ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.325 by root, Sun Jan 24 12:31:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
129#ifndef _WIN32 177#ifndef _WIN32
130# include <sys/time.h> 178# include <sys/time.h>
131# include <sys/wait.h> 179# include <sys/wait.h>
132# include <unistd.h> 180# include <unistd.h>
133#else 181#else
182# include <io.h>
134# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 184# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
138# endif 187# endif
139#endif 188#endif
140 189
141/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
142 226
143#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
144# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
145#endif 233#endif
146 234
147#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
149#endif 245#endif
150 246
151#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
153#endif 249#endif
159# define EV_USE_POLL 1 255# define EV_USE_POLL 1
160# endif 256# endif
161#endif 257#endif
162 258
163#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
164# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
165#endif 265#endif
166 266
167#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
169#endif 269#endif
171#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 272# define EV_USE_PORT 0
173#endif 273#endif
174 274
175#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
176# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
177#endif 281#endif
178 282
179#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 284# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
190# else 294# else
191# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
192# endif 296# endif
193#endif 297#endif
194 298
195/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349#ifdef _AIX
350/* AIX has a completely broken poll.h header */
351# undef EV_USE_POLL
352# define EV_USE_POLL 0
353#endif
196 354
197#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
200#endif 358#endif
202#ifndef CLOCK_REALTIME 360#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 361# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 362# define EV_USE_REALTIME 0
205#endif 363#endif
206 364
365#if !EV_STAT_ENABLE
366# undef EV_USE_INOTIFY
367# define EV_USE_INOTIFY 0
368#endif
369
370#if !EV_USE_NANOSLEEP
371# ifndef _WIN32
372# include <sys/select.h>
373# endif
374#endif
375
376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
385#endif
386
207#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 388# include <winsock.h>
209#endif 389#endif
210 390
211#if !EV_STAT_ENABLE 391#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
213#endif 396# endif
214 397# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 398# ifdef O_CLOEXEC
216# include <sys/inotify.h> 399# define EFD_CLOEXEC O_CLOEXEC
400# else
401# define EFD_CLOEXEC 02000000
402# endif
217#endif 403# endif
404# ifdef __cplusplus
405extern "C" {
406# endif
407int eventfd (unsigned int initval, int flags);
408# ifdef __cplusplus
409}
410# endif
411#endif
412
413#if EV_USE_SIGNALFD
414/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
415# include <stdint.h>
416# ifndef SFD_NONBLOCK
417# define SFD_NONBLOCK O_NONBLOCK
418# endif
419# ifndef SFD_CLOEXEC
420# ifdef O_CLOEXEC
421# define SFD_CLOEXEC O_CLOEXEC
422# else
423# define SFD_CLOEXEC 02000000
424# endif
425# endif
426# ifdef __cplusplus
427extern "C" {
428# endif
429int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436# ifdef __cplusplus
437}
438# endif
439#endif
440
218 441
219/**/ 442/**/
443
444#if EV_VERIFY >= 3
445# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
446#else
447# define EV_FREQUENT_CHECK do { } while (0)
448#endif
220 449
221/* 450/*
222 * This is used to avoid floating point rounding problems. 451 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 452 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 453 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 454 * errors are against us.
226 * This value is good at least till the year 4000 455 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 456 * Better solutions welcome.
229 */ 457 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 458#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 459
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 460#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 461#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 462
236#if __GNUC__ >= 3 463#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
239#else 466#else
240# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
241# define noinline 468# define noinline
242# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 470# define inline
244# endif 471# endif
245#endif 472#endif
246 473
247#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
252# define inline_speed static noinline 479# define inline_speed static noinline
253#else 480#else
254# define inline_speed static inline 481# define inline_speed static inline
255#endif 482#endif
256 483
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
259 491
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
262 494
263typedef ev_watcher *W; 495typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
266 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architetcures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
268 521
269#ifdef _WIN32 522#ifdef _WIN32
270# include "ev_win32.c" 523# include "ev_win32.c"
271#endif 524#endif
272 525
279{ 532{
280 syserr_cb = cb; 533 syserr_cb = cb;
281} 534}
282 535
283static void noinline 536static void noinline
284syserr (const char *msg) 537ev_syserr (const char *msg)
285{ 538{
286 if (!msg) 539 if (!msg)
287 msg = "(libev) system error"; 540 msg = "(libev) system error";
288 541
289 if (syserr_cb) 542 if (syserr_cb)
293 perror (msg); 546 perror (msg);
294 abort (); 547 abort ();
295 } 548 }
296} 549}
297 550
551static void *
552ev_realloc_emul (void *ptr, long size)
553{
554 /* some systems, notably openbsd and darwin, fail to properly
555 * implement realloc (x, 0) (as required by both ansi c-98 and
556 * the single unix specification, so work around them here.
557 */
558
559 if (size)
560 return realloc (ptr, size);
561
562 free (ptr);
563 return 0;
564}
565
298static void *(*alloc)(void *ptr, long size); 566static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 567
300void 568void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 569ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 570{
303 alloc = cb; 571 alloc = cb;
304} 572}
305 573
306inline_speed void * 574inline_speed void *
307ev_realloc (void *ptr, long size) 575ev_realloc (void *ptr, long size)
308{ 576{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 577 ptr = alloc (ptr, size);
310 578
311 if (!ptr && size) 579 if (!ptr && size)
312 { 580 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 581 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 582 abort ();
320#define ev_malloc(size) ev_realloc (0, (size)) 588#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 589#define ev_free(ptr) ev_realloc ((ptr), 0)
322 590
323/*****************************************************************************/ 591/*****************************************************************************/
324 592
593/* set in reify when reification needed */
594#define EV_ANFD_REIFY 1
595
596/* file descriptor info structure */
325typedef struct 597typedef struct
326{ 598{
327 WL head; 599 WL head;
328 unsigned char events; 600 unsigned char events; /* the events watched for */
601 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
602 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 603 unsigned char unused;
604#if EV_USE_EPOLL
605 unsigned int egen; /* generation counter to counter epoll bugs */
606#endif
330#if EV_SELECT_IS_WINSOCKET 607#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 608 SOCKET handle;
332#endif 609#endif
333} ANFD; 610} ANFD;
334 611
612/* stores the pending event set for a given watcher */
335typedef struct 613typedef struct
336{ 614{
337 W w; 615 W w;
338 int events; 616 int events; /* the pending event set for the given watcher */
339} ANPENDING; 617} ANPENDING;
340 618
341#if EV_USE_INOTIFY 619#if EV_USE_INOTIFY
620/* hash table entry per inotify-id */
342typedef struct 621typedef struct
343{ 622{
344 WL head; 623 WL head;
345} ANFS; 624} ANFS;
625#endif
626
627/* Heap Entry */
628#if EV_HEAP_CACHE_AT
629 /* a heap element */
630 typedef struct {
631 ev_tstamp at;
632 WT w;
633 } ANHE;
634
635 #define ANHE_w(he) (he).w /* access watcher, read-write */
636 #define ANHE_at(he) (he).at /* access cached at, read-only */
637 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
638#else
639 /* a heap element */
640 typedef WT ANHE;
641
642 #define ANHE_w(he) (he)
643 #define ANHE_at(he) (he)->at
644 #define ANHE_at_cache(he)
346#endif 645#endif
347 646
348#if EV_MULTIPLICITY 647#if EV_MULTIPLICITY
349 648
350 struct ev_loop 649 struct ev_loop
369 668
370 static int ev_default_loop_ptr; 669 static int ev_default_loop_ptr;
371 670
372#endif 671#endif
373 672
673#if EV_MINIMAL < 2
674# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
675# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
676# define EV_INVOKE_PENDING invoke_cb (EV_A)
677#else
678# define EV_RELEASE_CB (void)0
679# define EV_ACQUIRE_CB (void)0
680# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
681#endif
682
683#define EVUNLOOP_RECURSE 0x80
684
374/*****************************************************************************/ 685/*****************************************************************************/
375 686
687#ifndef EV_HAVE_EV_TIME
376ev_tstamp 688ev_tstamp
377ev_time (void) 689ev_time (void)
378{ 690{
379#if EV_USE_REALTIME 691#if EV_USE_REALTIME
692 if (expect_true (have_realtime))
693 {
380 struct timespec ts; 694 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 695 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 696 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 697 }
698#endif
699
384 struct timeval tv; 700 struct timeval tv;
385 gettimeofday (&tv, 0); 701 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 702 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 703}
704#endif
389 705
390ev_tstamp inline_size 706inline_size ev_tstamp
391get_clock (void) 707get_clock (void)
392{ 708{
393#if EV_USE_MONOTONIC 709#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 710 if (expect_true (have_monotonic))
395 { 711 {
408{ 724{
409 return ev_rt_now; 725 return ev_rt_now;
410} 726}
411#endif 727#endif
412 728
413int inline_size 729void
730ev_sleep (ev_tstamp delay)
731{
732 if (delay > 0.)
733 {
734#if EV_USE_NANOSLEEP
735 struct timespec ts;
736
737 ts.tv_sec = (time_t)delay;
738 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
739
740 nanosleep (&ts, 0);
741#elif defined(_WIN32)
742 Sleep ((unsigned long)(delay * 1e3));
743#else
744 struct timeval tv;
745
746 tv.tv_sec = (time_t)delay;
747 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
748
749 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
750 /* something not guaranteed by newer posix versions, but guaranteed */
751 /* by older ones */
752 select (0, 0, 0, 0, &tv);
753#endif
754 }
755}
756
757/*****************************************************************************/
758
759#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
760
761/* find a suitable new size for the given array, */
762/* hopefully by rounding to a ncie-to-malloc size */
763inline_size int
414array_nextsize (int elem, int cur, int cnt) 764array_nextsize (int elem, int cur, int cnt)
415{ 765{
416 int ncur = cur + 1; 766 int ncur = cur + 1;
417 767
418 do 768 do
419 ncur <<= 1; 769 ncur <<= 1;
420 while (cnt > ncur); 770 while (cnt > ncur);
421 771
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 772 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 773 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 774 {
425 ncur *= elem; 775 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 776 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 777 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 778 ncur /= elem;
429 } 779 }
430 780
431 return ncur; 781 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 785array_realloc (int elem, void *base, int *cur, int cnt)
436{ 786{
437 *cur = array_nextsize (elem, *cur, cnt); 787 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 788 return ev_realloc (base, elem * *cur);
439} 789}
790
791#define array_init_zero(base,count) \
792 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 793
441#define array_needsize(type,base,cur,cnt,init) \ 794#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 795 if (expect_false ((cnt) > (cur))) \
443 { \ 796 { \
444 int ocur_ = (cur); \ 797 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 809 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 810 }
458#endif 811#endif
459 812
460#define array_free(stem, idx) \ 813#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 814 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 815
463/*****************************************************************************/ 816/*****************************************************************************/
817
818/* dummy callback for pending events */
819static void noinline
820pendingcb (EV_P_ ev_prepare *w, int revents)
821{
822}
464 823
465void noinline 824void noinline
466ev_feed_event (EV_P_ void *w, int revents) 825ev_feed_event (EV_P_ void *w, int revents)
467{ 826{
468 W w_ = (W)w; 827 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 836 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 837 pendings [pri][w_->pending - 1].events = revents;
479 } 838 }
480} 839}
481 840
482void inline_size 841inline_speed void
842feed_reverse (EV_P_ W w)
843{
844 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
845 rfeeds [rfeedcnt++] = w;
846}
847
848inline_size void
849feed_reverse_done (EV_P_ int revents)
850{
851 do
852 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
853 while (rfeedcnt);
854}
855
856inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 857queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 858{
485 int i; 859 int i;
486 860
487 for (i = 0; i < eventcnt; ++i) 861 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 862 ev_feed_event (EV_A_ events [i], type);
489} 863}
490 864
491/*****************************************************************************/ 865/*****************************************************************************/
492 866
493void inline_size 867inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 868fd_event_nc (EV_P_ int fd, int revents)
508{ 869{
509 ANFD *anfd = anfds + fd; 870 ANFD *anfd = anfds + fd;
510 ev_io *w; 871 ev_io *w;
511 872
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 873 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 877 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 878 ev_feed_event (EV_A_ (W)w, ev);
518 } 879 }
519} 880}
520 881
882/* do not submit kernel events for fds that have reify set */
883/* because that means they changed while we were polling for new events */
884inline_speed void
885fd_event (EV_P_ int fd, int revents)
886{
887 ANFD *anfd = anfds + fd;
888
889 if (expect_true (!anfd->reify))
890 fd_event_nc (EV_A_ fd, revents);
891}
892
521void 893void
522ev_feed_fd_event (EV_P_ int fd, int revents) 894ev_feed_fd_event (EV_P_ int fd, int revents)
523{ 895{
524 if (fd >= 0 && fd < anfdmax) 896 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 897 fd_event_nc (EV_A_ fd, revents);
526} 898}
527 899
528void inline_size 900/* make sure the external fd watch events are in-sync */
901/* with the kernel/libev internal state */
902inline_size void
529fd_reify (EV_P) 903fd_reify (EV_P)
530{ 904{
531 int i; 905 int i;
532 906
533 for (i = 0; i < fdchangecnt; ++i) 907 for (i = 0; i < fdchangecnt; ++i)
534 { 908 {
535 int fd = fdchanges [i]; 909 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 910 ANFD *anfd = anfds + fd;
537 ev_io *w; 911 ev_io *w;
538 912
539 int events = 0; 913 unsigned char events = 0;
540 914
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 915 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 916 events |= (unsigned char)w->events;
543 917
544#if EV_SELECT_IS_WINSOCKET 918#if EV_SELECT_IS_WINSOCKET
545 if (events) 919 if (events)
546 { 920 {
547 unsigned long argp; 921 unsigned long arg;
548 anfd->handle = _get_osfhandle (fd); 922 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 923 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 924 }
551#endif 925#endif
552 926
927 {
928 unsigned char o_events = anfd->events;
929 unsigned char o_reify = anfd->reify;
930
553 anfd->reify = 0; 931 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 932 anfd->events = events;
933
934 if (o_events != events || o_reify & EV__IOFDSET)
935 backend_modify (EV_A_ fd, o_events, events);
936 }
557 } 937 }
558 938
559 fdchangecnt = 0; 939 fdchangecnt = 0;
560} 940}
561 941
562void inline_size 942/* something about the given fd changed */
943inline_size void
563fd_change (EV_P_ int fd) 944fd_change (EV_P_ int fd, int flags)
564{ 945{
565 if (expect_false (anfds [fd].reify)) 946 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 947 anfds [fd].reify |= flags;
569 948
949 if (expect_true (!reify))
950 {
570 ++fdchangecnt; 951 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 952 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 953 fdchanges [fdchangecnt - 1] = fd;
954 }
573} 955}
574 956
575void inline_speed 957/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
958inline_speed void
576fd_kill (EV_P_ int fd) 959fd_kill (EV_P_ int fd)
577{ 960{
578 ev_io *w; 961 ev_io *w;
579 962
580 while ((w = (ev_io *)anfds [fd].head)) 963 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 965 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 966 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 967 }
585} 968}
586 969
587int inline_size 970/* check whether the given fd is atcually valid, for error recovery */
971inline_size int
588fd_valid (int fd) 972fd_valid (int fd)
589{ 973{
590#ifdef _WIN32 974#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 975 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
592#else 976#else
593 return fcntl (fd, F_GETFD) != -1; 977 return fcntl (fd, F_GETFD) != -1;
594#endif 978#endif
595} 979}
596 980
600{ 984{
601 int fd; 985 int fd;
602 986
603 for (fd = 0; fd < anfdmax; ++fd) 987 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 988 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 989 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 990 fd_kill (EV_A_ fd);
607} 991}
608 992
609/* called on ENOMEM in select/poll to kill some fds and retry */ 993/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 994static void noinline
614 998
615 for (fd = anfdmax; fd--; ) 999 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 1000 if (anfds [fd].events)
617 { 1001 {
618 fd_kill (EV_A_ fd); 1002 fd_kill (EV_A_ fd);
619 return; 1003 break;
620 } 1004 }
621} 1005}
622 1006
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 1007/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 1008static void noinline
628 1012
629 for (fd = 0; fd < anfdmax; ++fd) 1013 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 1014 if (anfds [fd].events)
631 { 1015 {
632 anfds [fd].events = 0; 1016 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 1017 anfds [fd].emask = 0;
1018 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 1019 }
635} 1020}
636 1021
637/*****************************************************************************/ 1022/*****************************************************************************/
638 1023
639void inline_speed 1024/*
640upheap (WT *heap, int k) 1025 * the heap functions want a real array index. array index 0 uis guaranteed to not
641{ 1026 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
642 WT w = heap [k]; 1027 * the branching factor of the d-tree.
1028 */
643 1029
644 while (k && heap [k >> 1]->at > w->at) 1030/*
645 { 1031 * at the moment we allow libev the luxury of two heaps,
646 heap [k] = heap [k >> 1]; 1032 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
647 ((W)heap [k])->active = k + 1; 1033 * which is more cache-efficient.
648 k >>= 1; 1034 * the difference is about 5% with 50000+ watchers.
649 } 1035 */
1036#if EV_USE_4HEAP
650 1037
651 heap [k] = w; 1038#define DHEAP 4
652 ((W)heap [k])->active = k + 1; 1039#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1040#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1041#define UPHEAP_DONE(p,k) ((p) == (k))
653 1042
654} 1043/* away from the root */
655 1044inline_speed void
656void inline_speed
657downheap (WT *heap, int N, int k) 1045downheap (ANHE *heap, int N, int k)
658{ 1046{
659 WT w = heap [k]; 1047 ANHE he = heap [k];
1048 ANHE *E = heap + N + HEAP0;
660 1049
661 while (k < (N >> 1)) 1050 for (;;)
662 { 1051 {
663 int j = k << 1; 1052 ev_tstamp minat;
1053 ANHE *minpos;
1054 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
664 1055
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1056 /* find minimum child */
1057 if (expect_true (pos + DHEAP - 1 < E))
666 ++j; 1058 {
667 1059 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
668 if (w->at <= heap [j]->at) 1060 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else if (pos < E)
1065 {
1066 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1067 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1068 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1069 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1070 }
1071 else
669 break; 1072 break;
670 1073
1074 if (ANHE_at (he) <= minat)
1075 break;
1076
1077 heap [k] = *minpos;
1078 ev_active (ANHE_w (*minpos)) = k;
1079
1080 k = minpos - heap;
1081 }
1082
1083 heap [k] = he;
1084 ev_active (ANHE_w (he)) = k;
1085}
1086
1087#else /* 4HEAP */
1088
1089#define HEAP0 1
1090#define HPARENT(k) ((k) >> 1)
1091#define UPHEAP_DONE(p,k) (!(p))
1092
1093/* away from the root */
1094inline_speed void
1095downheap (ANHE *heap, int N, int k)
1096{
1097 ANHE he = heap [k];
1098
1099 for (;;)
1100 {
1101 int c = k << 1;
1102
1103 if (c >= N + HEAP0)
1104 break;
1105
1106 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1107 ? 1 : 0;
1108
1109 if (ANHE_at (he) <= ANHE_at (heap [c]))
1110 break;
1111
671 heap [k] = heap [j]; 1112 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (heap [k])) = k;
1114
673 k = j; 1115 k = c;
674 } 1116 }
675 1117
676 heap [k] = w; 1118 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 1119 ev_active (ANHE_w (he)) = k;
678} 1120}
1121#endif
679 1122
680void inline_size 1123/* towards the root */
1124inline_speed void
1125upheap (ANHE *heap, int k)
1126{
1127 ANHE he = heap [k];
1128
1129 for (;;)
1130 {
1131 int p = HPARENT (k);
1132
1133 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1134 break;
1135
1136 heap [k] = heap [p];
1137 ev_active (ANHE_w (heap [k])) = k;
1138 k = p;
1139 }
1140
1141 heap [k] = he;
1142 ev_active (ANHE_w (he)) = k;
1143}
1144
1145/* move an element suitably so it is in a correct place */
1146inline_size void
681adjustheap (WT *heap, int N, int k) 1147adjustheap (ANHE *heap, int N, int k)
682{ 1148{
1149 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
683 upheap (heap, k); 1150 upheap (heap, k);
1151 else
684 downheap (heap, N, k); 1152 downheap (heap, N, k);
1153}
1154
1155/* rebuild the heap: this function is used only once and executed rarely */
1156inline_size void
1157reheap (ANHE *heap, int N)
1158{
1159 int i;
1160
1161 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1162 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1163 for (i = 0; i < N; ++i)
1164 upheap (heap, i + HEAP0);
685} 1165}
686 1166
687/*****************************************************************************/ 1167/*****************************************************************************/
688 1168
1169/* associate signal watchers to a signal signal */
689typedef struct 1170typedef struct
690{ 1171{
1172 EV_ATOMIC_T pending;
1173#if EV_MULTIPLICITY
1174 EV_P;
1175#endif
691 WL head; 1176 WL head;
692 sig_atomic_t volatile gotsig;
693} ANSIG; 1177} ANSIG;
694 1178
695static ANSIG *signals; 1179static ANSIG signals [EV_NSIG - 1];
696static int signalmax;
697 1180
698static int sigpipe [2]; 1181/*****************************************************************************/
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 1182
702void inline_size 1183/* used to prepare libev internal fd's */
703signals_init (ANSIG *base, int count) 1184/* this is not fork-safe */
704{ 1185inline_speed void
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1186fd_intern (int fd)
767{ 1187{
768#ifdef _WIN32 1188#ifdef _WIN32
769 int arg = 1; 1189 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1190 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
771#else 1191#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1192 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1193 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1194#endif
775} 1195}
776 1196
777static void noinline 1197static void noinline
778siginit (EV_P) 1198evpipe_init (EV_P)
779{ 1199{
1200 if (!ev_is_active (&pipe_w))
1201 {
1202#if EV_USE_EVENTFD
1203 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1204 if (evfd < 0 && errno == EINVAL)
1205 evfd = eventfd (0, 0);
1206
1207 if (evfd >= 0)
1208 {
1209 evpipe [0] = -1;
1210 fd_intern (evfd); /* doing it twice doesn't hurt */
1211 ev_io_set (&pipe_w, evfd, EV_READ);
1212 }
1213 else
1214#endif
1215 {
1216 while (pipe (evpipe))
1217 ev_syserr ("(libev) error creating signal/async pipe");
1218
780 fd_intern (sigpipe [0]); 1219 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1220 fd_intern (evpipe [1]);
1221 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1222 }
782 1223
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1224 ev_io_start (EV_A_ &pipe_w);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1225 ev_unref (EV_A); /* watcher should not keep loop alive */
1226 }
1227}
1228
1229inline_size void
1230evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1231{
1232 if (!*flag)
1233 {
1234 int old_errno = errno; /* save errno because write might clobber it */
1235
1236 *flag = 1;
1237
1238#if EV_USE_EVENTFD
1239 if (evfd >= 0)
1240 {
1241 uint64_t counter = 1;
1242 write (evfd, &counter, sizeof (uint64_t));
1243 }
1244 else
1245#endif
1246 write (evpipe [1], &old_errno, 1);
1247
1248 errno = old_errno;
1249 }
1250}
1251
1252/* called whenever the libev signal pipe */
1253/* got some events (signal, async) */
1254static void
1255pipecb (EV_P_ ev_io *iow, int revents)
1256{
1257 int i;
1258
1259#if EV_USE_EVENTFD
1260 if (evfd >= 0)
1261 {
1262 uint64_t counter;
1263 read (evfd, &counter, sizeof (uint64_t));
1264 }
1265 else
1266#endif
1267 {
1268 char dummy;
1269 read (evpipe [0], &dummy, 1);
1270 }
1271
1272 if (sig_pending)
1273 {
1274 sig_pending = 0;
1275
1276 for (i = EV_NSIG - 1; i--; )
1277 if (expect_false (signals [i].pending))
1278 ev_feed_signal_event (EV_A_ i + 1);
1279 }
1280
1281#if EV_ASYNC_ENABLE
1282 if (async_pending)
1283 {
1284 async_pending = 0;
1285
1286 for (i = asynccnt; i--; )
1287 if (asyncs [i]->sent)
1288 {
1289 asyncs [i]->sent = 0;
1290 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1291 }
1292 }
1293#endif
786} 1294}
787 1295
788/*****************************************************************************/ 1296/*****************************************************************************/
789 1297
1298static void
1299ev_sighandler (int signum)
1300{
1301#if EV_MULTIPLICITY
1302 EV_P = signals [signum - 1].loop;
1303#endif
1304
1305#ifdef _WIN32
1306 signal (signum, ev_sighandler);
1307#endif
1308
1309 signals [signum - 1].pending = 1;
1310 evpipe_write (EV_A_ &sig_pending);
1311}
1312
1313void noinline
1314ev_feed_signal_event (EV_P_ int signum)
1315{
1316 WL w;
1317
1318 if (expect_false (signum <= 0 || signum > EV_NSIG))
1319 return;
1320
1321 --signum;
1322
1323#if EV_MULTIPLICITY
1324 /* it is permissible to try to feed a signal to the wrong loop */
1325 /* or, likely more useful, feeding a signal nobody is waiting for */
1326
1327 if (expect_false (signals [signum].loop != EV_A))
1328 return;
1329#endif
1330
1331 signals [signum].pending = 0;
1332
1333 for (w = signals [signum].head; w; w = w->next)
1334 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1335}
1336
1337#if EV_USE_SIGNALFD
1338static void
1339sigfdcb (EV_P_ ev_io *iow, int revents)
1340{
1341 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1342
1343 for (;;)
1344 {
1345 ssize_t res = read (sigfd, si, sizeof (si));
1346
1347 /* not ISO-C, as res might be -1, but works with SuS */
1348 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1349 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1350
1351 if (res < (ssize_t)sizeof (si))
1352 break;
1353 }
1354}
1355#endif
1356
1357/*****************************************************************************/
1358
790static ev_child *childs [EV_PID_HASHSIZE]; 1359static WL childs [EV_PID_HASHSIZE];
791 1360
792#ifndef _WIN32 1361#ifndef _WIN32
793 1362
794static ev_signal childev; 1363static ev_signal childev;
795 1364
796void inline_speed 1365#ifndef WIFCONTINUED
1366# define WIFCONTINUED(status) 0
1367#endif
1368
1369/* handle a single child status event */
1370inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1371child_reap (EV_P_ int chain, int pid, int status)
798{ 1372{
799 ev_child *w; 1373 ev_child *w;
1374 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1375
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1376 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1377 {
802 if (w->pid == pid || !w->pid) 1378 if ((w->pid == pid || !w->pid)
1379 && (!traced || (w->flags & 1)))
803 { 1380 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1381 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1382 w->rpid = pid;
806 w->rstatus = status; 1383 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1384 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1385 }
1386 }
809} 1387}
810 1388
811#ifndef WCONTINUED 1389#ifndef WCONTINUED
812# define WCONTINUED 0 1390# define WCONTINUED 0
813#endif 1391#endif
814 1392
1393/* called on sigchld etc., calls waitpid */
815static void 1394static void
816childcb (EV_P_ ev_signal *sw, int revents) 1395childcb (EV_P_ ev_signal *sw, int revents)
817{ 1396{
818 int pid, status; 1397 int pid, status;
819 1398
822 if (!WCONTINUED 1401 if (!WCONTINUED
823 || errno != EINVAL 1402 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1403 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1404 return;
826 1405
827 /* make sure we are called again until all childs have been reaped */ 1406 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1407 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1408 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1409
831 child_reap (EV_A_ sw, pid, pid, status); 1410 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1411 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1412 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1413}
835 1414
836#endif 1415#endif
837 1416
838/*****************************************************************************/ 1417/*****************************************************************************/
900 /* kqueue is borked on everything but netbsd apparently */ 1479 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 1480 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 1481 flags &= ~EVBACKEND_KQUEUE;
903#endif 1482#endif
904#ifdef __APPLE__ 1483#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 1484 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 1485 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1486 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
907#endif 1487#endif
908 1488
909 return flags; 1489 return flags;
910} 1490}
911 1491
912unsigned int 1492unsigned int
913ev_embeddable_backends (void) 1493ev_embeddable_backends (void)
914{ 1494{
915 return EVBACKEND_EPOLL 1495 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1496
917 | EVBACKEND_PORT; 1497 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1498 /* please fix it and tell me how to detect the fix */
1499 flags &= ~EVBACKEND_EPOLL;
1500
1501 return flags;
918} 1502}
919 1503
920unsigned int 1504unsigned int
921ev_backend (EV_P) 1505ev_backend (EV_P)
922{ 1506{
923 return backend; 1507 return backend;
924} 1508}
925 1509
1510#if EV_MINIMAL < 2
926unsigned int 1511unsigned int
927ev_loop_count (EV_P) 1512ev_loop_count (EV_P)
928{ 1513{
929 return loop_count; 1514 return loop_count;
930} 1515}
931 1516
1517unsigned int
1518ev_loop_depth (EV_P)
1519{
1520 return loop_depth;
1521}
1522
1523void
1524ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 io_blocktime = interval;
1527}
1528
1529void
1530ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1531{
1532 timeout_blocktime = interval;
1533}
1534
1535void
1536ev_set_userdata (EV_P_ void *data)
1537{
1538 userdata = data;
1539}
1540
1541void *
1542ev_userdata (EV_P)
1543{
1544 return userdata;
1545}
1546
1547void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1548{
1549 invoke_cb = invoke_pending_cb;
1550}
1551
1552void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1553{
1554 release_cb = release;
1555 acquire_cb = acquire;
1556}
1557#endif
1558
1559/* initialise a loop structure, must be zero-initialised */
932static void noinline 1560static void noinline
933loop_init (EV_P_ unsigned int flags) 1561loop_init (EV_P_ unsigned int flags)
934{ 1562{
935 if (!backend) 1563 if (!backend)
936 { 1564 {
1565#if EV_USE_REALTIME
1566 if (!have_realtime)
1567 {
1568 struct timespec ts;
1569
1570 if (!clock_gettime (CLOCK_REALTIME, &ts))
1571 have_realtime = 1;
1572 }
1573#endif
1574
937#if EV_USE_MONOTONIC 1575#if EV_USE_MONOTONIC
1576 if (!have_monotonic)
938 { 1577 {
939 struct timespec ts; 1578 struct timespec ts;
1579
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1580 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1581 have_monotonic = 1;
942 } 1582 }
943#endif 1583#endif
944
945 ev_rt_now = ev_time ();
946 mn_now = get_clock ();
947 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now;
949 1584
950 /* pid check not overridable via env */ 1585 /* pid check not overridable via env */
951#ifndef _WIN32 1586#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1587 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1588 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1591 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1592 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1593 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1594 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1595
1596 ev_rt_now = ev_time ();
1597 mn_now = get_clock ();
1598 now_floor = mn_now;
1599 rtmn_diff = ev_rt_now - mn_now;
1600#if EV_MINIMAL < 2
1601 invoke_cb = ev_invoke_pending;
1602#endif
1603
1604 io_blocktime = 0.;
1605 timeout_blocktime = 0.;
1606 backend = 0;
1607 backend_fd = -1;
1608 sig_pending = 0;
1609#if EV_ASYNC_ENABLE
1610 async_pending = 0;
1611#endif
1612#if EV_USE_INOTIFY
1613 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1614#endif
1615#if EV_USE_SIGNALFD
1616 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1617#endif
1618
961 if (!(flags & 0x0000ffffUL)) 1619 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1620 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1621
970#if EV_USE_PORT 1622#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1623 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1624#endif
973#if EV_USE_KQUEUE 1625#if EV_USE_KQUEUE
981#endif 1633#endif
982#if EV_USE_SELECT 1634#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1635 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1636#endif
985 1637
1638 ev_prepare_init (&pending_w, pendingcb);
1639
986 ev_init (&sigev, sigcb); 1640 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1641 ev_set_priority (&pipe_w, EV_MAXPRI);
988 } 1642 }
989} 1643}
990 1644
1645/* free up a loop structure */
991static void noinline 1646static void noinline
992loop_destroy (EV_P) 1647loop_destroy (EV_P)
993{ 1648{
994 int i; 1649 int i;
1650
1651 if (ev_is_active (&pipe_w))
1652 {
1653 /*ev_ref (EV_A);*/
1654 /*ev_io_stop (EV_A_ &pipe_w);*/
1655
1656#if EV_USE_EVENTFD
1657 if (evfd >= 0)
1658 close (evfd);
1659#endif
1660
1661 if (evpipe [0] >= 0)
1662 {
1663 EV_WIN32_CLOSE_FD (evpipe [0]);
1664 EV_WIN32_CLOSE_FD (evpipe [1]);
1665 }
1666 }
1667
1668#if EV_USE_SIGNALFD
1669 if (ev_is_active (&sigfd_w))
1670 close (sigfd);
1671#endif
995 1672
996#if EV_USE_INOTIFY 1673#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1674 if (fs_fd >= 0)
998 close (fs_fd); 1675 close (fs_fd);
999#endif 1676#endif
1023#if EV_IDLE_ENABLE 1700#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1701 array_free (idle, [i]);
1025#endif 1702#endif
1026 } 1703 }
1027 1704
1705 ev_free (anfds); anfds = 0; anfdmax = 0;
1706
1028 /* have to use the microsoft-never-gets-it-right macro */ 1707 /* have to use the microsoft-never-gets-it-right macro */
1708 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 1709 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1710 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1711#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1712 array_free (periodic, EMPTY);
1033#endif 1713#endif
1714#if EV_FORK_ENABLE
1715 array_free (fork, EMPTY);
1716#endif
1034 array_free (prepare, EMPTY); 1717 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1718 array_free (check, EMPTY);
1719#if EV_ASYNC_ENABLE
1720 array_free (async, EMPTY);
1721#endif
1036 1722
1037 backend = 0; 1723 backend = 0;
1038} 1724}
1039 1725
1726#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1727inline_size void infy_fork (EV_P);
1728#endif
1041 1729
1042void inline_size 1730inline_size void
1043loop_fork (EV_P) 1731loop_fork (EV_P)
1044{ 1732{
1045#if EV_USE_PORT 1733#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1734 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 1735#endif
1053#endif 1741#endif
1054#if EV_USE_INOTIFY 1742#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1743 infy_fork (EV_A);
1056#endif 1744#endif
1057 1745
1058 if (ev_is_active (&sigev)) 1746 if (ev_is_active (&pipe_w))
1059 { 1747 {
1060 /* default loop */ 1748 /* this "locks" the handlers against writing to the pipe */
1749 /* while we modify the fd vars */
1750 sig_pending = 1;
1751#if EV_ASYNC_ENABLE
1752 async_pending = 1;
1753#endif
1061 1754
1062 ev_ref (EV_A); 1755 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1756 ev_io_stop (EV_A_ &pipe_w);
1064 close (sigpipe [0]);
1065 close (sigpipe [1]);
1066 1757
1067 while (pipe (sigpipe)) 1758#if EV_USE_EVENTFD
1068 syserr ("(libev) error creating pipe"); 1759 if (evfd >= 0)
1760 close (evfd);
1761#endif
1069 1762
1763 if (evpipe [0] >= 0)
1764 {
1765 EV_WIN32_CLOSE_FD (evpipe [0]);
1766 EV_WIN32_CLOSE_FD (evpipe [1]);
1767 }
1768
1070 siginit (EV_A); 1769 evpipe_init (EV_A);
1770 /* now iterate over everything, in case we missed something */
1771 pipecb (EV_A_ &pipe_w, EV_READ);
1071 } 1772 }
1072 1773
1073 postfork = 0; 1774 postfork = 0;
1074} 1775}
1075 1776
1076#if EV_MULTIPLICITY 1777#if EV_MULTIPLICITY
1778
1077struct ev_loop * 1779struct ev_loop *
1078ev_loop_new (unsigned int flags) 1780ev_loop_new (unsigned int flags)
1079{ 1781{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1782 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1783
1082 memset (loop, 0, sizeof (struct ev_loop)); 1784 memset (EV_A, 0, sizeof (struct ev_loop));
1083
1084 loop_init (EV_A_ flags); 1785 loop_init (EV_A_ flags);
1085 1786
1086 if (ev_backend (EV_A)) 1787 if (ev_backend (EV_A))
1087 return loop; 1788 return EV_A;
1088 1789
1089 return 0; 1790 return 0;
1090} 1791}
1091 1792
1092void 1793void
1097} 1798}
1098 1799
1099void 1800void
1100ev_loop_fork (EV_P) 1801ev_loop_fork (EV_P)
1101{ 1802{
1102 postfork = 1; 1803 postfork = 1; /* must be in line with ev_default_fork */
1103} 1804}
1805#endif /* multiplicity */
1104 1806
1807#if EV_VERIFY
1808static void noinline
1809verify_watcher (EV_P_ W w)
1810{
1811 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1812
1813 if (w->pending)
1814 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1815}
1816
1817static void noinline
1818verify_heap (EV_P_ ANHE *heap, int N)
1819{
1820 int i;
1821
1822 for (i = HEAP0; i < N + HEAP0; ++i)
1823 {
1824 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1825 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1826 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1827
1828 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1829 }
1830}
1831
1832static void noinline
1833array_verify (EV_P_ W *ws, int cnt)
1834{
1835 while (cnt--)
1836 {
1837 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1838 verify_watcher (EV_A_ ws [cnt]);
1839 }
1840}
1841#endif
1842
1843#if EV_MINIMAL < 2
1844void
1845ev_loop_verify (EV_P)
1846{
1847#if EV_VERIFY
1848 int i;
1849 WL w;
1850
1851 assert (activecnt >= -1);
1852
1853 assert (fdchangemax >= fdchangecnt);
1854 for (i = 0; i < fdchangecnt; ++i)
1855 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1856
1857 assert (anfdmax >= 0);
1858 for (i = 0; i < anfdmax; ++i)
1859 for (w = anfds [i].head; w; w = w->next)
1860 {
1861 verify_watcher (EV_A_ (W)w);
1862 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1863 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1864 }
1865
1866 assert (timermax >= timercnt);
1867 verify_heap (EV_A_ timers, timercnt);
1868
1869#if EV_PERIODIC_ENABLE
1870 assert (periodicmax >= periodiccnt);
1871 verify_heap (EV_A_ periodics, periodiccnt);
1872#endif
1873
1874 for (i = NUMPRI; i--; )
1875 {
1876 assert (pendingmax [i] >= pendingcnt [i]);
1877#if EV_IDLE_ENABLE
1878 assert (idleall >= 0);
1879 assert (idlemax [i] >= idlecnt [i]);
1880 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1881#endif
1882 }
1883
1884#if EV_FORK_ENABLE
1885 assert (forkmax >= forkcnt);
1886 array_verify (EV_A_ (W *)forks, forkcnt);
1887#endif
1888
1889#if EV_ASYNC_ENABLE
1890 assert (asyncmax >= asynccnt);
1891 array_verify (EV_A_ (W *)asyncs, asynccnt);
1892#endif
1893
1894 assert (preparemax >= preparecnt);
1895 array_verify (EV_A_ (W *)prepares, preparecnt);
1896
1897 assert (checkmax >= checkcnt);
1898 array_verify (EV_A_ (W *)checks, checkcnt);
1899
1900# if 0
1901 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1902 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1903# endif
1904#endif
1905}
1105#endif 1906#endif
1106 1907
1107#if EV_MULTIPLICITY 1908#if EV_MULTIPLICITY
1108struct ev_loop * 1909struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1910ev_default_loop_init (unsigned int flags)
1110#else 1911#else
1111int 1912int
1112ev_default_loop (unsigned int flags) 1913ev_default_loop (unsigned int flags)
1113#endif 1914#endif
1114{ 1915{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1916 if (!ev_default_loop_ptr)
1120 { 1917 {
1121#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1919 EV_P = ev_default_loop_ptr = &default_loop_struct;
1123#else 1920#else
1124 ev_default_loop_ptr = 1; 1921 ev_default_loop_ptr = 1;
1125#endif 1922#endif
1126 1923
1127 loop_init (EV_A_ flags); 1924 loop_init (EV_A_ flags);
1128 1925
1129 if (ev_backend (EV_A)) 1926 if (ev_backend (EV_A))
1130 { 1927 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1928#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1929 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1930 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1931 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1932 ev_unref (EV_A); /* child watcher should not keep loop alive */
1146 1941
1147void 1942void
1148ev_default_destroy (void) 1943ev_default_destroy (void)
1149{ 1944{
1150#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1946 EV_P = ev_default_loop_ptr;
1152#endif 1947#endif
1948
1949 ev_default_loop_ptr = 0;
1153 1950
1154#ifndef _WIN32 1951#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1952 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1953 ev_signal_stop (EV_A_ &childev);
1157#endif 1954#endif
1158 1955
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1956 loop_destroy (EV_A);
1166} 1957}
1167 1958
1168void 1959void
1169ev_default_fork (void) 1960ev_default_fork (void)
1170{ 1961{
1171#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1963 EV_P = ev_default_loop_ptr;
1173#endif 1964#endif
1174 1965
1175 if (backend) 1966 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 1967}
1178 1968
1179/*****************************************************************************/ 1969/*****************************************************************************/
1180 1970
1181void 1971void
1182ev_invoke (EV_P_ void *w, int revents) 1972ev_invoke (EV_P_ void *w, int revents)
1183{ 1973{
1184 EV_CB_INVOKE ((W)w, revents); 1974 EV_CB_INVOKE ((W)w, revents);
1185} 1975}
1186 1976
1187void inline_speed 1977unsigned int
1188call_pending (EV_P) 1978ev_pending_count (EV_P)
1979{
1980 int pri;
1981 unsigned int count = 0;
1982
1983 for (pri = NUMPRI; pri--; )
1984 count += pendingcnt [pri];
1985
1986 return count;
1987}
1988
1989void noinline
1990ev_invoke_pending (EV_P)
1189{ 1991{
1190 int pri; 1992 int pri;
1191 1993
1192 for (pri = NUMPRI; pri--; ) 1994 for (pri = NUMPRI; pri--; )
1193 while (pendingcnt [pri]) 1995 while (pendingcnt [pri])
1194 { 1996 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1997 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1196 1998
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1999 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2000 /* ^ this is no longer true, as pending_w could be here */
1200 2001
1201 p->w->pending = 0; 2002 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 2003 EV_CB_INVOKE (p->w, p->events);
1203 } 2004 EV_FREQUENT_CHECK;
1204 } 2005 }
1205} 2006}
1206 2007
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 2008#if EV_IDLE_ENABLE
1287void inline_size 2009/* make idle watchers pending. this handles the "call-idle */
2010/* only when higher priorities are idle" logic */
2011inline_size void
1288idle_reify (EV_P) 2012idle_reify (EV_P)
1289{ 2013{
1290 if (expect_false (idleall)) 2014 if (expect_false (idleall))
1291 { 2015 {
1292 int pri; 2016 int pri;
1304 } 2028 }
1305 } 2029 }
1306} 2030}
1307#endif 2031#endif
1308 2032
1309int inline_size 2033/* make timers pending */
1310time_update_monotonic (EV_P) 2034inline_size void
2035timers_reify (EV_P)
1311{ 2036{
2037 EV_FREQUENT_CHECK;
2038
2039 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2040 {
2041 do
2042 {
2043 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->repeat)
2049 {
2050 ev_at (w) += w->repeat;
2051 if (ev_at (w) < mn_now)
2052 ev_at (w) = mn_now;
2053
2054 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2055
2056 ANHE_at_cache (timers [HEAP0]);
2057 downheap (timers, timercnt, HEAP0);
2058 }
2059 else
2060 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2061
2062 EV_FREQUENT_CHECK;
2063 feed_reverse (EV_A_ (W)w);
2064 }
2065 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2066
2067 feed_reverse_done (EV_A_ EV_TIMEOUT);
2068 }
2069}
2070
2071#if EV_PERIODIC_ENABLE
2072/* make periodics pending */
2073inline_size void
2074periodics_reify (EV_P)
2075{
2076 EV_FREQUENT_CHECK;
2077
2078 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2079 {
2080 int feed_count = 0;
2081
2082 do
2083 {
2084 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2085
2086 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2087
2088 /* first reschedule or stop timer */
2089 if (w->reschedule_cb)
2090 {
2091 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2092
2093 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2094
2095 ANHE_at_cache (periodics [HEAP0]);
2096 downheap (periodics, periodiccnt, HEAP0);
2097 }
2098 else if (w->interval)
2099 {
2100 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2101 /* if next trigger time is not sufficiently in the future, put it there */
2102 /* this might happen because of floating point inexactness */
2103 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2104 {
2105 ev_at (w) += w->interval;
2106
2107 /* if interval is unreasonably low we might still have a time in the past */
2108 /* so correct this. this will make the periodic very inexact, but the user */
2109 /* has effectively asked to get triggered more often than possible */
2110 if (ev_at (w) < ev_rt_now)
2111 ev_at (w) = ev_rt_now;
2112 }
2113
2114 ANHE_at_cache (periodics [HEAP0]);
2115 downheap (periodics, periodiccnt, HEAP0);
2116 }
2117 else
2118 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
2122 }
2123 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2124
2125 feed_reverse_done (EV_A_ EV_PERIODIC);
2126 }
2127}
2128
2129/* simply recalculate all periodics */
2130/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2131static void noinline
2132periodics_reschedule (EV_P)
2133{
2134 int i;
2135
2136 /* adjust periodics after time jump */
2137 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2138 {
2139 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2140
2141 if (w->reschedule_cb)
2142 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2143 else if (w->interval)
2144 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2145
2146 ANHE_at_cache (periodics [i]);
2147 }
2148
2149 reheap (periodics, periodiccnt);
2150}
2151#endif
2152
2153/* adjust all timers by a given offset */
2154static void noinline
2155timers_reschedule (EV_P_ ev_tstamp adjust)
2156{
2157 int i;
2158
2159 for (i = 0; i < timercnt; ++i)
2160 {
2161 ANHE *he = timers + i + HEAP0;
2162 ANHE_w (*he)->at += adjust;
2163 ANHE_at_cache (*he);
2164 }
2165}
2166
2167/* fetch new monotonic and realtime times from the kernel */
2168/* also detect if there was a timejump, and act accordingly */
2169inline_speed void
2170time_update (EV_P_ ev_tstamp max_block)
2171{
2172#if EV_USE_MONOTONIC
2173 if (expect_true (have_monotonic))
2174 {
2175 int i;
2176 ev_tstamp odiff = rtmn_diff;
2177
1312 mn_now = get_clock (); 2178 mn_now = get_clock ();
1313 2179
2180 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2181 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2183 {
1316 ev_rt_now = rtmn_diff + mn_now; 2184 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2185 return;
1318 } 2186 }
1319 else 2187
1320 {
1321 now_floor = mn_now; 2188 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2189 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2190
1327void inline_size 2191 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2192 * on the choice of "4": one iteration isn't enough,
1329{ 2193 * in case we get preempted during the calls to
1330 int i; 2194 * ev_time and get_clock. a second call is almost guaranteed
1331 2195 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2196 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2197 * in the unlikely event of having been preempted here.
1334 { 2198 */
1335 if (time_update_monotonic (EV_A)) 2199 for (i = 4; --i; )
1336 { 2200 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2201 rtmn_diff = ev_rt_now - mn_now;
1350 2202
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2203 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2204 return; /* all is well */
1353 2205
1354 ev_rt_now = ev_time (); 2206 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2207 mn_now = get_clock ();
1356 now_floor = mn_now; 2208 now_floor = mn_now;
1357 } 2209 }
1358 2210
2211 /* no timer adjustment, as the monotonic clock doesn't jump */
2212 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2213# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2214 periodics_reschedule (EV_A);
1361# endif 2215# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2216 }
1366 else 2217 else
1367#endif 2218#endif
1368 { 2219 {
1369 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1370 2221
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2222 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2223 {
2224 /* adjust timers. this is easy, as the offset is the same for all of them */
2225 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2226#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2227 periodics_reschedule (EV_A);
1375#endif 2228#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2229 }
1381 2230
1382 mn_now = ev_rt_now; 2231 mn_now = ev_rt_now;
1383 } 2232 }
1384} 2233}
1385 2234
1386void 2235void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2236ev_loop (EV_P_ int flags)
1402{ 2237{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2238#if EV_MINIMAL < 2
1404 ? EVUNLOOP_ONE 2239 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2240#endif
1406 2241
2242 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2243
2244 loop_done = EVUNLOOP_CANCEL;
2245
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2246 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2247
1409 do 2248 do
1410 { 2249 {
2250#if EV_VERIFY >= 2
2251 ev_loop_verify (EV_A);
2252#endif
2253
1411#ifndef _WIN32 2254#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2255 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2256 if (expect_false (getpid () != curpid))
1414 { 2257 {
1415 curpid = getpid (); 2258 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2264 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2265 if (expect_false (postfork))
1423 if (forkcnt) 2266 if (forkcnt)
1424 { 2267 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2268 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2269 EV_INVOKE_PENDING;
1427 } 2270 }
1428#endif 2271#endif
1429 2272
1430 /* queue prepare watchers (and execute them) */ 2273 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2274 if (expect_false (preparecnt))
1432 { 2275 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2276 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2277 EV_INVOKE_PENDING;
1435 } 2278 }
1436 2279
1437 if (expect_false (!activecnt)) 2280 if (expect_false (loop_done))
1438 break; 2281 break;
1439 2282
1440 /* we might have forked, so reify kernel state if necessary */ 2283 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2284 if (expect_false (postfork))
1442 loop_fork (EV_A); 2285 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2287 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2288 fd_reify (EV_A);
1446 2289
1447 /* calculate blocking time */ 2290 /* calculate blocking time */
1448 { 2291 {
1449 ev_tstamp block; 2292 ev_tstamp waittime = 0.;
2293 ev_tstamp sleeptime = 0.;
1450 2294
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2295 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2296 {
2297 /* remember old timestamp for io_blocktime calculation */
2298 ev_tstamp prev_mn_now = mn_now;
2299
1455 /* update time to cancel out callback processing overhead */ 2300 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 2301 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 2302
1466 block = MAX_BLOCKTIME; 2303 waittime = MAX_BLOCKTIME;
1467 2304
1468 if (timercnt) 2305 if (timercnt)
1469 { 2306 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 2308 if (waittime > to) waittime = to;
1472 } 2309 }
1473 2310
1474#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 2312 if (periodiccnt)
1476 { 2313 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2314 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 2315 if (waittime > to) waittime = to;
1479 } 2316 }
1480#endif 2317#endif
1481 2318
2319 /* don't let timeouts decrease the waittime below timeout_blocktime */
2320 if (expect_false (waittime < timeout_blocktime))
2321 waittime = timeout_blocktime;
2322
2323 /* extra check because io_blocktime is commonly 0 */
1482 if (expect_false (block < 0.)) block = 0.; 2324 if (expect_false (io_blocktime))
2325 {
2326 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2327
2328 if (sleeptime > waittime - backend_fudge)
2329 sleeptime = waittime - backend_fudge;
2330
2331 if (expect_true (sleeptime > 0.))
2332 {
2333 ev_sleep (sleeptime);
2334 waittime -= sleeptime;
2335 }
2336 }
1483 } 2337 }
1484 2338
2339#if EV_MINIMAL < 2
1485 ++loop_count; 2340 ++loop_count;
2341#endif
2342 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1486 backend_poll (EV_A_ block); 2343 backend_poll (EV_A_ waittime);
2344 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2345
2346 /* update ev_rt_now, do magic */
2347 time_update (EV_A_ waittime + sleeptime);
1487 } 2348 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2349
1492 /* queue pending timers and reschedule them */ 2350 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2351 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2352#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2353 periodics_reify (EV_A); /* absolute timers called first */
1502 2360
1503 /* queue check watchers, to be executed first */ 2361 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2362 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2363 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2364
1507 call_pending (EV_A); 2365 EV_INVOKE_PENDING;
1508
1509 } 2366 }
1510 while (expect_true (activecnt && !loop_done)); 2367 while (expect_true (
2368 activecnt
2369 && !loop_done
2370 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2371 ));
1511 2372
1512 if (loop_done == EVUNLOOP_ONE) 2373 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2374 loop_done = EVUNLOOP_CANCEL;
2375
2376#if EV_MINIMAL < 2
2377 --loop_depth;
2378#endif
1514} 2379}
1515 2380
1516void 2381void
1517ev_unloop (EV_P_ int how) 2382ev_unloop (EV_P_ int how)
1518{ 2383{
1519 loop_done = how; 2384 loop_done = how;
1520} 2385}
1521 2386
2387void
2388ev_ref (EV_P)
2389{
2390 ++activecnt;
2391}
2392
2393void
2394ev_unref (EV_P)
2395{
2396 --activecnt;
2397}
2398
2399void
2400ev_now_update (EV_P)
2401{
2402 time_update (EV_A_ 1e100);
2403}
2404
2405void
2406ev_suspend (EV_P)
2407{
2408 ev_now_update (EV_A);
2409}
2410
2411void
2412ev_resume (EV_P)
2413{
2414 ev_tstamp mn_prev = mn_now;
2415
2416 ev_now_update (EV_A);
2417 timers_reschedule (EV_A_ mn_now - mn_prev);
2418#if EV_PERIODIC_ENABLE
2419 /* TODO: really do this? */
2420 periodics_reschedule (EV_A);
2421#endif
2422}
2423
1522/*****************************************************************************/ 2424/*****************************************************************************/
2425/* singly-linked list management, used when the expected list length is short */
1523 2426
1524void inline_size 2427inline_size void
1525wlist_add (WL *head, WL elem) 2428wlist_add (WL *head, WL elem)
1526{ 2429{
1527 elem->next = *head; 2430 elem->next = *head;
1528 *head = elem; 2431 *head = elem;
1529} 2432}
1530 2433
1531void inline_size 2434inline_size void
1532wlist_del (WL *head, WL elem) 2435wlist_del (WL *head, WL elem)
1533{ 2436{
1534 while (*head) 2437 while (*head)
1535 { 2438 {
1536 if (*head == elem) 2439 if (expect_true (*head == elem))
1537 { 2440 {
1538 *head = elem->next; 2441 *head = elem->next;
1539 return; 2442 break;
1540 } 2443 }
1541 2444
1542 head = &(*head)->next; 2445 head = &(*head)->next;
1543 } 2446 }
1544} 2447}
1545 2448
1546void inline_speed 2449/* internal, faster, version of ev_clear_pending */
2450inline_speed void
1547clear_pending (EV_P_ W w) 2451clear_pending (EV_P_ W w)
1548{ 2452{
1549 if (w->pending) 2453 if (w->pending)
1550 { 2454 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2455 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 2456 w->pending = 0;
1553 } 2457 }
1554} 2458}
1555 2459
1556int 2460int
1560 int pending = w_->pending; 2464 int pending = w_->pending;
1561 2465
1562 if (expect_true (pending)) 2466 if (expect_true (pending))
1563 { 2467 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2468 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2469 p->w = (W)&pending_w;
1565 w_->pending = 0; 2470 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 2471 return p->events;
1568 } 2472 }
1569 else 2473 else
1570 return 0; 2474 return 0;
1571} 2475}
1572 2476
1573void inline_size 2477inline_size void
1574pri_adjust (EV_P_ W w) 2478pri_adjust (EV_P_ W w)
1575{ 2479{
1576 int pri = w->priority; 2480 int pri = ev_priority (w);
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2481 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2482 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 2483 ev_set_priority (w, pri);
1580} 2484}
1581 2485
1582void inline_speed 2486inline_speed void
1583ev_start (EV_P_ W w, int active) 2487ev_start (EV_P_ W w, int active)
1584{ 2488{
1585 pri_adjust (EV_A_ w); 2489 pri_adjust (EV_A_ w);
1586 w->active = active; 2490 w->active = active;
1587 ev_ref (EV_A); 2491 ev_ref (EV_A);
1588} 2492}
1589 2493
1590void inline_size 2494inline_size void
1591ev_stop (EV_P_ W w) 2495ev_stop (EV_P_ W w)
1592{ 2496{
1593 ev_unref (EV_A); 2497 ev_unref (EV_A);
1594 w->active = 0; 2498 w->active = 0;
1595} 2499}
1602 int fd = w->fd; 2506 int fd = w->fd;
1603 2507
1604 if (expect_false (ev_is_active (w))) 2508 if (expect_false (ev_is_active (w)))
1605 return; 2509 return;
1606 2510
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2511 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2512 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2513
2514 EV_FREQUENT_CHECK;
1608 2515
1609 ev_start (EV_A_ (W)w, 1); 2516 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2517 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2518 wlist_add (&anfds[fd].head, (WL)w);
1612 2519
1613 fd_change (EV_A_ fd); 2520 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2521 w->events &= ~EV__IOFDSET;
2522
2523 EV_FREQUENT_CHECK;
1614} 2524}
1615 2525
1616void noinline 2526void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2527ev_io_stop (EV_P_ ev_io *w)
1618{ 2528{
1619 clear_pending (EV_A_ (W)w); 2529 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2530 if (expect_false (!ev_is_active (w)))
1621 return; 2531 return;
1622 2532
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2533 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2534
2535 EV_FREQUENT_CHECK;
2536
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2537 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1627 2539
1628 fd_change (EV_A_ w->fd); 2540 fd_change (EV_A_ w->fd, 1);
2541
2542 EV_FREQUENT_CHECK;
1629} 2543}
1630 2544
1631void noinline 2545void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2546ev_timer_start (EV_P_ ev_timer *w)
1633{ 2547{
1634 if (expect_false (ev_is_active (w))) 2548 if (expect_false (ev_is_active (w)))
1635 return; 2549 return;
1636 2550
1637 ((WT)w)->at += mn_now; 2551 ev_at (w) += mn_now;
1638 2552
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2553 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2554
2555 EV_FREQUENT_CHECK;
2556
2557 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2558 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2559 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2560 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2561 ANHE_at_cache (timers [ev_active (w)]);
2562 upheap (timers, ev_active (w));
1645 2563
2564 EV_FREQUENT_CHECK;
2565
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2566 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2567}
1648 2568
1649void noinline 2569void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2570ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2571{
1652 clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2573 if (expect_false (!ev_is_active (w)))
1654 return; 2574 return;
1655 2575
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2576 EV_FREQUENT_CHECK;
1657 2577
1658 { 2578 {
1659 int active = ((W)w)->active; 2579 int active = ev_active (w);
1660 2580
2581 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2582
2583 --timercnt;
2584
1661 if (expect_true (--active < --timercnt)) 2585 if (expect_true (active < timercnt + HEAP0))
1662 { 2586 {
1663 timers [active] = timers [timercnt]; 2587 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2588 adjustheap (timers, timercnt, active);
1665 } 2589 }
1666 } 2590 }
1667 2591
1668 ((WT)w)->at -= mn_now; 2592 EV_FREQUENT_CHECK;
2593
2594 ev_at (w) -= mn_now;
1669 2595
1670 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1671} 2597}
1672 2598
1673void noinline 2599void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2600ev_timer_again (EV_P_ ev_timer *w)
1675{ 2601{
2602 EV_FREQUENT_CHECK;
2603
1676 if (ev_is_active (w)) 2604 if (ev_is_active (w))
1677 { 2605 {
1678 if (w->repeat) 2606 if (w->repeat)
1679 { 2607 {
1680 ((WT)w)->at = mn_now + w->repeat; 2608 ev_at (w) = mn_now + w->repeat;
2609 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2610 adjustheap (timers, timercnt, ev_active (w));
1682 } 2611 }
1683 else 2612 else
1684 ev_timer_stop (EV_A_ w); 2613 ev_timer_stop (EV_A_ w);
1685 } 2614 }
1686 else if (w->repeat) 2615 else if (w->repeat)
1687 { 2616 {
1688 w->at = w->repeat; 2617 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2618 ev_timer_start (EV_A_ w);
1690 } 2619 }
2620
2621 EV_FREQUENT_CHECK;
2622}
2623
2624ev_tstamp
2625ev_timer_remaining (EV_P_ ev_timer *w)
2626{
2627 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1691} 2628}
1692 2629
1693#if EV_PERIODIC_ENABLE 2630#if EV_PERIODIC_ENABLE
1694void noinline 2631void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2632ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2633{
1697 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
1698 return; 2635 return;
1699 2636
1700 if (w->reschedule_cb) 2637 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2638 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2639 else if (w->interval)
1703 { 2640 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2641 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2642 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2644 }
1708 else 2645 else
1709 ((WT)w)->at = w->offset; 2646 ev_at (w) = w->offset;
1710 2647
2648 EV_FREQUENT_CHECK;
2649
2650 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2651 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2652 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2653 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2654 ANHE_at_cache (periodics [ev_active (w)]);
2655 upheap (periodics, ev_active (w));
1715 2656
2657 EV_FREQUENT_CHECK;
2658
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2659 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2660}
1718 2661
1719void noinline 2662void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2663ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2664{
1722 clear_pending (EV_A_ (W)w); 2665 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2666 if (expect_false (!ev_is_active (w)))
1724 return; 2667 return;
1725 2668
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2669 EV_FREQUENT_CHECK;
1727 2670
1728 { 2671 {
1729 int active = ((W)w)->active; 2672 int active = ev_active (w);
1730 2673
2674 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2675
2676 --periodiccnt;
2677
1731 if (expect_true (--active < --periodiccnt)) 2678 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2679 {
1733 periodics [active] = periodics [periodiccnt]; 2680 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2681 adjustheap (periodics, periodiccnt, active);
1735 } 2682 }
1736 } 2683 }
2684
2685 EV_FREQUENT_CHECK;
1737 2686
1738 ev_stop (EV_A_ (W)w); 2687 ev_stop (EV_A_ (W)w);
1739} 2688}
1740 2689
1741void noinline 2690void noinline
1752#endif 2701#endif
1753 2702
1754void noinline 2703void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 2704ev_signal_start (EV_P_ ev_signal *w)
1756{ 2705{
1757#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif
1760 if (expect_false (ev_is_active (w))) 2706 if (expect_false (ev_is_active (w)))
1761 return; 2707 return;
1762 2708
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2709 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2710
2711#if EV_MULTIPLICITY
2712 assert (("libev: a signal must not be attached to two different loops",
2713 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2714
2715 signals [w->signum - 1].loop = EV_A;
2716#endif
2717
2718 EV_FREQUENT_CHECK;
2719
2720#if EV_USE_SIGNALFD
2721 if (sigfd == -2)
2722 {
2723 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2724 if (sigfd < 0 && errno == EINVAL)
2725 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2726
2727 if (sigfd >= 0)
2728 {
2729 fd_intern (sigfd); /* doing it twice will not hurt */
2730
2731 sigemptyset (&sigfd_set);
2732
2733 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2734 ev_set_priority (&sigfd_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &sigfd_w);
2736 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2737 }
2738 }
2739
2740 if (sigfd >= 0)
2741 {
2742 /* TODO: check .head */
2743 sigaddset (&sigfd_set, w->signum);
2744 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2745
2746 signalfd (sigfd, &sigfd_set, 0);
2747 }
2748#endif
1764 2749
1765 ev_start (EV_A_ (W)w, 1); 2750 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2751 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2752
1769 if (!((WL)w)->next) 2753 if (!((WL)w)->next)
2754# if EV_USE_SIGNALFD
2755 if (sigfd < 0) /*TODO*/
2756# endif
1770 { 2757 {
1771#if _WIN32 2758# ifdef _WIN32
2759 evpipe_init (EV_A);
2760
1772 signal (w->signum, sighandler); 2761 signal (w->signum, ev_sighandler);
1773#else 2762# else
1774 struct sigaction sa; 2763 struct sigaction sa;
2764
2765 evpipe_init (EV_A);
2766
1775 sa.sa_handler = sighandler; 2767 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2768 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2770 sigaction (w->signum, &sa, 0);
2771
2772 sigemptyset (&sa.sa_mask);
2773 sigaddset (&sa.sa_mask, w->signum);
2774 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1779#endif 2775#endif
1780 } 2776 }
2777
2778 EV_FREQUENT_CHECK;
1781} 2779}
1782 2780
1783void noinline 2781void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2782ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2783{
1786 clear_pending (EV_A_ (W)w); 2784 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2785 if (expect_false (!ev_is_active (w)))
1788 return; 2786 return;
1789 2787
2788 EV_FREQUENT_CHECK;
2789
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2790 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
1792 2792
1793 if (!signals [w->signum - 1].head) 2793 if (!signals [w->signum - 1].head)
2794 {
2795#if EV_MULTIPLICITY
2796 signals [w->signum - 1].loop = 0; /* unattach from signal */
2797#endif
2798#if EV_USE_SIGNALFD
2799 if (sigfd >= 0)
2800 {
2801 sigset_t ss;
2802
2803 sigemptyset (&ss);
2804 sigaddset (&ss, w->signum);
2805 sigdelset (&sigfd_set, w->signum);
2806
2807 signalfd (sigfd, &sigfd_set, 0);
2808 sigprocmask (SIG_UNBLOCK, &ss, 0);
2809 }
2810 else
2811#endif
1794 signal (w->signum, SIG_DFL); 2812 signal (w->signum, SIG_DFL);
2813 }
2814
2815 EV_FREQUENT_CHECK;
1795} 2816}
1796 2817
1797void 2818void
1798ev_child_start (EV_P_ ev_child *w) 2819ev_child_start (EV_P_ ev_child *w)
1799{ 2820{
1800#if EV_MULTIPLICITY 2821#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2822 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2823#endif
1803 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
1804 return; 2825 return;
1805 2826
2827 EV_FREQUENT_CHECK;
2828
1806 ev_start (EV_A_ (W)w, 1); 2829 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2830 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2831
2832 EV_FREQUENT_CHECK;
1808} 2833}
1809 2834
1810void 2835void
1811ev_child_stop (EV_P_ ev_child *w) 2836ev_child_stop (EV_P_ ev_child *w)
1812{ 2837{
1813 clear_pending (EV_A_ (W)w); 2838 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2839 if (expect_false (!ev_is_active (w)))
1815 return; 2840 return;
1816 2841
2842 EV_FREQUENT_CHECK;
2843
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2844 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2845 ev_stop (EV_A_ (W)w);
2846
2847 EV_FREQUENT_CHECK;
1819} 2848}
1820 2849
1821#if EV_STAT_ENABLE 2850#if EV_STAT_ENABLE
1822 2851
1823# ifdef _WIN32 2852# ifdef _WIN32
1824# undef lstat 2853# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2854# define lstat(a,b) _stati64 (a,b)
1826# endif 2855# endif
1827 2856
1828#define DEF_STAT_INTERVAL 5.0074891 2857#define DEF_STAT_INTERVAL 5.0074891
2858#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2859#define MIN_STAT_INTERVAL 0.1074891
1830 2860
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2861static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2862
1833#if EV_USE_INOTIFY 2863#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 2864# define EV_INOTIFY_BUFSIZE 8192
1836static void noinline 2866static void noinline
1837infy_add (EV_P_ ev_stat *w) 2867infy_add (EV_P_ ev_stat *w)
1838{ 2868{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2869 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 2870
1841 if (w->wd < 0) 2871 if (w->wd >= 0)
2872 {
2873 struct statfs sfs;
2874
2875 /* now local changes will be tracked by inotify, but remote changes won't */
2876 /* unless the filesystem is known to be local, we therefore still poll */
2877 /* also do poll on <2.6.25, but with normal frequency */
2878
2879 if (!fs_2625)
2880 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2881 else if (!statfs (w->path, &sfs)
2882 && (sfs.f_type == 0x1373 /* devfs */
2883 || sfs.f_type == 0xEF53 /* ext2/3 */
2884 || sfs.f_type == 0x3153464a /* jfs */
2885 || sfs.f_type == 0x52654973 /* reiser3 */
2886 || sfs.f_type == 0x01021994 /* tempfs */
2887 || sfs.f_type == 0x58465342 /* xfs */))
2888 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2889 else
2890 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1842 { 2891 }
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2892 else
2893 {
2894 /* can't use inotify, continue to stat */
2895 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1844 2896
1845 /* monitor some parent directory for speedup hints */ 2897 /* if path is not there, monitor some parent directory for speedup hints */
2898 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2899 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2900 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2901 {
1848 char path [4096]; 2902 char path [4096];
1849 strcpy (path, w->path); 2903 strcpy (path, w->path);
1850 2904
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2907 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2908 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 2909
1856 char *pend = strrchr (path, '/'); 2910 char *pend = strrchr (path, '/');
1857 2911
1858 if (!pend) 2912 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 2913 break;
1860 2914
1861 *pend = 0; 2915 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 2916 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 2917 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2918 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 2919 }
1866 } 2920 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 2921
1870 if (w->wd >= 0) 2922 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2923 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2924
2925 /* now re-arm timer, if required */
2926 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2927 ev_timer_again (EV_A_ &w->timer);
2928 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1872} 2929}
1873 2930
1874static void noinline 2931static void noinline
1875infy_del (EV_P_ ev_stat *w) 2932infy_del (EV_P_ ev_stat *w)
1876{ 2933{
1890 2947
1891static void noinline 2948static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2949infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 2950{
1894 if (slot < 0) 2951 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 2952 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2953 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 2954 infy_wd (EV_A_ slot, wd, ev);
1898 else 2955 else
1899 { 2956 {
1900 WL w_; 2957 WL w_;
1906 2963
1907 if (w->wd == wd || wd == -1) 2964 if (w->wd == wd || wd == -1)
1908 { 2965 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2966 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 2967 {
2968 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1911 w->wd = -1; 2969 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2970 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 2971 }
1914 2972
1915 stat_timer_cb (EV_A_ &w->timer, 0); 2973 stat_timer_cb (EV_A_ &w->timer, 0);
1928 2986
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2987 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2988 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931} 2989}
1932 2990
1933void inline_size 2991inline_size void
2992check_2625 (EV_P)
2993{
2994 /* kernels < 2.6.25 are borked
2995 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2996 */
2997 struct utsname buf;
2998 int major, minor, micro;
2999
3000 if (uname (&buf))
3001 return;
3002
3003 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3004 return;
3005
3006 if (major < 2
3007 || (major == 2 && minor < 6)
3008 || (major == 2 && minor == 6 && micro < 25))
3009 return;
3010
3011 fs_2625 = 1;
3012}
3013
3014inline_size int
3015infy_newfd (void)
3016{
3017#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3018 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3019 if (fd >= 0)
3020 return fd;
3021#endif
3022 return inotify_init ();
3023}
3024
3025inline_size void
1934infy_init (EV_P) 3026infy_init (EV_P)
1935{ 3027{
1936 if (fs_fd != -2) 3028 if (fs_fd != -2)
1937 return; 3029 return;
1938 3030
3031 fs_fd = -1;
3032
3033 check_2625 (EV_A);
3034
1939 fs_fd = inotify_init (); 3035 fs_fd = infy_newfd ();
1940 3036
1941 if (fs_fd >= 0) 3037 if (fs_fd >= 0)
1942 { 3038 {
3039 fd_intern (fs_fd);
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI); 3041 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 3042 ev_io_start (EV_A_ &fs_w);
3043 ev_unref (EV_A);
1946 } 3044 }
1947} 3045}
1948 3046
1949void inline_size 3047inline_size void
1950infy_fork (EV_P) 3048infy_fork (EV_P)
1951{ 3049{
1952 int slot; 3050 int slot;
1953 3051
1954 if (fs_fd < 0) 3052 if (fs_fd < 0)
1955 return; 3053 return;
1956 3054
3055 ev_ref (EV_A);
3056 ev_io_stop (EV_A_ &fs_w);
1957 close (fs_fd); 3057 close (fs_fd);
1958 fs_fd = inotify_init (); 3058 fs_fd = infy_newfd ();
3059
3060 if (fs_fd >= 0)
3061 {
3062 fd_intern (fs_fd);
3063 ev_io_set (&fs_w, fs_fd, EV_READ);
3064 ev_io_start (EV_A_ &fs_w);
3065 ev_unref (EV_A);
3066 }
1959 3067
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3068 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1961 { 3069 {
1962 WL w_ = fs_hash [slot].head; 3070 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0; 3071 fs_hash [slot].head = 0;
1970 w->wd = -1; 3078 w->wd = -1;
1971 3079
1972 if (fs_fd >= 0) 3080 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 3081 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 3082 else
3083 {
3084 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3085 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1975 ev_timer_start (EV_A_ &w->timer); 3086 ev_timer_again (EV_A_ &w->timer);
3087 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3088 }
1976 } 3089 }
1977
1978 } 3090 }
1979} 3091}
1980 3092
3093#endif
3094
3095#ifdef _WIN32
3096# define EV_LSTAT(p,b) _stati64 (p, b)
3097#else
3098# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 3099#endif
1982 3100
1983void 3101void
1984ev_stat_stat (EV_P_ ev_stat *w) 3102ev_stat_stat (EV_P_ ev_stat *w)
1985{ 3103{
1992static void noinline 3110static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{ 3112{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996 3114
1997 /* we copy this here each the time so that */ 3115 ev_statdata prev = w->attr;
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w); 3116 ev_stat_stat (EV_A_ w);
2001 3117
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3118 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if ( 3119 if (
2004 w->prev.st_dev != w->attr.st_dev 3120 prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino 3121 || prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode 3122 || prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink 3123 || prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid 3124 || prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid 3125 || prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev 3126 || prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size 3127 || prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime 3128 || prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 3129 || prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 3130 || prev.st_ctime != w->attr.st_ctime
2015 ) { 3131 ) {
3132 /* we only update w->prev on actual differences */
3133 /* in case we test more often than invoke the callback, */
3134 /* to ensure that prev is always different to attr */
3135 w->prev = prev;
3136
2016 #if EV_USE_INOTIFY 3137 #if EV_USE_INOTIFY
3138 if (fs_fd >= 0)
3139 {
2017 infy_del (EV_A_ w); 3140 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 3141 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 3142 ev_stat_stat (EV_A_ w); /* avoid race... */
3143 }
2020 #endif 3144 #endif
2021 3145
2022 ev_feed_event (EV_A_ w, EV_STAT); 3146 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 3147 }
2024} 3148}
2027ev_stat_start (EV_P_ ev_stat *w) 3151ev_stat_start (EV_P_ ev_stat *w)
2028{ 3152{
2029 if (expect_false (ev_is_active (w))) 3153 if (expect_false (ev_is_active (w)))
2030 return; 3154 return;
2031 3155
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2037 3157
3158 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 3159 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 3160
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3161 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 3162 ev_set_priority (&w->timer, ev_priority (w));
2043 3163
2044#if EV_USE_INOTIFY 3164#if EV_USE_INOTIFY
2045 infy_init (EV_A); 3165 infy_init (EV_A);
2046 3166
2047 if (fs_fd >= 0) 3167 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 3168 infy_add (EV_A_ w);
2049 else 3169 else
2050#endif 3170#endif
3171 {
2051 ev_timer_start (EV_A_ &w->timer); 3172 ev_timer_again (EV_A_ &w->timer);
3173 ev_unref (EV_A);
3174 }
2052 3175
2053 ev_start (EV_A_ (W)w, 1); 3176 ev_start (EV_A_ (W)w, 1);
3177
3178 EV_FREQUENT_CHECK;
2054} 3179}
2055 3180
2056void 3181void
2057ev_stat_stop (EV_P_ ev_stat *w) 3182ev_stat_stop (EV_P_ ev_stat *w)
2058{ 3183{
2059 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2061 return; 3186 return;
2062 3187
3188 EV_FREQUENT_CHECK;
3189
2063#if EV_USE_INOTIFY 3190#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 3191 infy_del (EV_A_ w);
2065#endif 3192#endif
3193
3194 if (ev_is_active (&w->timer))
3195 {
3196 ev_ref (EV_A);
2066 ev_timer_stop (EV_A_ &w->timer); 3197 ev_timer_stop (EV_A_ &w->timer);
3198 }
2067 3199
2068 ev_stop (EV_A_ (W)w); 3200 ev_stop (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
2069} 3203}
2070#endif 3204#endif
2071 3205
2072#if EV_IDLE_ENABLE 3206#if EV_IDLE_ENABLE
2073void 3207void
2075{ 3209{
2076 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
2077 return; 3211 return;
2078 3212
2079 pri_adjust (EV_A_ (W)w); 3213 pri_adjust (EV_A_ (W)w);
3214
3215 EV_FREQUENT_CHECK;
2080 3216
2081 { 3217 {
2082 int active = ++idlecnt [ABSPRI (w)]; 3218 int active = ++idlecnt [ABSPRI (w)];
2083 3219
2084 ++idleall; 3220 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 3221 ev_start (EV_A_ (W)w, active);
2086 3222
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3223 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 3224 idles [ABSPRI (w)][active - 1] = w;
2089 } 3225 }
3226
3227 EV_FREQUENT_CHECK;
2090} 3228}
2091 3229
2092void 3230void
2093ev_idle_stop (EV_P_ ev_idle *w) 3231ev_idle_stop (EV_P_ ev_idle *w)
2094{ 3232{
2095 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2097 return; 3235 return;
2098 3236
3237 EV_FREQUENT_CHECK;
3238
2099 { 3239 {
2100 int active = ((W)w)->active; 3240 int active = ev_active (w);
2101 3241
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3242 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3243 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 3244
2105 ev_stop (EV_A_ (W)w); 3245 ev_stop (EV_A_ (W)w);
2106 --idleall; 3246 --idleall;
2107 } 3247 }
3248
3249 EV_FREQUENT_CHECK;
2108} 3250}
2109#endif 3251#endif
2110 3252
2111void 3253void
2112ev_prepare_start (EV_P_ ev_prepare *w) 3254ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 3255{
2114 if (expect_false (ev_is_active (w))) 3256 if (expect_false (ev_is_active (w)))
2115 return; 3257 return;
3258
3259 EV_FREQUENT_CHECK;
2116 3260
2117 ev_start (EV_A_ (W)w, ++preparecnt); 3261 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3262 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 3263 prepares [preparecnt - 1] = w;
3264
3265 EV_FREQUENT_CHECK;
2120} 3266}
2121 3267
2122void 3268void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 3269ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 3270{
2125 clear_pending (EV_A_ (W)w); 3271 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3272 if (expect_false (!ev_is_active (w)))
2127 return; 3273 return;
2128 3274
3275 EV_FREQUENT_CHECK;
3276
2129 { 3277 {
2130 int active = ((W)w)->active; 3278 int active = ev_active (w);
3279
2131 prepares [active - 1] = prepares [--preparecnt]; 3280 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 3281 ev_active (prepares [active - 1]) = active;
2133 } 3282 }
2134 3283
2135 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
2136} 3287}
2137 3288
2138void 3289void
2139ev_check_start (EV_P_ ev_check *w) 3290ev_check_start (EV_P_ ev_check *w)
2140{ 3291{
2141 if (expect_false (ev_is_active (w))) 3292 if (expect_false (ev_is_active (w)))
2142 return; 3293 return;
3294
3295 EV_FREQUENT_CHECK;
2143 3296
2144 ev_start (EV_A_ (W)w, ++checkcnt); 3297 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3298 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 3299 checks [checkcnt - 1] = w;
3300
3301 EV_FREQUENT_CHECK;
2147} 3302}
2148 3303
2149void 3304void
2150ev_check_stop (EV_P_ ev_check *w) 3305ev_check_stop (EV_P_ ev_check *w)
2151{ 3306{
2152 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
2154 return; 3309 return;
2155 3310
3311 EV_FREQUENT_CHECK;
3312
2156 { 3313 {
2157 int active = ((W)w)->active; 3314 int active = ev_active (w);
3315
2158 checks [active - 1] = checks [--checkcnt]; 3316 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 3317 ev_active (checks [active - 1]) = active;
2160 } 3318 }
2161 3319
2162 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
2163} 3323}
2164 3324
2165#if EV_EMBED_ENABLE 3325#if EV_EMBED_ENABLE
2166void noinline 3326void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 3327ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 3328{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 3329 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 3330}
2171 3331
2172static void 3332static void
2173embed_cb (EV_P_ ev_io *io, int revents) 3333embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 3334{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3335 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 3336
2177 if (ev_cb (w)) 3337 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3338 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 3339 else
2180 ev_embed_sweep (loop, w); 3340 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 3341}
3342
3343static void
3344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3345{
3346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3347
3348 {
3349 EV_P = w->other;
3350
3351 while (fdchangecnt)
3352 {
3353 fd_reify (EV_A);
3354 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3355 }
3356 }
3357}
3358
3359static void
3360embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3361{
3362 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3363
3364 ev_embed_stop (EV_A_ w);
3365
3366 {
3367 EV_P = w->other;
3368
3369 ev_loop_fork (EV_A);
3370 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3371 }
3372
3373 ev_embed_start (EV_A_ w);
3374}
3375
3376#if 0
3377static void
3378embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3379{
3380 ev_idle_stop (EV_A_ idle);
3381}
3382#endif
2182 3383
2183void 3384void
2184ev_embed_start (EV_P_ ev_embed *w) 3385ev_embed_start (EV_P_ ev_embed *w)
2185{ 3386{
2186 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2187 return; 3388 return;
2188 3389
2189 { 3390 {
2190 struct ev_loop *loop = w->loop; 3391 EV_P = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3392 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3393 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 3394 }
3395
3396 EV_FREQUENT_CHECK;
2194 3397
2195 ev_set_priority (&w->io, ev_priority (w)); 3398 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 3399 ev_io_start (EV_A_ &w->io);
2197 3400
3401 ev_prepare_init (&w->prepare, embed_prepare_cb);
3402 ev_set_priority (&w->prepare, EV_MINPRI);
3403 ev_prepare_start (EV_A_ &w->prepare);
3404
3405 ev_fork_init (&w->fork, embed_fork_cb);
3406 ev_fork_start (EV_A_ &w->fork);
3407
3408 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3409
2198 ev_start (EV_A_ (W)w, 1); 3410 ev_start (EV_A_ (W)w, 1);
3411
3412 EV_FREQUENT_CHECK;
2199} 3413}
2200 3414
2201void 3415void
2202ev_embed_stop (EV_P_ ev_embed *w) 3416ev_embed_stop (EV_P_ ev_embed *w)
2203{ 3417{
2204 clear_pending (EV_A_ (W)w); 3418 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3419 if (expect_false (!ev_is_active (w)))
2206 return; 3420 return;
2207 3421
3422 EV_FREQUENT_CHECK;
3423
2208 ev_io_stop (EV_A_ &w->io); 3424 ev_io_stop (EV_A_ &w->io);
3425 ev_prepare_stop (EV_A_ &w->prepare);
3426 ev_fork_stop (EV_A_ &w->fork);
2209 3427
2210 ev_stop (EV_A_ (W)w); 3428 EV_FREQUENT_CHECK;
2211} 3429}
2212#endif 3430#endif
2213 3431
2214#if EV_FORK_ENABLE 3432#if EV_FORK_ENABLE
2215void 3433void
2216ev_fork_start (EV_P_ ev_fork *w) 3434ev_fork_start (EV_P_ ev_fork *w)
2217{ 3435{
2218 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2219 return; 3437 return;
3438
3439 EV_FREQUENT_CHECK;
2220 3440
2221 ev_start (EV_A_ (W)w, ++forkcnt); 3441 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3442 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 3443 forks [forkcnt - 1] = w;
3444
3445 EV_FREQUENT_CHECK;
2224} 3446}
2225 3447
2226void 3448void
2227ev_fork_stop (EV_P_ ev_fork *w) 3449ev_fork_stop (EV_P_ ev_fork *w)
2228{ 3450{
2229 clear_pending (EV_A_ (W)w); 3451 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 3452 if (expect_false (!ev_is_active (w)))
2231 return; 3453 return;
2232 3454
3455 EV_FREQUENT_CHECK;
3456
2233 { 3457 {
2234 int active = ((W)w)->active; 3458 int active = ev_active (w);
3459
2235 forks [active - 1] = forks [--forkcnt]; 3460 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 3461 ev_active (forks [active - 1]) = active;
2237 } 3462 }
2238 3463
2239 ev_stop (EV_A_ (W)w); 3464 ev_stop (EV_A_ (W)w);
3465
3466 EV_FREQUENT_CHECK;
3467}
3468#endif
3469
3470#if EV_ASYNC_ENABLE
3471void
3472ev_async_start (EV_P_ ev_async *w)
3473{
3474 if (expect_false (ev_is_active (w)))
3475 return;
3476
3477 evpipe_init (EV_A);
3478
3479 EV_FREQUENT_CHECK;
3480
3481 ev_start (EV_A_ (W)w, ++asynccnt);
3482 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3483 asyncs [asynccnt - 1] = w;
3484
3485 EV_FREQUENT_CHECK;
3486}
3487
3488void
3489ev_async_stop (EV_P_ ev_async *w)
3490{
3491 clear_pending (EV_A_ (W)w);
3492 if (expect_false (!ev_is_active (w)))
3493 return;
3494
3495 EV_FREQUENT_CHECK;
3496
3497 {
3498 int active = ev_active (w);
3499
3500 asyncs [active - 1] = asyncs [--asynccnt];
3501 ev_active (asyncs [active - 1]) = active;
3502 }
3503
3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
3507}
3508
3509void
3510ev_async_send (EV_P_ ev_async *w)
3511{
3512 w->sent = 1;
3513 evpipe_write (EV_A_ &async_pending);
2240} 3514}
2241#endif 3515#endif
2242 3516
2243/*****************************************************************************/ 3517/*****************************************************************************/
2244 3518
2254once_cb (EV_P_ struct ev_once *once, int revents) 3528once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3529{
2256 void (*cb)(int revents, void *arg) = once->cb; 3530 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3531 void *arg = once->arg;
2258 3532
2259 ev_io_stop (EV_A_ &once->io); 3533 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3534 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3535 ev_free (once);
2262 3536
2263 cb (revents, arg); 3537 cb (revents, arg);
2264} 3538}
2265 3539
2266static void 3540static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3541once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3542{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3543 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3544
3545 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3546}
2271 3547
2272static void 3548static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3549once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3550{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3554}
2277 3555
2278void 3556void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3557ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3558{
2302 ev_timer_set (&once->to, timeout, 0.); 3580 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3581 ev_timer_start (EV_A_ &once->to);
2304 } 3582 }
2305} 3583}
2306 3584
3585/*****************************************************************************/
3586
3587#if EV_WALK_ENABLE
3588void
3589ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3590{
3591 int i, j;
3592 ev_watcher_list *wl, *wn;
3593
3594 if (types & (EV_IO | EV_EMBED))
3595 for (i = 0; i < anfdmax; ++i)
3596 for (wl = anfds [i].head; wl; )
3597 {
3598 wn = wl->next;
3599
3600#if EV_EMBED_ENABLE
3601 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3602 {
3603 if (types & EV_EMBED)
3604 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3605 }
3606 else
3607#endif
3608#if EV_USE_INOTIFY
3609 if (ev_cb ((ev_io *)wl) == infy_cb)
3610 ;
3611 else
3612#endif
3613 if ((ev_io *)wl != &pipe_w)
3614 if (types & EV_IO)
3615 cb (EV_A_ EV_IO, wl);
3616
3617 wl = wn;
3618 }
3619
3620 if (types & (EV_TIMER | EV_STAT))
3621 for (i = timercnt + HEAP0; i-- > HEAP0; )
3622#if EV_STAT_ENABLE
3623 /*TODO: timer is not always active*/
3624 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3625 {
3626 if (types & EV_STAT)
3627 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3628 }
3629 else
3630#endif
3631 if (types & EV_TIMER)
3632 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3633
3634#if EV_PERIODIC_ENABLE
3635 if (types & EV_PERIODIC)
3636 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3637 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3638#endif
3639
3640#if EV_IDLE_ENABLE
3641 if (types & EV_IDLE)
3642 for (j = NUMPRI; i--; )
3643 for (i = idlecnt [j]; i--; )
3644 cb (EV_A_ EV_IDLE, idles [j][i]);
3645#endif
3646
3647#if EV_FORK_ENABLE
3648 if (types & EV_FORK)
3649 for (i = forkcnt; i--; )
3650 if (ev_cb (forks [i]) != embed_fork_cb)
3651 cb (EV_A_ EV_FORK, forks [i]);
3652#endif
3653
3654#if EV_ASYNC_ENABLE
3655 if (types & EV_ASYNC)
3656 for (i = asynccnt; i--; )
3657 cb (EV_A_ EV_ASYNC, asyncs [i]);
3658#endif
3659
3660 if (types & EV_PREPARE)
3661 for (i = preparecnt; i--; )
3662#if EV_EMBED_ENABLE
3663 if (ev_cb (prepares [i]) != embed_prepare_cb)
3664#endif
3665 cb (EV_A_ EV_PREPARE, prepares [i]);
3666
3667 if (types & EV_CHECK)
3668 for (i = checkcnt; i--; )
3669 cb (EV_A_ EV_CHECK, checks [i]);
3670
3671 if (types & EV_SIGNAL)
3672 for (i = 0; i < EV_NSIG - 1; ++i)
3673 for (wl = signals [i].head; wl; )
3674 {
3675 wn = wl->next;
3676 cb (EV_A_ EV_SIGNAL, wl);
3677 wl = wn;
3678 }
3679
3680 if (types & EV_CHILD)
3681 for (i = EV_PID_HASHSIZE; i--; )
3682 for (wl = childs [i]; wl; )
3683 {
3684 wn = wl->next;
3685 cb (EV_A_ EV_CHILD, wl);
3686 wl = wn;
3687 }
3688/* EV_STAT 0x00001000 /* stat data changed */
3689/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3690}
3691#endif
3692
3693#if EV_MULTIPLICITY
3694 #include "ev_wrap.h"
3695#endif
3696
2307#ifdef __cplusplus 3697#ifdef __cplusplus
2308} 3698}
2309#endif 3699#endif
2310 3700

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines