ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.99 by root, Sun Nov 11 02:26:47 2007 UTC vs.
Revision 1.325 by root, Sun Jan 24 12:31:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
46# endif 76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
50# endif 95# endif
96# endif
51 97
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
54# endif 103# endif
55 104# endif
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
58# endif 111# endif
59 112# endif
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
61# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
62# endif 119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
64#endif 154#endif
65 155
66#include <math.h> 156#include <math.h>
67#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
68#include <fcntl.h> 159#include <fcntl.h>
69#include <stddef.h> 160#include <stddef.h>
70 161
71#include <stdio.h> 162#include <stdio.h>
72 163
75#include <sys/types.h> 166#include <sys/types.h>
76#include <time.h> 167#include <time.h>
77 168
78#include <signal.h> 169#include <signal.h>
79 170
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139
140#ifdef EV_H 171#ifdef EV_H
141# include EV_H 172# include EV_H
142#else 173#else
143# include "ev.h" 174# include "ev.h"
144#endif 175#endif
145 176
177#ifndef _WIN32
178# include <sys/time.h>
179# include <sys/wait.h>
180# include <unistd.h>
181#else
182# include <io.h>
183# define WIN32_LEAN_AND_MEAN
184# include <windows.h>
185# ifndef EV_SELECT_IS_WINSOCKET
186# define EV_SELECT_IS_WINSOCKET 1
187# endif
188#endif
189
190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
226
227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
231# define EV_USE_MONOTONIC 0
232# endif
233#endif
234
235#ifndef EV_USE_REALTIME
236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
245#endif
246
247#ifndef EV_USE_SELECT
248# define EV_USE_SELECT 1
249#endif
250
251#ifndef EV_USE_POLL
252# ifdef _WIN32
253# define EV_USE_POLL 0
254# else
255# define EV_USE_POLL 1
256# endif
257#endif
258
259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
263# define EV_USE_EPOLL 0
264# endif
265#endif
266
267#ifndef EV_USE_KQUEUE
268# define EV_USE_KQUEUE 0
269#endif
270
271#ifndef EV_USE_PORT
272# define EV_USE_PORT 0
273#endif
274
275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
279# define EV_USE_INOTIFY 0
280# endif
281#endif
282
283#ifndef EV_PID_HASHSIZE
284# if EV_MINIMAL
285# define EV_PID_HASHSIZE 1
286# else
287# define EV_PID_HASHSIZE 16
288# endif
289#endif
290
291#ifndef EV_INOTIFY_HASHSIZE
292# if EV_MINIMAL
293# define EV_INOTIFY_HASHSIZE 1
294# else
295# define EV_INOTIFY_HASHSIZE 16
296# endif
297#endif
298
299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349#ifdef _AIX
350/* AIX has a completely broken poll.h header */
351# undef EV_USE_POLL
352# define EV_USE_POLL 0
353#endif
354
355#ifndef CLOCK_MONOTONIC
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 0
358#endif
359
360#ifndef CLOCK_REALTIME
361# undef EV_USE_REALTIME
362# define EV_USE_REALTIME 0
363#endif
364
365#if !EV_STAT_ENABLE
366# undef EV_USE_INOTIFY
367# define EV_USE_INOTIFY 0
368#endif
369
370#if !EV_USE_NANOSLEEP
371# ifndef _WIN32
372# include <sys/select.h>
373# endif
374#endif
375
376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
385#endif
386
387#if EV_SELECT_IS_WINSOCKET
388# include <winsock.h>
389#endif
390
391#if EV_USE_EVENTFD
392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# ifdef O_CLOEXEC
399# define EFD_CLOEXEC O_CLOEXEC
400# else
401# define EFD_CLOEXEC 02000000
402# endif
403# endif
404# ifdef __cplusplus
405extern "C" {
406# endif
407int eventfd (unsigned int initval, int flags);
408# ifdef __cplusplus
409}
410# endif
411#endif
412
413#if EV_USE_SIGNALFD
414/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
415# include <stdint.h>
416# ifndef SFD_NONBLOCK
417# define SFD_NONBLOCK O_NONBLOCK
418# endif
419# ifndef SFD_CLOEXEC
420# ifdef O_CLOEXEC
421# define SFD_CLOEXEC O_CLOEXEC
422# else
423# define SFD_CLOEXEC 02000000
424# endif
425# endif
426# ifdef __cplusplus
427extern "C" {
428# endif
429int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436# ifdef __cplusplus
437}
438# endif
439#endif
440
441
442/**/
443
444#if EV_VERIFY >= 3
445# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
446#else
447# define EV_FREQUENT_CHECK do { } while (0)
448#endif
449
450/*
451 * This is used to avoid floating point rounding problems.
452 * It is added to ev_rt_now when scheduling periodics
453 * to ensure progress, time-wise, even when rounding
454 * errors are against us.
455 * This value is good at least till the year 4000.
456 * Better solutions welcome.
457 */
458#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
459
460#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
461#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
462
146#if __GNUC__ >= 3 463#if __GNUC__ >= 4
147# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
148# define inline inline 465# define noinline __attribute__ ((noinline))
149#else 466#else
150# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
151# define inline static 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
152#endif 472#endif
153 473
154#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
156 477
478#if EV_MINIMAL
479# define inline_speed static noinline
480#else
481# define inline_speed static inline
482#endif
483
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
159 491
492#define EMPTY /* required for microsofts broken pseudo-c compiler */
493#define EMPTY2(a,b) /* used to suppress some warnings */
494
160typedef struct ev_watcher *W; 495typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
163 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architetcures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
165 511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
521
166#ifdef WIN32 522#ifdef _WIN32
167# include "ev_win32.c" 523# include "ev_win32.c"
168#endif 524#endif
169 525
170/*****************************************************************************/ 526/*****************************************************************************/
171 527
172static void (*syserr_cb)(const char *msg); 528static void (*syserr_cb)(const char *msg);
173 529
530void
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 531ev_set_syserr_cb (void (*cb)(const char *msg))
175{ 532{
176 syserr_cb = cb; 533 syserr_cb = cb;
177} 534}
178 535
179static void 536static void noinline
180syserr (const char *msg) 537ev_syserr (const char *msg)
181{ 538{
182 if (!msg) 539 if (!msg)
183 msg = "(libev) system error"; 540 msg = "(libev) system error";
184 541
185 if (syserr_cb) 542 if (syserr_cb)
189 perror (msg); 546 perror (msg);
190 abort (); 547 abort ();
191 } 548 }
192} 549}
193 550
551static void *
552ev_realloc_emul (void *ptr, long size)
553{
554 /* some systems, notably openbsd and darwin, fail to properly
555 * implement realloc (x, 0) (as required by both ansi c-98 and
556 * the single unix specification, so work around them here.
557 */
558
559 if (size)
560 return realloc (ptr, size);
561
562 free (ptr);
563 return 0;
564}
565
194static void *(*alloc)(void *ptr, long size); 566static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
195 567
568void
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 569ev_set_allocator (void *(*cb)(void *ptr, long size))
197{ 570{
198 alloc = cb; 571 alloc = cb;
199} 572}
200 573
201static void * 574inline_speed void *
202ev_realloc (void *ptr, long size) 575ev_realloc (void *ptr, long size)
203{ 576{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 577 ptr = alloc (ptr, size);
205 578
206 if (!ptr && size) 579 if (!ptr && size)
207 { 580 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 581 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort (); 582 abort ();
215#define ev_malloc(size) ev_realloc (0, (size)) 588#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0) 589#define ev_free(ptr) ev_realloc ((ptr), 0)
217 590
218/*****************************************************************************/ 591/*****************************************************************************/
219 592
593/* set in reify when reification needed */
594#define EV_ANFD_REIFY 1
595
596/* file descriptor info structure */
220typedef struct 597typedef struct
221{ 598{
222 WL head; 599 WL head;
223 unsigned char events; 600 unsigned char events; /* the events watched for */
601 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
602 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
224 unsigned char reify; 603 unsigned char unused;
604#if EV_USE_EPOLL
605 unsigned int egen; /* generation counter to counter epoll bugs */
606#endif
607#if EV_SELECT_IS_WINSOCKET
608 SOCKET handle;
609#endif
225} ANFD; 610} ANFD;
226 611
612/* stores the pending event set for a given watcher */
227typedef struct 613typedef struct
228{ 614{
229 W w; 615 W w;
230 int events; 616 int events; /* the pending event set for the given watcher */
231} ANPENDING; 617} ANPENDING;
618
619#if EV_USE_INOTIFY
620/* hash table entry per inotify-id */
621typedef struct
622{
623 WL head;
624} ANFS;
625#endif
626
627/* Heap Entry */
628#if EV_HEAP_CACHE_AT
629 /* a heap element */
630 typedef struct {
631 ev_tstamp at;
632 WT w;
633 } ANHE;
634
635 #define ANHE_w(he) (he).w /* access watcher, read-write */
636 #define ANHE_at(he) (he).at /* access cached at, read-only */
637 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
638#else
639 /* a heap element */
640 typedef WT ANHE;
641
642 #define ANHE_w(he) (he)
643 #define ANHE_at(he) (he)->at
644 #define ANHE_at_cache(he)
645#endif
232 646
233#if EV_MULTIPLICITY 647#if EV_MULTIPLICITY
234 648
235 struct ev_loop 649 struct ev_loop
236 { 650 {
240 #include "ev_vars.h" 654 #include "ev_vars.h"
241 #undef VAR 655 #undef VAR
242 }; 656 };
243 #include "ev_wrap.h" 657 #include "ev_wrap.h"
244 658
245 struct ev_loop default_loop_struct; 659 static struct ev_loop default_loop_struct;
246 static struct ev_loop *default_loop; 660 struct ev_loop *ev_default_loop_ptr;
247 661
248#else 662#else
249 663
250 ev_tstamp ev_rt_now; 664 ev_tstamp ev_rt_now;
251 #define VAR(name,decl) static decl; 665 #define VAR(name,decl) static decl;
252 #include "ev_vars.h" 666 #include "ev_vars.h"
253 #undef VAR 667 #undef VAR
254 668
255 static int default_loop; 669 static int ev_default_loop_ptr;
256 670
257#endif 671#endif
672
673#if EV_MINIMAL < 2
674# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
675# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
676# define EV_INVOKE_PENDING invoke_cb (EV_A)
677#else
678# define EV_RELEASE_CB (void)0
679# define EV_ACQUIRE_CB (void)0
680# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
681#endif
682
683#define EVUNLOOP_RECURSE 0x80
258 684
259/*****************************************************************************/ 685/*****************************************************************************/
260 686
687#ifndef EV_HAVE_EV_TIME
261ev_tstamp 688ev_tstamp
262ev_time (void) 689ev_time (void)
263{ 690{
264#if EV_USE_REALTIME 691#if EV_USE_REALTIME
692 if (expect_true (have_realtime))
693 {
265 struct timespec ts; 694 struct timespec ts;
266 clock_gettime (CLOCK_REALTIME, &ts); 695 clock_gettime (CLOCK_REALTIME, &ts);
267 return ts.tv_sec + ts.tv_nsec * 1e-9; 696 return ts.tv_sec + ts.tv_nsec * 1e-9;
268#else 697 }
698#endif
699
269 struct timeval tv; 700 struct timeval tv;
270 gettimeofday (&tv, 0); 701 gettimeofday (&tv, 0);
271 return tv.tv_sec + tv.tv_usec * 1e-6; 702 return tv.tv_sec + tv.tv_usec * 1e-6;
272#endif
273} 703}
704#endif
274 705
275inline ev_tstamp 706inline_size ev_tstamp
276get_clock (void) 707get_clock (void)
277{ 708{
278#if EV_USE_MONOTONIC 709#if EV_USE_MONOTONIC
279 if (expect_true (have_monotonic)) 710 if (expect_true (have_monotonic))
280 { 711 {
293{ 724{
294 return ev_rt_now; 725 return ev_rt_now;
295} 726}
296#endif 727#endif
297 728
298#define array_roundsize(type,n) ((n) | 4 & ~3) 729void
730ev_sleep (ev_tstamp delay)
731{
732 if (delay > 0.)
733 {
734#if EV_USE_NANOSLEEP
735 struct timespec ts;
736
737 ts.tv_sec = (time_t)delay;
738 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
739
740 nanosleep (&ts, 0);
741#elif defined(_WIN32)
742 Sleep ((unsigned long)(delay * 1e3));
743#else
744 struct timeval tv;
745
746 tv.tv_sec = (time_t)delay;
747 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
748
749 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
750 /* something not guaranteed by newer posix versions, but guaranteed */
751 /* by older ones */
752 select (0, 0, 0, 0, &tv);
753#endif
754 }
755}
756
757/*****************************************************************************/
758
759#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
760
761/* find a suitable new size for the given array, */
762/* hopefully by rounding to a ncie-to-malloc size */
763inline_size int
764array_nextsize (int elem, int cur, int cnt)
765{
766 int ncur = cur + 1;
767
768 do
769 ncur <<= 1;
770 while (cnt > ncur);
771
772 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
773 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
774 {
775 ncur *= elem;
776 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
777 ncur = ncur - sizeof (void *) * 4;
778 ncur /= elem;
779 }
780
781 return ncur;
782}
783
784static noinline void *
785array_realloc (int elem, void *base, int *cur, int cnt)
786{
787 *cur = array_nextsize (elem, *cur, cnt);
788 return ev_realloc (base, elem * *cur);
789}
790
791#define array_init_zero(base,count) \
792 memset ((void *)(base), 0, sizeof (*(base)) * (count))
299 793
300#define array_needsize(type,base,cur,cnt,init) \ 794#define array_needsize(type,base,cur,cnt,init) \
301 if (expect_false ((cnt) > cur)) \ 795 if (expect_false ((cnt) > (cur))) \
302 { \ 796 { \
303 int newcnt = cur; \ 797 int ocur_ = (cur); \
304 do \ 798 (base) = (type *)array_realloc \
305 { \ 799 (sizeof (type), (base), &(cur), (cnt)); \
306 newcnt = array_roundsize (type, newcnt << 1); \ 800 init ((base) + (ocur_), (cur) - ocur_); \
307 } \
308 while ((cnt) > newcnt); \
309 \
310 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
311 init (base + cur, newcnt - cur); \
312 cur = newcnt; \
313 } 801 }
314 802
803#if 0
315#define array_slim(type,stem) \ 804#define array_slim(type,stem) \
316 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 805 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
317 { \ 806 { \
318 stem ## max = array_roundsize (stem ## cnt >> 1); \ 807 stem ## max = array_roundsize (stem ## cnt >> 1); \
319 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 808 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
320 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 809 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
321 } 810 }
322 811#endif
323/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
324/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
325#define array_free_microshit(stem) \
326 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
327 812
328#define array_free(stem, idx) \ 813#define array_free(stem, idx) \
329 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 814 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
330 815
331/*****************************************************************************/ 816/*****************************************************************************/
332 817
333static void 818/* dummy callback for pending events */
334anfds_init (ANFD *base, int count) 819static void noinline
820pendingcb (EV_P_ ev_prepare *w, int revents)
335{ 821{
336 while (count--)
337 {
338 base->head = 0;
339 base->events = EV_NONE;
340 base->reify = 0;
341
342 ++base;
343 }
344} 822}
345 823
346void 824void noinline
347ev_feed_event (EV_P_ void *w, int revents) 825ev_feed_event (EV_P_ void *w, int revents)
348{ 826{
349 W w_ = (W)w; 827 W w_ = (W)w;
828 int pri = ABSPRI (w_);
350 829
351 if (w_->pending) 830 if (expect_false (w_->pending))
831 pendings [pri][w_->pending - 1].events |= revents;
832 else
352 { 833 {
834 w_->pending = ++pendingcnt [pri];
835 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
836 pendings [pri][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 837 pendings [pri][w_->pending - 1].events = revents;
354 return;
355 } 838 }
356
357 w_->pending = ++pendingcnt [ABSPRI (w_)];
358 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
359 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
360 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
361} 839}
362 840
363static void 841inline_speed void
842feed_reverse (EV_P_ W w)
843{
844 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
845 rfeeds [rfeedcnt++] = w;
846}
847
848inline_size void
849feed_reverse_done (EV_P_ int revents)
850{
851 do
852 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
853 while (rfeedcnt);
854}
855
856inline_speed void
364queue_events (EV_P_ W *events, int eventcnt, int type) 857queue_events (EV_P_ W *events, int eventcnt, int type)
365{ 858{
366 int i; 859 int i;
367 860
368 for (i = 0; i < eventcnt; ++i) 861 for (i = 0; i < eventcnt; ++i)
369 ev_feed_event (EV_A_ events [i], type); 862 ev_feed_event (EV_A_ events [i], type);
370} 863}
371 864
865/*****************************************************************************/
866
372inline void 867inline_speed void
373fd_event (EV_P_ int fd, int revents) 868fd_event_nc (EV_P_ int fd, int revents)
374{ 869{
375 ANFD *anfd = anfds + fd; 870 ANFD *anfd = anfds + fd;
376 struct ev_io *w; 871 ev_io *w;
377 872
378 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 873 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
379 { 874 {
380 int ev = w->events & revents; 875 int ev = w->events & revents;
381 876
382 if (ev) 877 if (ev)
383 ev_feed_event (EV_A_ (W)w, ev); 878 ev_feed_event (EV_A_ (W)w, ev);
384 } 879 }
385} 880}
386 881
882/* do not submit kernel events for fds that have reify set */
883/* because that means they changed while we were polling for new events */
884inline_speed void
885fd_event (EV_P_ int fd, int revents)
886{
887 ANFD *anfd = anfds + fd;
888
889 if (expect_true (!anfd->reify))
890 fd_event_nc (EV_A_ fd, revents);
891}
892
387void 893void
388ev_feed_fd_event (EV_P_ int fd, int revents) 894ev_feed_fd_event (EV_P_ int fd, int revents)
389{ 895{
896 if (fd >= 0 && fd < anfdmax)
390 fd_event (EV_A_ fd, revents); 897 fd_event_nc (EV_A_ fd, revents);
391} 898}
392 899
393/*****************************************************************************/ 900/* make sure the external fd watch events are in-sync */
394 901/* with the kernel/libev internal state */
395static void 902inline_size void
396fd_reify (EV_P) 903fd_reify (EV_P)
397{ 904{
398 int i; 905 int i;
399 906
400 for (i = 0; i < fdchangecnt; ++i) 907 for (i = 0; i < fdchangecnt; ++i)
401 { 908 {
402 int fd = fdchanges [i]; 909 int fd = fdchanges [i];
403 ANFD *anfd = anfds + fd; 910 ANFD *anfd = anfds + fd;
404 struct ev_io *w; 911 ev_io *w;
405 912
406 int events = 0; 913 unsigned char events = 0;
407 914
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 915 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
409 events |= w->events; 916 events |= (unsigned char)w->events;
410 917
918#if EV_SELECT_IS_WINSOCKET
919 if (events)
920 {
921 unsigned long arg;
922 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
923 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
924 }
925#endif
926
927 {
928 unsigned char o_events = anfd->events;
929 unsigned char o_reify = anfd->reify;
930
411 anfd->reify = 0; 931 anfd->reify = 0;
412
413 method_modify (EV_A_ fd, anfd->events, events);
414 anfd->events = events; 932 anfd->events = events;
933
934 if (o_events != events || o_reify & EV__IOFDSET)
935 backend_modify (EV_A_ fd, o_events, events);
936 }
415 } 937 }
416 938
417 fdchangecnt = 0; 939 fdchangecnt = 0;
418} 940}
419 941
420static void 942/* something about the given fd changed */
943inline_size void
421fd_change (EV_P_ int fd) 944fd_change (EV_P_ int fd, int flags)
422{ 945{
423 if (anfds [fd].reify) 946 unsigned char reify = anfds [fd].reify;
424 return;
425
426 anfds [fd].reify = 1; 947 anfds [fd].reify |= flags;
427 948
949 if (expect_true (!reify))
950 {
428 ++fdchangecnt; 951 ++fdchangecnt;
429 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 952 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
430 fdchanges [fdchangecnt - 1] = fd; 953 fdchanges [fdchangecnt - 1] = fd;
954 }
431} 955}
432 956
433static void 957/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
958inline_speed void
434fd_kill (EV_P_ int fd) 959fd_kill (EV_P_ int fd)
435{ 960{
436 struct ev_io *w; 961 ev_io *w;
437 962
438 while ((w = (struct ev_io *)anfds [fd].head)) 963 while ((w = (ev_io *)anfds [fd].head))
439 { 964 {
440 ev_io_stop (EV_A_ w); 965 ev_io_stop (EV_A_ w);
441 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 966 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
442 } 967 }
443} 968}
444 969
445static int 970/* check whether the given fd is atcually valid, for error recovery */
971inline_size int
446fd_valid (int fd) 972fd_valid (int fd)
447{ 973{
448#ifdef WIN32 974#ifdef _WIN32
449 return !!win32_get_osfhandle (fd); 975 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
450#else 976#else
451 return fcntl (fd, F_GETFD) != -1; 977 return fcntl (fd, F_GETFD) != -1;
452#endif 978#endif
453} 979}
454 980
455/* called on EBADF to verify fds */ 981/* called on EBADF to verify fds */
456static void 982static void noinline
457fd_ebadf (EV_P) 983fd_ebadf (EV_P)
458{ 984{
459 int fd; 985 int fd;
460 986
461 for (fd = 0; fd < anfdmax; ++fd) 987 for (fd = 0; fd < anfdmax; ++fd)
462 if (anfds [fd].events) 988 if (anfds [fd].events)
463 if (!fd_valid (fd) == -1 && errno == EBADF) 989 if (!fd_valid (fd) && errno == EBADF)
464 fd_kill (EV_A_ fd); 990 fd_kill (EV_A_ fd);
465} 991}
466 992
467/* called on ENOMEM in select/poll to kill some fds and retry */ 993/* called on ENOMEM in select/poll to kill some fds and retry */
468static void 994static void noinline
469fd_enomem (EV_P) 995fd_enomem (EV_P)
470{ 996{
471 int fd; 997 int fd;
472 998
473 for (fd = anfdmax; fd--; ) 999 for (fd = anfdmax; fd--; )
474 if (anfds [fd].events) 1000 if (anfds [fd].events)
475 { 1001 {
476 fd_kill (EV_A_ fd); 1002 fd_kill (EV_A_ fd);
477 return; 1003 break;
478 } 1004 }
479} 1005}
480 1006
481/* usually called after fork if method needs to re-arm all fds from scratch */ 1007/* usually called after fork if backend needs to re-arm all fds from scratch */
482static void 1008static void noinline
483fd_rearm_all (EV_P) 1009fd_rearm_all (EV_P)
484{ 1010{
485 int fd; 1011 int fd;
486 1012
487 /* this should be highly optimised to not do anything but set a flag */
488 for (fd = 0; fd < anfdmax; ++fd) 1013 for (fd = 0; fd < anfdmax; ++fd)
489 if (anfds [fd].events) 1014 if (anfds [fd].events)
490 { 1015 {
491 anfds [fd].events = 0; 1016 anfds [fd].events = 0;
492 fd_change (EV_A_ fd); 1017 anfds [fd].emask = 0;
1018 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
493 } 1019 }
494} 1020}
495 1021
496/*****************************************************************************/ 1022/*****************************************************************************/
497 1023
1024/*
1025 * the heap functions want a real array index. array index 0 uis guaranteed to not
1026 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1027 * the branching factor of the d-tree.
1028 */
1029
1030/*
1031 * at the moment we allow libev the luxury of two heaps,
1032 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1033 * which is more cache-efficient.
1034 * the difference is about 5% with 50000+ watchers.
1035 */
1036#if EV_USE_4HEAP
1037
1038#define DHEAP 4
1039#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1040#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1041#define UPHEAP_DONE(p,k) ((p) == (k))
1042
1043/* away from the root */
1044inline_speed void
1045downheap (ANHE *heap, int N, int k)
1046{
1047 ANHE he = heap [k];
1048 ANHE *E = heap + N + HEAP0;
1049
1050 for (;;)
1051 {
1052 ev_tstamp minat;
1053 ANHE *minpos;
1054 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1055
1056 /* find minimum child */
1057 if (expect_true (pos + DHEAP - 1 < E))
1058 {
1059 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else if (pos < E)
1065 {
1066 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1067 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1068 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1069 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1070 }
1071 else
1072 break;
1073
1074 if (ANHE_at (he) <= minat)
1075 break;
1076
1077 heap [k] = *minpos;
1078 ev_active (ANHE_w (*minpos)) = k;
1079
1080 k = minpos - heap;
1081 }
1082
1083 heap [k] = he;
1084 ev_active (ANHE_w (he)) = k;
1085}
1086
1087#else /* 4HEAP */
1088
1089#define HEAP0 1
1090#define HPARENT(k) ((k) >> 1)
1091#define UPHEAP_DONE(p,k) (!(p))
1092
1093/* away from the root */
1094inline_speed void
1095downheap (ANHE *heap, int N, int k)
1096{
1097 ANHE he = heap [k];
1098
1099 for (;;)
1100 {
1101 int c = k << 1;
1102
1103 if (c >= N + HEAP0)
1104 break;
1105
1106 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1107 ? 1 : 0;
1108
1109 if (ANHE_at (he) <= ANHE_at (heap [c]))
1110 break;
1111
1112 heap [k] = heap [c];
1113 ev_active (ANHE_w (heap [k])) = k;
1114
1115 k = c;
1116 }
1117
1118 heap [k] = he;
1119 ev_active (ANHE_w (he)) = k;
1120}
1121#endif
1122
1123/* towards the root */
1124inline_speed void
1125upheap (ANHE *heap, int k)
1126{
1127 ANHE he = heap [k];
1128
1129 for (;;)
1130 {
1131 int p = HPARENT (k);
1132
1133 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1134 break;
1135
1136 heap [k] = heap [p];
1137 ev_active (ANHE_w (heap [k])) = k;
1138 k = p;
1139 }
1140
1141 heap [k] = he;
1142 ev_active (ANHE_w (he)) = k;
1143}
1144
1145/* move an element suitably so it is in a correct place */
1146inline_size void
1147adjustheap (ANHE *heap, int N, int k)
1148{
1149 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1150 upheap (heap, k);
1151 else
1152 downheap (heap, N, k);
1153}
1154
1155/* rebuild the heap: this function is used only once and executed rarely */
1156inline_size void
1157reheap (ANHE *heap, int N)
1158{
1159 int i;
1160
1161 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1162 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1163 for (i = 0; i < N; ++i)
1164 upheap (heap, i + HEAP0);
1165}
1166
1167/*****************************************************************************/
1168
1169/* associate signal watchers to a signal signal */
1170typedef struct
1171{
1172 EV_ATOMIC_T pending;
1173#if EV_MULTIPLICITY
1174 EV_P;
1175#endif
1176 WL head;
1177} ANSIG;
1178
1179static ANSIG signals [EV_NSIG - 1];
1180
1181/*****************************************************************************/
1182
1183/* used to prepare libev internal fd's */
1184/* this is not fork-safe */
1185inline_speed void
1186fd_intern (int fd)
1187{
1188#ifdef _WIN32
1189 unsigned long arg = 1;
1190 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1191#else
1192 fcntl (fd, F_SETFD, FD_CLOEXEC);
1193 fcntl (fd, F_SETFL, O_NONBLOCK);
1194#endif
1195}
1196
1197static void noinline
1198evpipe_init (EV_P)
1199{
1200 if (!ev_is_active (&pipe_w))
1201 {
1202#if EV_USE_EVENTFD
1203 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1204 if (evfd < 0 && errno == EINVAL)
1205 evfd = eventfd (0, 0);
1206
1207 if (evfd >= 0)
1208 {
1209 evpipe [0] = -1;
1210 fd_intern (evfd); /* doing it twice doesn't hurt */
1211 ev_io_set (&pipe_w, evfd, EV_READ);
1212 }
1213 else
1214#endif
1215 {
1216 while (pipe (evpipe))
1217 ev_syserr ("(libev) error creating signal/async pipe");
1218
1219 fd_intern (evpipe [0]);
1220 fd_intern (evpipe [1]);
1221 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1222 }
1223
1224 ev_io_start (EV_A_ &pipe_w);
1225 ev_unref (EV_A); /* watcher should not keep loop alive */
1226 }
1227}
1228
1229inline_size void
1230evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1231{
1232 if (!*flag)
1233 {
1234 int old_errno = errno; /* save errno because write might clobber it */
1235
1236 *flag = 1;
1237
1238#if EV_USE_EVENTFD
1239 if (evfd >= 0)
1240 {
1241 uint64_t counter = 1;
1242 write (evfd, &counter, sizeof (uint64_t));
1243 }
1244 else
1245#endif
1246 write (evpipe [1], &old_errno, 1);
1247
1248 errno = old_errno;
1249 }
1250}
1251
1252/* called whenever the libev signal pipe */
1253/* got some events (signal, async) */
498static void 1254static void
499upheap (WT *heap, int k) 1255pipecb (EV_P_ ev_io *iow, int revents)
500{ 1256{
501 WT w = heap [k]; 1257 int i;
502 1258
503 while (k && heap [k >> 1]->at > w->at) 1259#if EV_USE_EVENTFD
504 { 1260 if (evfd >= 0)
505 heap [k] = heap [k >> 1];
506 ((W)heap [k])->active = k + 1;
507 k >>= 1;
508 } 1261 {
1262 uint64_t counter;
1263 read (evfd, &counter, sizeof (uint64_t));
1264 }
1265 else
1266#endif
1267 {
1268 char dummy;
1269 read (evpipe [0], &dummy, 1);
1270 }
509 1271
510 heap [k] = w; 1272 if (sig_pending)
511 ((W)heap [k])->active = k + 1; 1273 {
1274 sig_pending = 0;
512 1275
1276 for (i = EV_NSIG - 1; i--; )
1277 if (expect_false (signals [i].pending))
1278 ev_feed_signal_event (EV_A_ i + 1);
1279 }
1280
1281#if EV_ASYNC_ENABLE
1282 if (async_pending)
1283 {
1284 async_pending = 0;
1285
1286 for (i = asynccnt; i--; )
1287 if (asyncs [i]->sent)
1288 {
1289 asyncs [i]->sent = 0;
1290 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1291 }
1292 }
1293#endif
513} 1294}
1295
1296/*****************************************************************************/
514 1297
515static void 1298static void
516downheap (WT *heap, int N, int k)
517{
518 WT w = heap [k];
519
520 while (k < (N >> 1))
521 {
522 int j = k << 1;
523
524 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
525 ++j;
526
527 if (w->at <= heap [j]->at)
528 break;
529
530 heap [k] = heap [j];
531 ((W)heap [k])->active = k + 1;
532 k = j;
533 }
534
535 heap [k] = w;
536 ((W)heap [k])->active = k + 1;
537}
538
539inline void
540adjustheap (WT *heap, int N, int k)
541{
542 upheap (heap, k);
543 downheap (heap, N, k);
544}
545
546/*****************************************************************************/
547
548typedef struct
549{
550 WL head;
551 sig_atomic_t volatile gotsig;
552} ANSIG;
553
554static ANSIG *signals;
555static int signalmax;
556
557static int sigpipe [2];
558static sig_atomic_t volatile gotsig;
559static struct ev_io sigev;
560
561static void
562signals_init (ANSIG *base, int count)
563{
564 while (count--)
565 {
566 base->head = 0;
567 base->gotsig = 0;
568
569 ++base;
570 }
571}
572
573static void
574sighandler (int signum) 1299ev_sighandler (int signum)
575{ 1300{
576#if WIN32 1301#if EV_MULTIPLICITY
577 signal (signum, sighandler); 1302 EV_P = signals [signum - 1].loop;
578#endif 1303#endif
579 1304
580 signals [signum - 1].gotsig = 1;
581
582 if (!gotsig)
583 {
584 int old_errno = errno;
585 gotsig = 1;
586#ifdef WIN32 1305#ifdef _WIN32
587 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1306 signal (signum, ev_sighandler);
588#else
589 write (sigpipe [1], &signum, 1);
590#endif 1307#endif
591 errno = old_errno;
592 }
593}
594 1308
595void 1309 signals [signum - 1].pending = 1;
1310 evpipe_write (EV_A_ &sig_pending);
1311}
1312
1313void noinline
596ev_feed_signal_event (EV_P_ int signum) 1314ev_feed_signal_event (EV_P_ int signum)
597{ 1315{
598 WL w; 1316 WL w;
599 1317
1318 if (expect_false (signum <= 0 || signum > EV_NSIG))
1319 return;
1320
1321 --signum;
1322
600#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
601 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1324 /* it is permissible to try to feed a signal to the wrong loop */
602#endif 1325 /* or, likely more useful, feeding a signal nobody is waiting for */
603 1326
604 --signum; 1327 if (expect_false (signals [signum].loop != EV_A))
605
606 if (signum < 0 || signum >= signalmax)
607 return; 1328 return;
1329#endif
608 1330
609 signals [signum].gotsig = 0; 1331 signals [signum].pending = 0;
610 1332
611 for (w = signals [signum].head; w; w = w->next) 1333 for (w = signals [signum].head; w; w = w->next)
612 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1334 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
613} 1335}
614 1336
1337#if EV_USE_SIGNALFD
615static void 1338static void
616sigcb (EV_P_ struct ev_io *iow, int revents) 1339sigfdcb (EV_P_ ev_io *iow, int revents)
617{ 1340{
618 int signum; 1341 struct signalfd_siginfo si[2], *sip; /* these structs are big */
619 1342
620#ifdef WIN32 1343 for (;;)
621 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1344 {
622#else 1345 ssize_t res = read (sigfd, si, sizeof (si));
623 read (sigpipe [0], &revents, 1);
624#endif
625 gotsig = 0;
626 1346
627 for (signum = signalmax; signum--; ) 1347 /* not ISO-C, as res might be -1, but works with SuS */
628 if (signals [signum].gotsig) 1348 for (sip = si; (char *)sip < (char *)si + res; ++sip)
629 ev_feed_signal_event (EV_A_ signum + 1); 1349 ev_feed_signal_event (EV_A_ sip->ssi_signo);
630}
631 1350
632static void 1351 if (res < (ssize_t)sizeof (si))
633siginit (EV_P) 1352 break;
634{ 1353 }
635#ifndef WIN32
636 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
637 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
638
639 /* rather than sort out wether we really need nb, set it */
640 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
641 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
642#endif
643
644 ev_io_set (&sigev, sigpipe [0], EV_READ);
645 ev_io_start (EV_A_ &sigev);
646 ev_unref (EV_A); /* child watcher should not keep loop alive */
647} 1354}
1355#endif
648 1356
649/*****************************************************************************/ 1357/*****************************************************************************/
650 1358
651static struct ev_child *childs [PID_HASHSIZE]; 1359static WL childs [EV_PID_HASHSIZE];
652 1360
653#ifndef WIN32 1361#ifndef _WIN32
654 1362
655static struct ev_signal childev; 1363static ev_signal childev;
1364
1365#ifndef WIFCONTINUED
1366# define WIFCONTINUED(status) 0
1367#endif
1368
1369/* handle a single child status event */
1370inline_speed void
1371child_reap (EV_P_ int chain, int pid, int status)
1372{
1373 ev_child *w;
1374 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1375
1376 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1377 {
1378 if ((w->pid == pid || !w->pid)
1379 && (!traced || (w->flags & 1)))
1380 {
1381 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1382 w->rpid = pid;
1383 w->rstatus = status;
1384 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1385 }
1386 }
1387}
656 1388
657#ifndef WCONTINUED 1389#ifndef WCONTINUED
658# define WCONTINUED 0 1390# define WCONTINUED 0
659#endif 1391#endif
660 1392
1393/* called on sigchld etc., calls waitpid */
661static void 1394static void
662child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
663{
664 struct ev_child *w;
665
666 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
667 if (w->pid == pid || !w->pid)
668 {
669 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
670 w->rpid = pid;
671 w->rstatus = status;
672 ev_feed_event (EV_A_ (W)w, EV_CHILD);
673 }
674}
675
676static void
677childcb (EV_P_ struct ev_signal *sw, int revents) 1395childcb (EV_P_ ev_signal *sw, int revents)
678{ 1396{
679 int pid, status; 1397 int pid, status;
680 1398
1399 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
681 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1400 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
682 { 1401 if (!WCONTINUED
1402 || errno != EINVAL
1403 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1404 return;
1405
683 /* make sure we are called again until all childs have been reaped */ 1406 /* make sure we are called again until all children have been reaped */
1407 /* we need to do it this way so that the callback gets called before we continue */
684 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1408 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
685 1409
686 child_reap (EV_A_ sw, pid, pid, status); 1410 child_reap (EV_A_ pid, pid, status);
1411 if (EV_PID_HASHSIZE > 1)
687 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1412 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
688 }
689} 1413}
690 1414
691#endif 1415#endif
692 1416
693/*****************************************************************************/ 1417/*****************************************************************************/
694 1418
1419#if EV_USE_PORT
1420# include "ev_port.c"
1421#endif
695#if EV_USE_KQUEUE 1422#if EV_USE_KQUEUE
696# include "ev_kqueue.c" 1423# include "ev_kqueue.c"
697#endif 1424#endif
698#if EV_USE_EPOLL 1425#if EV_USE_EPOLL
699# include "ev_epoll.c" 1426# include "ev_epoll.c"
716{ 1443{
717 return EV_VERSION_MINOR; 1444 return EV_VERSION_MINOR;
718} 1445}
719 1446
720/* return true if we are running with elevated privileges and should ignore env variables */ 1447/* return true if we are running with elevated privileges and should ignore env variables */
721static int 1448int inline_size
722enable_secure (void) 1449enable_secure (void)
723{ 1450{
724#ifdef WIN32 1451#ifdef _WIN32
725 return 0; 1452 return 0;
726#else 1453#else
727 return getuid () != geteuid () 1454 return getuid () != geteuid ()
728 || getgid () != getegid (); 1455 || getgid () != getegid ();
729#endif 1456#endif
730} 1457}
731 1458
732int 1459unsigned int
733ev_method (EV_P) 1460ev_supported_backends (void)
734{ 1461{
735 return method; 1462 unsigned int flags = 0;
736}
737 1463
738static void 1464 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
739loop_init (EV_P_ int methods) 1465 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1466 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1467 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1468 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1469
1470 return flags;
1471}
1472
1473unsigned int
1474ev_recommended_backends (void)
740{ 1475{
741 if (!method) 1476 unsigned int flags = ev_supported_backends ();
1477
1478#ifndef __NetBSD__
1479 /* kqueue is borked on everything but netbsd apparently */
1480 /* it usually doesn't work correctly on anything but sockets and pipes */
1481 flags &= ~EVBACKEND_KQUEUE;
1482#endif
1483#ifdef __APPLE__
1484 /* only select works correctly on that "unix-certified" platform */
1485 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1486 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1487#endif
1488
1489 return flags;
1490}
1491
1492unsigned int
1493ev_embeddable_backends (void)
1494{
1495 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1496
1497 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1498 /* please fix it and tell me how to detect the fix */
1499 flags &= ~EVBACKEND_EPOLL;
1500
1501 return flags;
1502}
1503
1504unsigned int
1505ev_backend (EV_P)
1506{
1507 return backend;
1508}
1509
1510#if EV_MINIMAL < 2
1511unsigned int
1512ev_loop_count (EV_P)
1513{
1514 return loop_count;
1515}
1516
1517unsigned int
1518ev_loop_depth (EV_P)
1519{
1520 return loop_depth;
1521}
1522
1523void
1524ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 io_blocktime = interval;
1527}
1528
1529void
1530ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1531{
1532 timeout_blocktime = interval;
1533}
1534
1535void
1536ev_set_userdata (EV_P_ void *data)
1537{
1538 userdata = data;
1539}
1540
1541void *
1542ev_userdata (EV_P)
1543{
1544 return userdata;
1545}
1546
1547void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1548{
1549 invoke_cb = invoke_pending_cb;
1550}
1551
1552void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1553{
1554 release_cb = release;
1555 acquire_cb = acquire;
1556}
1557#endif
1558
1559/* initialise a loop structure, must be zero-initialised */
1560static void noinline
1561loop_init (EV_P_ unsigned int flags)
1562{
1563 if (!backend)
742 { 1564 {
1565#if EV_USE_REALTIME
1566 if (!have_realtime)
1567 {
1568 struct timespec ts;
1569
1570 if (!clock_gettime (CLOCK_REALTIME, &ts))
1571 have_realtime = 1;
1572 }
1573#endif
1574
743#if EV_USE_MONOTONIC 1575#if EV_USE_MONOTONIC
1576 if (!have_monotonic)
1577 {
1578 struct timespec ts;
1579
1580 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1581 have_monotonic = 1;
1582 }
1583#endif
1584
1585 /* pid check not overridable via env */
1586#ifndef _WIN32
1587 if (flags & EVFLAG_FORKCHECK)
1588 curpid = getpid ();
1589#endif
1590
1591 if (!(flags & EVFLAG_NOENV)
1592 && !enable_secure ()
1593 && getenv ("LIBEV_FLAGS"))
1594 flags = atoi (getenv ("LIBEV_FLAGS"));
1595
1596 ev_rt_now = ev_time ();
1597 mn_now = get_clock ();
1598 now_floor = mn_now;
1599 rtmn_diff = ev_rt_now - mn_now;
1600#if EV_MINIMAL < 2
1601 invoke_cb = ev_invoke_pending;
1602#endif
1603
1604 io_blocktime = 0.;
1605 timeout_blocktime = 0.;
1606 backend = 0;
1607 backend_fd = -1;
1608 sig_pending = 0;
1609#if EV_ASYNC_ENABLE
1610 async_pending = 0;
1611#endif
1612#if EV_USE_INOTIFY
1613 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1614#endif
1615#if EV_USE_SIGNALFD
1616 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1617#endif
1618
1619 if (!(flags & 0x0000ffffU))
1620 flags |= ev_recommended_backends ();
1621
1622#if EV_USE_PORT
1623 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1624#endif
1625#if EV_USE_KQUEUE
1626 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1627#endif
1628#if EV_USE_EPOLL
1629 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1630#endif
1631#if EV_USE_POLL
1632 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1633#endif
1634#if EV_USE_SELECT
1635 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1636#endif
1637
1638 ev_prepare_init (&pending_w, pendingcb);
1639
1640 ev_init (&pipe_w, pipecb);
1641 ev_set_priority (&pipe_w, EV_MAXPRI);
1642 }
1643}
1644
1645/* free up a loop structure */
1646static void noinline
1647loop_destroy (EV_P)
1648{
1649 int i;
1650
1651 if (ev_is_active (&pipe_w))
1652 {
1653 /*ev_ref (EV_A);*/
1654 /*ev_io_stop (EV_A_ &pipe_w);*/
1655
1656#if EV_USE_EVENTFD
1657 if (evfd >= 0)
1658 close (evfd);
1659#endif
1660
1661 if (evpipe [0] >= 0)
1662 {
1663 EV_WIN32_CLOSE_FD (evpipe [0]);
1664 EV_WIN32_CLOSE_FD (evpipe [1]);
1665 }
1666 }
1667
1668#if EV_USE_SIGNALFD
1669 if (ev_is_active (&sigfd_w))
1670 close (sigfd);
1671#endif
1672
1673#if EV_USE_INOTIFY
1674 if (fs_fd >= 0)
1675 close (fs_fd);
1676#endif
1677
1678 if (backend_fd >= 0)
1679 close (backend_fd);
1680
1681#if EV_USE_PORT
1682 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1683#endif
1684#if EV_USE_KQUEUE
1685 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1686#endif
1687#if EV_USE_EPOLL
1688 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1689#endif
1690#if EV_USE_POLL
1691 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1692#endif
1693#if EV_USE_SELECT
1694 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1695#endif
1696
1697 for (i = NUMPRI; i--; )
1698 {
1699 array_free (pending, [i]);
1700#if EV_IDLE_ENABLE
1701 array_free (idle, [i]);
1702#endif
1703 }
1704
1705 ev_free (anfds); anfds = 0; anfdmax = 0;
1706
1707 /* have to use the microsoft-never-gets-it-right macro */
1708 array_free (rfeed, EMPTY);
1709 array_free (fdchange, EMPTY);
1710 array_free (timer, EMPTY);
1711#if EV_PERIODIC_ENABLE
1712 array_free (periodic, EMPTY);
1713#endif
1714#if EV_FORK_ENABLE
1715 array_free (fork, EMPTY);
1716#endif
1717 array_free (prepare, EMPTY);
1718 array_free (check, EMPTY);
1719#if EV_ASYNC_ENABLE
1720 array_free (async, EMPTY);
1721#endif
1722
1723 backend = 0;
1724}
1725
1726#if EV_USE_INOTIFY
1727inline_size void infy_fork (EV_P);
1728#endif
1729
1730inline_size void
1731loop_fork (EV_P)
1732{
1733#if EV_USE_PORT
1734 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1735#endif
1736#if EV_USE_KQUEUE
1737 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1738#endif
1739#if EV_USE_EPOLL
1740 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1741#endif
1742#if EV_USE_INOTIFY
1743 infy_fork (EV_A);
1744#endif
1745
1746 if (ev_is_active (&pipe_w))
1747 {
1748 /* this "locks" the handlers against writing to the pipe */
1749 /* while we modify the fd vars */
1750 sig_pending = 1;
1751#if EV_ASYNC_ENABLE
1752 async_pending = 1;
1753#endif
1754
1755 ev_ref (EV_A);
1756 ev_io_stop (EV_A_ &pipe_w);
1757
1758#if EV_USE_EVENTFD
1759 if (evfd >= 0)
1760 close (evfd);
1761#endif
1762
1763 if (evpipe [0] >= 0)
1764 {
1765 EV_WIN32_CLOSE_FD (evpipe [0]);
1766 EV_WIN32_CLOSE_FD (evpipe [1]);
1767 }
1768
1769 evpipe_init (EV_A);
1770 /* now iterate over everything, in case we missed something */
1771 pipecb (EV_A_ &pipe_w, EV_READ);
1772 }
1773
1774 postfork = 0;
1775}
1776
1777#if EV_MULTIPLICITY
1778
1779struct ev_loop *
1780ev_loop_new (unsigned int flags)
1781{
1782 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1783
1784 memset (EV_A, 0, sizeof (struct ev_loop));
1785 loop_init (EV_A_ flags);
1786
1787 if (ev_backend (EV_A))
1788 return EV_A;
1789
1790 return 0;
1791}
1792
1793void
1794ev_loop_destroy (EV_P)
1795{
1796 loop_destroy (EV_A);
1797 ev_free (loop);
1798}
1799
1800void
1801ev_loop_fork (EV_P)
1802{
1803 postfork = 1; /* must be in line with ev_default_fork */
1804}
1805#endif /* multiplicity */
1806
1807#if EV_VERIFY
1808static void noinline
1809verify_watcher (EV_P_ W w)
1810{
1811 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1812
1813 if (w->pending)
1814 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1815}
1816
1817static void noinline
1818verify_heap (EV_P_ ANHE *heap, int N)
1819{
1820 int i;
1821
1822 for (i = HEAP0; i < N + HEAP0; ++i)
1823 {
1824 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1825 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1826 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1827
1828 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1829 }
1830}
1831
1832static void noinline
1833array_verify (EV_P_ W *ws, int cnt)
1834{
1835 while (cnt--)
1836 {
1837 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1838 verify_watcher (EV_A_ ws [cnt]);
1839 }
1840}
1841#endif
1842
1843#if EV_MINIMAL < 2
1844void
1845ev_loop_verify (EV_P)
1846{
1847#if EV_VERIFY
1848 int i;
1849 WL w;
1850
1851 assert (activecnt >= -1);
1852
1853 assert (fdchangemax >= fdchangecnt);
1854 for (i = 0; i < fdchangecnt; ++i)
1855 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1856
1857 assert (anfdmax >= 0);
1858 for (i = 0; i < anfdmax; ++i)
1859 for (w = anfds [i].head; w; w = w->next)
744 { 1860 {
745 struct timespec ts; 1861 verify_watcher (EV_A_ (W)w);
746 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1862 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
747 have_monotonic = 1; 1863 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
748 } 1864 }
749#endif
750 1865
751 ev_rt_now = ev_time (); 1866 assert (timermax >= timercnt);
752 mn_now = get_clock (); 1867 verify_heap (EV_A_ timers, timercnt);
753 now_floor = mn_now;
754 rtmn_diff = ev_rt_now - mn_now;
755 1868
756 if (methods == EVMETHOD_AUTO) 1869#if EV_PERIODIC_ENABLE
757 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1870 assert (periodicmax >= periodiccnt);
758 methods = atoi (getenv ("LIBEV_METHODS")); 1871 verify_heap (EV_A_ periodics, periodiccnt);
759 else
760 methods = EVMETHOD_ANY;
761
762 method = 0;
763#if EV_USE_WIN32
764 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
765#endif
766#if EV_USE_KQUEUE
767 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
768#endif
769#if EV_USE_EPOLL
770 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
771#endif
772#if EV_USE_POLL
773 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
774#endif
775#if EV_USE_SELECT
776 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
777#endif
778
779 ev_init (&sigev, sigcb);
780 ev_set_priority (&sigev, EV_MAXPRI);
781 }
782}
783
784void
785loop_destroy (EV_P)
786{
787 int i;
788
789#if EV_USE_WIN32
790 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
791#endif
792#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
794#endif
795#if EV_USE_EPOLL
796 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
797#endif
798#if EV_USE_POLL
799 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
800#endif
801#if EV_USE_SELECT
802 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
803#endif 1872#endif
804 1873
805 for (i = NUMPRI; i--; ) 1874 for (i = NUMPRI; i--; )
806 array_free (pending, [i]); 1875 {
1876 assert (pendingmax [i] >= pendingcnt [i]);
1877#if EV_IDLE_ENABLE
1878 assert (idleall >= 0);
1879 assert (idlemax [i] >= idlecnt [i]);
1880 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1881#endif
1882 }
807 1883
808 /* have to use the microsoft-never-gets-it-right macro */ 1884#if EV_FORK_ENABLE
809 array_free_microshit (fdchange); 1885 assert (forkmax >= forkcnt);
810 array_free_microshit (timer); 1886 array_verify (EV_A_ (W *)forks, forkcnt);
811#if EV_PERIODICS 1887#endif
812 array_free_microshit (periodic); 1888
1889#if EV_ASYNC_ENABLE
1890 assert (asyncmax >= asynccnt);
1891 array_verify (EV_A_ (W *)asyncs, asynccnt);
1892#endif
1893
1894 assert (preparemax >= preparecnt);
1895 array_verify (EV_A_ (W *)prepares, preparecnt);
1896
1897 assert (checkmax >= checkcnt);
1898 array_verify (EV_A_ (W *)checks, checkcnt);
1899
1900# if 0
1901 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1902 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
813#endif 1903# endif
814 array_free_microshit (idle);
815 array_free_microshit (prepare);
816 array_free_microshit (check);
817
818 method = 0;
819}
820
821static void
822loop_fork (EV_P)
823{
824#if EV_USE_EPOLL
825 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
826#endif 1904#endif
827#if EV_USE_KQUEUE
828 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
829#endif
830
831 if (ev_is_active (&sigev))
832 {
833 /* default loop */
834
835 ev_ref (EV_A);
836 ev_io_stop (EV_A_ &sigev);
837 close (sigpipe [0]);
838 close (sigpipe [1]);
839
840 while (pipe (sigpipe))
841 syserr ("(libev) error creating pipe");
842
843 siginit (EV_A);
844 }
845
846 postfork = 0;
847} 1905}
1906#endif
848 1907
849#if EV_MULTIPLICITY 1908#if EV_MULTIPLICITY
850struct ev_loop * 1909struct ev_loop *
851ev_loop_new (int methods) 1910ev_default_loop_init (unsigned int flags)
852{
853 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
854
855 memset (loop, 0, sizeof (struct ev_loop));
856
857 loop_init (EV_A_ methods);
858
859 if (ev_method (EV_A))
860 return loop;
861
862 return 0;
863}
864
865void
866ev_loop_destroy (EV_P)
867{
868 loop_destroy (EV_A);
869 ev_free (loop);
870}
871
872void
873ev_loop_fork (EV_P)
874{
875 postfork = 1;
876}
877
878#endif
879
880#if EV_MULTIPLICITY
881struct ev_loop *
882#else 1911#else
883int 1912int
1913ev_default_loop (unsigned int flags)
884#endif 1914#endif
885ev_default_loop (int methods)
886{ 1915{
887 if (sigpipe [0] == sigpipe [1])
888 if (pipe (sigpipe))
889 return 0;
890
891 if (!default_loop) 1916 if (!ev_default_loop_ptr)
892 { 1917 {
893#if EV_MULTIPLICITY 1918#if EV_MULTIPLICITY
894 struct ev_loop *loop = default_loop = &default_loop_struct; 1919 EV_P = ev_default_loop_ptr = &default_loop_struct;
895#else 1920#else
896 default_loop = 1; 1921 ev_default_loop_ptr = 1;
897#endif 1922#endif
898 1923
899 loop_init (EV_A_ methods); 1924 loop_init (EV_A_ flags);
900 1925
901 if (ev_method (EV_A)) 1926 if (ev_backend (EV_A))
902 { 1927 {
903 siginit (EV_A);
904
905#ifndef WIN32 1928#ifndef _WIN32
906 ev_signal_init (&childev, childcb, SIGCHLD); 1929 ev_signal_init (&childev, childcb, SIGCHLD);
907 ev_set_priority (&childev, EV_MAXPRI); 1930 ev_set_priority (&childev, EV_MAXPRI);
908 ev_signal_start (EV_A_ &childev); 1931 ev_signal_start (EV_A_ &childev);
909 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1932 ev_unref (EV_A); /* child watcher should not keep loop alive */
910#endif 1933#endif
911 } 1934 }
912 else 1935 else
913 default_loop = 0; 1936 ev_default_loop_ptr = 0;
914 } 1937 }
915 1938
916 return default_loop; 1939 return ev_default_loop_ptr;
917} 1940}
918 1941
919void 1942void
920ev_default_destroy (void) 1943ev_default_destroy (void)
921{ 1944{
922#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
923 struct ev_loop *loop = default_loop; 1946 EV_P = ev_default_loop_ptr;
924#endif 1947#endif
925 1948
1949 ev_default_loop_ptr = 0;
1950
926#ifndef WIN32 1951#ifndef _WIN32
927 ev_ref (EV_A); /* child watcher */ 1952 ev_ref (EV_A); /* child watcher */
928 ev_signal_stop (EV_A_ &childev); 1953 ev_signal_stop (EV_A_ &childev);
929#endif 1954#endif
930 1955
931 ev_ref (EV_A); /* signal watcher */
932 ev_io_stop (EV_A_ &sigev);
933
934 close (sigpipe [0]); sigpipe [0] = 0;
935 close (sigpipe [1]); sigpipe [1] = 0;
936
937 loop_destroy (EV_A); 1956 loop_destroy (EV_A);
938} 1957}
939 1958
940void 1959void
941ev_default_fork (void) 1960ev_default_fork (void)
942{ 1961{
943#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
944 struct ev_loop *loop = default_loop; 1963 EV_P = ev_default_loop_ptr;
945#endif 1964#endif
946 1965
947 if (method) 1966 postfork = 1; /* must be in line with ev_loop_fork */
948 postfork = 1;
949} 1967}
950 1968
951/*****************************************************************************/ 1969/*****************************************************************************/
952 1970
953static int 1971void
954any_pending (EV_P) 1972ev_invoke (EV_P_ void *w, int revents)
1973{
1974 EV_CB_INVOKE ((W)w, revents);
1975}
1976
1977unsigned int
1978ev_pending_count (EV_P)
955{ 1979{
956 int pri; 1980 int pri;
1981 unsigned int count = 0;
957 1982
958 for (pri = NUMPRI; pri--; ) 1983 for (pri = NUMPRI; pri--; )
959 if (pendingcnt [pri]) 1984 count += pendingcnt [pri];
960 return 1;
961 1985
962 return 0; 1986 return count;
963} 1987}
964 1988
965static void 1989void noinline
966call_pending (EV_P) 1990ev_invoke_pending (EV_P)
967{ 1991{
968 int pri; 1992 int pri;
969 1993
970 for (pri = NUMPRI; pri--; ) 1994 for (pri = NUMPRI; pri--; )
971 while (pendingcnt [pri]) 1995 while (pendingcnt [pri])
972 { 1996 {
973 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1997 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
974 1998
975 if (p->w) 1999 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
976 { 2000 /* ^ this is no longer true, as pending_w could be here */
2001
977 p->w->pending = 0; 2002 p->w->pending = 0;
978 EV_CB_INVOKE (p->w, p->events); 2003 EV_CB_INVOKE (p->w, p->events);
979 } 2004 EV_FREQUENT_CHECK;
980 } 2005 }
981} 2006}
982 2007
983static void 2008#if EV_IDLE_ENABLE
2009/* make idle watchers pending. this handles the "call-idle */
2010/* only when higher priorities are idle" logic */
2011inline_size void
2012idle_reify (EV_P)
2013{
2014 if (expect_false (idleall))
2015 {
2016 int pri;
2017
2018 for (pri = NUMPRI; pri--; )
2019 {
2020 if (pendingcnt [pri])
2021 break;
2022
2023 if (idlecnt [pri])
2024 {
2025 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2026 break;
2027 }
2028 }
2029 }
2030}
2031#endif
2032
2033/* make timers pending */
2034inline_size void
984timers_reify (EV_P) 2035timers_reify (EV_P)
985{ 2036{
2037 EV_FREQUENT_CHECK;
2038
986 while (timercnt && ((WT)timers [0])->at <= mn_now) 2039 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
987 { 2040 {
988 struct ev_timer *w = timers [0]; 2041 do
989
990 assert (("inactive timer on timer heap detected", ev_is_active (w)));
991
992 /* first reschedule or stop timer */
993 if (w->repeat)
994 { 2042 {
2043 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->repeat)
2049 {
2050 ev_at (w) += w->repeat;
2051 if (ev_at (w) < mn_now)
2052 ev_at (w) = mn_now;
2053
995 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2054 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
996 2055
997 ((WT)w)->at += w->repeat; 2056 ANHE_at_cache (timers [HEAP0]);
998 if (((WT)w)->at < mn_now)
999 ((WT)w)->at = mn_now;
1000
1001 downheap ((WT *)timers, timercnt, 0); 2057 downheap (timers, timercnt, HEAP0);
2058 }
2059 else
2060 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2061
2062 EV_FREQUENT_CHECK;
2063 feed_reverse (EV_A_ (W)w);
1002 } 2064 }
1003 else 2065 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1004 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1005 2066
1006 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2067 feed_reverse_done (EV_A_ EV_TIMEOUT);
1007 } 2068 }
1008} 2069}
1009 2070
1010#if EV_PERIODICS 2071#if EV_PERIODIC_ENABLE
1011static void 2072/* make periodics pending */
2073inline_size void
1012periodics_reify (EV_P) 2074periodics_reify (EV_P)
1013{ 2075{
2076 EV_FREQUENT_CHECK;
2077
1014 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2078 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1015 { 2079 {
1016 struct ev_periodic *w = periodics [0]; 2080 int feed_count = 0;
1017 2081
2082 do
2083 {
2084 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2085
1018 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2086 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1019 2087
1020 /* first reschedule or stop timer */ 2088 /* first reschedule or stop timer */
2089 if (w->reschedule_cb)
2090 {
2091 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2092
2093 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2094
2095 ANHE_at_cache (periodics [HEAP0]);
2096 downheap (periodics, periodiccnt, HEAP0);
2097 }
2098 else if (w->interval)
2099 {
2100 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2101 /* if next trigger time is not sufficiently in the future, put it there */
2102 /* this might happen because of floating point inexactness */
2103 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2104 {
2105 ev_at (w) += w->interval;
2106
2107 /* if interval is unreasonably low we might still have a time in the past */
2108 /* so correct this. this will make the periodic very inexact, but the user */
2109 /* has effectively asked to get triggered more often than possible */
2110 if (ev_at (w) < ev_rt_now)
2111 ev_at (w) = ev_rt_now;
2112 }
2113
2114 ANHE_at_cache (periodics [HEAP0]);
2115 downheap (periodics, periodiccnt, HEAP0);
2116 }
2117 else
2118 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
2122 }
2123 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2124
2125 feed_reverse_done (EV_A_ EV_PERIODIC);
2126 }
2127}
2128
2129/* simply recalculate all periodics */
2130/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2131static void noinline
2132periodics_reschedule (EV_P)
2133{
2134 int i;
2135
2136 /* adjust periodics after time jump */
2137 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2138 {
2139 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2140
1021 if (w->reschedule_cb) 2141 if (w->reschedule_cb)
2142 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2143 else if (w->interval)
2144 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2145
2146 ANHE_at_cache (periodics [i]);
2147 }
2148
2149 reheap (periodics, periodiccnt);
2150}
2151#endif
2152
2153/* adjust all timers by a given offset */
2154static void noinline
2155timers_reschedule (EV_P_ ev_tstamp adjust)
2156{
2157 int i;
2158
2159 for (i = 0; i < timercnt; ++i)
2160 {
2161 ANHE *he = timers + i + HEAP0;
2162 ANHE_w (*he)->at += adjust;
2163 ANHE_at_cache (*he);
2164 }
2165}
2166
2167/* fetch new monotonic and realtime times from the kernel */
2168/* also detect if there was a timejump, and act accordingly */
2169inline_speed void
2170time_update (EV_P_ ev_tstamp max_block)
2171{
2172#if EV_USE_MONOTONIC
2173 if (expect_true (have_monotonic))
2174 {
2175 int i;
2176 ev_tstamp odiff = rtmn_diff;
2177
2178 mn_now = get_clock ();
2179
2180 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2181 /* interpolate in the meantime */
2182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1022 { 2183 {
1023 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2184 ev_rt_now = rtmn_diff + mn_now;
1024 2185 return;
1025 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1026 downheap ((WT *)periodics, periodiccnt, 0);
1027 } 2186 }
1028 else if (w->interval)
1029 {
1030 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1031 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1032 downheap ((WT *)periodics, periodiccnt, 0);
1033 }
1034 else
1035 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1036 2187
1037 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1038 }
1039}
1040
1041static void
1042periodics_reschedule (EV_P)
1043{
1044 int i;
1045
1046 /* adjust periodics after time jump */
1047 for (i = 0; i < periodiccnt; ++i)
1048 {
1049 struct ev_periodic *w = periodics [i];
1050
1051 if (w->reschedule_cb)
1052 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1053 else if (w->interval)
1054 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1055 }
1056
1057 /* now rebuild the heap */
1058 for (i = periodiccnt >> 1; i--; )
1059 downheap ((WT *)periodics, periodiccnt, i);
1060}
1061#endif
1062
1063inline int
1064time_update_monotonic (EV_P)
1065{
1066 mn_now = get_clock ();
1067
1068 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1069 {
1070 ev_rt_now = rtmn_diff + mn_now;
1071 return 0;
1072 }
1073 else
1074 {
1075 now_floor = mn_now; 2188 now_floor = mn_now;
1076 ev_rt_now = ev_time (); 2189 ev_rt_now = ev_time ();
1077 return 1;
1078 }
1079}
1080 2190
1081static void 2191 /* loop a few times, before making important decisions.
1082time_update (EV_P) 2192 * on the choice of "4": one iteration isn't enough,
1083{ 2193 * in case we get preempted during the calls to
1084 int i; 2194 * ev_time and get_clock. a second call is almost guaranteed
1085 2195 * to succeed in that case, though. and looping a few more times
1086#if EV_USE_MONOTONIC 2196 * doesn't hurt either as we only do this on time-jumps or
1087 if (expect_true (have_monotonic)) 2197 * in the unlikely event of having been preempted here.
1088 { 2198 */
1089 if (time_update_monotonic (EV_A)) 2199 for (i = 4; --i; )
1090 { 2200 {
1091 ev_tstamp odiff = rtmn_diff;
1092
1093 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1094 {
1095 rtmn_diff = ev_rt_now - mn_now; 2201 rtmn_diff = ev_rt_now - mn_now;
1096 2202
1097 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2203 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1098 return; /* all is well */ 2204 return; /* all is well */
1099 2205
1100 ev_rt_now = ev_time (); 2206 ev_rt_now = ev_time ();
1101 mn_now = get_clock (); 2207 mn_now = get_clock ();
1102 now_floor = mn_now; 2208 now_floor = mn_now;
1103 } 2209 }
1104 2210
2211 /* no timer adjustment, as the monotonic clock doesn't jump */
2212 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1105# if EV_PERIODICS 2213# if EV_PERIODIC_ENABLE
2214 periodics_reschedule (EV_A);
2215# endif
2216 }
2217 else
2218#endif
2219 {
2220 ev_rt_now = ev_time ();
2221
2222 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2223 {
2224 /* adjust timers. this is easy, as the offset is the same for all of them */
2225 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2226#if EV_PERIODIC_ENABLE
1106 periodics_reschedule (EV_A); 2227 periodics_reschedule (EV_A);
1107# endif 2228#endif
1108 /* no timer adjustment, as the monotonic clock doesn't jump */
1109 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1110 } 2229 }
1111 }
1112 else
1113#endif
1114 {
1115 ev_rt_now = ev_time ();
1116
1117 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1118 {
1119#if EV_PERIODICS
1120 periodics_reschedule (EV_A);
1121#endif
1122
1123 /* adjust timers. this is easy, as the offset is the same for all */
1124 for (i = 0; i < timercnt; ++i)
1125 ((WT)timers [i])->at += ev_rt_now - mn_now;
1126 }
1127 2230
1128 mn_now = ev_rt_now; 2231 mn_now = ev_rt_now;
1129 } 2232 }
1130} 2233}
1131 2234
1132void 2235void
1133ev_ref (EV_P)
1134{
1135 ++activecnt;
1136}
1137
1138void
1139ev_unref (EV_P)
1140{
1141 --activecnt;
1142}
1143
1144static int loop_done;
1145
1146void
1147ev_loop (EV_P_ int flags) 2236ev_loop (EV_P_ int flags)
1148{ 2237{
1149 double block; 2238#if EV_MINIMAL < 2
1150 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2239 ++loop_depth;
2240#endif
2241
2242 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2243
2244 loop_done = EVUNLOOP_CANCEL;
2245
2246 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1151 2247
1152 do 2248 do
1153 { 2249 {
2250#if EV_VERIFY >= 2
2251 ev_loop_verify (EV_A);
2252#endif
2253
2254#ifndef _WIN32
2255 if (expect_false (curpid)) /* penalise the forking check even more */
2256 if (expect_false (getpid () != curpid))
2257 {
2258 curpid = getpid ();
2259 postfork = 1;
2260 }
2261#endif
2262
2263#if EV_FORK_ENABLE
2264 /* we might have forked, so queue fork handlers */
2265 if (expect_false (postfork))
2266 if (forkcnt)
2267 {
2268 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2269 EV_INVOKE_PENDING;
2270 }
2271#endif
2272
1154 /* queue check watchers (and execute them) */ 2273 /* queue prepare watchers (and execute them) */
1155 if (expect_false (preparecnt)) 2274 if (expect_false (preparecnt))
1156 { 2275 {
1157 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2276 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1158 call_pending (EV_A); 2277 EV_INVOKE_PENDING;
1159 } 2278 }
2279
2280 if (expect_false (loop_done))
2281 break;
1160 2282
1161 /* we might have forked, so reify kernel state if necessary */ 2283 /* we might have forked, so reify kernel state if necessary */
1162 if (expect_false (postfork)) 2284 if (expect_false (postfork))
1163 loop_fork (EV_A); 2285 loop_fork (EV_A);
1164 2286
1165 /* update fd-related kernel structures */ 2287 /* update fd-related kernel structures */
1166 fd_reify (EV_A); 2288 fd_reify (EV_A);
1167 2289
1168 /* calculate blocking time */ 2290 /* calculate blocking time */
2291 {
2292 ev_tstamp waittime = 0.;
2293 ev_tstamp sleeptime = 0.;
1169 2294
1170 /* we only need this for !monotonic clock or timers, but as we basically 2295 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1171 always have timers, we just calculate it always */
1172#if EV_USE_MONOTONIC
1173 if (expect_true (have_monotonic))
1174 time_update_monotonic (EV_A);
1175 else
1176#endif
1177 { 2296 {
1178 ev_rt_now = ev_time (); 2297 /* remember old timestamp for io_blocktime calculation */
1179 mn_now = ev_rt_now; 2298 ev_tstamp prev_mn_now = mn_now;
1180 }
1181 2299
1182 if (flags & EVLOOP_NONBLOCK || idlecnt) 2300 /* update time to cancel out callback processing overhead */
1183 block = 0.; 2301 time_update (EV_A_ 1e100);
1184 else 2302
1185 {
1186 block = MAX_BLOCKTIME; 2303 waittime = MAX_BLOCKTIME;
1187 2304
1188 if (timercnt) 2305 if (timercnt)
1189 { 2306 {
1190 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2307 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1191 if (block > to) block = to; 2308 if (waittime > to) waittime = to;
1192 } 2309 }
1193 2310
1194#if EV_PERIODICS 2311#if EV_PERIODIC_ENABLE
1195 if (periodiccnt) 2312 if (periodiccnt)
1196 { 2313 {
1197 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2314 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1198 if (block > to) block = to; 2315 if (waittime > to) waittime = to;
1199 } 2316 }
1200#endif 2317#endif
1201 2318
1202 if (block < 0.) block = 0.; 2319 /* don't let timeouts decrease the waittime below timeout_blocktime */
2320 if (expect_false (waittime < timeout_blocktime))
2321 waittime = timeout_blocktime;
2322
2323 /* extra check because io_blocktime is commonly 0 */
2324 if (expect_false (io_blocktime))
2325 {
2326 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2327
2328 if (sleeptime > waittime - backend_fudge)
2329 sleeptime = waittime - backend_fudge;
2330
2331 if (expect_true (sleeptime > 0.))
2332 {
2333 ev_sleep (sleeptime);
2334 waittime -= sleeptime;
2335 }
2336 }
1203 } 2337 }
1204 2338
1205 method_poll (EV_A_ block); 2339#if EV_MINIMAL < 2
2340 ++loop_count;
2341#endif
2342 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2343 backend_poll (EV_A_ waittime);
2344 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1206 2345
1207 /* update ev_rt_now, do magic */ 2346 /* update ev_rt_now, do magic */
1208 time_update (EV_A); 2347 time_update (EV_A_ waittime + sleeptime);
2348 }
1209 2349
1210 /* queue pending timers and reschedule them */ 2350 /* queue pending timers and reschedule them */
1211 timers_reify (EV_A); /* relative timers called last */ 2351 timers_reify (EV_A); /* relative timers called last */
1212#if EV_PERIODICS 2352#if EV_PERIODIC_ENABLE
1213 periodics_reify (EV_A); /* absolute timers called first */ 2353 periodics_reify (EV_A); /* absolute timers called first */
1214#endif 2354#endif
1215 2355
2356#if EV_IDLE_ENABLE
1216 /* queue idle watchers unless io or timers are pending */ 2357 /* queue idle watchers unless other events are pending */
1217 if (idlecnt && !any_pending (EV_A)) 2358 idle_reify (EV_A);
1218 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2359#endif
1219 2360
1220 /* queue check watchers, to be executed first */ 2361 /* queue check watchers, to be executed first */
1221 if (checkcnt) 2362 if (expect_false (checkcnt))
1222 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2363 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1223 2364
1224 call_pending (EV_A); 2365 EV_INVOKE_PENDING;
1225 } 2366 }
1226 while (activecnt && !loop_done); 2367 while (expect_true (
2368 activecnt
2369 && !loop_done
2370 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2371 ));
1227 2372
1228 if (loop_done != 2) 2373 if (loop_done == EVUNLOOP_ONE)
1229 loop_done = 0; 2374 loop_done = EVUNLOOP_CANCEL;
2375
2376#if EV_MINIMAL < 2
2377 --loop_depth;
2378#endif
1230} 2379}
1231 2380
1232void 2381void
1233ev_unloop (EV_P_ int how) 2382ev_unloop (EV_P_ int how)
1234{ 2383{
1235 loop_done = how; 2384 loop_done = how;
1236} 2385}
1237 2386
2387void
2388ev_ref (EV_P)
2389{
2390 ++activecnt;
2391}
2392
2393void
2394ev_unref (EV_P)
2395{
2396 --activecnt;
2397}
2398
2399void
2400ev_now_update (EV_P)
2401{
2402 time_update (EV_A_ 1e100);
2403}
2404
2405void
2406ev_suspend (EV_P)
2407{
2408 ev_now_update (EV_A);
2409}
2410
2411void
2412ev_resume (EV_P)
2413{
2414 ev_tstamp mn_prev = mn_now;
2415
2416 ev_now_update (EV_A);
2417 timers_reschedule (EV_A_ mn_now - mn_prev);
2418#if EV_PERIODIC_ENABLE
2419 /* TODO: really do this? */
2420 periodics_reschedule (EV_A);
2421#endif
2422}
2423
1238/*****************************************************************************/ 2424/*****************************************************************************/
2425/* singly-linked list management, used when the expected list length is short */
1239 2426
1240inline void 2427inline_size void
1241wlist_add (WL *head, WL elem) 2428wlist_add (WL *head, WL elem)
1242{ 2429{
1243 elem->next = *head; 2430 elem->next = *head;
1244 *head = elem; 2431 *head = elem;
1245} 2432}
1246 2433
1247inline void 2434inline_size void
1248wlist_del (WL *head, WL elem) 2435wlist_del (WL *head, WL elem)
1249{ 2436{
1250 while (*head) 2437 while (*head)
1251 { 2438 {
1252 if (*head == elem) 2439 if (expect_true (*head == elem))
1253 { 2440 {
1254 *head = elem->next; 2441 *head = elem->next;
1255 return; 2442 break;
1256 } 2443 }
1257 2444
1258 head = &(*head)->next; 2445 head = &(*head)->next;
1259 } 2446 }
1260} 2447}
1261 2448
2449/* internal, faster, version of ev_clear_pending */
1262inline void 2450inline_speed void
1263ev_clear_pending (EV_P_ W w) 2451clear_pending (EV_P_ W w)
1264{ 2452{
1265 if (w->pending) 2453 if (w->pending)
1266 { 2454 {
1267 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2455 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1268 w->pending = 0; 2456 w->pending = 0;
1269 } 2457 }
1270} 2458}
1271 2459
2460int
2461ev_clear_pending (EV_P_ void *w)
2462{
2463 W w_ = (W)w;
2464 int pending = w_->pending;
2465
2466 if (expect_true (pending))
2467 {
2468 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2469 p->w = (W)&pending_w;
2470 w_->pending = 0;
2471 return p->events;
2472 }
2473 else
2474 return 0;
2475}
2476
1272inline void 2477inline_size void
2478pri_adjust (EV_P_ W w)
2479{
2480 int pri = ev_priority (w);
2481 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2482 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2483 ev_set_priority (w, pri);
2484}
2485
2486inline_speed void
1273ev_start (EV_P_ W w, int active) 2487ev_start (EV_P_ W w, int active)
1274{ 2488{
1275 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2489 pri_adjust (EV_A_ w);
1276 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1277
1278 w->active = active; 2490 w->active = active;
1279 ev_ref (EV_A); 2491 ev_ref (EV_A);
1280} 2492}
1281 2493
1282inline void 2494inline_size void
1283ev_stop (EV_P_ W w) 2495ev_stop (EV_P_ W w)
1284{ 2496{
1285 ev_unref (EV_A); 2497 ev_unref (EV_A);
1286 w->active = 0; 2498 w->active = 0;
1287} 2499}
1288 2500
1289/*****************************************************************************/ 2501/*****************************************************************************/
1290 2502
1291void 2503void noinline
1292ev_io_start (EV_P_ struct ev_io *w) 2504ev_io_start (EV_P_ ev_io *w)
1293{ 2505{
1294 int fd = w->fd; 2506 int fd = w->fd;
1295 2507
1296 if (ev_is_active (w)) 2508 if (expect_false (ev_is_active (w)))
1297 return; 2509 return;
1298 2510
1299 assert (("ev_io_start called with negative fd", fd >= 0)); 2511 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2512 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2513
2514 EV_FREQUENT_CHECK;
1300 2515
1301 ev_start (EV_A_ (W)w, 1); 2516 ev_start (EV_A_ (W)w, 1);
1302 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2517 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1303 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2518 wlist_add (&anfds[fd].head, (WL)w);
1304 2519
1305 fd_change (EV_A_ fd); 2520 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1306} 2521 w->events &= ~EV__IOFDSET;
1307 2522
1308void 2523 EV_FREQUENT_CHECK;
2524}
2525
2526void noinline
1309ev_io_stop (EV_P_ struct ev_io *w) 2527ev_io_stop (EV_P_ ev_io *w)
1310{ 2528{
1311 ev_clear_pending (EV_A_ (W)w); 2529 clear_pending (EV_A_ (W)w);
1312 if (!ev_is_active (w)) 2530 if (expect_false (!ev_is_active (w)))
1313 return; 2531 return;
1314 2532
1315 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2533 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1316 2534
2535 EV_FREQUENT_CHECK;
2536
1317 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2537 wlist_del (&anfds[w->fd].head, (WL)w);
1318 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
1319 2539
1320 fd_change (EV_A_ w->fd); 2540 fd_change (EV_A_ w->fd, 1);
1321}
1322 2541
1323void 2542 EV_FREQUENT_CHECK;
2543}
2544
2545void noinline
1324ev_timer_start (EV_P_ struct ev_timer *w) 2546ev_timer_start (EV_P_ ev_timer *w)
1325{ 2547{
1326 if (ev_is_active (w)) 2548 if (expect_false (ev_is_active (w)))
1327 return; 2549 return;
1328 2550
1329 ((WT)w)->at += mn_now; 2551 ev_at (w) += mn_now;
1330 2552
1331 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2553 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1332 2554
2555 EV_FREQUENT_CHECK;
2556
2557 ++timercnt;
1333 ev_start (EV_A_ (W)w, ++timercnt); 2558 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1334 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2559 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1335 timers [timercnt - 1] = w; 2560 ANHE_w (timers [ev_active (w)]) = (WT)w;
1336 upheap ((WT *)timers, timercnt - 1); 2561 ANHE_at_cache (timers [ev_active (w)]);
2562 upheap (timers, ev_active (w));
1337 2563
2564 EV_FREQUENT_CHECK;
2565
1338 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2566 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1339} 2567}
1340 2568
1341void 2569void noinline
1342ev_timer_stop (EV_P_ struct ev_timer *w) 2570ev_timer_stop (EV_P_ ev_timer *w)
1343{ 2571{
1344 ev_clear_pending (EV_A_ (W)w); 2572 clear_pending (EV_A_ (W)w);
1345 if (!ev_is_active (w)) 2573 if (expect_false (!ev_is_active (w)))
1346 return; 2574 return;
1347 2575
2576 EV_FREQUENT_CHECK;
2577
2578 {
2579 int active = ev_active (w);
2580
1348 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2581 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1349 2582
1350 if (((W)w)->active < timercnt--) 2583 --timercnt;
2584
2585 if (expect_true (active < timercnt + HEAP0))
1351 { 2586 {
1352 timers [((W)w)->active - 1] = timers [timercnt]; 2587 timers [active] = timers [timercnt + HEAP0];
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2588 adjustheap (timers, timercnt, active);
1354 } 2589 }
2590 }
1355 2591
1356 ((WT)w)->at -= mn_now; 2592 EV_FREQUENT_CHECK;
2593
2594 ev_at (w) -= mn_now;
1357 2595
1358 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1359} 2597}
1360 2598
1361void 2599void noinline
1362ev_timer_again (EV_P_ struct ev_timer *w) 2600ev_timer_again (EV_P_ ev_timer *w)
1363{ 2601{
2602 EV_FREQUENT_CHECK;
2603
1364 if (ev_is_active (w)) 2604 if (ev_is_active (w))
1365 { 2605 {
1366 if (w->repeat) 2606 if (w->repeat)
1367 { 2607 {
1368 ((WT)w)->at = mn_now + w->repeat; 2608 ev_at (w) = mn_now + w->repeat;
2609 ANHE_at_cache (timers [ev_active (w)]);
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2610 adjustheap (timers, timercnt, ev_active (w));
1370 } 2611 }
1371 else 2612 else
1372 ev_timer_stop (EV_A_ w); 2613 ev_timer_stop (EV_A_ w);
1373 } 2614 }
1374 else if (w->repeat) 2615 else if (w->repeat)
2616 {
2617 ev_at (w) = w->repeat;
1375 ev_timer_start (EV_A_ w); 2618 ev_timer_start (EV_A_ w);
1376} 2619 }
1377 2620
2621 EV_FREQUENT_CHECK;
2622}
2623
2624ev_tstamp
2625ev_timer_remaining (EV_P_ ev_timer *w)
2626{
2627 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2628}
2629
1378#if EV_PERIODICS 2630#if EV_PERIODIC_ENABLE
1379void 2631void noinline
1380ev_periodic_start (EV_P_ struct ev_periodic *w) 2632ev_periodic_start (EV_P_ ev_periodic *w)
1381{ 2633{
1382 if (ev_is_active (w)) 2634 if (expect_false (ev_is_active (w)))
1383 return; 2635 return;
1384 2636
1385 if (w->reschedule_cb) 2637 if (w->reschedule_cb)
1386 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2638 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1387 else if (w->interval) 2639 else if (w->interval)
1388 { 2640 {
1389 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2641 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1390 /* this formula differs from the one in periodic_reify because we do not always round up */ 2642 /* this formula differs from the one in periodic_reify because we do not always round up */
1391 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1392 } 2644 }
2645 else
2646 ev_at (w) = w->offset;
1393 2647
2648 EV_FREQUENT_CHECK;
2649
2650 ++periodiccnt;
1394 ev_start (EV_A_ (W)w, ++periodiccnt); 2651 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1395 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2652 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1396 periodics [periodiccnt - 1] = w; 2653 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1397 upheap ((WT *)periodics, periodiccnt - 1); 2654 ANHE_at_cache (periodics [ev_active (w)]);
2655 upheap (periodics, ev_active (w));
1398 2656
2657 EV_FREQUENT_CHECK;
2658
1399 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2659 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1400} 2660}
1401 2661
1402void 2662void noinline
1403ev_periodic_stop (EV_P_ struct ev_periodic *w) 2663ev_periodic_stop (EV_P_ ev_periodic *w)
1404{ 2664{
1405 ev_clear_pending (EV_A_ (W)w); 2665 clear_pending (EV_A_ (W)w);
1406 if (!ev_is_active (w)) 2666 if (expect_false (!ev_is_active (w)))
1407 return; 2667 return;
1408 2668
2669 EV_FREQUENT_CHECK;
2670
2671 {
2672 int active = ev_active (w);
2673
1409 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2674 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1410 2675
1411 if (((W)w)->active < periodiccnt--) 2676 --periodiccnt;
2677
2678 if (expect_true (active < periodiccnt + HEAP0))
1412 { 2679 {
1413 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2680 periodics [active] = periodics [periodiccnt + HEAP0];
1414 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2681 adjustheap (periodics, periodiccnt, active);
1415 } 2682 }
2683 }
2684
2685 EV_FREQUENT_CHECK;
1416 2686
1417 ev_stop (EV_A_ (W)w); 2687 ev_stop (EV_A_ (W)w);
1418} 2688}
1419 2689
1420void 2690void noinline
1421ev_periodic_again (EV_P_ struct ev_periodic *w) 2691ev_periodic_again (EV_P_ ev_periodic *w)
1422{ 2692{
1423 /* TODO: use adjustheap and recalculation */ 2693 /* TODO: use adjustheap and recalculation */
1424 ev_periodic_stop (EV_A_ w); 2694 ev_periodic_stop (EV_A_ w);
1425 ev_periodic_start (EV_A_ w); 2695 ev_periodic_start (EV_A_ w);
1426} 2696}
1427#endif 2697#endif
1428 2698
1429void
1430ev_idle_start (EV_P_ struct ev_idle *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++idlecnt);
1436 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1437 idles [idlecnt - 1] = w;
1438}
1439
1440void
1441ev_idle_stop (EV_P_ struct ev_idle *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 idles [((W)w)->active - 1] = idles [--idlecnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451void
1452ev_prepare_start (EV_P_ struct ev_prepare *w)
1453{
1454 if (ev_is_active (w))
1455 return;
1456
1457 ev_start (EV_A_ (W)w, ++preparecnt);
1458 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1459 prepares [preparecnt - 1] = w;
1460}
1461
1462void
1463ev_prepare_stop (EV_P_ struct ev_prepare *w)
1464{
1465 ev_clear_pending (EV_A_ (W)w);
1466 if (ev_is_active (w))
1467 return;
1468
1469 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1470 ev_stop (EV_A_ (W)w);
1471}
1472
1473void
1474ev_check_start (EV_P_ struct ev_check *w)
1475{
1476 if (ev_is_active (w))
1477 return;
1478
1479 ev_start (EV_A_ (W)w, ++checkcnt);
1480 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1481 checks [checkcnt - 1] = w;
1482}
1483
1484void
1485ev_check_stop (EV_P_ struct ev_check *w)
1486{
1487 ev_clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w))
1489 return;
1490
1491 checks [((W)w)->active - 1] = checks [--checkcnt];
1492 ev_stop (EV_A_ (W)w);
1493}
1494
1495#ifndef SA_RESTART 2699#ifndef SA_RESTART
1496# define SA_RESTART 0 2700# define SA_RESTART 0
1497#endif 2701#endif
1498 2702
1499void 2703void noinline
1500ev_signal_start (EV_P_ struct ev_signal *w) 2704ev_signal_start (EV_P_ ev_signal *w)
1501{ 2705{
2706 if (expect_false (ev_is_active (w)))
2707 return;
2708
2709 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2710
1502#if EV_MULTIPLICITY 2711#if EV_MULTIPLICITY
1503 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2712 assert (("libev: a signal must not be attached to two different loops",
2713 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2714
2715 signals [w->signum - 1].loop = EV_A;
2716#endif
2717
2718 EV_FREQUENT_CHECK;
2719
2720#if EV_USE_SIGNALFD
2721 if (sigfd == -2)
2722 {
2723 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2724 if (sigfd < 0 && errno == EINVAL)
2725 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2726
2727 if (sigfd >= 0)
2728 {
2729 fd_intern (sigfd); /* doing it twice will not hurt */
2730
2731 sigemptyset (&sigfd_set);
2732
2733 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2734 ev_set_priority (&sigfd_w, EV_MAXPRI);
2735 ev_io_start (EV_A_ &sigfd_w);
2736 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2737 }
2738 }
2739
2740 if (sigfd >= 0)
2741 {
2742 /* TODO: check .head */
2743 sigaddset (&sigfd_set, w->signum);
2744 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2745
2746 signalfd (sigfd, &sigfd_set, 0);
2747 }
2748#endif
2749
2750 ev_start (EV_A_ (W)w, 1);
2751 wlist_add (&signals [w->signum - 1].head, (WL)w);
2752
2753 if (!((WL)w)->next)
2754# if EV_USE_SIGNALFD
2755 if (sigfd < 0) /*TODO*/
1504#endif 2756# endif
1505 if (ev_is_active (w)) 2757 {
2758# ifdef _WIN32
2759 evpipe_init (EV_A);
2760
2761 signal (w->signum, ev_sighandler);
2762# else
2763 struct sigaction sa;
2764
2765 evpipe_init (EV_A);
2766
2767 sa.sa_handler = ev_sighandler;
2768 sigfillset (&sa.sa_mask);
2769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2770 sigaction (w->signum, &sa, 0);
2771
2772 sigemptyset (&sa.sa_mask);
2773 sigaddset (&sa.sa_mask, w->signum);
2774 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2775#endif
2776 }
2777
2778 EV_FREQUENT_CHECK;
2779}
2780
2781void noinline
2782ev_signal_stop (EV_P_ ev_signal *w)
2783{
2784 clear_pending (EV_A_ (W)w);
2785 if (expect_false (!ev_is_active (w)))
1506 return; 2786 return;
1507 2787
1508 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2788 EV_FREQUENT_CHECK;
2789
2790 wlist_del (&signals [w->signum - 1].head, (WL)w);
2791 ev_stop (EV_A_ (W)w);
2792
2793 if (!signals [w->signum - 1].head)
2794 {
2795#if EV_MULTIPLICITY
2796 signals [w->signum - 1].loop = 0; /* unattach from signal */
2797#endif
2798#if EV_USE_SIGNALFD
2799 if (sigfd >= 0)
2800 {
2801 sigset_t ss;
2802
2803 sigemptyset (&ss);
2804 sigaddset (&ss, w->signum);
2805 sigdelset (&sigfd_set, w->signum);
2806
2807 signalfd (sigfd, &sigfd_set, 0);
2808 sigprocmask (SIG_UNBLOCK, &ss, 0);
2809 }
2810 else
2811#endif
2812 signal (w->signum, SIG_DFL);
2813 }
2814
2815 EV_FREQUENT_CHECK;
2816}
2817
2818void
2819ev_child_start (EV_P_ ev_child *w)
2820{
2821#if EV_MULTIPLICITY
2822 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2823#endif
2824 if (expect_false (ev_is_active (w)))
2825 return;
2826
2827 EV_FREQUENT_CHECK;
1509 2828
1510 ev_start (EV_A_ (W)w, 1); 2829 ev_start (EV_A_ (W)w, 1);
1511 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2830 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1512 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1513 2831
1514 if (!((WL)w)->next) 2832 EV_FREQUENT_CHECK;
2833}
2834
2835void
2836ev_child_stop (EV_P_ ev_child *w)
2837{
2838 clear_pending (EV_A_ (W)w);
2839 if (expect_false (!ev_is_active (w)))
2840 return;
2841
2842 EV_FREQUENT_CHECK;
2843
2844 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2845 ev_stop (EV_A_ (W)w);
2846
2847 EV_FREQUENT_CHECK;
2848}
2849
2850#if EV_STAT_ENABLE
2851
2852# ifdef _WIN32
2853# undef lstat
2854# define lstat(a,b) _stati64 (a,b)
2855# endif
2856
2857#define DEF_STAT_INTERVAL 5.0074891
2858#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2859#define MIN_STAT_INTERVAL 0.1074891
2860
2861static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2862
2863#if EV_USE_INOTIFY
2864# define EV_INOTIFY_BUFSIZE 8192
2865
2866static void noinline
2867infy_add (EV_P_ ev_stat *w)
2868{
2869 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2870
2871 if (w->wd >= 0)
2872 {
2873 struct statfs sfs;
2874
2875 /* now local changes will be tracked by inotify, but remote changes won't */
2876 /* unless the filesystem is known to be local, we therefore still poll */
2877 /* also do poll on <2.6.25, but with normal frequency */
2878
2879 if (!fs_2625)
2880 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2881 else if (!statfs (w->path, &sfs)
2882 && (sfs.f_type == 0x1373 /* devfs */
2883 || sfs.f_type == 0xEF53 /* ext2/3 */
2884 || sfs.f_type == 0x3153464a /* jfs */
2885 || sfs.f_type == 0x52654973 /* reiser3 */
2886 || sfs.f_type == 0x01021994 /* tempfs */
2887 || sfs.f_type == 0x58465342 /* xfs */))
2888 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2889 else
2890 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1515 { 2891 }
1516#if WIN32 2892 else
1517 signal (w->signum, sighandler); 2893 {
2894 /* can't use inotify, continue to stat */
2895 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2896
2897 /* if path is not there, monitor some parent directory for speedup hints */
2898 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2899 /* but an efficiency issue only */
2900 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2901 {
2902 char path [4096];
2903 strcpy (path, w->path);
2904
2905 do
2906 {
2907 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2908 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2909
2910 char *pend = strrchr (path, '/');
2911
2912 if (!pend || pend == path)
2913 break;
2914
2915 *pend = 0;
2916 w->wd = inotify_add_watch (fs_fd, path, mask);
2917 }
2918 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2919 }
2920 }
2921
2922 if (w->wd >= 0)
2923 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2924
2925 /* now re-arm timer, if required */
2926 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2927 ev_timer_again (EV_A_ &w->timer);
2928 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2929}
2930
2931static void noinline
2932infy_del (EV_P_ ev_stat *w)
2933{
2934 int slot;
2935 int wd = w->wd;
2936
2937 if (wd < 0)
2938 return;
2939
2940 w->wd = -2;
2941 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2942 wlist_del (&fs_hash [slot].head, (WL)w);
2943
2944 /* remove this watcher, if others are watching it, they will rearm */
2945 inotify_rm_watch (fs_fd, wd);
2946}
2947
2948static void noinline
2949infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2950{
2951 if (slot < 0)
2952 /* overflow, need to check for all hash slots */
2953 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2954 infy_wd (EV_A_ slot, wd, ev);
2955 else
2956 {
2957 WL w_;
2958
2959 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2960 {
2961 ev_stat *w = (ev_stat *)w_;
2962 w_ = w_->next; /* lets us remove this watcher and all before it */
2963
2964 if (w->wd == wd || wd == -1)
2965 {
2966 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2967 {
2968 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2969 w->wd = -1;
2970 infy_add (EV_A_ w); /* re-add, no matter what */
2971 }
2972
2973 stat_timer_cb (EV_A_ &w->timer, 0);
2974 }
2975 }
2976 }
2977}
2978
2979static void
2980infy_cb (EV_P_ ev_io *w, int revents)
2981{
2982 char buf [EV_INOTIFY_BUFSIZE];
2983 struct inotify_event *ev = (struct inotify_event *)buf;
2984 int ofs;
2985 int len = read (fs_fd, buf, sizeof (buf));
2986
2987 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2988 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2989}
2990
2991inline_size void
2992check_2625 (EV_P)
2993{
2994 /* kernels < 2.6.25 are borked
2995 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2996 */
2997 struct utsname buf;
2998 int major, minor, micro;
2999
3000 if (uname (&buf))
3001 return;
3002
3003 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3004 return;
3005
3006 if (major < 2
3007 || (major == 2 && minor < 6)
3008 || (major == 2 && minor == 6 && micro < 25))
3009 return;
3010
3011 fs_2625 = 1;
3012}
3013
3014inline_size int
3015infy_newfd (void)
3016{
3017#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3018 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3019 if (fd >= 0)
3020 return fd;
3021#endif
3022 return inotify_init ();
3023}
3024
3025inline_size void
3026infy_init (EV_P)
3027{
3028 if (fs_fd != -2)
3029 return;
3030
3031 fs_fd = -1;
3032
3033 check_2625 (EV_A);
3034
3035 fs_fd = infy_newfd ();
3036
3037 if (fs_fd >= 0)
3038 {
3039 fd_intern (fs_fd);
3040 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3041 ev_set_priority (&fs_w, EV_MAXPRI);
3042 ev_io_start (EV_A_ &fs_w);
3043 ev_unref (EV_A);
3044 }
3045}
3046
3047inline_size void
3048infy_fork (EV_P)
3049{
3050 int slot;
3051
3052 if (fs_fd < 0)
3053 return;
3054
3055 ev_ref (EV_A);
3056 ev_io_stop (EV_A_ &fs_w);
3057 close (fs_fd);
3058 fs_fd = infy_newfd ();
3059
3060 if (fs_fd >= 0)
3061 {
3062 fd_intern (fs_fd);
3063 ev_io_set (&fs_w, fs_fd, EV_READ);
3064 ev_io_start (EV_A_ &fs_w);
3065 ev_unref (EV_A);
3066 }
3067
3068 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3069 {
3070 WL w_ = fs_hash [slot].head;
3071 fs_hash [slot].head = 0;
3072
3073 while (w_)
3074 {
3075 ev_stat *w = (ev_stat *)w_;
3076 w_ = w_->next; /* lets us add this watcher */
3077
3078 w->wd = -1;
3079
3080 if (fs_fd >= 0)
3081 infy_add (EV_A_ w); /* re-add, no matter what */
3082 else
3083 {
3084 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3085 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3086 ev_timer_again (EV_A_ &w->timer);
3087 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3088 }
3089 }
3090 }
3091}
3092
3093#endif
3094
3095#ifdef _WIN32
3096# define EV_LSTAT(p,b) _stati64 (p, b)
1518#else 3097#else
1519 struct sigaction sa; 3098# define EV_LSTAT(p,b) lstat (p, b)
1520 sa.sa_handler = sighandler;
1521 sigfillset (&sa.sa_mask);
1522 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1523 sigaction (w->signum, &sa, 0);
1524#endif 3099#endif
1525 }
1526}
1527 3100
1528void 3101void
1529ev_signal_stop (EV_P_ struct ev_signal *w) 3102ev_stat_stat (EV_P_ ev_stat *w)
1530{ 3103{
1531 ev_clear_pending (EV_A_ (W)w); 3104 if (lstat (w->path, &w->attr) < 0)
1532 if (!ev_is_active (w)) 3105 w->attr.st_nlink = 0;
3106 else if (!w->attr.st_nlink)
3107 w->attr.st_nlink = 1;
3108}
3109
3110static void noinline
3111stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3112{
3113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3114
3115 ev_statdata prev = w->attr;
3116 ev_stat_stat (EV_A_ w);
3117
3118 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3119 if (
3120 prev.st_dev != w->attr.st_dev
3121 || prev.st_ino != w->attr.st_ino
3122 || prev.st_mode != w->attr.st_mode
3123 || prev.st_nlink != w->attr.st_nlink
3124 || prev.st_uid != w->attr.st_uid
3125 || prev.st_gid != w->attr.st_gid
3126 || prev.st_rdev != w->attr.st_rdev
3127 || prev.st_size != w->attr.st_size
3128 || prev.st_atime != w->attr.st_atime
3129 || prev.st_mtime != w->attr.st_mtime
3130 || prev.st_ctime != w->attr.st_ctime
3131 ) {
3132 /* we only update w->prev on actual differences */
3133 /* in case we test more often than invoke the callback, */
3134 /* to ensure that prev is always different to attr */
3135 w->prev = prev;
3136
3137 #if EV_USE_INOTIFY
3138 if (fs_fd >= 0)
3139 {
3140 infy_del (EV_A_ w);
3141 infy_add (EV_A_ w);
3142 ev_stat_stat (EV_A_ w); /* avoid race... */
3143 }
3144 #endif
3145
3146 ev_feed_event (EV_A_ w, EV_STAT);
3147 }
3148}
3149
3150void
3151ev_stat_start (EV_P_ ev_stat *w)
3152{
3153 if (expect_false (ev_is_active (w)))
1533 return; 3154 return;
1534 3155
1535 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3156 ev_stat_stat (EV_A_ w);
3157
3158 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3159 w->interval = MIN_STAT_INTERVAL;
3160
3161 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3162 ev_set_priority (&w->timer, ev_priority (w));
3163
3164#if EV_USE_INOTIFY
3165 infy_init (EV_A);
3166
3167 if (fs_fd >= 0)
3168 infy_add (EV_A_ w);
3169 else
3170#endif
3171 {
3172 ev_timer_again (EV_A_ &w->timer);
3173 ev_unref (EV_A);
3174 }
3175
3176 ev_start (EV_A_ (W)w, 1);
3177
3178 EV_FREQUENT_CHECK;
3179}
3180
3181void
3182ev_stat_stop (EV_P_ ev_stat *w)
3183{
3184 clear_pending (EV_A_ (W)w);
3185 if (expect_false (!ev_is_active (w)))
3186 return;
3187
3188 EV_FREQUENT_CHECK;
3189
3190#if EV_USE_INOTIFY
3191 infy_del (EV_A_ w);
3192#endif
3193
3194 if (ev_is_active (&w->timer))
3195 {
3196 ev_ref (EV_A);
3197 ev_timer_stop (EV_A_ &w->timer);
3198 }
3199
1536 ev_stop (EV_A_ (W)w); 3200 ev_stop (EV_A_ (W)w);
1537 3201
1538 if (!signals [w->signum - 1].head) 3202 EV_FREQUENT_CHECK;
1539 signal (w->signum, SIG_DFL);
1540} 3203}
3204#endif
1541 3205
3206#if EV_IDLE_ENABLE
1542void 3207void
1543ev_child_start (EV_P_ struct ev_child *w) 3208ev_idle_start (EV_P_ ev_idle *w)
1544{ 3209{
1545#if EV_MULTIPLICITY
1546 assert (("child watchers are only supported in the default loop", loop == default_loop));
1547#endif
1548 if (ev_is_active (w)) 3210 if (expect_false (ev_is_active (w)))
1549 return; 3211 return;
1550 3212
3213 pri_adjust (EV_A_ (W)w);
3214
3215 EV_FREQUENT_CHECK;
3216
3217 {
3218 int active = ++idlecnt [ABSPRI (w)];
3219
3220 ++idleall;
3221 ev_start (EV_A_ (W)w, active);
3222
3223 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3224 idles [ABSPRI (w)][active - 1] = w;
3225 }
3226
3227 EV_FREQUENT_CHECK;
3228}
3229
3230void
3231ev_idle_stop (EV_P_ ev_idle *w)
3232{
3233 clear_pending (EV_A_ (W)w);
3234 if (expect_false (!ev_is_active (w)))
3235 return;
3236
3237 EV_FREQUENT_CHECK;
3238
3239 {
3240 int active = ev_active (w);
3241
3242 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3243 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3244
3245 ev_stop (EV_A_ (W)w);
3246 --idleall;
3247 }
3248
3249 EV_FREQUENT_CHECK;
3250}
3251#endif
3252
3253void
3254ev_prepare_start (EV_P_ ev_prepare *w)
3255{
3256 if (expect_false (ev_is_active (w)))
3257 return;
3258
3259 EV_FREQUENT_CHECK;
3260
3261 ev_start (EV_A_ (W)w, ++preparecnt);
3262 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3263 prepares [preparecnt - 1] = w;
3264
3265 EV_FREQUENT_CHECK;
3266}
3267
3268void
3269ev_prepare_stop (EV_P_ ev_prepare *w)
3270{
3271 clear_pending (EV_A_ (W)w);
3272 if (expect_false (!ev_is_active (w)))
3273 return;
3274
3275 EV_FREQUENT_CHECK;
3276
3277 {
3278 int active = ev_active (w);
3279
3280 prepares [active - 1] = prepares [--preparecnt];
3281 ev_active (prepares [active - 1]) = active;
3282 }
3283
3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
3287}
3288
3289void
3290ev_check_start (EV_P_ ev_check *w)
3291{
3292 if (expect_false (ev_is_active (w)))
3293 return;
3294
3295 EV_FREQUENT_CHECK;
3296
3297 ev_start (EV_A_ (W)w, ++checkcnt);
3298 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3299 checks [checkcnt - 1] = w;
3300
3301 EV_FREQUENT_CHECK;
3302}
3303
3304void
3305ev_check_stop (EV_P_ ev_check *w)
3306{
3307 clear_pending (EV_A_ (W)w);
3308 if (expect_false (!ev_is_active (w)))
3309 return;
3310
3311 EV_FREQUENT_CHECK;
3312
3313 {
3314 int active = ev_active (w);
3315
3316 checks [active - 1] = checks [--checkcnt];
3317 ev_active (checks [active - 1]) = active;
3318 }
3319
3320 ev_stop (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
3323}
3324
3325#if EV_EMBED_ENABLE
3326void noinline
3327ev_embed_sweep (EV_P_ ev_embed *w)
3328{
3329 ev_loop (w->other, EVLOOP_NONBLOCK);
3330}
3331
3332static void
3333embed_io_cb (EV_P_ ev_io *io, int revents)
3334{
3335 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3336
3337 if (ev_cb (w))
3338 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3339 else
3340 ev_loop (w->other, EVLOOP_NONBLOCK);
3341}
3342
3343static void
3344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3345{
3346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3347
3348 {
3349 EV_P = w->other;
3350
3351 while (fdchangecnt)
3352 {
3353 fd_reify (EV_A);
3354 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3355 }
3356 }
3357}
3358
3359static void
3360embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3361{
3362 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3363
3364 ev_embed_stop (EV_A_ w);
3365
3366 {
3367 EV_P = w->other;
3368
3369 ev_loop_fork (EV_A);
3370 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3371 }
3372
3373 ev_embed_start (EV_A_ w);
3374}
3375
3376#if 0
3377static void
3378embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3379{
3380 ev_idle_stop (EV_A_ idle);
3381}
3382#endif
3383
3384void
3385ev_embed_start (EV_P_ ev_embed *w)
3386{
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 {
3391 EV_P = w->other;
3392 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3393 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3394 }
3395
3396 EV_FREQUENT_CHECK;
3397
3398 ev_set_priority (&w->io, ev_priority (w));
3399 ev_io_start (EV_A_ &w->io);
3400
3401 ev_prepare_init (&w->prepare, embed_prepare_cb);
3402 ev_set_priority (&w->prepare, EV_MINPRI);
3403 ev_prepare_start (EV_A_ &w->prepare);
3404
3405 ev_fork_init (&w->fork, embed_fork_cb);
3406 ev_fork_start (EV_A_ &w->fork);
3407
3408 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3409
1551 ev_start (EV_A_ (W)w, 1); 3410 ev_start (EV_A_ (W)w, 1);
1552 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1553}
1554 3411
3412 EV_FREQUENT_CHECK;
3413}
3414
1555void 3415void
1556ev_child_stop (EV_P_ struct ev_child *w) 3416ev_embed_stop (EV_P_ ev_embed *w)
1557{ 3417{
1558 ev_clear_pending (EV_A_ (W)w); 3418 clear_pending (EV_A_ (W)w);
1559 if (!ev_is_active (w)) 3419 if (expect_false (!ev_is_active (w)))
1560 return; 3420 return;
1561 3421
1562 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3422 EV_FREQUENT_CHECK;
3423
3424 ev_io_stop (EV_A_ &w->io);
3425 ev_prepare_stop (EV_A_ &w->prepare);
3426 ev_fork_stop (EV_A_ &w->fork);
3427
3428 EV_FREQUENT_CHECK;
3429}
3430#endif
3431
3432#if EV_FORK_ENABLE
3433void
3434ev_fork_start (EV_P_ ev_fork *w)
3435{
3436 if (expect_false (ev_is_active (w)))
3437 return;
3438
3439 EV_FREQUENT_CHECK;
3440
3441 ev_start (EV_A_ (W)w, ++forkcnt);
3442 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3443 forks [forkcnt - 1] = w;
3444
3445 EV_FREQUENT_CHECK;
3446}
3447
3448void
3449ev_fork_stop (EV_P_ ev_fork *w)
3450{
3451 clear_pending (EV_A_ (W)w);
3452 if (expect_false (!ev_is_active (w)))
3453 return;
3454
3455 EV_FREQUENT_CHECK;
3456
3457 {
3458 int active = ev_active (w);
3459
3460 forks [active - 1] = forks [--forkcnt];
3461 ev_active (forks [active - 1]) = active;
3462 }
3463
1563 ev_stop (EV_A_ (W)w); 3464 ev_stop (EV_A_ (W)w);
3465
3466 EV_FREQUENT_CHECK;
1564} 3467}
3468#endif
3469
3470#if EV_ASYNC_ENABLE
3471void
3472ev_async_start (EV_P_ ev_async *w)
3473{
3474 if (expect_false (ev_is_active (w)))
3475 return;
3476
3477 evpipe_init (EV_A);
3478
3479 EV_FREQUENT_CHECK;
3480
3481 ev_start (EV_A_ (W)w, ++asynccnt);
3482 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3483 asyncs [asynccnt - 1] = w;
3484
3485 EV_FREQUENT_CHECK;
3486}
3487
3488void
3489ev_async_stop (EV_P_ ev_async *w)
3490{
3491 clear_pending (EV_A_ (W)w);
3492 if (expect_false (!ev_is_active (w)))
3493 return;
3494
3495 EV_FREQUENT_CHECK;
3496
3497 {
3498 int active = ev_active (w);
3499
3500 asyncs [active - 1] = asyncs [--asynccnt];
3501 ev_active (asyncs [active - 1]) = active;
3502 }
3503
3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
3507}
3508
3509void
3510ev_async_send (EV_P_ ev_async *w)
3511{
3512 w->sent = 1;
3513 evpipe_write (EV_A_ &async_pending);
3514}
3515#endif
1565 3516
1566/*****************************************************************************/ 3517/*****************************************************************************/
1567 3518
1568struct ev_once 3519struct ev_once
1569{ 3520{
1570 struct ev_io io; 3521 ev_io io;
1571 struct ev_timer to; 3522 ev_timer to;
1572 void (*cb)(int revents, void *arg); 3523 void (*cb)(int revents, void *arg);
1573 void *arg; 3524 void *arg;
1574}; 3525};
1575 3526
1576static void 3527static void
1577once_cb (EV_P_ struct ev_once *once, int revents) 3528once_cb (EV_P_ struct ev_once *once, int revents)
1578{ 3529{
1579 void (*cb)(int revents, void *arg) = once->cb; 3530 void (*cb)(int revents, void *arg) = once->cb;
1580 void *arg = once->arg; 3531 void *arg = once->arg;
1581 3532
1582 ev_io_stop (EV_A_ &once->io); 3533 ev_io_stop (EV_A_ &once->io);
1583 ev_timer_stop (EV_A_ &once->to); 3534 ev_timer_stop (EV_A_ &once->to);
1584 ev_free (once); 3535 ev_free (once);
1585 3536
1586 cb (revents, arg); 3537 cb (revents, arg);
1587} 3538}
1588 3539
1589static void 3540static void
1590once_cb_io (EV_P_ struct ev_io *w, int revents) 3541once_cb_io (EV_P_ ev_io *w, int revents)
1591{ 3542{
1592 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3543 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3544
3545 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1593} 3546}
1594 3547
1595static void 3548static void
1596once_cb_to (EV_P_ struct ev_timer *w, int revents) 3549once_cb_to (EV_P_ ev_timer *w, int revents)
1597{ 3550{
1598 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1599} 3554}
1600 3555
1601void 3556void
1602ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3557ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1603{ 3558{
1604 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3559 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1605 3560
1606 if (!once) 3561 if (expect_false (!once))
3562 {
1607 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1608 else 3564 return;
1609 { 3565 }
3566
1610 once->cb = cb; 3567 once->cb = cb;
1611 once->arg = arg; 3568 once->arg = arg;
1612 3569
1613 ev_init (&once->io, once_cb_io); 3570 ev_init (&once->io, once_cb_io);
1614 if (fd >= 0) 3571 if (fd >= 0)
3572 {
3573 ev_io_set (&once->io, fd, events);
3574 ev_io_start (EV_A_ &once->io);
3575 }
3576
3577 ev_init (&once->to, once_cb_to);
3578 if (timeout >= 0.)
3579 {
3580 ev_timer_set (&once->to, timeout, 0.);
3581 ev_timer_start (EV_A_ &once->to);
3582 }
3583}
3584
3585/*****************************************************************************/
3586
3587#if EV_WALK_ENABLE
3588void
3589ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3590{
3591 int i, j;
3592 ev_watcher_list *wl, *wn;
3593
3594 if (types & (EV_IO | EV_EMBED))
3595 for (i = 0; i < anfdmax; ++i)
3596 for (wl = anfds [i].head; wl; )
1615 { 3597 {
1616 ev_io_set (&once->io, fd, events); 3598 wn = wl->next;
1617 ev_io_start (EV_A_ &once->io); 3599
3600#if EV_EMBED_ENABLE
3601 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3602 {
3603 if (types & EV_EMBED)
3604 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3605 }
3606 else
3607#endif
3608#if EV_USE_INOTIFY
3609 if (ev_cb ((ev_io *)wl) == infy_cb)
3610 ;
3611 else
3612#endif
3613 if ((ev_io *)wl != &pipe_w)
3614 if (types & EV_IO)
3615 cb (EV_A_ EV_IO, wl);
3616
3617 wl = wn;
1618 } 3618 }
1619 3619
1620 ev_init (&once->to, once_cb_to); 3620 if (types & (EV_TIMER | EV_STAT))
1621 if (timeout >= 0.) 3621 for (i = timercnt + HEAP0; i-- > HEAP0; )
3622#if EV_STAT_ENABLE
3623 /*TODO: timer is not always active*/
3624 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1622 { 3625 {
1623 ev_timer_set (&once->to, timeout, 0.); 3626 if (types & EV_STAT)
1624 ev_timer_start (EV_A_ &once->to); 3627 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1625 } 3628 }
1626 } 3629 else
3630#endif
3631 if (types & EV_TIMER)
3632 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3633
3634#if EV_PERIODIC_ENABLE
3635 if (types & EV_PERIODIC)
3636 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3637 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3638#endif
3639
3640#if EV_IDLE_ENABLE
3641 if (types & EV_IDLE)
3642 for (j = NUMPRI; i--; )
3643 for (i = idlecnt [j]; i--; )
3644 cb (EV_A_ EV_IDLE, idles [j][i]);
3645#endif
3646
3647#if EV_FORK_ENABLE
3648 if (types & EV_FORK)
3649 for (i = forkcnt; i--; )
3650 if (ev_cb (forks [i]) != embed_fork_cb)
3651 cb (EV_A_ EV_FORK, forks [i]);
3652#endif
3653
3654#if EV_ASYNC_ENABLE
3655 if (types & EV_ASYNC)
3656 for (i = asynccnt; i--; )
3657 cb (EV_A_ EV_ASYNC, asyncs [i]);
3658#endif
3659
3660 if (types & EV_PREPARE)
3661 for (i = preparecnt; i--; )
3662#if EV_EMBED_ENABLE
3663 if (ev_cb (prepares [i]) != embed_prepare_cb)
3664#endif
3665 cb (EV_A_ EV_PREPARE, prepares [i]);
3666
3667 if (types & EV_CHECK)
3668 for (i = checkcnt; i--; )
3669 cb (EV_A_ EV_CHECK, checks [i]);
3670
3671 if (types & EV_SIGNAL)
3672 for (i = 0; i < EV_NSIG - 1; ++i)
3673 for (wl = signals [i].head; wl; )
3674 {
3675 wn = wl->next;
3676 cb (EV_A_ EV_SIGNAL, wl);
3677 wl = wn;
3678 }
3679
3680 if (types & EV_CHILD)
3681 for (i = EV_PID_HASHSIZE; i--; )
3682 for (wl = childs [i]; wl; )
3683 {
3684 wn = wl->next;
3685 cb (EV_A_ EV_CHILD, wl);
3686 wl = wn;
3687 }
3688/* EV_STAT 0x00001000 /* stat data changed */
3689/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1627} 3690}
3691#endif
3692
3693#if EV_MULTIPLICITY
3694 #include "ev_wrap.h"
3695#endif
1628 3696
1629#ifdef __cplusplus 3697#ifdef __cplusplus
1630} 3698}
1631#endif 3699#endif
1632 3700

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines