ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.329 by root, Tue Feb 16 09:32:39 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
87# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
88# endif 111# endif
89# endif 112# endif
90 113
91# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
93# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
94# else 117# else
95# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
96# endif 119# endif
97# endif 120# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
119#include <fcntl.h> 159#include <fcntl.h>
120#include <stddef.h> 160#include <stddef.h>
121 161
122#include <stdio.h> 162#include <stdio.h>
123 163
124#include <assert.h> 164#include <assert.h>
125#include <errno.h> 165#include <errno.h>
126#include <sys/types.h> 166#include <sys/types.h>
127#include <time.h> 167#include <time.h>
168#include <limits.h>
128 169
129#include <signal.h> 170#include <signal.h>
130 171
131#ifdef EV_H 172#ifdef EV_H
132# include EV_H 173# include EV_H
137#ifndef _WIN32 178#ifndef _WIN32
138# include <sys/time.h> 179# include <sys/time.h>
139# include <sys/wait.h> 180# include <sys/wait.h>
140# include <unistd.h> 181# include <unistd.h>
141#else 182#else
183# include <io.h>
142# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 185# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
146# endif 188# endif
147#endif 189#endif
148 190
149/**/ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
150 227
151#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
152# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
233# endif
153#endif 234#endif
154 235
155#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 238#endif
158 239
159#ifndef EV_USE_NANOSLEEP 240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
160# define EV_USE_NANOSLEEP 0 244# define EV_USE_NANOSLEEP 0
245# endif
161#endif 246#endif
162 247
163#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
165#endif 250#endif
171# define EV_USE_POLL 1 256# define EV_USE_POLL 1
172# endif 257# endif
173#endif 258#endif
174 259
175#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
176# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
177#endif 266#endif
178 267
179#ifndef EV_USE_KQUEUE 268#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 269# define EV_USE_KQUEUE 0
181#endif 270#endif
183#ifndef EV_USE_PORT 272#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 273# define EV_USE_PORT 0
185#endif 274#endif
186 275
187#ifndef EV_USE_INOTIFY 276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
278# define EV_USE_INOTIFY 1
279# else
188# define EV_USE_INOTIFY 0 280# define EV_USE_INOTIFY 0
281# endif
189#endif 282#endif
190 283
191#ifndef EV_PID_HASHSIZE 284#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 285# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 286# define EV_PID_HASHSIZE 1
202# else 295# else
203# define EV_INOTIFY_HASHSIZE 16 296# define EV_INOTIFY_HASHSIZE 16
204# endif 297# endif
205#endif 298#endif
206 299
207/**/ 300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
208 355
209#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
212#endif 359#endif
226# include <sys/select.h> 373# include <sys/select.h>
227# endif 374# endif
228#endif 375#endif
229 376
230#if EV_USE_INOTIFY 377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
231# include <sys/inotify.h> 380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
232#endif 386#endif
233 387
234#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 389# include <winsock.h>
236#endif 390#endif
237 391
392#if EV_USE_EVENTFD
393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int (eventfd) (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
238/**/ 443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
239 450
240/* 451/*
241 * This is used to avoid floating point rounding problems. 452 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 453 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 454 * to ensure progress, time-wise, even when rounding
247 */ 458 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 460
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 463
254#if __GNUC__ >= 4 464#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
257#else 467#else
258# define expect(expr,value) (expr) 468# define expect(expr,value) (expr)
259# define noinline 469# define noinline
260# if __STDC_VERSION__ < 199901L 470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 471# define inline
262# endif 472# endif
263#endif 473#endif
264 474
265#define expect_false(expr) expect ((expr) != 0, 0) 475#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 480# define inline_speed static noinline
271#else 481#else
272# define inline_speed static inline 482# define inline_speed static inline
273#endif 483#endif
274 484
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
277 492
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
280 495
281typedef ev_watcher *W; 496typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
284 499
500#define ev_active(w) ((W)(w))->active
501#define ev_at(w) ((WT)(w))->at
502
503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
286 522
287#ifdef _WIN32 523#ifdef _WIN32
288# include "ev_win32.c" 524# include "ev_win32.c"
289#endif 525#endif
290 526
297{ 533{
298 syserr_cb = cb; 534 syserr_cb = cb;
299} 535}
300 536
301static void noinline 537static void noinline
302syserr (const char *msg) 538ev_syserr (const char *msg)
303{ 539{
304 if (!msg) 540 if (!msg)
305 msg = "(libev) system error"; 541 msg = "(libev) system error";
306 542
307 if (syserr_cb) 543 if (syserr_cb)
311 perror (msg); 547 perror (msg);
312 abort (); 548 abort ();
313 } 549 }
314} 550}
315 551
552static void *
553ev_realloc_emul (void *ptr, long size)
554{
555 /* some systems, notably openbsd and darwin, fail to properly
556 * implement realloc (x, 0) (as required by both ansi c-98 and
557 * the single unix specification, so work around them here.
558 */
559
560 if (size)
561 return realloc (ptr, size);
562
563 free (ptr);
564 return 0;
565}
566
316static void *(*alloc)(void *ptr, long size); 567static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 568
318void 569void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 570ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 571{
321 alloc = cb; 572 alloc = cb;
322} 573}
323 574
324inline_speed void * 575inline_speed void *
325ev_realloc (void *ptr, long size) 576ev_realloc (void *ptr, long size)
326{ 577{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 578 ptr = alloc (ptr, size);
328 579
329 if (!ptr && size) 580 if (!ptr && size)
330 { 581 {
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 582 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
332 abort (); 583 abort ();
338#define ev_malloc(size) ev_realloc (0, (size)) 589#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 590#define ev_free(ptr) ev_realloc ((ptr), 0)
340 591
341/*****************************************************************************/ 592/*****************************************************************************/
342 593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
343typedef struct 598typedef struct
344{ 599{
345 WL head; 600 WL head;
346 unsigned char events; 601 unsigned char events; /* the events watched for */
602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 604 unsigned char unused;
605#if EV_USE_EPOLL
606 unsigned int egen; /* generation counter to counter epoll bugs */
607#endif
348#if EV_SELECT_IS_WINSOCKET 608#if EV_SELECT_IS_WINSOCKET
349 SOCKET handle; 609 SOCKET handle;
350#endif 610#endif
351} ANFD; 611} ANFD;
352 612
613/* stores the pending event set for a given watcher */
353typedef struct 614typedef struct
354{ 615{
355 W w; 616 W w;
356 int events; 617 int events; /* the pending event set for the given watcher */
357} ANPENDING; 618} ANPENDING;
358 619
359#if EV_USE_INOTIFY 620#if EV_USE_INOTIFY
621/* hash table entry per inotify-id */
360typedef struct 622typedef struct
361{ 623{
362 WL head; 624 WL head;
363} ANFS; 625} ANFS;
626#endif
627
628/* Heap Entry */
629#if EV_HEAP_CACHE_AT
630 /* a heap element */
631 typedef struct {
632 ev_tstamp at;
633 WT w;
634 } ANHE;
635
636 #define ANHE_w(he) (he).w /* access watcher, read-write */
637 #define ANHE_at(he) (he).at /* access cached at, read-only */
638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
639#else
640 /* a heap element */
641 typedef WT ANHE;
642
643 #define ANHE_w(he) (he)
644 #define ANHE_at(he) (he)->at
645 #define ANHE_at_cache(he)
364#endif 646#endif
365 647
366#if EV_MULTIPLICITY 648#if EV_MULTIPLICITY
367 649
368 struct ev_loop 650 struct ev_loop
387 669
388 static int ev_default_loop_ptr; 670 static int ev_default_loop_ptr;
389 671
390#endif 672#endif
391 673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
685
392/*****************************************************************************/ 686/*****************************************************************************/
393 687
688#ifndef EV_HAVE_EV_TIME
394ev_tstamp 689ev_tstamp
395ev_time (void) 690ev_time (void)
396{ 691{
397#if EV_USE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
398 struct timespec ts; 695 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 698 }
699#endif
700
402 struct timeval tv; 701 struct timeval tv;
403 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 704}
705#endif
407 706
408ev_tstamp inline_size 707inline_size ev_tstamp
409get_clock (void) 708get_clock (void)
410{ 709{
411#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 711 if (expect_true (have_monotonic))
413 { 712 {
439 ts.tv_sec = (time_t)delay; 738 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 739 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441 740
442 nanosleep (&ts, 0); 741 nanosleep (&ts, 0);
443#elif defined(_WIN32) 742#elif defined(_WIN32)
444 Sleep (delay * 1e3); 743 Sleep ((unsigned long)(delay * 1e3));
445#else 744#else
446 struct timeval tv; 745 struct timeval tv;
447 746
448 tv.tv_sec = (time_t)delay; 747 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450 749
750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
751 /* something not guaranteed by newer posix versions, but guaranteed */
752 /* by older ones */
451 select (0, 0, 0, 0, &tv); 753 select (0, 0, 0, 0, &tv);
452#endif 754#endif
453 } 755 }
454} 756}
455 757
456/*****************************************************************************/ 758/*****************************************************************************/
457 759
458int inline_size 760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
761
762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
459array_nextsize (int elem, int cur, int cnt) 765array_nextsize (int elem, int cur, int cnt)
460{ 766{
461 int ncur = cur + 1; 767 int ncur = cur + 1;
462 768
463 do 769 do
464 ncur <<= 1; 770 ncur <<= 1;
465 while (cnt > ncur); 771 while (cnt > ncur);
466 772
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 773 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 774 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 775 {
470 ncur *= elem; 776 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 777 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 778 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 779 ncur /= elem;
474 } 780 }
475 781
476 return ncur; 782 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 786array_realloc (int elem, void *base, int *cur, int cnt)
481{ 787{
482 *cur = array_nextsize (elem, *cur, cnt); 788 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 789 return ev_realloc (base, elem * *cur);
484} 790}
791
792#define array_init_zero(base,count) \
793 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 794
486#define array_needsize(type,base,cur,cnt,init) \ 795#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 796 if (expect_false ((cnt) > (cur))) \
488 { \ 797 { \
489 int ocur_ = (cur); \ 798 int ocur_ = (cur); \
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 811 }
503#endif 812#endif
504 813
505#define array_free(stem, idx) \ 814#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 816
508/*****************************************************************************/ 817/*****************************************************************************/
818
819/* dummy callback for pending events */
820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
822{
823}
509 824
510void noinline 825void noinline
511ev_feed_event (EV_P_ void *w, int revents) 826ev_feed_event (EV_P_ void *w, int revents)
512{ 827{
513 W w_ = (W)w; 828 W w_ = (W)w;
522 pendings [pri][w_->pending - 1].w = w_; 837 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 838 pendings [pri][w_->pending - 1].events = revents;
524 } 839 }
525} 840}
526 841
527void inline_speed 842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 858queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 859{
530 int i; 860 int i;
531 861
532 for (i = 0; i < eventcnt; ++i) 862 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 863 ev_feed_event (EV_A_ events [i], type);
534} 864}
535 865
536/*****************************************************************************/ 866/*****************************************************************************/
537 867
538void inline_size 868inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 869fd_event_nc (EV_P_ int fd, int revents)
553{ 870{
554 ANFD *anfd = anfds + fd; 871 ANFD *anfd = anfds + fd;
555 ev_io *w; 872 ev_io *w;
556 873
557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
561 if (ev) 878 if (ev)
562 ev_feed_event (EV_A_ (W)w, ev); 879 ev_feed_event (EV_A_ (W)w, ev);
563 } 880 }
564} 881}
565 882
883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
889
890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
566void 894void
567ev_feed_fd_event (EV_P_ int fd, int revents) 895ev_feed_fd_event (EV_P_ int fd, int revents)
568{ 896{
569 if (fd >= 0 && fd < anfdmax) 897 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 898 fd_event_nc (EV_A_ fd, revents);
571} 899}
572 900
573void inline_size 901/* make sure the external fd watch events are in-sync */
902/* with the kernel/libev internal state */
903inline_size void
574fd_reify (EV_P) 904fd_reify (EV_P)
575{ 905{
576 int i; 906 int i;
577 907
578 for (i = 0; i < fdchangecnt; ++i) 908 for (i = 0; i < fdchangecnt; ++i)
587 events |= (unsigned char)w->events; 917 events |= (unsigned char)w->events;
588 918
589#if EV_SELECT_IS_WINSOCKET 919#if EV_SELECT_IS_WINSOCKET
590 if (events) 920 if (events)
591 { 921 {
592 unsigned long argp; 922 unsigned long arg;
593 anfd->handle = _get_osfhandle (fd); 923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
595 } 925 }
596#endif 926#endif
597 927
598 { 928 {
599 unsigned char o_events = anfd->events; 929 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify; 930 unsigned char o_reify = anfd->reify;
601 931
602 anfd->reify = 0; 932 anfd->reify = 0;
603 anfd->events = events; 933 anfd->events = events;
604 934
605 if (o_events != events || o_reify & EV_IOFDSET) 935 if (o_events != events || o_reify & EV__IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 936 backend_modify (EV_A_ fd, o_events, events);
607 } 937 }
608 } 938 }
609 939
610 fdchangecnt = 0; 940 fdchangecnt = 0;
611} 941}
612 942
613void inline_size 943/* something about the given fd changed */
944inline_size void
614fd_change (EV_P_ int fd, int flags) 945fd_change (EV_P_ int fd, int flags)
615{ 946{
616 unsigned char reify = anfds [fd].reify; 947 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 948 anfds [fd].reify |= flags;
618 949
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 954 fdchanges [fdchangecnt - 1] = fd;
624 } 955 }
625} 956}
626 957
627void inline_speed 958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
628fd_kill (EV_P_ int fd) 960fd_kill (EV_P_ int fd)
629{ 961{
630 ev_io *w; 962 ev_io *w;
631 963
632 while ((w = (ev_io *)anfds [fd].head)) 964 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 966 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 968 }
637} 969}
638 970
639int inline_size 971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
640fd_valid (int fd) 973fd_valid (int fd)
641{ 974{
642#ifdef _WIN32 975#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
644#else 977#else
645 return fcntl (fd, F_GETFD) != -1; 978 return fcntl (fd, F_GETFD) != -1;
646#endif 979#endif
647} 980}
648 981
652{ 985{
653 int fd; 986 int fd;
654 987
655 for (fd = 0; fd < anfdmax; ++fd) 988 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 989 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 990 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 991 fd_kill (EV_A_ fd);
659} 992}
660 993
661/* called on ENOMEM in select/poll to kill some fds and retry */ 994/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 995static void noinline
666 999
667 for (fd = anfdmax; fd--; ) 1000 for (fd = anfdmax; fd--; )
668 if (anfds [fd].events) 1001 if (anfds [fd].events)
669 { 1002 {
670 fd_kill (EV_A_ fd); 1003 fd_kill (EV_A_ fd);
671 return; 1004 break;
672 } 1005 }
673} 1006}
674 1007
675/* usually called after fork if backend needs to re-arm all fds from scratch */ 1008/* usually called after fork if backend needs to re-arm all fds from scratch */
676static void noinline 1009static void noinline
680 1013
681 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 1015 if (anfds [fd].events)
683 { 1016 {
684 anfds [fd].events = 0; 1017 anfds [fd].events = 0;
1018 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
686 } 1020 }
687} 1021}
688 1022
689/*****************************************************************************/ 1023/*****************************************************************************/
690 1024
691void inline_speed 1025/*
692upheap (WT *heap, int k) 1026 * the heap functions want a real array index. array index 0 uis guaranteed to not
693{ 1027 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
694 WT w = heap [k]; 1028 * the branching factor of the d-tree.
1029 */
695 1030
696 while (k) 1031/*
697 { 1032 * at the moment we allow libev the luxury of two heaps,
698 int p = (k - 1) >> 1; 1033 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1034 * which is more cache-efficient.
1035 * the difference is about 5% with 50000+ watchers.
1036 */
1037#if EV_USE_4HEAP
699 1038
700 if (heap [p]->at <= w->at) 1039#define DHEAP 4
1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1042#define UPHEAP_DONE(p,k) ((p) == (k))
1043
1044/* away from the root */
1045inline_speed void
1046downheap (ANHE *heap, int N, int k)
1047{
1048 ANHE he = heap [k];
1049 ANHE *E = heap + N + HEAP0;
1050
1051 for (;;)
1052 {
1053 ev_tstamp minat;
1054 ANHE *minpos;
1055 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1056
1057 /* find minimum child */
1058 if (expect_true (pos + DHEAP - 1 < E))
1059 {
1060 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else if (pos < E)
1066 {
1067 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1068 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1069 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1070 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1071 }
1072 else
701 break; 1073 break;
702 1074
1075 if (ANHE_at (he) <= minat)
1076 break;
1077
1078 heap [k] = *minpos;
1079 ev_active (ANHE_w (*minpos)) = k;
1080
1081 k = minpos - heap;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087
1088#else /* 4HEAP */
1089
1090#define HEAP0 1
1091#define HPARENT(k) ((k) >> 1)
1092#define UPHEAP_DONE(p,k) (!(p))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099
1100 for (;;)
1101 {
1102 int c = k << 1;
1103
1104 if (c >= N + HEAP0)
1105 break;
1106
1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1108 ? 1 : 0;
1109
1110 if (ANHE_at (he) <= ANHE_at (heap [c]))
1111 break;
1112
1113 heap [k] = heap [c];
1114 ev_active (ANHE_w (heap [k])) = k;
1115
1116 k = c;
1117 }
1118
1119 heap [k] = he;
1120 ev_active (ANHE_w (he)) = k;
1121}
1122#endif
1123
1124/* towards the root */
1125inline_speed void
1126upheap (ANHE *heap, int k)
1127{
1128 ANHE he = heap [k];
1129
1130 for (;;)
1131 {
1132 int p = HPARENT (k);
1133
1134 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1135 break;
1136
703 heap [k] = heap [p]; 1137 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1; 1138 ev_active (ANHE_w (heap [k])) = k;
705 k = p; 1139 k = p;
706 } 1140 }
707 1141
708 heap [k] = w; 1142 heap [k] = he;
709 ((W)heap [k])->active = k + 1; 1143 ev_active (ANHE_w (he)) = k;
710} 1144}
711 1145
712void inline_speed 1146/* move an element suitably so it is in a correct place */
713downheap (WT *heap, int N, int k) 1147inline_size void
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k) 1148adjustheap (ANHE *heap, int N, int k)
742{ 1149{
1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
743 upheap (heap, k); 1151 upheap (heap, k);
1152 else
744 downheap (heap, N, k); 1153 downheap (heap, N, k);
1154}
1155
1156/* rebuild the heap: this function is used only once and executed rarely */
1157inline_size void
1158reheap (ANHE *heap, int N)
1159{
1160 int i;
1161
1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1163 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1164 for (i = 0; i < N; ++i)
1165 upheap (heap, i + HEAP0);
745} 1166}
746 1167
747/*****************************************************************************/ 1168/*****************************************************************************/
748 1169
1170/* associate signal watchers to a signal signal */
749typedef struct 1171typedef struct
750{ 1172{
1173 EV_ATOMIC_T pending;
1174#if EV_MULTIPLICITY
1175 EV_P;
1176#endif
751 WL head; 1177 WL head;
752 sig_atomic_t volatile gotsig;
753} ANSIG; 1178} ANSIG;
754 1179
755static ANSIG *signals; 1180static ANSIG signals [EV_NSIG - 1];
756static int signalmax;
757 1181
758static int sigpipe [2]; 1182/*****************************************************************************/
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761 1183
762void inline_size 1184/* used to prepare libev internal fd's */
763signals_init (ANSIG *base, int count) 1185/* this is not fork-safe */
764{ 1186inline_speed void
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1187fd_intern (int fd)
827{ 1188{
828#ifdef _WIN32 1189#ifdef _WIN32
829 int arg = 1; 1190 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
831#else 1192#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1194 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1195#endif
835} 1196}
836 1197
837static void noinline 1198static void noinline
838siginit (EV_P) 1199evpipe_init (EV_P)
839{ 1200{
1201 if (!ev_is_active (&pipe_w))
1202 {
1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
1209 {
1210 evpipe [0] = -1;
1211 fd_intern (evfd); /* doing it twice doesn't hurt */
1212 ev_io_set (&pipe_w, evfd, EV_READ);
1213 }
1214 else
1215#endif
1216 {
1217 while (pipe (evpipe))
1218 ev_syserr ("(libev) error creating signal/async pipe");
1219
840 fd_intern (sigpipe [0]); 1220 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1221 fd_intern (evpipe [1]);
1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1223 }
842 1224
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1225 ev_io_start (EV_A_ &pipe_w);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1227 }
1228}
1229
1230inline_size void
1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1232{
1233 if (!*flag)
1234 {
1235 int old_errno = errno; /* save errno because write might clobber it */
1236
1237 *flag = 1;
1238
1239#if EV_USE_EVENTFD
1240 if (evfd >= 0)
1241 {
1242 uint64_t counter = 1;
1243 write (evfd, &counter, sizeof (uint64_t));
1244 }
1245 else
1246#endif
1247 write (evpipe [1], &old_errno, 1);
1248
1249 errno = old_errno;
1250 }
1251}
1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
1255static void
1256pipecb (EV_P_ ev_io *iow, int revents)
1257{
1258 int i;
1259
1260#if EV_USE_EVENTFD
1261 if (evfd >= 0)
1262 {
1263 uint64_t counter;
1264 read (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 {
1269 char dummy;
1270 read (evpipe [0], &dummy, 1);
1271 }
1272
1273 if (sig_pending)
1274 {
1275 sig_pending = 0;
1276
1277 for (i = EV_NSIG - 1; i--; )
1278 if (expect_false (signals [i].pending))
1279 ev_feed_signal_event (EV_A_ i + 1);
1280 }
1281
1282#if EV_ASYNC_ENABLE
1283 if (async_pending)
1284 {
1285 async_pending = 0;
1286
1287 for (i = asynccnt; i--; )
1288 if (asyncs [i]->sent)
1289 {
1290 asyncs [i]->sent = 0;
1291 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1292 }
1293 }
1294#endif
846} 1295}
847 1296
848/*****************************************************************************/ 1297/*****************************************************************************/
849 1298
1299static void
1300ev_sighandler (int signum)
1301{
1302#if EV_MULTIPLICITY
1303 EV_P = signals [signum - 1].loop;
1304#endif
1305
1306#ifdef _WIN32
1307 signal (signum, ev_sighandler);
1308#endif
1309
1310 signals [signum - 1].pending = 1;
1311 evpipe_write (EV_A_ &sig_pending);
1312}
1313
1314void noinline
1315ev_feed_signal_event (EV_P_ int signum)
1316{
1317 WL w;
1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1324#if EV_MULTIPLICITY
1325 /* it is permissible to try to feed a signal to the wrong loop */
1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1327
1328 if (expect_false (signals [signum].loop != EV_A))
1329 return;
1330#endif
1331
1332 signals [signum].pending = 0;
1333
1334 for (w = signals [signum].head; w; w = w->next)
1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1336}
1337
1338#if EV_USE_SIGNALFD
1339static void
1340sigfdcb (EV_P_ ev_io *iow, int revents)
1341{
1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1343
1344 for (;;)
1345 {
1346 ssize_t res = read (sigfd, si, sizeof (si));
1347
1348 /* not ISO-C, as res might be -1, but works with SuS */
1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1351
1352 if (res < (ssize_t)sizeof (si))
1353 break;
1354 }
1355}
1356#endif
1357
1358/*****************************************************************************/
1359
850static WL childs [EV_PID_HASHSIZE]; 1360static WL childs [EV_PID_HASHSIZE];
851 1361
852#ifndef _WIN32 1362#ifndef _WIN32
853 1363
854static ev_signal childev; 1364static ev_signal childev;
855 1365
856void inline_speed 1366#ifndef WIFCONTINUED
1367# define WIFCONTINUED(status) 0
1368#endif
1369
1370/* handle a single child status event */
1371inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1372child_reap (EV_P_ int chain, int pid, int status)
858{ 1373{
859 ev_child *w; 1374 ev_child *w;
1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1376
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1377 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1378 {
862 if (w->pid == pid || !w->pid) 1379 if ((w->pid == pid || !w->pid)
1380 && (!traced || (w->flags & 1)))
863 { 1381 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1382 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1383 w->rpid = pid;
866 w->rstatus = status; 1384 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1385 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1386 }
1387 }
869} 1388}
870 1389
871#ifndef WCONTINUED 1390#ifndef WCONTINUED
872# define WCONTINUED 0 1391# define WCONTINUED 0
873#endif 1392#endif
874 1393
1394/* called on sigchld etc., calls waitpid */
875static void 1395static void
876childcb (EV_P_ ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
877{ 1397{
878 int pid, status; 1398 int pid, status;
879 1399
882 if (!WCONTINUED 1402 if (!WCONTINUED
883 || errno != EINVAL 1403 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1404 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1405 return;
886 1406
887 /* make sure we are called again until all childs have been reaped */ 1407 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1408 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1409 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1410
891 child_reap (EV_A_ sw, pid, pid, status); 1411 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1412 if (EV_PID_HASHSIZE > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1413 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1414}
895 1415
896#endif 1416#endif
897 1417
898/*****************************************************************************/ 1418/*****************************************************************************/
960 /* kqueue is borked on everything but netbsd apparently */ 1480 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 1481 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 1482 flags &= ~EVBACKEND_KQUEUE;
963#endif 1483#endif
964#ifdef __APPLE__ 1484#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 1485 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 1486 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1487 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
967#endif 1488#endif
968 1489
969 return flags; 1490 return flags;
970} 1491}
971 1492
972unsigned int 1493unsigned int
973ev_embeddable_backends (void) 1494ev_embeddable_backends (void)
974{ 1495{
1496 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1497
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1498 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1499 /* please fix it and tell me how to detect the fix */
977 | EVBACKEND_PORT; 1500 flags &= ~EVBACKEND_EPOLL;
1501
1502 return flags;
978} 1503}
979 1504
980unsigned int 1505unsigned int
981ev_backend (EV_P) 1506ev_backend (EV_P)
982{ 1507{
983 return backend; 1508 return backend;
984} 1509}
985 1510
1511#if EV_MINIMAL < 2
986unsigned int 1512unsigned int
987ev_loop_count (EV_P) 1513ev_loop_count (EV_P)
988{ 1514{
989 return loop_count; 1515 return loop_count;
990} 1516}
991 1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
992void 1524void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{ 1526{
995 io_blocktime = interval; 1527 io_blocktime = interval;
996} 1528}
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1532{
1001 timeout_blocktime = interval; 1533 timeout_blocktime = interval;
1002} 1534}
1003 1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
1004static void noinline 1561static void noinline
1005loop_init (EV_P_ unsigned int flags) 1562loop_init (EV_P_ unsigned int flags)
1006{ 1563{
1007 if (!backend) 1564 if (!backend)
1008 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
1009#if EV_USE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
1010 { 1578 {
1011 struct timespec ts; 1579 struct timespec ts;
1580
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1582 have_monotonic = 1;
1014 } 1583 }
1015#endif 1584#endif
1016
1017 ev_rt_now = ev_time ();
1018 mn_now = get_clock ();
1019 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now;
1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024 1585
1025 /* pid check not overridable via env */ 1586 /* pid check not overridable via env */
1026#ifndef _WIN32 1587#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1588 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1589 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1592 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1593 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1594 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1595 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1596
1597 ev_rt_now = ev_time ();
1598 mn_now = get_clock ();
1599 now_floor = mn_now;
1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
1604
1605 io_blocktime = 0.;
1606 timeout_blocktime = 0.;
1607 backend = 0;
1608 backend_fd = -1;
1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1613#if EV_USE_INOTIFY
1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1615#endif
1616#if EV_USE_SIGNALFD
1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1618#endif
1619
1036 if (!(flags & 0x0000ffffUL)) 1620 if (!(flags & 0x0000ffffU))
1037 flags |= ev_recommended_backends (); 1621 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044 1622
1045#if EV_USE_PORT 1623#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1624 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1625#endif
1048#if EV_USE_KQUEUE 1626#if EV_USE_KQUEUE
1056#endif 1634#endif
1057#if EV_USE_SELECT 1635#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1637#endif
1060 1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
1061 ev_init (&sigev, sigcb); 1641 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1642 ev_set_priority (&pipe_w, EV_MAXPRI);
1063 } 1643 }
1064} 1644}
1065 1645
1646/* free up a loop structure */
1066static void noinline 1647static void noinline
1067loop_destroy (EV_P) 1648loop_destroy (EV_P)
1068{ 1649{
1069 int i; 1650 int i;
1651
1652 if (ev_is_active (&pipe_w))
1653 {
1654 /*ev_ref (EV_A);*/
1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1656
1657#if EV_USE_EVENTFD
1658 if (evfd >= 0)
1659 close (evfd);
1660#endif
1661
1662 if (evpipe [0] >= 0)
1663 {
1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1666 }
1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
1070 1673
1071#if EV_USE_INOTIFY 1674#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1675 if (fs_fd >= 0)
1073 close (fs_fd); 1676 close (fs_fd);
1074#endif 1677#endif
1098#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1099 array_free (idle, [i]); 1702 array_free (idle, [i]);
1100#endif 1703#endif
1101 } 1704 }
1102 1705
1103 ev_free (anfds); anfdmax = 0; 1706 ev_free (anfds); anfds = 0; anfdmax = 0;
1104 1707
1105 /* have to use the microsoft-never-gets-it-right macro */ 1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 1710 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 1711 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 1712#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 1713 array_free (periodic, EMPTY);
1110#endif 1714#endif
1111#if EV_FORK_ENABLE 1715#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1716 array_free (fork, EMPTY);
1113#endif 1717#endif
1114 array_free (prepare, EMPTY); 1718 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1719 array_free (check, EMPTY);
1720#if EV_ASYNC_ENABLE
1721 array_free (async, EMPTY);
1722#endif
1116 1723
1117 backend = 0; 1724 backend = 0;
1118} 1725}
1119 1726
1727#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1728inline_size void infy_fork (EV_P);
1729#endif
1121 1730
1122void inline_size 1731inline_size void
1123loop_fork (EV_P) 1732loop_fork (EV_P)
1124{ 1733{
1125#if EV_USE_PORT 1734#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 1736#endif
1133#endif 1742#endif
1134#if EV_USE_INOTIFY 1743#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1744 infy_fork (EV_A);
1136#endif 1745#endif
1137 1746
1138 if (ev_is_active (&sigev)) 1747 if (ev_is_active (&pipe_w))
1139 { 1748 {
1140 /* default loop */ 1749 /* this "locks" the handlers against writing to the pipe */
1750 /* while we modify the fd vars */
1751 sig_pending = 1;
1752#if EV_ASYNC_ENABLE
1753 async_pending = 1;
1754#endif
1141 1755
1142 ev_ref (EV_A); 1756 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1757 ev_io_stop (EV_A_ &pipe_w);
1144 close (sigpipe [0]);
1145 close (sigpipe [1]);
1146 1758
1147 while (pipe (sigpipe)) 1759#if EV_USE_EVENTFD
1148 syserr ("(libev) error creating pipe"); 1760 if (evfd >= 0)
1761 close (evfd);
1762#endif
1149 1763
1764 if (evpipe [0] >= 0)
1765 {
1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1768 }
1769
1150 siginit (EV_A); 1770 evpipe_init (EV_A);
1771 /* now iterate over everything, in case we missed something */
1772 pipecb (EV_A_ &pipe_w, EV_READ);
1151 } 1773 }
1152 1774
1153 postfork = 0; 1775 postfork = 0;
1154} 1776}
1155 1777
1156#if EV_MULTIPLICITY 1778#if EV_MULTIPLICITY
1779
1157struct ev_loop * 1780struct ev_loop *
1158ev_loop_new (unsigned int flags) 1781ev_loop_new (unsigned int flags)
1159{ 1782{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 1784
1162 memset (loop, 0, sizeof (struct ev_loop)); 1785 memset (EV_A, 0, sizeof (struct ev_loop));
1163
1164 loop_init (EV_A_ flags); 1786 loop_init (EV_A_ flags);
1165 1787
1166 if (ev_backend (EV_A)) 1788 if (ev_backend (EV_A))
1167 return loop; 1789 return EV_A;
1168 1790
1169 return 0; 1791 return 0;
1170} 1792}
1171 1793
1172void 1794void
1177} 1799}
1178 1800
1179void 1801void
1180ev_loop_fork (EV_P) 1802ev_loop_fork (EV_P)
1181{ 1803{
1182 postfork = 1; 1804 postfork = 1; /* must be in line with ev_default_fork */
1183} 1805}
1806#endif /* multiplicity */
1184 1807
1808#if EV_VERIFY
1809static void noinline
1810verify_watcher (EV_P_ W w)
1811{
1812 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1813
1814 if (w->pending)
1815 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1816}
1817
1818static void noinline
1819verify_heap (EV_P_ ANHE *heap, int N)
1820{
1821 int i;
1822
1823 for (i = HEAP0; i < N + HEAP0; ++i)
1824 {
1825 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1826 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1827 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1828
1829 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1830 }
1831}
1832
1833static void noinline
1834array_verify (EV_P_ W *ws, int cnt)
1835{
1836 while (cnt--)
1837 {
1838 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1839 verify_watcher (EV_A_ ws [cnt]);
1840 }
1841}
1842#endif
1843
1844#if EV_MINIMAL < 2
1845void
1846ev_loop_verify (EV_P)
1847{
1848#if EV_VERIFY
1849 int i;
1850 WL w;
1851
1852 assert (activecnt >= -1);
1853
1854 assert (fdchangemax >= fdchangecnt);
1855 for (i = 0; i < fdchangecnt; ++i)
1856 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1857
1858 assert (anfdmax >= 0);
1859 for (i = 0; i < anfdmax; ++i)
1860 for (w = anfds [i].head; w; w = w->next)
1861 {
1862 verify_watcher (EV_A_ (W)w);
1863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1865 }
1866
1867 assert (timermax >= timercnt);
1868 verify_heap (EV_A_ timers, timercnt);
1869
1870#if EV_PERIODIC_ENABLE
1871 assert (periodicmax >= periodiccnt);
1872 verify_heap (EV_A_ periodics, periodiccnt);
1873#endif
1874
1875 for (i = NUMPRI; i--; )
1876 {
1877 assert (pendingmax [i] >= pendingcnt [i]);
1878#if EV_IDLE_ENABLE
1879 assert (idleall >= 0);
1880 assert (idlemax [i] >= idlecnt [i]);
1881 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1882#endif
1883 }
1884
1885#if EV_FORK_ENABLE
1886 assert (forkmax >= forkcnt);
1887 array_verify (EV_A_ (W *)forks, forkcnt);
1888#endif
1889
1890#if EV_ASYNC_ENABLE
1891 assert (asyncmax >= asynccnt);
1892 array_verify (EV_A_ (W *)asyncs, asynccnt);
1893#endif
1894
1895 assert (preparemax >= preparecnt);
1896 array_verify (EV_A_ (W *)prepares, preparecnt);
1897
1898 assert (checkmax >= checkcnt);
1899 array_verify (EV_A_ (W *)checks, checkcnt);
1900
1901# if 0
1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1904# endif
1905#endif
1906}
1185#endif 1907#endif
1186 1908
1187#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1188struct ev_loop * 1910struct ev_loop *
1189ev_default_loop_init (unsigned int flags) 1911ev_default_loop_init (unsigned int flags)
1190#else 1912#else
1191int 1913int
1192ev_default_loop (unsigned int flags) 1914ev_default_loop (unsigned int flags)
1193#endif 1915#endif
1194{ 1916{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 1917 if (!ev_default_loop_ptr)
1200 { 1918 {
1201#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
1203#else 1921#else
1204 ev_default_loop_ptr = 1; 1922 ev_default_loop_ptr = 1;
1205#endif 1923#endif
1206 1924
1207 loop_init (EV_A_ flags); 1925 loop_init (EV_A_ flags);
1208 1926
1209 if (ev_backend (EV_A)) 1927 if (ev_backend (EV_A))
1210 { 1928 {
1211 siginit (EV_A);
1212
1213#ifndef _WIN32 1929#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 1930 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 1931 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 1932 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1933 ev_unref (EV_A); /* child watcher should not keep loop alive */
1226 1942
1227void 1943void
1228ev_default_destroy (void) 1944ev_default_destroy (void)
1229{ 1945{
1230#if EV_MULTIPLICITY 1946#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr; 1947 EV_P = ev_default_loop_ptr;
1232#endif 1948#endif
1949
1950 ev_default_loop_ptr = 0;
1233 1951
1234#ifndef _WIN32 1952#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */ 1953 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev); 1954 ev_signal_stop (EV_A_ &childev);
1237#endif 1955#endif
1238 1956
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A); 1957 loop_destroy (EV_A);
1246} 1958}
1247 1959
1248void 1960void
1249ev_default_fork (void) 1961ev_default_fork (void)
1250{ 1962{
1251#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1964 EV_P = ev_default_loop_ptr;
1253#endif 1965#endif
1254 1966
1255 if (backend) 1967 postfork = 1; /* must be in line with ev_loop_fork */
1256 postfork = 1;
1257} 1968}
1258 1969
1259/*****************************************************************************/ 1970/*****************************************************************************/
1260 1971
1261void 1972void
1262ev_invoke (EV_P_ void *w, int revents) 1973ev_invoke (EV_P_ void *w, int revents)
1263{ 1974{
1264 EV_CB_INVOKE ((W)w, revents); 1975 EV_CB_INVOKE ((W)w, revents);
1265} 1976}
1266 1977
1267void inline_speed 1978unsigned int
1268call_pending (EV_P) 1979ev_pending_count (EV_P)
1980{
1981 int pri;
1982 unsigned int count = 0;
1983
1984 for (pri = NUMPRI; pri--; )
1985 count += pendingcnt [pri];
1986
1987 return count;
1988}
1989
1990void noinline
1991ev_invoke_pending (EV_P)
1269{ 1992{
1270 int pri; 1993 int pri;
1271 1994
1272 for (pri = NUMPRI; pri--; ) 1995 for (pri = NUMPRI; pri--; )
1273 while (pendingcnt [pri]) 1996 while (pendingcnt [pri])
1274 { 1997 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 1999
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2001 /* ^ this is no longer true, as pending_w could be here */
1280 2002
1281 p->w->pending = 0; 2003 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 2004 EV_CB_INVOKE (p->w, p->events);
1283 } 2005 EV_FREQUENT_CHECK;
1284 } 2006 }
1285} 2007}
1286 2008
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 2009#if EV_IDLE_ENABLE
1368void inline_size 2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
1369idle_reify (EV_P) 2013idle_reify (EV_P)
1370{ 2014{
1371 if (expect_false (idleall)) 2015 if (expect_false (idleall))
1372 { 2016 {
1373 int pri; 2017 int pri;
1385 } 2029 }
1386 } 2030 }
1387} 2031}
1388#endif 2032#endif
1389 2033
1390void inline_speed 2034/* make timers pending */
2035inline_size void
2036timers_reify (EV_P)
2037{
2038 EV_FREQUENT_CHECK;
2039
2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2041 {
2042 do
2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
2051 ev_at (w) += w->repeat;
2052 if (ev_at (w) < mn_now)
2053 ev_at (w) = mn_now;
2054
2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2056
2057 ANHE_at_cache (timers [HEAP0]);
2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
2065 }
2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2067
2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
2069 }
2070}
2071
2072#if EV_PERIODIC_ENABLE
2073/* make periodics pending */
2074inline_size void
2075periodics_reify (EV_P)
2076{
2077 EV_FREQUENT_CHECK;
2078
2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2080 {
2081 int feed_count = 0;
2082
2083 do
2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2093
2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2095
2096 ANHE_at_cache (periodics [HEAP0]);
2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
2123 }
2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2125
2126 feed_reverse_done (EV_A_ EV_PERIODIC);
2127 }
2128}
2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2132static void noinline
2133periodics_reschedule (EV_P)
2134{
2135 int i;
2136
2137 /* adjust periodics after time jump */
2138 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2139 {
2140 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2141
2142 if (w->reschedule_cb)
2143 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2144 else if (w->interval)
2145 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2146
2147 ANHE_at_cache (periodics [i]);
2148 }
2149
2150 reheap (periodics, periodiccnt);
2151}
2152#endif
2153
2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
2160 for (i = 0; i < timercnt; ++i)
2161 {
2162 ANHE *he = timers + i + HEAP0;
2163 ANHE_w (*he)->at += adjust;
2164 ANHE_at_cache (*he);
2165 }
2166}
2167
2168/* fetch new monotonic and realtime times from the kernel */
2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 2171time_update (EV_P_ ev_tstamp max_block)
1392{ 2172{
1393 int i;
1394
1395#if EV_USE_MONOTONIC 2173#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic)) 2174 if (expect_true (have_monotonic))
1397 { 2175 {
2176 int i;
1398 ev_tstamp odiff = rtmn_diff; 2177 ev_tstamp odiff = rtmn_diff;
1399 2178
1400 mn_now = get_clock (); 2179 mn_now = get_clock ();
1401 2180
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1420 */ 2199 */
1421 for (i = 4; --i; ) 2200 for (i = 4; --i; )
1422 { 2201 {
1423 rtmn_diff = ev_rt_now - mn_now; 2202 rtmn_diff = ev_rt_now - mn_now;
1424 2203
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2204 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 2205 return; /* all is well */
1427 2206
1428 ev_rt_now = ev_time (); 2207 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 2208 mn_now = get_clock ();
1430 now_floor = mn_now; 2209 now_floor = mn_now;
1431 } 2210 }
1432 2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 2214# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 2215 periodics_reschedule (EV_A);
1435# endif 2216# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 2217 }
1439 else 2218 else
1440#endif 2219#endif
1441 { 2220 {
1442 ev_rt_now = ev_time (); 2221 ev_rt_now = ev_time ();
1443 2222
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 2224 {
2225 /* adjust timers. this is easy, as the offset is the same for all of them */
2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 2227#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1448#endif 2229#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 2230 }
1453 2231
1454 mn_now = ev_rt_now; 2232 mn_now = ev_rt_now;
1455 } 2233 }
1456} 2234}
1457 2235
1458void 2236void
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done;
1471
1472void
1473ev_loop (EV_P_ int flags) 2237ev_loop (EV_P_ int flags)
1474{ 2238{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2239#if EV_MINIMAL < 2
1476 ? EVUNLOOP_ONE 2240 ++loop_depth;
1477 : EVUNLOOP_CANCEL; 2241#endif
1478 2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
2245 loop_done = EVUNLOOP_CANCEL;
2246
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1480 2248
1481 do 2249 do
1482 { 2250 {
2251#if EV_VERIFY >= 2
2252 ev_loop_verify (EV_A);
2253#endif
2254
1483#ifndef _WIN32 2255#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 2256 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 2257 if (expect_false (getpid () != curpid))
1486 { 2258 {
1487 curpid = getpid (); 2259 curpid = getpid ();
1493 /* we might have forked, so queue fork handlers */ 2265 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork)) 2266 if (expect_false (postfork))
1495 if (forkcnt) 2267 if (forkcnt)
1496 { 2268 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1499 } 2271 }
1500#endif 2272#endif
1501 2273
1502 /* queue prepare watchers (and execute them) */ 2274 /* queue prepare watchers (and execute them) */
1503 if (expect_false (preparecnt)) 2275 if (expect_false (preparecnt))
1504 { 2276 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2278 EV_INVOKE_PENDING;
1507 } 2279 }
1508 2280
1509 if (expect_false (!activecnt)) 2281 if (expect_false (loop_done))
1510 break; 2282 break;
1511 2283
1512 /* we might have forked, so reify kernel state if necessary */ 2284 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2285 if (expect_false (postfork))
1514 loop_fork (EV_A); 2286 loop_fork (EV_A);
1521 ev_tstamp waittime = 0.; 2293 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.; 2294 ev_tstamp sleeptime = 0.;
1523 2295
1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1525 { 2297 {
2298 /* remember old timestamp for io_blocktime calculation */
2299 ev_tstamp prev_mn_now = mn_now;
2300
1526 /* update time to cancel out callback processing overhead */ 2301 /* update time to cancel out callback processing overhead */
1527 time_update (EV_A_ 1e100); 2302 time_update (EV_A_ 1e100);
1528 2303
1529 waittime = MAX_BLOCKTIME; 2304 waittime = MAX_BLOCKTIME;
1530 2305
1531 if (timercnt) 2306 if (timercnt)
1532 { 2307 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 2309 if (waittime > to) waittime = to;
1535 } 2310 }
1536 2311
1537#if EV_PERIODIC_ENABLE 2312#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 2313 if (periodiccnt)
1539 { 2314 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 2316 if (waittime > to) waittime = to;
1542 } 2317 }
1543#endif 2318#endif
1544 2319
2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
1545 if (expect_false (waittime < timeout_blocktime)) 2321 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime; 2322 waittime = timeout_blocktime;
1547 2323
1548 sleeptime = waittime - backend_fudge; 2324 /* extra check because io_blocktime is commonly 0 */
1549
1550 if (expect_true (sleeptime > io_blocktime)) 2325 if (expect_false (io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 { 2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
1555 ev_sleep (sleeptime); 2334 ev_sleep (sleeptime);
1556 waittime -= sleeptime; 2335 waittime -= sleeptime;
2336 }
1557 } 2337 }
1558 } 2338 }
1559 2339
2340#if EV_MINIMAL < 2
1560 ++loop_count; 2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1561 backend_poll (EV_A_ waittime); 2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1562 2346
1563 /* update ev_rt_now, do magic */ 2347 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime); 2348 time_update (EV_A_ waittime + sleeptime);
1565 } 2349 }
1566 2350
1577 2361
1578 /* queue check watchers, to be executed first */ 2362 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2363 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1581 2365
1582 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1583
1584 } 2367 }
1585 while (expect_true (activecnt && !loop_done)); 2368 while (expect_true (
2369 activecnt
2370 && !loop_done
2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2372 ));
1586 2373
1587 if (loop_done == EVUNLOOP_ONE) 2374 if (loop_done == EVUNLOOP_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
1589} 2380}
1590 2381
1591void 2382void
1592ev_unloop (EV_P_ int how) 2383ev_unloop (EV_P_ int how)
1593{ 2384{
1594 loop_done = how; 2385 loop_done = how;
1595} 2386}
1596 2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
2423}
2424
1597/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
1598 2427
1599void inline_size 2428inline_size void
1600wlist_add (WL *head, WL elem) 2429wlist_add (WL *head, WL elem)
1601{ 2430{
1602 elem->next = *head; 2431 elem->next = *head;
1603 *head = elem; 2432 *head = elem;
1604} 2433}
1605 2434
1606void inline_size 2435inline_size void
1607wlist_del (WL *head, WL elem) 2436wlist_del (WL *head, WL elem)
1608{ 2437{
1609 while (*head) 2438 while (*head)
1610 { 2439 {
1611 if (*head == elem) 2440 if (expect_true (*head == elem))
1612 { 2441 {
1613 *head = elem->next; 2442 *head = elem->next;
1614 return; 2443 break;
1615 } 2444 }
1616 2445
1617 head = &(*head)->next; 2446 head = &(*head)->next;
1618 } 2447 }
1619} 2448}
1620 2449
1621void inline_speed 2450/* internal, faster, version of ev_clear_pending */
2451inline_speed void
1622clear_pending (EV_P_ W w) 2452clear_pending (EV_P_ W w)
1623{ 2453{
1624 if (w->pending) 2454 if (w->pending)
1625 { 2455 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 2457 w->pending = 0;
1628 } 2458 }
1629} 2459}
1630 2460
1631int 2461int
1635 int pending = w_->pending; 2465 int pending = w_->pending;
1636 2466
1637 if (expect_true (pending)) 2467 if (expect_true (pending))
1638 { 2468 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
1640 w_->pending = 0; 2471 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 2472 return p->events;
1643 } 2473 }
1644 else 2474 else
1645 return 0; 2475 return 0;
1646} 2476}
1647 2477
1648void inline_size 2478inline_size void
1649pri_adjust (EV_P_ W w) 2479pri_adjust (EV_P_ W w)
1650{ 2480{
1651 int pri = w->priority; 2481 int pri = ev_priority (w);
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 2484 ev_set_priority (w, pri);
1655} 2485}
1656 2486
1657void inline_speed 2487inline_speed void
1658ev_start (EV_P_ W w, int active) 2488ev_start (EV_P_ W w, int active)
1659{ 2489{
1660 pri_adjust (EV_A_ w); 2490 pri_adjust (EV_A_ w);
1661 w->active = active; 2491 w->active = active;
1662 ev_ref (EV_A); 2492 ev_ref (EV_A);
1663} 2493}
1664 2494
1665void inline_size 2495inline_size void
1666ev_stop (EV_P_ W w) 2496ev_stop (EV_P_ W w)
1667{ 2497{
1668 ev_unref (EV_A); 2498 ev_unref (EV_A);
1669 w->active = 0; 2499 w->active = 0;
1670} 2500}
1677 int fd = w->fd; 2507 int fd = w->fd;
1678 2508
1679 if (expect_false (ev_is_active (w))) 2509 if (expect_false (ev_is_active (w)))
1680 return; 2510 return;
1681 2511
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2513 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2514
2515 EV_FREQUENT_CHECK;
1683 2516
1684 ev_start (EV_A_ (W)w, 1); 2517 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2519 wlist_add (&anfds[fd].head, (WL)w);
1687 2520
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1689 w->events &= ~EV_IOFDSET; 2522 w->events &= ~EV__IOFDSET;
2523
2524 EV_FREQUENT_CHECK;
1690} 2525}
1691 2526
1692void noinline 2527void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2528ev_io_stop (EV_P_ ev_io *w)
1694{ 2529{
1695 clear_pending (EV_A_ (W)w); 2530 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2531 if (expect_false (!ev_is_active (w)))
1697 return; 2532 return;
1698 2533
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2534 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2535
2536 EV_FREQUENT_CHECK;
1700 2537
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2538 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2539 ev_stop (EV_A_ (W)w);
1703 2540
1704 fd_change (EV_A_ w->fd, 1); 2541 fd_change (EV_A_ w->fd, 1);
2542
2543 EV_FREQUENT_CHECK;
1705} 2544}
1706 2545
1707void noinline 2546void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2547ev_timer_start (EV_P_ ev_timer *w)
1709{ 2548{
1710 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
1711 return; 2550 return;
1712 2551
1713 ((WT)w)->at += mn_now; 2552 ev_at (w) += mn_now;
1714 2553
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2554 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2555
2556 EV_FREQUENT_CHECK;
2557
2558 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2559 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2560 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2561 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2562 ANHE_at_cache (timers [ev_active (w)]);
2563 upheap (timers, ev_active (w));
1721 2564
2565 EV_FREQUENT_CHECK;
2566
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2567 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2568}
1724 2569
1725void noinline 2570void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2571ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2572{
1728 clear_pending (EV_A_ (W)w); 2573 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2574 if (expect_false (!ev_is_active (w)))
1730 return; 2575 return;
1731 2576
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2577 EV_FREQUENT_CHECK;
1733 2578
1734 { 2579 {
1735 int active = ((W)w)->active; 2580 int active = ev_active (w);
1736 2581
2582 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2583
2584 --timercnt;
2585
1737 if (expect_true (--active < --timercnt)) 2586 if (expect_true (active < timercnt + HEAP0))
1738 { 2587 {
1739 timers [active] = timers [timercnt]; 2588 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2589 adjustheap (timers, timercnt, active);
1741 } 2590 }
1742 } 2591 }
1743 2592
1744 ((WT)w)->at -= mn_now; 2593 ev_at (w) -= mn_now;
1745 2594
1746 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
2596
2597 EV_FREQUENT_CHECK;
1747} 2598}
1748 2599
1749void noinline 2600void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2601ev_timer_again (EV_P_ ev_timer *w)
1751{ 2602{
2603 EV_FREQUENT_CHECK;
2604
1752 if (ev_is_active (w)) 2605 if (ev_is_active (w))
1753 { 2606 {
1754 if (w->repeat) 2607 if (w->repeat)
1755 { 2608 {
1756 ((WT)w)->at = mn_now + w->repeat; 2609 ev_at (w) = mn_now + w->repeat;
2610 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2611 adjustheap (timers, timercnt, ev_active (w));
1758 } 2612 }
1759 else 2613 else
1760 ev_timer_stop (EV_A_ w); 2614 ev_timer_stop (EV_A_ w);
1761 } 2615 }
1762 else if (w->repeat) 2616 else if (w->repeat)
1763 { 2617 {
1764 w->at = w->repeat; 2618 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2619 ev_timer_start (EV_A_ w);
1766 } 2620 }
2621
2622 EV_FREQUENT_CHECK;
2623}
2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1767} 2629}
1768 2630
1769#if EV_PERIODIC_ENABLE 2631#if EV_PERIODIC_ENABLE
1770void noinline 2632void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2633ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2634{
1773 if (expect_false (ev_is_active (w))) 2635 if (expect_false (ev_is_active (w)))
1774 return; 2636 return;
1775 2637
1776 if (w->reschedule_cb) 2638 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2639 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2640 else if (w->interval)
1779 { 2641 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2642 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2643 /* this formula differs from the one in periodic_reify because we do not always round up */
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2645 }
1784 else 2646 else
1785 ((WT)w)->at = w->offset; 2647 ev_at (w) = w->offset;
1786 2648
2649 EV_FREQUENT_CHECK;
2650
2651 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2652 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2653 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2654 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2655 ANHE_at_cache (periodics [ev_active (w)]);
2656 upheap (periodics, ev_active (w));
1791 2657
2658 EV_FREQUENT_CHECK;
2659
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2660 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2661}
1794 2662
1795void noinline 2663void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2664ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2665{
1798 clear_pending (EV_A_ (W)w); 2666 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2667 if (expect_false (!ev_is_active (w)))
1800 return; 2668 return;
1801 2669
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2670 EV_FREQUENT_CHECK;
1803 2671
1804 { 2672 {
1805 int active = ((W)w)->active; 2673 int active = ev_active (w);
1806 2674
2675 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2676
2677 --periodiccnt;
2678
1807 if (expect_true (--active < --periodiccnt)) 2679 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2680 {
1809 periodics [active] = periodics [periodiccnt]; 2681 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2682 adjustheap (periodics, periodiccnt, active);
1811 } 2683 }
1812 } 2684 }
1813 2685
1814 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
1815} 2689}
1816 2690
1817void noinline 2691void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2692ev_periodic_again (EV_P_ ev_periodic *w)
1819{ 2693{
1828#endif 2702#endif
1829 2703
1830void noinline 2704void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 2705ev_signal_start (EV_P_ ev_signal *w)
1832{ 2706{
1833#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif
1836 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
1837 return; 2708 return;
1838 2709
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1840 2711
2712#if EV_MULTIPLICITY
2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2715
2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
1841 { 2723 {
1842#ifndef _WIN32 2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1843 sigset_t full, prev; 2725 if (sigfd < 0 && errno == EINVAL)
1844 sigfillset (&full); 2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847 2727
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2728 if (sigfd >= 0)
2729 {
2730 fd_intern (sigfd); /* doing it twice will not hurt */
1849 2731
1850#ifndef _WIN32 2732 sigemptyset (&sigfd_set);
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2733
1852#endif 2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
1853 } 2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
1854 2750
1855 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2753
1858 if (!((WL)w)->next) 2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
2757# endif
1859 { 2758 {
1860#if _WIN32 2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
1861 signal (w->signum, sighandler); 2762 signal (w->signum, ev_sighandler);
1862#else 2763# else
1863 struct sigaction sa; 2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
1864 sa.sa_handler = sighandler; 2768 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2769 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1868#endif 2776#endif
1869 } 2777 }
2778
2779 EV_FREQUENT_CHECK;
1870} 2780}
1871 2781
1872void noinline 2782void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2783ev_signal_stop (EV_P_ ev_signal *w)
1874{ 2784{
1875 clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2786 if (expect_false (!ev_is_active (w)))
1877 return; 2787 return;
1878 2788
2789 EV_FREQUENT_CHECK;
2790
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
1881 2793
1882 if (!signals [w->signum - 1].head) 2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
2810 }
2811 else
2812#endif
1883 signal (w->signum, SIG_DFL); 2813 signal (w->signum, SIG_DFL);
2814 }
2815
2816 EV_FREQUENT_CHECK;
1884} 2817}
1885 2818
1886void 2819void
1887ev_child_start (EV_P_ ev_child *w) 2820ev_child_start (EV_P_ ev_child *w)
1888{ 2821{
1889#if EV_MULTIPLICITY 2822#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2823 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 2824#endif
1892 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
1893 return; 2826 return;
1894 2827
2828 EV_FREQUENT_CHECK;
2829
1895 ev_start (EV_A_ (W)w, 1); 2830 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2831 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2832
2833 EV_FREQUENT_CHECK;
1897} 2834}
1898 2835
1899void 2836void
1900ev_child_stop (EV_P_ ev_child *w) 2837ev_child_stop (EV_P_ ev_child *w)
1901{ 2838{
1902 clear_pending (EV_A_ (W)w); 2839 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2840 if (expect_false (!ev_is_active (w)))
1904 return; 2841 return;
1905 2842
2843 EV_FREQUENT_CHECK;
2844
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2845 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 2846 ev_stop (EV_A_ (W)w);
2847
2848 EV_FREQUENT_CHECK;
1908} 2849}
1909 2850
1910#if EV_STAT_ENABLE 2851#if EV_STAT_ENABLE
1911 2852
1912# ifdef _WIN32 2853# ifdef _WIN32
1913# undef lstat 2854# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 2855# define lstat(a,b) _stati64 (a,b)
1915# endif 2856# endif
1916 2857
1917#define DEF_STAT_INTERVAL 5.0074891 2858#define DEF_STAT_INTERVAL 5.0074891
2859#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 2860#define MIN_STAT_INTERVAL 0.1074891
1919 2861
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 2863
1922#if EV_USE_INOTIFY 2864#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1924 2868
1925static void noinline 2869static void noinline
1926infy_add (EV_P_ ev_stat *w) 2870infy_add (EV_P_ ev_stat *w)
1927{ 2871{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 2873
1930 if (w->wd < 0) 2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1931 { 2894 }
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2895 else
2896 {
2897 /* can't use inotify, continue to stat */
2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1933 2899
1934 /* monitor some parent directory for speedup hints */ 2900 /* if path is not there, monitor some parent directory for speedup hints */
2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2902 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 2904 {
1937 char path [4096]; 2905 char path [4096];
1938 strcpy (path, w->path); 2906 strcpy (path, w->path);
1939 2907
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2910 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2911 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 2912
1945 char *pend = strrchr (path, '/'); 2913 char *pend = strrchr (path, '/');
1946 2914
1947 if (!pend) 2915 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 2916 break;
1949 2917
1950 *pend = 0; 2918 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 2919 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 2920 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 2922 }
1955 } 2923 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 2924
1959 if (w->wd >= 0) 2925 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927
2928 /* now re-arm timer, if required */
2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2930 ev_timer_again (EV_A_ &w->timer);
2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1961} 2932}
1962 2933
1963static void noinline 2934static void noinline
1964infy_del (EV_P_ ev_stat *w) 2935infy_del (EV_P_ ev_stat *w)
1965{ 2936{
1979 2950
1980static void noinline 2951static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2952infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 2953{
1983 if (slot < 0) 2954 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 2955 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2956 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 2957 infy_wd (EV_A_ slot, wd, ev);
1987 else 2958 else
1988 { 2959 {
1989 WL w_; 2960 WL w_;
1995 2966
1996 if (w->wd == wd || wd == -1) 2967 if (w->wd == wd || wd == -1)
1997 { 2968 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2969 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 2970 {
2971 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2000 w->wd = -1; 2972 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 2973 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 2974 }
2003 2975
2004 stat_timer_cb (EV_A_ &w->timer, 0); 2976 stat_timer_cb (EV_A_ &w->timer, 0);
2009 2981
2010static void 2982static void
2011infy_cb (EV_P_ ev_io *w, int revents) 2983infy_cb (EV_P_ ev_io *w, int revents)
2012{ 2984{
2013 char buf [EV_INOTIFY_BUFSIZE]; 2985 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs; 2986 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf)); 2987 int len = read (fs_fd, buf, sizeof (buf));
2017 2988
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2989 for (ofs = 0; ofs < len; )
2990 {
2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
2994 }
2020} 2995}
2021 2996
2022void inline_size 2997inline_size void
2998check_2625 (EV_P)
2999{
3000 /* kernels < 2.6.25 are borked
3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3002 */
3003 struct utsname buf;
3004 int major, minor, micro;
3005
3006 if (uname (&buf))
3007 return;
3008
3009 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3010 return;
3011
3012 if (major < 2
3013 || (major == 2 && minor < 6)
3014 || (major == 2 && minor == 6 && micro < 25))
3015 return;
3016
3017 fs_2625 = 1;
3018}
3019
3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
2023infy_init (EV_P) 3032infy_init (EV_P)
2024{ 3033{
2025 if (fs_fd != -2) 3034 if (fs_fd != -2)
2026 return; 3035 return;
2027 3036
3037 fs_fd = -1;
3038
3039 check_2625 (EV_A);
3040
2028 fs_fd = inotify_init (); 3041 fs_fd = infy_newfd ();
2029 3042
2030 if (fs_fd >= 0) 3043 if (fs_fd >= 0)
2031 { 3044 {
3045 fd_intern (fs_fd);
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI); 3047 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
2035 } 3050 }
2036} 3051}
2037 3052
2038void inline_size 3053inline_size void
2039infy_fork (EV_P) 3054infy_fork (EV_P)
2040{ 3055{
2041 int slot; 3056 int slot;
2042 3057
2043 if (fs_fd < 0) 3058 if (fs_fd < 0)
2044 return; 3059 return;
2045 3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
2046 close (fs_fd); 3063 close (fs_fd);
2047 fs_fd = inotify_init (); 3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
2048 3073
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2050 { 3075 {
2051 WL w_ = fs_hash [slot].head; 3076 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0; 3077 fs_hash [slot].head = 0;
2059 w->wd = -1; 3084 w->wd = -1;
2060 3085
2061 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 3087 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2064 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
2065 } 3095 }
2066
2067 } 3096 }
2068} 3097}
2069 3098
3099#endif
3100
3101#ifdef _WIN32
3102# define EV_LSTAT(p,b) _stati64 (p, b)
3103#else
3104# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 3105#endif
2071 3106
2072void 3107void
2073ev_stat_stat (EV_P_ ev_stat *w) 3108ev_stat_stat (EV_P_ ev_stat *w)
2074{ 3109{
2081static void noinline 3116static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{ 3118{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085 3120
2086 /* we copy this here each the time so that */ 3121 ev_statdata prev = w->attr;
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w); 3122 ev_stat_stat (EV_A_ w);
2090 3123
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if ( 3125 if (
2093 w->prev.st_dev != w->attr.st_dev 3126 prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino 3127 || prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode 3128 || prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink 3129 || prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid 3130 || prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid 3131 || prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev 3132 || prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size 3133 || prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime 3134 || prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 3135 || prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 3136 || prev.st_ctime != w->attr.st_ctime
2104 ) { 3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
2105 #if EV_USE_INOTIFY 3143 #if EV_USE_INOTIFY
3144 if (fs_fd >= 0)
3145 {
2106 infy_del (EV_A_ w); 3146 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 3147 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 3148 ev_stat_stat (EV_A_ w); /* avoid race... */
3149 }
2109 #endif 3150 #endif
2110 3151
2111 ev_feed_event (EV_A_ w, EV_STAT); 3152 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 3153 }
2113} 3154}
2116ev_stat_start (EV_P_ ev_stat *w) 3157ev_stat_start (EV_P_ ev_stat *w)
2117{ 3158{
2118 if (expect_false (ev_is_active (w))) 3159 if (expect_false (ev_is_active (w)))
2119 return; 3160 return;
2120 3161
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 3162 ev_stat_stat (EV_A_ w);
2126 3163
3164 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 3165 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 3166
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3167 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 3168 ev_set_priority (&w->timer, ev_priority (w));
2132 3169
2133#if EV_USE_INOTIFY 3170#if EV_USE_INOTIFY
2134 infy_init (EV_A); 3171 infy_init (EV_A);
2135 3172
2136 if (fs_fd >= 0) 3173 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 3174 infy_add (EV_A_ w);
2138 else 3175 else
2139#endif 3176#endif
3177 {
2140 ev_timer_start (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
3180 }
2141 3181
2142 ev_start (EV_A_ (W)w, 1); 3182 ev_start (EV_A_ (W)w, 1);
3183
3184 EV_FREQUENT_CHECK;
2143} 3185}
2144 3186
2145void 3187void
2146ev_stat_stop (EV_P_ ev_stat *w) 3188ev_stat_stop (EV_P_ ev_stat *w)
2147{ 3189{
2148 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
2150 return; 3192 return;
2151 3193
3194 EV_FREQUENT_CHECK;
3195
2152#if EV_USE_INOTIFY 3196#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 3197 infy_del (EV_A_ w);
2154#endif 3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
2155 ev_timer_stop (EV_A_ &w->timer); 3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
2156 3205
2157 ev_stop (EV_A_ (W)w); 3206 ev_stop (EV_A_ (W)w);
3207
3208 EV_FREQUENT_CHECK;
2158} 3209}
2159#endif 3210#endif
2160 3211
2161#if EV_IDLE_ENABLE 3212#if EV_IDLE_ENABLE
2162void 3213void
2164{ 3215{
2165 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
2166 return; 3217 return;
2167 3218
2168 pri_adjust (EV_A_ (W)w); 3219 pri_adjust (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
2169 3222
2170 { 3223 {
2171 int active = ++idlecnt [ABSPRI (w)]; 3224 int active = ++idlecnt [ABSPRI (w)];
2172 3225
2173 ++idleall; 3226 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 3227 ev_start (EV_A_ (W)w, active);
2175 3228
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3229 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 3230 idles [ABSPRI (w)][active - 1] = w;
2178 } 3231 }
3232
3233 EV_FREQUENT_CHECK;
2179} 3234}
2180 3235
2181void 3236void
2182ev_idle_stop (EV_P_ ev_idle *w) 3237ev_idle_stop (EV_P_ ev_idle *w)
2183{ 3238{
2184 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2186 return; 3241 return;
2187 3242
3243 EV_FREQUENT_CHECK;
3244
2188 { 3245 {
2189 int active = ((W)w)->active; 3246 int active = ev_active (w);
2190 3247
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3248 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3249 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 3250
2194 ev_stop (EV_A_ (W)w); 3251 ev_stop (EV_A_ (W)w);
2195 --idleall; 3252 --idleall;
2196 } 3253 }
3254
3255 EV_FREQUENT_CHECK;
2197} 3256}
2198#endif 3257#endif
2199 3258
2200void 3259void
2201ev_prepare_start (EV_P_ ev_prepare *w) 3260ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 3261{
2203 if (expect_false (ev_is_active (w))) 3262 if (expect_false (ev_is_active (w)))
2204 return; 3263 return;
3264
3265 EV_FREQUENT_CHECK;
2205 3266
2206 ev_start (EV_A_ (W)w, ++preparecnt); 3267 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3268 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 3269 prepares [preparecnt - 1] = w;
3270
3271 EV_FREQUENT_CHECK;
2209} 3272}
2210 3273
2211void 3274void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 3275ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 3276{
2214 clear_pending (EV_A_ (W)w); 3277 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3278 if (expect_false (!ev_is_active (w)))
2216 return; 3279 return;
2217 3280
3281 EV_FREQUENT_CHECK;
3282
2218 { 3283 {
2219 int active = ((W)w)->active; 3284 int active = ev_active (w);
3285
2220 prepares [active - 1] = prepares [--preparecnt]; 3286 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 3287 ev_active (prepares [active - 1]) = active;
2222 } 3288 }
2223 3289
2224 ev_stop (EV_A_ (W)w); 3290 ev_stop (EV_A_ (W)w);
3291
3292 EV_FREQUENT_CHECK;
2225} 3293}
2226 3294
2227void 3295void
2228ev_check_start (EV_P_ ev_check *w) 3296ev_check_start (EV_P_ ev_check *w)
2229{ 3297{
2230 if (expect_false (ev_is_active (w))) 3298 if (expect_false (ev_is_active (w)))
2231 return; 3299 return;
3300
3301 EV_FREQUENT_CHECK;
2232 3302
2233 ev_start (EV_A_ (W)w, ++checkcnt); 3303 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3304 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 3305 checks [checkcnt - 1] = w;
3306
3307 EV_FREQUENT_CHECK;
2236} 3308}
2237 3309
2238void 3310void
2239ev_check_stop (EV_P_ ev_check *w) 3311ev_check_stop (EV_P_ ev_check *w)
2240{ 3312{
2241 clear_pending (EV_A_ (W)w); 3313 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 3314 if (expect_false (!ev_is_active (w)))
2243 return; 3315 return;
2244 3316
3317 EV_FREQUENT_CHECK;
3318
2245 { 3319 {
2246 int active = ((W)w)->active; 3320 int active = ev_active (w);
3321
2247 checks [active - 1] = checks [--checkcnt]; 3322 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 3323 ev_active (checks [active - 1]) = active;
2249 } 3324 }
2250 3325
2251 ev_stop (EV_A_ (W)w); 3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
2252} 3329}
2253 3330
2254#if EV_EMBED_ENABLE 3331#if EV_EMBED_ENABLE
2255void noinline 3332void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 3333ev_embed_sweep (EV_P_ ev_embed *w)
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3341 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 3342
2266 if (ev_cb (w)) 3343 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3344 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 3345 else
2269 ev_embed_sweep (loop, w); 3346 ev_loop (w->other, EVLOOP_NONBLOCK);
2270} 3347}
2271 3348
2272static void 3349static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 3351{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 3353
2277 fd_reify (w->other); 3354 {
3355 EV_P = w->other;
3356
3357 while (fdchangecnt)
3358 {
3359 fd_reify (EV_A);
3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3361 }
3362 }
2278} 3363}
3364
3365static void
3366embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3367{
3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3369
3370 ev_embed_stop (EV_A_ w);
3371
3372 {
3373 EV_P = w->other;
3374
3375 ev_loop_fork (EV_A);
3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3377 }
3378
3379 ev_embed_start (EV_A_ w);
3380}
3381
3382#if 0
3383static void
3384embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3385{
3386 ev_idle_stop (EV_A_ idle);
3387}
3388#endif
2279 3389
2280void 3390void
2281ev_embed_start (EV_P_ ev_embed *w) 3391ev_embed_start (EV_P_ ev_embed *w)
2282{ 3392{
2283 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2284 return; 3394 return;
2285 3395
2286 { 3396 {
2287 struct ev_loop *loop = w->other; 3397 EV_P = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 3400 }
3401
3402 EV_FREQUENT_CHECK;
2291 3403
2292 ev_set_priority (&w->io, ev_priority (w)); 3404 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 3405 ev_io_start (EV_A_ &w->io);
2294 3406
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 3407 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 3408 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 3409 ev_prepare_start (EV_A_ &w->prepare);
2298 3410
3411 ev_fork_init (&w->fork, embed_fork_cb);
3412 ev_fork_start (EV_A_ &w->fork);
3413
3414 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3415
2299 ev_start (EV_A_ (W)w, 1); 3416 ev_start (EV_A_ (W)w, 1);
3417
3418 EV_FREQUENT_CHECK;
2300} 3419}
2301 3420
2302void 3421void
2303ev_embed_stop (EV_P_ ev_embed *w) 3422ev_embed_stop (EV_P_ ev_embed *w)
2304{ 3423{
2305 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2307 return; 3426 return;
2308 3427
3428 EV_FREQUENT_CHECK;
3429
2309 ev_io_stop (EV_A_ &w->io); 3430 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 3431 ev_prepare_stop (EV_A_ &w->prepare);
3432 ev_fork_stop (EV_A_ &w->fork);
2311 3433
2312 ev_stop (EV_A_ (W)w); 3434 ev_stop (EV_A_ (W)w);
3435
3436 EV_FREQUENT_CHECK;
2313} 3437}
2314#endif 3438#endif
2315 3439
2316#if EV_FORK_ENABLE 3440#if EV_FORK_ENABLE
2317void 3441void
2318ev_fork_start (EV_P_ ev_fork *w) 3442ev_fork_start (EV_P_ ev_fork *w)
2319{ 3443{
2320 if (expect_false (ev_is_active (w))) 3444 if (expect_false (ev_is_active (w)))
2321 return; 3445 return;
3446
3447 EV_FREQUENT_CHECK;
2322 3448
2323 ev_start (EV_A_ (W)w, ++forkcnt); 3449 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3450 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 3451 forks [forkcnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
2326} 3454}
2327 3455
2328void 3456void
2329ev_fork_stop (EV_P_ ev_fork *w) 3457ev_fork_stop (EV_P_ ev_fork *w)
2330{ 3458{
2331 clear_pending (EV_A_ (W)w); 3459 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3460 if (expect_false (!ev_is_active (w)))
2333 return; 3461 return;
2334 3462
3463 EV_FREQUENT_CHECK;
3464
2335 { 3465 {
2336 int active = ((W)w)->active; 3466 int active = ev_active (w);
3467
2337 forks [active - 1] = forks [--forkcnt]; 3468 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 3469 ev_active (forks [active - 1]) = active;
2339 } 3470 }
2340 3471
2341 ev_stop (EV_A_ (W)w); 3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476#endif
3477
3478#if EV_ASYNC_ENABLE
3479void
3480ev_async_start (EV_P_ ev_async *w)
3481{
3482 if (expect_false (ev_is_active (w)))
3483 return;
3484
3485 evpipe_init (EV_A);
3486
3487 EV_FREQUENT_CHECK;
3488
3489 ev_start (EV_A_ (W)w, ++asynccnt);
3490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3491 asyncs [asynccnt - 1] = w;
3492
3493 EV_FREQUENT_CHECK;
3494}
3495
3496void
3497ev_async_stop (EV_P_ ev_async *w)
3498{
3499 clear_pending (EV_A_ (W)w);
3500 if (expect_false (!ev_is_active (w)))
3501 return;
3502
3503 EV_FREQUENT_CHECK;
3504
3505 {
3506 int active = ev_active (w);
3507
3508 asyncs [active - 1] = asyncs [--asynccnt];
3509 ev_active (asyncs [active - 1]) = active;
3510 }
3511
3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
3515}
3516
3517void
3518ev_async_send (EV_P_ ev_async *w)
3519{
3520 w->sent = 1;
3521 evpipe_write (EV_A_ &async_pending);
2342} 3522}
2343#endif 3523#endif
2344 3524
2345/*****************************************************************************/ 3525/*****************************************************************************/
2346 3526
2356once_cb (EV_P_ struct ev_once *once, int revents) 3536once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3537{
2358 void (*cb)(int revents, void *arg) = once->cb; 3538 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3539 void *arg = once->arg;
2360 3540
2361 ev_io_stop (EV_A_ &once->io); 3541 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3542 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3543 ev_free (once);
2364 3544
2365 cb (revents, arg); 3545 cb (revents, arg);
2366} 3546}
2367 3547
2368static void 3548static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3549once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3550{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3554}
2373 3555
2374static void 3556static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3557once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3558{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3559 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3560
3561 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3562}
2379 3563
2380void 3564void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3565ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3566{
2404 ev_timer_set (&once->to, timeout, 0.); 3588 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 3589 ev_timer_start (EV_A_ &once->to);
2406 } 3590 }
2407} 3591}
2408 3592
3593/*****************************************************************************/
3594
3595#if EV_WALK_ENABLE
3596void
3597ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3598{
3599 int i, j;
3600 ev_watcher_list *wl, *wn;
3601
3602 if (types & (EV_IO | EV_EMBED))
3603 for (i = 0; i < anfdmax; ++i)
3604 for (wl = anfds [i].head; wl; )
3605 {
3606 wn = wl->next;
3607
3608#if EV_EMBED_ENABLE
3609 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3610 {
3611 if (types & EV_EMBED)
3612 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3613 }
3614 else
3615#endif
3616#if EV_USE_INOTIFY
3617 if (ev_cb ((ev_io *)wl) == infy_cb)
3618 ;
3619 else
3620#endif
3621 if ((ev_io *)wl != &pipe_w)
3622 if (types & EV_IO)
3623 cb (EV_A_ EV_IO, wl);
3624
3625 wl = wn;
3626 }
3627
3628 if (types & (EV_TIMER | EV_STAT))
3629 for (i = timercnt + HEAP0; i-- > HEAP0; )
3630#if EV_STAT_ENABLE
3631 /*TODO: timer is not always active*/
3632 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3633 {
3634 if (types & EV_STAT)
3635 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3636 }
3637 else
3638#endif
3639 if (types & EV_TIMER)
3640 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3641
3642#if EV_PERIODIC_ENABLE
3643 if (types & EV_PERIODIC)
3644 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3645 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3646#endif
3647
3648#if EV_IDLE_ENABLE
3649 if (types & EV_IDLE)
3650 for (j = NUMPRI; i--; )
3651 for (i = idlecnt [j]; i--; )
3652 cb (EV_A_ EV_IDLE, idles [j][i]);
3653#endif
3654
3655#if EV_FORK_ENABLE
3656 if (types & EV_FORK)
3657 for (i = forkcnt; i--; )
3658 if (ev_cb (forks [i]) != embed_fork_cb)
3659 cb (EV_A_ EV_FORK, forks [i]);
3660#endif
3661
3662#if EV_ASYNC_ENABLE
3663 if (types & EV_ASYNC)
3664 for (i = asynccnt; i--; )
3665 cb (EV_A_ EV_ASYNC, asyncs [i]);
3666#endif
3667
3668 if (types & EV_PREPARE)
3669 for (i = preparecnt; i--; )
3670#if EV_EMBED_ENABLE
3671 if (ev_cb (prepares [i]) != embed_prepare_cb)
3672#endif
3673 cb (EV_A_ EV_PREPARE, prepares [i]);
3674
3675 if (types & EV_CHECK)
3676 for (i = checkcnt; i--; )
3677 cb (EV_A_ EV_CHECK, checks [i]);
3678
3679 if (types & EV_SIGNAL)
3680 for (i = 0; i < EV_NSIG - 1; ++i)
3681 for (wl = signals [i].head; wl; )
3682 {
3683 wn = wl->next;
3684 cb (EV_A_ EV_SIGNAL, wl);
3685 wl = wn;
3686 }
3687
3688 if (types & EV_CHILD)
3689 for (i = EV_PID_HASHSIZE; i--; )
3690 for (wl = childs [i]; wl; )
3691 {
3692 wn = wl->next;
3693 cb (EV_A_ EV_CHILD, wl);
3694 wl = wn;
3695 }
3696/* EV_STAT 0x00001000 /* stat data changed */
3697/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3698}
3699#endif
3700
2409#if EV_MULTIPLICITY 3701#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 3702 #include "ev_wrap.h"
2411#endif 3703#endif
2412 3704
2413#ifdef __cplusplus 3705#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines