ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.165 by root, Fri Dec 7 18:09:38 2007 UTC vs.
Revision 1.326 by root, Tue Jan 26 04:19:37 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
139#endif 189#endif
140 190
141/**/ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
142 227
143#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
144# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
233# endif
145#endif 234#endif
146 235
147#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
238#endif
239
240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
244# define EV_USE_NANOSLEEP 0
245# endif
149#endif 246#endif
150 247
151#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
153#endif 250#endif
159# define EV_USE_POLL 1 256# define EV_USE_POLL 1
160# endif 257# endif
161#endif 258#endif
162 259
163#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
164# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
165#endif 266#endif
166 267
167#ifndef EV_USE_KQUEUE 268#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 269# define EV_USE_KQUEUE 0
169#endif 270#endif
171#ifndef EV_USE_PORT 272#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 273# define EV_USE_PORT 0
173#endif 274#endif
174 275
175#ifndef EV_USE_INOTIFY 276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
278# define EV_USE_INOTIFY 1
279# else
176# define EV_USE_INOTIFY 0 280# define EV_USE_INOTIFY 0
281# endif
177#endif 282#endif
178 283
179#ifndef EV_PID_HASHSIZE 284#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 285# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 286# define EV_PID_HASHSIZE 1
190# else 295# else
191# define EV_INOTIFY_HASHSIZE 16 296# define EV_INOTIFY_HASHSIZE 16
192# endif 297# endif
193#endif 298#endif
194 299
195/**/ 300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
196 355
197#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
200#endif 359#endif
202#ifndef CLOCK_REALTIME 361#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 362# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 363# define EV_USE_REALTIME 0
205#endif 364#endif
206 365
366#if !EV_STAT_ENABLE
367# undef EV_USE_INOTIFY
368# define EV_USE_INOTIFY 0
369#endif
370
371#if !EV_USE_NANOSLEEP
372# ifndef _WIN32
373# include <sys/select.h>
374# endif
375#endif
376
377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
386#endif
387
207#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 389# include <winsock.h>
209#endif 390#endif
210 391
211#if !EV_STAT_ENABLE 392#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
213#endif 397# endif
214 398# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 399# ifdef O_CLOEXEC
216# include <sys/inotify.h> 400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
217#endif 404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int eventfd (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
218 442
219/**/ 443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
450
451/*
452 * This is used to avoid floating point rounding problems.
453 * It is added to ev_rt_now when scheduling periodics
454 * to ensure progress, time-wise, even when rounding
455 * errors are against us.
456 * This value is good at least till the year 4000.
457 * Better solutions welcome.
458 */
459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 460
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 463
225#if __GNUC__ >= 3 464#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 467#else
236# define expect(expr,value) (expr) 468# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 469# define noinline
470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
471# define inline
472# endif
240#endif 473#endif
241 474
242#define expect_false(expr) expect ((expr) != 0, 0) 475#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 476#define expect_true(expr) expect ((expr) != 0, 1)
477#define inline_size static inline
244 478
479#if EV_MINIMAL
480# define inline_speed static noinline
481#else
482# define inline_speed static inline
483#endif
484
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
247 492
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
250 495
251typedef ev_watcher *W; 496typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
254 499
500#define ev_active(w) ((W)(w))->active
501#define ev_at(w) ((WT)(w))->at
502
503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
256 522
257#ifdef _WIN32 523#ifdef _WIN32
258# include "ev_win32.c" 524# include "ev_win32.c"
259#endif 525#endif
260 526
267{ 533{
268 syserr_cb = cb; 534 syserr_cb = cb;
269} 535}
270 536
271static void noinline 537static void noinline
272syserr (const char *msg) 538ev_syserr (const char *msg)
273{ 539{
274 if (!msg) 540 if (!msg)
275 msg = "(libev) system error"; 541 msg = "(libev) system error";
276 542
277 if (syserr_cb) 543 if (syserr_cb)
281 perror (msg); 547 perror (msg);
282 abort (); 548 abort ();
283 } 549 }
284} 550}
285 551
552static void *
553ev_realloc_emul (void *ptr, long size)
554{
555 /* some systems, notably openbsd and darwin, fail to properly
556 * implement realloc (x, 0) (as required by both ansi c-98 and
557 * the single unix specification, so work around them here.
558 */
559
560 if (size)
561 return realloc (ptr, size);
562
563 free (ptr);
564 return 0;
565}
566
286static void *(*alloc)(void *ptr, long size); 567static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 568
288void 569void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 570ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 571{
291 alloc = cb; 572 alloc = cb;
292} 573}
293 574
294inline_speed void * 575inline_speed void *
295ev_realloc (void *ptr, long size) 576ev_realloc (void *ptr, long size)
296{ 577{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 578 ptr = alloc (ptr, size);
298 579
299 if (!ptr && size) 580 if (!ptr && size)
300 { 581 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 582 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 583 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 589#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 590#define ev_free(ptr) ev_realloc ((ptr), 0)
310 591
311/*****************************************************************************/ 592/*****************************************************************************/
312 593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
313typedef struct 598typedef struct
314{ 599{
315 WL head; 600 WL head;
316 unsigned char events; 601 unsigned char events; /* the events watched for */
602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 604 unsigned char unused;
605#if EV_USE_EPOLL
606 unsigned int egen; /* generation counter to counter epoll bugs */
607#endif
318#if EV_SELECT_IS_WINSOCKET 608#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 609 SOCKET handle;
320#endif 610#endif
321} ANFD; 611} ANFD;
322 612
613/* stores the pending event set for a given watcher */
323typedef struct 614typedef struct
324{ 615{
325 W w; 616 W w;
326 int events; 617 int events; /* the pending event set for the given watcher */
327} ANPENDING; 618} ANPENDING;
328 619
329#if EV_USE_INOTIFY 620#if EV_USE_INOTIFY
621/* hash table entry per inotify-id */
330typedef struct 622typedef struct
331{ 623{
332 WL head; 624 WL head;
333} ANFS; 625} ANFS;
626#endif
627
628/* Heap Entry */
629#if EV_HEAP_CACHE_AT
630 /* a heap element */
631 typedef struct {
632 ev_tstamp at;
633 WT w;
634 } ANHE;
635
636 #define ANHE_w(he) (he).w /* access watcher, read-write */
637 #define ANHE_at(he) (he).at /* access cached at, read-only */
638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
639#else
640 /* a heap element */
641 typedef WT ANHE;
642
643 #define ANHE_w(he) (he)
644 #define ANHE_at(he) (he)->at
645 #define ANHE_at_cache(he)
334#endif 646#endif
335 647
336#if EV_MULTIPLICITY 648#if EV_MULTIPLICITY
337 649
338 struct ev_loop 650 struct ev_loop
357 669
358 static int ev_default_loop_ptr; 670 static int ev_default_loop_ptr;
359 671
360#endif 672#endif
361 673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
685
362/*****************************************************************************/ 686/*****************************************************************************/
363 687
688#ifndef EV_HAVE_EV_TIME
364ev_tstamp 689ev_tstamp
365ev_time (void) 690ev_time (void)
366{ 691{
367#if EV_USE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
368 struct timespec ts; 695 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 698 }
699#endif
700
372 struct timeval tv; 701 struct timeval tv;
373 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 704}
705#endif
377 706
378ev_tstamp inline_size 707inline_size ev_tstamp
379get_clock (void) 708get_clock (void)
380{ 709{
381#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 711 if (expect_true (have_monotonic))
383 { 712 {
396{ 725{
397 return ev_rt_now; 726 return ev_rt_now;
398} 727}
399#endif 728#endif
400 729
401int inline_size 730void
731ev_sleep (ev_tstamp delay)
732{
733 if (delay > 0.)
734 {
735#if EV_USE_NANOSLEEP
736 struct timespec ts;
737
738 ts.tv_sec = (time_t)delay;
739 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
740
741 nanosleep (&ts, 0);
742#elif defined(_WIN32)
743 Sleep ((unsigned long)(delay * 1e3));
744#else
745 struct timeval tv;
746
747 tv.tv_sec = (time_t)delay;
748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
749
750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
751 /* something not guaranteed by newer posix versions, but guaranteed */
752 /* by older ones */
753 select (0, 0, 0, 0, &tv);
754#endif
755 }
756}
757
758/*****************************************************************************/
759
760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
761
762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
402array_nextsize (int elem, int cur, int cnt) 765array_nextsize (int elem, int cur, int cnt)
403{ 766{
404 int ncur = cur + 1; 767 int ncur = cur + 1;
405 768
406 do 769 do
407 ncur <<= 1; 770 ncur <<= 1;
408 while (cnt > ncur); 771 while (cnt > ncur);
409 772
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 773 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 774 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 775 {
413 ncur *= elem; 776 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 777 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 778 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 779 ncur /= elem;
417 } 780 }
418 781
419 return ncur; 782 return ncur;
420} 783}
421 784
422inline_speed void * 785static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 786array_realloc (int elem, void *base, int *cur, int cnt)
424{ 787{
425 *cur = array_nextsize (elem, *cur, cnt); 788 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 789 return ev_realloc (base, elem * *cur);
427} 790}
791
792#define array_init_zero(base,count) \
793 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 794
429#define array_needsize(type,base,cur,cnt,init) \ 795#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 796 if (expect_false ((cnt) > (cur))) \
431 { \ 797 { \
432 int ocur_ = (cur); \ 798 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 811 }
446#endif 812#endif
447 813
448#define array_free(stem, idx) \ 814#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 816
451/*****************************************************************************/ 817/*****************************************************************************/
818
819/* dummy callback for pending events */
820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
822{
823}
452 824
453void noinline 825void noinline
454ev_feed_event (EV_P_ void *w, int revents) 826ev_feed_event (EV_P_ void *w, int revents)
455{ 827{
456 W w_ = (W)w; 828 W w_ = (W)w;
829 int pri = ABSPRI (w_);
457 830
458 if (expect_false (w_->pending)) 831 if (expect_false (w_->pending))
832 pendings [pri][w_->pending - 1].events |= revents;
833 else
459 { 834 {
835 w_->pending = ++pendingcnt [pri];
836 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
837 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 838 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 839 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 840}
469 841
470void inline_size 842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 858queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 859{
473 int i; 860 int i;
474 861
475 for (i = 0; i < eventcnt; ++i) 862 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 863 ev_feed_event (EV_A_ events [i], type);
477} 864}
478 865
479/*****************************************************************************/ 866/*****************************************************************************/
480 867
481void inline_size 868inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 869fd_event_nc (EV_P_ int fd, int revents)
496{ 870{
497 ANFD *anfd = anfds + fd; 871 ANFD *anfd = anfds + fd;
498 ev_io *w; 872 ev_io *w;
499 873
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 878 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 879 ev_feed_event (EV_A_ (W)w, ev);
506 } 880 }
507} 881}
508 882
883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
889
890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
509void 894void
510ev_feed_fd_event (EV_P_ int fd, int revents) 895ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 896{
897 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 898 fd_event_nc (EV_A_ fd, revents);
513} 899}
514 900
515void inline_size 901/* make sure the external fd watch events are in-sync */
902/* with the kernel/libev internal state */
903inline_size void
516fd_reify (EV_P) 904fd_reify (EV_P)
517{ 905{
518 int i; 906 int i;
519 907
520 for (i = 0; i < fdchangecnt; ++i) 908 for (i = 0; i < fdchangecnt; ++i)
521 { 909 {
522 int fd = fdchanges [i]; 910 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 911 ANFD *anfd = anfds + fd;
524 ev_io *w; 912 ev_io *w;
525 913
526 int events = 0; 914 unsigned char events = 0;
527 915
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 916 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 917 events |= (unsigned char)w->events;
530 918
531#if EV_SELECT_IS_WINSOCKET 919#if EV_SELECT_IS_WINSOCKET
532 if (events) 920 if (events)
533 { 921 {
534 unsigned long argp; 922 unsigned long arg;
535 anfd->handle = _get_osfhandle (fd); 923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 925 }
538#endif 926#endif
539 927
928 {
929 unsigned char o_events = anfd->events;
930 unsigned char o_reify = anfd->reify;
931
540 anfd->reify = 0; 932 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 933 anfd->events = events;
934
935 if (o_events != events || o_reify & EV__IOFDSET)
936 backend_modify (EV_A_ fd, o_events, events);
937 }
544 } 938 }
545 939
546 fdchangecnt = 0; 940 fdchangecnt = 0;
547} 941}
548 942
549void inline_size 943/* something about the given fd changed */
944inline_size void
550fd_change (EV_P_ int fd) 945fd_change (EV_P_ int fd, int flags)
551{ 946{
552 if (expect_false (anfds [fd].reify)) 947 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 948 anfds [fd].reify |= flags;
556 949
950 if (expect_true (!reify))
951 {
557 ++fdchangecnt; 952 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 954 fdchanges [fdchangecnt - 1] = fd;
955 }
560} 956}
561 957
562void inline_speed 958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
563fd_kill (EV_P_ int fd) 960fd_kill (EV_P_ int fd)
564{ 961{
565 ev_io *w; 962 ev_io *w;
566 963
567 while ((w = (ev_io *)anfds [fd].head)) 964 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 966 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 968 }
572} 969}
573 970
574int inline_size 971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
575fd_valid (int fd) 973fd_valid (int fd)
576{ 974{
577#ifdef _WIN32 975#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
579#else 977#else
580 return fcntl (fd, F_GETFD) != -1; 978 return fcntl (fd, F_GETFD) != -1;
581#endif 979#endif
582} 980}
583 981
587{ 985{
588 int fd; 986 int fd;
589 987
590 for (fd = 0; fd < anfdmax; ++fd) 988 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 989 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 990 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 991 fd_kill (EV_A_ fd);
594} 992}
595 993
596/* called on ENOMEM in select/poll to kill some fds and retry */ 994/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 995static void noinline
601 999
602 for (fd = anfdmax; fd--; ) 1000 for (fd = anfdmax; fd--; )
603 if (anfds [fd].events) 1001 if (anfds [fd].events)
604 { 1002 {
605 fd_kill (EV_A_ fd); 1003 fd_kill (EV_A_ fd);
606 return; 1004 break;
607 } 1005 }
608} 1006}
609 1007
610/* usually called after fork if backend needs to re-arm all fds from scratch */ 1008/* usually called after fork if backend needs to re-arm all fds from scratch */
611static void noinline 1009static void noinline
615 1013
616 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 1015 if (anfds [fd].events)
618 { 1016 {
619 anfds [fd].events = 0; 1017 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 1018 anfds [fd].emask = 0;
1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 1020 }
622} 1021}
623 1022
624/*****************************************************************************/ 1023/*****************************************************************************/
625 1024
626void inline_speed 1025/*
627upheap (WT *heap, int k) 1026 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 1027 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 1028 * the branching factor of the d-tree.
1029 */
630 1030
631 while (k && heap [k >> 1]->at > w->at) 1031/*
632 { 1032 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 1033 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 1034 * which is more cache-efficient.
635 k >>= 1; 1035 * the difference is about 5% with 50000+ watchers.
636 } 1036 */
1037#if EV_USE_4HEAP
637 1038
638 heap [k] = w; 1039#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1042#define UPHEAP_DONE(p,k) ((p) == (k))
640 1043
641} 1044/* away from the root */
642 1045inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 1046downheap (ANHE *heap, int N, int k)
645{ 1047{
646 WT w = heap [k]; 1048 ANHE he = heap [k];
1049 ANHE *E = heap + N + HEAP0;
647 1050
648 while (k < (N >> 1)) 1051 for (;;)
649 { 1052 {
650 int j = k << 1; 1053 ev_tstamp minat;
1054 ANHE *minpos;
1055 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 1056
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1057 /* find minimum child */
1058 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 1059 {
654 1060 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 1061 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else if (pos < E)
1066 {
1067 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1068 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1069 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1070 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1071 }
1072 else
656 break; 1073 break;
657 1074
1075 if (ANHE_at (he) <= minat)
1076 break;
1077
1078 heap [k] = *minpos;
1079 ev_active (ANHE_w (*minpos)) = k;
1080
1081 k = minpos - heap;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087
1088#else /* 4HEAP */
1089
1090#define HEAP0 1
1091#define HPARENT(k) ((k) >> 1)
1092#define UPHEAP_DONE(p,k) (!(p))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099
1100 for (;;)
1101 {
1102 int c = k << 1;
1103
1104 if (c >= N + HEAP0)
1105 break;
1106
1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1108 ? 1 : 0;
1109
1110 if (ANHE_at (he) <= ANHE_at (heap [c]))
1111 break;
1112
658 heap [k] = heap [j]; 1113 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 1114 ev_active (ANHE_w (heap [k])) = k;
1115
660 k = j; 1116 k = c;
661 } 1117 }
662 1118
663 heap [k] = w; 1119 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1120 ev_active (ANHE_w (he)) = k;
665} 1121}
1122#endif
666 1123
667void inline_size 1124/* towards the root */
1125inline_speed void
1126upheap (ANHE *heap, int k)
1127{
1128 ANHE he = heap [k];
1129
1130 for (;;)
1131 {
1132 int p = HPARENT (k);
1133
1134 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1135 break;
1136
1137 heap [k] = heap [p];
1138 ev_active (ANHE_w (heap [k])) = k;
1139 k = p;
1140 }
1141
1142 heap [k] = he;
1143 ev_active (ANHE_w (he)) = k;
1144}
1145
1146/* move an element suitably so it is in a correct place */
1147inline_size void
668adjustheap (WT *heap, int N, int k) 1148adjustheap (ANHE *heap, int N, int k)
669{ 1149{
1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
670 upheap (heap, k); 1151 upheap (heap, k);
1152 else
671 downheap (heap, N, k); 1153 downheap (heap, N, k);
1154}
1155
1156/* rebuild the heap: this function is used only once and executed rarely */
1157inline_size void
1158reheap (ANHE *heap, int N)
1159{
1160 int i;
1161
1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1163 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1164 for (i = 0; i < N; ++i)
1165 upheap (heap, i + HEAP0);
672} 1166}
673 1167
674/*****************************************************************************/ 1168/*****************************************************************************/
675 1169
1170/* associate signal watchers to a signal signal */
676typedef struct 1171typedef struct
677{ 1172{
1173 EV_ATOMIC_T pending;
1174#if EV_MULTIPLICITY
1175 EV_P;
1176#endif
678 WL head; 1177 WL head;
679 sig_atomic_t volatile gotsig;
680} ANSIG; 1178} ANSIG;
681 1179
682static ANSIG *signals; 1180static ANSIG signals [EV_NSIG - 1];
683static int signalmax;
684 1181
685static int sigpipe [2]; 1182/*****************************************************************************/
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1183
689void inline_size 1184/* used to prepare libev internal fd's */
690signals_init (ANSIG *base, int count) 1185/* this is not fork-safe */
691{ 1186inline_speed void
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1187fd_intern (int fd)
754{ 1188{
755#ifdef _WIN32 1189#ifdef _WIN32
756 int arg = 1; 1190 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
758#else 1192#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1194 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1195#endif
762} 1196}
763 1197
764static void noinline 1198static void noinline
765siginit (EV_P) 1199evpipe_init (EV_P)
766{ 1200{
1201 if (!ev_is_active (&pipe_w))
1202 {
1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
1209 {
1210 evpipe [0] = -1;
1211 fd_intern (evfd); /* doing it twice doesn't hurt */
1212 ev_io_set (&pipe_w, evfd, EV_READ);
1213 }
1214 else
1215#endif
1216 {
1217 while (pipe (evpipe))
1218 ev_syserr ("(libev) error creating signal/async pipe");
1219
767 fd_intern (sigpipe [0]); 1220 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1221 fd_intern (evpipe [1]);
1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1223 }
769 1224
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1225 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1227 }
1228}
1229
1230inline_size void
1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1232{
1233 if (!*flag)
1234 {
1235 int old_errno = errno; /* save errno because write might clobber it */
1236
1237 *flag = 1;
1238
1239#if EV_USE_EVENTFD
1240 if (evfd >= 0)
1241 {
1242 uint64_t counter = 1;
1243 write (evfd, &counter, sizeof (uint64_t));
1244 }
1245 else
1246#endif
1247 write (evpipe [1], &old_errno, 1);
1248
1249 errno = old_errno;
1250 }
1251}
1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
1255static void
1256pipecb (EV_P_ ev_io *iow, int revents)
1257{
1258 int i;
1259
1260#if EV_USE_EVENTFD
1261 if (evfd >= 0)
1262 {
1263 uint64_t counter;
1264 read (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 {
1269 char dummy;
1270 read (evpipe [0], &dummy, 1);
1271 }
1272
1273 if (sig_pending)
1274 {
1275 sig_pending = 0;
1276
1277 for (i = EV_NSIG - 1; i--; )
1278 if (expect_false (signals [i].pending))
1279 ev_feed_signal_event (EV_A_ i + 1);
1280 }
1281
1282#if EV_ASYNC_ENABLE
1283 if (async_pending)
1284 {
1285 async_pending = 0;
1286
1287 for (i = asynccnt; i--; )
1288 if (asyncs [i]->sent)
1289 {
1290 asyncs [i]->sent = 0;
1291 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1292 }
1293 }
1294#endif
773} 1295}
774 1296
775/*****************************************************************************/ 1297/*****************************************************************************/
776 1298
1299static void
1300ev_sighandler (int signum)
1301{
1302#if EV_MULTIPLICITY
1303 EV_P = signals [signum - 1].loop;
1304#endif
1305
1306#ifdef _WIN32
1307 signal (signum, ev_sighandler);
1308#endif
1309
1310 signals [signum - 1].pending = 1;
1311 evpipe_write (EV_A_ &sig_pending);
1312}
1313
1314void noinline
1315ev_feed_signal_event (EV_P_ int signum)
1316{
1317 WL w;
1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1324#if EV_MULTIPLICITY
1325 /* it is permissible to try to feed a signal to the wrong loop */
1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1327
1328 if (expect_false (signals [signum].loop != EV_A))
1329 return;
1330#endif
1331
1332 signals [signum].pending = 0;
1333
1334 for (w = signals [signum].head; w; w = w->next)
1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1336}
1337
1338#if EV_USE_SIGNALFD
1339static void
1340sigfdcb (EV_P_ ev_io *iow, int revents)
1341{
1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1343
1344 for (;;)
1345 {
1346 ssize_t res = read (sigfd, si, sizeof (si));
1347
1348 /* not ISO-C, as res might be -1, but works with SuS */
1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1351
1352 if (res < (ssize_t)sizeof (si))
1353 break;
1354 }
1355}
1356#endif
1357
1358/*****************************************************************************/
1359
777static ev_child *childs [EV_PID_HASHSIZE]; 1360static WL childs [EV_PID_HASHSIZE];
778 1361
779#ifndef _WIN32 1362#ifndef _WIN32
780 1363
781static ev_signal childev; 1364static ev_signal childev;
782 1365
783void inline_speed 1366#ifndef WIFCONTINUED
1367# define WIFCONTINUED(status) 0
1368#endif
1369
1370/* handle a single child status event */
1371inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1372child_reap (EV_P_ int chain, int pid, int status)
785{ 1373{
786 ev_child *w; 1374 ev_child *w;
1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1376
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1377 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1378 {
789 if (w->pid == pid || !w->pid) 1379 if ((w->pid == pid || !w->pid)
1380 && (!traced || (w->flags & 1)))
790 { 1381 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1382 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1383 w->rpid = pid;
793 w->rstatus = status; 1384 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1385 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1386 }
1387 }
796} 1388}
797 1389
798#ifndef WCONTINUED 1390#ifndef WCONTINUED
799# define WCONTINUED 0 1391# define WCONTINUED 0
800#endif 1392#endif
801 1393
1394/* called on sigchld etc., calls waitpid */
802static void 1395static void
803childcb (EV_P_ ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
804{ 1397{
805 int pid, status; 1398 int pid, status;
806 1399
809 if (!WCONTINUED 1402 if (!WCONTINUED
810 || errno != EINVAL 1403 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1404 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1405 return;
813 1406
814 /* make sure we are called again until all childs have been reaped */ 1407 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1408 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1409 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1410
818 child_reap (EV_A_ sw, pid, pid, status); 1411 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1412 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1413 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1414}
822 1415
823#endif 1416#endif
824 1417
825/*****************************************************************************/ 1418/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1480 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1481 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1482 flags &= ~EVBACKEND_KQUEUE;
890#endif 1483#endif
891#ifdef __APPLE__ 1484#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1485 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1486 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1487 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1488#endif
895 1489
896 return flags; 1490 return flags;
897} 1491}
898 1492
899unsigned int 1493unsigned int
900ev_embeddable_backends (void) 1494ev_embeddable_backends (void)
901{ 1495{
902 return EVBACKEND_EPOLL 1496 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1497
904 | EVBACKEND_PORT; 1498 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1499 /* please fix it and tell me how to detect the fix */
1500 flags &= ~EVBACKEND_EPOLL;
1501
1502 return flags;
905} 1503}
906 1504
907unsigned int 1505unsigned int
908ev_backend (EV_P) 1506ev_backend (EV_P)
909{ 1507{
910 return backend; 1508 return backend;
911} 1509}
912 1510
1511#if EV_MINIMAL < 2
913unsigned int 1512unsigned int
914ev_loop_count (EV_P) 1513ev_loop_count (EV_P)
915{ 1514{
916 return loop_count; 1515 return loop_count;
917} 1516}
918 1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
1524void
1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1526{
1527 io_blocktime = interval;
1528}
1529
1530void
1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1532{
1533 timeout_blocktime = interval;
1534}
1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
919static void noinline 1561static void noinline
920loop_init (EV_P_ unsigned int flags) 1562loop_init (EV_P_ unsigned int flags)
921{ 1563{
922 if (!backend) 1564 if (!backend)
923 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
924#if EV_USE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
925 { 1578 {
926 struct timespec ts; 1579 struct timespec ts;
1580
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1582 have_monotonic = 1;
929 } 1583 }
930#endif 1584#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 1585
937 /* pid check not overridable via env */ 1586 /* pid check not overridable via env */
938#ifndef _WIN32 1587#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1588 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1589 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1592 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1593 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1594 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1595 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1596
1597 ev_rt_now = ev_time ();
1598 mn_now = get_clock ();
1599 now_floor = mn_now;
1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
1604
1605 io_blocktime = 0.;
1606 timeout_blocktime = 0.;
1607 backend = 0;
1608 backend_fd = -1;
1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1613#if EV_USE_INOTIFY
1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1615#endif
1616#if EV_USE_SIGNALFD
1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1618#endif
1619
948 if (!(flags & 0x0000ffffUL)) 1620 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1621 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1622
957#if EV_USE_PORT 1623#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1624 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1625#endif
960#if EV_USE_KQUEUE 1626#if EV_USE_KQUEUE
968#endif 1634#endif
969#if EV_USE_SELECT 1635#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1637#endif
972 1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
973 ev_init (&sigev, sigcb); 1641 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1642 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1643 }
976} 1644}
977 1645
1646/* free up a loop structure */
978static void noinline 1647static void noinline
979loop_destroy (EV_P) 1648loop_destroy (EV_P)
980{ 1649{
981 int i; 1650 int i;
1651
1652 if (ev_is_active (&pipe_w))
1653 {
1654 /*ev_ref (EV_A);*/
1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1656
1657#if EV_USE_EVENTFD
1658 if (evfd >= 0)
1659 close (evfd);
1660#endif
1661
1662 if (evpipe [0] >= 0)
1663 {
1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1666 }
1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
982 1673
983#if EV_USE_INOTIFY 1674#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1675 if (fs_fd >= 0)
985 close (fs_fd); 1676 close (fs_fd);
986#endif 1677#endif
1010#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1702 array_free (idle, [i]);
1012#endif 1703#endif
1013 } 1704 }
1014 1705
1706 ev_free (anfds); anfds = 0; anfdmax = 0;
1707
1015 /* have to use the microsoft-never-gets-it-right macro */ 1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1710 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1711 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1712#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1713 array_free (periodic, EMPTY);
1020#endif 1714#endif
1715#if EV_FORK_ENABLE
1716 array_free (fork, EMPTY);
1717#endif
1021 array_free (prepare, EMPTY); 1718 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1719 array_free (check, EMPTY);
1720#if EV_ASYNC_ENABLE
1721 array_free (async, EMPTY);
1722#endif
1023 1723
1024 backend = 0; 1724 backend = 0;
1025} 1725}
1026 1726
1727#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1728inline_size void infy_fork (EV_P);
1729#endif
1028 1730
1029void inline_size 1731inline_size void
1030loop_fork (EV_P) 1732loop_fork (EV_P)
1031{ 1733{
1032#if EV_USE_PORT 1734#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1736#endif
1040#endif 1742#endif
1041#if EV_USE_INOTIFY 1743#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1744 infy_fork (EV_A);
1043#endif 1745#endif
1044 1746
1045 if (ev_is_active (&sigev)) 1747 if (ev_is_active (&pipe_w))
1046 { 1748 {
1047 /* default loop */ 1749 /* this "locks" the handlers against writing to the pipe */
1750 /* while we modify the fd vars */
1751 sig_pending = 1;
1752#if EV_ASYNC_ENABLE
1753 async_pending = 1;
1754#endif
1048 1755
1049 ev_ref (EV_A); 1756 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1757 ev_io_stop (EV_A_ &pipe_w);
1051 close (sigpipe [0]);
1052 close (sigpipe [1]);
1053 1758
1054 while (pipe (sigpipe)) 1759#if EV_USE_EVENTFD
1055 syserr ("(libev) error creating pipe"); 1760 if (evfd >= 0)
1761 close (evfd);
1762#endif
1056 1763
1764 if (evpipe [0] >= 0)
1765 {
1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1768 }
1769
1057 siginit (EV_A); 1770 evpipe_init (EV_A);
1771 /* now iterate over everything, in case we missed something */
1772 pipecb (EV_A_ &pipe_w, EV_READ);
1058 } 1773 }
1059 1774
1060 postfork = 0; 1775 postfork = 0;
1061} 1776}
1062 1777
1063#if EV_MULTIPLICITY 1778#if EV_MULTIPLICITY
1779
1064struct ev_loop * 1780struct ev_loop *
1065ev_loop_new (unsigned int flags) 1781ev_loop_new (unsigned int flags)
1066{ 1782{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1784
1069 memset (loop, 0, sizeof (struct ev_loop)); 1785 memset (EV_A, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags); 1786 loop_init (EV_A_ flags);
1072 1787
1073 if (ev_backend (EV_A)) 1788 if (ev_backend (EV_A))
1074 return loop; 1789 return EV_A;
1075 1790
1076 return 0; 1791 return 0;
1077} 1792}
1078 1793
1079void 1794void
1084} 1799}
1085 1800
1086void 1801void
1087ev_loop_fork (EV_P) 1802ev_loop_fork (EV_P)
1088{ 1803{
1089 postfork = 1; 1804 postfork = 1; /* must be in line with ev_default_fork */
1090} 1805}
1806#endif /* multiplicity */
1091 1807
1808#if EV_VERIFY
1809static void noinline
1810verify_watcher (EV_P_ W w)
1811{
1812 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1813
1814 if (w->pending)
1815 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1816}
1817
1818static void noinline
1819verify_heap (EV_P_ ANHE *heap, int N)
1820{
1821 int i;
1822
1823 for (i = HEAP0; i < N + HEAP0; ++i)
1824 {
1825 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1826 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1827 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1828
1829 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1830 }
1831}
1832
1833static void noinline
1834array_verify (EV_P_ W *ws, int cnt)
1835{
1836 while (cnt--)
1837 {
1838 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1839 verify_watcher (EV_A_ ws [cnt]);
1840 }
1841}
1842#endif
1843
1844#if EV_MINIMAL < 2
1845void
1846ev_loop_verify (EV_P)
1847{
1848#if EV_VERIFY
1849 int i;
1850 WL w;
1851
1852 assert (activecnt >= -1);
1853
1854 assert (fdchangemax >= fdchangecnt);
1855 for (i = 0; i < fdchangecnt; ++i)
1856 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1857
1858 assert (anfdmax >= 0);
1859 for (i = 0; i < anfdmax; ++i)
1860 for (w = anfds [i].head; w; w = w->next)
1861 {
1862 verify_watcher (EV_A_ (W)w);
1863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1865 }
1866
1867 assert (timermax >= timercnt);
1868 verify_heap (EV_A_ timers, timercnt);
1869
1870#if EV_PERIODIC_ENABLE
1871 assert (periodicmax >= periodiccnt);
1872 verify_heap (EV_A_ periodics, periodiccnt);
1873#endif
1874
1875 for (i = NUMPRI; i--; )
1876 {
1877 assert (pendingmax [i] >= pendingcnt [i]);
1878#if EV_IDLE_ENABLE
1879 assert (idleall >= 0);
1880 assert (idlemax [i] >= idlecnt [i]);
1881 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1882#endif
1883 }
1884
1885#if EV_FORK_ENABLE
1886 assert (forkmax >= forkcnt);
1887 array_verify (EV_A_ (W *)forks, forkcnt);
1888#endif
1889
1890#if EV_ASYNC_ENABLE
1891 assert (asyncmax >= asynccnt);
1892 array_verify (EV_A_ (W *)asyncs, asynccnt);
1893#endif
1894
1895 assert (preparemax >= preparecnt);
1896 array_verify (EV_A_ (W *)prepares, preparecnt);
1897
1898 assert (checkmax >= checkcnt);
1899 array_verify (EV_A_ (W *)checks, checkcnt);
1900
1901# if 0
1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1904# endif
1905#endif
1906}
1092#endif 1907#endif
1093 1908
1094#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1095struct ev_loop * 1910struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1911ev_default_loop_init (unsigned int flags)
1097#else 1912#else
1098int 1913int
1099ev_default_loop (unsigned int flags) 1914ev_default_loop (unsigned int flags)
1100#endif 1915#endif
1101{ 1916{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1917 if (!ev_default_loop_ptr)
1107 { 1918 {
1108#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
1110#else 1921#else
1111 ev_default_loop_ptr = 1; 1922 ev_default_loop_ptr = 1;
1112#endif 1923#endif
1113 1924
1114 loop_init (EV_A_ flags); 1925 loop_init (EV_A_ flags);
1115 1926
1116 if (ev_backend (EV_A)) 1927 if (ev_backend (EV_A))
1117 { 1928 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1929#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1930 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1931 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1932 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1933 ev_unref (EV_A); /* child watcher should not keep loop alive */
1133 1942
1134void 1943void
1135ev_default_destroy (void) 1944ev_default_destroy (void)
1136{ 1945{
1137#if EV_MULTIPLICITY 1946#if EV_MULTIPLICITY
1138 struct ev_loop *loop = ev_default_loop_ptr; 1947 EV_P = ev_default_loop_ptr;
1139#endif 1948#endif
1949
1950 ev_default_loop_ptr = 0;
1140 1951
1141#ifndef _WIN32 1952#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1953 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1954 ev_signal_stop (EV_A_ &childev);
1144#endif 1955#endif
1145 1956
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1957 loop_destroy (EV_A);
1153} 1958}
1154 1959
1155void 1960void
1156ev_default_fork (void) 1961ev_default_fork (void)
1157{ 1962{
1158#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1964 EV_P = ev_default_loop_ptr;
1160#endif 1965#endif
1161 1966
1162 if (backend) 1967 postfork = 1; /* must be in line with ev_loop_fork */
1163 postfork = 1;
1164} 1968}
1165 1969
1166/*****************************************************************************/ 1970/*****************************************************************************/
1167 1971
1168void inline_speed 1972void
1169call_pending (EV_P) 1973ev_invoke (EV_P_ void *w, int revents)
1974{
1975 EV_CB_INVOKE ((W)w, revents);
1976}
1977
1978unsigned int
1979ev_pending_count (EV_P)
1980{
1981 int pri;
1982 unsigned int count = 0;
1983
1984 for (pri = NUMPRI; pri--; )
1985 count += pendingcnt [pri];
1986
1987 return count;
1988}
1989
1990void noinline
1991ev_invoke_pending (EV_P)
1170{ 1992{
1171 int pri; 1993 int pri;
1172 1994
1173 for (pri = NUMPRI; pri--; ) 1995 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1996 while (pendingcnt [pri])
1175 { 1997 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 1999
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2001 /* ^ this is no longer true, as pending_w could be here */
1181 2002
1182 p->w->pending = 0; 2003 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 2004 EV_CB_INVOKE (p->w, p->events);
1184 } 2005 EV_FREQUENT_CHECK;
1185 } 2006 }
1186} 2007}
1187 2008
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 2009#if EV_IDLE_ENABLE
1268void inline_size 2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
1269idle_reify (EV_P) 2013idle_reify (EV_P)
1270{ 2014{
1271 if (expect_false (idleall)) 2015 if (expect_false (idleall))
1272 { 2016 {
1273 int pri; 2017 int pri;
1285 } 2029 }
1286 } 2030 }
1287} 2031}
1288#endif 2032#endif
1289 2033
1290int inline_size 2034/* make timers pending */
1291time_update_monotonic (EV_P) 2035inline_size void
2036timers_reify (EV_P)
1292{ 2037{
2038 EV_FREQUENT_CHECK;
2039
2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2041 {
2042 do
2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
2051 ev_at (w) += w->repeat;
2052 if (ev_at (w) < mn_now)
2053 ev_at (w) = mn_now;
2054
2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2056
2057 ANHE_at_cache (timers [HEAP0]);
2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
2065 }
2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2067
2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
2069 }
2070}
2071
2072#if EV_PERIODIC_ENABLE
2073/* make periodics pending */
2074inline_size void
2075periodics_reify (EV_P)
2076{
2077 EV_FREQUENT_CHECK;
2078
2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2080 {
2081 int feed_count = 0;
2082
2083 do
2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2093
2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2095
2096 ANHE_at_cache (periodics [HEAP0]);
2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
2123 }
2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2125
2126 feed_reverse_done (EV_A_ EV_PERIODIC);
2127 }
2128}
2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2132static void noinline
2133periodics_reschedule (EV_P)
2134{
2135 int i;
2136
2137 /* adjust periodics after time jump */
2138 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2139 {
2140 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2141
2142 if (w->reschedule_cb)
2143 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2144 else if (w->interval)
2145 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2146
2147 ANHE_at_cache (periodics [i]);
2148 }
2149
2150 reheap (periodics, periodiccnt);
2151}
2152#endif
2153
2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
2160 for (i = 0; i < timercnt; ++i)
2161 {
2162 ANHE *he = timers + i + HEAP0;
2163 ANHE_w (*he)->at += adjust;
2164 ANHE_at_cache (*he);
2165 }
2166}
2167
2168/* fetch new monotonic and realtime times from the kernel */
2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
2171time_update (EV_P_ ev_tstamp max_block)
2172{
2173#if EV_USE_MONOTONIC
2174 if (expect_true (have_monotonic))
2175 {
2176 int i;
2177 ev_tstamp odiff = rtmn_diff;
2178
1293 mn_now = get_clock (); 2179 mn_now = get_clock ();
1294 2180
2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2182 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2183 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2184 {
1297 ev_rt_now = rtmn_diff + mn_now; 2185 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2186 return;
1299 } 2187 }
1300 else 2188
1301 {
1302 now_floor = mn_now; 2189 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2190 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2191
1308void inline_size 2192 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2193 * on the choice of "4": one iteration isn't enough,
1310{ 2194 * in case we get preempted during the calls to
1311 int i; 2195 * ev_time and get_clock. a second call is almost guaranteed
1312 2196 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2197 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2198 * in the unlikely event of having been preempted here.
1315 { 2199 */
1316 if (time_update_monotonic (EV_A)) 2200 for (i = 4; --i; )
1317 { 2201 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2202 rtmn_diff = ev_rt_now - mn_now;
1331 2203
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2204 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2205 return; /* all is well */
1334 2206
1335 ev_rt_now = ev_time (); 2207 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2208 mn_now = get_clock ();
1337 now_floor = mn_now; 2209 now_floor = mn_now;
1338 } 2210 }
1339 2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2214# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2215 periodics_reschedule (EV_A);
1342# endif 2216# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2217 }
1347 else 2218 else
1348#endif 2219#endif
1349 { 2220 {
1350 ev_rt_now = ev_time (); 2221 ev_rt_now = ev_time ();
1351 2222
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2224 {
2225 /* adjust timers. this is easy, as the offset is the same for all of them */
2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2227#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1356#endif 2229#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2230 }
1362 2231
1363 mn_now = ev_rt_now; 2232 mn_now = ev_rt_now;
1364 } 2233 }
1365} 2234}
1366 2235
1367void 2236void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2237ev_loop (EV_P_ int flags)
1383{ 2238{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2239#if EV_MINIMAL < 2
1385 ? EVUNLOOP_ONE 2240 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2241#endif
1387 2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
2245 loop_done = EVUNLOOP_CANCEL;
2246
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2248
1390 do 2249 do
1391 { 2250 {
2251#if EV_VERIFY >= 2
2252 ev_loop_verify (EV_A);
2253#endif
2254
1392#ifndef _WIN32 2255#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2256 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2257 if (expect_false (getpid () != curpid))
1395 { 2258 {
1396 curpid = getpid (); 2259 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2265 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2266 if (expect_false (postfork))
1404 if (forkcnt) 2267 if (forkcnt)
1405 { 2268 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1408 } 2271 }
1409#endif 2272#endif
1410 2273
1411 /* queue check watchers (and execute them) */ 2274 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2275 if (expect_false (preparecnt))
1413 { 2276 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2278 EV_INVOKE_PENDING;
1416 } 2279 }
1417 2280
1418 if (expect_false (!activecnt)) 2281 if (expect_false (loop_done))
1419 break; 2282 break;
1420 2283
1421 /* we might have forked, so reify kernel state if necessary */ 2284 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2285 if (expect_false (postfork))
1423 loop_fork (EV_A); 2286 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2288 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2289 fd_reify (EV_A);
1427 2290
1428 /* calculate blocking time */ 2291 /* calculate blocking time */
1429 { 2292 {
1430 ev_tstamp block; 2293 ev_tstamp waittime = 0.;
2294 ev_tstamp sleeptime = 0.;
1431 2295
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2297 {
2298 /* remember old timestamp for io_blocktime calculation */
2299 ev_tstamp prev_mn_now = mn_now;
2300
1436 /* update time to cancel out callback processing overhead */ 2301 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 2302 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 2303
1447 block = MAX_BLOCKTIME; 2304 waittime = MAX_BLOCKTIME;
1448 2305
1449 if (timercnt) 2306 if (timercnt)
1450 { 2307 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1453 } 2310 }
1454 2311
1455#if EV_PERIODIC_ENABLE 2312#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2313 if (periodiccnt)
1457 { 2314 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2316 if (waittime > to) waittime = to;
1460 } 2317 }
1461#endif 2318#endif
1462 2319
2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
2321 if (expect_false (waittime < timeout_blocktime))
2322 waittime = timeout_blocktime;
2323
2324 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2325 if (expect_false (io_blocktime))
2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
2334 ev_sleep (sleeptime);
2335 waittime -= sleeptime;
2336 }
2337 }
1464 } 2338 }
1465 2339
2340#if EV_MINIMAL < 2
1466 ++loop_count; 2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2346
2347 /* update ev_rt_now, do magic */
2348 time_update (EV_A_ waittime + sleeptime);
1468 } 2349 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2350
1473 /* queue pending timers and reschedule them */ 2351 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2352 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2353#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2354 periodics_reify (EV_A); /* absolute timers called first */
1483 2361
1484 /* queue check watchers, to be executed first */ 2362 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2363 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2365
1488 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1489
1490 } 2367 }
1491 while (expect_true (activecnt && !loop_done)); 2368 while (expect_true (
2369 activecnt
2370 && !loop_done
2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2372 ));
1492 2373
1493 if (loop_done == EVUNLOOP_ONE) 2374 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
1495} 2380}
1496 2381
1497void 2382void
1498ev_unloop (EV_P_ int how) 2383ev_unloop (EV_P_ int how)
1499{ 2384{
1500 loop_done = how; 2385 loop_done = how;
1501} 2386}
1502 2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
2423}
2424
1503/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
1504 2427
1505void inline_size 2428inline_size void
1506wlist_add (WL *head, WL elem) 2429wlist_add (WL *head, WL elem)
1507{ 2430{
1508 elem->next = *head; 2431 elem->next = *head;
1509 *head = elem; 2432 *head = elem;
1510} 2433}
1511 2434
1512void inline_size 2435inline_size void
1513wlist_del (WL *head, WL elem) 2436wlist_del (WL *head, WL elem)
1514{ 2437{
1515 while (*head) 2438 while (*head)
1516 { 2439 {
1517 if (*head == elem) 2440 if (expect_true (*head == elem))
1518 { 2441 {
1519 *head = elem->next; 2442 *head = elem->next;
1520 return; 2443 break;
1521 } 2444 }
1522 2445
1523 head = &(*head)->next; 2446 head = &(*head)->next;
1524 } 2447 }
1525} 2448}
1526 2449
1527void inline_speed 2450/* internal, faster, version of ev_clear_pending */
2451inline_speed void
1528ev_clear_pending (EV_P_ W w) 2452clear_pending (EV_P_ W w)
1529{ 2453{
1530 if (w->pending) 2454 if (w->pending)
1531 { 2455 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2457 w->pending = 0;
1534 } 2458 }
1535} 2459}
1536 2460
1537void inline_size 2461int
2462ev_clear_pending (EV_P_ void *w)
2463{
2464 W w_ = (W)w;
2465 int pending = w_->pending;
2466
2467 if (expect_true (pending))
2468 {
2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
2471 w_->pending = 0;
2472 return p->events;
2473 }
2474 else
2475 return 0;
2476}
2477
2478inline_size void
1538pri_adjust (EV_P_ W w) 2479pri_adjust (EV_P_ W w)
1539{ 2480{
1540 int pri = w->priority; 2481 int pri = ev_priority (w);
1541 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1542 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1543 w->priority = pri; 2484 ev_set_priority (w, pri);
1544} 2485}
1545 2486
1546void inline_speed 2487inline_speed void
1547ev_start (EV_P_ W w, int active) 2488ev_start (EV_P_ W w, int active)
1548{ 2489{
1549 pri_adjust (EV_A_ w); 2490 pri_adjust (EV_A_ w);
1550 w->active = active; 2491 w->active = active;
1551 ev_ref (EV_A); 2492 ev_ref (EV_A);
1552} 2493}
1553 2494
1554void inline_size 2495inline_size void
1555ev_stop (EV_P_ W w) 2496ev_stop (EV_P_ W w)
1556{ 2497{
1557 ev_unref (EV_A); 2498 ev_unref (EV_A);
1558 w->active = 0; 2499 w->active = 0;
1559} 2500}
1560 2501
1561/*****************************************************************************/ 2502/*****************************************************************************/
1562 2503
1563void 2504void noinline
1564ev_io_start (EV_P_ ev_io *w) 2505ev_io_start (EV_P_ ev_io *w)
1565{ 2506{
1566 int fd = w->fd; 2507 int fd = w->fd;
1567 2508
1568 if (expect_false (ev_is_active (w))) 2509 if (expect_false (ev_is_active (w)))
1569 return; 2510 return;
1570 2511
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2513 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2514
2515 EV_FREQUENT_CHECK;
1572 2516
1573 ev_start (EV_A_ (W)w, 1); 2517 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2519 wlist_add (&anfds[fd].head, (WL)w);
1576 2520
1577 fd_change (EV_A_ fd); 2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1578} 2522 w->events &= ~EV__IOFDSET;
1579 2523
1580void 2524 EV_FREQUENT_CHECK;
2525}
2526
2527void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2528ev_io_stop (EV_P_ ev_io *w)
1582{ 2529{
1583 ev_clear_pending (EV_A_ (W)w); 2530 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2531 if (expect_false (!ev_is_active (w)))
1585 return; 2532 return;
1586 2533
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2534 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2535
2536 EV_FREQUENT_CHECK;
2537
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2538 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2539 ev_stop (EV_A_ (W)w);
1591 2540
1592 fd_change (EV_A_ w->fd); 2541 fd_change (EV_A_ w->fd, 1);
1593}
1594 2542
1595void 2543 EV_FREQUENT_CHECK;
2544}
2545
2546void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2547ev_timer_start (EV_P_ ev_timer *w)
1597{ 2548{
1598 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
1599 return; 2550 return;
1600 2551
1601 ((WT)w)->at += mn_now; 2552 ev_at (w) += mn_now;
1602 2553
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2554 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2555
2556 EV_FREQUENT_CHECK;
2557
2558 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2559 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2560 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2561 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2562 ANHE_at_cache (timers [ev_active (w)]);
2563 upheap (timers, ev_active (w));
1609 2564
2565 EV_FREQUENT_CHECK;
2566
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2567 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2568}
1612 2569
1613void 2570void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2571ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2572{
1616 ev_clear_pending (EV_A_ (W)w); 2573 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2574 if (expect_false (!ev_is_active (w)))
1618 return; 2575 return;
1619 2576
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2577 EV_FREQUENT_CHECK;
1621 2578
1622 { 2579 {
1623 int active = ((W)w)->active; 2580 int active = ev_active (w);
1624 2581
2582 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2583
2584 --timercnt;
2585
1625 if (expect_true (--active < --timercnt)) 2586 if (expect_true (active < timercnt + HEAP0))
1626 { 2587 {
1627 timers [active] = timers [timercnt]; 2588 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2589 adjustheap (timers, timercnt, active);
1629 } 2590 }
1630 } 2591 }
1631 2592
1632 ((WT)w)->at -= mn_now; 2593 EV_FREQUENT_CHECK;
2594
2595 ev_at (w) -= mn_now;
1633 2596
1634 ev_stop (EV_A_ (W)w); 2597 ev_stop (EV_A_ (W)w);
1635} 2598}
1636 2599
1637void 2600void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2601ev_timer_again (EV_P_ ev_timer *w)
1639{ 2602{
2603 EV_FREQUENT_CHECK;
2604
1640 if (ev_is_active (w)) 2605 if (ev_is_active (w))
1641 { 2606 {
1642 if (w->repeat) 2607 if (w->repeat)
1643 { 2608 {
1644 ((WT)w)->at = mn_now + w->repeat; 2609 ev_at (w) = mn_now + w->repeat;
2610 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2611 adjustheap (timers, timercnt, ev_active (w));
1646 } 2612 }
1647 else 2613 else
1648 ev_timer_stop (EV_A_ w); 2614 ev_timer_stop (EV_A_ w);
1649 } 2615 }
1650 else if (w->repeat) 2616 else if (w->repeat)
1651 { 2617 {
1652 w->at = w->repeat; 2618 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2619 ev_timer_start (EV_A_ w);
1654 } 2620 }
2621
2622 EV_FREQUENT_CHECK;
2623}
2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1655} 2629}
1656 2630
1657#if EV_PERIODIC_ENABLE 2631#if EV_PERIODIC_ENABLE
1658void 2632void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2633ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2634{
1661 if (expect_false (ev_is_active (w))) 2635 if (expect_false (ev_is_active (w)))
1662 return; 2636 return;
1663 2637
1664 if (w->reschedule_cb) 2638 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2639 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2640 else if (w->interval)
1667 { 2641 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2642 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2643 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 2645 }
2646 else
2647 ev_at (w) = w->offset;
1672 2648
2649 EV_FREQUENT_CHECK;
2650
2651 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2652 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2653 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2654 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2655 ANHE_at_cache (periodics [ev_active (w)]);
2656 upheap (periodics, ev_active (w));
1677 2657
2658 EV_FREQUENT_CHECK;
2659
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2660 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2661}
1680 2662
1681void 2663void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2664ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2665{
1684 ev_clear_pending (EV_A_ (W)w); 2666 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2667 if (expect_false (!ev_is_active (w)))
1686 return; 2668 return;
1687 2669
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2670 EV_FREQUENT_CHECK;
1689 2671
1690 { 2672 {
1691 int active = ((W)w)->active; 2673 int active = ev_active (w);
1692 2674
2675 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2676
2677 --periodiccnt;
2678
1693 if (expect_true (--active < --periodiccnt)) 2679 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2680 {
1695 periodics [active] = periodics [periodiccnt]; 2681 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2682 adjustheap (periodics, periodiccnt, active);
1697 } 2683 }
1698 } 2684 }
1699 2685
2686 EV_FREQUENT_CHECK;
2687
1700 ev_stop (EV_A_ (W)w); 2688 ev_stop (EV_A_ (W)w);
1701} 2689}
1702 2690
1703void 2691void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2692ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2693{
1706 /* TODO: use adjustheap and recalculation */ 2694 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2695 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2696 ev_periodic_start (EV_A_ w);
1711 2699
1712#ifndef SA_RESTART 2700#ifndef SA_RESTART
1713# define SA_RESTART 0 2701# define SA_RESTART 0
1714#endif 2702#endif
1715 2703
1716void 2704void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2705ev_signal_start (EV_P_ ev_signal *w)
1718{ 2706{
1719#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif
1722 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
1723 return; 2708 return;
1724 2709
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2711
2712#if EV_MULTIPLICITY
2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2715
2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
2723 {
2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2725 if (sigfd < 0 && errno == EINVAL)
2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2727
2728 if (sigfd >= 0)
2729 {
2730 fd_intern (sigfd); /* doing it twice will not hurt */
2731
2732 sigemptyset (&sigfd_set);
2733
2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
1726 2750
1727 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2753
1731 if (!((WL)w)->next) 2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
2757# endif
1732 { 2758 {
1733#if _WIN32 2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
1734 signal (w->signum, sighandler); 2762 signal (w->signum, ev_sighandler);
1735#else 2763# else
1736 struct sigaction sa; 2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
1737 sa.sa_handler = sighandler; 2768 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2769 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1741#endif 2776#endif
1742 } 2777 }
1743}
1744 2778
1745void 2779 EV_FREQUENT_CHECK;
2780}
2781
2782void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2783ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2784{
1748 ev_clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2786 if (expect_false (!ev_is_active (w)))
1750 return; 2787 return;
1751 2788
2789 EV_FREQUENT_CHECK;
2790
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
1754 2793
1755 if (!signals [w->signum - 1].head) 2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
2810 }
2811 else
2812#endif
1756 signal (w->signum, SIG_DFL); 2813 signal (w->signum, SIG_DFL);
2814 }
2815
2816 EV_FREQUENT_CHECK;
1757} 2817}
1758 2818
1759void 2819void
1760ev_child_start (EV_P_ ev_child *w) 2820ev_child_start (EV_P_ ev_child *w)
1761{ 2821{
1762#if EV_MULTIPLICITY 2822#if EV_MULTIPLICITY
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2823 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2824#endif
1765 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
1766 return; 2826 return;
1767 2827
2828 EV_FREQUENT_CHECK;
2829
1768 ev_start (EV_A_ (W)w, 1); 2830 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2831 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2832
2833 EV_FREQUENT_CHECK;
1770} 2834}
1771 2835
1772void 2836void
1773ev_child_stop (EV_P_ ev_child *w) 2837ev_child_stop (EV_P_ ev_child *w)
1774{ 2838{
1775 ev_clear_pending (EV_A_ (W)w); 2839 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2840 if (expect_false (!ev_is_active (w)))
1777 return; 2841 return;
1778 2842
2843 EV_FREQUENT_CHECK;
2844
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2845 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2846 ev_stop (EV_A_ (W)w);
2847
2848 EV_FREQUENT_CHECK;
1781} 2849}
1782 2850
1783#if EV_STAT_ENABLE 2851#if EV_STAT_ENABLE
1784 2852
1785# ifdef _WIN32 2853# ifdef _WIN32
1786# undef lstat 2854# undef lstat
1787# define lstat(a,b) _stati64 (a,b) 2855# define lstat(a,b) _stati64 (a,b)
1788# endif 2856# endif
1789 2857
1790#define DEF_STAT_INTERVAL 5.0074891 2858#define DEF_STAT_INTERVAL 5.0074891
2859#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1791#define MIN_STAT_INTERVAL 0.1074891 2860#define MIN_STAT_INTERVAL 0.1074891
1792 2861
1793static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1794 2863
1795#if EV_USE_INOTIFY 2864#if EV_USE_INOTIFY
1796# define EV_INOTIFY_BUFSIZE 8192 2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1797 2868
1798static void noinline 2869static void noinline
1799infy_add (EV_P_ ev_stat *w) 2870infy_add (EV_P_ ev_stat *w)
1800{ 2871{
1801 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1802 2873
1803 if (w->wd < 0) 2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1804 { 2894 }
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2895 else
2896 {
2897 /* can't use inotify, continue to stat */
2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1806 2899
1807 /* monitor some parent directory for speedup hints */ 2900 /* if path is not there, monitor some parent directory for speedup hints */
2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2902 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 2904 {
1810 char path [4096]; 2905 char path [4096];
1811 strcpy (path, w->path); 2906 strcpy (path, w->path);
1812 2907
1815 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2910 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1816 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2911 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1817 2912
1818 char *pend = strrchr (path, '/'); 2913 char *pend = strrchr (path, '/');
1819 2914
1820 if (!pend) 2915 if (!pend || pend == path)
1821 break; /* whoops, no '/', complain to your admin */ 2916 break;
1822 2917
1823 *pend = 0; 2918 *pend = 0;
1824 w->wd = inotify_add_watch (fs_fd, path, mask); 2919 w->wd = inotify_add_watch (fs_fd, path, mask);
1825 } 2920 }
1826 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1827 } 2922 }
1828 } 2923 }
1829 else
1830 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1831 2924
1832 if (w->wd >= 0) 2925 if (w->wd >= 0)
1833 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927
2928 /* now re-arm timer, if required */
2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2930 ev_timer_again (EV_A_ &w->timer);
2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1834} 2932}
1835 2933
1836static void noinline 2934static void noinline
1837infy_del (EV_P_ ev_stat *w) 2935infy_del (EV_P_ ev_stat *w)
1838{ 2936{
1852 2950
1853static void noinline 2951static void noinline
1854infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2952infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1855{ 2953{
1856 if (slot < 0) 2954 if (slot < 0)
1857 /* overflow, need to check for all hahs slots */ 2955 /* overflow, need to check for all hash slots */
1858 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2956 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1859 infy_wd (EV_A_ slot, wd, ev); 2957 infy_wd (EV_A_ slot, wd, ev);
1860 else 2958 else
1861 { 2959 {
1862 WL w_; 2960 WL w_;
1868 2966
1869 if (w->wd == wd || wd == -1) 2967 if (w->wd == wd || wd == -1)
1870 { 2968 {
1871 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2969 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1872 { 2970 {
2971 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1873 w->wd = -1; 2972 w->wd = -1;
1874 infy_add (EV_A_ w); /* re-add, no matter what */ 2973 infy_add (EV_A_ w); /* re-add, no matter what */
1875 } 2974 }
1876 2975
1877 stat_timer_cb (EV_A_ &w->timer, 0); 2976 stat_timer_cb (EV_A_ &w->timer, 0);
1882 2981
1883static void 2982static void
1884infy_cb (EV_P_ ev_io *w, int revents) 2983infy_cb (EV_P_ ev_io *w, int revents)
1885{ 2984{
1886 char buf [EV_INOTIFY_BUFSIZE]; 2985 char buf [EV_INOTIFY_BUFSIZE];
1887 struct inotify_event *ev = (struct inotify_event *)buf;
1888 int ofs; 2986 int ofs;
1889 int len = read (fs_fd, buf, sizeof (buf)); 2987 int len = read (fs_fd, buf, sizeof (buf));
1890 2988
1891 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2989 for (ofs = 0; ofs < len; )
2990 {
2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1892 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
2994 }
1893} 2995}
1894 2996
1895void inline_size 2997inline_size void
2998check_2625 (EV_P)
2999{
3000 /* kernels < 2.6.25 are borked
3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3002 */
3003 struct utsname buf;
3004 int major, minor, micro;
3005
3006 if (uname (&buf))
3007 return;
3008
3009 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3010 return;
3011
3012 if (major < 2
3013 || (major == 2 && minor < 6)
3014 || (major == 2 && minor == 6 && micro < 25))
3015 return;
3016
3017 fs_2625 = 1;
3018}
3019
3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
1896infy_init (EV_P) 3032infy_init (EV_P)
1897{ 3033{
1898 if (fs_fd != -2) 3034 if (fs_fd != -2)
1899 return; 3035 return;
1900 3036
3037 fs_fd = -1;
3038
3039 check_2625 (EV_A);
3040
1901 fs_fd = inotify_init (); 3041 fs_fd = infy_newfd ();
1902 3042
1903 if (fs_fd >= 0) 3043 if (fs_fd >= 0)
1904 { 3044 {
3045 fd_intern (fs_fd);
1905 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1906 ev_set_priority (&fs_w, EV_MAXPRI); 3047 ev_set_priority (&fs_w, EV_MAXPRI);
1907 ev_io_start (EV_A_ &fs_w); 3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
1908 } 3050 }
1909} 3051}
1910 3052
1911void inline_size 3053inline_size void
1912infy_fork (EV_P) 3054infy_fork (EV_P)
1913{ 3055{
1914 int slot; 3056 int slot;
1915 3057
1916 if (fs_fd < 0) 3058 if (fs_fd < 0)
1917 return; 3059 return;
1918 3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
1919 close (fs_fd); 3063 close (fs_fd);
1920 fs_fd = inotify_init (); 3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
1921 3073
1922 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1923 { 3075 {
1924 WL w_ = fs_hash [slot].head; 3076 WL w_ = fs_hash [slot].head;
1925 fs_hash [slot].head = 0; 3077 fs_hash [slot].head = 0;
1932 w->wd = -1; 3084 w->wd = -1;
1933 3085
1934 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
1935 infy_add (EV_A_ w); /* re-add, no matter what */ 3087 infy_add (EV_A_ w); /* re-add, no matter what */
1936 else 3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1937 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
1938 } 3095 }
1939
1940 } 3096 }
1941} 3097}
1942 3098
3099#endif
3100
3101#ifdef _WIN32
3102# define EV_LSTAT(p,b) _stati64 (p, b)
3103#else
3104# define EV_LSTAT(p,b) lstat (p, b)
1943#endif 3105#endif
1944 3106
1945void 3107void
1946ev_stat_stat (EV_P_ ev_stat *w) 3108ev_stat_stat (EV_P_ ev_stat *w)
1947{ 3109{
1954static void noinline 3116static void noinline
1955stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1956{ 3118{
1957 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1958 3120
1959 /* we copy this here each the time so that */ 3121 ev_statdata prev = w->attr;
1960 /* prev has the old value when the callback gets invoked */
1961 w->prev = w->attr;
1962 ev_stat_stat (EV_A_ w); 3122 ev_stat_stat (EV_A_ w);
1963 3123
1964 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1965 if ( 3125 if (
1966 w->prev.st_dev != w->attr.st_dev 3126 prev.st_dev != w->attr.st_dev
1967 || w->prev.st_ino != w->attr.st_ino 3127 || prev.st_ino != w->attr.st_ino
1968 || w->prev.st_mode != w->attr.st_mode 3128 || prev.st_mode != w->attr.st_mode
1969 || w->prev.st_nlink != w->attr.st_nlink 3129 || prev.st_nlink != w->attr.st_nlink
1970 || w->prev.st_uid != w->attr.st_uid 3130 || prev.st_uid != w->attr.st_uid
1971 || w->prev.st_gid != w->attr.st_gid 3131 || prev.st_gid != w->attr.st_gid
1972 || w->prev.st_rdev != w->attr.st_rdev 3132 || prev.st_rdev != w->attr.st_rdev
1973 || w->prev.st_size != w->attr.st_size 3133 || prev.st_size != w->attr.st_size
1974 || w->prev.st_atime != w->attr.st_atime 3134 || prev.st_atime != w->attr.st_atime
1975 || w->prev.st_mtime != w->attr.st_mtime 3135 || prev.st_mtime != w->attr.st_mtime
1976 || w->prev.st_ctime != w->attr.st_ctime 3136 || prev.st_ctime != w->attr.st_ctime
1977 ) { 3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
1978 #if EV_USE_INOTIFY 3143 #if EV_USE_INOTIFY
3144 if (fs_fd >= 0)
3145 {
1979 infy_del (EV_A_ w); 3146 infy_del (EV_A_ w);
1980 infy_add (EV_A_ w); 3147 infy_add (EV_A_ w);
1981 ev_stat_stat (EV_A_ w); /* avoid race... */ 3148 ev_stat_stat (EV_A_ w); /* avoid race... */
3149 }
1982 #endif 3150 #endif
1983 3151
1984 ev_feed_event (EV_A_ w, EV_STAT); 3152 ev_feed_event (EV_A_ w, EV_STAT);
1985 } 3153 }
1986} 3154}
1989ev_stat_start (EV_P_ ev_stat *w) 3157ev_stat_start (EV_P_ ev_stat *w)
1990{ 3158{
1991 if (expect_false (ev_is_active (w))) 3159 if (expect_false (ev_is_active (w)))
1992 return; 3160 return;
1993 3161
1994 /* since we use memcmp, we need to clear any padding data etc. */
1995 memset (&w->prev, 0, sizeof (ev_statdata));
1996 memset (&w->attr, 0, sizeof (ev_statdata));
1997
1998 ev_stat_stat (EV_A_ w); 3162 ev_stat_stat (EV_A_ w);
1999 3163
3164 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2000 if (w->interval < MIN_STAT_INTERVAL) 3165 w->interval = MIN_STAT_INTERVAL;
2001 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2002 3166
2003 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3167 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2004 ev_set_priority (&w->timer, ev_priority (w)); 3168 ev_set_priority (&w->timer, ev_priority (w));
2005 3169
2006#if EV_USE_INOTIFY 3170#if EV_USE_INOTIFY
2007 infy_init (EV_A); 3171 infy_init (EV_A);
2008 3172
2009 if (fs_fd >= 0) 3173 if (fs_fd >= 0)
2010 infy_add (EV_A_ w); 3174 infy_add (EV_A_ w);
2011 else 3175 else
2012#endif 3176#endif
3177 {
2013 ev_timer_start (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
3180 }
2014 3181
2015 ev_start (EV_A_ (W)w, 1); 3182 ev_start (EV_A_ (W)w, 1);
3183
3184 EV_FREQUENT_CHECK;
2016} 3185}
2017 3186
2018void 3187void
2019ev_stat_stop (EV_P_ ev_stat *w) 3188ev_stat_stop (EV_P_ ev_stat *w)
2020{ 3189{
2021 ev_clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
2023 return; 3192 return;
2024 3193
3194 EV_FREQUENT_CHECK;
3195
2025#if EV_USE_INOTIFY 3196#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 3197 infy_del (EV_A_ w);
2027#endif 3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
2028 ev_timer_stop (EV_A_ &w->timer); 3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
2029 3205
2030 ev_stop (EV_A_ (W)w); 3206 ev_stop (EV_A_ (W)w);
3207
3208 EV_FREQUENT_CHECK;
2031} 3209}
2032#endif 3210#endif
2033 3211
2034#if EV_IDLE_ENABLE 3212#if EV_IDLE_ENABLE
2035void 3213void
2037{ 3215{
2038 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
2039 return; 3217 return;
2040 3218
2041 pri_adjust (EV_A_ (W)w); 3219 pri_adjust (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
2042 3222
2043 { 3223 {
2044 int active = ++idlecnt [ABSPRI (w)]; 3224 int active = ++idlecnt [ABSPRI (w)];
2045 3225
2046 ++idleall; 3226 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 3227 ev_start (EV_A_ (W)w, active);
2048 3228
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3229 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 3230 idles [ABSPRI (w)][active - 1] = w;
2051 } 3231 }
3232
3233 EV_FREQUENT_CHECK;
2052} 3234}
2053 3235
2054void 3236void
2055ev_idle_stop (EV_P_ ev_idle *w) 3237ev_idle_stop (EV_P_ ev_idle *w)
2056{ 3238{
2057 ev_clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2059 return; 3241 return;
2060 3242
3243 EV_FREQUENT_CHECK;
3244
2061 { 3245 {
2062 int active = ((W)w)->active; 3246 int active = ev_active (w);
2063 3247
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3248 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3249 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 3250
2067 ev_stop (EV_A_ (W)w); 3251 ev_stop (EV_A_ (W)w);
2068 --idleall; 3252 --idleall;
2069 } 3253 }
3254
3255 EV_FREQUENT_CHECK;
2070} 3256}
2071#endif 3257#endif
2072 3258
2073void 3259void
2074ev_prepare_start (EV_P_ ev_prepare *w) 3260ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 3261{
2076 if (expect_false (ev_is_active (w))) 3262 if (expect_false (ev_is_active (w)))
2077 return; 3263 return;
3264
3265 EV_FREQUENT_CHECK;
2078 3266
2079 ev_start (EV_A_ (W)w, ++preparecnt); 3267 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3268 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 3269 prepares [preparecnt - 1] = w;
3270
3271 EV_FREQUENT_CHECK;
2082} 3272}
2083 3273
2084void 3274void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 3275ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 3276{
2087 ev_clear_pending (EV_A_ (W)w); 3277 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3278 if (expect_false (!ev_is_active (w)))
2089 return; 3279 return;
2090 3280
3281 EV_FREQUENT_CHECK;
3282
2091 { 3283 {
2092 int active = ((W)w)->active; 3284 int active = ev_active (w);
3285
2093 prepares [active - 1] = prepares [--preparecnt]; 3286 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 3287 ev_active (prepares [active - 1]) = active;
2095 } 3288 }
2096 3289
2097 ev_stop (EV_A_ (W)w); 3290 ev_stop (EV_A_ (W)w);
3291
3292 EV_FREQUENT_CHECK;
2098} 3293}
2099 3294
2100void 3295void
2101ev_check_start (EV_P_ ev_check *w) 3296ev_check_start (EV_P_ ev_check *w)
2102{ 3297{
2103 if (expect_false (ev_is_active (w))) 3298 if (expect_false (ev_is_active (w)))
2104 return; 3299 return;
3300
3301 EV_FREQUENT_CHECK;
2105 3302
2106 ev_start (EV_A_ (W)w, ++checkcnt); 3303 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3304 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 3305 checks [checkcnt - 1] = w;
3306
3307 EV_FREQUENT_CHECK;
2109} 3308}
2110 3309
2111void 3310void
2112ev_check_stop (EV_P_ ev_check *w) 3311ev_check_stop (EV_P_ ev_check *w)
2113{ 3312{
2114 ev_clear_pending (EV_A_ (W)w); 3313 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 3314 if (expect_false (!ev_is_active (w)))
2116 return; 3315 return;
2117 3316
3317 EV_FREQUENT_CHECK;
3318
2118 { 3319 {
2119 int active = ((W)w)->active; 3320 int active = ev_active (w);
3321
2120 checks [active - 1] = checks [--checkcnt]; 3322 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 3323 ev_active (checks [active - 1]) = active;
2122 } 3324 }
2123 3325
2124 ev_stop (EV_A_ (W)w); 3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
2125} 3329}
2126 3330
2127#if EV_EMBED_ENABLE 3331#if EV_EMBED_ENABLE
2128void noinline 3332void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 3333ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 3334{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 3335 ev_loop (w->other, EVLOOP_NONBLOCK);
2132} 3336}
2133 3337
2134static void 3338static void
2135embed_cb (EV_P_ ev_io *io, int revents) 3339embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 3340{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3341 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 3342
2139 if (ev_cb (w)) 3343 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3344 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 3345 else
2142 ev_embed_sweep (loop, w); 3346 ev_loop (w->other, EVLOOP_NONBLOCK);
2143} 3347}
3348
3349static void
3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3351{
3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3353
3354 {
3355 EV_P = w->other;
3356
3357 while (fdchangecnt)
3358 {
3359 fd_reify (EV_A);
3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3361 }
3362 }
3363}
3364
3365static void
3366embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3367{
3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3369
3370 ev_embed_stop (EV_A_ w);
3371
3372 {
3373 EV_P = w->other;
3374
3375 ev_loop_fork (EV_A);
3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3377 }
3378
3379 ev_embed_start (EV_A_ w);
3380}
3381
3382#if 0
3383static void
3384embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3385{
3386 ev_idle_stop (EV_A_ idle);
3387}
3388#endif
2144 3389
2145void 3390void
2146ev_embed_start (EV_P_ ev_embed *w) 3391ev_embed_start (EV_P_ ev_embed *w)
2147{ 3392{
2148 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2149 return; 3394 return;
2150 3395
2151 { 3396 {
2152 struct ev_loop *loop = w->loop; 3397 EV_P = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 3400 }
3401
3402 EV_FREQUENT_CHECK;
2156 3403
2157 ev_set_priority (&w->io, ev_priority (w)); 3404 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 3405 ev_io_start (EV_A_ &w->io);
2159 3406
3407 ev_prepare_init (&w->prepare, embed_prepare_cb);
3408 ev_set_priority (&w->prepare, EV_MINPRI);
3409 ev_prepare_start (EV_A_ &w->prepare);
3410
3411 ev_fork_init (&w->fork, embed_fork_cb);
3412 ev_fork_start (EV_A_ &w->fork);
3413
3414 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3415
2160 ev_start (EV_A_ (W)w, 1); 3416 ev_start (EV_A_ (W)w, 1);
3417
3418 EV_FREQUENT_CHECK;
2161} 3419}
2162 3420
2163void 3421void
2164ev_embed_stop (EV_P_ ev_embed *w) 3422ev_embed_stop (EV_P_ ev_embed *w)
2165{ 3423{
2166 ev_clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2168 return; 3426 return;
2169 3427
3428 EV_FREQUENT_CHECK;
3429
2170 ev_io_stop (EV_A_ &w->io); 3430 ev_io_stop (EV_A_ &w->io);
3431 ev_prepare_stop (EV_A_ &w->prepare);
3432 ev_fork_stop (EV_A_ &w->fork);
2171 3433
2172 ev_stop (EV_A_ (W)w); 3434 EV_FREQUENT_CHECK;
2173} 3435}
2174#endif 3436#endif
2175 3437
2176#if EV_FORK_ENABLE 3438#if EV_FORK_ENABLE
2177void 3439void
2178ev_fork_start (EV_P_ ev_fork *w) 3440ev_fork_start (EV_P_ ev_fork *w)
2179{ 3441{
2180 if (expect_false (ev_is_active (w))) 3442 if (expect_false (ev_is_active (w)))
2181 return; 3443 return;
3444
3445 EV_FREQUENT_CHECK;
2182 3446
2183 ev_start (EV_A_ (W)w, ++forkcnt); 3447 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3448 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 3449 forks [forkcnt - 1] = w;
3450
3451 EV_FREQUENT_CHECK;
2186} 3452}
2187 3453
2188void 3454void
2189ev_fork_stop (EV_P_ ev_fork *w) 3455ev_fork_stop (EV_P_ ev_fork *w)
2190{ 3456{
2191 ev_clear_pending (EV_A_ (W)w); 3457 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3458 if (expect_false (!ev_is_active (w)))
2193 return; 3459 return;
2194 3460
3461 EV_FREQUENT_CHECK;
3462
2195 { 3463 {
2196 int active = ((W)w)->active; 3464 int active = ev_active (w);
3465
2197 forks [active - 1] = forks [--forkcnt]; 3466 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 3467 ev_active (forks [active - 1]) = active;
2199 } 3468 }
2200 3469
2201 ev_stop (EV_A_ (W)w); 3470 ev_stop (EV_A_ (W)w);
3471
3472 EV_FREQUENT_CHECK;
3473}
3474#endif
3475
3476#if EV_ASYNC_ENABLE
3477void
3478ev_async_start (EV_P_ ev_async *w)
3479{
3480 if (expect_false (ev_is_active (w)))
3481 return;
3482
3483 evpipe_init (EV_A);
3484
3485 EV_FREQUENT_CHECK;
3486
3487 ev_start (EV_A_ (W)w, ++asynccnt);
3488 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3489 asyncs [asynccnt - 1] = w;
3490
3491 EV_FREQUENT_CHECK;
3492}
3493
3494void
3495ev_async_stop (EV_P_ ev_async *w)
3496{
3497 clear_pending (EV_A_ (W)w);
3498 if (expect_false (!ev_is_active (w)))
3499 return;
3500
3501 EV_FREQUENT_CHECK;
3502
3503 {
3504 int active = ev_active (w);
3505
3506 asyncs [active - 1] = asyncs [--asynccnt];
3507 ev_active (asyncs [active - 1]) = active;
3508 }
3509
3510 ev_stop (EV_A_ (W)w);
3511
3512 EV_FREQUENT_CHECK;
3513}
3514
3515void
3516ev_async_send (EV_P_ ev_async *w)
3517{
3518 w->sent = 1;
3519 evpipe_write (EV_A_ &async_pending);
2202} 3520}
2203#endif 3521#endif
2204 3522
2205/*****************************************************************************/ 3523/*****************************************************************************/
2206 3524
2216once_cb (EV_P_ struct ev_once *once, int revents) 3534once_cb (EV_P_ struct ev_once *once, int revents)
2217{ 3535{
2218 void (*cb)(int revents, void *arg) = once->cb; 3536 void (*cb)(int revents, void *arg) = once->cb;
2219 void *arg = once->arg; 3537 void *arg = once->arg;
2220 3538
2221 ev_io_stop (EV_A_ &once->io); 3539 ev_io_stop (EV_A_ &once->io);
2222 ev_timer_stop (EV_A_ &once->to); 3540 ev_timer_stop (EV_A_ &once->to);
2223 ev_free (once); 3541 ev_free (once);
2224 3542
2225 cb (revents, arg); 3543 cb (revents, arg);
2226} 3544}
2227 3545
2228static void 3546static void
2229once_cb_io (EV_P_ ev_io *w, int revents) 3547once_cb_io (EV_P_ ev_io *w, int revents)
2230{ 3548{
2231 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3549 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3550
3551 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2232} 3552}
2233 3553
2234static void 3554static void
2235once_cb_to (EV_P_ ev_timer *w, int revents) 3555once_cb_to (EV_P_ ev_timer *w, int revents)
2236{ 3556{
2237 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3557 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3558
3559 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2238} 3560}
2239 3561
2240void 3562void
2241ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3563ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2242{ 3564{
2264 ev_timer_set (&once->to, timeout, 0.); 3586 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 3587 ev_timer_start (EV_A_ &once->to);
2266 } 3588 }
2267} 3589}
2268 3590
3591/*****************************************************************************/
3592
3593#if EV_WALK_ENABLE
3594void
3595ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3596{
3597 int i, j;
3598 ev_watcher_list *wl, *wn;
3599
3600 if (types & (EV_IO | EV_EMBED))
3601 for (i = 0; i < anfdmax; ++i)
3602 for (wl = anfds [i].head; wl; )
3603 {
3604 wn = wl->next;
3605
3606#if EV_EMBED_ENABLE
3607 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3608 {
3609 if (types & EV_EMBED)
3610 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3611 }
3612 else
3613#endif
3614#if EV_USE_INOTIFY
3615 if (ev_cb ((ev_io *)wl) == infy_cb)
3616 ;
3617 else
3618#endif
3619 if ((ev_io *)wl != &pipe_w)
3620 if (types & EV_IO)
3621 cb (EV_A_ EV_IO, wl);
3622
3623 wl = wn;
3624 }
3625
3626 if (types & (EV_TIMER | EV_STAT))
3627 for (i = timercnt + HEAP0; i-- > HEAP0; )
3628#if EV_STAT_ENABLE
3629 /*TODO: timer is not always active*/
3630 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3631 {
3632 if (types & EV_STAT)
3633 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3634 }
3635 else
3636#endif
3637 if (types & EV_TIMER)
3638 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3639
3640#if EV_PERIODIC_ENABLE
3641 if (types & EV_PERIODIC)
3642 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3643 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3644#endif
3645
3646#if EV_IDLE_ENABLE
3647 if (types & EV_IDLE)
3648 for (j = NUMPRI; i--; )
3649 for (i = idlecnt [j]; i--; )
3650 cb (EV_A_ EV_IDLE, idles [j][i]);
3651#endif
3652
3653#if EV_FORK_ENABLE
3654 if (types & EV_FORK)
3655 for (i = forkcnt; i--; )
3656 if (ev_cb (forks [i]) != embed_fork_cb)
3657 cb (EV_A_ EV_FORK, forks [i]);
3658#endif
3659
3660#if EV_ASYNC_ENABLE
3661 if (types & EV_ASYNC)
3662 for (i = asynccnt; i--; )
3663 cb (EV_A_ EV_ASYNC, asyncs [i]);
3664#endif
3665
3666 if (types & EV_PREPARE)
3667 for (i = preparecnt; i--; )
3668#if EV_EMBED_ENABLE
3669 if (ev_cb (prepares [i]) != embed_prepare_cb)
3670#endif
3671 cb (EV_A_ EV_PREPARE, prepares [i]);
3672
3673 if (types & EV_CHECK)
3674 for (i = checkcnt; i--; )
3675 cb (EV_A_ EV_CHECK, checks [i]);
3676
3677 if (types & EV_SIGNAL)
3678 for (i = 0; i < EV_NSIG - 1; ++i)
3679 for (wl = signals [i].head; wl; )
3680 {
3681 wn = wl->next;
3682 cb (EV_A_ EV_SIGNAL, wl);
3683 wl = wn;
3684 }
3685
3686 if (types & EV_CHILD)
3687 for (i = EV_PID_HASHSIZE; i--; )
3688 for (wl = childs [i]; wl; )
3689 {
3690 wn = wl->next;
3691 cb (EV_A_ EV_CHILD, wl);
3692 wl = wn;
3693 }
3694/* EV_STAT 0x00001000 /* stat data changed */
3695/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3696}
3697#endif
3698
3699#if EV_MULTIPLICITY
3700 #include "ev_wrap.h"
3701#endif
3702
2269#ifdef __cplusplus 3703#ifdef __cplusplus
2270} 3704}
2271#endif 3705#endif
2272 3706

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines