
2014 || w->prev.st_uid != w->attr.st_uid 3118 || prev.st_uid != w->attr.st_uid
2015 || w->prev.st_gid != w->attr.st_gid 3119 || prev.st_gid != w->attr.st_gid
2016 || w->prev.st_rdev != w->attr.st_rdev 3120 || prev.st_rdev != w->attr.st_rdev
2017 || w->prev.st_size != w->attr.st_size 3121 || prev.st_size != w->attr.st_size
2018 || w->prev.st_atime != w->attr.st_atime 3122 || prev.st_atime != w->attr.st_atime
2019 || w->prev.st_mtime != w->attr.st_mtime 3123 || prev.st_mtime != w->attr.st_mtime
2020 || w->prev.st_ctime != w->attr.st_ctime 3124 || prev.st_ctime != w->attr.st_ctime
2021 ) { 3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
2022 #if EV_USE_INOTIFY 3131 #if EV_USE_INOTIFY
3132 if (fs_fd >= 0)
3133 {
2023 infy_del (EV_A_ w); 3134 infy_del (EV_A_ w);
2024 infy_add (EV_A_ w); 3135 infy_add (EV_A_ w);
2025 ev_stat_stat (EV_A_ w); /* avoid race... */ 3136 ev_stat_stat (EV_A_ w); /* avoid race... */
3137 }
2026 #endif 3138 #endif
2027 3139
2028 ev_feed_event (EV_A_ w, EV_STAT); 3140 ev_feed_event (EV_A_ w, EV_STAT);
2029 } 3141 }
2030} 3142}
2033ev_stat_start (EV_P_ ev_stat *w) 3145ev_stat_start (EV_P_ ev_stat *w)
2034{ 3146{
2035 if (expect_false (ev_is_active (w))) 3147 if (expect_false (ev_is_active (w)))
2036 return; 3148 return;
2037 3149
2038 /* since we use memcmp, we need to clear any padding data etc. */
2039 memset (&w->prev, 0, sizeof (ev_statdata));
2040 memset (&w->attr, 0, sizeof (ev_statdata));
2041
2042 ev_stat_stat (EV_A_ w); 3150 ev_stat_stat (EV_A_ w);
2043 3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2044 if (w->interval < MIN_STAT_INTERVAL) 3153 w->interval = MIN_STAT_INTERVAL;
2045 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2046 3154
2047 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2048 ev_set_priority (&w->timer, ev_priority (w)); 3156 ev_set_priority (&w->timer, ev_priority (w));
2049 3157
2050#if EV_USE_INOTIFY 3158#if EV_USE_INOTIFY
2051 infy_init (EV_A); 3159 infy_init (EV_A);
2052 3160
2053 if (fs_fd >= 0) 3161 if (fs_fd >= 0)
2054 infy_add (EV_A_ w); 3162 infy_add (EV_A_ w);
2055 else 3163 else
2056#endif 3164#endif
3165 {
2057 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
2058 3169
2059 ev_start (EV_A_ (W)w, 1); 3170 ev_start (EV_A_ (W)w, 1);
3171
3172 EV_FREQUENT_CHECK;
2060} 3173}
2061 3174
2062void 3175void
2063ev_stat_stop (EV_P_ ev_stat *w) 3176ev_stat_stop (EV_P_ ev_stat *w)
2064{ 3177{
2065 clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
2067 return; 3180 return;
2068 3181
3182 EV_FREQUENT_CHECK;
3183
2069#if EV_USE_INOTIFY 3184#if EV_USE_INOTIFY
2070 infy_del (EV_A_ w); 3185 infy_del (EV_A_ w);
2071#endif 3186#endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
2072 ev_timer_stop (EV_A_ &w->timer); 3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
2073 3193
2074 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
3195
3196 EV_FREQUENT_CHECK;
2075} 3197}
2076#endif 3198#endif
2077 3199
2078#if EV_IDLE_ENABLE 3200#if EV_IDLE_ENABLE
2079void 3201void
2081{ 3203{
2082 if (expect_false (ev_is_active (w))) 3204 if (expect_false (ev_is_active (w)))
2083 return; 3205 return;
2084 3206
2085 pri_adjust (EV_A_ (W)w); 3207 pri_adjust (EV_A_ (W)w);
3208
3209 EV_FREQUENT_CHECK;
2086 3210
2087 { 3211 {
2088 int active = ++idlecnt [ABSPRI (w)]; 3212 int active = ++idlecnt [ABSPRI (w)];
2089 3213
2090 ++idleall; 3214 ++idleall;
2091 ev_start (EV_A_ (W)w, active); 3215 ev_start (EV_A_ (W)w, active);
2092 3216
2093 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3217 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2094 idles [ABSPRI (w)][active - 1] = w; 3218 idles [ABSPRI (w)][active - 1] = w;
2095 } 3219 }
3220
3221 EV_FREQUENT_CHECK;
2096} 3222}
2097 3223
2098void 3224void
2099ev_idle_stop (EV_P_ ev_idle *w) 3225ev_idle_stop (EV_P_ ev_idle *w)
2100{ 3226{
2101 clear_pending (EV_A_ (W)w); 3227 clear_pending (EV_A_ (W)w);
2102 if (expect_false (!ev_is_active (w))) 3228 if (expect_false (!ev_is_active (w)))
2103 return; 3229 return;
2104 3230
3231 EV_FREQUENT_CHECK;
3232
2105 { 3233 {
2106 int active = ((W)w)->active; 3234 int active = ev_active (w);
2107 3235
2108 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3236 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2109 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3237 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2110 3238
2111 ev_stop (EV_A_ (W)w); 3239 ev_stop (EV_A_ (W)w);
2112 --idleall; 3240 --idleall;
2113 } 3241 }
3242
3243 EV_FREQUENT_CHECK;
2114} 3244}
2115#endif 3245#endif
2116 3246
2117void 3247void
2118ev_prepare_start (EV_P_ ev_prepare *w) 3248ev_prepare_start (EV_P_ ev_prepare *w)
2119{ 3249{
2120 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
2121 return; 3251 return;
3252
3253 EV_FREQUENT_CHECK;
2122 3254
2123 ev_start (EV_A_ (W)w, ++preparecnt); 3255 ev_start (EV_A_ (W)w, ++preparecnt);
2124 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3256 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2125 prepares [preparecnt - 1] = w; 3257 prepares [preparecnt - 1] = w;
3258
3259 EV_FREQUENT_CHECK;
2126} 3260}
2127 3261
2128void 3262void
2129ev_prepare_stop (EV_P_ ev_prepare *w) 3263ev_prepare_stop (EV_P_ ev_prepare *w)
2130{ 3264{
2131 clear_pending (EV_A_ (W)w); 3265 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 3266 if (expect_false (!ev_is_active (w)))
2133 return; 3267 return;
2134 3268
3269 EV_FREQUENT_CHECK;
3270
2135 { 3271 {
2136 int active = ((W)w)->active; 3272 int active = ev_active (w);
3273
2137 prepares [active - 1] = prepares [--preparecnt]; 3274 prepares [active - 1] = prepares [--preparecnt];
2138 ((W)prepares [active - 1])->active = active; 3275 ev_active (prepares [active - 1]) = active;
2139 } 3276 }
2140 3277
2141 ev_stop (EV_A_ (W)w); 3278 ev_stop (EV_A_ (W)w);
3279
3280 EV_FREQUENT_CHECK;
2142} 3281}
2143 3282
2144void 3283void
2145ev_check_start (EV_P_ ev_check *w) 3284ev_check_start (EV_P_ ev_check *w)
2146{ 3285{
2147 if (expect_false (ev_is_active (w))) 3286 if (expect_false (ev_is_active (w)))
2148 return; 3287 return;
3288
3289 EV_FREQUENT_CHECK;
2149 3290
2150 ev_start (EV_A_ (W)w, ++checkcnt); 3291 ev_start (EV_A_ (W)w, ++checkcnt);
2151 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3292 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2152 checks [checkcnt - 1] = w; 3293 checks [checkcnt - 1] = w;
3294
3295 EV_FREQUENT_CHECK;
2153} 3296}
2154 3297
2155void 3298void
2156ev_check_stop (EV_P_ ev_check *w) 3299ev_check_stop (EV_P_ ev_check *w)
2157{ 3300{
2158 clear_pending (EV_A_ (W)w); 3301 clear_pending (EV_A_ (W)w);
2159 if (expect_false (!ev_is_active (w))) 3302 if (expect_false (!ev_is_active (w)))
2160 return; 3303 return;
2161 3304
3305 EV_FREQUENT_CHECK;
3306
2162 { 3307 {
2163 int active = ((W)w)->active; 3308 int active = ev_active (w);
3309
2164 checks [active - 1] = checks [--checkcnt]; 3310 checks [active - 1] = checks [--checkcnt];
2165 ((W)checks [active - 1])->active = active; 3311 ev_active (checks [active - 1]) = active;
2166 } 3312 }
2167 3313
2168 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2169} 3317}
2170 3318
2171#if EV_EMBED_ENABLE 3319#if EV_EMBED_ENABLE
2172void noinline 3320void noinline
2173ev_embed_sweep (EV_P_ ev_embed *w) 3321ev_embed_sweep (EV_P_ ev_embed *w)
2174{ 3322{
2175 ev_loop (w->loop, EVLOOP_NONBLOCK); 3323 ev_loop (w->other, EVLOOP_NONBLOCK);
2176} 3324}
2177 3325
2178static void 3326static void
2179embed_cb (EV_P_ ev_io *io, int revents) 3327embed_io_cb (EV_P_ ev_io *io, int revents)
2180{ 3328{
2181 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3329 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2182 3330
2183 if (ev_cb (w)) 3331 if (ev_cb (w))
2184 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3332 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2185 else 3333 else
2186 ev_embed_sweep (loop, w); 3334 ev_loop (w->other, EVLOOP_NONBLOCK);
2187} 3335}
3336
3337static void
3338embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3339{
3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3341
3342 {
3343 EV_P = w->other;
3344
3345 while (fdchangecnt)
3346 {
3347 fd_reify (EV_A);
3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3349 }
3350 }
3351}
3352
3353static void
3354embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3355{
3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3357
3358 ev_embed_stop (EV_A_ w);
3359
3360 {
3361 EV_P = w->other;
3362
3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3365 }
3366
3367 ev_embed_start (EV_A_ w);
3368}
3369
3370#if 0
3371static void
3372embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3373{
3374 ev_idle_stop (EV_A_ idle);
3375}
3376#endif
2188 3377
2189void 3378void
2190ev_embed_start (EV_P_ ev_embed *w) 3379ev_embed_start (EV_P_ ev_embed *w)
2191{ 3380{
2192 if (expect_false (ev_is_active (w))) 3381 if (expect_false (ev_is_active (w)))
2193 return; 3382 return;
2194 3383
2195 { 3384 {
2196 struct ev_loop *loop = w->loop; 3385 EV_P = w->other;
2197 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2198 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2199 } 3388 }
3389
3390 EV_FREQUENT_CHECK;
2200 3391
2201 ev_set_priority (&w->io, ev_priority (w)); 3392 ev_set_priority (&w->io, ev_priority (w));
2202 ev_io_start (EV_A_ &w->io); 3393 ev_io_start (EV_A_ &w->io);
2203 3394
3395 ev_prepare_init (&w->prepare, embed_prepare_cb);
3396 ev_set_priority (&w->prepare, EV_MINPRI);
3397 ev_prepare_start (EV_A_ &w->prepare);
3398
3399 ev_fork_init (&w->fork, embed_fork_cb);
3400 ev_fork_start (EV_A_ &w->fork);
3401
3402 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3403
2204 ev_start (EV_A_ (W)w, 1); 3404 ev_start (EV_A_ (W)w, 1);
3405
3406 EV_FREQUENT_CHECK;
2205} 3407}
2206 3408
2207void 3409void
2208ev_embed_stop (EV_P_ ev_embed *w) 3410ev_embed_stop (EV_P_ ev_embed *w)
2209{ 3411{
2210 clear_pending (EV_A_ (W)w); 3412 clear_pending (EV_A_ (W)w);
2211 if (expect_false (!ev_is_active (w))) 3413 if (expect_false (!ev_is_active (w)))
2212 return; 3414 return;
2213 3415
3416 EV_FREQUENT_CHECK;
3417
2214 ev_io_stop (EV_A_ &w->io); 3418 ev_io_stop (EV_A_ &w->io);
3419 ev_prepare_stop (EV_A_ &w->prepare);
3420 ev_fork_stop (EV_A_ &w->fork);
2215 3421
2216 ev_stop (EV_A_ (W)w); 3422 EV_FREQUENT_CHECK;
2217} 3423}
2218#endif 3424#endif
2219 3425
2220#if EV_FORK_ENABLE 3426#if EV_FORK_ENABLE
2221void 3427void
2222ev_fork_start (EV_P_ ev_fork *w) 3428ev_fork_start (EV_P_ ev_fork *w)
2223{ 3429{
2224 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
2225 return; 3431 return;
3432
3433 EV_FREQUENT_CHECK;
2226 3434
2227 ev_start (EV_A_ (W)w, ++forkcnt); 3435 ev_start (EV_A_ (W)w, ++forkcnt);
2228 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3436 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2229 forks [forkcnt - 1] = w; 3437 forks [forkcnt - 1] = w;
3438
3439 EV_FREQUENT_CHECK;
2230} 3440}
2231 3441
2232void 3442void
2233ev_fork_stop (EV_P_ ev_fork *w) 3443ev_fork_stop (EV_P_ ev_fork *w)
2234{ 3444{
2235 clear_pending (EV_A_ (W)w); 3445 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 3446 if (expect_false (!ev_is_active (w)))
2237 return; 3447 return;
2238 3448
3449 EV_FREQUENT_CHECK;
3450
2239 { 3451 {
2240 int active = ((W)w)->active; 3452 int active = ev_active (w);
3453
2241 forks [active - 1] = forks [--forkcnt]; 3454 forks [active - 1] = forks [--forkcnt];
2242 ((W)forks [active - 1])->active = active; 3455 ev_active (forks [active - 1]) = active;
2243 } 3456 }
2244 3457
2245 ev_stop (EV_A_ (W)w); 3458 ev_stop (EV_A_ (W)w);
3459
3460 EV_FREQUENT_CHECK;
3461}
3462#endif
3463
3464#if EV_ASYNC_ENABLE
3465void
3466ev_async_start (EV_P_ ev_async *w)
3467{
3468 if (expect_false (ev_is_active (w)))
3469 return;
3470
3471 evpipe_init (EV_A);
3472
3473 EV_FREQUENT_CHECK;
3474
3475 ev_start (EV_A_ (W)w, ++asynccnt);
3476 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3477 asyncs [asynccnt - 1] = w;
3478
3479 EV_FREQUENT_CHECK;
3480}
3481
3482void
3483ev_async_stop (EV_P_ ev_async *w)
3484{
3485 clear_pending (EV_A_ (W)w);
3486 if (expect_false (!ev_is_active (w)))
3487 return;
3488
3489 EV_FREQUENT_CHECK;
3490
3491 {
3492 int active = ev_active (w);
3493
3494 asyncs [active - 1] = asyncs [--asynccnt];
3495 ev_active (asyncs [active - 1]) = active;
3496 }
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501}
3502
3503void
3504ev_async_send (EV_P_ ev_async *w)
3505{
3506 w->sent = 1;
3507 evpipe_write (EV_A_ &async_pending);
2246} 3508}
2247#endif 3509#endif
2248 3510
2249/*****************************************************************************/ 3511/*****************************************************************************/
2250 3512
2260once_cb (EV_P_ struct ev_once *once, int revents) 3522once_cb (EV_P_ struct ev_once *once, int revents)
2261{ 3523{
2262 void (*cb)(int revents, void *arg) = once->cb; 3524 void (*cb)(int revents, void *arg) = once->cb;
2263 void *arg = once->arg; 3525 void *arg = once->arg;
2264 3526
2265 ev_io_stop (EV_A_ &once->io); 3527 ev_io_stop (EV_A_ &once->io);
2266 ev_timer_stop (EV_A_ &once->to); 3528 ev_timer_stop (EV_A_ &once->to);
2267 ev_free (once); 3529 ev_free (once);
2268 3530
2269 cb (revents, arg); 3531 cb (revents, arg);
2270} 3532}
2271 3533
2272static void 3534static void
2273once_cb_io (EV_P_ ev_io *w, int revents) 3535once_cb_io (EV_P_ ev_io *w, int revents)
2274{ 3536{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3537 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3538
3539 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2276} 3540}
2277 3541
2278static void 3542static void
2279once_cb_to (EV_P_ ev_timer *w, int revents) 3543once_cb_to (EV_P_ ev_timer *w, int revents)
2280{ 3544{
2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3545 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3546
3547 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2282} 3548}
2283 3549
2284void 3550void
2285ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3551ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2286{ 3552{
2308 ev_timer_set (&once->to, timeout, 0.); 3574 ev_timer_set (&once->to, timeout, 0.);
2309 ev_timer_start (EV_A_ &once->to); 3575 ev_timer_start (EV_A_ &once->to);
2310 } 3576 }
2311} 3577}
2312 3578
3579/*****************************************************************************/
3580
3581#if EV_WALK_ENABLE
3582void
3583ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584{
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
3591 {
3592 wn = wl->next;
3593
3594#if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601#endif
3602#if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606#endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
3612 }
3613
3614 if (types & (EV_TIMER | EV_STAT))
3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616#if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3619 {
3620 if (types & EV_STAT)
3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3622 }
3623 else
3624#endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628#if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632#endif
3633
3634#if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639#endif
3640
3641#if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652#endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656#if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658#endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682/* EV_STAT 0x00001000 /* stat data changed */
3683/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3684}
3685#endif
3686
3687#if EV_MULTIPLICITY
3688 #include "ev_wrap.h"
3689#endif
3690
2313#ifdef __cplusplus 3691#ifdef __cplusplus
2314} 3692}
2315#endif 3693#endif
2316 3694

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines