ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.266 by root, Fri Oct 24 08:15:33 2008 UTC vs.
Revision 1.321 by root, Thu Dec 31 06:50:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
164# endif 187# endif
165#endif 188#endif
166 189
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
168 191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
226
169#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 229# define EV_USE_MONOTONIC 1
172# else 230# else
173# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
174# endif 232# endif
175#endif 233#endif
176 234
177#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 237#endif
180 238
181#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 240# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 241# define EV_USE_NANOSLEEP 1
244# else 302# else
245# define EV_USE_EVENTFD 0 303# define EV_USE_EVENTFD 0
246# endif 304# endif
247#endif 305#endif
248 306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
249#if 0 /* debugging */ 315#if 0 /* debugging */
250# define EV_VERIFY 3 316# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 317# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 318# define EV_HEAP_CACHE_AT 1
253#endif 319#endif
262 328
263#ifndef EV_HEAP_CACHE_AT 329#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 330# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif 331#endif
266 332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268 348
269#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
287# endif 367# endif
288#endif 368#endif
289 369
290#if EV_USE_INOTIFY 370#if EV_USE_INOTIFY
291# include <sys/utsname.h> 371# include <sys/utsname.h>
372# include <sys/statfs.h>
292# include <sys/inotify.h> 373# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 375# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 376# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 377# define EV_USE_INOTIFY 0
302#endif 383#endif
303 384
304#if EV_USE_EVENTFD 385#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# ifdef O_CLOEXEC
393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
397# endif
307# ifdef __cplusplus 398# ifdef __cplusplus
308extern "C" { 399extern "C" {
309# endif 400# endif
310int eventfd (unsigned int initval, int flags); 401int eventfd (unsigned int initval, int flags);
311# ifdef __cplusplus 402# ifdef __cplusplus
312} 403}
313# endif 404# endif
314#endif 405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
315 435
316/**/ 436/**/
317 437
318#if EV_VERIFY >= 3 438#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
331 */ 451 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333 453
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 456
338#if __GNUC__ >= 4 457#if __GNUC__ >= 4
339# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
340# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
341#else 460#else
354# define inline_speed static noinline 473# define inline_speed static noinline
355#else 474#else
356# define inline_speed static inline 475# define inline_speed static inline
357#endif 476#endif
358 477
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
361 485
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
364 488
365typedef ev_watcher *W; 489typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
368 492
369#define ev_active(w) ((W)(w))->active 493#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 494#define ev_at(w) ((WT)(w))->at
371 495
372#if EV_USE_MONOTONIC 496#if EV_USE_REALTIME
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */ 498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 514#endif
377 515
378#ifdef _WIN32 516#ifdef _WIN32
379# include "ev_win32.c" 517# include "ev_win32.c"
380#endif 518#endif
388{ 526{
389 syserr_cb = cb; 527 syserr_cb = cb;
390} 528}
391 529
392static void noinline 530static void noinline
393syserr (const char *msg) 531ev_syserr (const char *msg)
394{ 532{
395 if (!msg) 533 if (!msg)
396 msg = "(libev) system error"; 534 msg = "(libev) system error";
397 535
398 if (syserr_cb) 536 if (syserr_cb)
444#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
446 584
447/*****************************************************************************/ 585/*****************************************************************************/
448 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
449typedef struct 591typedef struct
450{ 592{
451 WL head; 593 WL head;
452 unsigned char events; 594 unsigned char events; /* the events watched for */
453 unsigned char reify; 595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused; /* currently unused padding */ 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
456#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
457 SOCKET handle; 602 SOCKET handle;
458#endif 603#endif
459} ANFD; 604} ANFD;
460 605
606/* stores the pending event set for a given watcher */
461typedef struct 607typedef struct
462{ 608{
463 W w; 609 W w;
464 int events; 610 int events; /* the pending event set for the given watcher */
465} ANPENDING; 611} ANPENDING;
466 612
467#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */ 614/* hash table entry per inotify-id */
469typedef struct 615typedef struct
472} ANFS; 618} ANFS;
473#endif 619#endif
474 620
475/* Heap Entry */ 621/* Heap Entry */
476#if EV_HEAP_CACHE_AT 622#if EV_HEAP_CACHE_AT
623 /* a heap element */
477 typedef struct { 624 typedef struct {
478 ev_tstamp at; 625 ev_tstamp at;
479 WT w; 626 WT w;
480 } ANHE; 627 } ANHE;
481 628
482 #define ANHE_w(he) (he).w /* access watcher, read-write */ 629 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */ 630 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else 632#else
633 /* a heap element */
486 typedef WT ANHE; 634 typedef WT ANHE;
487 635
488 #define ANHE_w(he) (he) 636 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at 637 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he) 638 #define ANHE_at_cache(he)
514 662
515 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
516 664
517#endif 665#endif
518 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
519/*****************************************************************************/ 679/*****************************************************************************/
520 680
681#ifndef EV_HAVE_EV_TIME
521ev_tstamp 682ev_tstamp
522ev_time (void) 683ev_time (void)
523{ 684{
524#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
525 struct timespec ts; 688 struct timespec ts;
526 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
527 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
528#else 691 }
692#endif
693
529 struct timeval tv; 694 struct timeval tv;
530 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
531 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
532#endif
533} 697}
698#endif
534 699
535ev_tstamp inline_size 700inline_size ev_tstamp
536get_clock (void) 701get_clock (void)
537{ 702{
538#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
539 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
540 { 705 {
574 739
575 tv.tv_sec = (time_t)delay; 740 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577 742
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 744 /* something not guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */ 745 /* by older ones */
581 select (0, 0, 0, 0, &tv); 746 select (0, 0, 0, 0, &tv);
582#endif 747#endif
583 } 748 }
584} 749}
585 750
586/*****************************************************************************/ 751/*****************************************************************************/
587 752
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589 754
590int inline_size 755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
591array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
592{ 759{
593 int ncur = cur + 1; 760 int ncur = cur + 1;
594 761
595 do 762 do
636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
637 } 804 }
638#endif 805#endif
639 806
640#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
642 809
643/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
644 817
645void noinline 818void noinline
646ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
647{ 820{
648 W w_ = (W)w; 821 W w_ = (W)w;
657 pendings [pri][w_->pending - 1].w = w_; 830 pendings [pri][w_->pending - 1].w = w_;
658 pendings [pri][w_->pending - 1].events = revents; 831 pendings [pri][w_->pending - 1].events = revents;
659 } 832 }
660} 833}
661 834
662void inline_speed 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
663queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
664{ 852{
665 int i; 853 int i;
666 854
667 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
668 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
669} 857}
670 858
671/*****************************************************************************/ 859/*****************************************************************************/
672 860
673void inline_speed 861inline_speed void
674fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
675{ 863{
676 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
677 ev_io *w; 865 ev_io *w;
678 866
679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 if (ev) 871 if (ev)
684 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
685 } 873 }
686} 874}
687 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
688void 887void
689ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
690{ 889{
691 if (fd >= 0 && fd < anfdmax) 890 if (fd >= 0 && fd < anfdmax)
692 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
693} 892}
694 893
695void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
696fd_reify (EV_P) 897fd_reify (EV_P)
697{ 898{
698 int i; 899 int i;
699 900
700 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
710 911
711#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
712 if (events) 913 if (events)
713 { 914 {
714 unsigned long arg; 915 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
718 anfd->handle = _get_osfhandle (fd);
719 #endif
720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
721 } 918 }
722#endif 919#endif
723 920
724 { 921 {
725 unsigned char o_events = anfd->events; 922 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify; 923 unsigned char o_reify = anfd->reify;
727 924
728 anfd->reify = 0; 925 anfd->reify = 0;
729 anfd->events = events; 926 anfd->events = events;
730 927
731 if (o_events != events || o_reify & EV_IOFDSET) 928 if (o_events != events || o_reify & EV__IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events); 929 backend_modify (EV_A_ fd, o_events, events);
733 } 930 }
734 } 931 }
735 932
736 fdchangecnt = 0; 933 fdchangecnt = 0;
737} 934}
738 935
739void inline_size 936/* something about the given fd changed */
937inline_size void
740fd_change (EV_P_ int fd, int flags) 938fd_change (EV_P_ int fd, int flags)
741{ 939{
742 unsigned char reify = anfds [fd].reify; 940 unsigned char reify = anfds [fd].reify;
743 anfds [fd].reify |= flags; 941 anfds [fd].reify |= flags;
744 942
748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
749 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
750 } 948 }
751} 949}
752 950
753void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
754fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
755{ 954{
756 ev_io *w; 955 ev_io *w;
757 956
758 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
760 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
762 } 961 }
763} 962}
764 963
765int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
766fd_valid (int fd) 966fd_valid (int fd)
767{ 967{
768#ifdef _WIN32 968#ifdef _WIN32
769 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
770#else 970#else
792 992
793 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
794 if (anfds [fd].events) 994 if (anfds [fd].events)
795 { 995 {
796 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
797 return; 997 break;
798 } 998 }
799} 999}
800 1000
801/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
802static void noinline 1002static void noinline
806 1006
807 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
808 if (anfds [fd].events) 1008 if (anfds [fd].events)
809 { 1009 {
810 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
811 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
812 } 1013 }
813} 1014}
814 1015
815/*****************************************************************************/ 1016/*****************************************************************************/
816 1017
832#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k)) 1035#define UPHEAP_DONE(p,k) ((p) == (k))
835 1036
836/* away from the root */ 1037/* away from the root */
837void inline_speed 1038inline_speed void
838downheap (ANHE *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
839{ 1040{
840 ANHE he = heap [k]; 1041 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0; 1042 ANHE *E = heap + N + HEAP0;
842 1043
882#define HEAP0 1 1083#define HEAP0 1
883#define HPARENT(k) ((k) >> 1) 1084#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p)) 1085#define UPHEAP_DONE(p,k) (!(p))
885 1086
886/* away from the root */ 1087/* away from the root */
887void inline_speed 1088inline_speed void
888downheap (ANHE *heap, int N, int k) 1089downheap (ANHE *heap, int N, int k)
889{ 1090{
890 ANHE he = heap [k]; 1091 ANHE he = heap [k];
891 1092
892 for (;;) 1093 for (;;)
893 { 1094 {
894 int c = k << 1; 1095 int c = k << 1;
895 1096
896 if (c > N + HEAP0 - 1) 1097 if (c >= N + HEAP0)
897 break; 1098 break;
898 1099
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0; 1101 ? 1 : 0;
901 1102
912 ev_active (ANHE_w (he)) = k; 1113 ev_active (ANHE_w (he)) = k;
913} 1114}
914#endif 1115#endif
915 1116
916/* towards the root */ 1117/* towards the root */
917void inline_speed 1118inline_speed void
918upheap (ANHE *heap, int k) 1119upheap (ANHE *heap, int k)
919{ 1120{
920 ANHE he = heap [k]; 1121 ANHE he = heap [k];
921 1122
922 for (;;) 1123 for (;;)
933 1134
934 heap [k] = he; 1135 heap [k] = he;
935 ev_active (ANHE_w (he)) = k; 1136 ev_active (ANHE_w (he)) = k;
936} 1137}
937 1138
938void inline_size 1139/* move an element suitably so it is in a correct place */
1140inline_size void
939adjustheap (ANHE *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
940{ 1142{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
942 upheap (heap, k); 1144 upheap (heap, k);
943 else 1145 else
944 downheap (heap, N, k); 1146 downheap (heap, N, k);
945} 1147}
946 1148
947/* rebuild the heap: this function is used only once and executed rarely */ 1149/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size 1150inline_size void
949reheap (ANHE *heap, int N) 1151reheap (ANHE *heap, int N)
950{ 1152{
951 int i; 1153 int i;
952 1154
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 upheap (heap, i + HEAP0); 1158 upheap (heap, i + HEAP0);
957} 1159}
958 1160
959/*****************************************************************************/ 1161/*****************************************************************************/
960 1162
1163/* associate signal watchers to a signal signal */
961typedef struct 1164typedef struct
962{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
963 WL head; 1170 WL head;
964 EV_ATOMIC_T gotsig;
965} ANSIG; 1171} ANSIG;
966 1172
967static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
968static int signalmax;
969
970static EV_ATOMIC_T gotsig;
971 1174
972/*****************************************************************************/ 1175/*****************************************************************************/
973 1176
974void inline_speed 1177/* used to prepare libev internal fd's */
1178/* this is not fork-safe */
1179inline_speed void
975fd_intern (int fd) 1180fd_intern (int fd)
976{ 1181{
977#ifdef _WIN32 1182#ifdef _WIN32
978 unsigned long arg = 1; 1183 unsigned long arg = 1;
979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
984} 1189}
985 1190
986static void noinline 1191static void noinline
987evpipe_init (EV_P) 1192evpipe_init (EV_P)
988{ 1193{
989 if (!ev_is_active (&pipeev)) 1194 if (!ev_is_active (&pipe_w))
990 { 1195 {
991#if EV_USE_EVENTFD 1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
992 if ((evfd = eventfd (0, 0)) >= 0) 1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
993 { 1202 {
994 evpipe [0] = -1; 1203 evpipe [0] = -1;
995 fd_intern (evfd); 1204 fd_intern (evfd); /* doing it twice doesn't hurt */
996 ev_io_set (&pipeev, evfd, EV_READ); 1205 ev_io_set (&pipe_w, evfd, EV_READ);
997 } 1206 }
998 else 1207 else
999#endif 1208#endif
1000 { 1209 {
1001 while (pipe (evpipe)) 1210 while (pipe (evpipe))
1002 syserr ("(libev) error creating signal/async pipe"); 1211 ev_syserr ("(libev) error creating signal/async pipe");
1003 1212
1004 fd_intern (evpipe [0]); 1213 fd_intern (evpipe [0]);
1005 fd_intern (evpipe [1]); 1214 fd_intern (evpipe [1]);
1006 ev_io_set (&pipeev, evpipe [0], EV_READ); 1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1007 } 1216 }
1008 1217
1009 ev_io_start (EV_A_ &pipeev); 1218 ev_io_start (EV_A_ &pipe_w);
1010 ev_unref (EV_A); /* watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1011 } 1220 }
1012} 1221}
1013 1222
1014void inline_size 1223inline_size void
1015evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1016{ 1225{
1017 if (!*flag) 1226 if (!*flag)
1018 { 1227 {
1019 int old_errno = errno; /* save errno because write might clobber it */ 1228 int old_errno = errno; /* save errno because write might clobber it */
1032 1241
1033 errno = old_errno; 1242 errno = old_errno;
1034 } 1243 }
1035} 1244}
1036 1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1037static void 1248static void
1038pipecb (EV_P_ ev_io *iow, int revents) 1249pipecb (EV_P_ ev_io *iow, int revents)
1039{ 1250{
1251 int i;
1252
1040#if EV_USE_EVENTFD 1253#if EV_USE_EVENTFD
1041 if (evfd >= 0) 1254 if (evfd >= 0)
1042 { 1255 {
1043 uint64_t counter; 1256 uint64_t counter;
1044 read (evfd, &counter, sizeof (uint64_t)); 1257 read (evfd, &counter, sizeof (uint64_t));
1048 { 1261 {
1049 char dummy; 1262 char dummy;
1050 read (evpipe [0], &dummy, 1); 1263 read (evpipe [0], &dummy, 1);
1051 } 1264 }
1052 1265
1053 if (gotsig && ev_is_default_loop (EV_A)) 1266 if (sig_pending)
1054 { 1267 {
1055 int signum; 1268 sig_pending = 0;
1056 gotsig = 0;
1057 1269
1058 for (signum = signalmax; signum--; ) 1270 for (i = EV_NSIG - 1; i--; )
1059 if (signals [signum].gotsig) 1271 if (expect_false (signals [i].pending))
1060 ev_feed_signal_event (EV_A_ signum + 1); 1272 ev_feed_signal_event (EV_A_ i + 1);
1061 } 1273 }
1062 1274
1063#if EV_ASYNC_ENABLE 1275#if EV_ASYNC_ENABLE
1064 if (gotasync) 1276 if (async_pending)
1065 { 1277 {
1066 int i; 1278 async_pending = 0;
1067 gotasync = 0;
1068 1279
1069 for (i = asynccnt; i--; ) 1280 for (i = asynccnt; i--; )
1070 if (asyncs [i]->sent) 1281 if (asyncs [i]->sent)
1071 { 1282 {
1072 asyncs [i]->sent = 0; 1283 asyncs [i]->sent = 0;
1080 1291
1081static void 1292static void
1082ev_sighandler (int signum) 1293ev_sighandler (int signum)
1083{ 1294{
1084#if EV_MULTIPLICITY 1295#if EV_MULTIPLICITY
1085 struct ev_loop *loop = &default_loop_struct; 1296 EV_P = signals [signum - 1].loop;
1086#endif 1297#endif
1087 1298
1088#if _WIN32 1299#if _WIN32
1089 signal (signum, ev_sighandler); 1300 signal (signum, ev_sighandler);
1090#endif 1301#endif
1091 1302
1092 signals [signum - 1].gotsig = 1; 1303 signals [signum - 1].pending = 1;
1093 evpipe_write (EV_A_ &gotsig); 1304 evpipe_write (EV_A_ &sig_pending);
1094} 1305}
1095 1306
1096void noinline 1307void noinline
1097ev_feed_signal_event (EV_P_ int signum) 1308ev_feed_signal_event (EV_P_ int signum)
1098{ 1309{
1099 WL w; 1310 WL w;
1100 1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1101#if EV_MULTIPLICITY 1317#if EV_MULTIPLICITY
1102 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1318 /* it is permissible to try to feed a signal to the wrong loop */
1103#endif 1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1104 1320
1105 --signum; 1321 if (expect_false (signals [signum].loop != EV_A))
1106
1107 if (signum < 0 || signum >= signalmax)
1108 return; 1322 return;
1323#endif
1109 1324
1110 signals [signum].gotsig = 0; 1325 signals [signum].pending = 0;
1111 1326
1112 for (w = signals [signum].head; w; w = w->next) 1327 for (w = signals [signum].head; w; w = w->next)
1113 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1114} 1329}
1115 1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1116/*****************************************************************************/ 1351/*****************************************************************************/
1117 1352
1118static WL childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
1119 1354
1120#ifndef _WIN32 1355#ifndef _WIN32
1123 1358
1124#ifndef WIFCONTINUED 1359#ifndef WIFCONTINUED
1125# define WIFCONTINUED(status) 0 1360# define WIFCONTINUED(status) 0
1126#endif 1361#endif
1127 1362
1128void inline_speed 1363/* handle a single child status event */
1364inline_speed void
1129child_reap (EV_P_ int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
1130{ 1366{
1131 ev_child *w; 1367 ev_child *w;
1132 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1133 1369
1146 1382
1147#ifndef WCONTINUED 1383#ifndef WCONTINUED
1148# define WCONTINUED 0 1384# define WCONTINUED 0
1149#endif 1385#endif
1150 1386
1387/* called on sigchld etc., calls waitpid */
1151static void 1388static void
1152childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
1153{ 1390{
1154 int pid, status; 1391 int pid, status;
1155 1392
1236 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
1237 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1238 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
1239#endif 1476#endif
1240#ifdef __APPLE__ 1477#ifdef __APPLE__
1241 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
1242 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1243#endif 1481#endif
1244 1482
1245 return flags; 1483 return flags;
1246} 1484}
1247 1485
1261ev_backend (EV_P) 1499ev_backend (EV_P)
1262{ 1500{
1263 return backend; 1501 return backend;
1264} 1502}
1265 1503
1504#if EV_MINIMAL < 2
1266unsigned int 1505unsigned int
1267ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
1268{ 1507{
1269 return loop_count; 1508 return loop_count;
1270} 1509}
1271 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1272void 1517void
1273ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1274{ 1519{
1275 io_blocktime = interval; 1520 io_blocktime = interval;
1276} 1521}
1279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1280{ 1525{
1281 timeout_blocktime = interval; 1526 timeout_blocktime = interval;
1282} 1527}
1283 1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1284static void noinline 1554static void noinline
1285loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
1286{ 1556{
1287 if (!backend) 1557 if (!backend)
1288 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
1289#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1290 { 1571 {
1291 struct timespec ts; 1572 struct timespec ts;
1573
1292 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1293 have_monotonic = 1; 1575 have_monotonic = 1;
1294 } 1576 }
1295#endif 1577#endif
1578
1579 /* pid check not overridable via env */
1580#ifndef _WIN32
1581 if (flags & EVFLAG_FORKCHECK)
1582 curpid = getpid ();
1583#endif
1584
1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1296 1589
1297 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
1298 mn_now = get_clock (); 1591 mn_now = get_clock ();
1299 now_floor = mn_now; 1592 now_floor = mn_now;
1300 rtmn_diff = ev_rt_now - mn_now; 1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1301 1597
1302 io_blocktime = 0.; 1598 io_blocktime = 0.;
1303 timeout_blocktime = 0.; 1599 timeout_blocktime = 0.;
1304 backend = 0; 1600 backend = 0;
1305 backend_fd = -1; 1601 backend_fd = -1;
1306 gotasync = 0; 1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1307#if EV_USE_INOTIFY 1606#if EV_USE_INOTIFY
1308 fs_fd = -2; 1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1309#endif 1608#endif
1310 1609#if EV_USE_SIGNALFD
1311 /* pid check not overridable via env */ 1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1312#ifndef _WIN32
1313 if (flags & EVFLAG_FORKCHECK)
1314 curpid = getpid ();
1315#endif 1611#endif
1316
1317 if (!(flags & EVFLAG_NOENV)
1318 && !enable_secure ()
1319 && getenv ("LIBEV_FLAGS"))
1320 flags = atoi (getenv ("LIBEV_FLAGS"));
1321 1612
1322 if (!(flags & 0x0000ffffU)) 1613 if (!(flags & 0x0000ffffU))
1323 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
1324 1615
1325#if EV_USE_PORT 1616#if EV_USE_PORT
1336#endif 1627#endif
1337#if EV_USE_SELECT 1628#if EV_USE_SELECT
1338 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1339#endif 1630#endif
1340 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1341 ev_init (&pipeev, pipecb); 1634 ev_init (&pipe_w, pipecb);
1342 ev_set_priority (&pipeev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1343 } 1636 }
1344} 1637}
1345 1638
1639/* free up a loop structure */
1346static void noinline 1640static void noinline
1347loop_destroy (EV_P) 1641loop_destroy (EV_P)
1348{ 1642{
1349 int i; 1643 int i;
1350 1644
1351 if (ev_is_active (&pipeev)) 1645 if (ev_is_active (&pipe_w))
1352 { 1646 {
1353 ev_ref (EV_A); /* signal watcher */ 1647 /*ev_ref (EV_A);*/
1354 ev_io_stop (EV_A_ &pipeev); 1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1355 1649
1356#if EV_USE_EVENTFD 1650#if EV_USE_EVENTFD
1357 if (evfd >= 0) 1651 if (evfd >= 0)
1358 close (evfd); 1652 close (evfd);
1359#endif 1653#endif
1360 1654
1361 if (evpipe [0] >= 0) 1655 if (evpipe [0] >= 0)
1362 { 1656 {
1363 close (evpipe [0]); 1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1364 close (evpipe [1]); 1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1365 } 1659 }
1366 } 1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1367 1666
1368#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
1369 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
1370 close (fs_fd); 1669 close (fs_fd);
1371#endif 1670#endif
1395#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1396 array_free (idle, [i]); 1695 array_free (idle, [i]);
1397#endif 1696#endif
1398 } 1697 }
1399 1698
1400 ev_free (anfds); anfdmax = 0; 1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1401 1700
1402 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1403 array_free (fdchange, EMPTY); 1703 array_free (fdchange, EMPTY);
1404 array_free (timer, EMPTY); 1704 array_free (timer, EMPTY);
1405#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
1406 array_free (periodic, EMPTY); 1706 array_free (periodic, EMPTY);
1407#endif 1707#endif
1416 1716
1417 backend = 0; 1717 backend = 0;
1418} 1718}
1419 1719
1420#if EV_USE_INOTIFY 1720#if EV_USE_INOTIFY
1421void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1422#endif 1722#endif
1423 1723
1424void inline_size 1724inline_size void
1425loop_fork (EV_P) 1725loop_fork (EV_P)
1426{ 1726{
1427#if EV_USE_PORT 1727#if EV_USE_PORT
1428 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1429#endif 1729#endif
1435#endif 1735#endif
1436#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1437 infy_fork (EV_A); 1737 infy_fork (EV_A);
1438#endif 1738#endif
1439 1739
1440 if (ev_is_active (&pipeev)) 1740 if (ev_is_active (&pipe_w))
1441 { 1741 {
1442 /* this "locks" the handlers against writing to the pipe */ 1742 /* this "locks" the handlers against writing to the pipe */
1443 /* while we modify the fd vars */ 1743 /* while we modify the fd vars */
1444 gotsig = 1; 1744 sig_pending = 1;
1445#if EV_ASYNC_ENABLE 1745#if EV_ASYNC_ENABLE
1446 gotasync = 1; 1746 async_pending = 1;
1447#endif 1747#endif
1448 1748
1449 ev_ref (EV_A); 1749 ev_ref (EV_A);
1450 ev_io_stop (EV_A_ &pipeev); 1750 ev_io_stop (EV_A_ &pipe_w);
1451 1751
1452#if EV_USE_EVENTFD 1752#if EV_USE_EVENTFD
1453 if (evfd >= 0) 1753 if (evfd >= 0)
1454 close (evfd); 1754 close (evfd);
1455#endif 1755#endif
1456 1756
1457 if (evpipe [0] >= 0) 1757 if (evpipe [0] >= 0)
1458 { 1758 {
1459 close (evpipe [0]); 1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1460 close (evpipe [1]); 1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1461 } 1761 }
1462 1762
1463 evpipe_init (EV_A); 1763 evpipe_init (EV_A);
1464 /* now iterate over everything, in case we missed something */ 1764 /* now iterate over everything, in case we missed something */
1465 pipecb (EV_A_ &pipeev, EV_READ); 1765 pipecb (EV_A_ &pipe_w, EV_READ);
1466 } 1766 }
1467 1767
1468 postfork = 0; 1768 postfork = 0;
1469} 1769}
1470 1770
1471#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1472 1772
1473struct ev_loop * 1773struct ev_loop *
1474ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1475{ 1775{
1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1477 1777
1478 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1479
1480 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1481 1780
1482 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1483 return loop; 1782 return EV_A;
1484 1783
1485 return 0; 1784 return 0;
1486} 1785}
1487 1786
1488void 1787void
1495void 1794void
1496ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1497{ 1796{
1498 postfork = 1; /* must be in line with ev_default_fork */ 1797 postfork = 1; /* must be in line with ev_default_fork */
1499} 1798}
1799#endif /* multiplicity */
1500 1800
1501#if EV_VERIFY 1801#if EV_VERIFY
1502static void noinline 1802static void noinline
1503verify_watcher (EV_P_ W w) 1803verify_watcher (EV_P_ W w)
1504{ 1804{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506 1806
1507 if (w->pending) 1807 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509} 1809}
1510 1810
1511static void noinline 1811static void noinline
1512verify_heap (EV_P_ ANHE *heap, int N) 1812verify_heap (EV_P_ ANHE *heap, int N)
1513{ 1813{
1514 int i; 1814 int i;
1515 1815
1516 for (i = HEAP0; i < N + HEAP0; ++i) 1816 for (i = HEAP0; i < N + HEAP0; ++i)
1517 { 1817 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521 1821
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 } 1823 }
1524} 1824}
1525 1825
1526static void noinline 1826static void noinline
1527array_verify (EV_P_ W *ws, int cnt) 1827array_verify (EV_P_ W *ws, int cnt)
1528{ 1828{
1529 while (cnt--) 1829 while (cnt--)
1530 { 1830 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]); 1832 verify_watcher (EV_A_ ws [cnt]);
1533 } 1833 }
1534} 1834}
1535#endif 1835#endif
1536 1836
1837#if EV_MINIMAL < 2
1537void 1838void
1538ev_loop_verify (EV_P) 1839ev_loop_verify (EV_P)
1539{ 1840{
1540#if EV_VERIFY 1841#if EV_VERIFY
1541 int i; 1842 int i;
1543 1844
1544 assert (activecnt >= -1); 1845 assert (activecnt >= -1);
1545 1846
1546 assert (fdchangemax >= fdchangecnt); 1847 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i) 1848 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1549 1850
1550 assert (anfdmax >= 0); 1851 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i) 1852 for (i = 0; i < anfdmax; ++i)
1552 for (w = anfds [i].head; w; w = w->next) 1853 for (w = anfds [i].head; w; w = w->next)
1553 { 1854 {
1554 verify_watcher (EV_A_ (W)w); 1855 verify_watcher (EV_A_ (W)w);
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 } 1858 }
1558 1859
1559 assert (timermax >= timercnt); 1860 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt); 1861 verify_heap (EV_A_ timers, timercnt);
1561 1862
1590 assert (checkmax >= checkcnt); 1891 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt); 1892 array_verify (EV_A_ (W *)checks, checkcnt);
1592 1893
1593# if 0 1894# if 0
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1596# endif
1597#endif 1897# endif
1898#endif
1598} 1899}
1599 1900#endif
1600#endif /* multiplicity */
1601 1901
1602#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1603struct ev_loop * 1903struct ev_loop *
1604ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
1605#else 1905#else
1608#endif 1908#endif
1609{ 1909{
1610 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1611 { 1911 {
1612#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1613 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1614#else 1914#else
1615 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1616#endif 1916#endif
1617 1917
1618 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1635 1935
1636void 1936void
1637ev_default_destroy (void) 1937ev_default_destroy (void)
1638{ 1938{
1639#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1640 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1641#endif 1941#endif
1642 1942
1643 ev_default_loop_ptr = 0; 1943 ev_default_loop_ptr = 0;
1644 1944
1645#ifndef _WIN32 1945#ifndef _WIN32
1652 1952
1653void 1953void
1654ev_default_fork (void) 1954ev_default_fork (void)
1655{ 1955{
1656#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1657 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1658#endif 1958#endif
1659 1959
1660 if (backend)
1661 postfork = 1; /* must be in line with ev_loop_fork */ 1960 postfork = 1; /* must be in line with ev_loop_fork */
1662} 1961}
1663 1962
1664/*****************************************************************************/ 1963/*****************************************************************************/
1665 1964
1666void 1965void
1667ev_invoke (EV_P_ void *w, int revents) 1966ev_invoke (EV_P_ void *w, int revents)
1668{ 1967{
1669 EV_CB_INVOKE ((W)w, revents); 1968 EV_CB_INVOKE ((W)w, revents);
1670} 1969}
1671 1970
1672void inline_speed 1971unsigned int
1673call_pending (EV_P) 1972ev_pending_count (EV_P)
1973{
1974 int pri;
1975 unsigned int count = 0;
1976
1977 for (pri = NUMPRI; pri--; )
1978 count += pendingcnt [pri];
1979
1980 return count;
1981}
1982
1983void noinline
1984ev_invoke_pending (EV_P)
1674{ 1985{
1675 int pri; 1986 int pri;
1676 1987
1677 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1678 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1679 { 1990 {
1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1681 1992
1682 if (expect_true (p->w))
1683 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1685 1995
1686 p->w->pending = 0; 1996 p->w->pending = 0;
1687 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK; 1998 EV_FREQUENT_CHECK;
1689 }
1690 } 1999 }
1691} 2000}
1692 2001
1693#if EV_IDLE_ENABLE 2002#if EV_IDLE_ENABLE
1694void inline_size 2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
1695idle_reify (EV_P) 2006idle_reify (EV_P)
1696{ 2007{
1697 if (expect_false (idleall)) 2008 if (expect_false (idleall))
1698 { 2009 {
1699 int pri; 2010 int pri;
1711 } 2022 }
1712 } 2023 }
1713} 2024}
1714#endif 2025#endif
1715 2026
1716void inline_size 2027/* make timers pending */
2028inline_size void
1717timers_reify (EV_P) 2029timers_reify (EV_P)
1718{ 2030{
1719 EV_FREQUENT_CHECK; 2031 EV_FREQUENT_CHECK;
1720 2032
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 { 2034 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2035 do
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 { 2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
1730 ev_at (w) += w->repeat; 2044 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now) 2045 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now; 2046 ev_at (w) = mn_now;
1733 2047
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735 2049
1736 ANHE_at_cache (timers [HEAP0]); 2050 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0); 2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
1738 } 2058 }
1739 else 2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741 2060
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
1744 } 2062 }
1745} 2063}
1746 2064
1747#if EV_PERIODIC_ENABLE 2065#if EV_PERIODIC_ENABLE
1748void inline_size 2066/* make periodics pending */
2067inline_size void
1749periodics_reify (EV_P) 2068periodics_reify (EV_P)
1750{ 2069{
1751 EV_FREQUENT_CHECK; 2070 EV_FREQUENT_CHECK;
1752 2071
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 { 2073 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2074 int feed_count = 0;
1756 2075
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2076 do
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 { 2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763 2086
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765 2088
1766 ANHE_at_cache (periodics [HEAP0]); 2089 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0); 2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
1768 } 2116 }
1769 else if (w->interval) 2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777 2118
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2119 feed_reverse_done (EV_A_ EV_PERIODIC);
1793 } 2120 }
1794} 2121}
1795 2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1796static void noinline 2125static void noinline
1797periodics_reschedule (EV_P) 2126periodics_reschedule (EV_P)
1798{ 2127{
1799 int i; 2128 int i;
1800 2129
1813 2142
1814 reheap (periodics, periodiccnt); 2143 reheap (periodics, periodiccnt);
1815} 2144}
1816#endif 2145#endif
1817 2146
1818void inline_speed 2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
1819time_update (EV_P_ ev_tstamp max_block) 2164time_update (EV_P_ ev_tstamp max_block)
1820{ 2165{
1821 int i;
1822
1823#if EV_USE_MONOTONIC 2166#if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic)) 2167 if (expect_true (have_monotonic))
1825 { 2168 {
2169 int i;
1826 ev_tstamp odiff = rtmn_diff; 2170 ev_tstamp odiff = rtmn_diff;
1827 2171
1828 mn_now = get_clock (); 2172 mn_now = get_clock ();
1829 2173
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1856 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1857 mn_now = get_clock (); 2201 mn_now = get_clock ();
1858 now_floor = mn_now; 2202 now_floor = mn_now;
1859 } 2203 }
1860 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1861# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1863# endif 2209# endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 } 2210 }
1867 else 2211 else
1868#endif 2212#endif
1869 { 2213 {
1870 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1871 2215
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1874#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1876#endif 2222#endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1884 } 2223 }
1885 2224
1886 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1887 } 2226 }
1888} 2227}
1889 2228
1890void 2229void
1891ev_ref (EV_P)
1892{
1893 ++activecnt;
1894}
1895
1896void
1897ev_unref (EV_P)
1898{
1899 --activecnt;
1900}
1901
1902void
1903ev_now_update (EV_P)
1904{
1905 time_update (EV_A_ 1e100);
1906}
1907
1908static int loop_done;
1909
1910void
1911ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1912{ 2231{
2232#if EV_MINIMAL < 2
2233 ++loop_depth;
2234#endif
2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
1913 loop_done = EVUNLOOP_CANCEL; 2238 loop_done = EVUNLOOP_CANCEL;
1914 2239
1915 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1916 2241
1917 do 2242 do
1918 { 2243 {
1919#if EV_VERIFY >= 2 2244#if EV_VERIFY >= 2
1920 ev_loop_verify (EV_A); 2245 ev_loop_verify (EV_A);
1933 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1934 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1935 if (forkcnt) 2260 if (forkcnt)
1936 { 2261 {
1937 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1938 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1939 } 2264 }
1940#endif 2265#endif
1941 2266
1942 /* queue prepare watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1943 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1944 { 2269 {
1945 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1946 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1947 } 2272 }
1948 2273
1949 if (expect_false (!activecnt)) 2274 if (expect_false (loop_done))
1950 break; 2275 break;
1951 2276
1952 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1953 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1954 loop_fork (EV_A); 2279 loop_fork (EV_A);
1961 ev_tstamp waittime = 0.; 2286 ev_tstamp waittime = 0.;
1962 ev_tstamp sleeptime = 0.; 2287 ev_tstamp sleeptime = 0.;
1963 2288
1964 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1965 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1966 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1967 time_update (EV_A_ 1e100); 2295 time_update (EV_A_ 1e100);
1968 2296
1969 waittime = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1970 2298
1980 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1981 if (waittime > to) waittime = to; 2309 if (waittime > to) waittime = to;
1982 } 2310 }
1983#endif 2311#endif
1984 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
1985 if (expect_false (waittime < timeout_blocktime)) 2314 if (expect_false (waittime < timeout_blocktime))
1986 waittime = timeout_blocktime; 2315 waittime = timeout_blocktime;
1987 2316
1988 sleeptime = waittime - backend_fudge; 2317 /* extra check because io_blocktime is commonly 0 */
1989
1990 if (expect_true (sleeptime > io_blocktime)) 2318 if (expect_false (io_blocktime))
1991 sleeptime = io_blocktime;
1992
1993 if (sleeptime)
1994 { 2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
1995 ev_sleep (sleeptime); 2327 ev_sleep (sleeptime);
1996 waittime -= sleeptime; 2328 waittime -= sleeptime;
2329 }
1997 } 2330 }
1998 } 2331 }
1999 2332
2333#if EV_MINIMAL < 2
2000 ++loop_count; 2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2001 backend_poll (EV_A_ waittime); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2002 2339
2003 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
2004 time_update (EV_A_ waittime + sleeptime); 2341 time_update (EV_A_ waittime + sleeptime);
2005 } 2342 }
2006 2343
2017 2354
2018 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
2019 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
2020 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2021 2358
2022 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
2023 } 2360 }
2024 while (expect_true ( 2361 while (expect_true (
2025 activecnt 2362 activecnt
2026 && !loop_done 2363 && !loop_done
2027 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2028 )); 2365 ));
2029 2366
2030 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
2031 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
2032} 2373}
2033 2374
2034void 2375void
2035ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
2036{ 2377{
2037 loop_done = how; 2378 loop_done = how;
2038} 2379}
2039 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
2040/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
2041 2420
2042void inline_size 2421inline_size void
2043wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
2044{ 2423{
2045 elem->next = *head; 2424 elem->next = *head;
2046 *head = elem; 2425 *head = elem;
2047} 2426}
2048 2427
2049void inline_size 2428inline_size void
2050wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
2051{ 2430{
2052 while (*head) 2431 while (*head)
2053 { 2432 {
2054 if (*head == elem) 2433 if (expect_true (*head == elem))
2055 { 2434 {
2056 *head = elem->next; 2435 *head = elem->next;
2057 return; 2436 break;
2058 } 2437 }
2059 2438
2060 head = &(*head)->next; 2439 head = &(*head)->next;
2061 } 2440 }
2062} 2441}
2063 2442
2064void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
2065clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
2066{ 2446{
2067 if (w->pending) 2447 if (w->pending)
2068 { 2448 {
2069 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2070 w->pending = 0; 2450 w->pending = 0;
2071 } 2451 }
2072} 2452}
2073 2453
2074int 2454int
2078 int pending = w_->pending; 2458 int pending = w_->pending;
2079 2459
2080 if (expect_true (pending)) 2460 if (expect_true (pending))
2081 { 2461 {
2082 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
2083 w_->pending = 0; 2464 w_->pending = 0;
2084 p->w = 0;
2085 return p->events; 2465 return p->events;
2086 } 2466 }
2087 else 2467 else
2088 return 0; 2468 return 0;
2089} 2469}
2090 2470
2091void inline_size 2471inline_size void
2092pri_adjust (EV_P_ W w) 2472pri_adjust (EV_P_ W w)
2093{ 2473{
2094 int pri = w->priority; 2474 int pri = ev_priority (w);
2095 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2096 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2097 w->priority = pri; 2477 ev_set_priority (w, pri);
2098} 2478}
2099 2479
2100void inline_speed 2480inline_speed void
2101ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
2102{ 2482{
2103 pri_adjust (EV_A_ w); 2483 pri_adjust (EV_A_ w);
2104 w->active = active; 2484 w->active = active;
2105 ev_ref (EV_A); 2485 ev_ref (EV_A);
2106} 2486}
2107 2487
2108void inline_size 2488inline_size void
2109ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
2110{ 2490{
2111 ev_unref (EV_A); 2491 ev_unref (EV_A);
2112 w->active = 0; 2492 w->active = 0;
2113} 2493}
2120 int fd = w->fd; 2500 int fd = w->fd;
2121 2501
2122 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
2123 return; 2503 return;
2124 2504
2125 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2126 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2127 2507
2128 EV_FREQUENT_CHECK; 2508 EV_FREQUENT_CHECK;
2129 2509
2130 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
2131 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2132 wlist_add (&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
2133 2513
2134 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2135 w->events &= ~EV_IOFDSET; 2515 w->events &= ~EV__IOFDSET;
2136 2516
2137 EV_FREQUENT_CHECK; 2517 EV_FREQUENT_CHECK;
2138} 2518}
2139 2519
2140void noinline 2520void noinline
2142{ 2522{
2143 clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
2145 return; 2525 return;
2146 2526
2147 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2148 2528
2149 EV_FREQUENT_CHECK; 2529 EV_FREQUENT_CHECK;
2150 2530
2151 wlist_del (&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
2152 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2162 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
2163 return; 2543 return;
2164 2544
2165 ev_at (w) += mn_now; 2545 ev_at (w) += mn_now;
2166 2546
2167 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2168 2548
2169 EV_FREQUENT_CHECK; 2549 EV_FREQUENT_CHECK;
2170 2550
2171 ++timercnt; 2551 ++timercnt;
2172 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2175 ANHE_at_cache (timers [ev_active (w)]); 2555 ANHE_at_cache (timers [ev_active (w)]);
2176 upheap (timers, ev_active (w)); 2556 upheap (timers, ev_active (w));
2177 2557
2178 EV_FREQUENT_CHECK; 2558 EV_FREQUENT_CHECK;
2179 2559
2180 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2181} 2561}
2182 2562
2183void noinline 2563void noinline
2184ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
2185{ 2565{
2190 EV_FREQUENT_CHECK; 2570 EV_FREQUENT_CHECK;
2191 2571
2192 { 2572 {
2193 int active = ev_active (w); 2573 int active = ev_active (w);
2194 2574
2195 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2196 2576
2197 --timercnt; 2577 --timercnt;
2198 2578
2199 if (expect_true (active < timercnt + HEAP0)) 2579 if (expect_true (active < timercnt + HEAP0))
2200 { 2580 {
2233 } 2613 }
2234 2614
2235 EV_FREQUENT_CHECK; 2615 EV_FREQUENT_CHECK;
2236} 2616}
2237 2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2622}
2623
2238#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
2239void noinline 2625void noinline
2240ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
2241{ 2627{
2242 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
2244 2630
2245 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
2246 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2247 else if (w->interval) 2633 else if (w->interval)
2248 { 2634 {
2249 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2250 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
2251 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2252 } 2638 }
2253 else 2639 else
2254 ev_at (w) = w->offset; 2640 ev_at (w) = w->offset;
2262 ANHE_at_cache (periodics [ev_active (w)]); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2263 upheap (periodics, ev_active (w)); 2649 upheap (periodics, ev_active (w));
2264 2650
2265 EV_FREQUENT_CHECK; 2651 EV_FREQUENT_CHECK;
2266 2652
2267 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2268} 2654}
2269 2655
2270void noinline 2656void noinline
2271ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
2272{ 2658{
2277 EV_FREQUENT_CHECK; 2663 EV_FREQUENT_CHECK;
2278 2664
2279 { 2665 {
2280 int active = ev_active (w); 2666 int active = ev_active (w);
2281 2667
2282 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2283 2669
2284 --periodiccnt; 2670 --periodiccnt;
2285 2671
2286 if (expect_true (active < periodiccnt + HEAP0)) 2672 if (expect_true (active < periodiccnt + HEAP0))
2287 { 2673 {
2309#endif 2695#endif
2310 2696
2311void noinline 2697void noinline
2312ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
2313{ 2699{
2314#if EV_MULTIPLICITY
2315 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2316#endif
2317 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
2318 return; 2701 return;
2319 2702
2320 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2321 2704
2322 evpipe_init (EV_A); 2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2323 2708
2324 EV_FREQUENT_CHECK; 2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2325 2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2326 { 2716 {
2327#ifndef _WIN32 2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2328 sigset_t full, prev; 2718 if (sigfd < 0 && errno == EINVAL)
2329 sigfillset (&full); 2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2330 sigprocmask (SIG_SETMASK, &full, &prev);
2331#endif
2332 2720
2333 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2334 2724
2335#ifndef _WIN32 2725 sigemptyset (&sigfd_set);
2336 sigprocmask (SIG_SETMASK, &prev, 0); 2726
2337#endif 2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2338 } 2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
2339 2743
2340 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
2341 wlist_add (&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
2342 2746
2343 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
2344 { 2751 {
2345#if _WIN32 2752# if _WIN32
2753 evpipe_init (EV_A);
2754
2346 signal (w->signum, ev_sighandler); 2755 signal (w->signum, ev_sighandler);
2347#else 2756# else
2348 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
2349 sa.sa_handler = ev_sighandler; 2761 sa.sa_handler = ev_sighandler;
2350 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
2351 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2352 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2353#endif 2769#endif
2354 } 2770 }
2355 2771
2356 EV_FREQUENT_CHECK; 2772 EV_FREQUENT_CHECK;
2357} 2773}
2358 2774
2359void noinline 2775void noinline
2367 2783
2368 wlist_del (&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
2369 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
2370 2786
2371 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805#endif
2372 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2373 2808
2374 EV_FREQUENT_CHECK; 2809 EV_FREQUENT_CHECK;
2375} 2810}
2376 2811
2377void 2812void
2378ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
2379{ 2814{
2380#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
2381 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2382#endif 2817#endif
2383 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
2384 return; 2819 return;
2385 2820
2386 EV_FREQUENT_CHECK; 2821 EV_FREQUENT_CHECK;
2411# ifdef _WIN32 2846# ifdef _WIN32
2412# undef lstat 2847# undef lstat
2413# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
2414# endif 2849# endif
2415 2850
2416#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2417#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
2418 2854
2419static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2420 2856
2421#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
2422# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
2424static void noinline 2860static void noinline
2425infy_add (EV_P_ ev_stat *w) 2861infy_add (EV_P_ ev_stat *w)
2426{ 2862{
2427 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2428 2864
2429 if (w->wd < 0) 2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2430 { 2885 }
2431 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2432 2890
2433 /* monitor some parent directory for speedup hints */ 2891 /* if path is not there, monitor some parent directory for speedup hints */
2434 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2435 /* but an efficiency issue only */ 2893 /* but an efficiency issue only */
2436 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2437 { 2895 {
2438 char path [4096]; 2896 char path [4096];
2439 strcpy (path, w->path); 2897 strcpy (path, w->path);
2443 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2444 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2445 2903
2446 char *pend = strrchr (path, '/'); 2904 char *pend = strrchr (path, '/');
2447 2905
2448 if (!pend) 2906 if (!pend || pend == path)
2449 break; /* whoops, no '/', complain to your admin */ 2907 break;
2450 2908
2451 *pend = 0; 2909 *pend = 0;
2452 w->wd = inotify_add_watch (fs_fd, path, mask); 2910 w->wd = inotify_add_watch (fs_fd, path, mask);
2453 } 2911 }
2454 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2455 } 2913 }
2456 } 2914 }
2457 else
2458 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2459 2915
2460 if (w->wd >= 0) 2916 if (w->wd >= 0)
2461 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2462} 2923}
2463 2924
2464static void noinline 2925static void noinline
2465infy_del (EV_P_ ev_stat *w) 2926infy_del (EV_P_ ev_stat *w)
2466{ 2927{
2496 2957
2497 if (w->wd == wd || wd == -1) 2958 if (w->wd == wd || wd == -1)
2498 { 2959 {
2499 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2500 { 2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2501 w->wd = -1; 2963 w->wd = -1;
2502 infy_add (EV_A_ w); /* re-add, no matter what */ 2964 infy_add (EV_A_ w); /* re-add, no matter what */
2503 } 2965 }
2504 2966
2505 stat_timer_cb (EV_A_ &w->timer, 0); 2967 stat_timer_cb (EV_A_ &w->timer, 0);
2518 2980
2519 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2520 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2521} 2983}
2522 2984
2523void inline_size 2985inline_size void
2524infy_init (EV_P) 2986check_2625 (EV_P)
2525{ 2987{
2526 if (fs_fd != -2)
2527 return;
2528
2529 /* kernels < 2.6.25 are borked 2988 /* kernels < 2.6.25 are borked
2530 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2531 */ 2990 */
2532 {
2533 struct utsname buf; 2991 struct utsname buf;
2534 int major, minor, micro; 2992 int major, minor, micro;
2535 2993
2536 fs_fd = -1;
2537
2538 if (uname (&buf)) 2994 if (uname (&buf))
2539 return; 2995 return;
2540 2996
2541 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3) 2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2542 return; 2998 return;
2543 2999
2544 if (major < 2 3000 if (major < 2
2545 || (major == 2 && minor < 6) 3001 || (major == 2 && minor < 6)
2546 || (major == 2 && minor == 6 && micro < 25)) 3002 || (major == 2 && minor == 6 && micro < 25))
2547 return; 3003 return;
2548 }
2549 3004
3005 fs_2625 = 1;
3006}
3007
3008inline_size int
3009infy_newfd (void)
3010{
3011#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015#endif
3016 return inotify_init ();
3017}
3018
3019inline_size void
3020infy_init (EV_P)
3021{
3022 if (fs_fd != -2)
3023 return;
3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
2550 fs_fd = inotify_init (); 3029 fs_fd = infy_newfd ();
2551 3030
2552 if (fs_fd >= 0) 3031 if (fs_fd >= 0)
2553 { 3032 {
3033 fd_intern (fs_fd);
2554 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2555 ev_set_priority (&fs_w, EV_MAXPRI); 3035 ev_set_priority (&fs_w, EV_MAXPRI);
2556 ev_io_start (EV_A_ &fs_w); 3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
2557 } 3038 }
2558} 3039}
2559 3040
2560void inline_size 3041inline_size void
2561infy_fork (EV_P) 3042infy_fork (EV_P)
2562{ 3043{
2563 int slot; 3044 int slot;
2564 3045
2565 if (fs_fd < 0) 3046 if (fs_fd < 0)
2566 return; 3047 return;
2567 3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
2568 close (fs_fd); 3051 close (fs_fd);
2569 fs_fd = inotify_init (); 3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
2570 3061
2571 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2572 { 3063 {
2573 WL w_ = fs_hash [slot].head; 3064 WL w_ = fs_hash [slot].head;
2574 fs_hash [slot].head = 0; 3065 fs_hash [slot].head = 0;
2581 w->wd = -1; 3072 w->wd = -1;
2582 3073
2583 if (fs_fd >= 0) 3074 if (fs_fd >= 0)
2584 infy_add (EV_A_ w); /* re-add, no matter what */ 3075 infy_add (EV_A_ w); /* re-add, no matter what */
2585 else 3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2586 ev_timer_start (EV_A_ &w->timer); 3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
2587 } 3083 }
2588 } 3084 }
2589} 3085}
2590 3086
2591#endif 3087#endif
2608static void noinline 3104static void noinline
2609stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3105stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2610{ 3106{
2611 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2612 3108
2613 /* we copy this here each the time so that */ 3109 ev_statdata prev = w->attr;
2614 /* prev has the old value when the callback gets invoked */
2615 w->prev = w->attr;
2616 ev_stat_stat (EV_A_ w); 3110 ev_stat_stat (EV_A_ w);
2617 3111
2618 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2619 if ( 3113 if (
2620 w->prev.st_dev != w->attr.st_dev 3114 prev.st_dev != w->attr.st_dev
2621 || w->prev.st_ino != w->attr.st_ino 3115 || prev.st_ino != w->attr.st_ino
2622 || w->prev.st_mode != w->attr.st_mode 3116 || prev.st_mode != w->attr.st_mode
2623 || w->prev.st_nlink != w->attr.st_nlink 3117 || prev.st_nlink != w->attr.st_nlink
2624 || w->prev.st_uid != w->attr.st_uid 3118 || prev.st_uid != w->attr.st_uid
2625 || w->prev.st_gid != w->attr.st_gid 3119 || prev.st_gid != w->attr.st_gid
2626 || w->prev.st_rdev != w->attr.st_rdev 3120 || prev.st_rdev != w->attr.st_rdev
2627 || w->prev.st_size != w->attr.st_size 3121 || prev.st_size != w->attr.st_size
2628 || w->prev.st_atime != w->attr.st_atime 3122 || prev.st_atime != w->attr.st_atime
2629 || w->prev.st_mtime != w->attr.st_mtime 3123 || prev.st_mtime != w->attr.st_mtime
2630 || w->prev.st_ctime != w->attr.st_ctime 3124 || prev.st_ctime != w->attr.st_ctime
2631 ) { 3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
2632 #if EV_USE_INOTIFY 3131 #if EV_USE_INOTIFY
2633 if (fs_fd >= 0) 3132 if (fs_fd >= 0)
2634 { 3133 {
2635 infy_del (EV_A_ w); 3134 infy_del (EV_A_ w);
2636 infy_add (EV_A_ w); 3135 infy_add (EV_A_ w);
2646ev_stat_start (EV_P_ ev_stat *w) 3145ev_stat_start (EV_P_ ev_stat *w)
2647{ 3146{
2648 if (expect_false (ev_is_active (w))) 3147 if (expect_false (ev_is_active (w)))
2649 return; 3148 return;
2650 3149
2651 /* since we use memcmp, we need to clear any padding data etc. */
2652 memset (&w->prev, 0, sizeof (ev_statdata));
2653 memset (&w->attr, 0, sizeof (ev_statdata));
2654
2655 ev_stat_stat (EV_A_ w); 3150 ev_stat_stat (EV_A_ w);
2656 3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2657 if (w->interval < MIN_STAT_INTERVAL) 3153 w->interval = MIN_STAT_INTERVAL;
2658 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2659 3154
2660 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2661 ev_set_priority (&w->timer, ev_priority (w)); 3156 ev_set_priority (&w->timer, ev_priority (w));
2662 3157
2663#if EV_USE_INOTIFY 3158#if EV_USE_INOTIFY
2664 infy_init (EV_A); 3159 infy_init (EV_A);
2665 3160
2666 if (fs_fd >= 0) 3161 if (fs_fd >= 0)
2667 infy_add (EV_A_ w); 3162 infy_add (EV_A_ w);
2668 else 3163 else
2669#endif 3164#endif
3165 {
2670 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
2671 3169
2672 ev_start (EV_A_ (W)w, 1); 3170 ev_start (EV_A_ (W)w, 1);
2673 3171
2674 EV_FREQUENT_CHECK; 3172 EV_FREQUENT_CHECK;
2675} 3173}
2684 EV_FREQUENT_CHECK; 3182 EV_FREQUENT_CHECK;
2685 3183
2686#if EV_USE_INOTIFY 3184#if EV_USE_INOTIFY
2687 infy_del (EV_A_ w); 3185 infy_del (EV_A_ w);
2688#endif 3186#endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
2689 ev_timer_stop (EV_A_ &w->timer); 3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
2690 3193
2691 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
2692 3195
2693 EV_FREQUENT_CHECK; 3196 EV_FREQUENT_CHECK;
2694} 3197}
2835embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3338embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2836{ 3339{
2837 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2838 3341
2839 { 3342 {
2840 struct ev_loop *loop = w->other; 3343 EV_P = w->other;
2841 3344
2842 while (fdchangecnt) 3345 while (fdchangecnt)
2843 { 3346 {
2844 fd_reify (EV_A); 3347 fd_reify (EV_A);
2845 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2850static void 3353static void
2851embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3354embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2852{ 3355{
2853 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2854 3357
3358 ev_embed_stop (EV_A_ w);
3359
2855 { 3360 {
2856 struct ev_loop *loop = w->other; 3361 EV_P = w->other;
2857 3362
2858 ev_loop_fork (EV_A); 3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2859 } 3365 }
3366
3367 ev_embed_start (EV_A_ w);
2860} 3368}
2861 3369
2862#if 0 3370#if 0
2863static void 3371static void
2864embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3372embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2872{ 3380{
2873 if (expect_false (ev_is_active (w))) 3381 if (expect_false (ev_is_active (w)))
2874 return; 3382 return;
2875 3383
2876 { 3384 {
2877 struct ev_loop *loop = w->other; 3385 EV_P = w->other;
2878 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2879 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2880 } 3388 }
2881 3389
2882 EV_FREQUENT_CHECK; 3390 EV_FREQUENT_CHECK;
2883 3391
2994 3502
2995void 3503void
2996ev_async_send (EV_P_ ev_async *w) 3504ev_async_send (EV_P_ ev_async *w)
2997{ 3505{
2998 w->sent = 1; 3506 w->sent = 1;
2999 evpipe_write (EV_A_ &gotasync); 3507 evpipe_write (EV_A_ &async_pending);
3000} 3508}
3001#endif 3509#endif
3002 3510
3003/*****************************************************************************/ 3511/*****************************************************************************/
3004 3512
3066 ev_timer_set (&once->to, timeout, 0.); 3574 ev_timer_set (&once->to, timeout, 0.);
3067 ev_timer_start (EV_A_ &once->to); 3575 ev_timer_start (EV_A_ &once->to);
3068 } 3576 }
3069} 3577}
3070 3578
3579/*****************************************************************************/
3580
3581#if EV_WALK_ENABLE
3582void
3583ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584{
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
3591 {
3592 wn = wl->next;
3593
3594#if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601#endif
3602#if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606#endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
3612 }
3613
3614 if (types & (EV_TIMER | EV_STAT))
3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616#if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3619 {
3620 if (types & EV_STAT)
3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3622 }
3623 else
3624#endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628#if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632#endif
3633
3634#if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639#endif
3640
3641#if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652#endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656#if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658#endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682/* EV_STAT 0x00001000 /* stat data changed */
3683/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3684}
3685#endif
3686
3071#if EV_MULTIPLICITY 3687#if EV_MULTIPLICITY
3072 #include "ev_wrap.h" 3688 #include "ev_wrap.h"
3073#endif 3689#endif
3074 3690
3075#ifdef __cplusplus 3691#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines