ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.327 by root, Sun Feb 14 19:09:04 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
108# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
109# endif 111# endif
110# endif 112# endif
111 113
112# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
114# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
115# else 117# else
116# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
117# endif 119# endif
118# endif 120# endif
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
143 153
144#endif 154#endif
145 155
146#include <math.h> 156#include <math.h>
147#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
148#include <fcntl.h> 159#include <fcntl.h>
149#include <stddef.h> 160#include <stddef.h>
150 161
151#include <stdio.h> 162#include <stdio.h>
152 163
153#include <assert.h> 164#include <assert.h>
154#include <errno.h> 165#include <errno.h>
155#include <sys/types.h> 166#include <sys/types.h>
156#include <time.h> 167#include <time.h>
168#include <limits.h>
157 169
158#include <signal.h> 170#include <signal.h>
159 171
160#ifdef EV_H 172#ifdef EV_H
161# include EV_H 173# include EV_H
176# endif 188# endif
177#endif 189#endif
178 190
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
180 192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
181#ifndef EV_USE_CLOCK_SYSCALL 220#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 221# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 222# define EV_USE_CLOCK_SYSCALL 1
184# else 223# else
185# define EV_USE_CLOCK_SYSCALL 0 224# define EV_USE_CLOCK_SYSCALL 0
193# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
194# endif 233# endif
195#endif 234#endif
196 235
197#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 238#endif
200 239
201#ifndef EV_USE_NANOSLEEP 240#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 241# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 242# define EV_USE_NANOSLEEP 1
264# else 303# else
265# define EV_USE_EVENTFD 0 304# define EV_USE_EVENTFD 0
266# endif 305# endif
267#endif 306#endif
268 307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
269#if 0 /* debugging */ 316#if 0 /* debugging */
270# define EV_VERIFY 3 317# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 318# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 319# define EV_HEAP_CACHE_AT 1
273#endif 320#endif
282 329
283#ifndef EV_HEAP_CACHE_AT 330#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 331# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif 332#endif
286 333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
288 355
289#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
292#endif 359#endif
320 387
321#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 389# include <winsock.h>
323#endif 390#endif
324 391
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 392#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
337# ifdef __cplusplus 405# ifdef __cplusplus
338extern "C" { 406extern "C" {
339# endif 407# endif
340int eventfd (unsigned int initval, int flags); 408int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus 409# ifdef __cplusplus
342} 410}
343# endif 411# endif
344#endif 412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
345 442
346/**/ 443/**/
347 444
348#if EV_VERIFY >= 3 445#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
361 */ 458 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 460
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 463
368#if __GNUC__ >= 4 464#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
371#else 467#else
384# define inline_speed static noinline 480# define inline_speed static noinline
385#else 481#else
386# define inline_speed static inline 482# define inline_speed static inline
387#endif 483#endif
388 484
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
391 492
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
394 495
395typedef ev_watcher *W; 496typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
398 499
399#define ev_active(w) ((W)(w))->active 500#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 501#define ev_at(w) ((WT)(w))->at
401 502
402#if EV_USE_MONOTONIC 503#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
406#endif 521#endif
407 522
408#ifdef _WIN32 523#ifdef _WIN32
409# include "ev_win32.c" 524# include "ev_win32.c"
410#endif 525#endif
474#define ev_malloc(size) ev_realloc (0, (size)) 589#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 590#define ev_free(ptr) ev_realloc ((ptr), 0)
476 591
477/*****************************************************************************/ 592/*****************************************************************************/
478 593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
479typedef struct 598typedef struct
480{ 599{
481 WL head; 600 WL head;
482 unsigned char events; 601 unsigned char events; /* the events watched for */
483 unsigned char reify; 602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 604 unsigned char unused;
486#if EV_USE_EPOLL 605#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 606 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 607#endif
489#if EV_SELECT_IS_WINSOCKET 608#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 609 SOCKET handle;
491#endif 610#endif
492} ANFD; 611} ANFD;
493 612
613/* stores the pending event set for a given watcher */
494typedef struct 614typedef struct
495{ 615{
496 W w; 616 W w;
497 int events; 617 int events; /* the pending event set for the given watcher */
498} ANPENDING; 618} ANPENDING;
499 619
500#if EV_USE_INOTIFY 620#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 621/* hash table entry per inotify-id */
502typedef struct 622typedef struct
505} ANFS; 625} ANFS;
506#endif 626#endif
507 627
508/* Heap Entry */ 628/* Heap Entry */
509#if EV_HEAP_CACHE_AT 629#if EV_HEAP_CACHE_AT
630 /* a heap element */
510 typedef struct { 631 typedef struct {
511 ev_tstamp at; 632 ev_tstamp at;
512 WT w; 633 WT w;
513 } ANHE; 634 } ANHE;
514 635
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 636 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 637 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 639#else
640 /* a heap element */
519 typedef WT ANHE; 641 typedef WT ANHE;
520 642
521 #define ANHE_w(he) (he) 643 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 644 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 645 #define ANHE_at_cache(he)
547 669
548 static int ev_default_loop_ptr; 670 static int ev_default_loop_ptr;
549 671
550#endif 672#endif
551 673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
685
552/*****************************************************************************/ 686/*****************************************************************************/
553 687
688#ifndef EV_HAVE_EV_TIME
554ev_tstamp 689ev_tstamp
555ev_time (void) 690ev_time (void)
556{ 691{
557#if EV_USE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
558 struct timespec ts; 695 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 698 }
699#endif
700
562 struct timeval tv; 701 struct timeval tv;
563 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 704}
705#endif
567 706
568ev_tstamp inline_size 707inline_size ev_tstamp
569get_clock (void) 708get_clock (void)
570{ 709{
571#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 711 if (expect_true (have_monotonic))
573 { 712 {
607 746
608 tv.tv_sec = (time_t)delay; 747 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 749
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 751 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 752 /* by older ones */
614 select (0, 0, 0, 0, &tv); 753 select (0, 0, 0, 0, &tv);
615#endif 754#endif
616 } 755 }
617} 756}
618 757
619/*****************************************************************************/ 758/*****************************************************************************/
620 759
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 761
623int inline_size 762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
624array_nextsize (int elem, int cur, int cnt) 765array_nextsize (int elem, int cur, int cnt)
625{ 766{
626 int ncur = cur + 1; 767 int ncur = cur + 1;
627 768
628 do 769 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 811 }
671#endif 812#endif
672 813
673#define array_free(stem, idx) \ 814#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 816
676/*****************************************************************************/ 817/*****************************************************************************/
818
819/* dummy callback for pending events */
820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
822{
823}
677 824
678void noinline 825void noinline
679ev_feed_event (EV_P_ void *w, int revents) 826ev_feed_event (EV_P_ void *w, int revents)
680{ 827{
681 W w_ = (W)w; 828 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 837 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 838 pendings [pri][w_->pending - 1].events = revents;
692 } 839 }
693} 840}
694 841
695void inline_speed 842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 858queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 859{
698 int i; 860 int i;
699 861
700 for (i = 0; i < eventcnt; ++i) 862 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 863 ev_feed_event (EV_A_ events [i], type);
702} 864}
703 865
704/*****************************************************************************/ 866/*****************************************************************************/
705 867
706void inline_speed 868inline_speed void
707fd_event (EV_P_ int fd, int revents) 869fd_event_nc (EV_P_ int fd, int revents)
708{ 870{
709 ANFD *anfd = anfds + fd; 871 ANFD *anfd = anfds + fd;
710 ev_io *w; 872 ev_io *w;
711 873
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 878 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 879 ev_feed_event (EV_A_ (W)w, ev);
718 } 880 }
719} 881}
720 882
883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
889
890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
721void 894void
722ev_feed_fd_event (EV_P_ int fd, int revents) 895ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 896{
724 if (fd >= 0 && fd < anfdmax) 897 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 898 fd_event_nc (EV_A_ fd, revents);
726} 899}
727 900
728void inline_size 901/* make sure the external fd watch events are in-sync */
902/* with the kernel/libev internal state */
903inline_size void
729fd_reify (EV_P) 904fd_reify (EV_P)
730{ 905{
731 int i; 906 int i;
732 907
733 for (i = 0; i < fdchangecnt; ++i) 908 for (i = 0; i < fdchangecnt; ++i)
743 918
744#if EV_SELECT_IS_WINSOCKET 919#if EV_SELECT_IS_WINSOCKET
745 if (events) 920 if (events)
746 { 921 {
747 unsigned long arg; 922 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
751 anfd->handle = _get_osfhandle (fd);
752 #endif
753 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 925 }
755#endif 926#endif
756 927
757 { 928 {
759 unsigned char o_reify = anfd->reify; 930 unsigned char o_reify = anfd->reify;
760 931
761 anfd->reify = 0; 932 anfd->reify = 0;
762 anfd->events = events; 933 anfd->events = events;
763 934
764 if (o_events != events || o_reify & EV_IOFDSET) 935 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 936 backend_modify (EV_A_ fd, o_events, events);
766 } 937 }
767 } 938 }
768 939
769 fdchangecnt = 0; 940 fdchangecnt = 0;
770} 941}
771 942
772void inline_size 943/* something about the given fd changed */
944inline_size void
773fd_change (EV_P_ int fd, int flags) 945fd_change (EV_P_ int fd, int flags)
774{ 946{
775 unsigned char reify = anfds [fd].reify; 947 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 948 anfds [fd].reify |= flags;
777 949
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 954 fdchanges [fdchangecnt - 1] = fd;
783 } 955 }
784} 956}
785 957
786void inline_speed 958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
787fd_kill (EV_P_ int fd) 960fd_kill (EV_P_ int fd)
788{ 961{
789 ev_io *w; 962 ev_io *w;
790 963
791 while ((w = (ev_io *)anfds [fd].head)) 964 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 966 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 968 }
796} 969}
797 970
798int inline_size 971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
799fd_valid (int fd) 973fd_valid (int fd)
800{ 974{
801#ifdef _WIN32 975#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
803#else 977#else
804 return fcntl (fd, F_GETFD) != -1; 978 return fcntl (fd, F_GETFD) != -1;
805#endif 979#endif
806} 980}
807 981
825 999
826 for (fd = anfdmax; fd--; ) 1000 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 1001 if (anfds [fd].events)
828 { 1002 {
829 fd_kill (EV_A_ fd); 1003 fd_kill (EV_A_ fd);
830 return; 1004 break;
831 } 1005 }
832} 1006}
833 1007
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 1008/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 1009static void noinline
840 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 1015 if (anfds [fd].events)
842 { 1016 {
843 anfds [fd].events = 0; 1017 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 1018 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 1020 }
847} 1021}
848 1022
849/*****************************************************************************/ 1023/*****************************************************************************/
850 1024
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 1042#define UPHEAP_DONE(p,k) ((p) == (k))
869 1043
870/* away from the root */ 1044/* away from the root */
871void inline_speed 1045inline_speed void
872downheap (ANHE *heap, int N, int k) 1046downheap (ANHE *heap, int N, int k)
873{ 1047{
874 ANHE he = heap [k]; 1048 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 1049 ANHE *E = heap + N + HEAP0;
876 1050
916#define HEAP0 1 1090#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 1091#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 1092#define UPHEAP_DONE(p,k) (!(p))
919 1093
920/* away from the root */ 1094/* away from the root */
921void inline_speed 1095inline_speed void
922downheap (ANHE *heap, int N, int k) 1096downheap (ANHE *heap, int N, int k)
923{ 1097{
924 ANHE he = heap [k]; 1098 ANHE he = heap [k];
925 1099
926 for (;;) 1100 for (;;)
927 { 1101 {
928 int c = k << 1; 1102 int c = k << 1;
929 1103
930 if (c > N + HEAP0 - 1) 1104 if (c >= N + HEAP0)
931 break; 1105 break;
932 1106
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 1108 ? 1 : 0;
935 1109
946 ev_active (ANHE_w (he)) = k; 1120 ev_active (ANHE_w (he)) = k;
947} 1121}
948#endif 1122#endif
949 1123
950/* towards the root */ 1124/* towards the root */
951void inline_speed 1125inline_speed void
952upheap (ANHE *heap, int k) 1126upheap (ANHE *heap, int k)
953{ 1127{
954 ANHE he = heap [k]; 1128 ANHE he = heap [k];
955 1129
956 for (;;) 1130 for (;;)
967 1141
968 heap [k] = he; 1142 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1143 ev_active (ANHE_w (he)) = k;
970} 1144}
971 1145
972void inline_size 1146/* move an element suitably so it is in a correct place */
1147inline_size void
973adjustheap (ANHE *heap, int N, int k) 1148adjustheap (ANHE *heap, int N, int k)
974{ 1149{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
976 upheap (heap, k); 1151 upheap (heap, k);
977 else 1152 else
978 downheap (heap, N, k); 1153 downheap (heap, N, k);
979} 1154}
980 1155
981/* rebuild the heap: this function is used only once and executed rarely */ 1156/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1157inline_size void
983reheap (ANHE *heap, int N) 1158reheap (ANHE *heap, int N)
984{ 1159{
985 int i; 1160 int i;
986 1161
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1165 upheap (heap, i + HEAP0);
991} 1166}
992 1167
993/*****************************************************************************/ 1168/*****************************************************************************/
994 1169
1170/* associate signal watchers to a signal signal */
995typedef struct 1171typedef struct
996{ 1172{
1173 EV_ATOMIC_T pending;
1174#if EV_MULTIPLICITY
1175 EV_P;
1176#endif
997 WL head; 1177 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 1178} ANSIG;
1000 1179
1001static ANSIG *signals; 1180static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 1181
1006/*****************************************************************************/ 1182/*****************************************************************************/
1007 1183
1008void inline_speed 1184/* used to prepare libev internal fd's */
1185/* this is not fork-safe */
1186inline_speed void
1009fd_intern (int fd) 1187fd_intern (int fd)
1010{ 1188{
1011#ifdef _WIN32 1189#ifdef _WIN32
1012 unsigned long arg = 1; 1190 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1014#else 1192#else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC); 1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK); 1194 fcntl (fd, F_SETFL, O_NONBLOCK);
1017#endif 1195#endif
1018} 1196}
1019 1197
1020static void noinline 1198static void noinline
1021evpipe_init (EV_P) 1199evpipe_init (EV_P)
1022{ 1200{
1023 if (!ev_is_active (&pipeev)) 1201 if (!ev_is_active (&pipe_w))
1024 { 1202 {
1025#if EV_USE_EVENTFD 1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
1026 if ((evfd = eventfd (0, 0)) >= 0) 1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
1027 { 1209 {
1028 evpipe [0] = -1; 1210 evpipe [0] = -1;
1029 fd_intern (evfd); 1211 fd_intern (evfd); /* doing it twice doesn't hurt */
1030 ev_io_set (&pipeev, evfd, EV_READ); 1212 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1213 }
1032 else 1214 else
1033#endif 1215#endif
1034 { 1216 {
1035 while (pipe (evpipe)) 1217 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1218 ev_syserr ("(libev) error creating signal/async pipe");
1037 1219
1038 fd_intern (evpipe [0]); 1220 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1221 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1223 }
1042 1224
1043 ev_io_start (EV_A_ &pipeev); 1225 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1227 }
1046} 1228}
1047 1229
1048void inline_size 1230inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1232{
1051 if (!*flag) 1233 if (!*flag)
1052 { 1234 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1235 int old_errno = errno; /* save errno because write might clobber it */
1066 1248
1067 errno = old_errno; 1249 errno = old_errno;
1068 } 1250 }
1069} 1251}
1070 1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
1071static void 1255static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1256pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1257{
1258 int i;
1259
1074#if EV_USE_EVENTFD 1260#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1261 if (evfd >= 0)
1076 { 1262 {
1077 uint64_t counter; 1263 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t)); 1264 read (evfd, &counter, sizeof (uint64_t));
1082 { 1268 {
1083 char dummy; 1269 char dummy;
1084 read (evpipe [0], &dummy, 1); 1270 read (evpipe [0], &dummy, 1);
1085 } 1271 }
1086 1272
1087 if (gotsig && ev_is_default_loop (EV_A)) 1273 if (sig_pending)
1088 { 1274 {
1089 int signum; 1275 sig_pending = 0;
1090 gotsig = 0;
1091 1276
1092 for (signum = signalmax; signum--; ) 1277 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 1278 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 1279 ev_feed_signal_event (EV_A_ i + 1);
1095 } 1280 }
1096 1281
1097#if EV_ASYNC_ENABLE 1282#if EV_ASYNC_ENABLE
1098 if (gotasync) 1283 if (async_pending)
1099 { 1284 {
1100 int i; 1285 async_pending = 0;
1101 gotasync = 0;
1102 1286
1103 for (i = asynccnt; i--; ) 1287 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 1288 if (asyncs [i]->sent)
1105 { 1289 {
1106 asyncs [i]->sent = 0; 1290 asyncs [i]->sent = 0;
1114 1298
1115static void 1299static void
1116ev_sighandler (int signum) 1300ev_sighandler (int signum)
1117{ 1301{
1118#if EV_MULTIPLICITY 1302#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct; 1303 EV_P = signals [signum - 1].loop;
1120#endif 1304#endif
1121 1305
1122#if _WIN32 1306#ifdef _WIN32
1123 signal (signum, ev_sighandler); 1307 signal (signum, ev_sighandler);
1124#endif 1308#endif
1125 1309
1126 signals [signum - 1].gotsig = 1; 1310 signals [signum - 1].pending = 1;
1127 evpipe_write (EV_A_ &gotsig); 1311 evpipe_write (EV_A_ &sig_pending);
1128} 1312}
1129 1313
1130void noinline 1314void noinline
1131ev_feed_signal_event (EV_P_ int signum) 1315ev_feed_signal_event (EV_P_ int signum)
1132{ 1316{
1133 WL w; 1317 WL w;
1134 1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1135#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
1136 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1325 /* it is permissible to try to feed a signal to the wrong loop */
1137#endif 1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1138 1327
1139 --signum; 1328 if (expect_false (signals [signum].loop != EV_A))
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 1329 return;
1330#endif
1143 1331
1144 signals [signum].gotsig = 0; 1332 signals [signum].pending = 0;
1145 1333
1146 for (w = signals [signum].head; w; w = w->next) 1334 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 1336}
1149 1337
1338#if EV_USE_SIGNALFD
1339static void
1340sigfdcb (EV_P_ ev_io *iow, int revents)
1341{
1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1343
1344 for (;;)
1345 {
1346 ssize_t res = read (sigfd, si, sizeof (si));
1347
1348 /* not ISO-C, as res might be -1, but works with SuS */
1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1351
1352 if (res < (ssize_t)sizeof (si))
1353 break;
1354 }
1355}
1356#endif
1357
1150/*****************************************************************************/ 1358/*****************************************************************************/
1151 1359
1152static WL childs [EV_PID_HASHSIZE]; 1360static WL childs [EV_PID_HASHSIZE];
1153 1361
1154#ifndef _WIN32 1362#ifndef _WIN32
1157 1365
1158#ifndef WIFCONTINUED 1366#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1367# define WIFCONTINUED(status) 0
1160#endif 1368#endif
1161 1369
1162void inline_speed 1370/* handle a single child status event */
1371inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1372child_reap (EV_P_ int chain, int pid, int status)
1164{ 1373{
1165 ev_child *w; 1374 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1376
1180 1389
1181#ifndef WCONTINUED 1390#ifndef WCONTINUED
1182# define WCONTINUED 0 1391# define WCONTINUED 0
1183#endif 1392#endif
1184 1393
1394/* called on sigchld etc., calls waitpid */
1185static void 1395static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1397{
1188 int pid, status; 1398 int pid, status;
1189 1399
1296ev_backend (EV_P) 1506ev_backend (EV_P)
1297{ 1507{
1298 return backend; 1508 return backend;
1299} 1509}
1300 1510
1511#if EV_MINIMAL < 2
1301unsigned int 1512unsigned int
1302ev_loop_count (EV_P) 1513ev_loop_count (EV_P)
1303{ 1514{
1304 return loop_count; 1515 return loop_count;
1305} 1516}
1306 1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
1307void 1524void
1308ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1309{ 1526{
1310 io_blocktime = interval; 1527 io_blocktime = interval;
1311} 1528}
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1532{
1316 timeout_blocktime = interval; 1533 timeout_blocktime = interval;
1317} 1534}
1318 1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1561static void noinline
1320loop_init (EV_P_ unsigned int flags) 1562loop_init (EV_P_ unsigned int flags)
1321{ 1563{
1322 if (!backend) 1564 if (!backend)
1323 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
1324#if EV_USE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
1325 { 1578 {
1326 struct timespec ts; 1579 struct timespec ts;
1580
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1582 have_monotonic = 1;
1329 } 1583 }
1330#endif 1584#endif
1585
1586 /* pid check not overridable via env */
1587#ifndef _WIN32
1588 if (flags & EVFLAG_FORKCHECK)
1589 curpid = getpid ();
1590#endif
1591
1592 if (!(flags & EVFLAG_NOENV)
1593 && !enable_secure ()
1594 && getenv ("LIBEV_FLAGS"))
1595 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 1596
1332 ev_rt_now = ev_time (); 1597 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1598 mn_now = get_clock ();
1334 now_floor = mn_now; 1599 now_floor = mn_now;
1335 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
1336 1604
1337 io_blocktime = 0.; 1605 io_blocktime = 0.;
1338 timeout_blocktime = 0.; 1606 timeout_blocktime = 0.;
1339 backend = 0; 1607 backend = 0;
1340 backend_fd = -1; 1608 backend_fd = -1;
1341 gotasync = 0; 1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1342#if EV_USE_INOTIFY 1613#if EV_USE_INOTIFY
1343 fs_fd = -2; 1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1344#endif 1615#endif
1345 1616#if EV_USE_SIGNALFD
1346 /* pid check not overridable via env */ 1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1347#ifndef _WIN32
1348 if (flags & EVFLAG_FORKCHECK)
1349 curpid = getpid ();
1350#endif 1618#endif
1351
1352 if (!(flags & EVFLAG_NOENV)
1353 && !enable_secure ()
1354 && getenv ("LIBEV_FLAGS"))
1355 flags = atoi (getenv ("LIBEV_FLAGS"));
1356 1619
1357 if (!(flags & 0x0000ffffU)) 1620 if (!(flags & 0x0000ffffU))
1358 flags |= ev_recommended_backends (); 1621 flags |= ev_recommended_backends ();
1359 1622
1360#if EV_USE_PORT 1623#if EV_USE_PORT
1371#endif 1634#endif
1372#if EV_USE_SELECT 1635#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1637#endif
1375 1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
1376 ev_init (&pipeev, pipecb); 1641 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1642 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1643 }
1379} 1644}
1380 1645
1646/* free up a loop structure */
1381static void noinline 1647static void noinline
1382loop_destroy (EV_P) 1648loop_destroy (EV_P)
1383{ 1649{
1384 int i; 1650 int i;
1385 1651
1386 if (ev_is_active (&pipeev)) 1652 if (ev_is_active (&pipe_w))
1387 { 1653 {
1388 ev_ref (EV_A); /* signal watcher */ 1654 /*ev_ref (EV_A);*/
1389 ev_io_stop (EV_A_ &pipeev); 1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1390 1656
1391#if EV_USE_EVENTFD 1657#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1658 if (evfd >= 0)
1393 close (evfd); 1659 close (evfd);
1394#endif 1660#endif
1395 1661
1396 if (evpipe [0] >= 0) 1662 if (evpipe [0] >= 0)
1397 { 1663 {
1398 close (evpipe [0]); 1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1399 close (evpipe [1]); 1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1400 } 1666 }
1401 } 1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
1402 1673
1403#if EV_USE_INOTIFY 1674#if EV_USE_INOTIFY
1404 if (fs_fd >= 0) 1675 if (fs_fd >= 0)
1405 close (fs_fd); 1676 close (fs_fd);
1406#endif 1677#endif
1430#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1431 array_free (idle, [i]); 1702 array_free (idle, [i]);
1432#endif 1703#endif
1433 } 1704 }
1434 1705
1435 ev_free (anfds); anfdmax = 0; 1706 ev_free (anfds); anfds = 0; anfdmax = 0;
1436 1707
1437 /* have to use the microsoft-never-gets-it-right macro */ 1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1710 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1711 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1712#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1713 array_free (periodic, EMPTY);
1442#endif 1714#endif
1451 1723
1452 backend = 0; 1724 backend = 0;
1453} 1725}
1454 1726
1455#if EV_USE_INOTIFY 1727#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1728inline_size void infy_fork (EV_P);
1457#endif 1729#endif
1458 1730
1459void inline_size 1731inline_size void
1460loop_fork (EV_P) 1732loop_fork (EV_P)
1461{ 1733{
1462#if EV_USE_PORT 1734#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1736#endif
1470#endif 1742#endif
1471#if EV_USE_INOTIFY 1743#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1744 infy_fork (EV_A);
1473#endif 1745#endif
1474 1746
1475 if (ev_is_active (&pipeev)) 1747 if (ev_is_active (&pipe_w))
1476 { 1748 {
1477 /* this "locks" the handlers against writing to the pipe */ 1749 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1750 /* while we modify the fd vars */
1479 gotsig = 1; 1751 sig_pending = 1;
1480#if EV_ASYNC_ENABLE 1752#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1753 async_pending = 1;
1482#endif 1754#endif
1483 1755
1484 ev_ref (EV_A); 1756 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1757 ev_io_stop (EV_A_ &pipe_w);
1486 1758
1487#if EV_USE_EVENTFD 1759#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1760 if (evfd >= 0)
1489 close (evfd); 1761 close (evfd);
1490#endif 1762#endif
1491 1763
1492 if (evpipe [0] >= 0) 1764 if (evpipe [0] >= 0)
1493 { 1765 {
1494 close (evpipe [0]); 1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1495 close (evpipe [1]); 1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1496 } 1768 }
1497 1769
1498 evpipe_init (EV_A); 1770 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1771 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1772 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1773 }
1502 1774
1503 postfork = 0; 1775 postfork = 0;
1504} 1776}
1505 1777
1506#if EV_MULTIPLICITY 1778#if EV_MULTIPLICITY
1507 1779
1508struct ev_loop * 1780struct ev_loop *
1509ev_loop_new (unsigned int flags) 1781ev_loop_new (unsigned int flags)
1510{ 1782{
1511 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1512 1784
1513 memset (loop, 0, sizeof (struct ev_loop)); 1785 memset (EV_A, 0, sizeof (struct ev_loop));
1514
1515 loop_init (EV_A_ flags); 1786 loop_init (EV_A_ flags);
1516 1787
1517 if (ev_backend (EV_A)) 1788 if (ev_backend (EV_A))
1518 return loop; 1789 return EV_A;
1519 1790
1520 return 0; 1791 return 0;
1521} 1792}
1522 1793
1523void 1794void
1530void 1801void
1531ev_loop_fork (EV_P) 1802ev_loop_fork (EV_P)
1532{ 1803{
1533 postfork = 1; /* must be in line with ev_default_fork */ 1804 postfork = 1; /* must be in line with ev_default_fork */
1534} 1805}
1806#endif /* multiplicity */
1535 1807
1536#if EV_VERIFY 1808#if EV_VERIFY
1537static void noinline 1809static void noinline
1538verify_watcher (EV_P_ W w) 1810verify_watcher (EV_P_ W w)
1539{ 1811{
1567 verify_watcher (EV_A_ ws [cnt]); 1839 verify_watcher (EV_A_ ws [cnt]);
1568 } 1840 }
1569} 1841}
1570#endif 1842#endif
1571 1843
1844#if EV_MINIMAL < 2
1572void 1845void
1573ev_loop_verify (EV_P) 1846ev_loop_verify (EV_P)
1574{ 1847{
1575#if EV_VERIFY 1848#if EV_VERIFY
1576 int i; 1849 int i;
1625 assert (checkmax >= checkcnt); 1898 assert (checkmax >= checkcnt);
1626 array_verify (EV_A_ (W *)checks, checkcnt); 1899 array_verify (EV_A_ (W *)checks, checkcnt);
1627 1900
1628# if 0 1901# if 0
1629 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1630 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1631# endif
1632#endif 1904# endif
1905#endif
1633} 1906}
1634 1907#endif
1635#endif /* multiplicity */
1636 1908
1637#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1638struct ev_loop * 1910struct ev_loop *
1639ev_default_loop_init (unsigned int flags) 1911ev_default_loop_init (unsigned int flags)
1640#else 1912#else
1643#endif 1915#endif
1644{ 1916{
1645 if (!ev_default_loop_ptr) 1917 if (!ev_default_loop_ptr)
1646 { 1918 {
1647#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1648 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
1649#else 1921#else
1650 ev_default_loop_ptr = 1; 1922 ev_default_loop_ptr = 1;
1651#endif 1923#endif
1652 1924
1653 loop_init (EV_A_ flags); 1925 loop_init (EV_A_ flags);
1670 1942
1671void 1943void
1672ev_default_destroy (void) 1944ev_default_destroy (void)
1673{ 1945{
1674#if EV_MULTIPLICITY 1946#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr; 1947 EV_P = ev_default_loop_ptr;
1676#endif 1948#endif
1677 1949
1678 ev_default_loop_ptr = 0; 1950 ev_default_loop_ptr = 0;
1679 1951
1680#ifndef _WIN32 1952#ifndef _WIN32
1687 1959
1688void 1960void
1689ev_default_fork (void) 1961ev_default_fork (void)
1690{ 1962{
1691#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
1692 struct ev_loop *loop = ev_default_loop_ptr; 1964 EV_P = ev_default_loop_ptr;
1693#endif 1965#endif
1694 1966
1695 postfork = 1; /* must be in line with ev_loop_fork */ 1967 postfork = 1; /* must be in line with ev_loop_fork */
1696} 1968}
1697 1969
1701ev_invoke (EV_P_ void *w, int revents) 1973ev_invoke (EV_P_ void *w, int revents)
1702{ 1974{
1703 EV_CB_INVOKE ((W)w, revents); 1975 EV_CB_INVOKE ((W)w, revents);
1704} 1976}
1705 1977
1706void inline_speed 1978unsigned int
1707call_pending (EV_P) 1979ev_pending_count (EV_P)
1980{
1981 int pri;
1982 unsigned int count = 0;
1983
1984 for (pri = NUMPRI; pri--; )
1985 count += pendingcnt [pri];
1986
1987 return count;
1988}
1989
1990void noinline
1991ev_invoke_pending (EV_P)
1708{ 1992{
1709 int pri; 1993 int pri;
1710 1994
1711 for (pri = NUMPRI; pri--; ) 1995 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 1996 while (pendingcnt [pri])
1713 { 1997 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 1999
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2001 /* ^ this is no longer true, as pending_w could be here */
1719 2002
1720 p->w->pending = 0; 2003 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 2004 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 2005 EV_FREQUENT_CHECK;
1723 }
1724 } 2006 }
1725} 2007}
1726 2008
1727#if EV_IDLE_ENABLE 2009#if EV_IDLE_ENABLE
1728void inline_size 2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
1729idle_reify (EV_P) 2013idle_reify (EV_P)
1730{ 2014{
1731 if (expect_false (idleall)) 2015 if (expect_false (idleall))
1732 { 2016 {
1733 int pri; 2017 int pri;
1745 } 2029 }
1746 } 2030 }
1747} 2031}
1748#endif 2032#endif
1749 2033
1750void inline_size 2034/* make timers pending */
2035inline_size void
1751timers_reify (EV_P) 2036timers_reify (EV_P)
1752{ 2037{
1753 EV_FREQUENT_CHECK; 2038 EV_FREQUENT_CHECK;
1754 2039
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 2041 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2042 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
1764 ev_at (w) += w->repeat; 2051 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 2052 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 2053 ev_at (w) = mn_now;
1767 2054
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 2056
1770 ANHE_at_cache (timers [HEAP0]); 2057 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
1772 } 2065 }
1773 else 2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 2067
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 2069 }
1779} 2070}
1780 2071
1781#if EV_PERIODIC_ENABLE 2072#if EV_PERIODIC_ENABLE
1782void inline_size 2073/* make periodics pending */
2074inline_size void
1783periodics_reify (EV_P) 2075periodics_reify (EV_P)
1784{ 2076{
1785 EV_FREQUENT_CHECK; 2077 EV_FREQUENT_CHECK;
1786 2078
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 2080 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2081 int feed_count = 0;
1790 2082
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2083 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 2093
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 2095
1800 ANHE_at_cache (periodics [HEAP0]); 2096 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
1802 } 2123 }
1803 else if (w->interval) 2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 2125
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2126 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 2127 }
1828} 2128}
1829 2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 2132static void noinline
1831periodics_reschedule (EV_P) 2133periodics_reschedule (EV_P)
1832{ 2134{
1833 int i; 2135 int i;
1834 2136
1847 2149
1848 reheap (periodics, periodiccnt); 2150 reheap (periodics, periodiccnt);
1849} 2151}
1850#endif 2152#endif
1851 2153
1852void inline_speed 2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
2160 for (i = 0; i < timercnt; ++i)
2161 {
2162 ANHE *he = timers + i + HEAP0;
2163 ANHE_w (*he)->at += adjust;
2164 ANHE_at_cache (*he);
2165 }
2166}
2167
2168/* fetch new monotonic and realtime times from the kernel */
2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 2171time_update (EV_P_ ev_tstamp max_block)
1854{ 2172{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 2173#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 2174 if (expect_true (have_monotonic))
1859 { 2175 {
2176 int i;
1860 ev_tstamp odiff = rtmn_diff; 2177 ev_tstamp odiff = rtmn_diff;
1861 2178
1862 mn_now = get_clock (); 2179 mn_now = get_clock ();
1863 2180
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1890 ev_rt_now = ev_time (); 2207 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 2208 mn_now = get_clock ();
1892 now_floor = mn_now; 2209 now_floor = mn_now;
1893 } 2210 }
1894 2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 2214# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 2215 periodics_reschedule (EV_A);
1897# endif 2216# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 2217 }
1901 else 2218 else
1902#endif 2219#endif
1903 { 2220 {
1904 ev_rt_now = ev_time (); 2221 ev_rt_now = ev_time ();
1905 2222
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2224 {
2225 /* adjust timers. this is easy, as the offset is the same for all of them */
2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2227#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1910#endif 2229#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2230 }
1919 2231
1920 mn_now = ev_rt_now; 2232 mn_now = ev_rt_now;
1921 } 2233 }
1922} 2234}
1923 2235
1924void 2236void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940}
1941
1942static int loop_done;
1943
1944void
1945ev_loop (EV_P_ int flags) 2237ev_loop (EV_P_ int flags)
1946{ 2238{
2239#if EV_MINIMAL < 2
2240 ++loop_depth;
2241#endif
2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
1947 loop_done = EVUNLOOP_CANCEL; 2245 loop_done = EVUNLOOP_CANCEL;
1948 2246
1949 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1950 2248
1951 do 2249 do
1952 { 2250 {
1953#if EV_VERIFY >= 2 2251#if EV_VERIFY >= 2
1954 ev_loop_verify (EV_A); 2252 ev_loop_verify (EV_A);
1967 /* we might have forked, so queue fork handlers */ 2265 /* we might have forked, so queue fork handlers */
1968 if (expect_false (postfork)) 2266 if (expect_false (postfork))
1969 if (forkcnt) 2267 if (forkcnt)
1970 { 2268 {
1971 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1972 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1973 } 2271 }
1974#endif 2272#endif
1975 2273
1976 /* queue prepare watchers (and execute them) */ 2274 /* queue prepare watchers (and execute them) */
1977 if (expect_false (preparecnt)) 2275 if (expect_false (preparecnt))
1978 { 2276 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2278 EV_INVOKE_PENDING;
1981 } 2279 }
1982 2280
1983 if (expect_false (!activecnt)) 2281 if (expect_false (loop_done))
1984 break; 2282 break;
1985 2283
1986 /* we might have forked, so reify kernel state if necessary */ 2284 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2285 if (expect_false (postfork))
1988 loop_fork (EV_A); 2286 loop_fork (EV_A);
1995 ev_tstamp waittime = 0.; 2293 ev_tstamp waittime = 0.;
1996 ev_tstamp sleeptime = 0.; 2294 ev_tstamp sleeptime = 0.;
1997 2295
1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1999 { 2297 {
2298 /* remember old timestamp for io_blocktime calculation */
2299 ev_tstamp prev_mn_now = mn_now;
2300
2000 /* update time to cancel out callback processing overhead */ 2301 /* update time to cancel out callback processing overhead */
2001 time_update (EV_A_ 1e100); 2302 time_update (EV_A_ 1e100);
2002 2303
2003 waittime = MAX_BLOCKTIME; 2304 waittime = MAX_BLOCKTIME;
2004 2305
2014 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2015 if (waittime > to) waittime = to; 2316 if (waittime > to) waittime = to;
2016 } 2317 }
2017#endif 2318#endif
2018 2319
2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
2019 if (expect_false (waittime < timeout_blocktime)) 2321 if (expect_false (waittime < timeout_blocktime))
2020 waittime = timeout_blocktime; 2322 waittime = timeout_blocktime;
2021 2323
2022 sleeptime = waittime - backend_fudge; 2324 /* extra check because io_blocktime is commonly 0 */
2023
2024 if (expect_true (sleeptime > io_blocktime)) 2325 if (expect_false (io_blocktime))
2025 sleeptime = io_blocktime;
2026
2027 if (sleeptime)
2028 { 2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
2029 ev_sleep (sleeptime); 2334 ev_sleep (sleeptime);
2030 waittime -= sleeptime; 2335 waittime -= sleeptime;
2336 }
2031 } 2337 }
2032 } 2338 }
2033 2339
2340#if EV_MINIMAL < 2
2034 ++loop_count; 2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2035 backend_poll (EV_A_ waittime); 2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2036 2346
2037 /* update ev_rt_now, do magic */ 2347 /* update ev_rt_now, do magic */
2038 time_update (EV_A_ waittime + sleeptime); 2348 time_update (EV_A_ waittime + sleeptime);
2039 } 2349 }
2040 2350
2051 2361
2052 /* queue check watchers, to be executed first */ 2362 /* queue check watchers, to be executed first */
2053 if (expect_false (checkcnt)) 2363 if (expect_false (checkcnt))
2054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2055 2365
2056 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
2057 } 2367 }
2058 while (expect_true ( 2368 while (expect_true (
2059 activecnt 2369 activecnt
2060 && !loop_done 2370 && !loop_done
2061 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2062 )); 2372 ));
2063 2373
2064 if (loop_done == EVUNLOOP_ONE) 2374 if (loop_done == EVUNLOOP_ONE)
2065 loop_done = EVUNLOOP_CANCEL; 2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
2066} 2380}
2067 2381
2068void 2382void
2069ev_unloop (EV_P_ int how) 2383ev_unloop (EV_P_ int how)
2070{ 2384{
2071 loop_done = how; 2385 loop_done = how;
2072} 2386}
2073 2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
2423}
2424
2074/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
2075 2427
2076void inline_size 2428inline_size void
2077wlist_add (WL *head, WL elem) 2429wlist_add (WL *head, WL elem)
2078{ 2430{
2079 elem->next = *head; 2431 elem->next = *head;
2080 *head = elem; 2432 *head = elem;
2081} 2433}
2082 2434
2083void inline_size 2435inline_size void
2084wlist_del (WL *head, WL elem) 2436wlist_del (WL *head, WL elem)
2085{ 2437{
2086 while (*head) 2438 while (*head)
2087 { 2439 {
2088 if (*head == elem) 2440 if (expect_true (*head == elem))
2089 { 2441 {
2090 *head = elem->next; 2442 *head = elem->next;
2091 return; 2443 break;
2092 } 2444 }
2093 2445
2094 head = &(*head)->next; 2446 head = &(*head)->next;
2095 } 2447 }
2096} 2448}
2097 2449
2098void inline_speed 2450/* internal, faster, version of ev_clear_pending */
2451inline_speed void
2099clear_pending (EV_P_ W w) 2452clear_pending (EV_P_ W w)
2100{ 2453{
2101 if (w->pending) 2454 if (w->pending)
2102 { 2455 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2457 w->pending = 0;
2105 } 2458 }
2106} 2459}
2107 2460
2108int 2461int
2112 int pending = w_->pending; 2465 int pending = w_->pending;
2113 2466
2114 if (expect_true (pending)) 2467 if (expect_true (pending))
2115 { 2468 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
2117 w_->pending = 0; 2471 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2472 return p->events;
2120 } 2473 }
2121 else 2474 else
2122 return 0; 2475 return 0;
2123} 2476}
2124 2477
2125void inline_size 2478inline_size void
2126pri_adjust (EV_P_ W w) 2479pri_adjust (EV_P_ W w)
2127{ 2480{
2128 int pri = w->priority; 2481 int pri = ev_priority (w);
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2484 ev_set_priority (w, pri);
2132} 2485}
2133 2486
2134void inline_speed 2487inline_speed void
2135ev_start (EV_P_ W w, int active) 2488ev_start (EV_P_ W w, int active)
2136{ 2489{
2137 pri_adjust (EV_A_ w); 2490 pri_adjust (EV_A_ w);
2138 w->active = active; 2491 w->active = active;
2139 ev_ref (EV_A); 2492 ev_ref (EV_A);
2140} 2493}
2141 2494
2142void inline_size 2495inline_size void
2143ev_stop (EV_P_ W w) 2496ev_stop (EV_P_ W w)
2144{ 2497{
2145 ev_unref (EV_A); 2498 ev_unref (EV_A);
2146 w->active = 0; 2499 w->active = 0;
2147} 2500}
2155 2508
2156 if (expect_false (ev_is_active (w))) 2509 if (expect_false (ev_is_active (w)))
2157 return; 2510 return;
2158 2511
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2513 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2514
2162 EV_FREQUENT_CHECK; 2515 EV_FREQUENT_CHECK;
2163 2516
2164 ev_start (EV_A_ (W)w, 1); 2517 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2519 wlist_add (&anfds[fd].head, (WL)w);
2167 2520
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2169 w->events &= ~EV_IOFDSET; 2522 w->events &= ~EV__IOFDSET;
2170 2523
2171 EV_FREQUENT_CHECK; 2524 EV_FREQUENT_CHECK;
2172} 2525}
2173 2526
2174void noinline 2527void noinline
2267 } 2620 }
2268 2621
2269 EV_FREQUENT_CHECK; 2622 EV_FREQUENT_CHECK;
2270} 2623}
2271 2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2629}
2630
2272#if EV_PERIODIC_ENABLE 2631#if EV_PERIODIC_ENABLE
2273void noinline 2632void noinline
2274ev_periodic_start (EV_P_ ev_periodic *w) 2633ev_periodic_start (EV_P_ ev_periodic *w)
2275{ 2634{
2276 if (expect_false (ev_is_active (w))) 2635 if (expect_false (ev_is_active (w)))
2343#endif 2702#endif
2344 2703
2345void noinline 2704void noinline
2346ev_signal_start (EV_P_ ev_signal *w) 2705ev_signal_start (EV_P_ ev_signal *w)
2347{ 2706{
2348#if EV_MULTIPLICITY
2349 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2350#endif
2351 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
2352 return; 2708 return;
2353 2709
2354 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2355 2711
2356 evpipe_init (EV_A); 2712#if EV_MULTIPLICITY
2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2357 2715
2358 EV_FREQUENT_CHECK; 2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2359 2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
2360 { 2723 {
2361#ifndef _WIN32 2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2362 sigset_t full, prev; 2725 if (sigfd < 0 && errno == EINVAL)
2363 sigfillset (&full); 2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2364 sigprocmask (SIG_SETMASK, &full, &prev);
2365#endif
2366 2727
2367 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2728 if (sigfd >= 0)
2729 {
2730 fd_intern (sigfd); /* doing it twice will not hurt */
2368 2731
2369#ifndef _WIN32 2732 sigemptyset (&sigfd_set);
2370 sigprocmask (SIG_SETMASK, &prev, 0); 2733
2371#endif 2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
2372 } 2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
2373 2750
2374 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
2375 wlist_add (&signals [w->signum - 1].head, (WL)w); 2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
2376 2753
2377 if (!((WL)w)->next) 2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
2757# endif
2378 { 2758 {
2379#if _WIN32 2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
2380 signal (w->signum, ev_sighandler); 2762 signal (w->signum, ev_sighandler);
2381#else 2763# else
2382 struct sigaction sa; 2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
2383 sa.sa_handler = ev_sighandler; 2768 sa.sa_handler = ev_sighandler;
2384 sigfillset (&sa.sa_mask); 2769 sigfillset (&sa.sa_mask);
2385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2386 sigaction (w->signum, &sa, 0); 2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2387#endif 2776#endif
2388 } 2777 }
2389 2778
2390 EV_FREQUENT_CHECK; 2779 EV_FREQUENT_CHECK;
2391} 2780}
2392 2781
2393void noinline 2782void noinline
2401 2790
2402 wlist_del (&signals [w->signum - 1].head, (WL)w); 2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
2403 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
2404 2793
2405 if (!signals [w->signum - 1].head) 2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
2810 }
2811 else
2812#endif
2406 signal (w->signum, SIG_DFL); 2813 signal (w->signum, SIG_DFL);
2814 }
2407 2815
2408 EV_FREQUENT_CHECK; 2816 EV_FREQUENT_CHECK;
2409} 2817}
2410 2818
2411void 2819void
2452#define MIN_STAT_INTERVAL 0.1074891 2860#define MIN_STAT_INTERVAL 0.1074891
2453 2861
2454static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2455 2863
2456#if EV_USE_INOTIFY 2864#if EV_USE_INOTIFY
2457# define EV_INOTIFY_BUFSIZE 8192 2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2458 2868
2459static void noinline 2869static void noinline
2460infy_add (EV_P_ ev_stat *w) 2870infy_add (EV_P_ ev_stat *w)
2461{ 2871{
2462 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2463 2873
2464 if (w->wd < 0) 2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2465 { 2894 }
2895 else
2896 {
2897 /* can't use inotify, continue to stat */
2466 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2467 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2468 2899
2469 /* monitor some parent directory for speedup hints */ 2900 /* if path is not there, monitor some parent directory for speedup hints */
2470 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2471 /* but an efficiency issue only */ 2902 /* but an efficiency issue only */
2472 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2473 { 2904 {
2474 char path [4096]; 2905 char path [4096];
2490 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2491 } 2922 }
2492 } 2923 }
2493 2924
2494 if (w->wd >= 0) 2925 if (w->wd >= 0)
2495 {
2496 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2497 2927
2498 /* now local changes will be tracked by inotify, but remote changes won't */ 2928 /* now re-arm timer, if required */
2499 /* unless the filesystem it known to be local, we therefore still poll */ 2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2500 /* also do poll on <2.6.25, but with normal frequency */
2501 struct statfs sfs;
2502
2503 if (fs_2625 && !statfs (w->path, &sfs))
2504 if (sfs.f_type == 0x1373 /* devfs */
2505 || sfs.f_type == 0xEF53 /* ext2/3 */
2506 || sfs.f_type == 0x3153464a /* jfs */
2507 || sfs.f_type == 0x52654973 /* reiser3 */
2508 || sfs.f_type == 0x01021994 /* tempfs */
2509 || sfs.f_type == 0x58465342 /* xfs */)
2510 return;
2511
2512 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2513 ev_timer_again (EV_A_ &w->timer); 2930 ev_timer_again (EV_A_ &w->timer);
2514 } 2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2515} 2932}
2516 2933
2517static void noinline 2934static void noinline
2518infy_del (EV_P_ ev_stat *w) 2935infy_del (EV_P_ ev_stat *w)
2519{ 2936{
2564 2981
2565static void 2982static void
2566infy_cb (EV_P_ ev_io *w, int revents) 2983infy_cb (EV_P_ ev_io *w, int revents)
2567{ 2984{
2568 char buf [EV_INOTIFY_BUFSIZE]; 2985 char buf [EV_INOTIFY_BUFSIZE];
2569 struct inotify_event *ev = (struct inotify_event *)buf;
2570 int ofs; 2986 int ofs;
2571 int len = read (fs_fd, buf, sizeof (buf)); 2987 int len = read (fs_fd, buf, sizeof (buf));
2572 2988
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2989 for (ofs = 0; ofs < len; )
2990 {
2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
2994 }
2575} 2995}
2576 2996
2577void inline_size 2997inline_size void
2578check_2625 (EV_P) 2998check_2625 (EV_P)
2579{ 2999{
2580 /* kernels < 2.6.25 are borked 3000 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 3002 */
2595 return; 3015 return;
2596 3016
2597 fs_2625 = 1; 3017 fs_2625 = 1;
2598} 3018}
2599 3019
2600void inline_size 3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
2601infy_init (EV_P) 3032infy_init (EV_P)
2602{ 3033{
2603 if (fs_fd != -2) 3034 if (fs_fd != -2)
2604 return; 3035 return;
2605 3036
2606 fs_fd = -1; 3037 fs_fd = -1;
2607 3038
2608 check_2625 (EV_A); 3039 check_2625 (EV_A);
2609 3040
2610 fs_fd = inotify_init (); 3041 fs_fd = infy_newfd ();
2611 3042
2612 if (fs_fd >= 0) 3043 if (fs_fd >= 0)
2613 { 3044 {
3045 fd_intern (fs_fd);
2614 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2615 ev_set_priority (&fs_w, EV_MAXPRI); 3047 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
2617 } 3050 }
2618} 3051}
2619 3052
2620void inline_size 3053inline_size void
2621infy_fork (EV_P) 3054infy_fork (EV_P)
2622{ 3055{
2623 int slot; 3056 int slot;
2624 3057
2625 if (fs_fd < 0) 3058 if (fs_fd < 0)
2626 return; 3059 return;
2627 3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
2628 close (fs_fd); 3063 close (fs_fd);
2629 fs_fd = inotify_init (); 3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
2630 3073
2631 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2632 { 3075 {
2633 WL w_ = fs_hash [slot].head; 3076 WL w_ = fs_hash [slot].head;
2634 fs_hash [slot].head = 0; 3077 fs_hash [slot].head = 0;
2641 w->wd = -1; 3084 w->wd = -1;
2642 3085
2643 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2644 infy_add (EV_A_ w); /* re-add, no matter what */ 3087 infy_add (EV_A_ w); /* re-add, no matter what */
2645 else 3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2646 ev_timer_again (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
2647 } 3095 }
2648 } 3096 }
2649} 3097}
2650 3098
2651#endif 3099#endif
2668static void noinline 3116static void noinline
2669stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2670{ 3118{
2671 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2672 3120
2673 /* we copy this here each the time so that */ 3121 ev_statdata prev = w->attr;
2674 /* prev has the old value when the callback gets invoked */
2675 w->prev = w->attr;
2676 ev_stat_stat (EV_A_ w); 3122 ev_stat_stat (EV_A_ w);
2677 3123
2678 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2679 if ( 3125 if (
2680 w->prev.st_dev != w->attr.st_dev 3126 prev.st_dev != w->attr.st_dev
2681 || w->prev.st_ino != w->attr.st_ino 3127 || prev.st_ino != w->attr.st_ino
2682 || w->prev.st_mode != w->attr.st_mode 3128 || prev.st_mode != w->attr.st_mode
2683 || w->prev.st_nlink != w->attr.st_nlink 3129 || prev.st_nlink != w->attr.st_nlink
2684 || w->prev.st_uid != w->attr.st_uid 3130 || prev.st_uid != w->attr.st_uid
2685 || w->prev.st_gid != w->attr.st_gid 3131 || prev.st_gid != w->attr.st_gid
2686 || w->prev.st_rdev != w->attr.st_rdev 3132 || prev.st_rdev != w->attr.st_rdev
2687 || w->prev.st_size != w->attr.st_size 3133 || prev.st_size != w->attr.st_size
2688 || w->prev.st_atime != w->attr.st_atime 3134 || prev.st_atime != w->attr.st_atime
2689 || w->prev.st_mtime != w->attr.st_mtime 3135 || prev.st_mtime != w->attr.st_mtime
2690 || w->prev.st_ctime != w->attr.st_ctime 3136 || prev.st_ctime != w->attr.st_ctime
2691 ) { 3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
2692 #if EV_USE_INOTIFY 3143 #if EV_USE_INOTIFY
2693 if (fs_fd >= 0) 3144 if (fs_fd >= 0)
2694 { 3145 {
2695 infy_del (EV_A_ w); 3146 infy_del (EV_A_ w);
2696 infy_add (EV_A_ w); 3147 infy_add (EV_A_ w);
2721 3172
2722 if (fs_fd >= 0) 3173 if (fs_fd >= 0)
2723 infy_add (EV_A_ w); 3174 infy_add (EV_A_ w);
2724 else 3175 else
2725#endif 3176#endif
3177 {
2726 ev_timer_again (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
3180 }
2727 3181
2728 ev_start (EV_A_ (W)w, 1); 3182 ev_start (EV_A_ (W)w, 1);
2729 3183
2730 EV_FREQUENT_CHECK; 3184 EV_FREQUENT_CHECK;
2731} 3185}
2740 EV_FREQUENT_CHECK; 3194 EV_FREQUENT_CHECK;
2741 3195
2742#if EV_USE_INOTIFY 3196#if EV_USE_INOTIFY
2743 infy_del (EV_A_ w); 3197 infy_del (EV_A_ w);
2744#endif 3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
2745 ev_timer_stop (EV_A_ &w->timer); 3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
2746 3205
2747 ev_stop (EV_A_ (W)w); 3206 ev_stop (EV_A_ (W)w);
2748 3207
2749 EV_FREQUENT_CHECK; 3208 EV_FREQUENT_CHECK;
2750} 3209}
2891embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2892{ 3351{
2893 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2894 3353
2895 { 3354 {
2896 struct ev_loop *loop = w->other; 3355 EV_P = w->other;
2897 3356
2898 while (fdchangecnt) 3357 while (fdchangecnt)
2899 { 3358 {
2900 fd_reify (EV_A); 3359 fd_reify (EV_A);
2901 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2909 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2910 3369
2911 ev_embed_stop (EV_A_ w); 3370 ev_embed_stop (EV_A_ w);
2912 3371
2913 { 3372 {
2914 struct ev_loop *loop = w->other; 3373 EV_P = w->other;
2915 3374
2916 ev_loop_fork (EV_A); 3375 ev_loop_fork (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 } 3377 }
2919 3378
2933{ 3392{
2934 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2935 return; 3394 return;
2936 3395
2937 { 3396 {
2938 struct ev_loop *loop = w->other; 3397 EV_P = w->other;
2939 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2940 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2941 } 3400 }
2942 3401
2943 EV_FREQUENT_CHECK; 3402 EV_FREQUENT_CHECK;
3055 3514
3056void 3515void
3057ev_async_send (EV_P_ ev_async *w) 3516ev_async_send (EV_P_ ev_async *w)
3058{ 3517{
3059 w->sent = 1; 3518 w->sent = 1;
3060 evpipe_write (EV_A_ &gotasync); 3519 evpipe_write (EV_A_ &async_pending);
3061} 3520}
3062#endif 3521#endif
3063 3522
3064/*****************************************************************************/ 3523/*****************************************************************************/
3065 3524
3127 ev_timer_set (&once->to, timeout, 0.); 3586 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3587 ev_timer_start (EV_A_ &once->to);
3129 } 3588 }
3130} 3589}
3131 3590
3591/*****************************************************************************/
3592
3593#if EV_WALK_ENABLE
3594void
3595ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3596{
3597 int i, j;
3598 ev_watcher_list *wl, *wn;
3599
3600 if (types & (EV_IO | EV_EMBED))
3601 for (i = 0; i < anfdmax; ++i)
3602 for (wl = anfds [i].head; wl; )
3603 {
3604 wn = wl->next;
3605
3606#if EV_EMBED_ENABLE
3607 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3608 {
3609 if (types & EV_EMBED)
3610 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3611 }
3612 else
3613#endif
3614#if EV_USE_INOTIFY
3615 if (ev_cb ((ev_io *)wl) == infy_cb)
3616 ;
3617 else
3618#endif
3619 if ((ev_io *)wl != &pipe_w)
3620 if (types & EV_IO)
3621 cb (EV_A_ EV_IO, wl);
3622
3623 wl = wn;
3624 }
3625
3626 if (types & (EV_TIMER | EV_STAT))
3627 for (i = timercnt + HEAP0; i-- > HEAP0; )
3628#if EV_STAT_ENABLE
3629 /*TODO: timer is not always active*/
3630 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3631 {
3632 if (types & EV_STAT)
3633 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3634 }
3635 else
3636#endif
3637 if (types & EV_TIMER)
3638 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3639
3640#if EV_PERIODIC_ENABLE
3641 if (types & EV_PERIODIC)
3642 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3643 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3644#endif
3645
3646#if EV_IDLE_ENABLE
3647 if (types & EV_IDLE)
3648 for (j = NUMPRI; i--; )
3649 for (i = idlecnt [j]; i--; )
3650 cb (EV_A_ EV_IDLE, idles [j][i]);
3651#endif
3652
3653#if EV_FORK_ENABLE
3654 if (types & EV_FORK)
3655 for (i = forkcnt; i--; )
3656 if (ev_cb (forks [i]) != embed_fork_cb)
3657 cb (EV_A_ EV_FORK, forks [i]);
3658#endif
3659
3660#if EV_ASYNC_ENABLE
3661 if (types & EV_ASYNC)
3662 for (i = asynccnt; i--; )
3663 cb (EV_A_ EV_ASYNC, asyncs [i]);
3664#endif
3665
3666 if (types & EV_PREPARE)
3667 for (i = preparecnt; i--; )
3668#if EV_EMBED_ENABLE
3669 if (ev_cb (prepares [i]) != embed_prepare_cb)
3670#endif
3671 cb (EV_A_ EV_PREPARE, prepares [i]);
3672
3673 if (types & EV_CHECK)
3674 for (i = checkcnt; i--; )
3675 cb (EV_A_ EV_CHECK, checks [i]);
3676
3677 if (types & EV_SIGNAL)
3678 for (i = 0; i < EV_NSIG - 1; ++i)
3679 for (wl = signals [i].head; wl; )
3680 {
3681 wn = wl->next;
3682 cb (EV_A_ EV_SIGNAL, wl);
3683 wl = wn;
3684 }
3685
3686 if (types & EV_CHILD)
3687 for (i = EV_PID_HASHSIZE; i--; )
3688 for (wl = childs [i]; wl; )
3689 {
3690 wn = wl->next;
3691 cb (EV_A_ EV_CHILD, wl);
3692 wl = wn;
3693 }
3694/* EV_STAT 0x00001000 /* stat data changed */
3695/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3696}
3697#endif
3698
3132#if EV_MULTIPLICITY 3699#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3700 #include "ev_wrap.h"
3134#endif 3701#endif
3135 3702
3136#ifdef __cplusplus 3703#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines