ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.24 by root, Wed Oct 31 20:46:44 2007 UTC vs.
Revision 1.327 by root, Sun Feb 14 19:09:04 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
154#endif
29 155
30#include <math.h> 156#include <math.h>
31#include <stdlib.h> 157#include <stdlib.h>
32#include <unistd.h> 158#include <string.h>
33#include <fcntl.h> 159#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 160#include <stddef.h>
36 161
37#include <stdio.h> 162#include <stdio.h>
38 163
39#include <assert.h> 164#include <assert.h>
40#include <errno.h> 165#include <errno.h>
41#include <sys/types.h> 166#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 167#include <time.h>
168#include <limits.h>
45 169
170#include <signal.h>
171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
178#ifndef _WIN32
179# include <sys/time.h>
180# include <sys/wait.h>
181# include <unistd.h>
182#else
183# include <io.h>
184# define WIN32_LEAN_AND_MEAN
185# include <windows.h>
186# ifndef EV_SELECT_IS_WINSOCKET
187# define EV_SELECT_IS_WINSOCKET 1
188# endif
189#endif
190
191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
227
46#ifndef HAVE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
232# define EV_USE_MONOTONIC 0
233# endif
234#endif
235
236#ifndef EV_USE_REALTIME
237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
238#endif
239
240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
244# define EV_USE_NANOSLEEP 0
245# endif
246#endif
247
248#ifndef EV_USE_SELECT
249# define EV_USE_SELECT 1
250#endif
251
252#ifndef EV_USE_POLL
253# ifdef _WIN32
254# define EV_USE_POLL 0
255# else
256# define EV_USE_POLL 1
257# endif
258#endif
259
260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
264# define EV_USE_EPOLL 0
265# endif
266#endif
267
268#ifndef EV_USE_KQUEUE
269# define EV_USE_KQUEUE 0
270#endif
271
272#ifndef EV_USE_PORT
273# define EV_USE_PORT 0
274#endif
275
276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
278# define EV_USE_INOTIFY 1
279# else
280# define EV_USE_INOTIFY 0
281# endif
282#endif
283
284#ifndef EV_PID_HASHSIZE
285# if EV_MINIMAL
286# define EV_PID_HASHSIZE 1
287# else
288# define EV_PID_HASHSIZE 16
289# endif
290#endif
291
292#ifndef EV_INOTIFY_HASHSIZE
293# if EV_MINIMAL
294# define EV_INOTIFY_HASHSIZE 1
295# else
296# define EV_INOTIFY_HASHSIZE 16
297# endif
298#endif
299
300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
355
47# ifdef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
357# undef EV_USE_MONOTONIC
48# define HAVE_MONOTONIC 1 358# define EV_USE_MONOTONIC 0
359#endif
360
361#ifndef CLOCK_REALTIME
362# undef EV_USE_REALTIME
363# define EV_USE_REALTIME 0
364#endif
365
366#if !EV_STAT_ENABLE
367# undef EV_USE_INOTIFY
368# define EV_USE_INOTIFY 0
369#endif
370
371#if !EV_USE_NANOSLEEP
372# ifndef _WIN32
373# include <sys/select.h>
374# endif
375#endif
376
377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
386#endif
387
388#if EV_SELECT_IS_WINSOCKET
389# include <winsock.h>
390#endif
391
392#if EV_USE_EVENTFD
393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
49# endif 403# endif
50#endif 404# endif
51 405# ifdef __cplusplus
52#ifndef HAVE_SELECT 406extern "C" {
53# define HAVE_SELECT 1
54#endif 407# endif
55 408int eventfd (unsigned int initval, int flags);
56#ifndef HAVE_EPOLL 409# ifdef __cplusplus
57# define HAVE_EPOLL 0 410}
58#endif 411# endif
412#endif
59 413
60#ifndef HAVE_REALTIME 414#if EV_USE_SIGNALFD
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
62#endif 419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
450
451/*
452 * This is used to avoid floating point rounding problems.
453 * It is added to ev_rt_now when scheduling periodics
454 * to ensure progress, time-wise, even when rounding
455 * errors are against us.
456 * This value is good at least till the year 4000.
457 * Better solutions welcome.
458 */
459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
63 460
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */
67 463
68#include "ev.h" 464#if __GNUC__ >= 4
465# define expect(expr,value) __builtin_expect ((expr),(value))
466# define noinline __attribute__ ((noinline))
467#else
468# define expect(expr,value) (expr)
469# define noinline
470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
471# define inline
472# endif
473#endif
69 474
475#define expect_false(expr) expect ((expr) != 0, 0)
476#define expect_true(expr) expect ((expr) != 0, 1)
477#define inline_size static inline
478
479#if EV_MINIMAL
480# define inline_speed static noinline
481#else
482# define inline_speed static inline
483#endif
484
485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
492
493#define EMPTY /* required for microsofts broken pseudo-c compiler */
494#define EMPTY2(a,b) /* used to suppress some warnings */
495
70typedef struct ev_watcher *W; 496typedef ev_watcher *W;
71typedef struct ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
73 499
74static ev_tstamp now, diff; /* monotonic clock */ 500#define ev_active(w) ((W)(w))->active
75ev_tstamp ev_now; 501#define ev_at(w) ((WT)(w))->at
76int ev_method;
77 502
78static int have_monotonic; /* runtime */ 503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
79 508
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 509#if EV_USE_MONOTONIC
81static void (*method_modify)(int fd, int oev, int nev); 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82static void (*method_poll)(ev_tstamp timeout); 511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
522
523#ifdef _WIN32
524# include "ev_win32.c"
525#endif
83 526
84/*****************************************************************************/ 527/*****************************************************************************/
85 528
529static void (*syserr_cb)(const char *msg);
530
531void
532ev_set_syserr_cb (void (*cb)(const char *msg))
533{
534 syserr_cb = cb;
535}
536
537static void noinline
538ev_syserr (const char *msg)
539{
540 if (!msg)
541 msg = "(libev) system error";
542
543 if (syserr_cb)
544 syserr_cb (msg);
545 else
546 {
547 perror (msg);
548 abort ();
549 }
550}
551
552static void *
553ev_realloc_emul (void *ptr, long size)
554{
555 /* some systems, notably openbsd and darwin, fail to properly
556 * implement realloc (x, 0) (as required by both ansi c-98 and
557 * the single unix specification, so work around them here.
558 */
559
560 if (size)
561 return realloc (ptr, size);
562
563 free (ptr);
564 return 0;
565}
566
567static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
568
569void
570ev_set_allocator (void *(*cb)(void *ptr, long size))
571{
572 alloc = cb;
573}
574
575inline_speed void *
576ev_realloc (void *ptr, long size)
577{
578 ptr = alloc (ptr, size);
579
580 if (!ptr && size)
581 {
582 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
583 abort ();
584 }
585
586 return ptr;
587}
588
589#define ev_malloc(size) ev_realloc (0, (size))
590#define ev_free(ptr) ev_realloc ((ptr), 0)
591
592/*****************************************************************************/
593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
598typedef struct
599{
600 WL head;
601 unsigned char events; /* the events watched for */
602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
604 unsigned char unused;
605#if EV_USE_EPOLL
606 unsigned int egen; /* generation counter to counter epoll bugs */
607#endif
608#if EV_SELECT_IS_WINSOCKET
609 SOCKET handle;
610#endif
611} ANFD;
612
613/* stores the pending event set for a given watcher */
614typedef struct
615{
616 W w;
617 int events; /* the pending event set for the given watcher */
618} ANPENDING;
619
620#if EV_USE_INOTIFY
621/* hash table entry per inotify-id */
622typedef struct
623{
624 WL head;
625} ANFS;
626#endif
627
628/* Heap Entry */
629#if EV_HEAP_CACHE_AT
630 /* a heap element */
631 typedef struct {
632 ev_tstamp at;
633 WT w;
634 } ANHE;
635
636 #define ANHE_w(he) (he).w /* access watcher, read-write */
637 #define ANHE_at(he) (he).at /* access cached at, read-only */
638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
639#else
640 /* a heap element */
641 typedef WT ANHE;
642
643 #define ANHE_w(he) (he)
644 #define ANHE_at(he) (he)->at
645 #define ANHE_at_cache(he)
646#endif
647
648#if EV_MULTIPLICITY
649
650 struct ev_loop
651 {
652 ev_tstamp ev_rt_now;
653 #define ev_rt_now ((loop)->ev_rt_now)
654 #define VAR(name,decl) decl;
655 #include "ev_vars.h"
656 #undef VAR
657 };
658 #include "ev_wrap.h"
659
660 static struct ev_loop default_loop_struct;
661 struct ev_loop *ev_default_loop_ptr;
662
663#else
664
665 ev_tstamp ev_rt_now;
666 #define VAR(name,decl) static decl;
667 #include "ev_vars.h"
668 #undef VAR
669
670 static int ev_default_loop_ptr;
671
672#endif
673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
685
686/*****************************************************************************/
687
688#ifndef EV_HAVE_EV_TIME
86ev_tstamp 689ev_tstamp
87ev_time (void) 690ev_time (void)
88{ 691{
89#if HAVE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
90 struct timespec ts; 695 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 698 }
699#endif
700
94 struct timeval tv; 701 struct timeval tv;
95 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif
98} 704}
705#endif
99 706
100static ev_tstamp 707inline_size ev_tstamp
101get_clock (void) 708get_clock (void)
102{ 709{
103#if HAVE_MONOTONIC 710#if EV_USE_MONOTONIC
104 if (have_monotonic) 711 if (expect_true (have_monotonic))
105 { 712 {
106 struct timespec ts; 713 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 714 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 715 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 716 }
110#endif 717#endif
111 718
112 return ev_time (); 719 return ev_time ();
113} 720}
114 721
115#define array_needsize(base,cur,cnt,init) \ 722#if EV_MULTIPLICITY
116 if ((cnt) > cur) \ 723ev_tstamp
117 { \ 724ev_now (EV_P)
118 int newcnt = cur; \ 725{
119 do \ 726 return ev_rt_now;
120 { \ 727}
121 newcnt = (newcnt << 1) | 4 & ~3; \ 728#endif
122 } \ 729
123 while ((cnt) > newcnt); \ 730void
124 \ 731ev_sleep (ev_tstamp delay)
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 732{
126 init (base + cur, newcnt - cur); \ 733 if (delay > 0.)
127 cur = newcnt; \
128 } 734 {
735#if EV_USE_NANOSLEEP
736 struct timespec ts;
737
738 ts.tv_sec = (time_t)delay;
739 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
740
741 nanosleep (&ts, 0);
742#elif defined(_WIN32)
743 Sleep ((unsigned long)(delay * 1e3));
744#else
745 struct timeval tv;
746
747 tv.tv_sec = (time_t)delay;
748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
749
750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
751 /* something not guaranteed by newer posix versions, but guaranteed */
752 /* by older ones */
753 select (0, 0, 0, 0, &tv);
754#endif
755 }
756}
129 757
130/*****************************************************************************/ 758/*****************************************************************************/
131 759
760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
761
762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
765array_nextsize (int elem, int cur, int cnt)
766{
767 int ncur = cur + 1;
768
769 do
770 ncur <<= 1;
771 while (cnt > ncur);
772
773 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
774 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
775 {
776 ncur *= elem;
777 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
778 ncur = ncur - sizeof (void *) * 4;
779 ncur /= elem;
780 }
781
782 return ncur;
783}
784
785static noinline void *
786array_realloc (int elem, void *base, int *cur, int cnt)
787{
788 *cur = array_nextsize (elem, *cur, cnt);
789 return ev_realloc (base, elem * *cur);
790}
791
792#define array_init_zero(base,count) \
793 memset ((void *)(base), 0, sizeof (*(base)) * (count))
794
795#define array_needsize(type,base,cur,cnt,init) \
796 if (expect_false ((cnt) > (cur))) \
797 { \
798 int ocur_ = (cur); \
799 (base) = (type *)array_realloc \
800 (sizeof (type), (base), &(cur), (cnt)); \
801 init ((base) + (ocur_), (cur) - ocur_); \
802 }
803
804#if 0
805#define array_slim(type,stem) \
806 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
807 { \
808 stem ## max = array_roundsize (stem ## cnt >> 1); \
809 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
811 }
812#endif
813
814#define array_free(stem, idx) \
815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
816
817/*****************************************************************************/
818
819/* dummy callback for pending events */
820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
822{
823}
824
825void noinline
826ev_feed_event (EV_P_ void *w, int revents)
827{
828 W w_ = (W)w;
829 int pri = ABSPRI (w_);
830
831 if (expect_false (w_->pending))
832 pendings [pri][w_->pending - 1].events |= revents;
833 else
834 {
835 w_->pending = ++pendingcnt [pri];
836 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
837 pendings [pri][w_->pending - 1].w = w_;
838 pendings [pri][w_->pending - 1].events = revents;
839 }
840}
841
842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
858queue_events (EV_P_ W *events, int eventcnt, int type)
859{
860 int i;
861
862 for (i = 0; i < eventcnt; ++i)
863 ev_feed_event (EV_A_ events [i], type);
864}
865
866/*****************************************************************************/
867
868inline_speed void
869fd_event_nc (EV_P_ int fd, int revents)
870{
871 ANFD *anfd = anfds + fd;
872 ev_io *w;
873
874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
875 {
876 int ev = w->events & revents;
877
878 if (ev)
879 ev_feed_event (EV_A_ (W)w, ev);
880 }
881}
882
883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
889
890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
894void
895ev_feed_fd_event (EV_P_ int fd, int revents)
896{
897 if (fd >= 0 && fd < anfdmax)
898 fd_event_nc (EV_A_ fd, revents);
899}
900
901/* make sure the external fd watch events are in-sync */
902/* with the kernel/libev internal state */
903inline_size void
904fd_reify (EV_P)
905{
906 int i;
907
908 for (i = 0; i < fdchangecnt; ++i)
909 {
910 int fd = fdchanges [i];
911 ANFD *anfd = anfds + fd;
912 ev_io *w;
913
914 unsigned char events = 0;
915
916 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
917 events |= (unsigned char)w->events;
918
919#if EV_SELECT_IS_WINSOCKET
920 if (events)
921 {
922 unsigned long arg;
923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
925 }
926#endif
927
928 {
929 unsigned char o_events = anfd->events;
930 unsigned char o_reify = anfd->reify;
931
932 anfd->reify = 0;
933 anfd->events = events;
934
935 if (o_events != events || o_reify & EV__IOFDSET)
936 backend_modify (EV_A_ fd, o_events, events);
937 }
938 }
939
940 fdchangecnt = 0;
941}
942
943/* something about the given fd changed */
944inline_size void
945fd_change (EV_P_ int fd, int flags)
946{
947 unsigned char reify = anfds [fd].reify;
948 anfds [fd].reify |= flags;
949
950 if (expect_true (!reify))
951 {
952 ++fdchangecnt;
953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
954 fdchanges [fdchangecnt - 1] = fd;
955 }
956}
957
958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
960fd_kill (EV_P_ int fd)
961{
962 ev_io *w;
963
964 while ((w = (ev_io *)anfds [fd].head))
965 {
966 ev_io_stop (EV_A_ w);
967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
968 }
969}
970
971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
973fd_valid (int fd)
974{
975#ifdef _WIN32
976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
977#else
978 return fcntl (fd, F_GETFD) != -1;
979#endif
980}
981
982/* called on EBADF to verify fds */
983static void noinline
984fd_ebadf (EV_P)
985{
986 int fd;
987
988 for (fd = 0; fd < anfdmax; ++fd)
989 if (anfds [fd].events)
990 if (!fd_valid (fd) && errno == EBADF)
991 fd_kill (EV_A_ fd);
992}
993
994/* called on ENOMEM in select/poll to kill some fds and retry */
995static void noinline
996fd_enomem (EV_P)
997{
998 int fd;
999
1000 for (fd = anfdmax; fd--; )
1001 if (anfds [fd].events)
1002 {
1003 fd_kill (EV_A_ fd);
1004 break;
1005 }
1006}
1007
1008/* usually called after fork if backend needs to re-arm all fds from scratch */
1009static void noinline
1010fd_rearm_all (EV_P)
1011{
1012 int fd;
1013
1014 for (fd = 0; fd < anfdmax; ++fd)
1015 if (anfds [fd].events)
1016 {
1017 anfds [fd].events = 0;
1018 anfds [fd].emask = 0;
1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1020 }
1021}
1022
1023/*****************************************************************************/
1024
1025/*
1026 * the heap functions want a real array index. array index 0 uis guaranteed to not
1027 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1028 * the branching factor of the d-tree.
1029 */
1030
1031/*
1032 * at the moment we allow libev the luxury of two heaps,
1033 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1034 * which is more cache-efficient.
1035 * the difference is about 5% with 50000+ watchers.
1036 */
1037#if EV_USE_4HEAP
1038
1039#define DHEAP 4
1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1042#define UPHEAP_DONE(p,k) ((p) == (k))
1043
1044/* away from the root */
1045inline_speed void
1046downheap (ANHE *heap, int N, int k)
1047{
1048 ANHE he = heap [k];
1049 ANHE *E = heap + N + HEAP0;
1050
1051 for (;;)
1052 {
1053 ev_tstamp minat;
1054 ANHE *minpos;
1055 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1056
1057 /* find minimum child */
1058 if (expect_true (pos + DHEAP - 1 < E))
1059 {
1060 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else if (pos < E)
1066 {
1067 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1068 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1069 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1070 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1071 }
1072 else
1073 break;
1074
1075 if (ANHE_at (he) <= minat)
1076 break;
1077
1078 heap [k] = *minpos;
1079 ev_active (ANHE_w (*minpos)) = k;
1080
1081 k = minpos - heap;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087
1088#else /* 4HEAP */
1089
1090#define HEAP0 1
1091#define HPARENT(k) ((k) >> 1)
1092#define UPHEAP_DONE(p,k) (!(p))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099
1100 for (;;)
1101 {
1102 int c = k << 1;
1103
1104 if (c >= N + HEAP0)
1105 break;
1106
1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1108 ? 1 : 0;
1109
1110 if (ANHE_at (he) <= ANHE_at (heap [c]))
1111 break;
1112
1113 heap [k] = heap [c];
1114 ev_active (ANHE_w (heap [k])) = k;
1115
1116 k = c;
1117 }
1118
1119 heap [k] = he;
1120 ev_active (ANHE_w (he)) = k;
1121}
1122#endif
1123
1124/* towards the root */
1125inline_speed void
1126upheap (ANHE *heap, int k)
1127{
1128 ANHE he = heap [k];
1129
1130 for (;;)
1131 {
1132 int p = HPARENT (k);
1133
1134 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1135 break;
1136
1137 heap [k] = heap [p];
1138 ev_active (ANHE_w (heap [k])) = k;
1139 k = p;
1140 }
1141
1142 heap [k] = he;
1143 ev_active (ANHE_w (he)) = k;
1144}
1145
1146/* move an element suitably so it is in a correct place */
1147inline_size void
1148adjustheap (ANHE *heap, int N, int k)
1149{
1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1151 upheap (heap, k);
1152 else
1153 downheap (heap, N, k);
1154}
1155
1156/* rebuild the heap: this function is used only once and executed rarely */
1157inline_size void
1158reheap (ANHE *heap, int N)
1159{
1160 int i;
1161
1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1163 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1164 for (i = 0; i < N; ++i)
1165 upheap (heap, i + HEAP0);
1166}
1167
1168/*****************************************************************************/
1169
1170/* associate signal watchers to a signal signal */
132typedef struct 1171typedef struct
133{ 1172{
134 struct ev_io *head; 1173 EV_ATOMIC_T pending;
135 unsigned char wev, rev; /* want, received event set */ 1174#if EV_MULTIPLICITY
136} ANFD; 1175 EV_P;
1176#endif
1177 WL head;
1178} ANSIG;
137 1179
138static ANFD *anfds; 1180static ANSIG signals [EV_NSIG - 1];
139static int anfdmax;
140 1181
141static int *fdchanges; 1182/*****************************************************************************/
142static int fdchangemax, fdchangecnt;
143 1183
1184/* used to prepare libev internal fd's */
1185/* this is not fork-safe */
1186inline_speed void
1187fd_intern (int fd)
1188{
1189#ifdef _WIN32
1190 unsigned long arg = 1;
1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1192#else
1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
1194 fcntl (fd, F_SETFL, O_NONBLOCK);
1195#endif
1196}
1197
1198static void noinline
1199evpipe_init (EV_P)
1200{
1201 if (!ev_is_active (&pipe_w))
1202 {
1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
1209 {
1210 evpipe [0] = -1;
1211 fd_intern (evfd); /* doing it twice doesn't hurt */
1212 ev_io_set (&pipe_w, evfd, EV_READ);
1213 }
1214 else
1215#endif
1216 {
1217 while (pipe (evpipe))
1218 ev_syserr ("(libev) error creating signal/async pipe");
1219
1220 fd_intern (evpipe [0]);
1221 fd_intern (evpipe [1]);
1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1223 }
1224
1225 ev_io_start (EV_A_ &pipe_w);
1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1227 }
1228}
1229
1230inline_size void
1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1232{
1233 if (!*flag)
1234 {
1235 int old_errno = errno; /* save errno because write might clobber it */
1236
1237 *flag = 1;
1238
1239#if EV_USE_EVENTFD
1240 if (evfd >= 0)
1241 {
1242 uint64_t counter = 1;
1243 write (evfd, &counter, sizeof (uint64_t));
1244 }
1245 else
1246#endif
1247 write (evpipe [1], &old_errno, 1);
1248
1249 errno = old_errno;
1250 }
1251}
1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
144static void 1255static void
145anfds_init (ANFD *base, int count) 1256pipecb (EV_P_ ev_io *iow, int revents)
146{ 1257{
147 while (count--) 1258 int i;
148 { 1259
149 base->head = 0; 1260#if EV_USE_EVENTFD
150 base->wev = base->rev = EV_NONE; 1261 if (evfd >= 0)
151 ++base;
152 } 1262 {
153} 1263 uint64_t counter;
1264 read (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 {
1269 char dummy;
1270 read (evpipe [0], &dummy, 1);
1271 }
154 1272
155typedef struct 1273 if (sig_pending)
156{ 1274 {
157 W w; 1275 sig_pending = 0;
158 int events;
159} ANPENDING;
160 1276
161static ANPENDING *pendings; 1277 for (i = EV_NSIG - 1; i--; )
162static int pendingmax, pendingcnt; 1278 if (expect_false (signals [i].pending))
1279 ev_feed_signal_event (EV_A_ i + 1);
1280 }
1281
1282#if EV_ASYNC_ENABLE
1283 if (async_pending)
1284 {
1285 async_pending = 0;
1286
1287 for (i = asynccnt; i--; )
1288 if (asyncs [i]->sent)
1289 {
1290 asyncs [i]->sent = 0;
1291 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1292 }
1293 }
1294#endif
1295}
1296
1297/*****************************************************************************/
163 1298
164static void 1299static void
165event (W w, int events) 1300ev_sighandler (int signum)
166{ 1301{
167 if (w->active) 1302#if EV_MULTIPLICITY
168 { 1303 EV_P = signals [signum - 1].loop;
169 w->pending = ++pendingcnt; 1304#endif
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events;
173 }
174}
175 1305
1306#ifdef _WIN32
1307 signal (signum, ev_sighandler);
1308#endif
1309
1310 signals [signum - 1].pending = 1;
1311 evpipe_write (EV_A_ &sig_pending);
1312}
1313
1314void noinline
1315ev_feed_signal_event (EV_P_ int signum)
1316{
1317 WL w;
1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1324#if EV_MULTIPLICITY
1325 /* it is permissible to try to feed a signal to the wrong loop */
1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1327
1328 if (expect_false (signals [signum].loop != EV_A))
1329 return;
1330#endif
1331
1332 signals [signum].pending = 0;
1333
1334 for (w = signals [signum].head; w; w = w->next)
1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1336}
1337
1338#if EV_USE_SIGNALFD
176static void 1339static void
177fd_event (int fd, int events) 1340sigfdcb (EV_P_ ev_io *iow, int revents)
178{ 1341{
179 ANFD *anfd = anfds + fd; 1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
180 struct ev_io *w;
181 1343
182 for (w = anfd->head; w; w = w->next) 1344 for (;;)
183 {
184 int ev = w->events & events;
185
186 if (ev)
187 event ((W)w, ev);
188 } 1345 {
189} 1346 ssize_t res = read (sigfd, si, sizeof (si));
190 1347
191static void 1348 /* not ISO-C, as res might be -1, but works with SuS */
192queue_events (W *events, int eventcnt, int type) 1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
193{ 1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
194 int i;
195 1351
196 for (i = 0; i < eventcnt; ++i) 1352 if (res < (ssize_t)sizeof (si))
197 event (events [i], type); 1353 break;
1354 }
198} 1355}
199 1356#endif
200/* called on EBADF to verify fds */
201static void
202fd_recheck (void)
203{
204 int fd;
205
206 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head)
210 {
211 event ((W)anfds [fd].head, EV_ERROR);
212 evio_stop (anfds [fd].head);
213 }
214}
215 1357
216/*****************************************************************************/ 1358/*****************************************************************************/
217 1359
218static struct ev_timer **timers; 1360static WL childs [EV_PID_HASHSIZE];
219static int timermax, timercnt;
220 1361
221static struct ev_periodic **periodics; 1362#ifndef _WIN32
222static int periodicmax, periodiccnt;
223 1363
224static void
225upheap (WT *timers, int k)
226{
227 WT w = timers [k];
228
229 while (k && timers [k >> 1]->at > w->at)
230 {
231 timers [k] = timers [k >> 1];
232 timers [k]->active = k + 1;
233 k >>= 1;
234 }
235
236 timers [k] = w;
237 timers [k]->active = k + 1;
238
239}
240
241static void
242downheap (WT *timers, int N, int k)
243{
244 WT w = timers [k];
245
246 while (k < (N >> 1))
247 {
248 int j = k << 1;
249
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
251 ++j;
252
253 if (w->at <= timers [j]->at)
254 break;
255
256 timers [k] = timers [j];
257 timers [k]->active = k + 1;
258 k = j;
259 }
260
261 timers [k] = w;
262 timers [k]->active = k + 1;
263}
264
265/*****************************************************************************/
266
267typedef struct
268{
269 struct ev_signal *head;
270 sig_atomic_t gotsig;
271} ANSIG;
272
273static ANSIG *signals;
274static int signalmax;
275
276static int sigpipe [2];
277static sig_atomic_t gotsig;
278static struct ev_io sigev;
279
280static void
281signals_init (ANSIG *base, int count)
282{
283 while (count--)
284 {
285 base->head = 0;
286 base->gotsig = 0;
287 ++base;
288 }
289}
290
291static void
292sighandler (int signum)
293{
294 signals [signum - 1].gotsig = 1;
295
296 if (!gotsig)
297 {
298 gotsig = 1;
299 write (sigpipe [1], &gotsig, 1);
300 }
301}
302
303static void
304sigcb (struct ev_io *iow, int revents)
305{
306 struct ev_signal *w;
307 int sig;
308
309 gotsig = 0;
310 read (sigpipe [0], &revents, 1);
311
312 for (sig = signalmax; sig--; )
313 if (signals [sig].gotsig)
314 {
315 signals [sig].gotsig = 0;
316
317 for (w = signals [sig].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL);
319 }
320}
321
322static void
323siginit (void)
324{
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327
328 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
331
332 evio_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev);
334}
335
336/*****************************************************************************/
337
338static struct ev_idle **idles;
339static int idlemax, idlecnt;
340
341static struct ev_prepare **prepares;
342static int preparemax, preparecnt;
343
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348
349static struct ev_child *childs [PID_HASHSIZE];
350static struct ev_signal childev; 1364static ev_signal childev;
1365
1366#ifndef WIFCONTINUED
1367# define WIFCONTINUED(status) 0
1368#endif
1369
1370/* handle a single child status event */
1371inline_speed void
1372child_reap (EV_P_ int chain, int pid, int status)
1373{
1374 ev_child *w;
1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1376
1377 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1378 {
1379 if ((w->pid == pid || !w->pid)
1380 && (!traced || (w->flags & 1)))
1381 {
1382 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1383 w->rpid = pid;
1384 w->rstatus = status;
1385 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1386 }
1387 }
1388}
351 1389
352#ifndef WCONTINUED 1390#ifndef WCONTINUED
353# define WCONTINUED 0 1391# define WCONTINUED 0
354#endif 1392#endif
355 1393
1394/* called on sigchld etc., calls waitpid */
356static void 1395static void
357childcb (struct ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
358{ 1397{
359 struct ev_child *w;
360 int pid, status; 1398 int pid, status;
361 1399
1400 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1401 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1402 if (!WCONTINUED
364 if (w->pid == pid || w->pid == -1) 1403 || errno != EINVAL
365 { 1404 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
366 w->status = status; 1405 return;
367 event ((W)w, EV_CHILD); 1406
368 } 1407 /* make sure we are called again until all children have been reaped */
1408 /* we need to do it this way so that the callback gets called before we continue */
1409 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1410
1411 child_reap (EV_A_ pid, pid, status);
1412 if (EV_PID_HASHSIZE > 1)
1413 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
369} 1414}
1415
1416#endif
370 1417
371/*****************************************************************************/ 1418/*****************************************************************************/
372 1419
1420#if EV_USE_PORT
1421# include "ev_port.c"
1422#endif
1423#if EV_USE_KQUEUE
1424# include "ev_kqueue.c"
1425#endif
373#if HAVE_EPOLL 1426#if EV_USE_EPOLL
374# include "ev_epoll.c" 1427# include "ev_epoll.c"
375#endif 1428#endif
1429#if EV_USE_POLL
1430# include "ev_poll.c"
1431#endif
376#if HAVE_SELECT 1432#if EV_USE_SELECT
377# include "ev_select.c" 1433# include "ev_select.c"
378#endif 1434#endif
379 1435
380int 1436int
381ev_version_major (void) 1437ev_version_major (void)
387ev_version_minor (void) 1443ev_version_minor (void)
388{ 1444{
389 return EV_VERSION_MINOR; 1445 return EV_VERSION_MINOR;
390} 1446}
391 1447
392int ev_init (int flags) 1448/* return true if we are running with elevated privileges and should ignore env variables */
1449int inline_size
1450enable_secure (void)
393{ 1451{
394 if (!ev_method) 1452#ifdef _WIN32
1453 return 0;
1454#else
1455 return getuid () != geteuid ()
1456 || getgid () != getegid ();
1457#endif
1458}
1459
1460unsigned int
1461ev_supported_backends (void)
1462{
1463 unsigned int flags = 0;
1464
1465 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1466 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1467 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1468 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1469 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1470
1471 return flags;
1472}
1473
1474unsigned int
1475ev_recommended_backends (void)
1476{
1477 unsigned int flags = ev_supported_backends ();
1478
1479#ifndef __NetBSD__
1480 /* kqueue is borked on everything but netbsd apparently */
1481 /* it usually doesn't work correctly on anything but sockets and pipes */
1482 flags &= ~EVBACKEND_KQUEUE;
1483#endif
1484#ifdef __APPLE__
1485 /* only select works correctly on that "unix-certified" platform */
1486 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1487 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1488#endif
1489
1490 return flags;
1491}
1492
1493unsigned int
1494ev_embeddable_backends (void)
1495{
1496 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1497
1498 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1499 /* please fix it and tell me how to detect the fix */
1500 flags &= ~EVBACKEND_EPOLL;
1501
1502 return flags;
1503}
1504
1505unsigned int
1506ev_backend (EV_P)
1507{
1508 return backend;
1509}
1510
1511#if EV_MINIMAL < 2
1512unsigned int
1513ev_loop_count (EV_P)
1514{
1515 return loop_count;
1516}
1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
1524void
1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1526{
1527 io_blocktime = interval;
1528}
1529
1530void
1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1532{
1533 timeout_blocktime = interval;
1534}
1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
1561static void noinline
1562loop_init (EV_P_ unsigned int flags)
1563{
1564 if (!backend)
395 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
396#if HAVE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
1578 {
1579 struct timespec ts;
1580
1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1582 have_monotonic = 1;
1583 }
1584#endif
1585
1586 /* pid check not overridable via env */
1587#ifndef _WIN32
1588 if (flags & EVFLAG_FORKCHECK)
1589 curpid = getpid ();
1590#endif
1591
1592 if (!(flags & EVFLAG_NOENV)
1593 && !enable_secure ()
1594 && getenv ("LIBEV_FLAGS"))
1595 flags = atoi (getenv ("LIBEV_FLAGS"));
1596
1597 ev_rt_now = ev_time ();
1598 mn_now = get_clock ();
1599 now_floor = mn_now;
1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
1604
1605 io_blocktime = 0.;
1606 timeout_blocktime = 0.;
1607 backend = 0;
1608 backend_fd = -1;
1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1613#if EV_USE_INOTIFY
1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1615#endif
1616#if EV_USE_SIGNALFD
1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1618#endif
1619
1620 if (!(flags & 0x0000ffffU))
1621 flags |= ev_recommended_backends ();
1622
1623#if EV_USE_PORT
1624 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1625#endif
1626#if EV_USE_KQUEUE
1627 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1628#endif
1629#if EV_USE_EPOLL
1630 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1631#endif
1632#if EV_USE_POLL
1633 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1634#endif
1635#if EV_USE_SELECT
1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1637#endif
1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
1641 ev_init (&pipe_w, pipecb);
1642 ev_set_priority (&pipe_w, EV_MAXPRI);
1643 }
1644}
1645
1646/* free up a loop structure */
1647static void noinline
1648loop_destroy (EV_P)
1649{
1650 int i;
1651
1652 if (ev_is_active (&pipe_w))
1653 {
1654 /*ev_ref (EV_A);*/
1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1656
1657#if EV_USE_EVENTFD
1658 if (evfd >= 0)
1659 close (evfd);
1660#endif
1661
1662 if (evpipe [0] >= 0)
1663 {
1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1666 }
1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
1673
1674#if EV_USE_INOTIFY
1675 if (fs_fd >= 0)
1676 close (fs_fd);
1677#endif
1678
1679 if (backend_fd >= 0)
1680 close (backend_fd);
1681
1682#if EV_USE_PORT
1683 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1684#endif
1685#if EV_USE_KQUEUE
1686 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1687#endif
1688#if EV_USE_EPOLL
1689 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1690#endif
1691#if EV_USE_POLL
1692 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1693#endif
1694#if EV_USE_SELECT
1695 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1696#endif
1697
1698 for (i = NUMPRI; i--; )
1699 {
1700 array_free (pending, [i]);
1701#if EV_IDLE_ENABLE
1702 array_free (idle, [i]);
1703#endif
1704 }
1705
1706 ev_free (anfds); anfds = 0; anfdmax = 0;
1707
1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
1710 array_free (fdchange, EMPTY);
1711 array_free (timer, EMPTY);
1712#if EV_PERIODIC_ENABLE
1713 array_free (periodic, EMPTY);
1714#endif
1715#if EV_FORK_ENABLE
1716 array_free (fork, EMPTY);
1717#endif
1718 array_free (prepare, EMPTY);
1719 array_free (check, EMPTY);
1720#if EV_ASYNC_ENABLE
1721 array_free (async, EMPTY);
1722#endif
1723
1724 backend = 0;
1725}
1726
1727#if EV_USE_INOTIFY
1728inline_size void infy_fork (EV_P);
1729#endif
1730
1731inline_size void
1732loop_fork (EV_P)
1733{
1734#if EV_USE_PORT
1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1736#endif
1737#if EV_USE_KQUEUE
1738 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1739#endif
1740#if EV_USE_EPOLL
1741 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1742#endif
1743#if EV_USE_INOTIFY
1744 infy_fork (EV_A);
1745#endif
1746
1747 if (ev_is_active (&pipe_w))
1748 {
1749 /* this "locks" the handlers against writing to the pipe */
1750 /* while we modify the fd vars */
1751 sig_pending = 1;
1752#if EV_ASYNC_ENABLE
1753 async_pending = 1;
1754#endif
1755
1756 ev_ref (EV_A);
1757 ev_io_stop (EV_A_ &pipe_w);
1758
1759#if EV_USE_EVENTFD
1760 if (evfd >= 0)
1761 close (evfd);
1762#endif
1763
1764 if (evpipe [0] >= 0)
1765 {
1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1768 }
1769
1770 evpipe_init (EV_A);
1771 /* now iterate over everything, in case we missed something */
1772 pipecb (EV_A_ &pipe_w, EV_READ);
1773 }
1774
1775 postfork = 0;
1776}
1777
1778#if EV_MULTIPLICITY
1779
1780struct ev_loop *
1781ev_loop_new (unsigned int flags)
1782{
1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1784
1785 memset (EV_A, 0, sizeof (struct ev_loop));
1786 loop_init (EV_A_ flags);
1787
1788 if (ev_backend (EV_A))
1789 return EV_A;
1790
1791 return 0;
1792}
1793
1794void
1795ev_loop_destroy (EV_P)
1796{
1797 loop_destroy (EV_A);
1798 ev_free (loop);
1799}
1800
1801void
1802ev_loop_fork (EV_P)
1803{
1804 postfork = 1; /* must be in line with ev_default_fork */
1805}
1806#endif /* multiplicity */
1807
1808#if EV_VERIFY
1809static void noinline
1810verify_watcher (EV_P_ W w)
1811{
1812 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1813
1814 if (w->pending)
1815 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1816}
1817
1818static void noinline
1819verify_heap (EV_P_ ANHE *heap, int N)
1820{
1821 int i;
1822
1823 for (i = HEAP0; i < N + HEAP0; ++i)
1824 {
1825 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1826 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1827 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1828
1829 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1830 }
1831}
1832
1833static void noinline
1834array_verify (EV_P_ W *ws, int cnt)
1835{
1836 while (cnt--)
1837 {
1838 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1839 verify_watcher (EV_A_ ws [cnt]);
1840 }
1841}
1842#endif
1843
1844#if EV_MINIMAL < 2
1845void
1846ev_loop_verify (EV_P)
1847{
1848#if EV_VERIFY
1849 int i;
1850 WL w;
1851
1852 assert (activecnt >= -1);
1853
1854 assert (fdchangemax >= fdchangecnt);
1855 for (i = 0; i < fdchangecnt; ++i)
1856 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1857
1858 assert (anfdmax >= 0);
1859 for (i = 0; i < anfdmax; ++i)
1860 for (w = anfds [i].head; w; w = w->next)
397 { 1861 {
398 struct timespec ts; 1862 verify_watcher (EV_A_ (W)w);
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
400 have_monotonic = 1; 1864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
401 } 1865 }
1866
1867 assert (timermax >= timercnt);
1868 verify_heap (EV_A_ timers, timercnt);
1869
1870#if EV_PERIODIC_ENABLE
1871 assert (periodicmax >= periodiccnt);
1872 verify_heap (EV_A_ periodics, periodiccnt);
1873#endif
1874
1875 for (i = NUMPRI; i--; )
1876 {
1877 assert (pendingmax [i] >= pendingcnt [i]);
1878#if EV_IDLE_ENABLE
1879 assert (idleall >= 0);
1880 assert (idlemax [i] >= idlecnt [i]);
1881 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1882#endif
1883 }
1884
1885#if EV_FORK_ENABLE
1886 assert (forkmax >= forkcnt);
1887 array_verify (EV_A_ (W *)forks, forkcnt);
1888#endif
1889
1890#if EV_ASYNC_ENABLE
1891 assert (asyncmax >= asynccnt);
1892 array_verify (EV_A_ (W *)asyncs, asynccnt);
1893#endif
1894
1895 assert (preparemax >= preparecnt);
1896 array_verify (EV_A_ (W *)prepares, preparecnt);
1897
1898 assert (checkmax >= checkcnt);
1899 array_verify (EV_A_ (W *)checks, checkcnt);
1900
1901# if 0
1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
402#endif 1904# endif
403
404 ev_now = ev_time ();
405 now = get_clock ();
406 diff = ev_now - now;
407
408 if (pipe (sigpipe))
409 return 0;
410
411 ev_method = EVMETHOD_NONE;
412#if HAVE_EPOLL
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
414#endif 1905#endif
415#if HAVE_SELECT 1906}
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif 1907#endif
418 1908
419 if (ev_method) 1909#if EV_MULTIPLICITY
1910struct ev_loop *
1911ev_default_loop_init (unsigned int flags)
1912#else
1913int
1914ev_default_loop (unsigned int flags)
1915#endif
1916{
1917 if (!ev_default_loop_ptr)
1918 {
1919#if EV_MULTIPLICITY
1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
1921#else
1922 ev_default_loop_ptr = 1;
1923#endif
1924
1925 loop_init (EV_A_ flags);
1926
1927 if (ev_backend (EV_A))
420 { 1928 {
421 evw_init (&sigev, sigcb); 1929#ifndef _WIN32
422 siginit ();
423
424 evsignal_init (&childev, childcb, SIGCHLD); 1930 ev_signal_init (&childev, childcb, SIGCHLD);
1931 ev_set_priority (&childev, EV_MAXPRI);
425 evsignal_start (&childev); 1932 ev_signal_start (EV_A_ &childev);
1933 ev_unref (EV_A); /* child watcher should not keep loop alive */
1934#endif
426 } 1935 }
1936 else
1937 ev_default_loop_ptr = 0;
427 } 1938 }
428 1939
429 return ev_method; 1940 return ev_default_loop_ptr;
1941}
1942
1943void
1944ev_default_destroy (void)
1945{
1946#if EV_MULTIPLICITY
1947 EV_P = ev_default_loop_ptr;
1948#endif
1949
1950 ev_default_loop_ptr = 0;
1951
1952#ifndef _WIN32
1953 ev_ref (EV_A); /* child watcher */
1954 ev_signal_stop (EV_A_ &childev);
1955#endif
1956
1957 loop_destroy (EV_A);
1958}
1959
1960void
1961ev_default_fork (void)
1962{
1963#if EV_MULTIPLICITY
1964 EV_P = ev_default_loop_ptr;
1965#endif
1966
1967 postfork = 1; /* must be in line with ev_loop_fork */
430} 1968}
431 1969
432/*****************************************************************************/ 1970/*****************************************************************************/
433 1971
434void 1972void
435ev_prefork (void) 1973ev_invoke (EV_P_ void *w, int revents)
436{ 1974{
437 /* nop */ 1975 EV_CB_INVOKE ((W)w, revents);
438} 1976}
439 1977
440void 1978unsigned int
441ev_postfork_parent (void) 1979ev_pending_count (EV_P)
442{ 1980{
443 /* nop */ 1981 int pri;
444} 1982 unsigned int count = 0;
445 1983
446void 1984 for (pri = NUMPRI; pri--; )
447ev_postfork_child (void) 1985 count += pendingcnt [pri];
1986
1987 return count;
1988}
1989
1990void noinline
1991ev_invoke_pending (EV_P)
448{ 1992{
449#if HAVE_EPOLL 1993 int pri;
450 if (ev_method == EVMETHOD_EPOLL) 1994
451 epoll_postfork_child (); 1995 for (pri = NUMPRI; pri--; )
1996 while (pendingcnt [pri])
1997 {
1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1999
2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2001 /* ^ this is no longer true, as pending_w could be here */
2002
2003 p->w->pending = 0;
2004 EV_CB_INVOKE (p->w, p->events);
2005 EV_FREQUENT_CHECK;
2006 }
2007}
2008
2009#if EV_IDLE_ENABLE
2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
2013idle_reify (EV_P)
2014{
2015 if (expect_false (idleall))
2016 {
2017 int pri;
2018
2019 for (pri = NUMPRI; pri--; )
2020 {
2021 if (pendingcnt [pri])
2022 break;
2023
2024 if (idlecnt [pri])
2025 {
2026 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2027 break;
2028 }
2029 }
2030 }
2031}
2032#endif
2033
2034/* make timers pending */
2035inline_size void
2036timers_reify (EV_P)
2037{
2038 EV_FREQUENT_CHECK;
2039
2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2041 {
2042 do
2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
2051 ev_at (w) += w->repeat;
2052 if (ev_at (w) < mn_now)
2053 ev_at (w) = mn_now;
2054
2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2056
2057 ANHE_at_cache (timers [HEAP0]);
2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
2065 }
2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2067
2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
2069 }
2070}
2071
2072#if EV_PERIODIC_ENABLE
2073/* make periodics pending */
2074inline_size void
2075periodics_reify (EV_P)
2076{
2077 EV_FREQUENT_CHECK;
2078
2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2080 {
2081 int feed_count = 0;
2082
2083 do
2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2093
2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2095
2096 ANHE_at_cache (periodics [HEAP0]);
2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
2123 }
2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2125
2126 feed_reverse_done (EV_A_ EV_PERIODIC);
2127 }
2128}
2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2132static void noinline
2133periodics_reschedule (EV_P)
2134{
2135 int i;
2136
2137 /* adjust periodics after time jump */
2138 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2139 {
2140 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2141
2142 if (w->reschedule_cb)
2143 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2144 else if (w->interval)
2145 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2146
2147 ANHE_at_cache (periodics [i]);
2148 }
2149
2150 reheap (periodics, periodiccnt);
2151}
2152#endif
2153
2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
2160 for (i = 0; i < timercnt; ++i)
2161 {
2162 ANHE *he = timers + i + HEAP0;
2163 ANHE_w (*he)->at += adjust;
2164 ANHE_at_cache (*he);
2165 }
2166}
2167
2168/* fetch new monotonic and realtime times from the kernel */
2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
2171time_update (EV_P_ ev_tstamp max_block)
2172{
2173#if EV_USE_MONOTONIC
2174 if (expect_true (have_monotonic))
2175 {
2176 int i;
2177 ev_tstamp odiff = rtmn_diff;
2178
2179 mn_now = get_clock ();
2180
2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2182 /* interpolate in the meantime */
2183 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2184 {
2185 ev_rt_now = rtmn_diff + mn_now;
2186 return;
2187 }
2188
2189 now_floor = mn_now;
2190 ev_rt_now = ev_time ();
2191
2192 /* loop a few times, before making important decisions.
2193 * on the choice of "4": one iteration isn't enough,
2194 * in case we get preempted during the calls to
2195 * ev_time and get_clock. a second call is almost guaranteed
2196 * to succeed in that case, though. and looping a few more times
2197 * doesn't hurt either as we only do this on time-jumps or
2198 * in the unlikely event of having been preempted here.
2199 */
2200 for (i = 4; --i; )
2201 {
2202 rtmn_diff = ev_rt_now - mn_now;
2203
2204 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2205 return; /* all is well */
2206
2207 ev_rt_now = ev_time ();
2208 mn_now = get_clock ();
2209 now_floor = mn_now;
2210 }
2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2214# if EV_PERIODIC_ENABLE
2215 periodics_reschedule (EV_A);
452#endif 2216# endif
2217 }
2218 else
2219#endif
2220 {
2221 ev_rt_now = ev_time ();
453 2222
454 evio_stop (&sigev); 2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
455 close (sigpipe [0]); 2224 {
456 close (sigpipe [1]); 2225 /* adjust timers. this is easy, as the offset is the same for all of them */
457 pipe (sigpipe); 2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
458 siginit (); 2227#if EV_PERIODIC_ENABLE
2228 periodics_reschedule (EV_A);
2229#endif
2230 }
2231
2232 mn_now = ev_rt_now;
2233 }
2234}
2235
2236void
2237ev_loop (EV_P_ int flags)
2238{
2239#if EV_MINIMAL < 2
2240 ++loop_depth;
2241#endif
2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
2245 loop_done = EVUNLOOP_CANCEL;
2246
2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2248
2249 do
2250 {
2251#if EV_VERIFY >= 2
2252 ev_loop_verify (EV_A);
2253#endif
2254
2255#ifndef _WIN32
2256 if (expect_false (curpid)) /* penalise the forking check even more */
2257 if (expect_false (getpid () != curpid))
2258 {
2259 curpid = getpid ();
2260 postfork = 1;
2261 }
2262#endif
2263
2264#if EV_FORK_ENABLE
2265 /* we might have forked, so queue fork handlers */
2266 if (expect_false (postfork))
2267 if (forkcnt)
2268 {
2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2270 EV_INVOKE_PENDING;
2271 }
2272#endif
2273
2274 /* queue prepare watchers (and execute them) */
2275 if (expect_false (preparecnt))
2276 {
2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2278 EV_INVOKE_PENDING;
2279 }
2280
2281 if (expect_false (loop_done))
2282 break;
2283
2284 /* we might have forked, so reify kernel state if necessary */
2285 if (expect_false (postfork))
2286 loop_fork (EV_A);
2287
2288 /* update fd-related kernel structures */
2289 fd_reify (EV_A);
2290
2291 /* calculate blocking time */
2292 {
2293 ev_tstamp waittime = 0.;
2294 ev_tstamp sleeptime = 0.;
2295
2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2297 {
2298 /* remember old timestamp for io_blocktime calculation */
2299 ev_tstamp prev_mn_now = mn_now;
2300
2301 /* update time to cancel out callback processing overhead */
2302 time_update (EV_A_ 1e100);
2303
2304 waittime = MAX_BLOCKTIME;
2305
2306 if (timercnt)
2307 {
2308 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2309 if (waittime > to) waittime = to;
2310 }
2311
2312#if EV_PERIODIC_ENABLE
2313 if (periodiccnt)
2314 {
2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2316 if (waittime > to) waittime = to;
2317 }
2318#endif
2319
2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
2321 if (expect_false (waittime < timeout_blocktime))
2322 waittime = timeout_blocktime;
2323
2324 /* extra check because io_blocktime is commonly 0 */
2325 if (expect_false (io_blocktime))
2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
2334 ev_sleep (sleeptime);
2335 waittime -= sleeptime;
2336 }
2337 }
2338 }
2339
2340#if EV_MINIMAL < 2
2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2346
2347 /* update ev_rt_now, do magic */
2348 time_update (EV_A_ waittime + sleeptime);
2349 }
2350
2351 /* queue pending timers and reschedule them */
2352 timers_reify (EV_A); /* relative timers called last */
2353#if EV_PERIODIC_ENABLE
2354 periodics_reify (EV_A); /* absolute timers called first */
2355#endif
2356
2357#if EV_IDLE_ENABLE
2358 /* queue idle watchers unless other events are pending */
2359 idle_reify (EV_A);
2360#endif
2361
2362 /* queue check watchers, to be executed first */
2363 if (expect_false (checkcnt))
2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2365
2366 EV_INVOKE_PENDING;
2367 }
2368 while (expect_true (
2369 activecnt
2370 && !loop_done
2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2372 ));
2373
2374 if (loop_done == EVUNLOOP_ONE)
2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
2380}
2381
2382void
2383ev_unloop (EV_P_ int how)
2384{
2385 loop_done = how;
2386}
2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
459} 2423}
460 2424
461/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
462 2427
463static void 2428inline_size void
464fd_reify (void) 2429wlist_add (WL *head, WL elem)
465{ 2430{
466 int i; 2431 elem->next = *head;
2432 *head = elem;
2433}
467 2434
468 for (i = 0; i < fdchangecnt; ++i) 2435inline_size void
2436wlist_del (WL *head, WL elem)
2437{
2438 while (*head)
469 { 2439 {
470 int fd = fdchanges [i]; 2440 if (expect_true (*head == elem))
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473
474 int wev = 0;
475
476 for (w = anfd->head; w; w = w->next)
477 wev |= w->events;
478
479 if (anfd->wev != wev)
480 { 2441 {
481 method_modify (fd, anfd->wev, wev); 2442 *head = elem->next;
482 anfd->wev = wev; 2443 break;
483 } 2444 }
484 }
485 2445
486 fdchangecnt = 0; 2446 head = &(*head)->next;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 { 2447 }
2448}
2449
2450/* internal, faster, version of ev_clear_pending */
2451inline_speed void
2452clear_pending (EV_P_ W w)
2453{
2454 if (w->pending)
2455 {
2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2457 w->pending = 0;
2458 }
2459}
2460
2461int
2462ev_clear_pending (EV_P_ void *w)
2463{
2464 W w_ = (W)w;
2465 int pending = w_->pending;
2466
2467 if (expect_true (pending))
2468 {
494 ANPENDING *p = pendings + --pendingcnt; 2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
2471 w_->pending = 0;
2472 return p->events;
2473 }
2474 else
2475 return 0;
2476}
495 2477
496 if (p->w) 2478inline_size void
2479pri_adjust (EV_P_ W w)
2480{
2481 int pri = ev_priority (w);
2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2484 ev_set_priority (w, pri);
2485}
2486
2487inline_speed void
2488ev_start (EV_P_ W w, int active)
2489{
2490 pri_adjust (EV_A_ w);
2491 w->active = active;
2492 ev_ref (EV_A);
2493}
2494
2495inline_size void
2496ev_stop (EV_P_ W w)
2497{
2498 ev_unref (EV_A);
2499 w->active = 0;
2500}
2501
2502/*****************************************************************************/
2503
2504void noinline
2505ev_io_start (EV_P_ ev_io *w)
2506{
2507 int fd = w->fd;
2508
2509 if (expect_false (ev_is_active (w)))
2510 return;
2511
2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2513 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2514
2515 EV_FREQUENT_CHECK;
2516
2517 ev_start (EV_A_ (W)w, 1);
2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2519 wlist_add (&anfds[fd].head, (WL)w);
2520
2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2522 w->events &= ~EV__IOFDSET;
2523
2524 EV_FREQUENT_CHECK;
2525}
2526
2527void noinline
2528ev_io_stop (EV_P_ ev_io *w)
2529{
2530 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w)))
2532 return;
2533
2534 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2535
2536 EV_FREQUENT_CHECK;
2537
2538 wlist_del (&anfds[w->fd].head, (WL)w);
2539 ev_stop (EV_A_ (W)w);
2540
2541 fd_change (EV_A_ w->fd, 1);
2542
2543 EV_FREQUENT_CHECK;
2544}
2545
2546void noinline
2547ev_timer_start (EV_P_ ev_timer *w)
2548{
2549 if (expect_false (ev_is_active (w)))
2550 return;
2551
2552 ev_at (w) += mn_now;
2553
2554 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2555
2556 EV_FREQUENT_CHECK;
2557
2558 ++timercnt;
2559 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2560 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2561 ANHE_w (timers [ev_active (w)]) = (WT)w;
2562 ANHE_at_cache (timers [ev_active (w)]);
2563 upheap (timers, ev_active (w));
2564
2565 EV_FREQUENT_CHECK;
2566
2567 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2568}
2569
2570void noinline
2571ev_timer_stop (EV_P_ ev_timer *w)
2572{
2573 clear_pending (EV_A_ (W)w);
2574 if (expect_false (!ev_is_active (w)))
2575 return;
2576
2577 EV_FREQUENT_CHECK;
2578
2579 {
2580 int active = ev_active (w);
2581
2582 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2583
2584 --timercnt;
2585
2586 if (expect_true (active < timercnt + HEAP0))
497 { 2587 {
498 p->w->pending = 0; 2588 timers [active] = timers [timercnt + HEAP0];
499 p->w->cb (p->w, p->events); 2589 adjustheap (timers, timercnt, active);
500 } 2590 }
2591 }
2592
2593 EV_FREQUENT_CHECK;
2594
2595 ev_at (w) -= mn_now;
2596
2597 ev_stop (EV_A_ (W)w);
2598}
2599
2600void noinline
2601ev_timer_again (EV_P_ ev_timer *w)
2602{
2603 EV_FREQUENT_CHECK;
2604
2605 if (ev_is_active (w))
501 } 2606 {
502}
503
504static void
505timers_reify (void)
506{
507 while (timercnt && timers [0]->at <= now)
508 {
509 struct ev_timer *w = timers [0];
510
511 event ((W)w, EV_TIMEOUT);
512
513 /* first reschedule or stop timer */
514 if (w->repeat) 2607 if (w->repeat)
515 { 2608 {
516 w->at = now + w->repeat; 2609 ev_at (w) = mn_now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now)); 2610 ANHE_at_cache (timers [ev_active (w)]);
518 downheap ((WT *)timers, timercnt, 0); 2611 adjustheap (timers, timercnt, ev_active (w));
519 } 2612 }
520 else 2613 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 2614 ev_timer_stop (EV_A_ w);
522 }
523}
524
525static void
526periodics_reify (void)
527{
528 while (periodiccnt && periodics [0]->at <= ev_now)
529 { 2615 }
530 struct ev_periodic *w = periodics [0]; 2616 else if (w->repeat)
2617 {
2618 ev_at (w) = w->repeat;
2619 ev_timer_start (EV_A_ w);
2620 }
531 2621
532 /* first reschedule or stop timer */ 2622 EV_FREQUENT_CHECK;
2623}
2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2629}
2630
2631#if EV_PERIODIC_ENABLE
2632void noinline
2633ev_periodic_start (EV_P_ ev_periodic *w)
2634{
2635 if (expect_false (ev_is_active (w)))
2636 return;
2637
2638 if (w->reschedule_cb)
2639 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
533 if (w->interval) 2640 else if (w->interval)
2641 {
2642 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2643 /* this formula differs from the one in periodic_reify because we do not always round up */
2644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2645 }
2646 else
2647 ev_at (w) = w->offset;
2648
2649 EV_FREQUENT_CHECK;
2650
2651 ++periodiccnt;
2652 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2653 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2654 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2655 ANHE_at_cache (periodics [ev_active (w)]);
2656 upheap (periodics, ev_active (w));
2657
2658 EV_FREQUENT_CHECK;
2659
2660 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2661}
2662
2663void noinline
2664ev_periodic_stop (EV_P_ ev_periodic *w)
2665{
2666 clear_pending (EV_A_ (W)w);
2667 if (expect_false (!ev_is_active (w)))
2668 return;
2669
2670 EV_FREQUENT_CHECK;
2671
2672 {
2673 int active = ev_active (w);
2674
2675 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2676
2677 --periodiccnt;
2678
2679 if (expect_true (active < periodiccnt + HEAP0))
2680 {
2681 periodics [active] = periodics [periodiccnt + HEAP0];
2682 adjustheap (periodics, periodiccnt, active);
2683 }
2684 }
2685
2686 EV_FREQUENT_CHECK;
2687
2688 ev_stop (EV_A_ (W)w);
2689}
2690
2691void noinline
2692ev_periodic_again (EV_P_ ev_periodic *w)
2693{
2694 /* TODO: use adjustheap and recalculation */
2695 ev_periodic_stop (EV_A_ w);
2696 ev_periodic_start (EV_A_ w);
2697}
2698#endif
2699
2700#ifndef SA_RESTART
2701# define SA_RESTART 0
2702#endif
2703
2704void noinline
2705ev_signal_start (EV_P_ ev_signal *w)
2706{
2707 if (expect_false (ev_is_active (w)))
2708 return;
2709
2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2711
2712#if EV_MULTIPLICITY
2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2715
2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
2723 {
2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2725 if (sigfd < 0 && errno == EINVAL)
2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2727
2728 if (sigfd >= 0)
534 { 2729 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 2730 fd_intern (sigfd); /* doing it twice will not hurt */
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 2731
537 downheap ((WT *)periodics, periodiccnt, 0); 2732 sigemptyset (&sigfd_set);
2733
2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
2750
2751 ev_start (EV_A_ (W)w, 1);
2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
2753
2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
2757# endif
2758 {
2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
2762 signal (w->signum, ev_sighandler);
2763# else
2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
2768 sa.sa_handler = ev_sighandler;
2769 sigfillset (&sa.sa_mask);
2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2776#endif
2777 }
2778
2779 EV_FREQUENT_CHECK;
2780}
2781
2782void noinline
2783ev_signal_stop (EV_P_ ev_signal *w)
2784{
2785 clear_pending (EV_A_ (W)w);
2786 if (expect_false (!ev_is_active (w)))
2787 return;
2788
2789 EV_FREQUENT_CHECK;
2790
2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
2792 ev_stop (EV_A_ (W)w);
2793
2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
538 } 2810 }
539 else 2811 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 2812#endif
541 2813 signal (w->signum, SIG_DFL);
542 event ((W)w, EV_TIMEOUT);
543 }
544}
545
546static void
547periodics_reschedule (ev_tstamp diff)
548{
549 int i;
550
551 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i)
553 { 2814 }
554 struct ev_periodic *w = periodics [i];
555 2815
556 if (w->interval) 2816 EV_FREQUENT_CHECK;
2817}
2818
2819void
2820ev_child_start (EV_P_ ev_child *w)
2821{
2822#if EV_MULTIPLICITY
2823 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2824#endif
2825 if (expect_false (ev_is_active (w)))
2826 return;
2827
2828 EV_FREQUENT_CHECK;
2829
2830 ev_start (EV_A_ (W)w, 1);
2831 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2832
2833 EV_FREQUENT_CHECK;
2834}
2835
2836void
2837ev_child_stop (EV_P_ ev_child *w)
2838{
2839 clear_pending (EV_A_ (W)w);
2840 if (expect_false (!ev_is_active (w)))
2841 return;
2842
2843 EV_FREQUENT_CHECK;
2844
2845 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2846 ev_stop (EV_A_ (W)w);
2847
2848 EV_FREQUENT_CHECK;
2849}
2850
2851#if EV_STAT_ENABLE
2852
2853# ifdef _WIN32
2854# undef lstat
2855# define lstat(a,b) _stati64 (a,b)
2856# endif
2857
2858#define DEF_STAT_INTERVAL 5.0074891
2859#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2860#define MIN_STAT_INTERVAL 0.1074891
2861
2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2863
2864#if EV_USE_INOTIFY
2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2868
2869static void noinline
2870infy_add (EV_P_ ev_stat *w)
2871{
2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2873
2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2894 }
2895 else
2896 {
2897 /* can't use inotify, continue to stat */
2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2899
2900 /* if path is not there, monitor some parent directory for speedup hints */
2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2902 /* but an efficiency issue only */
2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
557 { 2904 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 2905 char path [4096];
2906 strcpy (path, w->path);
559 2907
560 if (fabs (diff) >= 1e-4) 2908 do
561 { 2909 {
562 evperiodic_stop (w); 2910 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
563 evperiodic_start (w); 2911 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
564 2912
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 2913 char *pend = strrchr (path, '/');
2914
2915 if (!pend || pend == path)
2916 break;
2917
2918 *pend = 0;
2919 w->wd = inotify_add_watch (fs_fd, path, mask);
2920 }
2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2922 }
2923 }
2924
2925 if (w->wd >= 0)
2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927
2928 /* now re-arm timer, if required */
2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2930 ev_timer_again (EV_A_ &w->timer);
2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2932}
2933
2934static void noinline
2935infy_del (EV_P_ ev_stat *w)
2936{
2937 int slot;
2938 int wd = w->wd;
2939
2940 if (wd < 0)
2941 return;
2942
2943 w->wd = -2;
2944 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2945 wlist_del (&fs_hash [slot].head, (WL)w);
2946
2947 /* remove this watcher, if others are watching it, they will rearm */
2948 inotify_rm_watch (fs_fd, wd);
2949}
2950
2951static void noinline
2952infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2953{
2954 if (slot < 0)
2955 /* overflow, need to check for all hash slots */
2956 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2957 infy_wd (EV_A_ slot, wd, ev);
2958 else
2959 {
2960 WL w_;
2961
2962 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2963 {
2964 ev_stat *w = (ev_stat *)w_;
2965 w_ = w_->next; /* lets us remove this watcher and all before it */
2966
2967 if (w->wd == wd || wd == -1)
2968 {
2969 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2970 {
2971 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2972 w->wd = -1;
2973 infy_add (EV_A_ w); /* re-add, no matter what */
2974 }
2975
2976 stat_timer_cb (EV_A_ &w->timer, 0);
566 } 2977 }
567 } 2978 }
568 } 2979 }
569} 2980}
570 2981
571static void 2982static void
572time_update (void) 2983infy_cb (EV_P_ ev_io *w, int revents)
573{ 2984{
2985 char buf [EV_INOTIFY_BUFSIZE];
574 int i; 2986 int ofs;
2987 int len = read (fs_fd, buf, sizeof (buf));
575 2988
576 ev_now = ev_time (); 2989 for (ofs = 0; ofs < len; )
577 2990 {
578 if (have_monotonic) 2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
579 { 2994 }
580 ev_tstamp odiff = diff; 2995}
581 2996
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2997inline_size void
2998check_2625 (EV_P)
2999{
3000 /* kernels < 2.6.25 are borked
3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3002 */
3003 struct utsname buf;
3004 int major, minor, micro;
3005
3006 if (uname (&buf))
3007 return;
3008
3009 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3010 return;
3011
3012 if (major < 2
3013 || (major == 2 && minor < 6)
3014 || (major == 2 && minor == 6 && micro < 25))
3015 return;
3016
3017 fs_2625 = 1;
3018}
3019
3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
3032infy_init (EV_P)
3033{
3034 if (fs_fd != -2)
3035 return;
3036
3037 fs_fd = -1;
3038
3039 check_2625 (EV_A);
3040
3041 fs_fd = infy_newfd ();
3042
3043 if (fs_fd >= 0)
3044 {
3045 fd_intern (fs_fd);
3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3047 ev_set_priority (&fs_w, EV_MAXPRI);
3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
3050 }
3051}
3052
3053inline_size void
3054infy_fork (EV_P)
3055{
3056 int slot;
3057
3058 if (fs_fd < 0)
3059 return;
3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
3063 close (fs_fd);
3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
3073
3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3075 {
3076 WL w_ = fs_hash [slot].head;
3077 fs_hash [slot].head = 0;
3078
3079 while (w_)
583 { 3080 {
584 now = get_clock (); 3081 ev_stat *w = (ev_stat *)w_;
585 diff = ev_now - now; 3082 w_ = w_->next; /* lets us add this watcher */
586 3083
587 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3084 w->wd = -1;
588 return; /* all is well */
589 3085
590 ev_now = ev_time (); 3086 if (fs_fd >= 0)
3087 infy_add (EV_A_ w); /* re-add, no matter what */
3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
591 } 3095 }
592
593 periodics_reschedule (diff - odiff);
594 /* no timer adjustment, as the monotonic clock doesn't jump */
595 } 3096 }
3097}
3098
3099#endif
3100
3101#ifdef _WIN32
3102# define EV_LSTAT(p,b) _stati64 (p, b)
3103#else
3104# define EV_LSTAT(p,b) lstat (p, b)
3105#endif
3106
3107void
3108ev_stat_stat (EV_P_ ev_stat *w)
3109{
3110 if (lstat (w->path, &w->attr) < 0)
3111 w->attr.st_nlink = 0;
3112 else if (!w->attr.st_nlink)
3113 w->attr.st_nlink = 1;
3114}
3115
3116static void noinline
3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3118{
3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3120
3121 ev_statdata prev = w->attr;
3122 ev_stat_stat (EV_A_ w);
3123
3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3125 if (
3126 prev.st_dev != w->attr.st_dev
3127 || prev.st_ino != w->attr.st_ino
3128 || prev.st_mode != w->attr.st_mode
3129 || prev.st_nlink != w->attr.st_nlink
3130 || prev.st_uid != w->attr.st_uid
3131 || prev.st_gid != w->attr.st_gid
3132 || prev.st_rdev != w->attr.st_rdev
3133 || prev.st_size != w->attr.st_size
3134 || prev.st_atime != w->attr.st_atime
3135 || prev.st_mtime != w->attr.st_mtime
3136 || prev.st_ctime != w->attr.st_ctime
3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
3143 #if EV_USE_INOTIFY
3144 if (fs_fd >= 0)
3145 {
3146 infy_del (EV_A_ w);
3147 infy_add (EV_A_ w);
3148 ev_stat_stat (EV_A_ w); /* avoid race... */
3149 }
3150 #endif
3151
3152 ev_feed_event (EV_A_ w, EV_STAT);
3153 }
3154}
3155
3156void
3157ev_stat_start (EV_P_ ev_stat *w)
3158{
3159 if (expect_false (ev_is_active (w)))
3160 return;
3161
3162 ev_stat_stat (EV_A_ w);
3163
3164 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3165 w->interval = MIN_STAT_INTERVAL;
3166
3167 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3168 ev_set_priority (&w->timer, ev_priority (w));
3169
3170#if EV_USE_INOTIFY
3171 infy_init (EV_A);
3172
3173 if (fs_fd >= 0)
3174 infy_add (EV_A_ w);
596 else 3175 else
3176#endif
3177 {
3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
597 { 3180 }
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 3181
3182 ev_start (EV_A_ (W)w, 1);
3183
3184 EV_FREQUENT_CHECK;
3185}
3186
3187void
3188ev_stat_stop (EV_P_ ev_stat *w)
3189{
3190 clear_pending (EV_A_ (W)w);
3191 if (expect_false (!ev_is_active (w)))
3192 return;
3193
3194 EV_FREQUENT_CHECK;
3195
3196#if EV_USE_INOTIFY
3197 infy_del (EV_A_ w);
3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
3205
3206 ev_stop (EV_A_ (W)w);
3207
3208 EV_FREQUENT_CHECK;
3209}
3210#endif
3211
3212#if EV_IDLE_ENABLE
3213void
3214ev_idle_start (EV_P_ ev_idle *w)
3215{
3216 if (expect_false (ev_is_active (w)))
3217 return;
3218
3219 pri_adjust (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
3222
3223 {
3224 int active = ++idlecnt [ABSPRI (w)];
3225
3226 ++idleall;
3227 ev_start (EV_A_ (W)w, active);
3228
3229 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3230 idles [ABSPRI (w)][active - 1] = w;
3231 }
3232
3233 EV_FREQUENT_CHECK;
3234}
3235
3236void
3237ev_idle_stop (EV_P_ ev_idle *w)
3238{
3239 clear_pending (EV_A_ (W)w);
3240 if (expect_false (!ev_is_active (w)))
3241 return;
3242
3243 EV_FREQUENT_CHECK;
3244
3245 {
3246 int active = ev_active (w);
3247
3248 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3249 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3250
3251 ev_stop (EV_A_ (W)w);
3252 --idleall;
3253 }
3254
3255 EV_FREQUENT_CHECK;
3256}
3257#endif
3258
3259void
3260ev_prepare_start (EV_P_ ev_prepare *w)
3261{
3262 if (expect_false (ev_is_active (w)))
3263 return;
3264
3265 EV_FREQUENT_CHECK;
3266
3267 ev_start (EV_A_ (W)w, ++preparecnt);
3268 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3269 prepares [preparecnt - 1] = w;
3270
3271 EV_FREQUENT_CHECK;
3272}
3273
3274void
3275ev_prepare_stop (EV_P_ ev_prepare *w)
3276{
3277 clear_pending (EV_A_ (W)w);
3278 if (expect_false (!ev_is_active (w)))
3279 return;
3280
3281 EV_FREQUENT_CHECK;
3282
3283 {
3284 int active = ev_active (w);
3285
3286 prepares [active - 1] = prepares [--preparecnt];
3287 ev_active (prepares [active - 1]) = active;
3288 }
3289
3290 ev_stop (EV_A_ (W)w);
3291
3292 EV_FREQUENT_CHECK;
3293}
3294
3295void
3296ev_check_start (EV_P_ ev_check *w)
3297{
3298 if (expect_false (ev_is_active (w)))
3299 return;
3300
3301 EV_FREQUENT_CHECK;
3302
3303 ev_start (EV_A_ (W)w, ++checkcnt);
3304 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3305 checks [checkcnt - 1] = w;
3306
3307 EV_FREQUENT_CHECK;
3308}
3309
3310void
3311ev_check_stop (EV_P_ ev_check *w)
3312{
3313 clear_pending (EV_A_ (W)w);
3314 if (expect_false (!ev_is_active (w)))
3315 return;
3316
3317 EV_FREQUENT_CHECK;
3318
3319 {
3320 int active = ev_active (w);
3321
3322 checks [active - 1] = checks [--checkcnt];
3323 ev_active (checks [active - 1]) = active;
3324 }
3325
3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
3329}
3330
3331#if EV_EMBED_ENABLE
3332void noinline
3333ev_embed_sweep (EV_P_ ev_embed *w)
3334{
3335 ev_loop (w->other, EVLOOP_NONBLOCK);
3336}
3337
3338static void
3339embed_io_cb (EV_P_ ev_io *io, int revents)
3340{
3341 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3342
3343 if (ev_cb (w))
3344 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3345 else
3346 ev_loop (w->other, EVLOOP_NONBLOCK);
3347}
3348
3349static void
3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3351{
3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3353
3354 {
3355 EV_P = w->other;
3356
3357 while (fdchangecnt)
599 { 3358 {
600 periodics_reschedule (ev_now - now); 3359 fd_reify (EV_A);
601 3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
602 /* adjust timers. this is easy, as the offset is the same for all */
603 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff;
605 } 3361 }
606
607 now = ev_now;
608 } 3362 }
609} 3363}
610 3364
611int ev_loop_done; 3365static void
612 3366embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
613void ev_loop (int flags)
614{ 3367{
615 double block; 3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
616 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
617 3369
618 do 3370 ev_embed_stop (EV_A_ w);
3371
619 { 3372 {
620 /* queue check watchers (and execute them) */ 3373 EV_P = w->other;
621 if (preparecnt)
622 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
624 call_pending ();
625 }
626 3374
627 /* update fd-related kernel structures */ 3375 ev_loop_fork (EV_A);
628 fd_reify (); 3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
629
630 /* calculate blocking time */
631
632 /* we only need this for !monotonic clockor timers, but as we basically
633 always have timers, we just calculate it always */
634 ev_now = ev_time ();
635
636 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.;
638 else
639 {
640 block = MAX_BLOCKTIME;
641
642 if (timercnt)
643 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
645 if (block > to) block = to;
646 }
647
648 if (periodiccnt)
649 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
651 if (block > to) block = to;
652 }
653
654 if (block < 0.) block = 0.;
655 }
656
657 method_poll (block);
658
659 /* update ev_now, do magic */
660 time_update ();
661
662 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */
664 periodics_reify (); /* absolute timers called first */
665
666 /* queue idle watchers unless io or timers are pending */
667 if (!pendingcnt)
668 queue_events ((W *)idles, idlecnt, EV_IDLE);
669
670 /* queue check watchers, to be executed first */
671 if (checkcnt)
672 queue_events ((W *)checks, checkcnt, EV_CHECK);
673
674 call_pending ();
675 } 3377 }
676 while (!ev_loop_done);
677 3378
678 if (ev_loop_done != 2) 3379 ev_embed_start (EV_A_ w);
679 ev_loop_done = 0;
680} 3380}
3381
3382#if 0
3383static void
3384embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3385{
3386 ev_idle_stop (EV_A_ idle);
3387}
3388#endif
3389
3390void
3391ev_embed_start (EV_P_ ev_embed *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 {
3397 EV_P = w->other;
3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3400 }
3401
3402 EV_FREQUENT_CHECK;
3403
3404 ev_set_priority (&w->io, ev_priority (w));
3405 ev_io_start (EV_A_ &w->io);
3406
3407 ev_prepare_init (&w->prepare, embed_prepare_cb);
3408 ev_set_priority (&w->prepare, EV_MINPRI);
3409 ev_prepare_start (EV_A_ &w->prepare);
3410
3411 ev_fork_init (&w->fork, embed_fork_cb);
3412 ev_fork_start (EV_A_ &w->fork);
3413
3414 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3415
3416 ev_start (EV_A_ (W)w, 1);
3417
3418 EV_FREQUENT_CHECK;
3419}
3420
3421void
3422ev_embed_stop (EV_P_ ev_embed *w)
3423{
3424 clear_pending (EV_A_ (W)w);
3425 if (expect_false (!ev_is_active (w)))
3426 return;
3427
3428 EV_FREQUENT_CHECK;
3429
3430 ev_io_stop (EV_A_ &w->io);
3431 ev_prepare_stop (EV_A_ &w->prepare);
3432 ev_fork_stop (EV_A_ &w->fork);
3433
3434 EV_FREQUENT_CHECK;
3435}
3436#endif
3437
3438#if EV_FORK_ENABLE
3439void
3440ev_fork_start (EV_P_ ev_fork *w)
3441{
3442 if (expect_false (ev_is_active (w)))
3443 return;
3444
3445 EV_FREQUENT_CHECK;
3446
3447 ev_start (EV_A_ (W)w, ++forkcnt);
3448 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3449 forks [forkcnt - 1] = w;
3450
3451 EV_FREQUENT_CHECK;
3452}
3453
3454void
3455ev_fork_stop (EV_P_ ev_fork *w)
3456{
3457 clear_pending (EV_A_ (W)w);
3458 if (expect_false (!ev_is_active (w)))
3459 return;
3460
3461 EV_FREQUENT_CHECK;
3462
3463 {
3464 int active = ev_active (w);
3465
3466 forks [active - 1] = forks [--forkcnt];
3467 ev_active (forks [active - 1]) = active;
3468 }
3469
3470 ev_stop (EV_A_ (W)w);
3471
3472 EV_FREQUENT_CHECK;
3473}
3474#endif
3475
3476#if EV_ASYNC_ENABLE
3477void
3478ev_async_start (EV_P_ ev_async *w)
3479{
3480 if (expect_false (ev_is_active (w)))
3481 return;
3482
3483 evpipe_init (EV_A);
3484
3485 EV_FREQUENT_CHECK;
3486
3487 ev_start (EV_A_ (W)w, ++asynccnt);
3488 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3489 asyncs [asynccnt - 1] = w;
3490
3491 EV_FREQUENT_CHECK;
3492}
3493
3494void
3495ev_async_stop (EV_P_ ev_async *w)
3496{
3497 clear_pending (EV_A_ (W)w);
3498 if (expect_false (!ev_is_active (w)))
3499 return;
3500
3501 EV_FREQUENT_CHECK;
3502
3503 {
3504 int active = ev_active (w);
3505
3506 asyncs [active - 1] = asyncs [--asynccnt];
3507 ev_active (asyncs [active - 1]) = active;
3508 }
3509
3510 ev_stop (EV_A_ (W)w);
3511
3512 EV_FREQUENT_CHECK;
3513}
3514
3515void
3516ev_async_send (EV_P_ ev_async *w)
3517{
3518 w->sent = 1;
3519 evpipe_write (EV_A_ &async_pending);
3520}
3521#endif
681 3522
682/*****************************************************************************/ 3523/*****************************************************************************/
683 3524
684static void
685wlist_add (WL *head, WL elem)
686{
687 elem->next = *head;
688 *head = elem;
689}
690
691static void
692wlist_del (WL *head, WL elem)
693{
694 while (*head)
695 {
696 if (*head == elem)
697 {
698 *head = elem->next;
699 return;
700 }
701
702 head = &(*head)->next;
703 }
704}
705
706static void
707ev_clear (W w)
708{
709 if (w->pending)
710 {
711 pendings [w->pending - 1].w = 0;
712 w->pending = 0;
713 }
714}
715
716static void
717ev_start (W w, int active)
718{
719 w->active = active;
720}
721
722static void
723ev_stop (W w)
724{
725 w->active = 0;
726}
727
728/*****************************************************************************/
729
730void
731evio_start (struct ev_io *w)
732{
733 if (ev_is_active (w))
734 return;
735
736 int fd = w->fd;
737
738 ev_start ((W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w);
741
742 ++fdchangecnt;
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
744 fdchanges [fdchangecnt - 1] = fd;
745}
746
747void
748evio_stop (struct ev_io *w)
749{
750 ev_clear ((W)w);
751 if (!ev_is_active (w))
752 return;
753
754 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
755 ev_stop ((W)w);
756
757 ++fdchangecnt;
758 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
759 fdchanges [fdchangecnt - 1] = w->fd;
760}
761
762void
763evtimer_start (struct ev_timer *w)
764{
765 if (ev_is_active (w))
766 return;
767
768 w->at += now;
769
770 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.));
771
772 ev_start ((W)w, ++timercnt);
773 array_needsize (timers, timermax, timercnt, );
774 timers [timercnt - 1] = w;
775 upheap ((WT *)timers, timercnt - 1);
776}
777
778void
779evtimer_stop (struct ev_timer *w)
780{
781 ev_clear ((W)w);
782 if (!ev_is_active (w))
783 return;
784
785 if (w->active < timercnt--)
786 {
787 timers [w->active - 1] = timers [timercnt];
788 downheap ((WT *)timers, timercnt, w->active - 1);
789 }
790
791 w->at = w->repeat;
792
793 ev_stop ((W)w);
794}
795
796void
797evtimer_again (struct ev_timer *w)
798{
799 if (ev_is_active (w))
800 {
801 if (w->repeat)
802 {
803 w->at = now + w->repeat;
804 downheap ((WT *)timers, timercnt, w->active - 1);
805 }
806 else
807 evtimer_stop (w);
808 }
809 else if (w->repeat)
810 evtimer_start (w);
811}
812
813void
814evperiodic_start (struct ev_periodic *w)
815{
816 if (ev_is_active (w))
817 return;
818
819 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
820
821 /* this formula differs from the one in periodic_reify because we do not always round up */
822 if (w->interval)
823 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
824
825 ev_start ((W)w, ++periodiccnt);
826 array_needsize (periodics, periodicmax, periodiccnt, );
827 periodics [periodiccnt - 1] = w;
828 upheap ((WT *)periodics, periodiccnt - 1);
829}
830
831void
832evperiodic_stop (struct ev_periodic *w)
833{
834 ev_clear ((W)w);
835 if (!ev_is_active (w))
836 return;
837
838 if (w->active < periodiccnt--)
839 {
840 periodics [w->active - 1] = periodics [periodiccnt];
841 downheap ((WT *)periodics, periodiccnt, w->active - 1);
842 }
843
844 ev_stop ((W)w);
845}
846
847void
848evsignal_start (struct ev_signal *w)
849{
850 if (ev_is_active (w))
851 return;
852
853 ev_start ((W)w, 1);
854 array_needsize (signals, signalmax, w->signum, signals_init);
855 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
856
857 if (!w->next)
858 {
859 struct sigaction sa;
860 sa.sa_handler = sighandler;
861 sigfillset (&sa.sa_mask);
862 sa.sa_flags = 0;
863 sigaction (w->signum, &sa, 0);
864 }
865}
866
867void
868evsignal_stop (struct ev_signal *w)
869{
870 ev_clear ((W)w);
871 if (!ev_is_active (w))
872 return;
873
874 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
875 ev_stop ((W)w);
876
877 if (!signals [w->signum - 1].head)
878 signal (w->signum, SIG_DFL);
879}
880
881void evidle_start (struct ev_idle *w)
882{
883 if (ev_is_active (w))
884 return;
885
886 ev_start ((W)w, ++idlecnt);
887 array_needsize (idles, idlemax, idlecnt, );
888 idles [idlecnt - 1] = w;
889}
890
891void evidle_stop (struct ev_idle *w)
892{
893 ev_clear ((W)w);
894 if (ev_is_active (w))
895 return;
896
897 idles [w->active - 1] = idles [--idlecnt];
898 ev_stop ((W)w);
899}
900
901void evprepare_start (struct ev_prepare *w)
902{
903 if (ev_is_active (w))
904 return;
905
906 ev_start ((W)w, ++preparecnt);
907 array_needsize (prepares, preparemax, preparecnt, );
908 prepares [preparecnt - 1] = w;
909}
910
911void evprepare_stop (struct ev_prepare *w)
912{
913 ev_clear ((W)w);
914 if (ev_is_active (w))
915 return;
916
917 prepares [w->active - 1] = prepares [--preparecnt];
918 ev_stop ((W)w);
919}
920
921void evcheck_start (struct ev_check *w)
922{
923 if (ev_is_active (w))
924 return;
925
926 ev_start ((W)w, ++checkcnt);
927 array_needsize (checks, checkmax, checkcnt, );
928 checks [checkcnt - 1] = w;
929}
930
931void evcheck_stop (struct ev_check *w)
932{
933 ev_clear ((W)w);
934 if (ev_is_active (w))
935 return;
936
937 checks [w->active - 1] = checks [--checkcnt];
938 ev_stop ((W)w);
939}
940
941void evchild_start (struct ev_child *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, 1);
947 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
948}
949
950void evchild_stop (struct ev_child *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
957 ev_stop ((W)w);
958}
959
960/*****************************************************************************/
961
962struct ev_once 3525struct ev_once
963{ 3526{
964 struct ev_io io; 3527 ev_io io;
965 struct ev_timer to; 3528 ev_timer to;
966 void (*cb)(int revents, void *arg); 3529 void (*cb)(int revents, void *arg);
967 void *arg; 3530 void *arg;
968}; 3531};
969 3532
970static void 3533static void
971once_cb (struct ev_once *once, int revents) 3534once_cb (EV_P_ struct ev_once *once, int revents)
972{ 3535{
973 void (*cb)(int revents, void *arg) = once->cb; 3536 void (*cb)(int revents, void *arg) = once->cb;
974 void *arg = once->arg; 3537 void *arg = once->arg;
975 3538
976 evio_stop (&once->io); 3539 ev_io_stop (EV_A_ &once->io);
977 evtimer_stop (&once->to); 3540 ev_timer_stop (EV_A_ &once->to);
978 free (once); 3541 ev_free (once);
979 3542
980 cb (revents, arg); 3543 cb (revents, arg);
981} 3544}
982 3545
983static void 3546static void
984once_cb_io (struct ev_io *w, int revents) 3547once_cb_io (EV_P_ ev_io *w, int revents)
985{ 3548{
986 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3549 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3550
3551 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
987} 3552}
988 3553
989static void 3554static void
990once_cb_to (struct ev_timer *w, int revents) 3555once_cb_to (EV_P_ ev_timer *w, int revents)
991{ 3556{
992 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3557 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
993}
994 3558
3559 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3560}
3561
995void 3562void
996ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3563ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
997{ 3564{
998 struct ev_once *once = malloc (sizeof (struct ev_once)); 3565 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
999 3566
1000 if (!once) 3567 if (expect_false (!once))
1001 cb (EV_ERROR, arg); 3568 {
1002 else 3569 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3570 return;
1003 { 3571 }
3572
1004 once->cb = cb; 3573 once->cb = cb;
1005 once->arg = arg; 3574 once->arg = arg;
1006 3575
1007 evw_init (&once->io, once_cb_io); 3576 ev_init (&once->io, once_cb_io);
1008
1009 if (fd >= 0) 3577 if (fd >= 0)
3578 {
3579 ev_io_set (&once->io, fd, events);
3580 ev_io_start (EV_A_ &once->io);
3581 }
3582
3583 ev_init (&once->to, once_cb_to);
3584 if (timeout >= 0.)
3585 {
3586 ev_timer_set (&once->to, timeout, 0.);
3587 ev_timer_start (EV_A_ &once->to);
3588 }
3589}
3590
3591/*****************************************************************************/
3592
3593#if EV_WALK_ENABLE
3594void
3595ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3596{
3597 int i, j;
3598 ev_watcher_list *wl, *wn;
3599
3600 if (types & (EV_IO | EV_EMBED))
3601 for (i = 0; i < anfdmax; ++i)
3602 for (wl = anfds [i].head; wl; )
1010 { 3603 {
1011 evio_set (&once->io, fd, events); 3604 wn = wl->next;
1012 evio_start (&once->io); 3605
3606#if EV_EMBED_ENABLE
3607 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3608 {
3609 if (types & EV_EMBED)
3610 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3611 }
3612 else
3613#endif
3614#if EV_USE_INOTIFY
3615 if (ev_cb ((ev_io *)wl) == infy_cb)
3616 ;
3617 else
3618#endif
3619 if ((ev_io *)wl != &pipe_w)
3620 if (types & EV_IO)
3621 cb (EV_A_ EV_IO, wl);
3622
3623 wl = wn;
1013 } 3624 }
1014 3625
1015 evw_init (&once->to, once_cb_to); 3626 if (types & (EV_TIMER | EV_STAT))
1016 3627 for (i = timercnt + HEAP0; i-- > HEAP0; )
1017 if (timeout >= 0.) 3628#if EV_STAT_ENABLE
3629 /*TODO: timer is not always active*/
3630 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1018 { 3631 {
1019 evtimer_set (&once->to, timeout, 0.); 3632 if (types & EV_STAT)
1020 evtimer_start (&once->to); 3633 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1021 } 3634 }
1022 } 3635 else
1023} 3636#endif
3637 if (types & EV_TIMER)
3638 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1024 3639
1025/*****************************************************************************/ 3640#if EV_PERIODIC_ENABLE
3641 if (types & EV_PERIODIC)
3642 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3643 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3644#endif
1026 3645
1027#if 0 3646#if EV_IDLE_ENABLE
3647 if (types & EV_IDLE)
3648 for (j = NUMPRI; i--; )
3649 for (i = idlecnt [j]; i--; )
3650 cb (EV_A_ EV_IDLE, idles [j][i]);
3651#endif
1028 3652
1029struct ev_io wio; 3653#if EV_FORK_ENABLE
3654 if (types & EV_FORK)
3655 for (i = forkcnt; i--; )
3656 if (ev_cb (forks [i]) != embed_fork_cb)
3657 cb (EV_A_ EV_FORK, forks [i]);
3658#endif
1030 3659
1031static void 3660#if EV_ASYNC_ENABLE
1032sin_cb (struct ev_io *w, int revents) 3661 if (types & EV_ASYNC)
1033{ 3662 for (i = asynccnt; i--; )
1034 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3663 cb (EV_A_ EV_ASYNC, asyncs [i]);
1035} 3664#endif
1036 3665
1037static void 3666 if (types & EV_PREPARE)
1038ocb (struct ev_timer *w, int revents) 3667 for (i = preparecnt; i--; )
1039{ 3668#if EV_EMBED_ENABLE
1040 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3669 if (ev_cb (prepares [i]) != embed_prepare_cb)
1041 evtimer_stop (w); 3670#endif
1042 evtimer_start (w); 3671 cb (EV_A_ EV_PREPARE, prepares [i]);
1043}
1044 3672
1045static void 3673 if (types & EV_CHECK)
1046scb (struct ev_signal *w, int revents) 3674 for (i = checkcnt; i--; )
1047{ 3675 cb (EV_A_ EV_CHECK, checks [i]);
1048 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1049 evio_stop (&wio);
1050 evio_start (&wio);
1051}
1052 3676
1053static void 3677 if (types & EV_SIGNAL)
1054gcb (struct ev_signal *w, int revents)
1055{
1056 fprintf (stderr, "generic %x\n", revents);
1057
1058}
1059
1060int main (void)
1061{
1062 ev_init (0);
1063
1064 evio_init (&wio, sin_cb, 0, EV_READ);
1065 evio_start (&wio);
1066
1067 struct ev_timer t[10000];
1068
1069#if 0
1070 int i;
1071 for (i = 0; i < 10000; ++i) 3678 for (i = 0; i < EV_NSIG - 1; ++i)
1072 { 3679 for (wl = signals [i].head; wl; )
1073 struct ev_timer *w = t + i; 3680 {
1074 evw_init (w, ocb, i); 3681 wn = wl->next;
1075 evtimer_init_abs (w, ocb, drand48 (), 0.99775533); 3682 cb (EV_A_ EV_SIGNAL, wl);
1076 evtimer_start (w); 3683 wl = wn;
1077 if (drand48 () < 0.5) 3684 }
1078 evtimer_stop (w);
1079 }
1080#endif
1081 3685
1082 struct ev_timer t1; 3686 if (types & EV_CHILD)
1083 evtimer_init (&t1, ocb, 5, 10); 3687 for (i = EV_PID_HASHSIZE; i--; )
1084 evtimer_start (&t1); 3688 for (wl = childs [i]; wl; )
1085 3689 {
1086 struct ev_signal sig; 3690 wn = wl->next;
1087 evsignal_init (&sig, scb, SIGQUIT); 3691 cb (EV_A_ EV_CHILD, wl);
1088 evsignal_start (&sig); 3692 wl = wn;
1089 3693 }
1090 struct ev_check cw; 3694/* EV_STAT 0x00001000 /* stat data changed */
1091 evcheck_init (&cw, gcb); 3695/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1092 evcheck_start (&cw);
1093
1094 struct ev_idle iw;
1095 evidle_init (&iw, gcb);
1096 evidle_start (&iw);
1097
1098 ev_loop (0);
1099
1100 return 0;
1101} 3696}
1102
1103#endif 3697#endif
1104 3698
3699#if EV_MULTIPLICITY
3700 #include "ev_wrap.h"
3701#endif
1105 3702
3703#ifdef __cplusplus
3704}
3705#endif
1106 3706
1107

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines