ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.200 by root, Wed Dec 26 08:06:09 2007 UTC vs.
Revision 1.321 by root, Thu Dec 31 06:50:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
127#include <fcntl.h> 159#include <fcntl.h>
128#include <stddef.h> 160#include <stddef.h>
129 161
130#include <stdio.h> 162#include <stdio.h>
131 163
145#ifndef _WIN32 177#ifndef _WIN32
146# include <sys/time.h> 178# include <sys/time.h>
147# include <sys/wait.h> 179# include <sys/wait.h>
148# include <unistd.h> 180# include <unistd.h>
149#else 181#else
182# include <io.h>
150# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 184# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
154# endif 187# endif
155#endif 188#endif
156 189
157/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
158 226
159#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
160# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
161#endif 233#endif
162 234
163#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 237#endif
166 238
167#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
168# define EV_USE_NANOSLEEP 0 243# define EV_USE_NANOSLEEP 0
244# endif
169#endif 245#endif
170 246
171#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
173#endif 249#endif
179# define EV_USE_POLL 1 255# define EV_USE_POLL 1
180# endif 256# endif
181#endif 257#endif
182 258
183#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
184# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
185#endif 265#endif
186 266
187#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
189#endif 269#endif
191#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 272# define EV_USE_PORT 0
193#endif 273#endif
194 274
195#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
196# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
197#endif 281#endif
198 282
199#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 284# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
210# else 294# else
211# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
212# endif 296# endif
213#endif 297#endif
214 298
215/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 348
217#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
220#endif 352#endif
234# include <sys/select.h> 366# include <sys/select.h>
235# endif 367# endif
236#endif 368#endif
237 369
238#if EV_USE_INOTIFY 370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
239# include <sys/inotify.h> 373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
240#endif 379#endif
241 380
242#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 382# include <winsock.h>
244#endif 383#endif
245 384
385#if EV_USE_EVENTFD
386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# ifdef O_CLOEXEC
393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
435
246/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
247 443
248/* 444/*
249 * This is used to avoid floating point rounding problems. 445 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 446 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 447 * to ensure progress, time-wise, even when rounding
255 */ 451 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 453
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 456
262#if __GNUC__ >= 4 457#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
265#else 460#else
266# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
267# define noinline 462# define noinline
268# if __STDC_VERSION__ < 199901L 463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 464# define inline
270# endif 465# endif
271#endif 466#endif
272 467
273#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 473# define inline_speed static noinline
279#else 474#else
280# define inline_speed static inline 475# define inline_speed static inline
281#endif 476#endif
282 477
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
285 485
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
288 488
289typedef ev_watcher *W; 489typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
292 492
293#if EV_USE_MONOTONIC 493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 514#endif
298 515
299#ifdef _WIN32 516#ifdef _WIN32
300# include "ev_win32.c" 517# include "ev_win32.c"
301#endif 518#endif
309{ 526{
310 syserr_cb = cb; 527 syserr_cb = cb;
311} 528}
312 529
313static void noinline 530static void noinline
314syserr (const char *msg) 531ev_syserr (const char *msg)
315{ 532{
316 if (!msg) 533 if (!msg)
317 msg = "(libev) system error"; 534 msg = "(libev) system error";
318 535
319 if (syserr_cb) 536 if (syserr_cb)
323 perror (msg); 540 perror (msg);
324 abort (); 541 abort ();
325 } 542 }
326} 543}
327 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
328static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 561
330void 562void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 564{
333 alloc = cb; 565 alloc = cb;
334} 566}
335 567
336inline_speed void * 568inline_speed void *
337ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
338{ 570{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
340 572
341 if (!ptr && size) 573 if (!ptr && size)
342 { 574 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 576 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
352 584
353/*****************************************************************************/ 585/*****************************************************************************/
354 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
355typedef struct 591typedef struct
356{ 592{
357 WL head; 593 WL head;
358 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
360#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 602 SOCKET handle;
362#endif 603#endif
363} ANFD; 604} ANFD;
364 605
606/* stores the pending event set for a given watcher */
365typedef struct 607typedef struct
366{ 608{
367 W w; 609 W w;
368 int events; 610 int events; /* the pending event set for the given watcher */
369} ANPENDING; 611} ANPENDING;
370 612
371#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
372typedef struct 615typedef struct
373{ 616{
374 WL head; 617 WL head;
375} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
376#endif 639#endif
377 640
378#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
379 642
380 struct ev_loop 643 struct ev_loop
399 662
400 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
401 664
402#endif 665#endif
403 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
404/*****************************************************************************/ 679/*****************************************************************************/
405 680
681#ifndef EV_HAVE_EV_TIME
406ev_tstamp 682ev_tstamp
407ev_time (void) 683ev_time (void)
408{ 684{
409#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
410 struct timespec ts; 688 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 691 }
692#endif
693
414 struct timeval tv; 694 struct timeval tv;
415 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 697}
698#endif
419 699
420ev_tstamp inline_size 700inline_size ev_tstamp
421get_clock (void) 701get_clock (void)
422{ 702{
423#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
425 { 705 {
451 ts.tv_sec = (time_t)delay; 731 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 733
454 nanosleep (&ts, 0); 734 nanosleep (&ts, 0);
455#elif defined(_WIN32) 735#elif defined(_WIN32)
456 Sleep (delay * 1e3); 736 Sleep ((unsigned long)(delay * 1e3));
457#else 737#else
458 struct timeval tv; 738 struct timeval tv;
459 739
460 tv.tv_sec = (time_t)delay; 740 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
463 select (0, 0, 0, 0, &tv); 746 select (0, 0, 0, 0, &tv);
464#endif 747#endif
465 } 748 }
466} 749}
467 750
468/*****************************************************************************/ 751/*****************************************************************************/
469 752
470int inline_size 753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
471array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
472{ 759{
473 int ncur = cur + 1; 760 int ncur = cur + 1;
474 761
475 do 762 do
476 ncur <<= 1; 763 ncur <<= 1;
477 while (cnt > ncur); 764 while (cnt > ncur);
478 765
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 768 {
482 ncur *= elem; 769 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 771 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 772 ncur /= elem;
486 } 773 }
487 774
488 return ncur; 775 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 779array_realloc (int elem, void *base, int *cur, int cnt)
493{ 780{
494 *cur = array_nextsize (elem, *cur, cnt); 781 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 782 return ev_realloc (base, elem * *cur);
496} 783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 787
498#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 789 if (expect_false ((cnt) > (cur))) \
500 { \ 790 { \
501 int ocur_ = (cur); \ 791 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 804 }
515#endif 805#endif
516 806
517#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 809
520/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
521 817
522void noinline 818void noinline
523ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
524{ 820{
525 W w_ = (W)w; 821 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 830 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 831 pendings [pri][w_->pending - 1].events = revents;
536 } 832 }
537} 833}
538 834
539void inline_speed 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 852{
542 int i; 853 int i;
543 854
544 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
546} 857}
547 858
548/*****************************************************************************/ 859/*****************************************************************************/
549 860
550void inline_size 861inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
565{ 863{
566 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
567 ev_io *w; 865 ev_io *w;
568 866
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 871 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
575 } 873 }
576} 874}
577 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
578void 887void
579ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 889{
581 if (fd >= 0 && fd < anfdmax) 890 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
583} 892}
584 893
585void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
586fd_reify (EV_P) 897fd_reify (EV_P)
587{ 898{
588 int i; 899 int i;
589 900
590 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 910 events |= (unsigned char)w->events;
600 911
601#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
602 if (events) 913 if (events)
603 { 914 {
604 unsigned long argp; 915 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 918 }
612#endif 919#endif
613 920
614 { 921 {
615 unsigned char o_events = anfd->events; 922 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 923 unsigned char o_reify = anfd->reify;
617 924
618 anfd->reify = 0; 925 anfd->reify = 0;
619 anfd->events = events; 926 anfd->events = events;
620 927
621 if (o_events != events || o_reify & EV_IOFDSET) 928 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 929 backend_modify (EV_A_ fd, o_events, events);
623 } 930 }
624 } 931 }
625 932
626 fdchangecnt = 0; 933 fdchangecnt = 0;
627} 934}
628 935
629void inline_size 936/* something about the given fd changed */
937inline_size void
630fd_change (EV_P_ int fd, int flags) 938fd_change (EV_P_ int fd, int flags)
631{ 939{
632 unsigned char reify = anfds [fd].reify; 940 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 941 anfds [fd].reify |= flags;
634 942
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
640 } 948 }
641} 949}
642 950
643void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
644fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
645{ 954{
646 ev_io *w; 955 ev_io *w;
647 956
648 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 961 }
653} 962}
654 963
655int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
656fd_valid (int fd) 966fd_valid (int fd)
657{ 967{
658#ifdef _WIN32 968#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
660#else 970#else
668{ 978{
669 int fd; 979 int fd;
670 980
671 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 982 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
675} 985}
676 986
677/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 988static void noinline
682 992
683 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 994 if (anfds [fd].events)
685 { 995 {
686 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
687 return; 997 break;
688 } 998 }
689} 999}
690 1000
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1002static void noinline
696 1006
697 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1008 if (anfds [fd].events)
699 { 1009 {
700 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1013 }
703} 1014}
704 1015
705/*****************************************************************************/ 1016/*****************************************************************************/
706 1017
707void inline_speed 1018/*
708upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
711 1023
712 while (k) 1024/*
713 { 1025 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030#if EV_USE_4HEAP
715 1031
716 if (heap [p]->at <= w->at) 1032#define DHEAP 4
1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037/* away from the root */
1038inline_speed void
1039downheap (ANHE *heap, int N, int k)
1040{
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
717 break; 1066 break;
718 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114}
1115#endif
1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
719 heap [k] = heap [p]; 1130 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1131 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1132 k = p;
722 } 1133 }
723 1134
724 heap [k] = w; 1135 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1136 ev_active (ANHE_w (he)) = k;
726} 1137}
727 1138
728void inline_speed 1139/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1140inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
758{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
759 upheap (heap, k); 1144 upheap (heap, k);
1145 else
760 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
761} 1159}
762 1160
763/*****************************************************************************/ 1161/*****************************************************************************/
764 1162
1163/* associate signal watchers to a signal signal */
765typedef struct 1164typedef struct
766{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
767 WL head; 1170 WL head;
768 sig_atomic_t volatile gotsig;
769} ANSIG; 1171} ANSIG;
770 1172
771static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
772static int signalmax;
773 1174
774static int sigpipe [2]; 1175/*****************************************************************************/
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 1176
778void inline_size 1177/* used to prepare libev internal fd's */
779signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
780{ 1179inline_speed void
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1180fd_intern (int fd)
843{ 1181{
844#ifdef _WIN32 1182#ifdef _WIN32
845 int arg = 1; 1183 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else 1185#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1188#endif
851} 1189}
852 1190
853static void noinline 1191static void noinline
854siginit (EV_P) 1192evpipe_init (EV_P)
855{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
856 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
858 1217
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
862} 1288}
863 1289
864/*****************************************************************************/ 1290/*****************************************************************************/
865 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
866static WL childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
867 1354
868#ifndef _WIN32 1355#ifndef _WIN32
869 1356
870static ev_signal childev; 1357static ev_signal childev;
871 1358
872void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
874{ 1366{
875 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1369
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
878 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
879 { 1374 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1376 w->rpid = pid;
882 w->rstatus = status; 1377 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1379 }
1380 }
885} 1381}
886 1382
887#ifndef WCONTINUED 1383#ifndef WCONTINUED
888# define WCONTINUED 0 1384# define WCONTINUED 0
889#endif 1385#endif
890 1386
1387/* called on sigchld etc., calls waitpid */
891static void 1388static void
892childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
893{ 1390{
894 int pid, status; 1391 int pid, status;
895 1392
898 if (!WCONTINUED 1395 if (!WCONTINUED
899 || errno != EINVAL 1396 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1398 return;
902 1399
903 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1403
907 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1407}
911 1408
912#endif 1409#endif
913 1410
914/*****************************************************************************/ 1411/*****************************************************************************/
976 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
979#endif 1476#endif
980#ifdef __APPLE__ 1477#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
983#endif 1481#endif
984 1482
985 return flags; 1483 return flags;
986} 1484}
987 1485
1001ev_backend (EV_P) 1499ev_backend (EV_P)
1002{ 1500{
1003 return backend; 1501 return backend;
1004} 1502}
1005 1503
1504#if EV_MINIMAL < 2
1006unsigned int 1505unsigned int
1007ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
1008{ 1507{
1009 return loop_count; 1508 return loop_count;
1010} 1509}
1011 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1012void 1517void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{ 1519{
1015 io_blocktime = interval; 1520 io_blocktime = interval;
1016} 1521}
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{ 1525{
1021 timeout_blocktime = interval; 1526 timeout_blocktime = interval;
1022} 1527}
1023 1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1024static void noinline 1554static void noinline
1025loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
1026{ 1556{
1027 if (!backend) 1557 if (!backend)
1028 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
1029#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1030 { 1571 {
1031 struct timespec ts; 1572 struct timespec ts;
1573
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1575 have_monotonic = 1;
1034 } 1576 }
1035#endif 1577#endif
1036
1037 ev_rt_now = ev_time ();
1038 mn_now = get_clock ();
1039 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now;
1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044 1578
1045 /* pid check not overridable via env */ 1579 /* pid check not overridable via env */
1046#ifndef _WIN32 1580#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1581 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1582 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1586 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1611#endif
1612
1056 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1615
1065#if EV_USE_PORT 1616#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1618#endif
1068#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
1076#endif 1627#endif
1077#if EV_USE_SELECT 1628#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1630#endif
1080 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1081 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1083 } 1636 }
1084} 1637}
1085 1638
1639/* free up a loop structure */
1086static void noinline 1640static void noinline
1087loop_destroy (EV_P) 1641loop_destroy (EV_P)
1088{ 1642{
1089 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1090 1666
1091#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
1093 close (fs_fd); 1669 close (fs_fd);
1094#endif 1670#endif
1118#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1119 array_free (idle, [i]); 1695 array_free (idle, [i]);
1120#endif 1696#endif
1121 } 1697 }
1122 1698
1123 ev_free (anfds); anfdmax = 0; 1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1124 1700
1125 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 1703 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 1704 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 1706 array_free (periodic, EMPTY);
1130#endif 1707#endif
1131#if EV_FORK_ENABLE 1708#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1709 array_free (fork, EMPTY);
1133#endif 1710#endif
1134 array_free (prepare, EMPTY); 1711 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
1136 1716
1137 backend = 0; 1717 backend = 0;
1138} 1718}
1139 1719
1720#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1722#endif
1141 1723
1142void inline_size 1724inline_size void
1143loop_fork (EV_P) 1725loop_fork (EV_P)
1144{ 1726{
1145#if EV_USE_PORT 1727#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 1729#endif
1153#endif 1735#endif
1154#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1737 infy_fork (EV_A);
1156#endif 1738#endif
1157 1739
1158 if (ev_is_active (&sigev)) 1740 if (ev_is_active (&pipe_w))
1159 { 1741 {
1160 /* default loop */ 1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
1161 1748
1162 ev_ref (EV_A); 1749 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1750 ev_io_stop (EV_A_ &pipe_w);
1164 close (sigpipe [0]);
1165 close (sigpipe [1]);
1166 1751
1167 while (pipe (sigpipe)) 1752#if EV_USE_EVENTFD
1168 syserr ("(libev) error creating pipe"); 1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
1169 1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
1170 siginit (EV_A); 1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
1171 } 1766 }
1172 1767
1173 postfork = 0; 1768 postfork = 0;
1174} 1769}
1175 1770
1176#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
1177struct ev_loop * 1773struct ev_loop *
1178ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1179{ 1775{
1180 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1181 1777
1182 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1183
1184 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1185 1780
1186 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1187 return loop; 1782 return EV_A;
1188 1783
1189 return 0; 1784 return 0;
1190} 1785}
1191 1786
1192void 1787void
1197} 1792}
1198 1793
1199void 1794void
1200ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1201{ 1796{
1202 postfork = 1; 1797 postfork = 1; /* must be in line with ev_default_fork */
1203} 1798}
1799#endif /* multiplicity */
1204 1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
1205#endif 1900#endif
1206 1901
1207#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1208struct ev_loop * 1903struct ev_loop *
1209ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
1210#else 1905#else
1211int 1906int
1212ev_default_loop (unsigned int flags) 1907ev_default_loop (unsigned int flags)
1213#endif 1908#endif
1214{ 1909{
1215 if (sigpipe [0] == sigpipe [1])
1216 if (pipe (sigpipe))
1217 return 0;
1218
1219 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1220 { 1911 {
1221#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1222 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1223#else 1914#else
1224 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1225#endif 1916#endif
1226 1917
1227 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1228 1919
1229 if (ev_backend (EV_A)) 1920 if (ev_backend (EV_A))
1230 { 1921 {
1231 siginit (EV_A);
1232
1233#ifndef _WIN32 1922#ifndef _WIN32
1234 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
1235 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
1236 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
1237 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
1246 1935
1247void 1936void
1248ev_default_destroy (void) 1937ev_default_destroy (void)
1249{ 1938{
1250#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1251 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1252#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1253 1944
1254#ifndef _WIN32 1945#ifndef _WIN32
1255 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1256 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1257#endif 1948#endif
1258 1949
1259 ev_ref (EV_A); /* signal watcher */
1260 ev_io_stop (EV_A_ &sigev);
1261
1262 close (sigpipe [0]); sigpipe [0] = 0;
1263 close (sigpipe [1]); sigpipe [1] = 0;
1264
1265 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
1266} 1951}
1267 1952
1268void 1953void
1269ev_default_fork (void) 1954ev_default_fork (void)
1270{ 1955{
1271#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1272 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1273#endif 1958#endif
1274 1959
1275 if (backend) 1960 postfork = 1; /* must be in line with ev_loop_fork */
1276 postfork = 1;
1277} 1961}
1278 1962
1279/*****************************************************************************/ 1963/*****************************************************************************/
1280 1964
1281void 1965void
1282ev_invoke (EV_P_ void *w, int revents) 1966ev_invoke (EV_P_ void *w, int revents)
1283{ 1967{
1284 EV_CB_INVOKE ((W)w, revents); 1968 EV_CB_INVOKE ((W)w, revents);
1285} 1969}
1286 1970
1287void inline_speed 1971unsigned int
1288call_pending (EV_P) 1972ev_pending_count (EV_P)
1973{
1974 int pri;
1975 unsigned int count = 0;
1976
1977 for (pri = NUMPRI; pri--; )
1978 count += pendingcnt [pri];
1979
1980 return count;
1981}
1982
1983void noinline
1984ev_invoke_pending (EV_P)
1289{ 1985{
1290 int pri; 1986 int pri;
1291 1987
1292 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1293 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1294 { 1990 {
1295 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1296 1992
1297 if (expect_true (p->w))
1298 {
1299 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1300 1995
1301 p->w->pending = 0; 1996 p->w->pending = 0;
1302 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1303 } 1998 EV_FREQUENT_CHECK;
1304 } 1999 }
1305} 2000}
1306 2001
1307void inline_size
1308timers_reify (EV_P)
1309{
1310 while (timercnt && ((WT)timers [0])->at <= mn_now)
1311 {
1312 ev_timer *w = (ev_timer *)timers [0];
1313
1314 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1315
1316 /* first reschedule or stop timer */
1317 if (w->repeat)
1318 {
1319 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1320
1321 ((WT)w)->at += w->repeat;
1322 if (((WT)w)->at < mn_now)
1323 ((WT)w)->at = mn_now;
1324
1325 downheap (timers, timercnt, 0);
1326 }
1327 else
1328 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1329
1330 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1331 }
1332}
1333
1334#if EV_PERIODIC_ENABLE
1335void inline_size
1336periodics_reify (EV_P)
1337{
1338 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1339 {
1340 ev_periodic *w = (ev_periodic *)periodics [0];
1341
1342 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1343
1344 /* first reschedule or stop timer */
1345 if (w->reschedule_cb)
1346 {
1347 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1348 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1349 downheap (periodics, periodiccnt, 0);
1350 }
1351 else if (w->interval)
1352 {
1353 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1354 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1355 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1356 downheap (periodics, periodiccnt, 0);
1357 }
1358 else
1359 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1360
1361 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1362 }
1363}
1364
1365static void noinline
1366periodics_reschedule (EV_P)
1367{
1368 int i;
1369
1370 /* adjust periodics after time jump */
1371 for (i = 0; i < periodiccnt; ++i)
1372 {
1373 ev_periodic *w = (ev_periodic *)periodics [i];
1374
1375 if (w->reschedule_cb)
1376 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1377 else if (w->interval)
1378 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1379 }
1380
1381 /* now rebuild the heap */
1382 for (i = periodiccnt >> 1; i--; )
1383 downheap (periodics, periodiccnt, i);
1384}
1385#endif
1386
1387#if EV_IDLE_ENABLE 2002#if EV_IDLE_ENABLE
1388void inline_size 2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
1389idle_reify (EV_P) 2006idle_reify (EV_P)
1390{ 2007{
1391 if (expect_false (idleall)) 2008 if (expect_false (idleall))
1392 { 2009 {
1393 int pri; 2010 int pri;
1405 } 2022 }
1406 } 2023 }
1407} 2024}
1408#endif 2025#endif
1409 2026
1410void inline_speed 2027/* make timers pending */
2028inline_size void
2029timers_reify (EV_P)
2030{
2031 EV_FREQUENT_CHECK;
2032
2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2034 {
2035 do
2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2049
2050 ANHE_at_cache (timers [HEAP0]);
2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
2058 }
2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2060
2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
2062 }
2063}
2064
2065#if EV_PERIODIC_ENABLE
2066/* make periodics pending */
2067inline_size void
2068periodics_reify (EV_P)
2069{
2070 EV_FREQUENT_CHECK;
2071
2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2073 {
2074 int feed_count = 0;
2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121}
2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125static void noinline
2126periodics_reschedule (EV_P)
2127{
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
1411time_update (EV_P_ ev_tstamp max_block) 2164time_update (EV_P_ ev_tstamp max_block)
1412{ 2165{
1413 int i;
1414
1415#if EV_USE_MONOTONIC 2166#if EV_USE_MONOTONIC
1416 if (expect_true (have_monotonic)) 2167 if (expect_true (have_monotonic))
1417 { 2168 {
2169 int i;
1418 ev_tstamp odiff = rtmn_diff; 2170 ev_tstamp odiff = rtmn_diff;
1419 2171
1420 mn_now = get_clock (); 2172 mn_now = get_clock ();
1421 2173
1422 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1440 */ 2192 */
1441 for (i = 4; --i; ) 2193 for (i = 4; --i; )
1442 { 2194 {
1443 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1444 2196
1445 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1446 return; /* all is well */ 2198 return; /* all is well */
1447 2199
1448 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1449 mn_now = get_clock (); 2201 mn_now = get_clock ();
1450 now_floor = mn_now; 2202 now_floor = mn_now;
1451 } 2203 }
1452 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1453# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1454 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1455# endif 2209# endif
1456 /* no timer adjustment, as the monotonic clock doesn't jump */
1457 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1458 } 2210 }
1459 else 2211 else
1460#endif 2212#endif
1461 { 2213 {
1462 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1463 2215
1464 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1465 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1466#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1467 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1468#endif 2222#endif
1469 /* adjust timers. this is easy, as the offset is the same for all of them */
1470 for (i = 0; i < timercnt; ++i)
1471 ((WT)timers [i])->at += ev_rt_now - mn_now;
1472 } 2223 }
1473 2224
1474 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1475 } 2226 }
1476} 2227}
1477 2228
1478void 2229void
1479ev_ref (EV_P)
1480{
1481 ++activecnt;
1482}
1483
1484void
1485ev_unref (EV_P)
1486{
1487 --activecnt;
1488}
1489
1490static int loop_done;
1491
1492void
1493ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1494{ 2231{
1495 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2232#if EV_MINIMAL < 2
1496 ? EVUNLOOP_ONE 2233 ++loop_depth;
1497 : EVUNLOOP_CANCEL; 2234#endif
1498 2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
1499 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1500 2241
1501 do 2242 do
1502 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
1503#ifndef _WIN32 2248#ifndef _WIN32
1504 if (expect_false (curpid)) /* penalise the forking check even more */ 2249 if (expect_false (curpid)) /* penalise the forking check even more */
1505 if (expect_false (getpid () != curpid)) 2250 if (expect_false (getpid () != curpid))
1506 { 2251 {
1507 curpid = getpid (); 2252 curpid = getpid ();
1513 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1514 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1515 if (forkcnt) 2260 if (forkcnt)
1516 { 2261 {
1517 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1518 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1519 } 2264 }
1520#endif 2265#endif
1521 2266
1522 /* queue prepare watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1523 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1524 { 2269 {
1525 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1526 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1527 } 2272 }
1528 2273
1529 if (expect_false (!activecnt)) 2274 if (expect_false (loop_done))
1530 break; 2275 break;
1531 2276
1532 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1533 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1534 loop_fork (EV_A); 2279 loop_fork (EV_A);
1541 ev_tstamp waittime = 0.; 2286 ev_tstamp waittime = 0.;
1542 ev_tstamp sleeptime = 0.; 2287 ev_tstamp sleeptime = 0.;
1543 2288
1544 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1545 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1546 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1547 time_update (EV_A_ 1e100); 2295 time_update (EV_A_ 1e100);
1548 2296
1549 waittime = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1550 2298
1551 if (timercnt) 2299 if (timercnt)
1552 { 2300 {
1553 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1554 if (waittime > to) waittime = to; 2302 if (waittime > to) waittime = to;
1555 } 2303 }
1556 2304
1557#if EV_PERIODIC_ENABLE 2305#if EV_PERIODIC_ENABLE
1558 if (periodiccnt) 2306 if (periodiccnt)
1559 { 2307 {
1560 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1561 if (waittime > to) waittime = to; 2309 if (waittime > to) waittime = to;
1562 } 2310 }
1563#endif 2311#endif
1564 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
1565 if (expect_false (waittime < timeout_blocktime)) 2314 if (expect_false (waittime < timeout_blocktime))
1566 waittime = timeout_blocktime; 2315 waittime = timeout_blocktime;
1567 2316
1568 sleeptime = waittime - backend_fudge; 2317 /* extra check because io_blocktime is commonly 0 */
1569
1570 if (expect_true (sleeptime > io_blocktime)) 2318 if (expect_false (io_blocktime))
1571 sleeptime = io_blocktime;
1572
1573 if (sleeptime)
1574 { 2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
1575 ev_sleep (sleeptime); 2327 ev_sleep (sleeptime);
1576 waittime -= sleeptime; 2328 waittime -= sleeptime;
2329 }
1577 } 2330 }
1578 } 2331 }
1579 2332
2333#if EV_MINIMAL < 2
1580 ++loop_count; 2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1581 backend_poll (EV_A_ waittime); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1582 2339
1583 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
1584 time_update (EV_A_ waittime + sleeptime); 2341 time_update (EV_A_ waittime + sleeptime);
1585 } 2342 }
1586 2343
1597 2354
1598 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1599 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1600 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1601 2358
1602 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1603
1604 } 2360 }
1605 while (expect_true (activecnt && !loop_done)); 2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1606 2366
1607 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
1608 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1609} 2373}
1610 2374
1611void 2375void
1612ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1613{ 2377{
1614 loop_done = how; 2378 loop_done = how;
1615} 2379}
1616 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1617/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1618 2420
1619void inline_size 2421inline_size void
1620wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1621{ 2423{
1622 elem->next = *head; 2424 elem->next = *head;
1623 *head = elem; 2425 *head = elem;
1624} 2426}
1625 2427
1626void inline_size 2428inline_size void
1627wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1628{ 2430{
1629 while (*head) 2431 while (*head)
1630 { 2432 {
1631 if (*head == elem) 2433 if (expect_true (*head == elem))
1632 { 2434 {
1633 *head = elem->next; 2435 *head = elem->next;
1634 return; 2436 break;
1635 } 2437 }
1636 2438
1637 head = &(*head)->next; 2439 head = &(*head)->next;
1638 } 2440 }
1639} 2441}
1640 2442
1641void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
1642clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1643{ 2446{
1644 if (w->pending) 2447 if (w->pending)
1645 { 2448 {
1646 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1647 w->pending = 0; 2450 w->pending = 0;
1648 } 2451 }
1649} 2452}
1650 2453
1651int 2454int
1655 int pending = w_->pending; 2458 int pending = w_->pending;
1656 2459
1657 if (expect_true (pending)) 2460 if (expect_true (pending))
1658 { 2461 {
1659 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
1660 w_->pending = 0; 2464 w_->pending = 0;
1661 p->w = 0;
1662 return p->events; 2465 return p->events;
1663 } 2466 }
1664 else 2467 else
1665 return 0; 2468 return 0;
1666} 2469}
1667 2470
1668void inline_size 2471inline_size void
1669pri_adjust (EV_P_ W w) 2472pri_adjust (EV_P_ W w)
1670{ 2473{
1671 int pri = w->priority; 2474 int pri = ev_priority (w);
1672 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1673 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1674 w->priority = pri; 2477 ev_set_priority (w, pri);
1675} 2478}
1676 2479
1677void inline_speed 2480inline_speed void
1678ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1679{ 2482{
1680 pri_adjust (EV_A_ w); 2483 pri_adjust (EV_A_ w);
1681 w->active = active; 2484 w->active = active;
1682 ev_ref (EV_A); 2485 ev_ref (EV_A);
1683} 2486}
1684 2487
1685void inline_size 2488inline_size void
1686ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1687{ 2490{
1688 ev_unref (EV_A); 2491 ev_unref (EV_A);
1689 w->active = 0; 2492 w->active = 0;
1690} 2493}
1697 int fd = w->fd; 2500 int fd = w->fd;
1698 2501
1699 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1700 return; 2503 return;
1701 2504
1702 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1703 2509
1704 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1705 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1706 wlist_add (&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1707 2513
1708 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1709 w->events &= ~EV_IOFDSET; 2515 w->events &= ~EV__IOFDSET;
2516
2517 EV_FREQUENT_CHECK;
1710} 2518}
1711 2519
1712void noinline 2520void noinline
1713ev_io_stop (EV_P_ ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1714{ 2522{
1715 clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1717 return; 2525 return;
1718 2526
1719 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2528
2529 EV_FREQUENT_CHECK;
1720 2530
1721 wlist_del (&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1722 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1723 2533
1724 fd_change (EV_A_ w->fd, 1); 2534 fd_change (EV_A_ w->fd, 1);
2535
2536 EV_FREQUENT_CHECK;
1725} 2537}
1726 2538
1727void noinline 2539void noinline
1728ev_timer_start (EV_P_ ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1729{ 2541{
1730 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
1731 return; 2543 return;
1732 2544
1733 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1734 2546
1735 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1736 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1737 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1738 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1739 timers [timercnt - 1] = (WT)w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1740 upheap (timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1741 2557
2558 EV_FREQUENT_CHECK;
2559
1742 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1743} 2561}
1744 2562
1745void noinline 2563void noinline
1746ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1747{ 2565{
1748 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1750 return; 2568 return;
1751 2569
1752 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2570 EV_FREQUENT_CHECK;
1753 2571
1754 { 2572 {
1755 int active = ((W)w)->active; 2573 int active = ev_active (w);
1756 2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
1757 if (expect_true (--active < --timercnt)) 2579 if (expect_true (active < timercnt + HEAP0))
1758 { 2580 {
1759 timers [active] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1760 adjustheap (timers, timercnt, active); 2582 adjustheap (timers, timercnt, active);
1761 } 2583 }
1762 } 2584 }
1763 2585
1764 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1765 2589
1766 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1767} 2591}
1768 2592
1769void noinline 2593void noinline
1770ev_timer_again (EV_P_ ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1771{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1772 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1773 { 2599 {
1774 if (w->repeat) 2600 if (w->repeat)
1775 { 2601 {
1776 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1777 adjustheap (timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1778 } 2605 }
1779 else 2606 else
1780 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1781 } 2608 }
1782 else if (w->repeat) 2609 else if (w->repeat)
1783 { 2610 {
1784 w->at = w->repeat; 2611 ev_at (w) = w->repeat;
1785 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1786 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1787} 2622}
1788 2623
1789#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
1790void noinline 2625void noinline
1791ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1792{ 2627{
1793 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
1794 return; 2629 return;
1795 2630
1796 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1797 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1798 else if (w->interval) 2633 else if (w->interval)
1799 { 2634 {
1800 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1801 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1802 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1803 } 2638 }
1804 else 2639 else
1805 ((WT)w)->at = w->offset; 2640 ev_at (w) = w->offset;
1806 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1807 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1808 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1809 periodics [periodiccnt - 1] = (WT)w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1810 upheap (periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1811 2650
2651 EV_FREQUENT_CHECK;
2652
1812 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1813} 2654}
1814 2655
1815void noinline 2656void noinline
1816ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1817{ 2658{
1818 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1820 return; 2661 return;
1821 2662
1822 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2663 EV_FREQUENT_CHECK;
1823 2664
1824 { 2665 {
1825 int active = ((W)w)->active; 2666 int active = ev_active (w);
1826 2667
2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2669
2670 --periodiccnt;
2671
1827 if (expect_true (--active < --periodiccnt)) 2672 if (expect_true (active < periodiccnt + HEAP0))
1828 { 2673 {
1829 periodics [active] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1830 adjustheap (periodics, periodiccnt, active); 2675 adjustheap (periodics, periodiccnt, active);
1831 } 2676 }
1832 } 2677 }
1833 2678
2679 EV_FREQUENT_CHECK;
2680
1834 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1835} 2682}
1836 2683
1837void noinline 2684void noinline
1838ev_periodic_again (EV_P_ ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1848#endif 2695#endif
1849 2696
1850void noinline 2697void noinline
1851ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1852{ 2699{
1853#if EV_MULTIPLICITY
1854 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1855#endif
1856 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
1857 return; 2701 return;
1858 2702
1859 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1860 2704
2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
1861 { 2716 {
1862#ifndef _WIN32 2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1863 sigset_t full, prev; 2718 if (sigfd < 0 && errno == EINVAL)
1864 sigfillset (&full); 2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1865 sigprocmask (SIG_SETMASK, &full, &prev);
1866#endif
1867 2720
1868 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
1869 2724
1870#ifndef _WIN32 2725 sigemptyset (&sigfd_set);
1871 sigprocmask (SIG_SETMASK, &prev, 0); 2726
1872#endif 2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
1873 } 2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
1874 2743
1875 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
1876 wlist_add (&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
1877 2746
1878 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
1879 { 2751 {
1880#if _WIN32 2752# if _WIN32
2753 evpipe_init (EV_A);
2754
1881 signal (w->signum, sighandler); 2755 signal (w->signum, ev_sighandler);
1882#else 2756# else
1883 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
1884 sa.sa_handler = sighandler; 2761 sa.sa_handler = ev_sighandler;
1885 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
1886 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1887 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1888#endif 2769#endif
1889 } 2770 }
2771
2772 EV_FREQUENT_CHECK;
1890} 2773}
1891 2774
1892void noinline 2775void noinline
1893ev_signal_stop (EV_P_ ev_signal *w) 2776ev_signal_stop (EV_P_ ev_signal *w)
1894{ 2777{
1895 clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
1896 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
1897 return; 2780 return;
1898 2781
2782 EV_FREQUENT_CHECK;
2783
1899 wlist_del (&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
1900 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
1901 2786
1902 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805#endif
1903 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
1904} 2810}
1905 2811
1906void 2812void
1907ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
1908{ 2814{
1909#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
1910 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1911#endif 2817#endif
1912 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1913 return; 2819 return;
1914 2820
2821 EV_FREQUENT_CHECK;
2822
1915 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1916 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
1917} 2827}
1918 2828
1919void 2829void
1920ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
1921{ 2831{
1922 clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1923 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1924 return; 2834 return;
1925 2835
2836 EV_FREQUENT_CHECK;
2837
1926 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1927 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
1928} 2842}
1929 2843
1930#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
1931 2845
1932# ifdef _WIN32 2846# ifdef _WIN32
1933# undef lstat 2847# undef lstat
1934# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
1935# endif 2849# endif
1936 2850
1937#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1938#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
1939 2854
1940static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1941 2856
1942#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
1943# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
1945static void noinline 2860static void noinline
1946infy_add (EV_P_ ev_stat *w) 2861infy_add (EV_P_ ev_stat *w)
1947{ 2862{
1948 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1949 2864
1950 if (w->wd < 0) 2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1951 { 2885 }
1952 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1953 2890
1954 /* monitor some parent directory for speedup hints */ 2891 /* if path is not there, monitor some parent directory for speedup hints */
2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2893 /* but an efficiency issue only */
1955 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1956 { 2895 {
1957 char path [4096]; 2896 char path [4096];
1958 strcpy (path, w->path); 2897 strcpy (path, w->path);
1959 2898
1962 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1963 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1964 2903
1965 char *pend = strrchr (path, '/'); 2904 char *pend = strrchr (path, '/');
1966 2905
1967 if (!pend) 2906 if (!pend || pend == path)
1968 break; /* whoops, no '/', complain to your admin */ 2907 break;
1969 2908
1970 *pend = 0; 2909 *pend = 0;
1971 w->wd = inotify_add_watch (fs_fd, path, mask); 2910 w->wd = inotify_add_watch (fs_fd, path, mask);
1972 } 2911 }
1973 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1974 } 2913 }
1975 } 2914 }
1976 else
1977 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1978 2915
1979 if (w->wd >= 0) 2916 if (w->wd >= 0)
1980 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1981} 2923}
1982 2924
1983static void noinline 2925static void noinline
1984infy_del (EV_P_ ev_stat *w) 2926infy_del (EV_P_ ev_stat *w)
1985{ 2927{
1999 2941
2000static void noinline 2942static void noinline
2001infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2943infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2002{ 2944{
2003 if (slot < 0) 2945 if (slot < 0)
2004 /* overflow, need to check for all hahs slots */ 2946 /* overflow, need to check for all hash slots */
2005 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2006 infy_wd (EV_A_ slot, wd, ev); 2948 infy_wd (EV_A_ slot, wd, ev);
2007 else 2949 else
2008 { 2950 {
2009 WL w_; 2951 WL w_;
2015 2957
2016 if (w->wd == wd || wd == -1) 2958 if (w->wd == wd || wd == -1)
2017 { 2959 {
2018 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2019 { 2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2020 w->wd = -1; 2963 w->wd = -1;
2021 infy_add (EV_A_ w); /* re-add, no matter what */ 2964 infy_add (EV_A_ w); /* re-add, no matter what */
2022 } 2965 }
2023 2966
2024 stat_timer_cb (EV_A_ &w->timer, 0); 2967 stat_timer_cb (EV_A_ &w->timer, 0);
2037 2980
2038 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2039 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2040} 2983}
2041 2984
2042void inline_size 2985inline_size void
2986check_2625 (EV_P)
2987{
2988 /* kernels < 2.6.25 are borked
2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2990 */
2991 struct utsname buf;
2992 int major, minor, micro;
2993
2994 if (uname (&buf))
2995 return;
2996
2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2998 return;
2999
3000 if (major < 2
3001 || (major == 2 && minor < 6)
3002 || (major == 2 && minor == 6 && micro < 25))
3003 return;
3004
3005 fs_2625 = 1;
3006}
3007
3008inline_size int
3009infy_newfd (void)
3010{
3011#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015#endif
3016 return inotify_init ();
3017}
3018
3019inline_size void
2043infy_init (EV_P) 3020infy_init (EV_P)
2044{ 3021{
2045 if (fs_fd != -2) 3022 if (fs_fd != -2)
2046 return; 3023 return;
2047 3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
2048 fs_fd = inotify_init (); 3029 fs_fd = infy_newfd ();
2049 3030
2050 if (fs_fd >= 0) 3031 if (fs_fd >= 0)
2051 { 3032 {
3033 fd_intern (fs_fd);
2052 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2053 ev_set_priority (&fs_w, EV_MAXPRI); 3035 ev_set_priority (&fs_w, EV_MAXPRI);
2054 ev_io_start (EV_A_ &fs_w); 3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
2055 } 3038 }
2056} 3039}
2057 3040
2058void inline_size 3041inline_size void
2059infy_fork (EV_P) 3042infy_fork (EV_P)
2060{ 3043{
2061 int slot; 3044 int slot;
2062 3045
2063 if (fs_fd < 0) 3046 if (fs_fd < 0)
2064 return; 3047 return;
2065 3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
2066 close (fs_fd); 3051 close (fs_fd);
2067 fs_fd = inotify_init (); 3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
2068 3061
2069 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2070 { 3063 {
2071 WL w_ = fs_hash [slot].head; 3064 WL w_ = fs_hash [slot].head;
2072 fs_hash [slot].head = 0; 3065 fs_hash [slot].head = 0;
2079 w->wd = -1; 3072 w->wd = -1;
2080 3073
2081 if (fs_fd >= 0) 3074 if (fs_fd >= 0)
2082 infy_add (EV_A_ w); /* re-add, no matter what */ 3075 infy_add (EV_A_ w); /* re-add, no matter what */
2083 else 3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2084 ev_timer_start (EV_A_ &w->timer); 3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
2085 } 3083 }
2086
2087 } 3084 }
2088} 3085}
2089 3086
3087#endif
3088
3089#ifdef _WIN32
3090# define EV_LSTAT(p,b) _stati64 (p, b)
3091#else
3092# define EV_LSTAT(p,b) lstat (p, b)
2090#endif 3093#endif
2091 3094
2092void 3095void
2093ev_stat_stat (EV_P_ ev_stat *w) 3096ev_stat_stat (EV_P_ ev_stat *w)
2094{ 3097{
2101static void noinline 3104static void noinline
2102stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3105stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2103{ 3106{
2104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2105 3108
2106 /* we copy this here each the time so that */ 3109 ev_statdata prev = w->attr;
2107 /* prev has the old value when the callback gets invoked */
2108 w->prev = w->attr;
2109 ev_stat_stat (EV_A_ w); 3110 ev_stat_stat (EV_A_ w);
2110 3111
2111 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2112 if ( 3113 if (
2113 w->prev.st_dev != w->attr.st_dev 3114 prev.st_dev != w->attr.st_dev
2114 || w->prev.st_ino != w->attr.st_ino 3115 || prev.st_ino != w->attr.st_ino
2115 || w->prev.st_mode != w->attr.st_mode 3116 || prev.st_mode != w->attr.st_mode
2116 || w->prev.st_nlink != w->attr.st_nlink 3117 || prev.st_nlink != w->attr.st_nlink
2117 || w->prev.st_uid != w->attr.st_uid 3118 || prev.st_uid != w->attr.st_uid
2118 || w->prev.st_gid != w->attr.st_gid 3119 || prev.st_gid != w->attr.st_gid
2119 || w->prev.st_rdev != w->attr.st_rdev 3120 || prev.st_rdev != w->attr.st_rdev
2120 || w->prev.st_size != w->attr.st_size 3121 || prev.st_size != w->attr.st_size
2121 || w->prev.st_atime != w->attr.st_atime 3122 || prev.st_atime != w->attr.st_atime
2122 || w->prev.st_mtime != w->attr.st_mtime 3123 || prev.st_mtime != w->attr.st_mtime
2123 || w->prev.st_ctime != w->attr.st_ctime 3124 || prev.st_ctime != w->attr.st_ctime
2124 ) { 3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
2125 #if EV_USE_INOTIFY 3131 #if EV_USE_INOTIFY
3132 if (fs_fd >= 0)
3133 {
2126 infy_del (EV_A_ w); 3134 infy_del (EV_A_ w);
2127 infy_add (EV_A_ w); 3135 infy_add (EV_A_ w);
2128 ev_stat_stat (EV_A_ w); /* avoid race... */ 3136 ev_stat_stat (EV_A_ w); /* avoid race... */
3137 }
2129 #endif 3138 #endif
2130 3139
2131 ev_feed_event (EV_A_ w, EV_STAT); 3140 ev_feed_event (EV_A_ w, EV_STAT);
2132 } 3141 }
2133} 3142}
2136ev_stat_start (EV_P_ ev_stat *w) 3145ev_stat_start (EV_P_ ev_stat *w)
2137{ 3146{
2138 if (expect_false (ev_is_active (w))) 3147 if (expect_false (ev_is_active (w)))
2139 return; 3148 return;
2140 3149
2141 /* since we use memcmp, we need to clear any padding data etc. */
2142 memset (&w->prev, 0, sizeof (ev_statdata));
2143 memset (&w->attr, 0, sizeof (ev_statdata));
2144
2145 ev_stat_stat (EV_A_ w); 3150 ev_stat_stat (EV_A_ w);
2146 3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2147 if (w->interval < MIN_STAT_INTERVAL) 3153 w->interval = MIN_STAT_INTERVAL;
2148 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2149 3154
2150 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2151 ev_set_priority (&w->timer, ev_priority (w)); 3156 ev_set_priority (&w->timer, ev_priority (w));
2152 3157
2153#if EV_USE_INOTIFY 3158#if EV_USE_INOTIFY
2154 infy_init (EV_A); 3159 infy_init (EV_A);
2155 3160
2156 if (fs_fd >= 0) 3161 if (fs_fd >= 0)
2157 infy_add (EV_A_ w); 3162 infy_add (EV_A_ w);
2158 else 3163 else
2159#endif 3164#endif
3165 {
2160 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
2161 3169
2162 ev_start (EV_A_ (W)w, 1); 3170 ev_start (EV_A_ (W)w, 1);
3171
3172 EV_FREQUENT_CHECK;
2163} 3173}
2164 3174
2165void 3175void
2166ev_stat_stop (EV_P_ ev_stat *w) 3176ev_stat_stop (EV_P_ ev_stat *w)
2167{ 3177{
2168 clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
2169 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
2170 return; 3180 return;
2171 3181
3182 EV_FREQUENT_CHECK;
3183
2172#if EV_USE_INOTIFY 3184#if EV_USE_INOTIFY
2173 infy_del (EV_A_ w); 3185 infy_del (EV_A_ w);
2174#endif 3186#endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
2175 ev_timer_stop (EV_A_ &w->timer); 3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
2176 3193
2177 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
3195
3196 EV_FREQUENT_CHECK;
2178} 3197}
2179#endif 3198#endif
2180 3199
2181#if EV_IDLE_ENABLE 3200#if EV_IDLE_ENABLE
2182void 3201void
2184{ 3203{
2185 if (expect_false (ev_is_active (w))) 3204 if (expect_false (ev_is_active (w)))
2186 return; 3205 return;
2187 3206
2188 pri_adjust (EV_A_ (W)w); 3207 pri_adjust (EV_A_ (W)w);
3208
3209 EV_FREQUENT_CHECK;
2189 3210
2190 { 3211 {
2191 int active = ++idlecnt [ABSPRI (w)]; 3212 int active = ++idlecnt [ABSPRI (w)];
2192 3213
2193 ++idleall; 3214 ++idleall;
2194 ev_start (EV_A_ (W)w, active); 3215 ev_start (EV_A_ (W)w, active);
2195 3216
2196 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3217 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2197 idles [ABSPRI (w)][active - 1] = w; 3218 idles [ABSPRI (w)][active - 1] = w;
2198 } 3219 }
3220
3221 EV_FREQUENT_CHECK;
2199} 3222}
2200 3223
2201void 3224void
2202ev_idle_stop (EV_P_ ev_idle *w) 3225ev_idle_stop (EV_P_ ev_idle *w)
2203{ 3226{
2204 clear_pending (EV_A_ (W)w); 3227 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3228 if (expect_false (!ev_is_active (w)))
2206 return; 3229 return;
2207 3230
3231 EV_FREQUENT_CHECK;
3232
2208 { 3233 {
2209 int active = ((W)w)->active; 3234 int active = ev_active (w);
2210 3235
2211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3236 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2212 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3237 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2213 3238
2214 ev_stop (EV_A_ (W)w); 3239 ev_stop (EV_A_ (W)w);
2215 --idleall; 3240 --idleall;
2216 } 3241 }
3242
3243 EV_FREQUENT_CHECK;
2217} 3244}
2218#endif 3245#endif
2219 3246
2220void 3247void
2221ev_prepare_start (EV_P_ ev_prepare *w) 3248ev_prepare_start (EV_P_ ev_prepare *w)
2222{ 3249{
2223 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
2224 return; 3251 return;
3252
3253 EV_FREQUENT_CHECK;
2225 3254
2226 ev_start (EV_A_ (W)w, ++preparecnt); 3255 ev_start (EV_A_ (W)w, ++preparecnt);
2227 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3256 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2228 prepares [preparecnt - 1] = w; 3257 prepares [preparecnt - 1] = w;
3258
3259 EV_FREQUENT_CHECK;
2229} 3260}
2230 3261
2231void 3262void
2232ev_prepare_stop (EV_P_ ev_prepare *w) 3263ev_prepare_stop (EV_P_ ev_prepare *w)
2233{ 3264{
2234 clear_pending (EV_A_ (W)w); 3265 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 3266 if (expect_false (!ev_is_active (w)))
2236 return; 3267 return;
2237 3268
3269 EV_FREQUENT_CHECK;
3270
2238 { 3271 {
2239 int active = ((W)w)->active; 3272 int active = ev_active (w);
3273
2240 prepares [active - 1] = prepares [--preparecnt]; 3274 prepares [active - 1] = prepares [--preparecnt];
2241 ((W)prepares [active - 1])->active = active; 3275 ev_active (prepares [active - 1]) = active;
2242 } 3276 }
2243 3277
2244 ev_stop (EV_A_ (W)w); 3278 ev_stop (EV_A_ (W)w);
3279
3280 EV_FREQUENT_CHECK;
2245} 3281}
2246 3282
2247void 3283void
2248ev_check_start (EV_P_ ev_check *w) 3284ev_check_start (EV_P_ ev_check *w)
2249{ 3285{
2250 if (expect_false (ev_is_active (w))) 3286 if (expect_false (ev_is_active (w)))
2251 return; 3287 return;
3288
3289 EV_FREQUENT_CHECK;
2252 3290
2253 ev_start (EV_A_ (W)w, ++checkcnt); 3291 ev_start (EV_A_ (W)w, ++checkcnt);
2254 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3292 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2255 checks [checkcnt - 1] = w; 3293 checks [checkcnt - 1] = w;
3294
3295 EV_FREQUENT_CHECK;
2256} 3296}
2257 3297
2258void 3298void
2259ev_check_stop (EV_P_ ev_check *w) 3299ev_check_stop (EV_P_ ev_check *w)
2260{ 3300{
2261 clear_pending (EV_A_ (W)w); 3301 clear_pending (EV_A_ (W)w);
2262 if (expect_false (!ev_is_active (w))) 3302 if (expect_false (!ev_is_active (w)))
2263 return; 3303 return;
2264 3304
3305 EV_FREQUENT_CHECK;
3306
2265 { 3307 {
2266 int active = ((W)w)->active; 3308 int active = ev_active (w);
3309
2267 checks [active - 1] = checks [--checkcnt]; 3310 checks [active - 1] = checks [--checkcnt];
2268 ((W)checks [active - 1])->active = active; 3311 ev_active (checks [active - 1]) = active;
2269 } 3312 }
2270 3313
2271 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2272} 3317}
2273 3318
2274#if EV_EMBED_ENABLE 3319#if EV_EMBED_ENABLE
2275void noinline 3320void noinline
2276ev_embed_sweep (EV_P_ ev_embed *w) 3321ev_embed_sweep (EV_P_ ev_embed *w)
2293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3338embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2294{ 3339{
2295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2296 3341
2297 { 3342 {
2298 struct ev_loop *loop = w->other; 3343 EV_P = w->other;
2299 3344
2300 while (fdchangecnt) 3345 while (fdchangecnt)
2301 { 3346 {
2302 fd_reify (EV_A); 3347 fd_reify (EV_A);
2303 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2304 } 3349 }
2305 } 3350 }
2306} 3351}
2307 3352
3353static void
3354embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3355{
3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3357
3358 ev_embed_stop (EV_A_ w);
3359
3360 {
3361 EV_P = w->other;
3362
3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3365 }
3366
3367 ev_embed_start (EV_A_ w);
3368}
3369
2308#if 0 3370#if 0
2309static void 3371static void
2310embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3372embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2311{ 3373{
2312 ev_idle_stop (EV_A_ idle); 3374 ev_idle_stop (EV_A_ idle);
2318{ 3380{
2319 if (expect_false (ev_is_active (w))) 3381 if (expect_false (ev_is_active (w)))
2320 return; 3382 return;
2321 3383
2322 { 3384 {
2323 struct ev_loop *loop = w->other; 3385 EV_P = w->other;
2324 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2325 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2326 } 3388 }
3389
3390 EV_FREQUENT_CHECK;
2327 3391
2328 ev_set_priority (&w->io, ev_priority (w)); 3392 ev_set_priority (&w->io, ev_priority (w));
2329 ev_io_start (EV_A_ &w->io); 3393 ev_io_start (EV_A_ &w->io);
2330 3394
2331 ev_prepare_init (&w->prepare, embed_prepare_cb); 3395 ev_prepare_init (&w->prepare, embed_prepare_cb);
2332 ev_set_priority (&w->prepare, EV_MINPRI); 3396 ev_set_priority (&w->prepare, EV_MINPRI);
2333 ev_prepare_start (EV_A_ &w->prepare); 3397 ev_prepare_start (EV_A_ &w->prepare);
2334 3398
3399 ev_fork_init (&w->fork, embed_fork_cb);
3400 ev_fork_start (EV_A_ &w->fork);
3401
2335 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3402 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2336 3403
2337 ev_start (EV_A_ (W)w, 1); 3404 ev_start (EV_A_ (W)w, 1);
3405
3406 EV_FREQUENT_CHECK;
2338} 3407}
2339 3408
2340void 3409void
2341ev_embed_stop (EV_P_ ev_embed *w) 3410ev_embed_stop (EV_P_ ev_embed *w)
2342{ 3411{
2343 clear_pending (EV_A_ (W)w); 3412 clear_pending (EV_A_ (W)w);
2344 if (expect_false (!ev_is_active (w))) 3413 if (expect_false (!ev_is_active (w)))
2345 return; 3414 return;
2346 3415
3416 EV_FREQUENT_CHECK;
3417
2347 ev_io_stop (EV_A_ &w->io); 3418 ev_io_stop (EV_A_ &w->io);
2348 ev_prepare_stop (EV_A_ &w->prepare); 3419 ev_prepare_stop (EV_A_ &w->prepare);
3420 ev_fork_stop (EV_A_ &w->fork);
2349 3421
2350 ev_stop (EV_A_ (W)w); 3422 EV_FREQUENT_CHECK;
2351} 3423}
2352#endif 3424#endif
2353 3425
2354#if EV_FORK_ENABLE 3426#if EV_FORK_ENABLE
2355void 3427void
2356ev_fork_start (EV_P_ ev_fork *w) 3428ev_fork_start (EV_P_ ev_fork *w)
2357{ 3429{
2358 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
2359 return; 3431 return;
3432
3433 EV_FREQUENT_CHECK;
2360 3434
2361 ev_start (EV_A_ (W)w, ++forkcnt); 3435 ev_start (EV_A_ (W)w, ++forkcnt);
2362 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3436 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2363 forks [forkcnt - 1] = w; 3437 forks [forkcnt - 1] = w;
3438
3439 EV_FREQUENT_CHECK;
2364} 3440}
2365 3441
2366void 3442void
2367ev_fork_stop (EV_P_ ev_fork *w) 3443ev_fork_stop (EV_P_ ev_fork *w)
2368{ 3444{
2369 clear_pending (EV_A_ (W)w); 3445 clear_pending (EV_A_ (W)w);
2370 if (expect_false (!ev_is_active (w))) 3446 if (expect_false (!ev_is_active (w)))
2371 return; 3447 return;
2372 3448
3449 EV_FREQUENT_CHECK;
3450
2373 { 3451 {
2374 int active = ((W)w)->active; 3452 int active = ev_active (w);
3453
2375 forks [active - 1] = forks [--forkcnt]; 3454 forks [active - 1] = forks [--forkcnt];
2376 ((W)forks [active - 1])->active = active; 3455 ev_active (forks [active - 1]) = active;
2377 } 3456 }
2378 3457
2379 ev_stop (EV_A_ (W)w); 3458 ev_stop (EV_A_ (W)w);
3459
3460 EV_FREQUENT_CHECK;
3461}
3462#endif
3463
3464#if EV_ASYNC_ENABLE
3465void
3466ev_async_start (EV_P_ ev_async *w)
3467{
3468 if (expect_false (ev_is_active (w)))
3469 return;
3470
3471 evpipe_init (EV_A);
3472
3473 EV_FREQUENT_CHECK;
3474
3475 ev_start (EV_A_ (W)w, ++asynccnt);
3476 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3477 asyncs [asynccnt - 1] = w;
3478
3479 EV_FREQUENT_CHECK;
3480}
3481
3482void
3483ev_async_stop (EV_P_ ev_async *w)
3484{
3485 clear_pending (EV_A_ (W)w);
3486 if (expect_false (!ev_is_active (w)))
3487 return;
3488
3489 EV_FREQUENT_CHECK;
3490
3491 {
3492 int active = ev_active (w);
3493
3494 asyncs [active - 1] = asyncs [--asynccnt];
3495 ev_active (asyncs [active - 1]) = active;
3496 }
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501}
3502
3503void
3504ev_async_send (EV_P_ ev_async *w)
3505{
3506 w->sent = 1;
3507 evpipe_write (EV_A_ &async_pending);
2380} 3508}
2381#endif 3509#endif
2382 3510
2383/*****************************************************************************/ 3511/*****************************************************************************/
2384 3512
2394once_cb (EV_P_ struct ev_once *once, int revents) 3522once_cb (EV_P_ struct ev_once *once, int revents)
2395{ 3523{
2396 void (*cb)(int revents, void *arg) = once->cb; 3524 void (*cb)(int revents, void *arg) = once->cb;
2397 void *arg = once->arg; 3525 void *arg = once->arg;
2398 3526
2399 ev_io_stop (EV_A_ &once->io); 3527 ev_io_stop (EV_A_ &once->io);
2400 ev_timer_stop (EV_A_ &once->to); 3528 ev_timer_stop (EV_A_ &once->to);
2401 ev_free (once); 3529 ev_free (once);
2402 3530
2403 cb (revents, arg); 3531 cb (revents, arg);
2404} 3532}
2405 3533
2406static void 3534static void
2407once_cb_io (EV_P_ ev_io *w, int revents) 3535once_cb_io (EV_P_ ev_io *w, int revents)
2408{ 3536{
2409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3537 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3538
3539 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2410} 3540}
2411 3541
2412static void 3542static void
2413once_cb_to (EV_P_ ev_timer *w, int revents) 3543once_cb_to (EV_P_ ev_timer *w, int revents)
2414{ 3544{
2415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3545 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3546
3547 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2416} 3548}
2417 3549
2418void 3550void
2419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3551ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2420{ 3552{
2442 ev_timer_set (&once->to, timeout, 0.); 3574 ev_timer_set (&once->to, timeout, 0.);
2443 ev_timer_start (EV_A_ &once->to); 3575 ev_timer_start (EV_A_ &once->to);
2444 } 3576 }
2445} 3577}
2446 3578
3579/*****************************************************************************/
3580
3581#if EV_WALK_ENABLE
3582void
3583ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584{
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
3591 {
3592 wn = wl->next;
3593
3594#if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601#endif
3602#if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606#endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
3612 }
3613
3614 if (types & (EV_TIMER | EV_STAT))
3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616#if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3619 {
3620 if (types & EV_STAT)
3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3622 }
3623 else
3624#endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628#if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632#endif
3633
3634#if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639#endif
3640
3641#if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652#endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656#if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658#endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682/* EV_STAT 0x00001000 /* stat data changed */
3683/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3684}
3685#endif
3686
2447#if EV_MULTIPLICITY 3687#if EV_MULTIPLICITY
2448 #include "ev_wrap.h" 3688 #include "ev_wrap.h"
2449#endif 3689#endif
2450 3690
2451#ifdef __cplusplus 3691#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines