ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.328 by root, Sun Feb 14 19:23:19 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
46# endif 76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
50# endif 95# endif
96# endif
51 97
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
54# endif 103# endif
55 104# endif
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
58# endif 111# endif
59 112# endif
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
61# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
62# endif 119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
64#endif 154#endif
65 155
66#include <math.h> 156#include <math.h>
67#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
68#include <fcntl.h> 159#include <fcntl.h>
69#include <stddef.h> 160#include <stddef.h>
70 161
71#include <stdio.h> 162#include <stdio.h>
72 163
73#include <assert.h> 164#include <assert.h>
74#include <errno.h> 165#include <errno.h>
75#include <sys/types.h> 166#include <sys/types.h>
76#include <time.h> 167#include <time.h>
168#include <limits.h>
77 169
78#include <signal.h> 170#include <signal.h>
79 171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
80#ifndef _WIN32 178#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 179# include <sys/time.h>
83# include <sys/wait.h> 180# include <sys/wait.h>
181# include <unistd.h>
84#else 182#else
183# include <io.h>
85# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 185# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
89# endif 188# endif
90#endif 189#endif
91 190
92/**/ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
93 227
94#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 230# define EV_USE_MONOTONIC 1
231# else
232# define EV_USE_MONOTONIC 0
233# endif
234#endif
235
236#ifndef EV_USE_REALTIME
237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
238#endif
239
240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
244# define EV_USE_NANOSLEEP 0
245# endif
96#endif 246#endif
97 247
98#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 250#endif
102 251
103#ifndef EV_USE_POLL 252#ifndef EV_USE_POLL
104# ifdef _WIN32 253# ifdef _WIN32
105# define EV_USE_POLL 0 254# define EV_USE_POLL 0
107# define EV_USE_POLL 1 256# define EV_USE_POLL 1
108# endif 257# endif
109#endif 258#endif
110 259
111#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
112# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
113#endif 266#endif
114 267
115#ifndef EV_USE_KQUEUE 268#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 269# define EV_USE_KQUEUE 0
117#endif 270#endif
118 271
119#ifndef EV_USE_REALTIME 272#ifndef EV_USE_PORT
273# define EV_USE_PORT 0
274#endif
275
276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 278# define EV_USE_INOTIFY 1
279# else
280# define EV_USE_INOTIFY 0
121#endif 281# endif
282#endif
122 283
123/**/ 284#ifndef EV_PID_HASHSIZE
285# if EV_MINIMAL
286# define EV_PID_HASHSIZE 1
287# else
288# define EV_PID_HASHSIZE 16
289# endif
290#endif
291
292#ifndef EV_INOTIFY_HASHSIZE
293# if EV_MINIMAL
294# define EV_INOTIFY_HASHSIZE 1
295# else
296# define EV_INOTIFY_HASHSIZE 16
297# endif
298#endif
299
300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
124 355
125#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
128#endif 359#endif
130#ifndef CLOCK_REALTIME 361#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 362# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 363# define EV_USE_REALTIME 0
133#endif 364#endif
134 365
366#if !EV_STAT_ENABLE
367# undef EV_USE_INOTIFY
368# define EV_USE_INOTIFY 0
369#endif
370
371#if !EV_USE_NANOSLEEP
372# ifndef _WIN32
373# include <sys/select.h>
374# endif
375#endif
376
377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
386#endif
387
135#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 389# include <winsock.h>
137#endif 390#endif
138 391
392#if EV_USE_EVENTFD
393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int eventfd (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
139/**/ 443/**/
140 444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
450
451/*
452 * This is used to avoid floating point rounding problems.
453 * It is added to ev_rt_now when scheduling periodics
454 * to ensure progress, time-wise, even when rounding
455 * errors are against us.
456 * This value is good at least till the year 4000.
457 * Better solutions welcome.
458 */
459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
460
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
145 463
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 464#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 466# define noinline __attribute__ ((noinline))
155#else 467#else
156# define expect(expr,value) (expr) 468# define expect(expr,value) (expr)
157# define inline static 469# define noinline
470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
471# define inline
472# endif
158#endif 473#endif
159 474
160#define expect_false(expr) expect ((expr) != 0, 0) 475#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 476#define expect_true(expr) expect ((expr) != 0, 1)
477#define inline_size static inline
162 478
479#if EV_MINIMAL
480# define inline_speed static noinline
481#else
482# define inline_speed static inline
483#endif
484
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
165 492
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
494#define EMPTY2(a,b) /* used to suppress some warnings */
167 495
168typedef struct ev_watcher *W; 496typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
171 499
500#define ev_active(w) ((W)(w))->active
501#define ev_at(w) ((WT)(w))->at
502
503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
173 522
174#ifdef _WIN32 523#ifdef _WIN32
175# include "ev_win32.c" 524# include "ev_win32.c"
176#endif 525#endif
177 526
178/*****************************************************************************/ 527/*****************************************************************************/
179 528
180static void (*syserr_cb)(const char *msg); 529static void (*syserr_cb)(const char *msg);
181 530
531void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 532ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 533{
184 syserr_cb = cb; 534 syserr_cb = cb;
185} 535}
186 536
187static void 537static void noinline
188syserr (const char *msg) 538ev_syserr (const char *msg)
189{ 539{
190 if (!msg) 540 if (!msg)
191 msg = "(libev) system error"; 541 msg = "(libev) system error";
192 542
193 if (syserr_cb) 543 if (syserr_cb)
197 perror (msg); 547 perror (msg);
198 abort (); 548 abort ();
199 } 549 }
200} 550}
201 551
552static void *
553ev_realloc_emul (void *ptr, long size)
554{
555 /* some systems, notably openbsd and darwin, fail to properly
556 * implement realloc (x, 0) (as required by both ansi c-98 and
557 * the single unix specification, so work around them here.
558 */
559
560 if (size)
561 return realloc (ptr, size);
562
563 free (ptr);
564 return 0;
565}
566
202static void *(*alloc)(void *ptr, long size); 567static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
203 568
569void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 570ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 571{
206 alloc = cb; 572 alloc = cb;
207} 573}
208 574
209static void * 575inline_speed void *
210ev_realloc (void *ptr, long size) 576ev_realloc (void *ptr, long size)
211{ 577{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 578 ptr = alloc (ptr, size);
213 579
214 if (!ptr && size) 580 if (!ptr && size)
215 { 581 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 582 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort (); 583 abort ();
223#define ev_malloc(size) ev_realloc (0, (size)) 589#define ev_malloc(size) ev_realloc (0, (size))
224#define ev_free(ptr) ev_realloc ((ptr), 0) 590#define ev_free(ptr) ev_realloc ((ptr), 0)
225 591
226/*****************************************************************************/ 592/*****************************************************************************/
227 593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
228typedef struct 598typedef struct
229{ 599{
230 WL head; 600 WL head;
231 unsigned char events; 601 unsigned char events; /* the events watched for */
602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
232 unsigned char reify; 604 unsigned char unused;
605#if EV_USE_EPOLL
606 unsigned int egen; /* generation counter to counter epoll bugs */
607#endif
233#if EV_SELECT_IS_WINSOCKET 608#if EV_SELECT_IS_WINSOCKET
234 SOCKET handle; 609 SOCKET handle;
235#endif 610#endif
236} ANFD; 611} ANFD;
237 612
613/* stores the pending event set for a given watcher */
238typedef struct 614typedef struct
239{ 615{
240 W w; 616 W w;
241 int events; 617 int events; /* the pending event set for the given watcher */
242} ANPENDING; 618} ANPENDING;
619
620#if EV_USE_INOTIFY
621/* hash table entry per inotify-id */
622typedef struct
623{
624 WL head;
625} ANFS;
626#endif
627
628/* Heap Entry */
629#if EV_HEAP_CACHE_AT
630 /* a heap element */
631 typedef struct {
632 ev_tstamp at;
633 WT w;
634 } ANHE;
635
636 #define ANHE_w(he) (he).w /* access watcher, read-write */
637 #define ANHE_at(he) (he).at /* access cached at, read-only */
638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
639#else
640 /* a heap element */
641 typedef WT ANHE;
642
643 #define ANHE_w(he) (he)
644 #define ANHE_at(he) (he)->at
645 #define ANHE_at_cache(he)
646#endif
243 647
244#if EV_MULTIPLICITY 648#if EV_MULTIPLICITY
245 649
246 struct ev_loop 650 struct ev_loop
247 { 651 {
251 #include "ev_vars.h" 655 #include "ev_vars.h"
252 #undef VAR 656 #undef VAR
253 }; 657 };
254 #include "ev_wrap.h" 658 #include "ev_wrap.h"
255 659
256 struct ev_loop default_loop_struct; 660 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 661 struct ev_loop *ev_default_loop_ptr;
258 662
259#else 663#else
260 664
261 ev_tstamp ev_rt_now; 665 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 666 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 667 #include "ev_vars.h"
264 #undef VAR 668 #undef VAR
265 669
266 static int default_loop; 670 static int ev_default_loop_ptr;
267 671
268#endif 672#endif
673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
269 685
270/*****************************************************************************/ 686/*****************************************************************************/
271 687
688#ifndef EV_HAVE_EV_TIME
272ev_tstamp 689ev_tstamp
273ev_time (void) 690ev_time (void)
274{ 691{
275#if EV_USE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
276 struct timespec ts; 695 struct timespec ts;
277 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
278 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
279#else 698 }
699#endif
700
280 struct timeval tv; 701 struct timeval tv;
281 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif
284} 704}
705#endif
285 706
286inline ev_tstamp 707inline_size ev_tstamp
287get_clock (void) 708get_clock (void)
288{ 709{
289#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 711 if (expect_true (have_monotonic))
291 { 712 {
304{ 725{
305 return ev_rt_now; 726 return ev_rt_now;
306} 727}
307#endif 728#endif
308 729
309#define array_roundsize(type,n) ((n) | 4 & ~3) 730void
731ev_sleep (ev_tstamp delay)
732{
733 if (delay > 0.)
734 {
735#if EV_USE_NANOSLEEP
736 struct timespec ts;
737
738 ts.tv_sec = (time_t)delay;
739 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
740
741 nanosleep (&ts, 0);
742#elif defined(_WIN32)
743 Sleep ((unsigned long)(delay * 1e3));
744#else
745 struct timeval tv;
746
747 tv.tv_sec = (time_t)delay;
748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
749
750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
751 /* something not guaranteed by newer posix versions, but guaranteed */
752 /* by older ones */
753 select (0, 0, 0, 0, &tv);
754#endif
755 }
756}
757
758/*****************************************************************************/
759
760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
761
762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
765array_nextsize (int elem, int cur, int cnt)
766{
767 int ncur = cur + 1;
768
769 do
770 ncur <<= 1;
771 while (cnt > ncur);
772
773 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
774 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
775 {
776 ncur *= elem;
777 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
778 ncur = ncur - sizeof (void *) * 4;
779 ncur /= elem;
780 }
781
782 return ncur;
783}
784
785static noinline void *
786array_realloc (int elem, void *base, int *cur, int cnt)
787{
788 *cur = array_nextsize (elem, *cur, cnt);
789 return ev_realloc (base, elem * *cur);
790}
791
792#define array_init_zero(base,count) \
793 memset ((void *)(base), 0, sizeof (*(base)) * (count))
310 794
311#define array_needsize(type,base,cur,cnt,init) \ 795#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 796 if (expect_false ((cnt) > (cur))) \
313 { \ 797 { \
314 int newcnt = cur; \ 798 int ocur_ = (cur); \
315 do \ 799 (base) = (type *)array_realloc \
316 { \ 800 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 801 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 802 }
325 803
804#if 0
326#define array_slim(type,stem) \ 805#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 806 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 807 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 808 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 809 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 811 }
812#endif
333 813
334#define array_free(stem, idx) \ 814#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
336 816
337/*****************************************************************************/ 817/*****************************************************************************/
338 818
339static void 819/* dummy callback for pending events */
340anfds_init (ANFD *base, int count) 820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
341{ 822{
342 while (count--)
343 {
344 base->head = 0;
345 base->events = EV_NONE;
346 base->reify = 0;
347
348 ++base;
349 }
350} 823}
351 824
352void 825void noinline
353ev_feed_event (EV_P_ void *w, int revents) 826ev_feed_event (EV_P_ void *w, int revents)
354{ 827{
355 W w_ = (W)w; 828 W w_ = (W)w;
829 int pri = ABSPRI (w_);
356 830
357 if (w_->pending) 831 if (expect_false (w_->pending))
832 pendings [pri][w_->pending - 1].events |= revents;
833 else
358 { 834 {
835 w_->pending = ++pendingcnt [pri];
836 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
837 pendings [pri][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 838 pendings [pri][w_->pending - 1].events = revents;
360 return;
361 } 839 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367} 840}
368 841
369static void 842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
370queue_events (EV_P_ W *events, int eventcnt, int type) 858queue_events (EV_P_ W *events, int eventcnt, int type)
371{ 859{
372 int i; 860 int i;
373 861
374 for (i = 0; i < eventcnt; ++i) 862 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type); 863 ev_feed_event (EV_A_ events [i], type);
376} 864}
377 865
866/*****************************************************************************/
867
378inline void 868inline_speed void
379fd_event (EV_P_ int fd, int revents) 869fd_event_nc (EV_P_ int fd, int revents)
380{ 870{
381 ANFD *anfd = anfds + fd; 871 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 872 ev_io *w;
383 873
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 875 {
386 int ev = w->events & revents; 876 int ev = w->events & revents;
387 877
388 if (ev) 878 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 879 ev_feed_event (EV_A_ (W)w, ev);
390 } 880 }
391} 881}
392 882
883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
889
890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
393void 894void
394ev_feed_fd_event (EV_P_ int fd, int revents) 895ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 896{
897 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 898 fd_event_nc (EV_A_ fd, revents);
397} 899}
398 900
399/*****************************************************************************/ 901/* make sure the external fd watch events are in-sync */
400 902/* with the kernel/libev internal state */
401static void 903inline_size void
402fd_reify (EV_P) 904fd_reify (EV_P)
403{ 905{
404 int i; 906 int i;
405 907
406 for (i = 0; i < fdchangecnt; ++i) 908 for (i = 0; i < fdchangecnt; ++i)
407 { 909 {
408 int fd = fdchanges [i]; 910 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 911 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 912 ev_io *w;
411 913
412 int events = 0; 914 unsigned char events = 0;
413 915
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 916 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 917 events |= (unsigned char)w->events;
416 918
417#if EV_SELECT_IS_WINSOCKET 919#if EV_SELECT_IS_WINSOCKET
418 if (events) 920 if (events)
419 { 921 {
420 unsigned long argp; 922 unsigned long arg;
421 anfd->handle = _get_osfhandle (fd); 923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
423 } 925 }
424#endif 926#endif
425 927
928 {
929 unsigned char o_events = anfd->events;
930 unsigned char o_reify = anfd->reify;
931
426 anfd->reify = 0; 932 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 933 anfd->events = events;
934
935 if (o_events != events || o_reify & EV__IOFDSET)
936 backend_modify (EV_A_ fd, o_events, events);
937 }
430 } 938 }
431 939
432 fdchangecnt = 0; 940 fdchangecnt = 0;
433} 941}
434 942
435static void 943/* something about the given fd changed */
944inline_size void
436fd_change (EV_P_ int fd) 945fd_change (EV_P_ int fd, int flags)
437{ 946{
438 if (anfds [fd].reify) 947 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 948 anfds [fd].reify |= flags;
442 949
950 if (expect_true (!reify))
951 {
443 ++fdchangecnt; 952 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 954 fdchanges [fdchangecnt - 1] = fd;
955 }
446} 956}
447 957
448static void 958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
449fd_kill (EV_P_ int fd) 960fd_kill (EV_P_ int fd)
450{ 961{
451 struct ev_io *w; 962 ev_io *w;
452 963
453 while ((w = (struct ev_io *)anfds [fd].head)) 964 while ((w = (ev_io *)anfds [fd].head))
454 { 965 {
455 ev_io_stop (EV_A_ w); 966 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 968 }
458} 969}
459 970
460static int 971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
461fd_valid (int fd) 973fd_valid (int fd)
462{ 974{
463#ifdef _WIN32 975#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
465#else 977#else
466 return fcntl (fd, F_GETFD) != -1; 978 return fcntl (fd, F_GETFD) != -1;
467#endif 979#endif
468} 980}
469 981
470/* called on EBADF to verify fds */ 982/* called on EBADF to verify fds */
471static void 983static void noinline
472fd_ebadf (EV_P) 984fd_ebadf (EV_P)
473{ 985{
474 int fd; 986 int fd;
475 987
476 for (fd = 0; fd < anfdmax; ++fd) 988 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events) 989 if (anfds [fd].events)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 990 if (!fd_valid (fd) && errno == EBADF)
479 fd_kill (EV_A_ fd); 991 fd_kill (EV_A_ fd);
480} 992}
481 993
482/* called on ENOMEM in select/poll to kill some fds and retry */ 994/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 995static void noinline
484fd_enomem (EV_P) 996fd_enomem (EV_P)
485{ 997{
486 int fd; 998 int fd;
487 999
488 for (fd = anfdmax; fd--; ) 1000 for (fd = anfdmax; fd--; )
489 if (anfds [fd].events) 1001 if (anfds [fd].events)
490 { 1002 {
491 fd_kill (EV_A_ fd); 1003 fd_kill (EV_A_ fd);
492 return; 1004 break;
493 } 1005 }
494} 1006}
495 1007
496/* usually called after fork if method needs to re-arm all fds from scratch */ 1008/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 1009static void noinline
498fd_rearm_all (EV_P) 1010fd_rearm_all (EV_P)
499{ 1011{
500 int fd; 1012 int fd;
501 1013
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 1015 if (anfds [fd].events)
505 { 1016 {
506 anfds [fd].events = 0; 1017 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 1018 anfds [fd].emask = 0;
1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
508 } 1020 }
509} 1021}
510 1022
511/*****************************************************************************/ 1023/*****************************************************************************/
512 1024
513static void 1025/*
514upheap (WT *heap, int k) 1026 * the heap functions want a real array index. array index 0 uis guaranteed to not
515{ 1027 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
516 WT w = heap [k]; 1028 * the branching factor of the d-tree.
1029 */
517 1030
518 while (k && heap [k >> 1]->at > w->at) 1031/*
519 { 1032 * at the moment we allow libev the luxury of two heaps,
520 heap [k] = heap [k >> 1]; 1033 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
521 ((W)heap [k])->active = k + 1; 1034 * which is more cache-efficient.
522 k >>= 1; 1035 * the difference is about 5% with 50000+ watchers.
523 } 1036 */
1037#if EV_USE_4HEAP
524 1038
525 heap [k] = w; 1039#define DHEAP 4
526 ((W)heap [k])->active = k + 1; 1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1042#define UPHEAP_DONE(p,k) ((p) == (k))
527 1043
528} 1044/* away from the root */
529 1045inline_speed void
530static void
531downheap (WT *heap, int N, int k) 1046downheap (ANHE *heap, int N, int k)
532{ 1047{
533 WT w = heap [k]; 1048 ANHE he = heap [k];
1049 ANHE *E = heap + N + HEAP0;
534 1050
535 while (k < (N >> 1)) 1051 for (;;)
536 { 1052 {
537 int j = k << 1; 1053 ev_tstamp minat;
1054 ANHE *minpos;
1055 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
538 1056
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1057 /* find minimum child */
1058 if (expect_true (pos + DHEAP - 1 < E))
540 ++j; 1059 {
541 1060 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
542 if (w->at <= heap [j]->at) 1061 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else if (pos < E)
1066 {
1067 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1068 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1069 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1070 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1071 }
1072 else
543 break; 1073 break;
544 1074
1075 if (ANHE_at (he) <= minat)
1076 break;
1077
1078 heap [k] = *minpos;
1079 ev_active (ANHE_w (*minpos)) = k;
1080
1081 k = minpos - heap;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087
1088#else /* 4HEAP */
1089
1090#define HEAP0 1
1091#define HPARENT(k) ((k) >> 1)
1092#define UPHEAP_DONE(p,k) (!(p))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099
1100 for (;;)
1101 {
1102 int c = k << 1;
1103
1104 if (c >= N + HEAP0)
1105 break;
1106
1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1108 ? 1 : 0;
1109
1110 if (ANHE_at (he) <= ANHE_at (heap [c]))
1111 break;
1112
545 heap [k] = heap [j]; 1113 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 1114 ev_active (ANHE_w (heap [k])) = k;
1115
547 k = j; 1116 k = c;
548 } 1117 }
549 1118
550 heap [k] = w; 1119 heap [k] = he;
551 ((W)heap [k])->active = k + 1; 1120 ev_active (ANHE_w (he)) = k;
552} 1121}
1122#endif
553 1123
1124/* towards the root */
1125inline_speed void
1126upheap (ANHE *heap, int k)
1127{
1128 ANHE he = heap [k];
1129
1130 for (;;)
1131 {
1132 int p = HPARENT (k);
1133
1134 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1135 break;
1136
1137 heap [k] = heap [p];
1138 ev_active (ANHE_w (heap [k])) = k;
1139 k = p;
1140 }
1141
1142 heap [k] = he;
1143 ev_active (ANHE_w (he)) = k;
1144}
1145
1146/* move an element suitably so it is in a correct place */
554inline void 1147inline_size void
555adjustheap (WT *heap, int N, int k) 1148adjustheap (ANHE *heap, int N, int k)
556{ 1149{
1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
557 upheap (heap, k); 1151 upheap (heap, k);
1152 else
558 downheap (heap, N, k); 1153 downheap (heap, N, k);
1154}
1155
1156/* rebuild the heap: this function is used only once and executed rarely */
1157inline_size void
1158reheap (ANHE *heap, int N)
1159{
1160 int i;
1161
1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1163 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1164 for (i = 0; i < N; ++i)
1165 upheap (heap, i + HEAP0);
559} 1166}
560 1167
561/*****************************************************************************/ 1168/*****************************************************************************/
562 1169
1170/* associate signal watchers to a signal signal */
563typedef struct 1171typedef struct
564{ 1172{
1173 EV_ATOMIC_T pending;
1174#if EV_MULTIPLICITY
1175 EV_P;
1176#endif
565 WL head; 1177 WL head;
566 sig_atomic_t volatile gotsig;
567} ANSIG; 1178} ANSIG;
568 1179
569static ANSIG *signals; 1180static ANSIG signals [EV_NSIG - 1];
570static int signalmax;
571 1181
572static int sigpipe [2]; 1182/*****************************************************************************/
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575 1183
576static void 1184/* used to prepare libev internal fd's */
577signals_init (ANSIG *base, int count) 1185/* this is not fork-safe */
578{
579 while (count--)
580 {
581 base->head = 0;
582 base->gotsig = 0;
583
584 ++base;
585 }
586}
587
588static void
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594
595 signals [signum - 1].gotsig = 1;
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void 1186inline_speed void
640fd_intern (int fd) 1187fd_intern (int fd)
641{ 1188{
642#ifdef _WIN32 1189#ifdef _WIN32
643 int arg = 1; 1190 unsigned long arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
645#else 1192#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 1194 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 1195#endif
649} 1196}
650 1197
1198static void noinline
1199evpipe_init (EV_P)
1200{
1201 if (!ev_is_active (&pipe_w))
1202 {
1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
1209 {
1210 evpipe [0] = -1;
1211 fd_intern (evfd); /* doing it twice doesn't hurt */
1212 ev_io_set (&pipe_w, evfd, EV_READ);
1213 }
1214 else
1215#endif
1216 {
1217 while (pipe (evpipe))
1218 ev_syserr ("(libev) error creating signal/async pipe");
1219
1220 fd_intern (evpipe [0]);
1221 fd_intern (evpipe [1]);
1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1223 }
1224
1225 ev_io_start (EV_A_ &pipe_w);
1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1227 }
1228}
1229
1230inline_size void
1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1232{
1233 if (!*flag)
1234 {
1235 int old_errno = errno; /* save errno because write might clobber it */
1236
1237 *flag = 1;
1238
1239#if EV_USE_EVENTFD
1240 if (evfd >= 0)
1241 {
1242 uint64_t counter = 1;
1243 write (evfd, &counter, sizeof (uint64_t));
1244 }
1245 else
1246#endif
1247 write (evpipe [1], &old_errno, 1);
1248
1249 errno = old_errno;
1250 }
1251}
1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
651static void 1255static void
652siginit (EV_P) 1256pipecb (EV_P_ ev_io *iow, int revents)
653{ 1257{
654 fd_intern (sigpipe [0]); 1258 int i;
655 fd_intern (sigpipe [1]);
656 1259
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 1260#if EV_USE_EVENTFD
658 ev_io_start (EV_A_ &sigev); 1261 if (evfd >= 0)
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1262 {
1263 uint64_t counter;
1264 read (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 {
1269 char dummy;
1270 read (evpipe [0], &dummy, 1);
1271 }
1272
1273 if (sig_pending)
1274 {
1275 sig_pending = 0;
1276
1277 for (i = EV_NSIG - 1; i--; )
1278 if (expect_false (signals [i].pending))
1279 ev_feed_signal_event (EV_A_ i + 1);
1280 }
1281
1282#if EV_ASYNC_ENABLE
1283 if (async_pending)
1284 {
1285 async_pending = 0;
1286
1287 for (i = asynccnt; i--; )
1288 if (asyncs [i]->sent)
1289 {
1290 asyncs [i]->sent = 0;
1291 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1292 }
1293 }
1294#endif
660} 1295}
661 1296
662/*****************************************************************************/ 1297/*****************************************************************************/
663 1298
664static struct ev_child *childs [PID_HASHSIZE]; 1299static void
1300ev_sighandler (int signum)
1301{
1302#if EV_MULTIPLICITY
1303 EV_P = signals [signum - 1].loop;
1304#endif
1305
1306#ifdef _WIN32
1307 signal (signum, ev_sighandler);
1308#endif
1309
1310 signals [signum - 1].pending = 1;
1311 evpipe_write (EV_A_ &sig_pending);
1312}
1313
1314void noinline
1315ev_feed_signal_event (EV_P_ int signum)
1316{
1317 WL w;
1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1324#if EV_MULTIPLICITY
1325 /* it is permissible to try to feed a signal to the wrong loop */
1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1327
1328 if (expect_false (signals [signum].loop != EV_A))
1329 return;
1330#endif
1331
1332 signals [signum].pending = 0;
1333
1334 for (w = signals [signum].head; w; w = w->next)
1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1336}
1337
1338#if EV_USE_SIGNALFD
1339static void
1340sigfdcb (EV_P_ ev_io *iow, int revents)
1341{
1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1343
1344 for (;;)
1345 {
1346 ssize_t res = read (sigfd, si, sizeof (si));
1347
1348 /* not ISO-C, as res might be -1, but works with SuS */
1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1351
1352 if (res < (ssize_t)sizeof (si))
1353 break;
1354 }
1355}
1356#endif
1357
1358/*****************************************************************************/
1359
1360static WL childs [EV_PID_HASHSIZE];
665 1361
666#ifndef _WIN32 1362#ifndef _WIN32
667 1363
668static struct ev_signal childev; 1364static ev_signal childev;
1365
1366#ifndef WIFCONTINUED
1367# define WIFCONTINUED(status) 0
1368#endif
1369
1370/* handle a single child status event */
1371inline_speed void
1372child_reap (EV_P_ int chain, int pid, int status)
1373{
1374 ev_child *w;
1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1376
1377 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1378 {
1379 if ((w->pid == pid || !w->pid)
1380 && (!traced || (w->flags & 1)))
1381 {
1382 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1383 w->rpid = pid;
1384 w->rstatus = status;
1385 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1386 }
1387 }
1388}
669 1389
670#ifndef WCONTINUED 1390#ifndef WCONTINUED
671# define WCONTINUED 0 1391# define WCONTINUED 0
672#endif 1392#endif
673 1393
1394/* called on sigchld etc., calls waitpid */
674static void 1395static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
691{ 1397{
692 int pid, status; 1398 int pid, status;
693 1399
1400 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1401 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 1402 if (!WCONTINUED
1403 || errno != EINVAL
1404 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1405 return;
1406
696 /* make sure we are called again until all childs have been reaped */ 1407 /* make sure we are called again until all children have been reaped */
1408 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1409 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 1410
699 child_reap (EV_A_ sw, pid, pid, status); 1411 child_reap (EV_A_ pid, pid, status);
1412 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1413 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 1414}
703 1415
704#endif 1416#endif
705 1417
706/*****************************************************************************/ 1418/*****************************************************************************/
707 1419
1420#if EV_USE_PORT
1421# include "ev_port.c"
1422#endif
708#if EV_USE_KQUEUE 1423#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 1424# include "ev_kqueue.c"
710#endif 1425#endif
711#if EV_USE_EPOLL 1426#if EV_USE_EPOLL
712# include "ev_epoll.c" 1427# include "ev_epoll.c"
729{ 1444{
730 return EV_VERSION_MINOR; 1445 return EV_VERSION_MINOR;
731} 1446}
732 1447
733/* return true if we are running with elevated privileges and should ignore env variables */ 1448/* return true if we are running with elevated privileges and should ignore env variables */
734static int 1449int inline_size
735enable_secure (void) 1450enable_secure (void)
736{ 1451{
737#ifdef _WIN32 1452#ifdef _WIN32
738 return 0; 1453 return 0;
739#else 1454#else
740 return getuid () != geteuid () 1455 return getuid () != geteuid ()
741 || getgid () != getegid (); 1456 || getgid () != getegid ();
742#endif 1457#endif
743} 1458}
744 1459
745int 1460unsigned int
746ev_method (EV_P) 1461ev_supported_backends (void)
747{ 1462{
748 return method; 1463 unsigned int flags = 0;
749}
750 1464
751static void 1465 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 1466 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1467 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1468 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1469 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1470
1471 return flags;
1472}
1473
1474unsigned int
1475ev_recommended_backends (void)
753{ 1476{
754 if (!method) 1477 unsigned int flags = ev_supported_backends ();
1478
1479#ifndef __NetBSD__
1480 /* kqueue is borked on everything but netbsd apparently */
1481 /* it usually doesn't work correctly on anything but sockets and pipes */
1482 flags &= ~EVBACKEND_KQUEUE;
1483#endif
1484#ifdef __APPLE__
1485 /* only select works correctly on that "unix-certified" platform */
1486 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1487 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1488#endif
1489
1490 return flags;
1491}
1492
1493unsigned int
1494ev_embeddable_backends (void)
1495{
1496 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1497
1498 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1499 /* please fix it and tell me how to detect the fix */
1500 flags &= ~EVBACKEND_EPOLL;
1501
1502 return flags;
1503}
1504
1505unsigned int
1506ev_backend (EV_P)
1507{
1508 return backend;
1509}
1510
1511#if EV_MINIMAL < 2
1512unsigned int
1513ev_loop_count (EV_P)
1514{
1515 return loop_count;
1516}
1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
1524void
1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1526{
1527 io_blocktime = interval;
1528}
1529
1530void
1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1532{
1533 timeout_blocktime = interval;
1534}
1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
1561static void noinline
1562loop_init (EV_P_ unsigned int flags)
1563{
1564 if (!backend)
755 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
756#if EV_USE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
757 { 1578 {
758 struct timespec ts; 1579 struct timespec ts;
1580
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 1582 have_monotonic = 1;
761 } 1583 }
762#endif 1584#endif
763 1585
1586 /* pid check not overridable via env */
1587#ifndef _WIN32
1588 if (flags & EVFLAG_FORKCHECK)
1589 curpid = getpid ();
1590#endif
1591
1592 if (!(flags & EVFLAG_NOENV)
1593 && !enable_secure ()
1594 && getenv ("LIBEV_FLAGS"))
1595 flags = atoi (getenv ("LIBEV_FLAGS"));
1596
764 ev_rt_now = ev_time (); 1597 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1598 mn_now = get_clock ();
766 now_floor = mn_now; 1599 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
768 1604
769 if (methods == EVMETHOD_AUTO) 1605 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1606 timeout_blocktime = 0.;
771 methods = atoi (getenv ("LIBEV_METHODS")); 1607 backend = 0;
772 else 1608 backend_fd = -1;
773 methods = EVMETHOD_ANY; 1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1613#if EV_USE_INOTIFY
1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1615#endif
1616#if EV_USE_SIGNALFD
1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1618#endif
774 1619
775 method = 0; 1620 if (!(flags & 0x0000ffffU))
1621 flags |= ev_recommended_backends ();
1622
1623#if EV_USE_PORT
1624 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1625#endif
776#if EV_USE_KQUEUE 1626#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1627 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1628#endif
779#if EV_USE_EPOLL 1629#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1630 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1631#endif
782#if EV_USE_POLL 1632#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1633 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1634#endif
785#if EV_USE_SELECT 1635#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1637#endif
788 1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
789 ev_init (&sigev, sigcb); 1641 ev_init (&pipe_w, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1642 ev_set_priority (&pipe_w, EV_MAXPRI);
791 } 1643 }
792} 1644}
793 1645
794void 1646/* free up a loop structure */
1647static void noinline
795loop_destroy (EV_P) 1648loop_destroy (EV_P)
796{ 1649{
797 int i; 1650 int i;
798 1651
1652 if (ev_is_active (&pipe_w))
1653 {
1654 /*ev_ref (EV_A);*/
1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1656
1657#if EV_USE_EVENTFD
1658 if (evfd >= 0)
1659 close (evfd);
1660#endif
1661
1662 if (evpipe [0] >= 0)
1663 {
1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1666 }
1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
1673
1674#if EV_USE_INOTIFY
1675 if (fs_fd >= 0)
1676 close (fs_fd);
1677#endif
1678
1679 if (backend_fd >= 0)
1680 close (backend_fd);
1681
1682#if EV_USE_PORT
1683 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1684#endif
799#if EV_USE_KQUEUE 1685#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1686 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1687#endif
802#if EV_USE_EPOLL 1688#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1689 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1690#endif
805#if EV_USE_POLL 1691#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1692 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1693#endif
808#if EV_USE_SELECT 1694#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1695 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1696#endif
811 1697
812 for (i = NUMPRI; i--; ) 1698 for (i = NUMPRI; i--; )
1699 {
813 array_free (pending, [i]); 1700 array_free (pending, [i]);
1701#if EV_IDLE_ENABLE
1702 array_free (idle, [i]);
1703#endif
1704 }
1705
1706 ev_free (anfds); anfds = 0; anfdmax = 0;
814 1707
815 /* have to use the microsoft-never-gets-it-right macro */ 1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
816 array_free (fdchange, EMPTY); 1710 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1711 array_free (timer, EMPTY);
818#if EV_PERIODICS 1712#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1713 array_free (periodic, EMPTY);
820#endif 1714#endif
1715#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1716 array_free (fork, EMPTY);
1717#endif
822 array_free (prepare, EMPTY); 1718 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1719 array_free (check, EMPTY);
1720#if EV_ASYNC_ENABLE
1721 array_free (async, EMPTY);
1722#endif
824 1723
825 method = 0; 1724 backend = 0;
826} 1725}
827 1726
828static void 1727#if EV_USE_INOTIFY
1728inline_size void infy_fork (EV_P);
1729#endif
1730
1731inline_size void
829loop_fork (EV_P) 1732loop_fork (EV_P)
830{ 1733{
1734#if EV_USE_PORT
1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1736#endif
1737#if EV_USE_KQUEUE
1738 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1739#endif
831#if EV_USE_EPOLL 1740#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1741 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1742#endif
834#if EV_USE_KQUEUE 1743#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1744 infy_fork (EV_A);
836#endif 1745#endif
837 1746
838 if (ev_is_active (&sigev)) 1747 if (ev_is_active (&pipe_w))
839 { 1748 {
840 /* default loop */ 1749 /* this "locks" the handlers against writing to the pipe */
1750 /* while we modify the fd vars */
1751 sig_pending = 1;
1752#if EV_ASYNC_ENABLE
1753 async_pending = 1;
1754#endif
841 1755
842 ev_ref (EV_A); 1756 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 1757 ev_io_stop (EV_A_ &pipe_w);
844 close (sigpipe [0]);
845 close (sigpipe [1]);
846 1758
847 while (pipe (sigpipe)) 1759#if EV_USE_EVENTFD
848 syserr ("(libev) error creating pipe"); 1760 if (evfd >= 0)
1761 close (evfd);
1762#endif
849 1763
1764 if (evpipe [0] >= 0)
1765 {
1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1768 }
1769
850 siginit (EV_A); 1770 evpipe_init (EV_A);
1771 /* now iterate over everything, in case we missed something */
1772 pipecb (EV_A_ &pipe_w, EV_READ);
851 } 1773 }
852 1774
853 postfork = 0; 1775 postfork = 0;
854} 1776}
1777
1778#if EV_MULTIPLICITY
1779
1780struct ev_loop *
1781ev_loop_new (unsigned int flags)
1782{
1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1784
1785 memset (EV_A, 0, sizeof (struct ev_loop));
1786 loop_init (EV_A_ flags);
1787
1788 if (ev_backend (EV_A))
1789 return EV_A;
1790
1791 return 0;
1792}
1793
1794void
1795ev_loop_destroy (EV_P)
1796{
1797 loop_destroy (EV_A);
1798 ev_free (loop);
1799}
1800
1801void
1802ev_loop_fork (EV_P)
1803{
1804 postfork = 1; /* must be in line with ev_default_fork */
1805}
1806#endif /* multiplicity */
1807
1808#if EV_VERIFY
1809static void noinline
1810verify_watcher (EV_P_ W w)
1811{
1812 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1813
1814 if (w->pending)
1815 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1816}
1817
1818static void noinline
1819verify_heap (EV_P_ ANHE *heap, int N)
1820{
1821 int i;
1822
1823 for (i = HEAP0; i < N + HEAP0; ++i)
1824 {
1825 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1826 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1827 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1828
1829 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1830 }
1831}
1832
1833static void noinline
1834array_verify (EV_P_ W *ws, int cnt)
1835{
1836 while (cnt--)
1837 {
1838 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1839 verify_watcher (EV_A_ ws [cnt]);
1840 }
1841}
1842#endif
1843
1844#if EV_MINIMAL < 2
1845void
1846ev_loop_verify (EV_P)
1847{
1848#if EV_VERIFY
1849 int i;
1850 WL w;
1851
1852 assert (activecnt >= -1);
1853
1854 assert (fdchangemax >= fdchangecnt);
1855 for (i = 0; i < fdchangecnt; ++i)
1856 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1857
1858 assert (anfdmax >= 0);
1859 for (i = 0; i < anfdmax; ++i)
1860 for (w = anfds [i].head; w; w = w->next)
1861 {
1862 verify_watcher (EV_A_ (W)w);
1863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1865 }
1866
1867 assert (timermax >= timercnt);
1868 verify_heap (EV_A_ timers, timercnt);
1869
1870#if EV_PERIODIC_ENABLE
1871 assert (periodicmax >= periodiccnt);
1872 verify_heap (EV_A_ periodics, periodiccnt);
1873#endif
1874
1875 for (i = NUMPRI; i--; )
1876 {
1877 assert (pendingmax [i] >= pendingcnt [i]);
1878#if EV_IDLE_ENABLE
1879 assert (idleall >= 0);
1880 assert (idlemax [i] >= idlecnt [i]);
1881 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1882#endif
1883 }
1884
1885#if EV_FORK_ENABLE
1886 assert (forkmax >= forkcnt);
1887 array_verify (EV_A_ (W *)forks, forkcnt);
1888#endif
1889
1890#if EV_ASYNC_ENABLE
1891 assert (asyncmax >= asynccnt);
1892 array_verify (EV_A_ (W *)asyncs, asynccnt);
1893#endif
1894
1895 assert (preparemax >= preparecnt);
1896 array_verify (EV_A_ (W *)prepares, preparecnt);
1897
1898 assert (checkmax >= checkcnt);
1899 array_verify (EV_A_ (W *)checks, checkcnt);
1900
1901# if 0
1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1904# endif
1905#endif
1906}
1907#endif
855 1908
856#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
857struct ev_loop * 1910struct ev_loop *
858ev_loop_new (int methods) 1911ev_default_loop_init (unsigned int flags)
859{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861
862 memset (loop, 0, sizeof (struct ev_loop));
863
864 loop_init (EV_A_ methods);
865
866 if (ev_method (EV_A))
867 return loop;
868
869 return 0;
870}
871
872void
873ev_loop_destroy (EV_P)
874{
875 loop_destroy (EV_A);
876 ev_free (loop);
877}
878
879void
880ev_loop_fork (EV_P)
881{
882 postfork = 1;
883}
884
885#endif
886
887#if EV_MULTIPLICITY
888struct ev_loop *
889#else 1912#else
890int 1913int
1914ev_default_loop (unsigned int flags)
891#endif 1915#endif
892ev_default_loop (int methods)
893{ 1916{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 1917 if (!ev_default_loop_ptr)
899 { 1918 {
900#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
902#else 1921#else
903 default_loop = 1; 1922 ev_default_loop_ptr = 1;
904#endif 1923#endif
905 1924
906 loop_init (EV_A_ methods); 1925 loop_init (EV_A_ flags);
907 1926
908 if (ev_method (EV_A)) 1927 if (ev_backend (EV_A))
909 { 1928 {
910 siginit (EV_A);
911
912#ifndef _WIN32 1929#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1930 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 1931 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 1932 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1933 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1934#endif
918 } 1935 }
919 else 1936 else
920 default_loop = 0; 1937 ev_default_loop_ptr = 0;
921 } 1938 }
922 1939
923 return default_loop; 1940 return ev_default_loop_ptr;
924} 1941}
925 1942
926void 1943void
927ev_default_destroy (void) 1944ev_default_destroy (void)
928{ 1945{
929#if EV_MULTIPLICITY 1946#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1947 EV_P = ev_default_loop_ptr;
931#endif 1948#endif
1949
1950 ev_default_loop_ptr = 0;
932 1951
933#ifndef _WIN32 1952#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1953 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1954 ev_signal_stop (EV_A_ &childev);
936#endif 1955#endif
937 1956
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A); 1957 loop_destroy (EV_A);
945} 1958}
946 1959
947void 1960void
948ev_default_fork (void) 1961ev_default_fork (void)
949{ 1962{
950#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1964 EV_P = ev_default_loop_ptr;
952#endif 1965#endif
953 1966
954 if (method) 1967 postfork = 1; /* must be in line with ev_loop_fork */
955 postfork = 1;
956} 1968}
957 1969
958/*****************************************************************************/ 1970/*****************************************************************************/
959 1971
960static int 1972void
961any_pending (EV_P) 1973ev_invoke (EV_P_ void *w, int revents)
1974{
1975 EV_CB_INVOKE ((W)w, revents);
1976}
1977
1978unsigned int
1979ev_pending_count (EV_P)
962{ 1980{
963 int pri; 1981 int pri;
1982 unsigned int count = 0;
964 1983
965 for (pri = NUMPRI; pri--; ) 1984 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri]) 1985 count += pendingcnt [pri];
967 return 1;
968 1986
969 return 0; 1987 return count;
970} 1988}
971 1989
972static void 1990void noinline
973call_pending (EV_P) 1991ev_invoke_pending (EV_P)
974{ 1992{
975 int pri; 1993 int pri;
976 1994
977 for (pri = NUMPRI; pri--; ) 1995 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1996 while (pendingcnt [pri])
979 { 1997 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1999
982 if (p->w) 2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
983 { 2001 /* ^ this is no longer true, as pending_w could be here */
2002
984 p->w->pending = 0; 2003 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 2004 EV_CB_INVOKE (p->w, p->events);
986 } 2005 EV_FREQUENT_CHECK;
987 } 2006 }
988} 2007}
989 2008
990static void 2009#if EV_IDLE_ENABLE
2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
2013idle_reify (EV_P)
2014{
2015 if (expect_false (idleall))
2016 {
2017 int pri;
2018
2019 for (pri = NUMPRI; pri--; )
2020 {
2021 if (pendingcnt [pri])
2022 break;
2023
2024 if (idlecnt [pri])
2025 {
2026 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2027 break;
2028 }
2029 }
2030 }
2031}
2032#endif
2033
2034/* make timers pending */
2035inline_size void
991timers_reify (EV_P) 2036timers_reify (EV_P)
992{ 2037{
2038 EV_FREQUENT_CHECK;
2039
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
994 { 2041 {
995 struct ev_timer *w = timers [0]; 2042 do
996
997 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998
999 /* first reschedule or stop timer */
1000 if (w->repeat)
1001 { 2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
2051 ev_at (w) += w->repeat;
2052 if (ev_at (w) < mn_now)
2053 ev_at (w) = mn_now;
2054
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 2056
1004 ((WT)w)->at += w->repeat; 2057 ANHE_at_cache (timers [HEAP0]);
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
1008 downheap ((WT *)timers, timercnt, 0); 2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
1009 } 2065 }
1010 else 2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 2067
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
1014 } 2069 }
1015} 2070}
1016 2071
1017#if EV_PERIODICS 2072#if EV_PERIODIC_ENABLE
1018static void 2073/* make periodics pending */
2074inline_size void
1019periodics_reify (EV_P) 2075periodics_reify (EV_P)
1020{ 2076{
2077 EV_FREQUENT_CHECK;
2078
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1022 { 2080 {
1023 struct ev_periodic *w = periodics [0]; 2081 int feed_count = 0;
1024 2082
2083 do
2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 2088
1027 /* first reschedule or stop timer */ 2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2093
2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2095
2096 ANHE_at_cache (periodics [HEAP0]);
2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
2123 }
2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2125
2126 feed_reverse_done (EV_A_ EV_PERIODIC);
2127 }
2128}
2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2132static void noinline
2133periodics_reschedule (EV_P)
2134{
2135 int i;
2136
2137 /* adjust periodics after time jump */
2138 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2139 {
2140 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2141
1028 if (w->reschedule_cb) 2142 if (w->reschedule_cb)
2143 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2144 else if (w->interval)
2145 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2146
2147 ANHE_at_cache (periodics [i]);
2148 }
2149
2150 reheap (periodics, periodiccnt);
2151}
2152#endif
2153
2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
2160 for (i = 0; i < timercnt; ++i)
2161 {
2162 ANHE *he = timers + i + HEAP0;
2163 ANHE_w (*he)->at += adjust;
2164 ANHE_at_cache (*he);
2165 }
2166}
2167
2168/* fetch new monotonic and realtime times from the kernel */
2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
2171time_update (EV_P_ ev_tstamp max_block)
2172{
2173#if EV_USE_MONOTONIC
2174 if (expect_true (have_monotonic))
2175 {
2176 int i;
2177 ev_tstamp odiff = rtmn_diff;
2178
2179 mn_now = get_clock ();
2180
2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2182 /* interpolate in the meantime */
2183 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1029 { 2184 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2185 ev_rt_now = rtmn_diff + mn_now;
1031 2186 return;
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 2187 }
1035 else if (w->interval)
1036 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 }
1041 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 2188
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 }
1046}
1047
1048static void
1049periodics_reschedule (EV_P)
1050{
1051 int i;
1052
1053 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i)
1055 {
1056 struct ev_periodic *w = periodics [i];
1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
1067}
1068#endif
1069
1070inline int
1071time_update_monotonic (EV_P)
1072{
1073 mn_now = get_clock ();
1074
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 {
1077 ev_rt_now = rtmn_diff + mn_now;
1078 return 0;
1079 }
1080 else
1081 {
1082 now_floor = mn_now; 2189 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 2190 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 2191
1088static void 2192 /* loop a few times, before making important decisions.
1089time_update (EV_P) 2193 * on the choice of "4": one iteration isn't enough,
1090{ 2194 * in case we get preempted during the calls to
1091 int i; 2195 * ev_time and get_clock. a second call is almost guaranteed
1092 2196 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 2197 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 2198 * in the unlikely event of having been preempted here.
1095 { 2199 */
1096 if (time_update_monotonic (EV_A)) 2200 for (i = 4; --i; )
1097 { 2201 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 2202 rtmn_diff = ev_rt_now - mn_now;
1103 2203
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2204 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1105 return; /* all is well */ 2205 return; /* all is well */
1106 2206
1107 ev_rt_now = ev_time (); 2207 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 2208 mn_now = get_clock ();
1109 now_floor = mn_now; 2209 now_floor = mn_now;
1110 } 2210 }
1111 2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112# if EV_PERIODICS 2214# if EV_PERIODIC_ENABLE
2215 periodics_reschedule (EV_A);
2216# endif
2217 }
2218 else
2219#endif
2220 {
2221 ev_rt_now = ev_time ();
2222
2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2224 {
2225 /* adjust timers. this is easy, as the offset is the same for all of them */
2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2227#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1114# endif 2229#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 2230 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 2231
1135 mn_now = ev_rt_now; 2232 mn_now = ev_rt_now;
1136 } 2233 }
1137} 2234}
1138 2235
1139void 2236void
1140ev_ref (EV_P)
1141{
1142 ++activecnt;
1143}
1144
1145void
1146ev_unref (EV_P)
1147{
1148 --activecnt;
1149}
1150
1151static int loop_done;
1152
1153void
1154ev_loop (EV_P_ int flags) 2237ev_loop (EV_P_ int flags)
1155{ 2238{
1156 double block; 2239#if EV_MINIMAL < 2
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2240 ++loop_depth;
2241#endif
2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
2245 loop_done = EVUNLOOP_CANCEL;
2246
2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1158 2248
1159 do 2249 do
1160 { 2250 {
2251#if EV_VERIFY >= 2
2252 ev_loop_verify (EV_A);
2253#endif
2254
2255#ifndef _WIN32
2256 if (expect_false (curpid)) /* penalise the forking check even more */
2257 if (expect_false (getpid () != curpid))
2258 {
2259 curpid = getpid ();
2260 postfork = 1;
2261 }
2262#endif
2263
2264#if EV_FORK_ENABLE
2265 /* we might have forked, so queue fork handlers */
2266 if (expect_false (postfork))
2267 if (forkcnt)
2268 {
2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2270 EV_INVOKE_PENDING;
2271 }
2272#endif
2273
1161 /* queue check watchers (and execute them) */ 2274 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 2275 if (expect_false (preparecnt))
1163 { 2276 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 2278 EV_INVOKE_PENDING;
1166 } 2279 }
2280
2281 if (expect_false (loop_done))
2282 break;
1167 2283
1168 /* we might have forked, so reify kernel state if necessary */ 2284 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 2285 if (expect_false (postfork))
1170 loop_fork (EV_A); 2286 loop_fork (EV_A);
1171 2287
1172 /* update fd-related kernel structures */ 2288 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 2289 fd_reify (EV_A);
1174 2290
1175 /* calculate blocking time */ 2291 /* calculate blocking time */
2292 {
2293 ev_tstamp waittime = 0.;
2294 ev_tstamp sleeptime = 0.;
1176 2295
1177 /* we only need this for !monotonic clock or timers, but as we basically 2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 2297 {
1185 ev_rt_now = ev_time (); 2298 /* remember old timestamp for io_blocktime calculation */
1186 mn_now = ev_rt_now; 2299 ev_tstamp prev_mn_now = mn_now;
1187 }
1188 2300
1189 if (flags & EVLOOP_NONBLOCK || idlecnt) 2301 /* update time to cancel out callback processing overhead */
1190 block = 0.; 2302 time_update (EV_A_ 1e100);
1191 else 2303
1192 {
1193 block = MAX_BLOCKTIME; 2304 waittime = MAX_BLOCKTIME;
1194 2305
1195 if (timercnt) 2306 if (timercnt)
1196 { 2307 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2308 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1198 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1199 } 2310 }
1200 2311
1201#if EV_PERIODICS 2312#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 2313 if (periodiccnt)
1203 { 2314 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 2316 if (waittime > to) waittime = to;
1206 } 2317 }
1207#endif 2318#endif
1208 2319
1209 if (block < 0.) block = 0.; 2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
2321 if (expect_false (waittime < timeout_blocktime))
2322 waittime = timeout_blocktime;
2323
2324 /* extra check because io_blocktime is commonly 0 */
2325 if (expect_false (io_blocktime))
2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
2334 ev_sleep (sleeptime);
2335 waittime -= sleeptime;
2336 }
2337 }
1210 } 2338 }
1211 2339
1212 method_poll (EV_A_ block); 2340#if EV_MINIMAL < 2
2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1213 2346
1214 /* update ev_rt_now, do magic */ 2347 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 2348 time_update (EV_A_ waittime + sleeptime);
2349 }
1216 2350
1217 /* queue pending timers and reschedule them */ 2351 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 2352 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 2353#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 2354 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 2355#endif
1222 2356
2357#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 2358 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 2359 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2360#endif
1226 2361
1227 /* queue check watchers, to be executed first */ 2362 /* queue check watchers, to be executed first */
1228 if (checkcnt) 2363 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 2365
1231 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1232 } 2367 }
1233 while (activecnt && !loop_done); 2368 while (expect_true (
2369 activecnt
2370 && !loop_done
2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2372 ));
1234 2373
1235 if (loop_done != 2) 2374 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
1237} 2380}
1238 2381
1239void 2382void
1240ev_unloop (EV_P_ int how) 2383ev_unloop (EV_P_ int how)
1241{ 2384{
1242 loop_done = how; 2385 loop_done = how;
1243} 2386}
1244 2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
2423}
2424
1245/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
1246 2427
1247inline void 2428inline_size void
1248wlist_add (WL *head, WL elem) 2429wlist_add (WL *head, WL elem)
1249{ 2430{
1250 elem->next = *head; 2431 elem->next = *head;
1251 *head = elem; 2432 *head = elem;
1252} 2433}
1253 2434
1254inline void 2435inline_size void
1255wlist_del (WL *head, WL elem) 2436wlist_del (WL *head, WL elem)
1256{ 2437{
1257 while (*head) 2438 while (*head)
1258 { 2439 {
1259 if (*head == elem) 2440 if (expect_true (*head == elem))
1260 { 2441 {
1261 *head = elem->next; 2442 *head = elem->next;
1262 return; 2443 break;
1263 } 2444 }
1264 2445
1265 head = &(*head)->next; 2446 head = &(*head)->next;
1266 } 2447 }
1267} 2448}
1268 2449
2450/* internal, faster, version of ev_clear_pending */
1269inline void 2451inline_speed void
1270ev_clear_pending (EV_P_ W w) 2452clear_pending (EV_P_ W w)
1271{ 2453{
1272 if (w->pending) 2454 if (w->pending)
1273 { 2455 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1275 w->pending = 0; 2457 w->pending = 0;
1276 } 2458 }
1277} 2459}
1278 2460
2461int
2462ev_clear_pending (EV_P_ void *w)
2463{
2464 W w_ = (W)w;
2465 int pending = w_->pending;
2466
2467 if (expect_true (pending))
2468 {
2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
2471 w_->pending = 0;
2472 return p->events;
2473 }
2474 else
2475 return 0;
2476}
2477
1279inline void 2478inline_size void
2479pri_adjust (EV_P_ W w)
2480{
2481 int pri = ev_priority (w);
2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2484 ev_set_priority (w, pri);
2485}
2486
2487inline_speed void
1280ev_start (EV_P_ W w, int active) 2488ev_start (EV_P_ W w, int active)
1281{ 2489{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2490 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 2491 w->active = active;
1286 ev_ref (EV_A); 2492 ev_ref (EV_A);
1287} 2493}
1288 2494
1289inline void 2495inline_size void
1290ev_stop (EV_P_ W w) 2496ev_stop (EV_P_ W w)
1291{ 2497{
1292 ev_unref (EV_A); 2498 ev_unref (EV_A);
1293 w->active = 0; 2499 w->active = 0;
1294} 2500}
1295 2501
1296/*****************************************************************************/ 2502/*****************************************************************************/
1297 2503
1298void 2504void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 2505ev_io_start (EV_P_ ev_io *w)
1300{ 2506{
1301 int fd = w->fd; 2507 int fd = w->fd;
1302 2508
1303 if (ev_is_active (w)) 2509 if (expect_false (ev_is_active (w)))
1304 return; 2510 return;
1305 2511
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2513 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2514
2515 EV_FREQUENT_CHECK;
1307 2516
1308 ev_start (EV_A_ (W)w, 1); 2517 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2519 wlist_add (&anfds[fd].head, (WL)w);
1311 2520
1312 fd_change (EV_A_ fd); 2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1313} 2522 w->events &= ~EV__IOFDSET;
1314 2523
1315void 2524 EV_FREQUENT_CHECK;
2525}
2526
2527void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 2528ev_io_stop (EV_P_ ev_io *w)
1317{ 2529{
1318 ev_clear_pending (EV_A_ (W)w); 2530 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 2531 if (expect_false (!ev_is_active (w)))
1320 return; 2532 return;
1321 2533
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2534 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 2535
2536 EV_FREQUENT_CHECK;
2537
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2538 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 2539 ev_stop (EV_A_ (W)w);
1326 2540
1327 fd_change (EV_A_ w->fd); 2541 fd_change (EV_A_ w->fd, 1);
1328}
1329 2542
1330void 2543 EV_FREQUENT_CHECK;
2544}
2545
2546void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 2547ev_timer_start (EV_P_ ev_timer *w)
1332{ 2548{
1333 if (ev_is_active (w)) 2549 if (expect_false (ev_is_active (w)))
1334 return; 2550 return;
1335 2551
1336 ((WT)w)->at += mn_now; 2552 ev_at (w) += mn_now;
1337 2553
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2554 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 2555
2556 EV_FREQUENT_CHECK;
2557
2558 ++timercnt;
1340 ev_start (EV_A_ (W)w, ++timercnt); 2559 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2560 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 2561 ANHE_w (timers [ev_active (w)]) = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 2562 ANHE_at_cache (timers [ev_active (w)]);
2563 upheap (timers, ev_active (w));
1344 2564
2565 EV_FREQUENT_CHECK;
2566
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2567 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1346} 2568}
1347 2569
1348void 2570void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 2571ev_timer_stop (EV_P_ ev_timer *w)
1350{ 2572{
1351 ev_clear_pending (EV_A_ (W)w); 2573 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 2574 if (expect_false (!ev_is_active (w)))
1353 return; 2575 return;
1354 2576
2577 EV_FREQUENT_CHECK;
2578
2579 {
2580 int active = ev_active (w);
2581
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2582 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1356 2583
1357 if (((W)w)->active < timercnt--) 2584 --timercnt;
2585
2586 if (expect_true (active < timercnt + HEAP0))
1358 { 2587 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 2588 timers [active] = timers [timercnt + HEAP0];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2589 adjustheap (timers, timercnt, active);
1361 } 2590 }
2591 }
1362 2592
1363 ((WT)w)->at -= mn_now; 2593 ev_at (w) -= mn_now;
1364 2594
1365 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
1366}
1367 2596
1368void 2597 EV_FREQUENT_CHECK;
2598}
2599
2600void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 2601ev_timer_again (EV_P_ ev_timer *w)
1370{ 2602{
2603 EV_FREQUENT_CHECK;
2604
1371 if (ev_is_active (w)) 2605 if (ev_is_active (w))
1372 { 2606 {
1373 if (w->repeat) 2607 if (w->repeat)
1374 { 2608 {
1375 ((WT)w)->at = mn_now + w->repeat; 2609 ev_at (w) = mn_now + w->repeat;
2610 ANHE_at_cache (timers [ev_active (w)]);
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2611 adjustheap (timers, timercnt, ev_active (w));
1377 } 2612 }
1378 else 2613 else
1379 ev_timer_stop (EV_A_ w); 2614 ev_timer_stop (EV_A_ w);
1380 } 2615 }
1381 else if (w->repeat) 2616 else if (w->repeat)
2617 {
2618 ev_at (w) = w->repeat;
1382 ev_timer_start (EV_A_ w); 2619 ev_timer_start (EV_A_ w);
1383} 2620 }
1384 2621
2622 EV_FREQUENT_CHECK;
2623}
2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2629}
2630
1385#if EV_PERIODICS 2631#if EV_PERIODIC_ENABLE
1386void 2632void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 2633ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 2634{
1389 if (ev_is_active (w)) 2635 if (expect_false (ev_is_active (w)))
1390 return; 2636 return;
1391 2637
1392 if (w->reschedule_cb) 2638 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2639 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 2640 else if (w->interval)
1395 { 2641 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2642 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 2643 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 2645 }
2646 else
2647 ev_at (w) = w->offset;
1400 2648
2649 EV_FREQUENT_CHECK;
2650
2651 ++periodiccnt;
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 2652 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2653 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 2654 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 2655 ANHE_at_cache (periodics [ev_active (w)]);
2656 upheap (periodics, ev_active (w));
1405 2657
2658 EV_FREQUENT_CHECK;
2659
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2660 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1407} 2661}
1408 2662
1409void 2663void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 2664ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 2665{
1412 ev_clear_pending (EV_A_ (W)w); 2666 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 2667 if (expect_false (!ev_is_active (w)))
1414 return; 2668 return;
1415 2669
2670 EV_FREQUENT_CHECK;
2671
2672 {
2673 int active = ev_active (w);
2674
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2675 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1417 2676
1418 if (((W)w)->active < periodiccnt--) 2677 --periodiccnt;
2678
2679 if (expect_true (active < periodiccnt + HEAP0))
1419 { 2680 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2681 periodics [active] = periodics [periodiccnt + HEAP0];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2682 adjustheap (periodics, periodiccnt, active);
1422 } 2683 }
2684 }
1423 2685
1424 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1425}
1426 2687
1427void 2688 EV_FREQUENT_CHECK;
2689}
2690
2691void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 2692ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 2693{
1430 /* TODO: use adjustheap and recalculation */ 2694 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 2695 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 2696 ev_periodic_start (EV_A_ w);
1433} 2697}
1434#endif 2698#endif
1435 2699
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 2700#ifndef SA_RESTART
1503# define SA_RESTART 0 2701# define SA_RESTART 0
1504#endif 2702#endif
1505 2703
1506void 2704void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 2705ev_signal_start (EV_P_ ev_signal *w)
1508{ 2706{
2707 if (expect_false (ev_is_active (w)))
2708 return;
2709
2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2711
1509#if EV_MULTIPLICITY 2712#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2715
2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
2723 {
2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2725 if (sigfd < 0 && errno == EINVAL)
2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2727
2728 if (sigfd >= 0)
2729 {
2730 fd_intern (sigfd); /* doing it twice will not hurt */
2731
2732 sigemptyset (&sigfd_set);
2733
2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
2750
2751 ev_start (EV_A_ (W)w, 1);
2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
2753
2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
1511#endif 2757# endif
1512 if (ev_is_active (w)) 2758 {
2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
2762 signal (w->signum, ev_sighandler);
2763# else
2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
2768 sa.sa_handler = ev_sighandler;
2769 sigfillset (&sa.sa_mask);
2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2776#endif
2777 }
2778
2779 EV_FREQUENT_CHECK;
2780}
2781
2782void noinline
2783ev_signal_stop (EV_P_ ev_signal *w)
2784{
2785 clear_pending (EV_A_ (W)w);
2786 if (expect_false (!ev_is_active (w)))
1513 return; 2787 return;
1514 2788
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2789 EV_FREQUENT_CHECK;
2790
2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
2792 ev_stop (EV_A_ (W)w);
2793
2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
2810 }
2811 else
2812#endif
2813 signal (w->signum, SIG_DFL);
2814 }
2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819void
2820ev_child_start (EV_P_ ev_child *w)
2821{
2822#if EV_MULTIPLICITY
2823 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2824#endif
2825 if (expect_false (ev_is_active (w)))
2826 return;
2827
2828 EV_FREQUENT_CHECK;
1516 2829
1517 ev_start (EV_A_ (W)w, 1); 2830 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2831 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1520 2832
1521 if (!((WL)w)->next) 2833 EV_FREQUENT_CHECK;
2834}
2835
2836void
2837ev_child_stop (EV_P_ ev_child *w)
2838{
2839 clear_pending (EV_A_ (W)w);
2840 if (expect_false (!ev_is_active (w)))
2841 return;
2842
2843 EV_FREQUENT_CHECK;
2844
2845 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2846 ev_stop (EV_A_ (W)w);
2847
2848 EV_FREQUENT_CHECK;
2849}
2850
2851#if EV_STAT_ENABLE
2852
2853# ifdef _WIN32
2854# undef lstat
2855# define lstat(a,b) _stati64 (a,b)
2856# endif
2857
2858#define DEF_STAT_INTERVAL 5.0074891
2859#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2860#define MIN_STAT_INTERVAL 0.1074891
2861
2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2863
2864#if EV_USE_INOTIFY
2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2868
2869static void noinline
2870infy_add (EV_P_ ev_stat *w)
2871{
2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2873
2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1522 { 2894 }
2895 else
2896 {
2897 /* can't use inotify, continue to stat */
2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2899
2900 /* if path is not there, monitor some parent directory for speedup hints */
2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2902 /* but an efficiency issue only */
2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2904 {
2905 char path [4096];
2906 strcpy (path, w->path);
2907
2908 do
2909 {
2910 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2911 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2912
2913 char *pend = strrchr (path, '/');
2914
2915 if (!pend || pend == path)
2916 break;
2917
2918 *pend = 0;
2919 w->wd = inotify_add_watch (fs_fd, path, mask);
2920 }
2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2922 }
2923 }
2924
2925 if (w->wd >= 0)
2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927
2928 /* now re-arm timer, if required */
2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2930 ev_timer_again (EV_A_ &w->timer);
2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2932}
2933
2934static void noinline
2935infy_del (EV_P_ ev_stat *w)
2936{
2937 int slot;
2938 int wd = w->wd;
2939
2940 if (wd < 0)
2941 return;
2942
2943 w->wd = -2;
2944 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2945 wlist_del (&fs_hash [slot].head, (WL)w);
2946
2947 /* remove this watcher, if others are watching it, they will rearm */
2948 inotify_rm_watch (fs_fd, wd);
2949}
2950
2951static void noinline
2952infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2953{
2954 if (slot < 0)
2955 /* overflow, need to check for all hash slots */
2956 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2957 infy_wd (EV_A_ slot, wd, ev);
2958 else
2959 {
2960 WL w_;
2961
2962 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2963 {
2964 ev_stat *w = (ev_stat *)w_;
2965 w_ = w_->next; /* lets us remove this watcher and all before it */
2966
2967 if (w->wd == wd || wd == -1)
2968 {
2969 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2970 {
2971 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2972 w->wd = -1;
2973 infy_add (EV_A_ w); /* re-add, no matter what */
2974 }
2975
2976 stat_timer_cb (EV_A_ &w->timer, 0);
2977 }
2978 }
2979 }
2980}
2981
2982static void
2983infy_cb (EV_P_ ev_io *w, int revents)
2984{
2985 char buf [EV_INOTIFY_BUFSIZE];
2986 int ofs;
2987 int len = read (fs_fd, buf, sizeof (buf));
2988
2989 for (ofs = 0; ofs < len; )
2990 {
2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
2994 }
2995}
2996
2997inline_size void
2998check_2625 (EV_P)
2999{
3000 /* kernels < 2.6.25 are borked
3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3002 */
3003 struct utsname buf;
3004 int major, minor, micro;
3005
3006 if (uname (&buf))
3007 return;
3008
3009 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3010 return;
3011
3012 if (major < 2
3013 || (major == 2 && minor < 6)
3014 || (major == 2 && minor == 6 && micro < 25))
3015 return;
3016
3017 fs_2625 = 1;
3018}
3019
3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
3032infy_init (EV_P)
3033{
3034 if (fs_fd != -2)
3035 return;
3036
3037 fs_fd = -1;
3038
3039 check_2625 (EV_A);
3040
3041 fs_fd = infy_newfd ();
3042
3043 if (fs_fd >= 0)
3044 {
3045 fd_intern (fs_fd);
3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3047 ev_set_priority (&fs_w, EV_MAXPRI);
3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
3050 }
3051}
3052
3053inline_size void
3054infy_fork (EV_P)
3055{
3056 int slot;
3057
3058 if (fs_fd < 0)
3059 return;
3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
3063 close (fs_fd);
3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
3073
3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3075 {
3076 WL w_ = fs_hash [slot].head;
3077 fs_hash [slot].head = 0;
3078
3079 while (w_)
3080 {
3081 ev_stat *w = (ev_stat *)w_;
3082 w_ = w_->next; /* lets us add this watcher */
3083
3084 w->wd = -1;
3085
3086 if (fs_fd >= 0)
3087 infy_add (EV_A_ w); /* re-add, no matter what */
3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
3095 }
3096 }
3097}
3098
3099#endif
3100
1523#if _WIN32 3101#ifdef _WIN32
1524 signal (w->signum, sighandler); 3102# define EV_LSTAT(p,b) _stati64 (p, b)
1525#else 3103#else
1526 struct sigaction sa; 3104# define EV_LSTAT(p,b) lstat (p, b)
1527 sa.sa_handler = sighandler;
1528 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0);
1531#endif 3105#endif
1532 }
1533}
1534 3106
1535void 3107void
1536ev_signal_stop (EV_P_ struct ev_signal *w) 3108ev_stat_stat (EV_P_ ev_stat *w)
1537{ 3109{
1538 ev_clear_pending (EV_A_ (W)w); 3110 if (lstat (w->path, &w->attr) < 0)
1539 if (!ev_is_active (w)) 3111 w->attr.st_nlink = 0;
3112 else if (!w->attr.st_nlink)
3113 w->attr.st_nlink = 1;
3114}
3115
3116static void noinline
3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3118{
3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3120
3121 ev_statdata prev = w->attr;
3122 ev_stat_stat (EV_A_ w);
3123
3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3125 if (
3126 prev.st_dev != w->attr.st_dev
3127 || prev.st_ino != w->attr.st_ino
3128 || prev.st_mode != w->attr.st_mode
3129 || prev.st_nlink != w->attr.st_nlink
3130 || prev.st_uid != w->attr.st_uid
3131 || prev.st_gid != w->attr.st_gid
3132 || prev.st_rdev != w->attr.st_rdev
3133 || prev.st_size != w->attr.st_size
3134 || prev.st_atime != w->attr.st_atime
3135 || prev.st_mtime != w->attr.st_mtime
3136 || prev.st_ctime != w->attr.st_ctime
3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
3143 #if EV_USE_INOTIFY
3144 if (fs_fd >= 0)
3145 {
3146 infy_del (EV_A_ w);
3147 infy_add (EV_A_ w);
3148 ev_stat_stat (EV_A_ w); /* avoid race... */
3149 }
3150 #endif
3151
3152 ev_feed_event (EV_A_ w, EV_STAT);
3153 }
3154}
3155
3156void
3157ev_stat_start (EV_P_ ev_stat *w)
3158{
3159 if (expect_false (ev_is_active (w)))
1540 return; 3160 return;
1541 3161
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3162 ev_stat_stat (EV_A_ w);
3163
3164 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3165 w->interval = MIN_STAT_INTERVAL;
3166
3167 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3168 ev_set_priority (&w->timer, ev_priority (w));
3169
3170#if EV_USE_INOTIFY
3171 infy_init (EV_A);
3172
3173 if (fs_fd >= 0)
3174 infy_add (EV_A_ w);
3175 else
3176#endif
3177 {
3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
3180 }
3181
3182 ev_start (EV_A_ (W)w, 1);
3183
3184 EV_FREQUENT_CHECK;
3185}
3186
3187void
3188ev_stat_stop (EV_P_ ev_stat *w)
3189{
3190 clear_pending (EV_A_ (W)w);
3191 if (expect_false (!ev_is_active (w)))
3192 return;
3193
3194 EV_FREQUENT_CHECK;
3195
3196#if EV_USE_INOTIFY
3197 infy_del (EV_A_ w);
3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
3205
1543 ev_stop (EV_A_ (W)w); 3206 ev_stop (EV_A_ (W)w);
1544 3207
1545 if (!signals [w->signum - 1].head) 3208 EV_FREQUENT_CHECK;
1546 signal (w->signum, SIG_DFL);
1547} 3209}
3210#endif
1548 3211
3212#if EV_IDLE_ENABLE
1549void 3213void
1550ev_child_start (EV_P_ struct ev_child *w) 3214ev_idle_start (EV_P_ ev_idle *w)
1551{ 3215{
1552#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop));
1554#endif
1555 if (ev_is_active (w)) 3216 if (expect_false (ev_is_active (w)))
1556 return; 3217 return;
1557 3218
3219 pri_adjust (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
3222
3223 {
3224 int active = ++idlecnt [ABSPRI (w)];
3225
3226 ++idleall;
3227 ev_start (EV_A_ (W)w, active);
3228
3229 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3230 idles [ABSPRI (w)][active - 1] = w;
3231 }
3232
3233 EV_FREQUENT_CHECK;
3234}
3235
3236void
3237ev_idle_stop (EV_P_ ev_idle *w)
3238{
3239 clear_pending (EV_A_ (W)w);
3240 if (expect_false (!ev_is_active (w)))
3241 return;
3242
3243 EV_FREQUENT_CHECK;
3244
3245 {
3246 int active = ev_active (w);
3247
3248 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3249 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3250
3251 ev_stop (EV_A_ (W)w);
3252 --idleall;
3253 }
3254
3255 EV_FREQUENT_CHECK;
3256}
3257#endif
3258
3259void
3260ev_prepare_start (EV_P_ ev_prepare *w)
3261{
3262 if (expect_false (ev_is_active (w)))
3263 return;
3264
3265 EV_FREQUENT_CHECK;
3266
3267 ev_start (EV_A_ (W)w, ++preparecnt);
3268 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3269 prepares [preparecnt - 1] = w;
3270
3271 EV_FREQUENT_CHECK;
3272}
3273
3274void
3275ev_prepare_stop (EV_P_ ev_prepare *w)
3276{
3277 clear_pending (EV_A_ (W)w);
3278 if (expect_false (!ev_is_active (w)))
3279 return;
3280
3281 EV_FREQUENT_CHECK;
3282
3283 {
3284 int active = ev_active (w);
3285
3286 prepares [active - 1] = prepares [--preparecnt];
3287 ev_active (prepares [active - 1]) = active;
3288 }
3289
3290 ev_stop (EV_A_ (W)w);
3291
3292 EV_FREQUENT_CHECK;
3293}
3294
3295void
3296ev_check_start (EV_P_ ev_check *w)
3297{
3298 if (expect_false (ev_is_active (w)))
3299 return;
3300
3301 EV_FREQUENT_CHECK;
3302
3303 ev_start (EV_A_ (W)w, ++checkcnt);
3304 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3305 checks [checkcnt - 1] = w;
3306
3307 EV_FREQUENT_CHECK;
3308}
3309
3310void
3311ev_check_stop (EV_P_ ev_check *w)
3312{
3313 clear_pending (EV_A_ (W)w);
3314 if (expect_false (!ev_is_active (w)))
3315 return;
3316
3317 EV_FREQUENT_CHECK;
3318
3319 {
3320 int active = ev_active (w);
3321
3322 checks [active - 1] = checks [--checkcnt];
3323 ev_active (checks [active - 1]) = active;
3324 }
3325
3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
3329}
3330
3331#if EV_EMBED_ENABLE
3332void noinline
3333ev_embed_sweep (EV_P_ ev_embed *w)
3334{
3335 ev_loop (w->other, EVLOOP_NONBLOCK);
3336}
3337
3338static void
3339embed_io_cb (EV_P_ ev_io *io, int revents)
3340{
3341 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3342
3343 if (ev_cb (w))
3344 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3345 else
3346 ev_loop (w->other, EVLOOP_NONBLOCK);
3347}
3348
3349static void
3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3351{
3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3353
3354 {
3355 EV_P = w->other;
3356
3357 while (fdchangecnt)
3358 {
3359 fd_reify (EV_A);
3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3361 }
3362 }
3363}
3364
3365static void
3366embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3367{
3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3369
3370 ev_embed_stop (EV_A_ w);
3371
3372 {
3373 EV_P = w->other;
3374
3375 ev_loop_fork (EV_A);
3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3377 }
3378
3379 ev_embed_start (EV_A_ w);
3380}
3381
3382#if 0
3383static void
3384embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3385{
3386 ev_idle_stop (EV_A_ idle);
3387}
3388#endif
3389
3390void
3391ev_embed_start (EV_P_ ev_embed *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 {
3397 EV_P = w->other;
3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3400 }
3401
3402 EV_FREQUENT_CHECK;
3403
3404 ev_set_priority (&w->io, ev_priority (w));
3405 ev_io_start (EV_A_ &w->io);
3406
3407 ev_prepare_init (&w->prepare, embed_prepare_cb);
3408 ev_set_priority (&w->prepare, EV_MINPRI);
3409 ev_prepare_start (EV_A_ &w->prepare);
3410
3411 ev_fork_init (&w->fork, embed_fork_cb);
3412 ev_fork_start (EV_A_ &w->fork);
3413
3414 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3415
1558 ev_start (EV_A_ (W)w, 1); 3416 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1560}
1561 3417
3418 EV_FREQUENT_CHECK;
3419}
3420
1562void 3421void
1563ev_child_stop (EV_P_ struct ev_child *w) 3422ev_embed_stop (EV_P_ ev_embed *w)
1564{ 3423{
1565 ev_clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 3425 if (expect_false (!ev_is_active (w)))
1567 return; 3426 return;
1568 3427
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3428 EV_FREQUENT_CHECK;
3429
3430 ev_io_stop (EV_A_ &w->io);
3431 ev_prepare_stop (EV_A_ &w->prepare);
3432 ev_fork_stop (EV_A_ &w->fork);
3433
1570 ev_stop (EV_A_ (W)w); 3434 ev_stop (EV_A_ (W)w);
3435
3436 EV_FREQUENT_CHECK;
1571} 3437}
3438#endif
3439
3440#if EV_FORK_ENABLE
3441void
3442ev_fork_start (EV_P_ ev_fork *w)
3443{
3444 if (expect_false (ev_is_active (w)))
3445 return;
3446
3447 EV_FREQUENT_CHECK;
3448
3449 ev_start (EV_A_ (W)w, ++forkcnt);
3450 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3451 forks [forkcnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
3454}
3455
3456void
3457ev_fork_stop (EV_P_ ev_fork *w)
3458{
3459 clear_pending (EV_A_ (W)w);
3460 if (expect_false (!ev_is_active (w)))
3461 return;
3462
3463 EV_FREQUENT_CHECK;
3464
3465 {
3466 int active = ev_active (w);
3467
3468 forks [active - 1] = forks [--forkcnt];
3469 ev_active (forks [active - 1]) = active;
3470 }
3471
3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476#endif
3477
3478#if EV_ASYNC_ENABLE
3479void
3480ev_async_start (EV_P_ ev_async *w)
3481{
3482 if (expect_false (ev_is_active (w)))
3483 return;
3484
3485 evpipe_init (EV_A);
3486
3487 EV_FREQUENT_CHECK;
3488
3489 ev_start (EV_A_ (W)w, ++asynccnt);
3490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3491 asyncs [asynccnt - 1] = w;
3492
3493 EV_FREQUENT_CHECK;
3494}
3495
3496void
3497ev_async_stop (EV_P_ ev_async *w)
3498{
3499 clear_pending (EV_A_ (W)w);
3500 if (expect_false (!ev_is_active (w)))
3501 return;
3502
3503 EV_FREQUENT_CHECK;
3504
3505 {
3506 int active = ev_active (w);
3507
3508 asyncs [active - 1] = asyncs [--asynccnt];
3509 ev_active (asyncs [active - 1]) = active;
3510 }
3511
3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
3515}
3516
3517void
3518ev_async_send (EV_P_ ev_async *w)
3519{
3520 w->sent = 1;
3521 evpipe_write (EV_A_ &async_pending);
3522}
3523#endif
1572 3524
1573/*****************************************************************************/ 3525/*****************************************************************************/
1574 3526
1575struct ev_once 3527struct ev_once
1576{ 3528{
1577 struct ev_io io; 3529 ev_io io;
1578 struct ev_timer to; 3530 ev_timer to;
1579 void (*cb)(int revents, void *arg); 3531 void (*cb)(int revents, void *arg);
1580 void *arg; 3532 void *arg;
1581}; 3533};
1582 3534
1583static void 3535static void
1584once_cb (EV_P_ struct ev_once *once, int revents) 3536once_cb (EV_P_ struct ev_once *once, int revents)
1585{ 3537{
1586 void (*cb)(int revents, void *arg) = once->cb; 3538 void (*cb)(int revents, void *arg) = once->cb;
1587 void *arg = once->arg; 3539 void *arg = once->arg;
1588 3540
1589 ev_io_stop (EV_A_ &once->io); 3541 ev_io_stop (EV_A_ &once->io);
1590 ev_timer_stop (EV_A_ &once->to); 3542 ev_timer_stop (EV_A_ &once->to);
1591 ev_free (once); 3543 ev_free (once);
1592 3544
1593 cb (revents, arg); 3545 cb (revents, arg);
1594} 3546}
1595 3547
1596static void 3548static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 3549once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 3550{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1600} 3554}
1601 3555
1602static void 3556static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 3557once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 3558{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3559 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3560
3561 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1606} 3562}
1607 3563
1608void 3564void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3565ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 3566{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3567 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 3568
1613 if (!once) 3569 if (expect_false (!once))
3570 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3571 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 3572 return;
1616 { 3573 }
3574
1617 once->cb = cb; 3575 once->cb = cb;
1618 once->arg = arg; 3576 once->arg = arg;
1619 3577
1620 ev_init (&once->io, once_cb_io); 3578 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 3579 if (fd >= 0)
3580 {
3581 ev_io_set (&once->io, fd, events);
3582 ev_io_start (EV_A_ &once->io);
3583 }
3584
3585 ev_init (&once->to, once_cb_to);
3586 if (timeout >= 0.)
3587 {
3588 ev_timer_set (&once->to, timeout, 0.);
3589 ev_timer_start (EV_A_ &once->to);
3590 }
3591}
3592
3593/*****************************************************************************/
3594
3595#if EV_WALK_ENABLE
3596void
3597ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3598{
3599 int i, j;
3600 ev_watcher_list *wl, *wn;
3601
3602 if (types & (EV_IO | EV_EMBED))
3603 for (i = 0; i < anfdmax; ++i)
3604 for (wl = anfds [i].head; wl; )
1622 { 3605 {
1623 ev_io_set (&once->io, fd, events); 3606 wn = wl->next;
1624 ev_io_start (EV_A_ &once->io); 3607
3608#if EV_EMBED_ENABLE
3609 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3610 {
3611 if (types & EV_EMBED)
3612 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3613 }
3614 else
3615#endif
3616#if EV_USE_INOTIFY
3617 if (ev_cb ((ev_io *)wl) == infy_cb)
3618 ;
3619 else
3620#endif
3621 if ((ev_io *)wl != &pipe_w)
3622 if (types & EV_IO)
3623 cb (EV_A_ EV_IO, wl);
3624
3625 wl = wn;
1625 } 3626 }
1626 3627
1627 ev_init (&once->to, once_cb_to); 3628 if (types & (EV_TIMER | EV_STAT))
1628 if (timeout >= 0.) 3629 for (i = timercnt + HEAP0; i-- > HEAP0; )
3630#if EV_STAT_ENABLE
3631 /*TODO: timer is not always active*/
3632 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1629 { 3633 {
1630 ev_timer_set (&once->to, timeout, 0.); 3634 if (types & EV_STAT)
1631 ev_timer_start (EV_A_ &once->to); 3635 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1632 } 3636 }
1633 } 3637 else
3638#endif
3639 if (types & EV_TIMER)
3640 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3641
3642#if EV_PERIODIC_ENABLE
3643 if (types & EV_PERIODIC)
3644 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3645 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3646#endif
3647
3648#if EV_IDLE_ENABLE
3649 if (types & EV_IDLE)
3650 for (j = NUMPRI; i--; )
3651 for (i = idlecnt [j]; i--; )
3652 cb (EV_A_ EV_IDLE, idles [j][i]);
3653#endif
3654
3655#if EV_FORK_ENABLE
3656 if (types & EV_FORK)
3657 for (i = forkcnt; i--; )
3658 if (ev_cb (forks [i]) != embed_fork_cb)
3659 cb (EV_A_ EV_FORK, forks [i]);
3660#endif
3661
3662#if EV_ASYNC_ENABLE
3663 if (types & EV_ASYNC)
3664 for (i = asynccnt; i--; )
3665 cb (EV_A_ EV_ASYNC, asyncs [i]);
3666#endif
3667
3668 if (types & EV_PREPARE)
3669 for (i = preparecnt; i--; )
3670#if EV_EMBED_ENABLE
3671 if (ev_cb (prepares [i]) != embed_prepare_cb)
3672#endif
3673 cb (EV_A_ EV_PREPARE, prepares [i]);
3674
3675 if (types & EV_CHECK)
3676 for (i = checkcnt; i--; )
3677 cb (EV_A_ EV_CHECK, checks [i]);
3678
3679 if (types & EV_SIGNAL)
3680 for (i = 0; i < EV_NSIG - 1; ++i)
3681 for (wl = signals [i].head; wl; )
3682 {
3683 wn = wl->next;
3684 cb (EV_A_ EV_SIGNAL, wl);
3685 wl = wn;
3686 }
3687
3688 if (types & EV_CHILD)
3689 for (i = EV_PID_HASHSIZE; i--; )
3690 for (wl = childs [i]; wl; )
3691 {
3692 wn = wl->next;
3693 cb (EV_A_ EV_CHILD, wl);
3694 wl = wn;
3695 }
3696/* EV_STAT 0x00001000 /* stat data changed */
3697/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1634} 3698}
3699#endif
3700
3701#if EV_MULTIPLICITY
3702 #include "ev_wrap.h"
3703#endif
1635 3704
1636#ifdef __cplusplus 3705#ifdef __cplusplus
1637} 3706}
1638#endif 3707#endif
1639 3708

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines