ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.158 by root, Thu Nov 29 17:28:13 2007 UTC vs.
Revision 1.324 by root, Sat Jan 23 20:15:57 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
129#ifndef _WIN32 177#ifndef _WIN32
130# include <sys/time.h> 178# include <sys/time.h>
131# include <sys/wait.h> 179# include <sys/wait.h>
132# include <unistd.h> 180# include <unistd.h>
133#else 181#else
182# include <io.h>
134# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 184# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
138# endif 187# endif
139#endif 188#endif
140 189
141/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
142 226
143#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
144# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
145#endif 233#endif
146 234
147#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
149#endif 245#endif
150 246
151#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
153#endif 249#endif
159# define EV_USE_POLL 1 255# define EV_USE_POLL 1
160# endif 256# endif
161#endif 257#endif
162 258
163#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
164# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
165#endif 265#endif
166 266
167#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
169#endif 269#endif
171#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 272# define EV_USE_PORT 0
173#endif 273#endif
174 274
175#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
176# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
177#endif 281#endif
178 282
179#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 284# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
190# else 294# else
191# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
192# endif 296# endif
193#endif 297#endif
194 298
195/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 348
197#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
200#endif 352#endif
202#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
205#endif 357#endif
206 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
207#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 382# include <winsock.h>
209#endif 383#endif
210 384
211#if !EV_STAT_ENABLE 385#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
213#endif 390# endif
214 391# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 392# ifdef O_CLOEXEC
216# include <sys/inotify.h> 393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
217#endif 397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
218 435
219/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
443
444/*
445 * This is used to avoid floating point rounding problems.
446 * It is added to ev_rt_now when scheduling periodics
447 * to ensure progress, time-wise, even when rounding
448 * errors are against us.
449 * This value is good at least till the year 4000.
450 * Better solutions welcome.
451 */
452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 453
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 456
225#if __GNUC__ >= 3 457#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 460#else
236# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
240#endif 466#endif
241 467
242#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
244 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
247 485
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
250 488
251typedef ev_watcher *W; 489typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
254 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
256 515
257#ifdef _WIN32 516#ifdef _WIN32
258# include "ev_win32.c" 517# include "ev_win32.c"
259#endif 518#endif
260 519
267{ 526{
268 syserr_cb = cb; 527 syserr_cb = cb;
269} 528}
270 529
271static void noinline 530static void noinline
272syserr (const char *msg) 531ev_syserr (const char *msg)
273{ 532{
274 if (!msg) 533 if (!msg)
275 msg = "(libev) system error"; 534 msg = "(libev) system error";
276 535
277 if (syserr_cb) 536 if (syserr_cb)
281 perror (msg); 540 perror (msg);
282 abort (); 541 abort ();
283 } 542 }
284} 543}
285 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
286static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 561
288void 562void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 564{
291 alloc = cb; 565 alloc = cb;
292} 566}
293 567
294inline_speed void * 568inline_speed void *
295ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
296{ 570{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
298 572
299 if (!ptr && size) 573 if (!ptr && size)
300 { 574 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 576 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
310 584
311/*****************************************************************************/ 585/*****************************************************************************/
312 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
313typedef struct 591typedef struct
314{ 592{
315 WL head; 593 WL head;
316 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
318#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 602 SOCKET handle;
320#endif 603#endif
321} ANFD; 604} ANFD;
322 605
606/* stores the pending event set for a given watcher */
323typedef struct 607typedef struct
324{ 608{
325 W w; 609 W w;
326 int events; 610 int events; /* the pending event set for the given watcher */
327} ANPENDING; 611} ANPENDING;
328 612
329#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
330typedef struct 615typedef struct
331{ 616{
332 WL head; 617 WL head;
333} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
334#endif 639#endif
335 640
336#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
337 642
338 struct ev_loop 643 struct ev_loop
357 662
358 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
359 664
360#endif 665#endif
361 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
362/*****************************************************************************/ 679/*****************************************************************************/
363 680
681#ifndef EV_HAVE_EV_TIME
364ev_tstamp 682ev_tstamp
365ev_time (void) 683ev_time (void)
366{ 684{
367#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
368 struct timespec ts; 688 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 691 }
692#endif
693
372 struct timeval tv; 694 struct timeval tv;
373 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 697}
698#endif
377 699
378ev_tstamp inline_size 700inline_size ev_tstamp
379get_clock (void) 701get_clock (void)
380{ 702{
381#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
383 { 705 {
396{ 718{
397 return ev_rt_now; 719 return ev_rt_now;
398} 720}
399#endif 721#endif
400 722
401#define array_roundsize(type,n) (((n) | 4) & ~3) 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
758array_nextsize (int elem, int cur, int cnt)
759{
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
768 {
769 ncur *= elem;
770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
771 ncur = ncur - sizeof (void *) * 4;
772 ncur /= elem;
773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 787
403#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 789 if (expect_false ((cnt) > (cur))) \
405 { \ 790 { \
406 int newcnt = cur; \ 791 int ocur_ = (cur); \
407 do \ 792 (base) = (type *)array_realloc \
408 { \ 793 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 794 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 795 }
417 796
797#if 0
418#define array_slim(type,stem) \ 798#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 800 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 801 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 804 }
805#endif
425 806
426#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 809
429/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
430 817
431void noinline 818void noinline
432ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
433{ 820{
434 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
435 823
436 if (expect_false (w_->pending)) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
437 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 832 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 833}
447 834
448void inline_size 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 852{
451 int i; 853 int i;
452 854
453 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
455} 857}
456 858
457/*****************************************************************************/ 859/*****************************************************************************/
458 860
459void inline_size 861inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
474{ 863{
475 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
476 ev_io *w; 865 ev_io *w;
477 866
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 871 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
484 } 873 }
485} 874}
486 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
487void 887void
488ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 889{
890 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
491} 892}
492 893
493void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
494fd_reify (EV_P) 897fd_reify (EV_P)
495{ 898{
496 int i; 899 int i;
497 900
498 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
499 { 902 {
500 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
502 ev_io *w; 905 ev_io *w;
503 906
504 int events = 0; 907 unsigned char events = 0;
505 908
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 910 events |= (unsigned char)w->events;
508 911
509#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
510 if (events) 913 if (events)
511 { 914 {
512 unsigned long argp; 915 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 918 }
516#endif 919#endif
517 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
518 anfd->reify = 0; 925 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
522 } 931 }
523 932
524 fdchangecnt = 0; 933 fdchangecnt = 0;
525} 934}
526 935
527void inline_size 936/* something about the given fd changed */
937inline_size void
528fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
529{ 939{
530 if (expect_false (anfds [fd].reify)) 940 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
534 942
943 if (expect_true (!reify))
944 {
535 ++fdchangecnt; 945 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
538} 949}
539 950
540void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
541fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
542{ 954{
543 ev_io *w; 955 ev_io *w;
544 956
545 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 961 }
550} 962}
551 963
552int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
553fd_valid (int fd) 966fd_valid (int fd)
554{ 967{
555#ifdef _WIN32 968#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 969 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 970#else
558 return fcntl (fd, F_GETFD) != -1; 971 return fcntl (fd, F_GETFD) != -1;
559#endif 972#endif
560} 973}
561 974
565{ 978{
566 int fd; 979 int fd;
567 980
568 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 982 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
572} 985}
573 986
574/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 988static void noinline
579 992
580 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 994 if (anfds [fd].events)
582 { 995 {
583 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
584 return; 997 break;
585 } 998 }
586} 999}
587 1000
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1002static void noinline
593 1006
594 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1008 if (anfds [fd].events)
596 { 1009 {
597 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1013 }
600} 1014}
601 1015
602/*****************************************************************************/ 1016/*****************************************************************************/
603 1017
604void inline_speed 1018/*
605upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
606{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
607 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
608 1023
609 while (k && heap [k >> 1]->at > w->at) 1024/*
610 { 1025 * at the moment we allow libev the luxury of two heaps,
611 heap [k] = heap [k >> 1]; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
612 ((W)heap [k])->active = k + 1; 1027 * which is more cache-efficient.
613 k >>= 1; 1028 * the difference is about 5% with 50000+ watchers.
614 } 1029 */
1030#if EV_USE_4HEAP
615 1031
616 heap [k] = w; 1032#define DHEAP 4
617 ((W)heap [k])->active = k + 1; 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
618 1036
619} 1037/* away from the root */
620 1038inline_speed void
621void inline_speed
622downheap (WT *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
623{ 1040{
624 WT w = heap [k]; 1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
625 1043
626 while (k < (N >> 1)) 1044 for (;;)
627 { 1045 {
628 int j = k << 1; 1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
629 1049
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
631 ++j; 1052 {
632 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
633 if (w->at <= heap [j]->at) 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
634 break; 1066 break;
635 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
636 heap [k] = heap [j]; 1106 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 1107 ev_active (ANHE_w (heap [k])) = k;
1108
638 k = j; 1109 k = c;
639 } 1110 }
640 1111
641 heap [k] = w; 1112 heap [k] = he;
642 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (he)) = k;
643} 1114}
1115#endif
644 1116
645void inline_size 1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
646adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
647{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
648 upheap (heap, k); 1144 upheap (heap, k);
1145 else
649 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
650} 1159}
651 1160
652/*****************************************************************************/ 1161/*****************************************************************************/
653 1162
1163/* associate signal watchers to a signal signal */
654typedef struct 1164typedef struct
655{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
656 WL head; 1170 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG; 1171} ANSIG;
659 1172
660static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
661static int signalmax;
662 1174
663static int sigpipe [2]; 1175/*****************************************************************************/
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 1176
667void inline_size 1177/* used to prepare libev internal fd's */
668signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
669{ 1179inline_speed void
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1180fd_intern (int fd)
732{ 1181{
733#ifdef _WIN32 1182#ifdef _WIN32
734 int arg = 1; 1183 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1185#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1188#endif
740} 1189}
741 1190
742static void noinline 1191static void noinline
743siginit (EV_P) 1192evpipe_init (EV_P)
744{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
745 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
747 1217
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
751} 1288}
752 1289
753/*****************************************************************************/ 1290/*****************************************************************************/
754 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#ifdef _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
755static ev_child *childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
756 1354
757#ifndef _WIN32 1355#ifndef _WIN32
758 1356
759static ev_signal childev; 1357static ev_signal childev;
760 1358
761void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
763{ 1366{
764 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1369
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
767 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
768 { 1374 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1376 w->rpid = pid;
771 w->rstatus = status; 1377 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1379 }
1380 }
774} 1381}
775 1382
776#ifndef WCONTINUED 1383#ifndef WCONTINUED
777# define WCONTINUED 0 1384# define WCONTINUED 0
778#endif 1385#endif
779 1386
1387/* called on sigchld etc., calls waitpid */
780static void 1388static void
781childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
782{ 1390{
783 int pid, status; 1391 int pid, status;
784 1392
787 if (!WCONTINUED 1395 if (!WCONTINUED
788 || errno != EINVAL 1396 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1398 return;
791 1399
792 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1403
796 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1407}
800 1408
801#endif 1409#endif
802 1410
803/*****************************************************************************/ 1411/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
868#endif 1476#endif
869#ifdef __APPLE__ 1477#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
872#endif 1481#endif
873 1482
874 return flags; 1483 return flags;
875} 1484}
876 1485
877unsigned int 1486unsigned int
878ev_embeddable_backends (void) 1487ev_embeddable_backends (void)
879{ 1488{
880 return EVBACKEND_EPOLL 1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1490
882 | EVBACKEND_PORT; 1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
883} 1496}
884 1497
885unsigned int 1498unsigned int
886ev_backend (EV_P) 1499ev_backend (EV_P)
887{ 1500{
888 return backend; 1501 return backend;
889} 1502}
890 1503
1504#if EV_MINIMAL < 2
1505unsigned int
1506ev_loop_count (EV_P)
1507{
1508 return loop_count;
1509}
1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
891static void noinline 1554static void noinline
892loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
893{ 1556{
894 if (!backend) 1557 if (!backend)
895 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
896#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
897 { 1571 {
898 struct timespec ts; 1572 struct timespec ts;
1573
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1575 have_monotonic = 1;
901 } 1576 }
902#endif 1577#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 1578
909 /* pid check not overridable via env */ 1579 /* pid check not overridable via env */
910#ifndef _WIN32 1580#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1581 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1582 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1586 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1611#endif
1612
920 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1615
929#if EV_USE_PORT 1616#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1618#endif
932#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
940#endif 1627#endif
941#if EV_USE_SELECT 1628#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1630#endif
944 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
945 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
947 } 1636 }
948} 1637}
949 1638
1639/* free up a loop structure */
950static void noinline 1640static void noinline
951loop_destroy (EV_P) 1641loop_destroy (EV_P)
952{ 1642{
953 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
954 1666
955#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
957 close (fs_fd); 1669 close (fs_fd);
958#endif 1670#endif
975#if EV_USE_SELECT 1687#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1688 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1689#endif
978 1690
979 for (i = NUMPRI; i--; ) 1691 for (i = NUMPRI; i--; )
1692 {
980 array_free (pending, [i]); 1693 array_free (pending, [i]);
1694#if EV_IDLE_ENABLE
1695 array_free (idle, [i]);
1696#endif
1697 }
1698
1699 ev_free (anfds); anfds = 0; anfdmax = 0;
981 1700
982 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1703 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1704 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1706 array_free (periodic, EMPTY);
987#endif 1707#endif
1708#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1709 array_free (fork, EMPTY);
1710#endif
989 array_free (prepare, EMPTY0); 1711 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
991 1716
992 backend = 0; 1717 backend = 0;
993} 1718}
994 1719
1720#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1722#endif
996 1723
997void inline_size 1724inline_size void
998loop_fork (EV_P) 1725loop_fork (EV_P)
999{ 1726{
1000#if EV_USE_PORT 1727#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1729#endif
1008#endif 1735#endif
1009#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1737 infy_fork (EV_A);
1011#endif 1738#endif
1012 1739
1013 if (ev_is_active (&sigev)) 1740 if (ev_is_active (&pipe_w))
1014 { 1741 {
1015 /* default loop */ 1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
1016 1748
1017 ev_ref (EV_A); 1749 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1750 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 1751
1022 while (pipe (sigpipe)) 1752#if EV_USE_EVENTFD
1023 syserr ("(libev) error creating pipe"); 1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
1024 1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
1025 siginit (EV_A); 1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
1026 } 1766 }
1027 1767
1028 postfork = 0; 1768 postfork = 0;
1029} 1769}
1030 1770
1031#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
1032struct ev_loop * 1773struct ev_loop *
1033ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1034{ 1775{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1777
1037 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1040 1780
1041 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1042 return loop; 1782 return EV_A;
1043 1783
1044 return 0; 1784 return 0;
1045} 1785}
1046 1786
1047void 1787void
1052} 1792}
1053 1793
1054void 1794void
1055ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1056{ 1796{
1057 postfork = 1; 1797 postfork = 1; /* must be in line with ev_default_fork */
1058} 1798}
1799#endif /* multiplicity */
1059 1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
1060#endif 1900#endif
1061 1901
1062#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1063struct ev_loop * 1903struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
1065#else 1905#else
1066int 1906int
1067ev_default_loop (unsigned int flags) 1907ev_default_loop (unsigned int flags)
1068#endif 1908#endif
1069{ 1909{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1075 { 1911 {
1076#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 1914#else
1079 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1080#endif 1916#endif
1081 1917
1082 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1083 1919
1084 if (ev_backend (EV_A)) 1920 if (ev_backend (EV_A))
1085 { 1921 {
1086 siginit (EV_A);
1087
1088#ifndef _WIN32 1922#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
1101 1935
1102void 1936void
1103ev_default_destroy (void) 1937ev_default_destroy (void)
1104{ 1938{
1105#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1107#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1108 1944
1109#ifndef _WIN32 1945#ifndef _WIN32
1110 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1112#endif 1948#endif
1113 1949
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
1121} 1951}
1122 1952
1123void 1953void
1124ev_default_fork (void) 1954ev_default_fork (void)
1125{ 1955{
1126#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1128#endif 1958#endif
1129 1959
1130 if (backend) 1960 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 1961}
1133 1962
1134/*****************************************************************************/ 1963/*****************************************************************************/
1135 1964
1136int inline_size 1965void
1137any_pending (EV_P) 1966ev_invoke (EV_P_ void *w, int revents)
1967{
1968 EV_CB_INVOKE ((W)w, revents);
1969}
1970
1971unsigned int
1972ev_pending_count (EV_P)
1138{ 1973{
1139 int pri; 1974 int pri;
1975 unsigned int count = 0;
1140 1976
1141 for (pri = NUMPRI; pri--; ) 1977 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 1978 count += pendingcnt [pri];
1143 return 1;
1144 1979
1145 return 0; 1980 return count;
1146} 1981}
1147 1982
1148void inline_speed 1983void noinline
1149call_pending (EV_P) 1984ev_invoke_pending (EV_P)
1150{ 1985{
1151 int pri; 1986 int pri;
1152 1987
1153 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1155 { 1990 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 1992
1158 if (expect_true (p->w))
1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1161 1995
1162 p->w->pending = 0; 1996 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1164 } 1998 EV_FREQUENT_CHECK;
1165 } 1999 }
1166} 2000}
1167 2001
1168void inline_size 2002#if EV_IDLE_ENABLE
2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
2006idle_reify (EV_P)
2007{
2008 if (expect_false (idleall))
2009 {
2010 int pri;
2011
2012 for (pri = NUMPRI; pri--; )
2013 {
2014 if (pendingcnt [pri])
2015 break;
2016
2017 if (idlecnt [pri])
2018 {
2019 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2020 break;
2021 }
2022 }
2023 }
2024}
2025#endif
2026
2027/* make timers pending */
2028inline_size void
1169timers_reify (EV_P) 2029timers_reify (EV_P)
1170{ 2030{
2031 EV_FREQUENT_CHECK;
2032
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 2034 {
1173 ev_timer *w = timers [0]; 2035 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 2049
1182 ((WT)w)->at += w->repeat; 2050 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
1187 } 2058 }
1188 else 2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 2060
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
1192 } 2062 }
1193} 2063}
1194 2064
1195#if EV_PERIODIC_ENABLE 2065#if EV_PERIODIC_ENABLE
1196void inline_size 2066/* make periodics pending */
2067inline_size void
1197periodics_reify (EV_P) 2068periodics_reify (EV_P)
1198{ 2069{
2070 EV_FREQUENT_CHECK;
2071
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 2073 {
1201 ev_periodic *w = periodics [0]; 2074 int feed_count = 0;
1202 2075
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2076 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
1211 } 2116 }
1212 else if (w->interval) 2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 2118
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2119 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 2120 }
1223} 2121}
1224 2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1225static void noinline 2125static void noinline
1226periodics_reschedule (EV_P) 2126periodics_reschedule (EV_P)
1227{ 2127{
1228 int i; 2128 int i;
1229 2129
1230 /* adjust periodics after time jump */ 2130 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 2132 {
1233 ev_periodic *w = periodics [i]; 2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 2134
1235 if (w->reschedule_cb) 2135 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 2137 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
1239 } 2154 {
1240 2155 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 2156 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 2157 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 2158 }
1244} 2159}
1245#endif
1246 2160
1247int inline_size 2161/* fetch new monotonic and realtime times from the kernel */
1248time_update_monotonic (EV_P) 2162/* also detect if there was a timejump, and act accordingly */
2163inline_speed void
2164time_update (EV_P_ ev_tstamp max_block)
1249{ 2165{
2166#if EV_USE_MONOTONIC
2167 if (expect_true (have_monotonic))
2168 {
2169 int i;
2170 ev_tstamp odiff = rtmn_diff;
2171
1250 mn_now = get_clock (); 2172 mn_now = get_clock ();
1251 2173
2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2175 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2176 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 2177 {
1254 ev_rt_now = rtmn_diff + mn_now; 2178 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 2179 return;
1256 } 2180 }
1257 else 2181
1258 {
1259 now_floor = mn_now; 2182 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 2183 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 2184
1265void inline_size 2185 /* loop a few times, before making important decisions.
1266time_update (EV_P) 2186 * on the choice of "4": one iteration isn't enough,
1267{ 2187 * in case we get preempted during the calls to
1268 int i; 2188 * ev_time and get_clock. a second call is almost guaranteed
1269 2189 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 2190 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 2191 * in the unlikely event of having been preempted here.
1272 { 2192 */
1273 if (time_update_monotonic (EV_A)) 2193 for (i = 4; --i; )
1274 { 2194 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1288 2196
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 2198 return; /* all is well */
1291 2199
1292 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 2201 mn_now = get_clock ();
1294 now_floor = mn_now; 2202 now_floor = mn_now;
1295 } 2203 }
1296 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1299# endif 2209# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 2210 }
1304 else 2211 else
1305#endif 2212#endif
1306 { 2213 {
1307 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1308 2215
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1313#endif 2222#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 2223 }
1319 2224
1320 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1321 } 2226 }
1322} 2227}
1323 2228
1324void 2229void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1340{ 2231{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2232#if EV_MINIMAL < 2
1342 ? EVUNLOOP_ONE 2233 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 2234#endif
1344 2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 2241
1347 while (activecnt) 2242 do
1348 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
1349#ifndef _WIN32 2248#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 2249 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 2250 if (expect_false (getpid () != curpid))
1352 { 2251 {
1353 curpid = getpid (); 2252 curpid = getpid ();
1359 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1361 if (forkcnt) 2260 if (forkcnt)
1362 { 2261 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1365 } 2264 }
1366#endif 2265#endif
1367 2266
1368 /* queue check watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1370 { 2269 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1373 } 2272 }
2273
2274 if (expect_false (loop_done))
2275 break;
1374 2276
1375 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1376 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1377 loop_fork (EV_A); 2279 loop_fork (EV_A);
1378 2280
1379 /* update fd-related kernel structures */ 2281 /* update fd-related kernel structures */
1380 fd_reify (EV_A); 2282 fd_reify (EV_A);
1381 2283
1382 /* calculate blocking time */ 2284 /* calculate blocking time */
1383 { 2285 {
1384 ev_tstamp block; 2286 ev_tstamp waittime = 0.;
2287 ev_tstamp sleeptime = 0.;
1385 2288
1386 if (flags & EVLOOP_NONBLOCK || idlecnt) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1387 block = 0.; /* do not block at all */
1388 else
1389 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1390 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1391#if EV_USE_MONOTONIC
1392 if (expect_true (have_monotonic))
1393 time_update_monotonic (EV_A); 2295 time_update (EV_A_ 1e100);
1394 else
1395#endif
1396 {
1397 ev_rt_now = ev_time ();
1398 mn_now = ev_rt_now;
1399 }
1400 2296
1401 block = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1402 2298
1403 if (timercnt) 2299 if (timercnt)
1404 { 2300 {
1405 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1406 if (block > to) block = to; 2302 if (waittime > to) waittime = to;
1407 } 2303 }
1408 2304
1409#if EV_PERIODIC_ENABLE 2305#if EV_PERIODIC_ENABLE
1410 if (periodiccnt) 2306 if (periodiccnt)
1411 { 2307 {
1412 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1413 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1414 } 2310 }
1415#endif 2311#endif
1416 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
2314 if (expect_false (waittime < timeout_blocktime))
2315 waittime = timeout_blocktime;
2316
2317 /* extra check because io_blocktime is commonly 0 */
1417 if (expect_false (block < 0.)) block = 0.; 2318 if (expect_false (io_blocktime))
2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
2327 ev_sleep (sleeptime);
2328 waittime -= sleeptime;
2329 }
2330 }
1418 } 2331 }
1419 2332
2333#if EV_MINIMAL < 2
2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1420 backend_poll (EV_A_ block); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2339
2340 /* update ev_rt_now, do magic */
2341 time_update (EV_A_ waittime + sleeptime);
1421 } 2342 }
1422
1423 /* update ev_rt_now, do magic */
1424 time_update (EV_A);
1425 2343
1426 /* queue pending timers and reschedule them */ 2344 /* queue pending timers and reschedule them */
1427 timers_reify (EV_A); /* relative timers called last */ 2345 timers_reify (EV_A); /* relative timers called last */
1428#if EV_PERIODIC_ENABLE 2346#if EV_PERIODIC_ENABLE
1429 periodics_reify (EV_A); /* absolute timers called first */ 2347 periodics_reify (EV_A); /* absolute timers called first */
1430#endif 2348#endif
1431 2349
2350#if EV_IDLE_ENABLE
1432 /* queue idle watchers unless other events are pending */ 2351 /* queue idle watchers unless other events are pending */
1433 if (idlecnt && !any_pending (EV_A)) 2352 idle_reify (EV_A);
1434 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2353#endif
1435 2354
1436 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1437 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1438 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1439 2358
1440 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1441
1442 if (expect_false (loop_done))
1443 break;
1444 } 2360 }
2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1445 2366
1446 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
1447 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1448} 2373}
1449 2374
1450void 2375void
1451ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1452{ 2377{
1453 loop_done = how; 2378 loop_done = how;
1454} 2379}
1455 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1456/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1457 2420
1458void inline_size 2421inline_size void
1459wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1460{ 2423{
1461 elem->next = *head; 2424 elem->next = *head;
1462 *head = elem; 2425 *head = elem;
1463} 2426}
1464 2427
1465void inline_size 2428inline_size void
1466wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1467{ 2430{
1468 while (*head) 2431 while (*head)
1469 { 2432 {
1470 if (*head == elem) 2433 if (expect_true (*head == elem))
1471 { 2434 {
1472 *head = elem->next; 2435 *head = elem->next;
1473 return; 2436 break;
1474 } 2437 }
1475 2438
1476 head = &(*head)->next; 2439 head = &(*head)->next;
1477 } 2440 }
1478} 2441}
1479 2442
1480void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
1481ev_clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1482{ 2446{
1483 if (w->pending) 2447 if (w->pending)
1484 { 2448 {
1485 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1486 w->pending = 0; 2450 w->pending = 0;
1487 } 2451 }
1488} 2452}
1489 2453
1490void inline_speed 2454int
2455ev_clear_pending (EV_P_ void *w)
2456{
2457 W w_ = (W)w;
2458 int pending = w_->pending;
2459
2460 if (expect_true (pending))
2461 {
2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
2464 w_->pending = 0;
2465 return p->events;
2466 }
2467 else
2468 return 0;
2469}
2470
2471inline_size void
2472pri_adjust (EV_P_ W w)
2473{
2474 int pri = ev_priority (w);
2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2477 ev_set_priority (w, pri);
2478}
2479
2480inline_speed void
1491ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1492{ 2482{
1493 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2483 pri_adjust (EV_A_ w);
1494 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1495
1496 w->active = active; 2484 w->active = active;
1497 ev_ref (EV_A); 2485 ev_ref (EV_A);
1498} 2486}
1499 2487
1500void inline_size 2488inline_size void
1501ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1502{ 2490{
1503 ev_unref (EV_A); 2491 ev_unref (EV_A);
1504 w->active = 0; 2492 w->active = 0;
1505} 2493}
1506 2494
1507/*****************************************************************************/ 2495/*****************************************************************************/
1508 2496
1509void 2497void noinline
1510ev_io_start (EV_P_ ev_io *w) 2498ev_io_start (EV_P_ ev_io *w)
1511{ 2499{
1512 int fd = w->fd; 2500 int fd = w->fd;
1513 2501
1514 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1515 return; 2503 return;
1516 2504
1517 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1518 2509
1519 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1520 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1521 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1522 2513
1523 fd_change (EV_A_ fd); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1524} 2515 w->events &= ~EV__IOFDSET;
1525 2516
1526void 2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
1527ev_io_stop (EV_P_ ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1528{ 2522{
1529 ev_clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1530 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1531 return; 2525 return;
1532 2526
1533 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1534 2528
2529 EV_FREQUENT_CHECK;
2530
1535 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1536 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1537 2533
1538 fd_change (EV_A_ w->fd); 2534 fd_change (EV_A_ w->fd, 1);
1539}
1540 2535
1541void 2536 EV_FREQUENT_CHECK;
2537}
2538
2539void noinline
1542ev_timer_start (EV_P_ ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1543{ 2541{
1544 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
1545 return; 2543 return;
1546 2544
1547 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1548 2546
1549 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1550 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1551 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1552 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1553 timers [timercnt - 1] = w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1554 upheap ((WT *)timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1555 2557
2558 EV_FREQUENT_CHECK;
2559
1556 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1557} 2561}
1558 2562
1559void 2563void noinline
1560ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1561{ 2565{
1562 ev_clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1564 return; 2568 return;
1565 2569
1566 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2570 EV_FREQUENT_CHECK;
1567 2571
1568 { 2572 {
1569 int active = ((W)w)->active; 2573 int active = ev_active (w);
1570 2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
1571 if (expect_true (--active < --timercnt)) 2579 if (expect_true (active < timercnt + HEAP0))
1572 { 2580 {
1573 timers [active] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1574 adjustheap ((WT *)timers, timercnt, active); 2582 adjustheap (timers, timercnt, active);
1575 } 2583 }
1576 } 2584 }
1577 2585
1578 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1579 2589
1580 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1581} 2591}
1582 2592
1583void 2593void noinline
1584ev_timer_again (EV_P_ ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1585{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1586 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1587 { 2599 {
1588 if (w->repeat) 2600 if (w->repeat)
1589 { 2601 {
1590 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1591 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1592 } 2605 }
1593 else 2606 else
1594 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1595 } 2608 }
1596 else if (w->repeat) 2609 else if (w->repeat)
1597 { 2610 {
1598 w->at = w->repeat; 2611 ev_at (w) = w->repeat;
1599 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1600 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1601} 2622}
1602 2623
1603#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
1604void 2625void noinline
1605ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1606{ 2627{
1607 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
1608 return; 2629 return;
1609 2630
1610 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1611 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1612 else if (w->interval) 2633 else if (w->interval)
1613 { 2634 {
1614 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1615 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1616 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1617 } 2638 }
2639 else
2640 ev_at (w) = w->offset;
1618 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1619 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1620 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1621 periodics [periodiccnt - 1] = w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1622 upheap ((WT *)periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1623 2650
2651 EV_FREQUENT_CHECK;
2652
1624 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1625} 2654}
1626 2655
1627void 2656void noinline
1628ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1629{ 2658{
1630 ev_clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1631 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1632 return; 2661 return;
1633 2662
1634 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2663 EV_FREQUENT_CHECK;
1635 2664
1636 { 2665 {
1637 int active = ((W)w)->active; 2666 int active = ev_active (w);
1638 2667
2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2669
2670 --periodiccnt;
2671
1639 if (expect_true (--active < --periodiccnt)) 2672 if (expect_true (active < periodiccnt + HEAP0))
1640 { 2673 {
1641 periodics [active] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1642 adjustheap ((WT *)periodics, periodiccnt, active); 2675 adjustheap (periodics, periodiccnt, active);
1643 } 2676 }
1644 } 2677 }
1645 2678
2679 EV_FREQUENT_CHECK;
2680
1646 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1647} 2682}
1648 2683
1649void 2684void noinline
1650ev_periodic_again (EV_P_ ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1651{ 2686{
1652 /* TODO: use adjustheap and recalculation */ 2687 /* TODO: use adjustheap and recalculation */
1653 ev_periodic_stop (EV_A_ w); 2688 ev_periodic_stop (EV_A_ w);
1654 ev_periodic_start (EV_A_ w); 2689 ev_periodic_start (EV_A_ w);
1657 2692
1658#ifndef SA_RESTART 2693#ifndef SA_RESTART
1659# define SA_RESTART 0 2694# define SA_RESTART 0
1660#endif 2695#endif
1661 2696
1662void 2697void noinline
1663ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1664{ 2699{
1665#if EV_MULTIPLICITY
1666 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1667#endif
1668 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
1669 return; 2701 return;
1670 2702
1671 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2704
2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2716 {
2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2718 if (sigfd < 0 && errno == EINVAL)
2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2720
2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2724
2725 sigemptyset (&sigfd_set);
2726
2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
1672 2743
1673 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
1674 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1675 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
1676 2746
1677 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
1678 { 2751 {
1679#if _WIN32 2752# ifdef _WIN32
2753 evpipe_init (EV_A);
2754
1680 signal (w->signum, sighandler); 2755 signal (w->signum, ev_sighandler);
1681#else 2756# else
1682 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
1683 sa.sa_handler = sighandler; 2761 sa.sa_handler = ev_sighandler;
1684 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
1685 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1686 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1687#endif 2769#endif
1688 } 2770 }
1689}
1690 2771
1691void 2772 EV_FREQUENT_CHECK;
2773}
2774
2775void noinline
1692ev_signal_stop (EV_P_ ev_signal *w) 2776ev_signal_stop (EV_P_ ev_signal *w)
1693{ 2777{
1694 ev_clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
1695 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
1696 return; 2780 return;
1697 2781
2782 EV_FREQUENT_CHECK;
2783
1698 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
1699 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
1700 2786
1701 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigset_t ss;
2796
2797 sigemptyset (&ss);
2798 sigaddset (&ss, w->signum);
2799 sigdelset (&sigfd_set, w->signum);
2800
2801 signalfd (sigfd, &sigfd_set, 0);
2802 sigprocmask (SIG_UNBLOCK, &ss, 0);
2803 }
2804 else
2805#endif
1702 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
1703} 2810}
1704 2811
1705void 2812void
1706ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
1707{ 2814{
1708#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
1709 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1710#endif 2817#endif
1711 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1712 return; 2819 return;
1713 2820
2821 EV_FREQUENT_CHECK;
2822
1714 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1715 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
1716} 2827}
1717 2828
1718void 2829void
1719ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
1720{ 2831{
1721 ev_clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1723 return; 2834 return;
1724 2835
2836 EV_FREQUENT_CHECK;
2837
1725 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1726 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
1727} 2842}
1728 2843
1729#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
1730 2845
1731# ifdef _WIN32 2846# ifdef _WIN32
1732# undef lstat 2847# undef lstat
1733# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
1734# endif 2849# endif
1735 2850
1736#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1737#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
1738 2854
1739static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1740 2856
1741#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
1742# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
1744static void noinline 2860static void noinline
1745infy_add (EV_P_ ev_stat *w) 2861infy_add (EV_P_ ev_stat *w)
1746{ 2862{
1747 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1748 2864
1749 if (w->wd < 0) 2865 if (w->wd >= 0)
2866 {
2867 struct statfs sfs;
2868
2869 /* now local changes will be tracked by inotify, but remote changes won't */
2870 /* unless the filesystem is known to be local, we therefore still poll */
2871 /* also do poll on <2.6.25, but with normal frequency */
2872
2873 if (!fs_2625)
2874 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2875 else if (!statfs (w->path, &sfs)
2876 && (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */))
2882 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2883 else
2884 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1750 { 2885 }
1751 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2886 else
2887 {
2888 /* can't use inotify, continue to stat */
2889 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1752 2890
1753 /* monitor some parent directory for speedup hints */ 2891 /* if path is not there, monitor some parent directory for speedup hints */
2892 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2893 /* but an efficiency issue only */
1754 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2894 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1755 { 2895 {
1756 char path [4096]; 2896 char path [4096];
1757 strcpy (path, w->path); 2897 strcpy (path, w->path);
1758 2898
1761 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2901 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1762 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2902 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1763 2903
1764 char *pend = strrchr (path, '/'); 2904 char *pend = strrchr (path, '/');
1765 2905
1766 if (!pend) 2906 if (!pend || pend == path)
1767 break; /* whoops, no '/', complain to your admin */ 2907 break;
1768 2908
1769 *pend = 0; 2909 *pend = 0;
1770 w->wd = inotify_add_watch (fs_fd, path, mask); 2910 w->wd = inotify_add_watch (fs_fd, path, mask);
1771 } 2911 }
1772 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2912 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1773 } 2913 }
1774 } 2914 }
1775 else
1776 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1777 2915
1778 if (w->wd >= 0) 2916 if (w->wd >= 0)
1779 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2917 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2918
2919 /* now re-arm timer, if required */
2920 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2921 ev_timer_again (EV_A_ &w->timer);
2922 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1780} 2923}
1781 2924
1782static void noinline 2925static void noinline
1783infy_del (EV_P_ ev_stat *w) 2926infy_del (EV_P_ ev_stat *w)
1784{ 2927{
1798 2941
1799static void noinline 2942static void noinline
1800infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2943infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1801{ 2944{
1802 if (slot < 0) 2945 if (slot < 0)
1803 /* overflow, need to check for all hahs slots */ 2946 /* overflow, need to check for all hash slots */
1804 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1805 infy_wd (EV_A_ slot, wd, ev); 2948 infy_wd (EV_A_ slot, wd, ev);
1806 else 2949 else
1807 { 2950 {
1808 WL w_; 2951 WL w_;
1814 2957
1815 if (w->wd == wd || wd == -1) 2958 if (w->wd == wd || wd == -1)
1816 { 2959 {
1817 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2960 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1818 { 2961 {
2962 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1819 w->wd = -1; 2963 w->wd = -1;
1820 infy_add (EV_A_ w); /* re-add, no matter what */ 2964 infy_add (EV_A_ w); /* re-add, no matter what */
1821 } 2965 }
1822 2966
1823 stat_timer_cb (EV_A_ &w->timer, 0); 2967 stat_timer_cb (EV_A_ &w->timer, 0);
1836 2980
1837 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2981 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1838 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2982 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1839} 2983}
1840 2984
1841void inline_size 2985inline_size void
2986check_2625 (EV_P)
2987{
2988 /* kernels < 2.6.25 are borked
2989 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2990 */
2991 struct utsname buf;
2992 int major, minor, micro;
2993
2994 if (uname (&buf))
2995 return;
2996
2997 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2998 return;
2999
3000 if (major < 2
3001 || (major == 2 && minor < 6)
3002 || (major == 2 && minor == 6 && micro < 25))
3003 return;
3004
3005 fs_2625 = 1;
3006}
3007
3008inline_size int
3009infy_newfd (void)
3010{
3011#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3012 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3013 if (fd >= 0)
3014 return fd;
3015#endif
3016 return inotify_init ();
3017}
3018
3019inline_size void
1842infy_init (EV_P) 3020infy_init (EV_P)
1843{ 3021{
1844 if (fs_fd != -2) 3022 if (fs_fd != -2)
1845 return; 3023 return;
1846 3024
3025 fs_fd = -1;
3026
3027 check_2625 (EV_A);
3028
1847 fs_fd = inotify_init (); 3029 fs_fd = infy_newfd ();
1848 3030
1849 if (fs_fd >= 0) 3031 if (fs_fd >= 0)
1850 { 3032 {
3033 fd_intern (fs_fd);
1851 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1852 ev_set_priority (&fs_w, EV_MAXPRI); 3035 ev_set_priority (&fs_w, EV_MAXPRI);
1853 ev_io_start (EV_A_ &fs_w); 3036 ev_io_start (EV_A_ &fs_w);
3037 ev_unref (EV_A);
1854 } 3038 }
1855} 3039}
1856 3040
1857void inline_size 3041inline_size void
1858infy_fork (EV_P) 3042infy_fork (EV_P)
1859{ 3043{
1860 int slot; 3044 int slot;
1861 3045
1862 if (fs_fd < 0) 3046 if (fs_fd < 0)
1863 return; 3047 return;
1864 3048
3049 ev_ref (EV_A);
3050 ev_io_stop (EV_A_ &fs_w);
1865 close (fs_fd); 3051 close (fs_fd);
1866 fs_fd = inotify_init (); 3052 fs_fd = infy_newfd ();
3053
3054 if (fs_fd >= 0)
3055 {
3056 fd_intern (fs_fd);
3057 ev_io_set (&fs_w, fs_fd, EV_READ);
3058 ev_io_start (EV_A_ &fs_w);
3059 ev_unref (EV_A);
3060 }
1867 3061
1868 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3062 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1869 { 3063 {
1870 WL w_ = fs_hash [slot].head; 3064 WL w_ = fs_hash [slot].head;
1871 fs_hash [slot].head = 0; 3065 fs_hash [slot].head = 0;
1878 w->wd = -1; 3072 w->wd = -1;
1879 3073
1880 if (fs_fd >= 0) 3074 if (fs_fd >= 0)
1881 infy_add (EV_A_ w); /* re-add, no matter what */ 3075 infy_add (EV_A_ w); /* re-add, no matter what */
1882 else 3076 else
3077 {
3078 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3079 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1883 ev_timer_start (EV_A_ &w->timer); 3080 ev_timer_again (EV_A_ &w->timer);
3081 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3082 }
1884 } 3083 }
1885
1886 } 3084 }
1887} 3085}
1888 3086
3087#endif
3088
3089#ifdef _WIN32
3090# define EV_LSTAT(p,b) _stati64 (p, b)
3091#else
3092# define EV_LSTAT(p,b) lstat (p, b)
1889#endif 3093#endif
1890 3094
1891void 3095void
1892ev_stat_stat (EV_P_ ev_stat *w) 3096ev_stat_stat (EV_P_ ev_stat *w)
1893{ 3097{
1900static void noinline 3104static void noinline
1901stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3105stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1902{ 3106{
1903 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3107 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1904 3108
1905 /* we copy this here each the time so that */ 3109 ev_statdata prev = w->attr;
1906 /* prev has the old value when the callback gets invoked */
1907 w->prev = w->attr;
1908 ev_stat_stat (EV_A_ w); 3110 ev_stat_stat (EV_A_ w);
1909 3111
1910 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1911 if ( 3113 if (
1912 w->prev.st_dev != w->attr.st_dev 3114 prev.st_dev != w->attr.st_dev
1913 || w->prev.st_ino != w->attr.st_ino 3115 || prev.st_ino != w->attr.st_ino
1914 || w->prev.st_mode != w->attr.st_mode 3116 || prev.st_mode != w->attr.st_mode
1915 || w->prev.st_nlink != w->attr.st_nlink 3117 || prev.st_nlink != w->attr.st_nlink
1916 || w->prev.st_uid != w->attr.st_uid 3118 || prev.st_uid != w->attr.st_uid
1917 || w->prev.st_gid != w->attr.st_gid 3119 || prev.st_gid != w->attr.st_gid
1918 || w->prev.st_rdev != w->attr.st_rdev 3120 || prev.st_rdev != w->attr.st_rdev
1919 || w->prev.st_size != w->attr.st_size 3121 || prev.st_size != w->attr.st_size
1920 || w->prev.st_atime != w->attr.st_atime 3122 || prev.st_atime != w->attr.st_atime
1921 || w->prev.st_mtime != w->attr.st_mtime 3123 || prev.st_mtime != w->attr.st_mtime
1922 || w->prev.st_ctime != w->attr.st_ctime 3124 || prev.st_ctime != w->attr.st_ctime
1923 ) { 3125 ) {
3126 /* we only update w->prev on actual differences */
3127 /* in case we test more often than invoke the callback, */
3128 /* to ensure that prev is always different to attr */
3129 w->prev = prev;
3130
1924 #if EV_USE_INOTIFY 3131 #if EV_USE_INOTIFY
3132 if (fs_fd >= 0)
3133 {
1925 infy_del (EV_A_ w); 3134 infy_del (EV_A_ w);
1926 infy_add (EV_A_ w); 3135 infy_add (EV_A_ w);
1927 ev_stat_stat (EV_A_ w); /* avoid race... */ 3136 ev_stat_stat (EV_A_ w); /* avoid race... */
3137 }
1928 #endif 3138 #endif
1929 3139
1930 ev_feed_event (EV_A_ w, EV_STAT); 3140 ev_feed_event (EV_A_ w, EV_STAT);
1931 } 3141 }
1932} 3142}
1935ev_stat_start (EV_P_ ev_stat *w) 3145ev_stat_start (EV_P_ ev_stat *w)
1936{ 3146{
1937 if (expect_false (ev_is_active (w))) 3147 if (expect_false (ev_is_active (w)))
1938 return; 3148 return;
1939 3149
1940 /* since we use memcmp, we need to clear any padding data etc. */
1941 memset (&w->prev, 0, sizeof (ev_statdata));
1942 memset (&w->attr, 0, sizeof (ev_statdata));
1943
1944 ev_stat_stat (EV_A_ w); 3150 ev_stat_stat (EV_A_ w);
1945 3151
3152 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1946 if (w->interval < MIN_STAT_INTERVAL) 3153 w->interval = MIN_STAT_INTERVAL;
1947 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1948 3154
1949 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3155 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1950 ev_set_priority (&w->timer, ev_priority (w)); 3156 ev_set_priority (&w->timer, ev_priority (w));
1951 3157
1952#if EV_USE_INOTIFY 3158#if EV_USE_INOTIFY
1953 infy_init (EV_A); 3159 infy_init (EV_A);
1954 3160
1955 if (fs_fd >= 0) 3161 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); 3162 infy_add (EV_A_ w);
1957 else 3163 else
1958#endif 3164#endif
3165 {
1959 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 ev_unref (EV_A);
3168 }
1960 3169
1961 ev_start (EV_A_ (W)w, 1); 3170 ev_start (EV_A_ (W)w, 1);
3171
3172 EV_FREQUENT_CHECK;
1962} 3173}
1963 3174
1964void 3175void
1965ev_stat_stop (EV_P_ ev_stat *w) 3176ev_stat_stop (EV_P_ ev_stat *w)
1966{ 3177{
1967 ev_clear_pending (EV_A_ (W)w); 3178 clear_pending (EV_A_ (W)w);
1968 if (expect_false (!ev_is_active (w))) 3179 if (expect_false (!ev_is_active (w)))
1969 return; 3180 return;
1970 3181
3182 EV_FREQUENT_CHECK;
3183
1971#if EV_USE_INOTIFY 3184#if EV_USE_INOTIFY
1972 infy_del (EV_A_ w); 3185 infy_del (EV_A_ w);
1973#endif 3186#endif
3187
3188 if (ev_is_active (&w->timer))
3189 {
3190 ev_ref (EV_A);
1974 ev_timer_stop (EV_A_ &w->timer); 3191 ev_timer_stop (EV_A_ &w->timer);
3192 }
1975 3193
1976 ev_stop (EV_A_ (W)w); 3194 ev_stop (EV_A_ (W)w);
1977}
1978#endif
1979 3195
3196 EV_FREQUENT_CHECK;
3197}
3198#endif
3199
3200#if EV_IDLE_ENABLE
1980void 3201void
1981ev_idle_start (EV_P_ ev_idle *w) 3202ev_idle_start (EV_P_ ev_idle *w)
1982{ 3203{
1983 if (expect_false (ev_is_active (w))) 3204 if (expect_false (ev_is_active (w)))
1984 return; 3205 return;
1985 3206
3207 pri_adjust (EV_A_ (W)w);
3208
3209 EV_FREQUENT_CHECK;
3210
3211 {
3212 int active = ++idlecnt [ABSPRI (w)];
3213
3214 ++idleall;
1986 ev_start (EV_A_ (W)w, ++idlecnt); 3215 ev_start (EV_A_ (W)w, active);
3216
1987 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3217 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1988 idles [idlecnt - 1] = w; 3218 idles [ABSPRI (w)][active - 1] = w;
3219 }
3220
3221 EV_FREQUENT_CHECK;
1989} 3222}
1990 3223
1991void 3224void
1992ev_idle_stop (EV_P_ ev_idle *w) 3225ev_idle_stop (EV_P_ ev_idle *w)
1993{ 3226{
1994 ev_clear_pending (EV_A_ (W)w); 3227 clear_pending (EV_A_ (W)w);
1995 if (expect_false (!ev_is_active (w))) 3228 if (expect_false (!ev_is_active (w)))
1996 return; 3229 return;
1997 3230
3231 EV_FREQUENT_CHECK;
3232
1998 { 3233 {
1999 int active = ((W)w)->active; 3234 int active = ev_active (w);
2000 idles [active - 1] = idles [--idlecnt]; 3235
2001 ((W)idles [active - 1])->active = active; 3236 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3237 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3238
3239 ev_stop (EV_A_ (W)w);
3240 --idleall;
2002 } 3241 }
2003 3242
2004 ev_stop (EV_A_ (W)w); 3243 EV_FREQUENT_CHECK;
2005} 3244}
3245#endif
2006 3246
2007void 3247void
2008ev_prepare_start (EV_P_ ev_prepare *w) 3248ev_prepare_start (EV_P_ ev_prepare *w)
2009{ 3249{
2010 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
2011 return; 3251 return;
3252
3253 EV_FREQUENT_CHECK;
2012 3254
2013 ev_start (EV_A_ (W)w, ++preparecnt); 3255 ev_start (EV_A_ (W)w, ++preparecnt);
2014 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3256 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2015 prepares [preparecnt - 1] = w; 3257 prepares [preparecnt - 1] = w;
3258
3259 EV_FREQUENT_CHECK;
2016} 3260}
2017 3261
2018void 3262void
2019ev_prepare_stop (EV_P_ ev_prepare *w) 3263ev_prepare_stop (EV_P_ ev_prepare *w)
2020{ 3264{
2021 ev_clear_pending (EV_A_ (W)w); 3265 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 3266 if (expect_false (!ev_is_active (w)))
2023 return; 3267 return;
2024 3268
3269 EV_FREQUENT_CHECK;
3270
2025 { 3271 {
2026 int active = ((W)w)->active; 3272 int active = ev_active (w);
3273
2027 prepares [active - 1] = prepares [--preparecnt]; 3274 prepares [active - 1] = prepares [--preparecnt];
2028 ((W)prepares [active - 1])->active = active; 3275 ev_active (prepares [active - 1]) = active;
2029 } 3276 }
2030 3277
2031 ev_stop (EV_A_ (W)w); 3278 ev_stop (EV_A_ (W)w);
3279
3280 EV_FREQUENT_CHECK;
2032} 3281}
2033 3282
2034void 3283void
2035ev_check_start (EV_P_ ev_check *w) 3284ev_check_start (EV_P_ ev_check *w)
2036{ 3285{
2037 if (expect_false (ev_is_active (w))) 3286 if (expect_false (ev_is_active (w)))
2038 return; 3287 return;
3288
3289 EV_FREQUENT_CHECK;
2039 3290
2040 ev_start (EV_A_ (W)w, ++checkcnt); 3291 ev_start (EV_A_ (W)w, ++checkcnt);
2041 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3292 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2042 checks [checkcnt - 1] = w; 3293 checks [checkcnt - 1] = w;
3294
3295 EV_FREQUENT_CHECK;
2043} 3296}
2044 3297
2045void 3298void
2046ev_check_stop (EV_P_ ev_check *w) 3299ev_check_stop (EV_P_ ev_check *w)
2047{ 3300{
2048 ev_clear_pending (EV_A_ (W)w); 3301 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 3302 if (expect_false (!ev_is_active (w)))
2050 return; 3303 return;
2051 3304
3305 EV_FREQUENT_CHECK;
3306
2052 { 3307 {
2053 int active = ((W)w)->active; 3308 int active = ev_active (w);
3309
2054 checks [active - 1] = checks [--checkcnt]; 3310 checks [active - 1] = checks [--checkcnt];
2055 ((W)checks [active - 1])->active = active; 3311 ev_active (checks [active - 1]) = active;
2056 } 3312 }
2057 3313
2058 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2059} 3317}
2060 3318
2061#if EV_EMBED_ENABLE 3319#if EV_EMBED_ENABLE
2062void noinline 3320void noinline
2063ev_embed_sweep (EV_P_ ev_embed *w) 3321ev_embed_sweep (EV_P_ ev_embed *w)
2064{ 3322{
2065 ev_loop (w->loop, EVLOOP_NONBLOCK); 3323 ev_loop (w->other, EVLOOP_NONBLOCK);
2066} 3324}
2067 3325
2068static void 3326static void
2069embed_cb (EV_P_ ev_io *io, int revents) 3327embed_io_cb (EV_P_ ev_io *io, int revents)
2070{ 3328{
2071 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3329 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2072 3330
2073 if (ev_cb (w)) 3331 if (ev_cb (w))
2074 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3332 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2075 else 3333 else
2076 ev_embed_sweep (loop, w); 3334 ev_loop (w->other, EVLOOP_NONBLOCK);
2077} 3335}
3336
3337static void
3338embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3339{
3340 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3341
3342 {
3343 EV_P = w->other;
3344
3345 while (fdchangecnt)
3346 {
3347 fd_reify (EV_A);
3348 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3349 }
3350 }
3351}
3352
3353static void
3354embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3355{
3356 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3357
3358 ev_embed_stop (EV_A_ w);
3359
3360 {
3361 EV_P = w->other;
3362
3363 ev_loop_fork (EV_A);
3364 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3365 }
3366
3367 ev_embed_start (EV_A_ w);
3368}
3369
3370#if 0
3371static void
3372embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3373{
3374 ev_idle_stop (EV_A_ idle);
3375}
3376#endif
2078 3377
2079void 3378void
2080ev_embed_start (EV_P_ ev_embed *w) 3379ev_embed_start (EV_P_ ev_embed *w)
2081{ 3380{
2082 if (expect_false (ev_is_active (w))) 3381 if (expect_false (ev_is_active (w)))
2083 return; 3382 return;
2084 3383
2085 { 3384 {
2086 struct ev_loop *loop = w->loop; 3385 EV_P = w->other;
2087 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3386 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2088 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3387 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2089 } 3388 }
3389
3390 EV_FREQUENT_CHECK;
2090 3391
2091 ev_set_priority (&w->io, ev_priority (w)); 3392 ev_set_priority (&w->io, ev_priority (w));
2092 ev_io_start (EV_A_ &w->io); 3393 ev_io_start (EV_A_ &w->io);
2093 3394
3395 ev_prepare_init (&w->prepare, embed_prepare_cb);
3396 ev_set_priority (&w->prepare, EV_MINPRI);
3397 ev_prepare_start (EV_A_ &w->prepare);
3398
3399 ev_fork_init (&w->fork, embed_fork_cb);
3400 ev_fork_start (EV_A_ &w->fork);
3401
3402 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3403
2094 ev_start (EV_A_ (W)w, 1); 3404 ev_start (EV_A_ (W)w, 1);
3405
3406 EV_FREQUENT_CHECK;
2095} 3407}
2096 3408
2097void 3409void
2098ev_embed_stop (EV_P_ ev_embed *w) 3410ev_embed_stop (EV_P_ ev_embed *w)
2099{ 3411{
2100 ev_clear_pending (EV_A_ (W)w); 3412 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 3413 if (expect_false (!ev_is_active (w)))
2102 return; 3414 return;
2103 3415
3416 EV_FREQUENT_CHECK;
3417
2104 ev_io_stop (EV_A_ &w->io); 3418 ev_io_stop (EV_A_ &w->io);
3419 ev_prepare_stop (EV_A_ &w->prepare);
3420 ev_fork_stop (EV_A_ &w->fork);
2105 3421
2106 ev_stop (EV_A_ (W)w); 3422 EV_FREQUENT_CHECK;
2107} 3423}
2108#endif 3424#endif
2109 3425
2110#if EV_FORK_ENABLE 3426#if EV_FORK_ENABLE
2111void 3427void
2112ev_fork_start (EV_P_ ev_fork *w) 3428ev_fork_start (EV_P_ ev_fork *w)
2113{ 3429{
2114 if (expect_false (ev_is_active (w))) 3430 if (expect_false (ev_is_active (w)))
2115 return; 3431 return;
3432
3433 EV_FREQUENT_CHECK;
2116 3434
2117 ev_start (EV_A_ (W)w, ++forkcnt); 3435 ev_start (EV_A_ (W)w, ++forkcnt);
2118 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3436 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2119 forks [forkcnt - 1] = w; 3437 forks [forkcnt - 1] = w;
3438
3439 EV_FREQUENT_CHECK;
2120} 3440}
2121 3441
2122void 3442void
2123ev_fork_stop (EV_P_ ev_fork *w) 3443ev_fork_stop (EV_P_ ev_fork *w)
2124{ 3444{
2125 ev_clear_pending (EV_A_ (W)w); 3445 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3446 if (expect_false (!ev_is_active (w)))
2127 return; 3447 return;
2128 3448
3449 EV_FREQUENT_CHECK;
3450
2129 { 3451 {
2130 int active = ((W)w)->active; 3452 int active = ev_active (w);
3453
2131 forks [active - 1] = forks [--forkcnt]; 3454 forks [active - 1] = forks [--forkcnt];
2132 ((W)forks [active - 1])->active = active; 3455 ev_active (forks [active - 1]) = active;
2133 } 3456 }
2134 3457
2135 ev_stop (EV_A_ (W)w); 3458 ev_stop (EV_A_ (W)w);
3459
3460 EV_FREQUENT_CHECK;
3461}
3462#endif
3463
3464#if EV_ASYNC_ENABLE
3465void
3466ev_async_start (EV_P_ ev_async *w)
3467{
3468 if (expect_false (ev_is_active (w)))
3469 return;
3470
3471 evpipe_init (EV_A);
3472
3473 EV_FREQUENT_CHECK;
3474
3475 ev_start (EV_A_ (W)w, ++asynccnt);
3476 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3477 asyncs [asynccnt - 1] = w;
3478
3479 EV_FREQUENT_CHECK;
3480}
3481
3482void
3483ev_async_stop (EV_P_ ev_async *w)
3484{
3485 clear_pending (EV_A_ (W)w);
3486 if (expect_false (!ev_is_active (w)))
3487 return;
3488
3489 EV_FREQUENT_CHECK;
3490
3491 {
3492 int active = ev_active (w);
3493
3494 asyncs [active - 1] = asyncs [--asynccnt];
3495 ev_active (asyncs [active - 1]) = active;
3496 }
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501}
3502
3503void
3504ev_async_send (EV_P_ ev_async *w)
3505{
3506 w->sent = 1;
3507 evpipe_write (EV_A_ &async_pending);
2136} 3508}
2137#endif 3509#endif
2138 3510
2139/*****************************************************************************/ 3511/*****************************************************************************/
2140 3512
2150once_cb (EV_P_ struct ev_once *once, int revents) 3522once_cb (EV_P_ struct ev_once *once, int revents)
2151{ 3523{
2152 void (*cb)(int revents, void *arg) = once->cb; 3524 void (*cb)(int revents, void *arg) = once->cb;
2153 void *arg = once->arg; 3525 void *arg = once->arg;
2154 3526
2155 ev_io_stop (EV_A_ &once->io); 3527 ev_io_stop (EV_A_ &once->io);
2156 ev_timer_stop (EV_A_ &once->to); 3528 ev_timer_stop (EV_A_ &once->to);
2157 ev_free (once); 3529 ev_free (once);
2158 3530
2159 cb (revents, arg); 3531 cb (revents, arg);
2160} 3532}
2161 3533
2162static void 3534static void
2163once_cb_io (EV_P_ ev_io *w, int revents) 3535once_cb_io (EV_P_ ev_io *w, int revents)
2164{ 3536{
2165 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3537 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3538
3539 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2166} 3540}
2167 3541
2168static void 3542static void
2169once_cb_to (EV_P_ ev_timer *w, int revents) 3543once_cb_to (EV_P_ ev_timer *w, int revents)
2170{ 3544{
2171 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3545 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3546
3547 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2172} 3548}
2173 3549
2174void 3550void
2175ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3551ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2176{ 3552{
2198 ev_timer_set (&once->to, timeout, 0.); 3574 ev_timer_set (&once->to, timeout, 0.);
2199 ev_timer_start (EV_A_ &once->to); 3575 ev_timer_start (EV_A_ &once->to);
2200 } 3576 }
2201} 3577}
2202 3578
3579/*****************************************************************************/
3580
3581#if EV_WALK_ENABLE
3582void
3583ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3584{
3585 int i, j;
3586 ev_watcher_list *wl, *wn;
3587
3588 if (types & (EV_IO | EV_EMBED))
3589 for (i = 0; i < anfdmax; ++i)
3590 for (wl = anfds [i].head; wl; )
3591 {
3592 wn = wl->next;
3593
3594#if EV_EMBED_ENABLE
3595 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3596 {
3597 if (types & EV_EMBED)
3598 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3599 }
3600 else
3601#endif
3602#if EV_USE_INOTIFY
3603 if (ev_cb ((ev_io *)wl) == infy_cb)
3604 ;
3605 else
3606#endif
3607 if ((ev_io *)wl != &pipe_w)
3608 if (types & EV_IO)
3609 cb (EV_A_ EV_IO, wl);
3610
3611 wl = wn;
3612 }
3613
3614 if (types & (EV_TIMER | EV_STAT))
3615 for (i = timercnt + HEAP0; i-- > HEAP0; )
3616#if EV_STAT_ENABLE
3617 /*TODO: timer is not always active*/
3618 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3619 {
3620 if (types & EV_STAT)
3621 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3622 }
3623 else
3624#endif
3625 if (types & EV_TIMER)
3626 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3627
3628#if EV_PERIODIC_ENABLE
3629 if (types & EV_PERIODIC)
3630 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3631 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3632#endif
3633
3634#if EV_IDLE_ENABLE
3635 if (types & EV_IDLE)
3636 for (j = NUMPRI; i--; )
3637 for (i = idlecnt [j]; i--; )
3638 cb (EV_A_ EV_IDLE, idles [j][i]);
3639#endif
3640
3641#if EV_FORK_ENABLE
3642 if (types & EV_FORK)
3643 for (i = forkcnt; i--; )
3644 if (ev_cb (forks [i]) != embed_fork_cb)
3645 cb (EV_A_ EV_FORK, forks [i]);
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649 if (types & EV_ASYNC)
3650 for (i = asynccnt; i--; )
3651 cb (EV_A_ EV_ASYNC, asyncs [i]);
3652#endif
3653
3654 if (types & EV_PREPARE)
3655 for (i = preparecnt; i--; )
3656#if EV_EMBED_ENABLE
3657 if (ev_cb (prepares [i]) != embed_prepare_cb)
3658#endif
3659 cb (EV_A_ EV_PREPARE, prepares [i]);
3660
3661 if (types & EV_CHECK)
3662 for (i = checkcnt; i--; )
3663 cb (EV_A_ EV_CHECK, checks [i]);
3664
3665 if (types & EV_SIGNAL)
3666 for (i = 0; i < EV_NSIG - 1; ++i)
3667 for (wl = signals [i].head; wl; )
3668 {
3669 wn = wl->next;
3670 cb (EV_A_ EV_SIGNAL, wl);
3671 wl = wn;
3672 }
3673
3674 if (types & EV_CHILD)
3675 for (i = EV_PID_HASHSIZE; i--; )
3676 for (wl = childs [i]; wl; )
3677 {
3678 wn = wl->next;
3679 cb (EV_A_ EV_CHILD, wl);
3680 wl = wn;
3681 }
3682/* EV_STAT 0x00001000 /* stat data changed */
3683/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3684}
3685#endif
3686
3687#if EV_MULTIPLICITY
3688 #include "ev_wrap.h"
3689#endif
3690
2203#ifdef __cplusplus 3691#ifdef __cplusplus
2204} 3692}
2205#endif 3693#endif
2206 3694

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines