ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.195 by root, Sat Dec 22 11:44:51 2007 UTC vs.
Revision 1.329 by root, Tue Feb 16 09:32:39 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
87# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
88# endif 111# endif
89# endif 112# endif
90 113
91# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
93# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
94# else 117# else
95# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
96# endif 119# endif
97# endif 120# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
119#include <fcntl.h> 159#include <fcntl.h>
120#include <stddef.h> 160#include <stddef.h>
121 161
122#include <stdio.h> 162#include <stdio.h>
123 163
124#include <assert.h> 164#include <assert.h>
125#include <errno.h> 165#include <errno.h>
126#include <sys/types.h> 166#include <sys/types.h>
127#include <time.h> 167#include <time.h>
168#include <limits.h>
128 169
129#include <signal.h> 170#include <signal.h>
130 171
131#ifdef EV_H 172#ifdef EV_H
132# include EV_H 173# include EV_H
137#ifndef _WIN32 178#ifndef _WIN32
138# include <sys/time.h> 179# include <sys/time.h>
139# include <sys/wait.h> 180# include <sys/wait.h>
140# include <unistd.h> 181# include <unistd.h>
141#else 182#else
183# include <io.h>
142# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 185# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
146# endif 188# endif
147#endif 189#endif
148 190
149/**/ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
150 227
151#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
152# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
233# endif
153#endif 234#endif
154 235
155#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 238#endif
158 239
159#ifndef EV_USE_NANOSLEEP 240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
160# define EV_USE_NANOSLEEP 0 244# define EV_USE_NANOSLEEP 0
245# endif
161#endif 246#endif
162 247
163#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
165#endif 250#endif
171# define EV_USE_POLL 1 256# define EV_USE_POLL 1
172# endif 257# endif
173#endif 258#endif
174 259
175#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
176# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
177#endif 266#endif
178 267
179#ifndef EV_USE_KQUEUE 268#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 269# define EV_USE_KQUEUE 0
181#endif 270#endif
183#ifndef EV_USE_PORT 272#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 273# define EV_USE_PORT 0
185#endif 274#endif
186 275
187#ifndef EV_USE_INOTIFY 276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
278# define EV_USE_INOTIFY 1
279# else
188# define EV_USE_INOTIFY 0 280# define EV_USE_INOTIFY 0
281# endif
189#endif 282#endif
190 283
191#ifndef EV_PID_HASHSIZE 284#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 285# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 286# define EV_PID_HASHSIZE 1
202# else 295# else
203# define EV_INOTIFY_HASHSIZE 16 296# define EV_INOTIFY_HASHSIZE 16
204# endif 297# endif
205#endif 298#endif
206 299
207/**/ 300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
208 355
209#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
212#endif 359#endif
226# include <sys/select.h> 373# include <sys/select.h>
227# endif 374# endif
228#endif 375#endif
229 376
230#if EV_USE_INOTIFY 377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
231# include <sys/inotify.h> 380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
232#endif 386#endif
233 387
234#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 389# include <winsock.h>
236#endif 390#endif
237 391
392#if EV_USE_EVENTFD
393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int (eventfd) (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
238/**/ 443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
239 450
240/* 451/*
241 * This is used to avoid floating point rounding problems. 452 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 453 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 454 * to ensure progress, time-wise, even when rounding
247 */ 458 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 460
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 463
254#if __GNUC__ >= 4 464#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
257#else 467#else
258# define expect(expr,value) (expr) 468# define expect(expr,value) (expr)
259# define noinline 469# define noinline
260# if __STDC_VERSION__ < 199901L 470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 471# define inline
262# endif 472# endif
263#endif 473#endif
264 474
265#define expect_false(expr) expect ((expr) != 0, 0) 475#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 480# define inline_speed static noinline
271#else 481#else
272# define inline_speed static inline 482# define inline_speed static inline
273#endif 483#endif
274 484
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
277 492
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
280 495
281typedef ev_watcher *W; 496typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
284 499
500#define ev_active(w) ((W)(w))->active
501#define ev_at(w) ((WT)(w))->at
502
503#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
288 522
289#ifdef _WIN32 523#ifdef _WIN32
290# include "ev_win32.c" 524# include "ev_win32.c"
291#endif 525#endif
292 526
299{ 533{
300 syserr_cb = cb; 534 syserr_cb = cb;
301} 535}
302 536
303static void noinline 537static void noinline
304syserr (const char *msg) 538ev_syserr (const char *msg)
305{ 539{
306 if (!msg) 540 if (!msg)
307 msg = "(libev) system error"; 541 msg = "(libev) system error";
308 542
309 if (syserr_cb) 543 if (syserr_cb)
313 perror (msg); 547 perror (msg);
314 abort (); 548 abort ();
315 } 549 }
316} 550}
317 551
552static void *
553ev_realloc_emul (void *ptr, long size)
554{
555 /* some systems, notably openbsd and darwin, fail to properly
556 * implement realloc (x, 0) (as required by both ansi c-98 and
557 * the single unix specification, so work around them here.
558 */
559
560 if (size)
561 return realloc (ptr, size);
562
563 free (ptr);
564 return 0;
565}
566
318static void *(*alloc)(void *ptr, long size); 567static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 568
320void 569void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 570ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 571{
323 alloc = cb; 572 alloc = cb;
324} 573}
325 574
326inline_speed void * 575inline_speed void *
327ev_realloc (void *ptr, long size) 576ev_realloc (void *ptr, long size)
328{ 577{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 578 ptr = alloc (ptr, size);
330 579
331 if (!ptr && size) 580 if (!ptr && size)
332 { 581 {
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 582 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
334 abort (); 583 abort ();
340#define ev_malloc(size) ev_realloc (0, (size)) 589#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 590#define ev_free(ptr) ev_realloc ((ptr), 0)
342 591
343/*****************************************************************************/ 592/*****************************************************************************/
344 593
594/* set in reify when reification needed */
595#define EV_ANFD_REIFY 1
596
597/* file descriptor info structure */
345typedef struct 598typedef struct
346{ 599{
347 WL head; 600 WL head;
348 unsigned char events; 601 unsigned char events; /* the events watched for */
602 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
603 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 604 unsigned char unused;
605#if EV_USE_EPOLL
606 unsigned int egen; /* generation counter to counter epoll bugs */
607#endif
350#if EV_SELECT_IS_WINSOCKET 608#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 609 SOCKET handle;
352#endif 610#endif
353} ANFD; 611} ANFD;
354 612
613/* stores the pending event set for a given watcher */
355typedef struct 614typedef struct
356{ 615{
357 W w; 616 W w;
358 int events; 617 int events; /* the pending event set for the given watcher */
359} ANPENDING; 618} ANPENDING;
360 619
361#if EV_USE_INOTIFY 620#if EV_USE_INOTIFY
621/* hash table entry per inotify-id */
362typedef struct 622typedef struct
363{ 623{
364 WL head; 624 WL head;
365} ANFS; 625} ANFS;
626#endif
627
628/* Heap Entry */
629#if EV_HEAP_CACHE_AT
630 /* a heap element */
631 typedef struct {
632 ev_tstamp at;
633 WT w;
634 } ANHE;
635
636 #define ANHE_w(he) (he).w /* access watcher, read-write */
637 #define ANHE_at(he) (he).at /* access cached at, read-only */
638 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
639#else
640 /* a heap element */
641 typedef WT ANHE;
642
643 #define ANHE_w(he) (he)
644 #define ANHE_at(he) (he)->at
645 #define ANHE_at_cache(he)
366#endif 646#endif
367 647
368#if EV_MULTIPLICITY 648#if EV_MULTIPLICITY
369 649
370 struct ev_loop 650 struct ev_loop
389 669
390 static int ev_default_loop_ptr; 670 static int ev_default_loop_ptr;
391 671
392#endif 672#endif
393 673
674#if EV_MINIMAL < 2
675# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
676# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
677# define EV_INVOKE_PENDING invoke_cb (EV_A)
678#else
679# define EV_RELEASE_CB (void)0
680# define EV_ACQUIRE_CB (void)0
681# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
682#endif
683
684#define EVUNLOOP_RECURSE 0x80
685
394/*****************************************************************************/ 686/*****************************************************************************/
395 687
688#ifndef EV_HAVE_EV_TIME
396ev_tstamp 689ev_tstamp
397ev_time (void) 690ev_time (void)
398{ 691{
399#if EV_USE_REALTIME 692#if EV_USE_REALTIME
693 if (expect_true (have_realtime))
694 {
400 struct timespec ts; 695 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 696 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 697 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 698 }
699#endif
700
404 struct timeval tv; 701 struct timeval tv;
405 gettimeofday (&tv, 0); 702 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 703 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 704}
705#endif
409 706
410ev_tstamp inline_size 707inline_size ev_tstamp
411get_clock (void) 708get_clock (void)
412{ 709{
413#if EV_USE_MONOTONIC 710#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 711 if (expect_true (have_monotonic))
415 { 712 {
441 ts.tv_sec = (time_t)delay; 738 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 739 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 740
444 nanosleep (&ts, 0); 741 nanosleep (&ts, 0);
445#elif defined(_WIN32) 742#elif defined(_WIN32)
446 Sleep (delay * 1e3); 743 Sleep ((unsigned long)(delay * 1e3));
447#else 744#else
448 struct timeval tv; 745 struct timeval tv;
449 746
450 tv.tv_sec = (time_t)delay; 747 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 748 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 749
750 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
751 /* something not guaranteed by newer posix versions, but guaranteed */
752 /* by older ones */
453 select (0, 0, 0, 0, &tv); 753 select (0, 0, 0, 0, &tv);
454#endif 754#endif
455 } 755 }
456} 756}
457 757
458/*****************************************************************************/ 758/*****************************************************************************/
459 759
460int inline_size 760#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
761
762/* find a suitable new size for the given array, */
763/* hopefully by rounding to a ncie-to-malloc size */
764inline_size int
461array_nextsize (int elem, int cur, int cnt) 765array_nextsize (int elem, int cur, int cnt)
462{ 766{
463 int ncur = cur + 1; 767 int ncur = cur + 1;
464 768
465 do 769 do
466 ncur <<= 1; 770 ncur <<= 1;
467 while (cnt > ncur); 771 while (cnt > ncur);
468 772
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 773 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 774 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 775 {
472 ncur *= elem; 776 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 777 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 778 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 779 ncur /= elem;
476 } 780 }
477 781
478 return ncur; 782 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 786array_realloc (int elem, void *base, int *cur, int cnt)
483{ 787{
484 *cur = array_nextsize (elem, *cur, cnt); 788 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 789 return ev_realloc (base, elem * *cur);
486} 790}
791
792#define array_init_zero(base,count) \
793 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 794
488#define array_needsize(type,base,cur,cnt,init) \ 795#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 796 if (expect_false ((cnt) > (cur))) \
490 { \ 797 { \
491 int ocur_ = (cur); \ 798 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 810 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 811 }
505#endif 812#endif
506 813
507#define array_free(stem, idx) \ 814#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 815 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 816
510/*****************************************************************************/ 817/*****************************************************************************/
818
819/* dummy callback for pending events */
820static void noinline
821pendingcb (EV_P_ ev_prepare *w, int revents)
822{
823}
511 824
512void noinline 825void noinline
513ev_feed_event (EV_P_ void *w, int revents) 826ev_feed_event (EV_P_ void *w, int revents)
514{ 827{
515 W w_ = (W)w; 828 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 837 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 838 pendings [pri][w_->pending - 1].events = revents;
526 } 839 }
527} 840}
528 841
529void inline_speed 842inline_speed void
843feed_reverse (EV_P_ W w)
844{
845 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
846 rfeeds [rfeedcnt++] = w;
847}
848
849inline_size void
850feed_reverse_done (EV_P_ int revents)
851{
852 do
853 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
854 while (rfeedcnt);
855}
856
857inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 858queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 859{
532 int i; 860 int i;
533 861
534 for (i = 0; i < eventcnt; ++i) 862 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 863 ev_feed_event (EV_A_ events [i], type);
536} 864}
537 865
538/*****************************************************************************/ 866/*****************************************************************************/
539 867
540void inline_size 868inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 869fd_event_nc (EV_P_ int fd, int revents)
555{ 870{
556 ANFD *anfd = anfds + fd; 871 ANFD *anfd = anfds + fd;
557 ev_io *w; 872 ev_io *w;
558 873
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 878 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 879 ev_feed_event (EV_A_ (W)w, ev);
565 } 880 }
566} 881}
567 882
883/* do not submit kernel events for fds that have reify set */
884/* because that means they changed while we were polling for new events */
885inline_speed void
886fd_event (EV_P_ int fd, int revents)
887{
888 ANFD *anfd = anfds + fd;
889
890 if (expect_true (!anfd->reify))
891 fd_event_nc (EV_A_ fd, revents);
892}
893
568void 894void
569ev_feed_fd_event (EV_P_ int fd, int revents) 895ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 896{
571 if (fd >= 0 && fd < anfdmax) 897 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 898 fd_event_nc (EV_A_ fd, revents);
573} 899}
574 900
575void inline_size 901/* make sure the external fd watch events are in-sync */
902/* with the kernel/libev internal state */
903inline_size void
576fd_reify (EV_P) 904fd_reify (EV_P)
577{ 905{
578 int i; 906 int i;
579 907
580 for (i = 0; i < fdchangecnt; ++i) 908 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 917 events |= (unsigned char)w->events;
590 918
591#if EV_SELECT_IS_WINSOCKET 919#if EV_SELECT_IS_WINSOCKET
592 if (events) 920 if (events)
593 { 921 {
594 unsigned long argp; 922 unsigned long arg;
595 anfd->handle = _get_osfhandle (fd); 923 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 924 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 925 }
598#endif 926#endif
599 927
600 { 928 {
601 unsigned char o_events = anfd->events; 929 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 930 unsigned char o_reify = anfd->reify;
603 931
604 anfd->reify = 0; 932 anfd->reify = 0;
605 anfd->events = events; 933 anfd->events = events;
606 934
607 if (o_events != events || o_reify & EV_IOFDSET) 935 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 936 backend_modify (EV_A_ fd, o_events, events);
609 } 937 }
610 } 938 }
611 939
612 fdchangecnt = 0; 940 fdchangecnt = 0;
613} 941}
614 942
615void inline_size 943/* something about the given fd changed */
944inline_size void
616fd_change (EV_P_ int fd, int flags) 945fd_change (EV_P_ int fd, int flags)
617{ 946{
618 unsigned char reify = anfds [fd].reify; 947 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 948 anfds [fd].reify |= flags;
620 949
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 953 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 954 fdchanges [fdchangecnt - 1] = fd;
626 } 955 }
627} 956}
628 957
629void inline_speed 958/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
959inline_speed void
630fd_kill (EV_P_ int fd) 960fd_kill (EV_P_ int fd)
631{ 961{
632 ev_io *w; 962 ev_io *w;
633 963
634 while ((w = (ev_io *)anfds [fd].head)) 964 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 966 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 967 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 968 }
639} 969}
640 970
641int inline_size 971/* check whether the given fd is atcually valid, for error recovery */
972inline_size int
642fd_valid (int fd) 973fd_valid (int fd)
643{ 974{
644#ifdef _WIN32 975#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 976 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 977#else
647 return fcntl (fd, F_GETFD) != -1; 978 return fcntl (fd, F_GETFD) != -1;
648#endif 979#endif
649} 980}
650 981
654{ 985{
655 int fd; 986 int fd;
656 987
657 for (fd = 0; fd < anfdmax; ++fd) 988 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 989 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 990 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 991 fd_kill (EV_A_ fd);
661} 992}
662 993
663/* called on ENOMEM in select/poll to kill some fds and retry */ 994/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 995static void noinline
668 999
669 for (fd = anfdmax; fd--; ) 1000 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 1001 if (anfds [fd].events)
671 { 1002 {
672 fd_kill (EV_A_ fd); 1003 fd_kill (EV_A_ fd);
673 return; 1004 break;
674 } 1005 }
675} 1006}
676 1007
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1008/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1009static void noinline
682 1013
683 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1015 if (anfds [fd].events)
685 { 1016 {
686 anfds [fd].events = 0; 1017 anfds [fd].events = 0;
1018 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1019 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1020 }
689} 1021}
690 1022
691/*****************************************************************************/ 1023/*****************************************************************************/
692 1024
693void inline_speed 1025/*
694upheap (WT *heap, int k) 1026 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 1027 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 1028 * the branching factor of the d-tree.
1029 */
697 1030
698 while (k) 1031/*
699 { 1032 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 1033 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1034 * which is more cache-efficient.
1035 * the difference is about 5% with 50000+ watchers.
1036 */
1037#if EV_USE_4HEAP
701 1038
702 if (heap [p]->at <= w->at) 1039#define DHEAP 4
1040#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1041#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1042#define UPHEAP_DONE(p,k) ((p) == (k))
1043
1044/* away from the root */
1045inline_speed void
1046downheap (ANHE *heap, int N, int k)
1047{
1048 ANHE he = heap [k];
1049 ANHE *E = heap + N + HEAP0;
1050
1051 for (;;)
1052 {
1053 ev_tstamp minat;
1054 ANHE *minpos;
1055 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1056
1057 /* find minimum child */
1058 if (expect_true (pos + DHEAP - 1 < E))
1059 {
1060 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else if (pos < E)
1066 {
1067 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1068 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1069 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1070 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1071 }
1072 else
703 break; 1073 break;
704 1074
1075 if (ANHE_at (he) <= minat)
1076 break;
1077
1078 heap [k] = *minpos;
1079 ev_active (ANHE_w (*minpos)) = k;
1080
1081 k = minpos - heap;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087
1088#else /* 4HEAP */
1089
1090#define HEAP0 1
1091#define HPARENT(k) ((k) >> 1)
1092#define UPHEAP_DONE(p,k) (!(p))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099
1100 for (;;)
1101 {
1102 int c = k << 1;
1103
1104 if (c >= N + HEAP0)
1105 break;
1106
1107 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1108 ? 1 : 0;
1109
1110 if (ANHE_at (he) <= ANHE_at (heap [c]))
1111 break;
1112
1113 heap [k] = heap [c];
1114 ev_active (ANHE_w (heap [k])) = k;
1115
1116 k = c;
1117 }
1118
1119 heap [k] = he;
1120 ev_active (ANHE_w (he)) = k;
1121}
1122#endif
1123
1124/* towards the root */
1125inline_speed void
1126upheap (ANHE *heap, int k)
1127{
1128 ANHE he = heap [k];
1129
1130 for (;;)
1131 {
1132 int p = HPARENT (k);
1133
1134 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1135 break;
1136
705 heap [k] = heap [p]; 1137 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 1138 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 1139 k = p;
708 } 1140 }
709 1141
710 heap [k] = w; 1142 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 1143 ev_active (ANHE_w (he)) = k;
712} 1144}
713 1145
714void inline_speed 1146/* move an element suitably so it is in a correct place */
715downheap (WT *heap, int N, int k) 1147inline_size void
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 1148adjustheap (ANHE *heap, int N, int k)
744{ 1149{
1150 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
745 upheap (heap, k); 1151 upheap (heap, k);
1152 else
746 downheap (heap, N, k); 1153 downheap (heap, N, k);
1154}
1155
1156/* rebuild the heap: this function is used only once and executed rarely */
1157inline_size void
1158reheap (ANHE *heap, int N)
1159{
1160 int i;
1161
1162 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1163 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1164 for (i = 0; i < N; ++i)
1165 upheap (heap, i + HEAP0);
747} 1166}
748 1167
749/*****************************************************************************/ 1168/*****************************************************************************/
750 1169
1170/* associate signal watchers to a signal signal */
751typedef struct 1171typedef struct
752{ 1172{
1173 EV_ATOMIC_T pending;
1174#if EV_MULTIPLICITY
1175 EV_P;
1176#endif
753 WL head; 1177 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG; 1178} ANSIG;
756 1179
757static ANSIG *signals; 1180static ANSIG signals [EV_NSIG - 1];
758static int signalmax;
759 1181
760static int sigpipe [2]; 1182/*****************************************************************************/
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1183
764void inline_size 1184/* used to prepare libev internal fd's */
765signals_init (ANSIG *base, int count) 1185/* this is not fork-safe */
766{ 1186inline_speed void
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1187fd_intern (int fd)
829{ 1188{
830#ifdef _WIN32 1189#ifdef _WIN32
831 int arg = 1; 1190 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1191 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1192#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1193 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1194 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1195#endif
837} 1196}
838 1197
839static void noinline 1198static void noinline
840siginit (EV_P) 1199evpipe_init (EV_P)
841{ 1200{
1201 if (!ev_is_active (&pipe_w))
1202 {
1203#if EV_USE_EVENTFD
1204 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1205 if (evfd < 0 && errno == EINVAL)
1206 evfd = eventfd (0, 0);
1207
1208 if (evfd >= 0)
1209 {
1210 evpipe [0] = -1;
1211 fd_intern (evfd); /* doing it twice doesn't hurt */
1212 ev_io_set (&pipe_w, evfd, EV_READ);
1213 }
1214 else
1215#endif
1216 {
1217 while (pipe (evpipe))
1218 ev_syserr ("(libev) error creating signal/async pipe");
1219
842 fd_intern (sigpipe [0]); 1220 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1221 fd_intern (evpipe [1]);
1222 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1223 }
844 1224
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1225 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1226 ev_unref (EV_A); /* watcher should not keep loop alive */
1227 }
1228}
1229
1230inline_size void
1231evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1232{
1233 if (!*flag)
1234 {
1235 int old_errno = errno; /* save errno because write might clobber it */
1236
1237 *flag = 1;
1238
1239#if EV_USE_EVENTFD
1240 if (evfd >= 0)
1241 {
1242 uint64_t counter = 1;
1243 write (evfd, &counter, sizeof (uint64_t));
1244 }
1245 else
1246#endif
1247 write (evpipe [1], &old_errno, 1);
1248
1249 errno = old_errno;
1250 }
1251}
1252
1253/* called whenever the libev signal pipe */
1254/* got some events (signal, async) */
1255static void
1256pipecb (EV_P_ ev_io *iow, int revents)
1257{
1258 int i;
1259
1260#if EV_USE_EVENTFD
1261 if (evfd >= 0)
1262 {
1263 uint64_t counter;
1264 read (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 {
1269 char dummy;
1270 read (evpipe [0], &dummy, 1);
1271 }
1272
1273 if (sig_pending)
1274 {
1275 sig_pending = 0;
1276
1277 for (i = EV_NSIG - 1; i--; )
1278 if (expect_false (signals [i].pending))
1279 ev_feed_signal_event (EV_A_ i + 1);
1280 }
1281
1282#if EV_ASYNC_ENABLE
1283 if (async_pending)
1284 {
1285 async_pending = 0;
1286
1287 for (i = asynccnt; i--; )
1288 if (asyncs [i]->sent)
1289 {
1290 asyncs [i]->sent = 0;
1291 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1292 }
1293 }
1294#endif
848} 1295}
849 1296
850/*****************************************************************************/ 1297/*****************************************************************************/
851 1298
1299static void
1300ev_sighandler (int signum)
1301{
1302#if EV_MULTIPLICITY
1303 EV_P = signals [signum - 1].loop;
1304#endif
1305
1306#ifdef _WIN32
1307 signal (signum, ev_sighandler);
1308#endif
1309
1310 signals [signum - 1].pending = 1;
1311 evpipe_write (EV_A_ &sig_pending);
1312}
1313
1314void noinline
1315ev_feed_signal_event (EV_P_ int signum)
1316{
1317 WL w;
1318
1319 if (expect_false (signum <= 0 || signum > EV_NSIG))
1320 return;
1321
1322 --signum;
1323
1324#if EV_MULTIPLICITY
1325 /* it is permissible to try to feed a signal to the wrong loop */
1326 /* or, likely more useful, feeding a signal nobody is waiting for */
1327
1328 if (expect_false (signals [signum].loop != EV_A))
1329 return;
1330#endif
1331
1332 signals [signum].pending = 0;
1333
1334 for (w = signals [signum].head; w; w = w->next)
1335 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1336}
1337
1338#if EV_USE_SIGNALFD
1339static void
1340sigfdcb (EV_P_ ev_io *iow, int revents)
1341{
1342 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1343
1344 for (;;)
1345 {
1346 ssize_t res = read (sigfd, si, sizeof (si));
1347
1348 /* not ISO-C, as res might be -1, but works with SuS */
1349 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1350 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1351
1352 if (res < (ssize_t)sizeof (si))
1353 break;
1354 }
1355}
1356#endif
1357
1358/*****************************************************************************/
1359
852static WL childs [EV_PID_HASHSIZE]; 1360static WL childs [EV_PID_HASHSIZE];
853 1361
854#ifndef _WIN32 1362#ifndef _WIN32
855 1363
856static ev_signal childev; 1364static ev_signal childev;
857 1365
858void inline_speed 1366#ifndef WIFCONTINUED
1367# define WIFCONTINUED(status) 0
1368#endif
1369
1370/* handle a single child status event */
1371inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1372child_reap (EV_P_ int chain, int pid, int status)
860{ 1373{
861 ev_child *w; 1374 ev_child *w;
1375 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1376
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1377 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1378 {
864 if (w->pid == pid || !w->pid) 1379 if ((w->pid == pid || !w->pid)
1380 && (!traced || (w->flags & 1)))
865 { 1381 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1382 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1383 w->rpid = pid;
868 w->rstatus = status; 1384 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1385 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1386 }
1387 }
871} 1388}
872 1389
873#ifndef WCONTINUED 1390#ifndef WCONTINUED
874# define WCONTINUED 0 1391# define WCONTINUED 0
875#endif 1392#endif
876 1393
1394/* called on sigchld etc., calls waitpid */
877static void 1395static void
878childcb (EV_P_ ev_signal *sw, int revents) 1396childcb (EV_P_ ev_signal *sw, int revents)
879{ 1397{
880 int pid, status; 1398 int pid, status;
881 1399
884 if (!WCONTINUED 1402 if (!WCONTINUED
885 || errno != EINVAL 1403 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1404 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1405 return;
888 1406
889 /* make sure we are called again until all childs have been reaped */ 1407 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1408 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1409 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1410
893 child_reap (EV_A_ sw, pid, pid, status); 1411 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1412 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1413 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1414}
897 1415
898#endif 1416#endif
899 1417
900/*****************************************************************************/ 1418/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1480 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1481 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1482 flags &= ~EVBACKEND_KQUEUE;
965#endif 1483#endif
966#ifdef __APPLE__ 1484#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1485 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1486 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1487 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1488#endif
970 1489
971 return flags; 1490 return flags;
972} 1491}
973 1492
974unsigned int 1493unsigned int
975ev_embeddable_backends (void) 1494ev_embeddable_backends (void)
976{ 1495{
1496 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1497
977 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1498 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
978 return EVBACKEND_KQUEUE 1499 /* please fix it and tell me how to detect the fix */
979 | EVBACKEND_PORT; 1500 flags &= ~EVBACKEND_EPOLL;
1501
1502 return flags;
980} 1503}
981 1504
982unsigned int 1505unsigned int
983ev_backend (EV_P) 1506ev_backend (EV_P)
984{ 1507{
985 return backend; 1508 return backend;
986} 1509}
987 1510
1511#if EV_MINIMAL < 2
988unsigned int 1512unsigned int
989ev_loop_count (EV_P) 1513ev_loop_count (EV_P)
990{ 1514{
991 return loop_count; 1515 return loop_count;
992} 1516}
993 1517
1518unsigned int
1519ev_loop_depth (EV_P)
1520{
1521 return loop_depth;
1522}
1523
994void 1524void
995ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1525ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
996{ 1526{
997 io_blocktime = interval; 1527 io_blocktime = interval;
998} 1528}
1001ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1531ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1002{ 1532{
1003 timeout_blocktime = interval; 1533 timeout_blocktime = interval;
1004} 1534}
1005 1535
1536void
1537ev_set_userdata (EV_P_ void *data)
1538{
1539 userdata = data;
1540}
1541
1542void *
1543ev_userdata (EV_P)
1544{
1545 return userdata;
1546}
1547
1548void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1549{
1550 invoke_cb = invoke_pending_cb;
1551}
1552
1553void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1554{
1555 release_cb = release;
1556 acquire_cb = acquire;
1557}
1558#endif
1559
1560/* initialise a loop structure, must be zero-initialised */
1006static void noinline 1561static void noinline
1007loop_init (EV_P_ unsigned int flags) 1562loop_init (EV_P_ unsigned int flags)
1008{ 1563{
1009 if (!backend) 1564 if (!backend)
1010 { 1565 {
1566#if EV_USE_REALTIME
1567 if (!have_realtime)
1568 {
1569 struct timespec ts;
1570
1571 if (!clock_gettime (CLOCK_REALTIME, &ts))
1572 have_realtime = 1;
1573 }
1574#endif
1575
1011#if EV_USE_MONOTONIC 1576#if EV_USE_MONOTONIC
1577 if (!have_monotonic)
1012 { 1578 {
1013 struct timespec ts; 1579 struct timespec ts;
1580
1014 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1581 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1015 have_monotonic = 1; 1582 have_monotonic = 1;
1016 } 1583 }
1017#endif 1584#endif
1018
1019 ev_rt_now = ev_time ();
1020 mn_now = get_clock ();
1021 now_floor = mn_now;
1022 rtmn_diff = ev_rt_now - mn_now;
1023
1024 io_blocktime = 0.;
1025 timeout_blocktime = 0.;
1026 1585
1027 /* pid check not overridable via env */ 1586 /* pid check not overridable via env */
1028#ifndef _WIN32 1587#ifndef _WIN32
1029 if (flags & EVFLAG_FORKCHECK) 1588 if (flags & EVFLAG_FORKCHECK)
1030 curpid = getpid (); 1589 curpid = getpid ();
1033 if (!(flags & EVFLAG_NOENV) 1592 if (!(flags & EVFLAG_NOENV)
1034 && !enable_secure () 1593 && !enable_secure ()
1035 && getenv ("LIBEV_FLAGS")) 1594 && getenv ("LIBEV_FLAGS"))
1036 flags = atoi (getenv ("LIBEV_FLAGS")); 1595 flags = atoi (getenv ("LIBEV_FLAGS"));
1037 1596
1597 ev_rt_now = ev_time ();
1598 mn_now = get_clock ();
1599 now_floor = mn_now;
1600 rtmn_diff = ev_rt_now - mn_now;
1601#if EV_MINIMAL < 2
1602 invoke_cb = ev_invoke_pending;
1603#endif
1604
1605 io_blocktime = 0.;
1606 timeout_blocktime = 0.;
1607 backend = 0;
1608 backend_fd = -1;
1609 sig_pending = 0;
1610#if EV_ASYNC_ENABLE
1611 async_pending = 0;
1612#endif
1613#if EV_USE_INOTIFY
1614 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1615#endif
1616#if EV_USE_SIGNALFD
1617 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1618#endif
1619
1038 if (!(flags & 0x0000ffffUL)) 1620 if (!(flags & 0x0000ffffU))
1039 flags |= ev_recommended_backends (); 1621 flags |= ev_recommended_backends ();
1040
1041 backend = 0;
1042 backend_fd = -1;
1043#if EV_USE_INOTIFY
1044 fs_fd = -2;
1045#endif
1046 1622
1047#if EV_USE_PORT 1623#if EV_USE_PORT
1048 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1624 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1049#endif 1625#endif
1050#if EV_USE_KQUEUE 1626#if EV_USE_KQUEUE
1058#endif 1634#endif
1059#if EV_USE_SELECT 1635#if EV_USE_SELECT
1060 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1636 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1061#endif 1637#endif
1062 1638
1639 ev_prepare_init (&pending_w, pendingcb);
1640
1063 ev_init (&sigev, sigcb); 1641 ev_init (&pipe_w, pipecb);
1064 ev_set_priority (&sigev, EV_MAXPRI); 1642 ev_set_priority (&pipe_w, EV_MAXPRI);
1065 } 1643 }
1066} 1644}
1067 1645
1646/* free up a loop structure */
1068static void noinline 1647static void noinline
1069loop_destroy (EV_P) 1648loop_destroy (EV_P)
1070{ 1649{
1071 int i; 1650 int i;
1651
1652 if (ev_is_active (&pipe_w))
1653 {
1654 /*ev_ref (EV_A);*/
1655 /*ev_io_stop (EV_A_ &pipe_w);*/
1656
1657#if EV_USE_EVENTFD
1658 if (evfd >= 0)
1659 close (evfd);
1660#endif
1661
1662 if (evpipe [0] >= 0)
1663 {
1664 EV_WIN32_CLOSE_FD (evpipe [0]);
1665 EV_WIN32_CLOSE_FD (evpipe [1]);
1666 }
1667 }
1668
1669#if EV_USE_SIGNALFD
1670 if (ev_is_active (&sigfd_w))
1671 close (sigfd);
1672#endif
1072 1673
1073#if EV_USE_INOTIFY 1674#if EV_USE_INOTIFY
1074 if (fs_fd >= 0) 1675 if (fs_fd >= 0)
1075 close (fs_fd); 1676 close (fs_fd);
1076#endif 1677#endif
1100#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1101 array_free (idle, [i]); 1702 array_free (idle, [i]);
1102#endif 1703#endif
1103 } 1704 }
1104 1705
1105 ev_free (anfds); anfdmax = 0; 1706 ev_free (anfds); anfds = 0; anfdmax = 0;
1106 1707
1107 /* have to use the microsoft-never-gets-it-right macro */ 1708 /* have to use the microsoft-never-gets-it-right macro */
1709 array_free (rfeed, EMPTY);
1108 array_free (fdchange, EMPTY); 1710 array_free (fdchange, EMPTY);
1109 array_free (timer, EMPTY); 1711 array_free (timer, EMPTY);
1110#if EV_PERIODIC_ENABLE 1712#if EV_PERIODIC_ENABLE
1111 array_free (periodic, EMPTY); 1713 array_free (periodic, EMPTY);
1112#endif 1714#endif
1113#if EV_FORK_ENABLE 1715#if EV_FORK_ENABLE
1114 array_free (fork, EMPTY); 1716 array_free (fork, EMPTY);
1115#endif 1717#endif
1116 array_free (prepare, EMPTY); 1718 array_free (prepare, EMPTY);
1117 array_free (check, EMPTY); 1719 array_free (check, EMPTY);
1720#if EV_ASYNC_ENABLE
1721 array_free (async, EMPTY);
1722#endif
1118 1723
1119 backend = 0; 1724 backend = 0;
1120} 1725}
1121 1726
1727#if EV_USE_INOTIFY
1122void inline_size infy_fork (EV_P); 1728inline_size void infy_fork (EV_P);
1729#endif
1123 1730
1124void inline_size 1731inline_size void
1125loop_fork (EV_P) 1732loop_fork (EV_P)
1126{ 1733{
1127#if EV_USE_PORT 1734#if EV_USE_PORT
1128 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1735 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1129#endif 1736#endif
1135#endif 1742#endif
1136#if EV_USE_INOTIFY 1743#if EV_USE_INOTIFY
1137 infy_fork (EV_A); 1744 infy_fork (EV_A);
1138#endif 1745#endif
1139 1746
1140 if (ev_is_active (&sigev)) 1747 if (ev_is_active (&pipe_w))
1141 { 1748 {
1142 /* default loop */ 1749 /* this "locks" the handlers against writing to the pipe */
1750 /* while we modify the fd vars */
1751 sig_pending = 1;
1752#if EV_ASYNC_ENABLE
1753 async_pending = 1;
1754#endif
1143 1755
1144 ev_ref (EV_A); 1756 ev_ref (EV_A);
1145 ev_io_stop (EV_A_ &sigev); 1757 ev_io_stop (EV_A_ &pipe_w);
1146 close (sigpipe [0]);
1147 close (sigpipe [1]);
1148 1758
1149 while (pipe (sigpipe)) 1759#if EV_USE_EVENTFD
1150 syserr ("(libev) error creating pipe"); 1760 if (evfd >= 0)
1761 close (evfd);
1762#endif
1151 1763
1764 if (evpipe [0] >= 0)
1765 {
1766 EV_WIN32_CLOSE_FD (evpipe [0]);
1767 EV_WIN32_CLOSE_FD (evpipe [1]);
1768 }
1769
1152 siginit (EV_A); 1770 evpipe_init (EV_A);
1771 /* now iterate over everything, in case we missed something */
1772 pipecb (EV_A_ &pipe_w, EV_READ);
1153 } 1773 }
1154 1774
1155 postfork = 0; 1775 postfork = 0;
1156} 1776}
1157 1777
1158#if EV_MULTIPLICITY 1778#if EV_MULTIPLICITY
1779
1159struct ev_loop * 1780struct ev_loop *
1160ev_loop_new (unsigned int flags) 1781ev_loop_new (unsigned int flags)
1161{ 1782{
1162 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1783 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1163 1784
1164 memset (loop, 0, sizeof (struct ev_loop)); 1785 memset (EV_A, 0, sizeof (struct ev_loop));
1165
1166 loop_init (EV_A_ flags); 1786 loop_init (EV_A_ flags);
1167 1787
1168 if (ev_backend (EV_A)) 1788 if (ev_backend (EV_A))
1169 return loop; 1789 return EV_A;
1170 1790
1171 return 0; 1791 return 0;
1172} 1792}
1173 1793
1174void 1794void
1179} 1799}
1180 1800
1181void 1801void
1182ev_loop_fork (EV_P) 1802ev_loop_fork (EV_P)
1183{ 1803{
1184 postfork = 1; 1804 postfork = 1; /* must be in line with ev_default_fork */
1185} 1805}
1806#endif /* multiplicity */
1186 1807
1808#if EV_VERIFY
1809static void noinline
1810verify_watcher (EV_P_ W w)
1811{
1812 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1813
1814 if (w->pending)
1815 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1816}
1817
1818static void noinline
1819verify_heap (EV_P_ ANHE *heap, int N)
1820{
1821 int i;
1822
1823 for (i = HEAP0; i < N + HEAP0; ++i)
1824 {
1825 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1826 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1827 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1828
1829 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1830 }
1831}
1832
1833static void noinline
1834array_verify (EV_P_ W *ws, int cnt)
1835{
1836 while (cnt--)
1837 {
1838 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1839 verify_watcher (EV_A_ ws [cnt]);
1840 }
1841}
1842#endif
1843
1844#if EV_MINIMAL < 2
1845void
1846ev_loop_verify (EV_P)
1847{
1848#if EV_VERIFY
1849 int i;
1850 WL w;
1851
1852 assert (activecnt >= -1);
1853
1854 assert (fdchangemax >= fdchangecnt);
1855 for (i = 0; i < fdchangecnt; ++i)
1856 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1857
1858 assert (anfdmax >= 0);
1859 for (i = 0; i < anfdmax; ++i)
1860 for (w = anfds [i].head; w; w = w->next)
1861 {
1862 verify_watcher (EV_A_ (W)w);
1863 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1864 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1865 }
1866
1867 assert (timermax >= timercnt);
1868 verify_heap (EV_A_ timers, timercnt);
1869
1870#if EV_PERIODIC_ENABLE
1871 assert (periodicmax >= periodiccnt);
1872 verify_heap (EV_A_ periodics, periodiccnt);
1873#endif
1874
1875 for (i = NUMPRI; i--; )
1876 {
1877 assert (pendingmax [i] >= pendingcnt [i]);
1878#if EV_IDLE_ENABLE
1879 assert (idleall >= 0);
1880 assert (idlemax [i] >= idlecnt [i]);
1881 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1882#endif
1883 }
1884
1885#if EV_FORK_ENABLE
1886 assert (forkmax >= forkcnt);
1887 array_verify (EV_A_ (W *)forks, forkcnt);
1888#endif
1889
1890#if EV_ASYNC_ENABLE
1891 assert (asyncmax >= asynccnt);
1892 array_verify (EV_A_ (W *)asyncs, asynccnt);
1893#endif
1894
1895 assert (preparemax >= preparecnt);
1896 array_verify (EV_A_ (W *)prepares, preparecnt);
1897
1898 assert (checkmax >= checkcnt);
1899 array_verify (EV_A_ (W *)checks, checkcnt);
1900
1901# if 0
1902 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1903 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1904# endif
1905#endif
1906}
1187#endif 1907#endif
1188 1908
1189#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1190struct ev_loop * 1910struct ev_loop *
1191ev_default_loop_init (unsigned int flags) 1911ev_default_loop_init (unsigned int flags)
1192#else 1912#else
1193int 1913int
1194ev_default_loop (unsigned int flags) 1914ev_default_loop (unsigned int flags)
1195#endif 1915#endif
1196{ 1916{
1197 if (sigpipe [0] == sigpipe [1])
1198 if (pipe (sigpipe))
1199 return 0;
1200
1201 if (!ev_default_loop_ptr) 1917 if (!ev_default_loop_ptr)
1202 { 1918 {
1203#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1204 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1920 EV_P = ev_default_loop_ptr = &default_loop_struct;
1205#else 1921#else
1206 ev_default_loop_ptr = 1; 1922 ev_default_loop_ptr = 1;
1207#endif 1923#endif
1208 1924
1209 loop_init (EV_A_ flags); 1925 loop_init (EV_A_ flags);
1210 1926
1211 if (ev_backend (EV_A)) 1927 if (ev_backend (EV_A))
1212 { 1928 {
1213 siginit (EV_A);
1214
1215#ifndef _WIN32 1929#ifndef _WIN32
1216 ev_signal_init (&childev, childcb, SIGCHLD); 1930 ev_signal_init (&childev, childcb, SIGCHLD);
1217 ev_set_priority (&childev, EV_MAXPRI); 1931 ev_set_priority (&childev, EV_MAXPRI);
1218 ev_signal_start (EV_A_ &childev); 1932 ev_signal_start (EV_A_ &childev);
1219 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1933 ev_unref (EV_A); /* child watcher should not keep loop alive */
1228 1942
1229void 1943void
1230ev_default_destroy (void) 1944ev_default_destroy (void)
1231{ 1945{
1232#if EV_MULTIPLICITY 1946#if EV_MULTIPLICITY
1233 struct ev_loop *loop = ev_default_loop_ptr; 1947 EV_P = ev_default_loop_ptr;
1234#endif 1948#endif
1949
1950 ev_default_loop_ptr = 0;
1235 1951
1236#ifndef _WIN32 1952#ifndef _WIN32
1237 ev_ref (EV_A); /* child watcher */ 1953 ev_ref (EV_A); /* child watcher */
1238 ev_signal_stop (EV_A_ &childev); 1954 ev_signal_stop (EV_A_ &childev);
1239#endif 1955#endif
1240 1956
1241 ev_ref (EV_A); /* signal watcher */
1242 ev_io_stop (EV_A_ &sigev);
1243
1244 close (sigpipe [0]); sigpipe [0] = 0;
1245 close (sigpipe [1]); sigpipe [1] = 0;
1246
1247 loop_destroy (EV_A); 1957 loop_destroy (EV_A);
1248} 1958}
1249 1959
1250void 1960void
1251ev_default_fork (void) 1961ev_default_fork (void)
1252{ 1962{
1253#if EV_MULTIPLICITY 1963#if EV_MULTIPLICITY
1254 struct ev_loop *loop = ev_default_loop_ptr; 1964 EV_P = ev_default_loop_ptr;
1255#endif 1965#endif
1256 1966
1257 if (backend) 1967 postfork = 1; /* must be in line with ev_loop_fork */
1258 postfork = 1;
1259} 1968}
1260 1969
1261/*****************************************************************************/ 1970/*****************************************************************************/
1262 1971
1263void 1972void
1264ev_invoke (EV_P_ void *w, int revents) 1973ev_invoke (EV_P_ void *w, int revents)
1265{ 1974{
1266 EV_CB_INVOKE ((W)w, revents); 1975 EV_CB_INVOKE ((W)w, revents);
1267} 1976}
1268 1977
1269void inline_speed 1978unsigned int
1270call_pending (EV_P) 1979ev_pending_count (EV_P)
1980{
1981 int pri;
1982 unsigned int count = 0;
1983
1984 for (pri = NUMPRI; pri--; )
1985 count += pendingcnt [pri];
1986
1987 return count;
1988}
1989
1990void noinline
1991ev_invoke_pending (EV_P)
1271{ 1992{
1272 int pri; 1993 int pri;
1273 1994
1274 for (pri = NUMPRI; pri--; ) 1995 for (pri = NUMPRI; pri--; )
1275 while (pendingcnt [pri]) 1996 while (pendingcnt [pri])
1276 { 1997 {
1277 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1998 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1278 1999
1279 if (expect_true (p->w))
1280 {
1281 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2000 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2001 /* ^ this is no longer true, as pending_w could be here */
1282 2002
1283 p->w->pending = 0; 2003 p->w->pending = 0;
1284 EV_CB_INVOKE (p->w, p->events); 2004 EV_CB_INVOKE (p->w, p->events);
1285 } 2005 EV_FREQUENT_CHECK;
1286 } 2006 }
1287} 2007}
1288 2008
1289void inline_size
1290timers_reify (EV_P)
1291{
1292 while (timercnt && ((WT)timers [0])->at <= mn_now)
1293 {
1294 ev_timer *w = (ev_timer *)timers [0];
1295
1296 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1297
1298 /* first reschedule or stop timer */
1299 if (w->repeat)
1300 {
1301 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1302
1303 ((WT)w)->at += w->repeat;
1304 if (((WT)w)->at < mn_now)
1305 ((WT)w)->at = mn_now;
1306
1307 downheap (timers, timercnt, 0);
1308 }
1309 else
1310 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1311
1312 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1313 }
1314}
1315
1316#if EV_PERIODIC_ENABLE
1317void inline_size
1318periodics_reify (EV_P)
1319{
1320 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1321 {
1322 ev_periodic *w = (ev_periodic *)periodics [0];
1323
1324 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1325
1326 /* first reschedule or stop timer */
1327 if (w->reschedule_cb)
1328 {
1329 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1330 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1331 downheap (periodics, periodiccnt, 0);
1332 }
1333 else if (w->interval)
1334 {
1335 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1336 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1337 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1338 downheap (periodics, periodiccnt, 0);
1339 }
1340 else
1341 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1342
1343 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1344 }
1345}
1346
1347static void noinline
1348periodics_reschedule (EV_P)
1349{
1350 int i;
1351
1352 /* adjust periodics after time jump */
1353 for (i = 0; i < periodiccnt; ++i)
1354 {
1355 ev_periodic *w = (ev_periodic *)periodics [i];
1356
1357 if (w->reschedule_cb)
1358 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1359 else if (w->interval)
1360 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 }
1362
1363 /* now rebuild the heap */
1364 for (i = periodiccnt >> 1; i--; )
1365 downheap (periodics, periodiccnt, i);
1366}
1367#endif
1368
1369#if EV_IDLE_ENABLE 2009#if EV_IDLE_ENABLE
1370void inline_size 2010/* make idle watchers pending. this handles the "call-idle */
2011/* only when higher priorities are idle" logic */
2012inline_size void
1371idle_reify (EV_P) 2013idle_reify (EV_P)
1372{ 2014{
1373 if (expect_false (idleall)) 2015 if (expect_false (idleall))
1374 { 2016 {
1375 int pri; 2017 int pri;
1387 } 2029 }
1388 } 2030 }
1389} 2031}
1390#endif 2032#endif
1391 2033
1392void inline_speed 2034/* make timers pending */
2035inline_size void
2036timers_reify (EV_P)
2037{
2038 EV_FREQUENT_CHECK;
2039
2040 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2041 {
2042 do
2043 {
2044 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2045
2046 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2047
2048 /* first reschedule or stop timer */
2049 if (w->repeat)
2050 {
2051 ev_at (w) += w->repeat;
2052 if (ev_at (w) < mn_now)
2053 ev_at (w) = mn_now;
2054
2055 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2056
2057 ANHE_at_cache (timers [HEAP0]);
2058 downheap (timers, timercnt, HEAP0);
2059 }
2060 else
2061 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2062
2063 EV_FREQUENT_CHECK;
2064 feed_reverse (EV_A_ (W)w);
2065 }
2066 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2067
2068 feed_reverse_done (EV_A_ EV_TIMEOUT);
2069 }
2070}
2071
2072#if EV_PERIODIC_ENABLE
2073/* make periodics pending */
2074inline_size void
2075periodics_reify (EV_P)
2076{
2077 EV_FREQUENT_CHECK;
2078
2079 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2080 {
2081 int feed_count = 0;
2082
2083 do
2084 {
2085 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->reschedule_cb)
2091 {
2092 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2093
2094 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2095
2096 ANHE_at_cache (periodics [HEAP0]);
2097 downheap (periodics, periodiccnt, HEAP0);
2098 }
2099 else if (w->interval)
2100 {
2101 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2102 /* if next trigger time is not sufficiently in the future, put it there */
2103 /* this might happen because of floating point inexactness */
2104 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2105 {
2106 ev_at (w) += w->interval;
2107
2108 /* if interval is unreasonably low we might still have a time in the past */
2109 /* so correct this. this will make the periodic very inexact, but the user */
2110 /* has effectively asked to get triggered more often than possible */
2111 if (ev_at (w) < ev_rt_now)
2112 ev_at (w) = ev_rt_now;
2113 }
2114
2115 ANHE_at_cache (periodics [HEAP0]);
2116 downheap (periodics, periodiccnt, HEAP0);
2117 }
2118 else
2119 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2120
2121 EV_FREQUENT_CHECK;
2122 feed_reverse (EV_A_ (W)w);
2123 }
2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2125
2126 feed_reverse_done (EV_A_ EV_PERIODIC);
2127 }
2128}
2129
2130/* simply recalculate all periodics */
2131/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2132static void noinline
2133periodics_reschedule (EV_P)
2134{
2135 int i;
2136
2137 /* adjust periodics after time jump */
2138 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2139 {
2140 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2141
2142 if (w->reschedule_cb)
2143 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2144 else if (w->interval)
2145 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2146
2147 ANHE_at_cache (periodics [i]);
2148 }
2149
2150 reheap (periodics, periodiccnt);
2151}
2152#endif
2153
2154/* adjust all timers by a given offset */
2155static void noinline
2156timers_reschedule (EV_P_ ev_tstamp adjust)
2157{
2158 int i;
2159
2160 for (i = 0; i < timercnt; ++i)
2161 {
2162 ANHE *he = timers + i + HEAP0;
2163 ANHE_w (*he)->at += adjust;
2164 ANHE_at_cache (*he);
2165 }
2166}
2167
2168/* fetch new monotonic and realtime times from the kernel */
2169/* also detect if there was a timejump, and act accordingly */
2170inline_speed void
1393time_update (EV_P_ ev_tstamp max_block) 2171time_update (EV_P_ ev_tstamp max_block)
1394{ 2172{
1395 int i;
1396
1397#if EV_USE_MONOTONIC 2173#if EV_USE_MONOTONIC
1398 if (expect_true (have_monotonic)) 2174 if (expect_true (have_monotonic))
1399 { 2175 {
2176 int i;
1400 ev_tstamp odiff = rtmn_diff; 2177 ev_tstamp odiff = rtmn_diff;
1401 2178
1402 mn_now = get_clock (); 2179 mn_now = get_clock ();
1403 2180
1404 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2181 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1422 */ 2199 */
1423 for (i = 4; --i; ) 2200 for (i = 4; --i; )
1424 { 2201 {
1425 rtmn_diff = ev_rt_now - mn_now; 2202 rtmn_diff = ev_rt_now - mn_now;
1426 2203
1427 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2204 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1428 return; /* all is well */ 2205 return; /* all is well */
1429 2206
1430 ev_rt_now = ev_time (); 2207 ev_rt_now = ev_time ();
1431 mn_now = get_clock (); 2208 mn_now = get_clock ();
1432 now_floor = mn_now; 2209 now_floor = mn_now;
1433 } 2210 }
1434 2211
2212 /* no timer adjustment, as the monotonic clock doesn't jump */
2213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1435# if EV_PERIODIC_ENABLE 2214# if EV_PERIODIC_ENABLE
1436 periodics_reschedule (EV_A); 2215 periodics_reschedule (EV_A);
1437# endif 2216# endif
1438 /* no timer adjustment, as the monotonic clock doesn't jump */
1439 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1440 } 2217 }
1441 else 2218 else
1442#endif 2219#endif
1443 { 2220 {
1444 ev_rt_now = ev_time (); 2221 ev_rt_now = ev_time ();
1445 2222
1446 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2223 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1447 { 2224 {
2225 /* adjust timers. this is easy, as the offset is the same for all of them */
2226 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1448#if EV_PERIODIC_ENABLE 2227#if EV_PERIODIC_ENABLE
1449 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1450#endif 2229#endif
1451 /* adjust timers. this is easy, as the offset is the same for all of them */
1452 for (i = 0; i < timercnt; ++i)
1453 ((WT)timers [i])->at += ev_rt_now - mn_now;
1454 } 2230 }
1455 2231
1456 mn_now = ev_rt_now; 2232 mn_now = ev_rt_now;
1457 } 2233 }
1458} 2234}
1459 2235
1460void 2236void
1461ev_ref (EV_P)
1462{
1463 ++activecnt;
1464}
1465
1466void
1467ev_unref (EV_P)
1468{
1469 --activecnt;
1470}
1471
1472static int loop_done;
1473
1474void
1475ev_loop (EV_P_ int flags) 2237ev_loop (EV_P_ int flags)
1476{ 2238{
1477 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2239#if EV_MINIMAL < 2
1478 ? EVUNLOOP_ONE 2240 ++loop_depth;
1479 : EVUNLOOP_CANCEL; 2241#endif
1480 2242
2243 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2244
2245 loop_done = EVUNLOOP_CANCEL;
2246
1481 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2247 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1482 2248
1483 do 2249 do
1484 { 2250 {
2251#if EV_VERIFY >= 2
2252 ev_loop_verify (EV_A);
2253#endif
2254
1485#ifndef _WIN32 2255#ifndef _WIN32
1486 if (expect_false (curpid)) /* penalise the forking check even more */ 2256 if (expect_false (curpid)) /* penalise the forking check even more */
1487 if (expect_false (getpid () != curpid)) 2257 if (expect_false (getpid () != curpid))
1488 { 2258 {
1489 curpid = getpid (); 2259 curpid = getpid ();
1495 /* we might have forked, so queue fork handlers */ 2265 /* we might have forked, so queue fork handlers */
1496 if (expect_false (postfork)) 2266 if (expect_false (postfork))
1497 if (forkcnt) 2267 if (forkcnt)
1498 { 2268 {
1499 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2269 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1500 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1501 } 2271 }
1502#endif 2272#endif
1503 2273
1504 /* queue prepare watchers (and execute them) */ 2274 /* queue prepare watchers (and execute them) */
1505 if (expect_false (preparecnt)) 2275 if (expect_false (preparecnt))
1506 { 2276 {
1507 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2277 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1508 call_pending (EV_A); 2278 EV_INVOKE_PENDING;
1509 } 2279 }
1510 2280
1511 if (expect_false (!activecnt)) 2281 if (expect_false (loop_done))
1512 break; 2282 break;
1513 2283
1514 /* we might have forked, so reify kernel state if necessary */ 2284 /* we might have forked, so reify kernel state if necessary */
1515 if (expect_false (postfork)) 2285 if (expect_false (postfork))
1516 loop_fork (EV_A); 2286 loop_fork (EV_A);
1523 ev_tstamp waittime = 0.; 2293 ev_tstamp waittime = 0.;
1524 ev_tstamp sleeptime = 0.; 2294 ev_tstamp sleeptime = 0.;
1525 2295
1526 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2296 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1527 { 2297 {
2298 /* remember old timestamp for io_blocktime calculation */
2299 ev_tstamp prev_mn_now = mn_now;
2300
1528 /* update time to cancel out callback processing overhead */ 2301 /* update time to cancel out callback processing overhead */
1529 time_update (EV_A_ 1e100); 2302 time_update (EV_A_ 1e100);
1530 2303
1531 waittime = MAX_BLOCKTIME; 2304 waittime = MAX_BLOCKTIME;
1532 2305
1533 if (timercnt) 2306 if (timercnt)
1534 { 2307 {
1535 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1536 if (waittime > to) waittime = to; 2309 if (waittime > to) waittime = to;
1537 } 2310 }
1538 2311
1539#if EV_PERIODIC_ENABLE 2312#if EV_PERIODIC_ENABLE
1540 if (periodiccnt) 2313 if (periodiccnt)
1541 { 2314 {
1542 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2315 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1543 if (waittime > to) waittime = to; 2316 if (waittime > to) waittime = to;
1544 } 2317 }
1545#endif 2318#endif
1546 2319
2320 /* don't let timeouts decrease the waittime below timeout_blocktime */
1547 if (expect_false (waittime < timeout_blocktime)) 2321 if (expect_false (waittime < timeout_blocktime))
1548 waittime = timeout_blocktime; 2322 waittime = timeout_blocktime;
1549 2323
1550 sleeptime = waittime - backend_fudge; 2324 /* extra check because io_blocktime is commonly 0 */
1551
1552 if (expect_true (sleeptime > io_blocktime)) 2325 if (expect_false (io_blocktime))
1553 sleeptime = io_blocktime;
1554
1555 if (sleeptime)
1556 { 2326 {
2327 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2328
2329 if (sleeptime > waittime - backend_fudge)
2330 sleeptime = waittime - backend_fudge;
2331
2332 if (expect_true (sleeptime > 0.))
2333 {
1557 ev_sleep (sleeptime); 2334 ev_sleep (sleeptime);
1558 waittime -= sleeptime; 2335 waittime -= sleeptime;
2336 }
1559 } 2337 }
1560 } 2338 }
1561 2339
2340#if EV_MINIMAL < 2
1562 ++loop_count; 2341 ++loop_count;
2342#endif
2343 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1563 backend_poll (EV_A_ waittime); 2344 backend_poll (EV_A_ waittime);
2345 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1564 2346
1565 /* update ev_rt_now, do magic */ 2347 /* update ev_rt_now, do magic */
1566 time_update (EV_A_ waittime + sleeptime); 2348 time_update (EV_A_ waittime + sleeptime);
1567 } 2349 }
1568 2350
1579 2361
1580 /* queue check watchers, to be executed first */ 2362 /* queue check watchers, to be executed first */
1581 if (expect_false (checkcnt)) 2363 if (expect_false (checkcnt))
1582 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2364 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1583 2365
1584 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1585
1586 } 2367 }
1587 while (expect_true (activecnt && !loop_done)); 2368 while (expect_true (
2369 activecnt
2370 && !loop_done
2371 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2372 ));
1588 2373
1589 if (loop_done == EVUNLOOP_ONE) 2374 if (loop_done == EVUNLOOP_ONE)
1590 loop_done = EVUNLOOP_CANCEL; 2375 loop_done = EVUNLOOP_CANCEL;
2376
2377#if EV_MINIMAL < 2
2378 --loop_depth;
2379#endif
1591} 2380}
1592 2381
1593void 2382void
1594ev_unloop (EV_P_ int how) 2383ev_unloop (EV_P_ int how)
1595{ 2384{
1596 loop_done = how; 2385 loop_done = how;
1597} 2386}
1598 2387
2388void
2389ev_ref (EV_P)
2390{
2391 ++activecnt;
2392}
2393
2394void
2395ev_unref (EV_P)
2396{
2397 --activecnt;
2398}
2399
2400void
2401ev_now_update (EV_P)
2402{
2403 time_update (EV_A_ 1e100);
2404}
2405
2406void
2407ev_suspend (EV_P)
2408{
2409 ev_now_update (EV_A);
2410}
2411
2412void
2413ev_resume (EV_P)
2414{
2415 ev_tstamp mn_prev = mn_now;
2416
2417 ev_now_update (EV_A);
2418 timers_reschedule (EV_A_ mn_now - mn_prev);
2419#if EV_PERIODIC_ENABLE
2420 /* TODO: really do this? */
2421 periodics_reschedule (EV_A);
2422#endif
2423}
2424
1599/*****************************************************************************/ 2425/*****************************************************************************/
2426/* singly-linked list management, used when the expected list length is short */
1600 2427
1601void inline_size 2428inline_size void
1602wlist_add (WL *head, WL elem) 2429wlist_add (WL *head, WL elem)
1603{ 2430{
1604 elem->next = *head; 2431 elem->next = *head;
1605 *head = elem; 2432 *head = elem;
1606} 2433}
1607 2434
1608void inline_size 2435inline_size void
1609wlist_del (WL *head, WL elem) 2436wlist_del (WL *head, WL elem)
1610{ 2437{
1611 while (*head) 2438 while (*head)
1612 { 2439 {
1613 if (*head == elem) 2440 if (expect_true (*head == elem))
1614 { 2441 {
1615 *head = elem->next; 2442 *head = elem->next;
1616 return; 2443 break;
1617 } 2444 }
1618 2445
1619 head = &(*head)->next; 2446 head = &(*head)->next;
1620 } 2447 }
1621} 2448}
1622 2449
1623void inline_speed 2450/* internal, faster, version of ev_clear_pending */
2451inline_speed void
1624clear_pending (EV_P_ W w) 2452clear_pending (EV_P_ W w)
1625{ 2453{
1626 if (w->pending) 2454 if (w->pending)
1627 { 2455 {
1628 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2456 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1629 w->pending = 0; 2457 w->pending = 0;
1630 } 2458 }
1631} 2459}
1632 2460
1633int 2461int
1637 int pending = w_->pending; 2465 int pending = w_->pending;
1638 2466
1639 if (expect_true (pending)) 2467 if (expect_true (pending))
1640 { 2468 {
1641 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2469 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2470 p->w = (W)&pending_w;
1642 w_->pending = 0; 2471 w_->pending = 0;
1643 p->w = 0;
1644 return p->events; 2472 return p->events;
1645 } 2473 }
1646 else 2474 else
1647 return 0; 2475 return 0;
1648} 2476}
1649 2477
1650void inline_size 2478inline_size void
1651pri_adjust (EV_P_ W w) 2479pri_adjust (EV_P_ W w)
1652{ 2480{
1653 int pri = w->priority; 2481 int pri = ev_priority (w);
1654 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2482 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1655 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2483 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1656 w->priority = pri; 2484 ev_set_priority (w, pri);
1657} 2485}
1658 2486
1659void inline_speed 2487inline_speed void
1660ev_start (EV_P_ W w, int active) 2488ev_start (EV_P_ W w, int active)
1661{ 2489{
1662 pri_adjust (EV_A_ w); 2490 pri_adjust (EV_A_ w);
1663 w->active = active; 2491 w->active = active;
1664 ev_ref (EV_A); 2492 ev_ref (EV_A);
1665} 2493}
1666 2494
1667void inline_size 2495inline_size void
1668ev_stop (EV_P_ W w) 2496ev_stop (EV_P_ W w)
1669{ 2497{
1670 ev_unref (EV_A); 2498 ev_unref (EV_A);
1671 w->active = 0; 2499 w->active = 0;
1672} 2500}
1679 int fd = w->fd; 2507 int fd = w->fd;
1680 2508
1681 if (expect_false (ev_is_active (w))) 2509 if (expect_false (ev_is_active (w)))
1682 return; 2510 return;
1683 2511
1684 assert (("ev_io_start called with negative fd", fd >= 0)); 2512 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2513 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2514
2515 EV_FREQUENT_CHECK;
1685 2516
1686 ev_start (EV_A_ (W)w, 1); 2517 ev_start (EV_A_ (W)w, 1);
1687 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2518 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1688 wlist_add (&anfds[fd].head, (WL)w); 2519 wlist_add (&anfds[fd].head, (WL)w);
1689 2520
1690 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2521 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1691 w->events &= ~EV_IOFDSET; 2522 w->events &= ~EV__IOFDSET;
2523
2524 EV_FREQUENT_CHECK;
1692} 2525}
1693 2526
1694void noinline 2527void noinline
1695ev_io_stop (EV_P_ ev_io *w) 2528ev_io_stop (EV_P_ ev_io *w)
1696{ 2529{
1697 clear_pending (EV_A_ (W)w); 2530 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 2531 if (expect_false (!ev_is_active (w)))
1699 return; 2532 return;
1700 2533
1701 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2534 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2535
2536 EV_FREQUENT_CHECK;
1702 2537
1703 wlist_del (&anfds[w->fd].head, (WL)w); 2538 wlist_del (&anfds[w->fd].head, (WL)w);
1704 ev_stop (EV_A_ (W)w); 2539 ev_stop (EV_A_ (W)w);
1705 2540
1706 fd_change (EV_A_ w->fd, 1); 2541 fd_change (EV_A_ w->fd, 1);
2542
2543 EV_FREQUENT_CHECK;
1707} 2544}
1708 2545
1709void noinline 2546void noinline
1710ev_timer_start (EV_P_ ev_timer *w) 2547ev_timer_start (EV_P_ ev_timer *w)
1711{ 2548{
1712 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
1713 return; 2550 return;
1714 2551
1715 ((WT)w)->at += mn_now; 2552 ev_at (w) += mn_now;
1716 2553
1717 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2554 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1718 2555
2556 EV_FREQUENT_CHECK;
2557
2558 ++timercnt;
1719 ev_start (EV_A_ (W)w, ++timercnt); 2559 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1720 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2560 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1721 timers [timercnt - 1] = (WT)w; 2561 ANHE_w (timers [ev_active (w)]) = (WT)w;
1722 upheap (timers, timercnt - 1); 2562 ANHE_at_cache (timers [ev_active (w)]);
2563 upheap (timers, ev_active (w));
1723 2564
2565 EV_FREQUENT_CHECK;
2566
1724 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2567 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1725} 2568}
1726 2569
1727void noinline 2570void noinline
1728ev_timer_stop (EV_P_ ev_timer *w) 2571ev_timer_stop (EV_P_ ev_timer *w)
1729{ 2572{
1730 clear_pending (EV_A_ (W)w); 2573 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2574 if (expect_false (!ev_is_active (w)))
1732 return; 2575 return;
1733 2576
1734 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2577 EV_FREQUENT_CHECK;
1735 2578
1736 { 2579 {
1737 int active = ((W)w)->active; 2580 int active = ev_active (w);
1738 2581
2582 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2583
2584 --timercnt;
2585
1739 if (expect_true (--active < --timercnt)) 2586 if (expect_true (active < timercnt + HEAP0))
1740 { 2587 {
1741 timers [active] = timers [timercnt]; 2588 timers [active] = timers [timercnt + HEAP0];
1742 adjustheap (timers, timercnt, active); 2589 adjustheap (timers, timercnt, active);
1743 } 2590 }
1744 } 2591 }
1745 2592
1746 ((WT)w)->at -= mn_now; 2593 ev_at (w) -= mn_now;
1747 2594
1748 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
2596
2597 EV_FREQUENT_CHECK;
1749} 2598}
1750 2599
1751void noinline 2600void noinline
1752ev_timer_again (EV_P_ ev_timer *w) 2601ev_timer_again (EV_P_ ev_timer *w)
1753{ 2602{
2603 EV_FREQUENT_CHECK;
2604
1754 if (ev_is_active (w)) 2605 if (ev_is_active (w))
1755 { 2606 {
1756 if (w->repeat) 2607 if (w->repeat)
1757 { 2608 {
1758 ((WT)w)->at = mn_now + w->repeat; 2609 ev_at (w) = mn_now + w->repeat;
2610 ANHE_at_cache (timers [ev_active (w)]);
1759 adjustheap (timers, timercnt, ((W)w)->active - 1); 2611 adjustheap (timers, timercnt, ev_active (w));
1760 } 2612 }
1761 else 2613 else
1762 ev_timer_stop (EV_A_ w); 2614 ev_timer_stop (EV_A_ w);
1763 } 2615 }
1764 else if (w->repeat) 2616 else if (w->repeat)
1765 { 2617 {
1766 w->at = w->repeat; 2618 ev_at (w) = w->repeat;
1767 ev_timer_start (EV_A_ w); 2619 ev_timer_start (EV_A_ w);
1768 } 2620 }
2621
2622 EV_FREQUENT_CHECK;
2623}
2624
2625ev_tstamp
2626ev_timer_remaining (EV_P_ ev_timer *w)
2627{
2628 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1769} 2629}
1770 2630
1771#if EV_PERIODIC_ENABLE 2631#if EV_PERIODIC_ENABLE
1772void noinline 2632void noinline
1773ev_periodic_start (EV_P_ ev_periodic *w) 2633ev_periodic_start (EV_P_ ev_periodic *w)
1774{ 2634{
1775 if (expect_false (ev_is_active (w))) 2635 if (expect_false (ev_is_active (w)))
1776 return; 2636 return;
1777 2637
1778 if (w->reschedule_cb) 2638 if (w->reschedule_cb)
1779 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2639 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 else if (w->interval) 2640 else if (w->interval)
1781 { 2641 {
1782 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2642 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1783 /* this formula differs from the one in periodic_reify because we do not always round up */ 2643 /* this formula differs from the one in periodic_reify because we do not always round up */
1784 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1785 } 2645 }
1786 else 2646 else
1787 ((WT)w)->at = w->offset; 2647 ev_at (w) = w->offset;
1788 2648
2649 EV_FREQUENT_CHECK;
2650
2651 ++periodiccnt;
1789 ev_start (EV_A_ (W)w, ++periodiccnt); 2652 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1790 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2653 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1791 periodics [periodiccnt - 1] = (WT)w; 2654 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1792 upheap (periodics, periodiccnt - 1); 2655 ANHE_at_cache (periodics [ev_active (w)]);
2656 upheap (periodics, ev_active (w));
1793 2657
2658 EV_FREQUENT_CHECK;
2659
1794 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2660 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1795} 2661}
1796 2662
1797void noinline 2663void noinline
1798ev_periodic_stop (EV_P_ ev_periodic *w) 2664ev_periodic_stop (EV_P_ ev_periodic *w)
1799{ 2665{
1800 clear_pending (EV_A_ (W)w); 2666 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2667 if (expect_false (!ev_is_active (w)))
1802 return; 2668 return;
1803 2669
1804 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2670 EV_FREQUENT_CHECK;
1805 2671
1806 { 2672 {
1807 int active = ((W)w)->active; 2673 int active = ev_active (w);
1808 2674
2675 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2676
2677 --periodiccnt;
2678
1809 if (expect_true (--active < --periodiccnt)) 2679 if (expect_true (active < periodiccnt + HEAP0))
1810 { 2680 {
1811 periodics [active] = periodics [periodiccnt]; 2681 periodics [active] = periodics [periodiccnt + HEAP0];
1812 adjustheap (periodics, periodiccnt, active); 2682 adjustheap (periodics, periodiccnt, active);
1813 } 2683 }
1814 } 2684 }
1815 2685
1816 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
1817} 2689}
1818 2690
1819void noinline 2691void noinline
1820ev_periodic_again (EV_P_ ev_periodic *w) 2692ev_periodic_again (EV_P_ ev_periodic *w)
1821{ 2693{
1830#endif 2702#endif
1831 2703
1832void noinline 2704void noinline
1833ev_signal_start (EV_P_ ev_signal *w) 2705ev_signal_start (EV_P_ ev_signal *w)
1834{ 2706{
1835#if EV_MULTIPLICITY
1836 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1837#endif
1838 if (expect_false (ev_is_active (w))) 2707 if (expect_false (ev_is_active (w)))
1839 return; 2708 return;
1840 2709
1841 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2710 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1842 2711
2712#if EV_MULTIPLICITY
2713 assert (("libev: a signal must not be attached to two different loops",
2714 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2715
2716 signals [w->signum - 1].loop = EV_A;
2717#endif
2718
2719 EV_FREQUENT_CHECK;
2720
2721#if EV_USE_SIGNALFD
2722 if (sigfd == -2)
1843 { 2723 {
1844#ifndef _WIN32 2724 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1845 sigset_t full, prev; 2725 if (sigfd < 0 && errno == EINVAL)
1846 sigfillset (&full); 2726 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1847 sigprocmask (SIG_SETMASK, &full, &prev);
1848#endif
1849 2727
1850 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2728 if (sigfd >= 0)
2729 {
2730 fd_intern (sigfd); /* doing it twice will not hurt */
1851 2731
1852#ifndef _WIN32 2732 sigemptyset (&sigfd_set);
1853 sigprocmask (SIG_SETMASK, &prev, 0); 2733
1854#endif 2734 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2735 ev_set_priority (&sigfd_w, EV_MAXPRI);
2736 ev_io_start (EV_A_ &sigfd_w);
2737 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2738 }
1855 } 2739 }
2740
2741 if (sigfd >= 0)
2742 {
2743 /* TODO: check .head */
2744 sigaddset (&sigfd_set, w->signum);
2745 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2746
2747 signalfd (sigfd, &sigfd_set, 0);
2748 }
2749#endif
1856 2750
1857 ev_start (EV_A_ (W)w, 1); 2751 ev_start (EV_A_ (W)w, 1);
1858 wlist_add (&signals [w->signum - 1].head, (WL)w); 2752 wlist_add (&signals [w->signum - 1].head, (WL)w);
1859 2753
1860 if (!((WL)w)->next) 2754 if (!((WL)w)->next)
2755# if EV_USE_SIGNALFD
2756 if (sigfd < 0) /*TODO*/
2757# endif
1861 { 2758 {
1862#if _WIN32 2759# ifdef _WIN32
2760 evpipe_init (EV_A);
2761
1863 signal (w->signum, sighandler); 2762 signal (w->signum, ev_sighandler);
1864#else 2763# else
1865 struct sigaction sa; 2764 struct sigaction sa;
2765
2766 evpipe_init (EV_A);
2767
1866 sa.sa_handler = sighandler; 2768 sa.sa_handler = ev_sighandler;
1867 sigfillset (&sa.sa_mask); 2769 sigfillset (&sa.sa_mask);
1868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2770 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1869 sigaction (w->signum, &sa, 0); 2771 sigaction (w->signum, &sa, 0);
2772
2773 sigemptyset (&sa.sa_mask);
2774 sigaddset (&sa.sa_mask, w->signum);
2775 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1870#endif 2776#endif
1871 } 2777 }
2778
2779 EV_FREQUENT_CHECK;
1872} 2780}
1873 2781
1874void noinline 2782void noinline
1875ev_signal_stop (EV_P_ ev_signal *w) 2783ev_signal_stop (EV_P_ ev_signal *w)
1876{ 2784{
1877 clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2786 if (expect_false (!ev_is_active (w)))
1879 return; 2787 return;
1880 2788
2789 EV_FREQUENT_CHECK;
2790
1881 wlist_del (&signals [w->signum - 1].head, (WL)w); 2791 wlist_del (&signals [w->signum - 1].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
1883 2793
1884 if (!signals [w->signum - 1].head) 2794 if (!signals [w->signum - 1].head)
2795 {
2796#if EV_MULTIPLICITY
2797 signals [w->signum - 1].loop = 0; /* unattach from signal */
2798#endif
2799#if EV_USE_SIGNALFD
2800 if (sigfd >= 0)
2801 {
2802 sigset_t ss;
2803
2804 sigemptyset (&ss);
2805 sigaddset (&ss, w->signum);
2806 sigdelset (&sigfd_set, w->signum);
2807
2808 signalfd (sigfd, &sigfd_set, 0);
2809 sigprocmask (SIG_UNBLOCK, &ss, 0);
2810 }
2811 else
2812#endif
1885 signal (w->signum, SIG_DFL); 2813 signal (w->signum, SIG_DFL);
2814 }
2815
2816 EV_FREQUENT_CHECK;
1886} 2817}
1887 2818
1888void 2819void
1889ev_child_start (EV_P_ ev_child *w) 2820ev_child_start (EV_P_ ev_child *w)
1890{ 2821{
1891#if EV_MULTIPLICITY 2822#if EV_MULTIPLICITY
1892 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2823 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1893#endif 2824#endif
1894 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
1895 return; 2826 return;
1896 2827
2828 EV_FREQUENT_CHECK;
2829
1897 ev_start (EV_A_ (W)w, 1); 2830 ev_start (EV_A_ (W)w, 1);
1898 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2831 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2832
2833 EV_FREQUENT_CHECK;
1899} 2834}
1900 2835
1901void 2836void
1902ev_child_stop (EV_P_ ev_child *w) 2837ev_child_stop (EV_P_ ev_child *w)
1903{ 2838{
1904 clear_pending (EV_A_ (W)w); 2839 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 2840 if (expect_false (!ev_is_active (w)))
1906 return; 2841 return;
1907 2842
2843 EV_FREQUENT_CHECK;
2844
1908 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2845 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1909 ev_stop (EV_A_ (W)w); 2846 ev_stop (EV_A_ (W)w);
2847
2848 EV_FREQUENT_CHECK;
1910} 2849}
1911 2850
1912#if EV_STAT_ENABLE 2851#if EV_STAT_ENABLE
1913 2852
1914# ifdef _WIN32 2853# ifdef _WIN32
1915# undef lstat 2854# undef lstat
1916# define lstat(a,b) _stati64 (a,b) 2855# define lstat(a,b) _stati64 (a,b)
1917# endif 2856# endif
1918 2857
1919#define DEF_STAT_INTERVAL 5.0074891 2858#define DEF_STAT_INTERVAL 5.0074891
2859#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1920#define MIN_STAT_INTERVAL 0.1074891 2860#define MIN_STAT_INTERVAL 0.1074891
1921 2861
1922static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2862static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1923 2863
1924#if EV_USE_INOTIFY 2864#if EV_USE_INOTIFY
1925# define EV_INOTIFY_BUFSIZE 8192 2865
2866/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2867# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1926 2868
1927static void noinline 2869static void noinline
1928infy_add (EV_P_ ev_stat *w) 2870infy_add (EV_P_ ev_stat *w)
1929{ 2871{
1930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2872 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1931 2873
1932 if (w->wd < 0) 2874 if (w->wd >= 0)
2875 {
2876 struct statfs sfs;
2877
2878 /* now local changes will be tracked by inotify, but remote changes won't */
2879 /* unless the filesystem is known to be local, we therefore still poll */
2880 /* also do poll on <2.6.25, but with normal frequency */
2881
2882 if (!fs_2625)
2883 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2884 else if (!statfs (w->path, &sfs)
2885 && (sfs.f_type == 0x1373 /* devfs */
2886 || sfs.f_type == 0xEF53 /* ext2/3 */
2887 || sfs.f_type == 0x3153464a /* jfs */
2888 || sfs.f_type == 0x52654973 /* reiser3 */
2889 || sfs.f_type == 0x01021994 /* tempfs */
2890 || sfs.f_type == 0x58465342 /* xfs */))
2891 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2892 else
2893 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1933 { 2894 }
1934 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2895 else
2896 {
2897 /* can't use inotify, continue to stat */
2898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1935 2899
1936 /* monitor some parent directory for speedup hints */ 2900 /* if path is not there, monitor some parent directory for speedup hints */
2901 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2902 /* but an efficiency issue only */
1937 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2903 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1938 { 2904 {
1939 char path [4096]; 2905 char path [4096];
1940 strcpy (path, w->path); 2906 strcpy (path, w->path);
1941 2907
1944 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2910 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1945 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2911 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1946 2912
1947 char *pend = strrchr (path, '/'); 2913 char *pend = strrchr (path, '/');
1948 2914
1949 if (!pend) 2915 if (!pend || pend == path)
1950 break; /* whoops, no '/', complain to your admin */ 2916 break;
1951 2917
1952 *pend = 0; 2918 *pend = 0;
1953 w->wd = inotify_add_watch (fs_fd, path, mask); 2919 w->wd = inotify_add_watch (fs_fd, path, mask);
1954 } 2920 }
1955 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2921 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1956 } 2922 }
1957 } 2923 }
1958 else
1959 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1960 2924
1961 if (w->wd >= 0) 2925 if (w->wd >= 0)
1962 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2926 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927
2928 /* now re-arm timer, if required */
2929 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2930 ev_timer_again (EV_A_ &w->timer);
2931 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1963} 2932}
1964 2933
1965static void noinline 2934static void noinline
1966infy_del (EV_P_ ev_stat *w) 2935infy_del (EV_P_ ev_stat *w)
1967{ 2936{
1981 2950
1982static void noinline 2951static void noinline
1983infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2952infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1984{ 2953{
1985 if (slot < 0) 2954 if (slot < 0)
1986 /* overflow, need to check for all hahs slots */ 2955 /* overflow, need to check for all hash slots */
1987 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2956 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1988 infy_wd (EV_A_ slot, wd, ev); 2957 infy_wd (EV_A_ slot, wd, ev);
1989 else 2958 else
1990 { 2959 {
1991 WL w_; 2960 WL w_;
1997 2966
1998 if (w->wd == wd || wd == -1) 2967 if (w->wd == wd || wd == -1)
1999 { 2968 {
2000 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2969 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2001 { 2970 {
2971 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2002 w->wd = -1; 2972 w->wd = -1;
2003 infy_add (EV_A_ w); /* re-add, no matter what */ 2973 infy_add (EV_A_ w); /* re-add, no matter what */
2004 } 2974 }
2005 2975
2006 stat_timer_cb (EV_A_ &w->timer, 0); 2976 stat_timer_cb (EV_A_ &w->timer, 0);
2011 2981
2012static void 2982static void
2013infy_cb (EV_P_ ev_io *w, int revents) 2983infy_cb (EV_P_ ev_io *w, int revents)
2014{ 2984{
2015 char buf [EV_INOTIFY_BUFSIZE]; 2985 char buf [EV_INOTIFY_BUFSIZE];
2016 struct inotify_event *ev = (struct inotify_event *)buf;
2017 int ofs; 2986 int ofs;
2018 int len = read (fs_fd, buf, sizeof (buf)); 2987 int len = read (fs_fd, buf, sizeof (buf));
2019 2988
2020 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2989 for (ofs = 0; ofs < len; )
2990 {
2991 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2021 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2992 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2993 ofs += sizeof (struct inotify_event) + ev->len;
2994 }
2022} 2995}
2023 2996
2024void inline_size 2997inline_size void
2998check_2625 (EV_P)
2999{
3000 /* kernels < 2.6.25 are borked
3001 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3002 */
3003 struct utsname buf;
3004 int major, minor, micro;
3005
3006 if (uname (&buf))
3007 return;
3008
3009 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
3010 return;
3011
3012 if (major < 2
3013 || (major == 2 && minor < 6)
3014 || (major == 2 && minor == 6 && micro < 25))
3015 return;
3016
3017 fs_2625 = 1;
3018}
3019
3020inline_size int
3021infy_newfd (void)
3022{
3023#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3024 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3025 if (fd >= 0)
3026 return fd;
3027#endif
3028 return inotify_init ();
3029}
3030
3031inline_size void
2025infy_init (EV_P) 3032infy_init (EV_P)
2026{ 3033{
2027 if (fs_fd != -2) 3034 if (fs_fd != -2)
2028 return; 3035 return;
2029 3036
3037 fs_fd = -1;
3038
3039 check_2625 (EV_A);
3040
2030 fs_fd = inotify_init (); 3041 fs_fd = infy_newfd ();
2031 3042
2032 if (fs_fd >= 0) 3043 if (fs_fd >= 0)
2033 { 3044 {
3045 fd_intern (fs_fd);
2034 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3046 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2035 ev_set_priority (&fs_w, EV_MAXPRI); 3047 ev_set_priority (&fs_w, EV_MAXPRI);
2036 ev_io_start (EV_A_ &fs_w); 3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
2037 } 3050 }
2038} 3051}
2039 3052
2040void inline_size 3053inline_size void
2041infy_fork (EV_P) 3054infy_fork (EV_P)
2042{ 3055{
2043 int slot; 3056 int slot;
2044 3057
2045 if (fs_fd < 0) 3058 if (fs_fd < 0)
2046 return; 3059 return;
2047 3060
3061 ev_ref (EV_A);
3062 ev_io_stop (EV_A_ &fs_w);
2048 close (fs_fd); 3063 close (fs_fd);
2049 fs_fd = inotify_init (); 3064 fs_fd = infy_newfd ();
3065
3066 if (fs_fd >= 0)
3067 {
3068 fd_intern (fs_fd);
3069 ev_io_set (&fs_w, fs_fd, EV_READ);
3070 ev_io_start (EV_A_ &fs_w);
3071 ev_unref (EV_A);
3072 }
2050 3073
2051 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3074 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2052 { 3075 {
2053 WL w_ = fs_hash [slot].head; 3076 WL w_ = fs_hash [slot].head;
2054 fs_hash [slot].head = 0; 3077 fs_hash [slot].head = 0;
2061 w->wd = -1; 3084 w->wd = -1;
2062 3085
2063 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2064 infy_add (EV_A_ w); /* re-add, no matter what */ 3087 infy_add (EV_A_ w); /* re-add, no matter what */
2065 else 3088 else
3089 {
3090 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3091 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2066 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
3093 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3094 }
2067 } 3095 }
2068
2069 } 3096 }
2070} 3097}
2071 3098
3099#endif
3100
3101#ifdef _WIN32
3102# define EV_LSTAT(p,b) _stati64 (p, b)
3103#else
3104# define EV_LSTAT(p,b) lstat (p, b)
2072#endif 3105#endif
2073 3106
2074void 3107void
2075ev_stat_stat (EV_P_ ev_stat *w) 3108ev_stat_stat (EV_P_ ev_stat *w)
2076{ 3109{
2083static void noinline 3116static void noinline
2084stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3117stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2085{ 3118{
2086 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3119 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2087 3120
2088 /* we copy this here each the time so that */ 3121 ev_statdata prev = w->attr;
2089 /* prev has the old value when the callback gets invoked */
2090 w->prev = w->attr;
2091 ev_stat_stat (EV_A_ w); 3122 ev_stat_stat (EV_A_ w);
2092 3123
2093 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3124 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2094 if ( 3125 if (
2095 w->prev.st_dev != w->attr.st_dev 3126 prev.st_dev != w->attr.st_dev
2096 || w->prev.st_ino != w->attr.st_ino 3127 || prev.st_ino != w->attr.st_ino
2097 || w->prev.st_mode != w->attr.st_mode 3128 || prev.st_mode != w->attr.st_mode
2098 || w->prev.st_nlink != w->attr.st_nlink 3129 || prev.st_nlink != w->attr.st_nlink
2099 || w->prev.st_uid != w->attr.st_uid 3130 || prev.st_uid != w->attr.st_uid
2100 || w->prev.st_gid != w->attr.st_gid 3131 || prev.st_gid != w->attr.st_gid
2101 || w->prev.st_rdev != w->attr.st_rdev 3132 || prev.st_rdev != w->attr.st_rdev
2102 || w->prev.st_size != w->attr.st_size 3133 || prev.st_size != w->attr.st_size
2103 || w->prev.st_atime != w->attr.st_atime 3134 || prev.st_atime != w->attr.st_atime
2104 || w->prev.st_mtime != w->attr.st_mtime 3135 || prev.st_mtime != w->attr.st_mtime
2105 || w->prev.st_ctime != w->attr.st_ctime 3136 || prev.st_ctime != w->attr.st_ctime
2106 ) { 3137 ) {
3138 /* we only update w->prev on actual differences */
3139 /* in case we test more often than invoke the callback, */
3140 /* to ensure that prev is always different to attr */
3141 w->prev = prev;
3142
2107 #if EV_USE_INOTIFY 3143 #if EV_USE_INOTIFY
3144 if (fs_fd >= 0)
3145 {
2108 infy_del (EV_A_ w); 3146 infy_del (EV_A_ w);
2109 infy_add (EV_A_ w); 3147 infy_add (EV_A_ w);
2110 ev_stat_stat (EV_A_ w); /* avoid race... */ 3148 ev_stat_stat (EV_A_ w); /* avoid race... */
3149 }
2111 #endif 3150 #endif
2112 3151
2113 ev_feed_event (EV_A_ w, EV_STAT); 3152 ev_feed_event (EV_A_ w, EV_STAT);
2114 } 3153 }
2115} 3154}
2118ev_stat_start (EV_P_ ev_stat *w) 3157ev_stat_start (EV_P_ ev_stat *w)
2119{ 3158{
2120 if (expect_false (ev_is_active (w))) 3159 if (expect_false (ev_is_active (w)))
2121 return; 3160 return;
2122 3161
2123 /* since we use memcmp, we need to clear any padding data etc. */
2124 memset (&w->prev, 0, sizeof (ev_statdata));
2125 memset (&w->attr, 0, sizeof (ev_statdata));
2126
2127 ev_stat_stat (EV_A_ w); 3162 ev_stat_stat (EV_A_ w);
2128 3163
3164 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2129 if (w->interval < MIN_STAT_INTERVAL) 3165 w->interval = MIN_STAT_INTERVAL;
2130 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2131 3166
2132 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3167 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2133 ev_set_priority (&w->timer, ev_priority (w)); 3168 ev_set_priority (&w->timer, ev_priority (w));
2134 3169
2135#if EV_USE_INOTIFY 3170#if EV_USE_INOTIFY
2136 infy_init (EV_A); 3171 infy_init (EV_A);
2137 3172
2138 if (fs_fd >= 0) 3173 if (fs_fd >= 0)
2139 infy_add (EV_A_ w); 3174 infy_add (EV_A_ w);
2140 else 3175 else
2141#endif 3176#endif
3177 {
2142 ev_timer_start (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 ev_unref (EV_A);
3180 }
2143 3181
2144 ev_start (EV_A_ (W)w, 1); 3182 ev_start (EV_A_ (W)w, 1);
3183
3184 EV_FREQUENT_CHECK;
2145} 3185}
2146 3186
2147void 3187void
2148ev_stat_stop (EV_P_ ev_stat *w) 3188ev_stat_stop (EV_P_ ev_stat *w)
2149{ 3189{
2150 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
2151 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
2152 return; 3192 return;
2153 3193
3194 EV_FREQUENT_CHECK;
3195
2154#if EV_USE_INOTIFY 3196#if EV_USE_INOTIFY
2155 infy_del (EV_A_ w); 3197 infy_del (EV_A_ w);
2156#endif 3198#endif
3199
3200 if (ev_is_active (&w->timer))
3201 {
3202 ev_ref (EV_A);
2157 ev_timer_stop (EV_A_ &w->timer); 3203 ev_timer_stop (EV_A_ &w->timer);
3204 }
2158 3205
2159 ev_stop (EV_A_ (W)w); 3206 ev_stop (EV_A_ (W)w);
3207
3208 EV_FREQUENT_CHECK;
2160} 3209}
2161#endif 3210#endif
2162 3211
2163#if EV_IDLE_ENABLE 3212#if EV_IDLE_ENABLE
2164void 3213void
2166{ 3215{
2167 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
2168 return; 3217 return;
2169 3218
2170 pri_adjust (EV_A_ (W)w); 3219 pri_adjust (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
2171 3222
2172 { 3223 {
2173 int active = ++idlecnt [ABSPRI (w)]; 3224 int active = ++idlecnt [ABSPRI (w)];
2174 3225
2175 ++idleall; 3226 ++idleall;
2176 ev_start (EV_A_ (W)w, active); 3227 ev_start (EV_A_ (W)w, active);
2177 3228
2178 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3229 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2179 idles [ABSPRI (w)][active - 1] = w; 3230 idles [ABSPRI (w)][active - 1] = w;
2180 } 3231 }
3232
3233 EV_FREQUENT_CHECK;
2181} 3234}
2182 3235
2183void 3236void
2184ev_idle_stop (EV_P_ ev_idle *w) 3237ev_idle_stop (EV_P_ ev_idle *w)
2185{ 3238{
2186 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2187 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2188 return; 3241 return;
2189 3242
3243 EV_FREQUENT_CHECK;
3244
2190 { 3245 {
2191 int active = ((W)w)->active; 3246 int active = ev_active (w);
2192 3247
2193 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3248 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2194 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3249 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2195 3250
2196 ev_stop (EV_A_ (W)w); 3251 ev_stop (EV_A_ (W)w);
2197 --idleall; 3252 --idleall;
2198 } 3253 }
3254
3255 EV_FREQUENT_CHECK;
2199} 3256}
2200#endif 3257#endif
2201 3258
2202void 3259void
2203ev_prepare_start (EV_P_ ev_prepare *w) 3260ev_prepare_start (EV_P_ ev_prepare *w)
2204{ 3261{
2205 if (expect_false (ev_is_active (w))) 3262 if (expect_false (ev_is_active (w)))
2206 return; 3263 return;
3264
3265 EV_FREQUENT_CHECK;
2207 3266
2208 ev_start (EV_A_ (W)w, ++preparecnt); 3267 ev_start (EV_A_ (W)w, ++preparecnt);
2209 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3268 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2210 prepares [preparecnt - 1] = w; 3269 prepares [preparecnt - 1] = w;
3270
3271 EV_FREQUENT_CHECK;
2211} 3272}
2212 3273
2213void 3274void
2214ev_prepare_stop (EV_P_ ev_prepare *w) 3275ev_prepare_stop (EV_P_ ev_prepare *w)
2215{ 3276{
2216 clear_pending (EV_A_ (W)w); 3277 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 3278 if (expect_false (!ev_is_active (w)))
2218 return; 3279 return;
2219 3280
3281 EV_FREQUENT_CHECK;
3282
2220 { 3283 {
2221 int active = ((W)w)->active; 3284 int active = ev_active (w);
3285
2222 prepares [active - 1] = prepares [--preparecnt]; 3286 prepares [active - 1] = prepares [--preparecnt];
2223 ((W)prepares [active - 1])->active = active; 3287 ev_active (prepares [active - 1]) = active;
2224 } 3288 }
2225 3289
2226 ev_stop (EV_A_ (W)w); 3290 ev_stop (EV_A_ (W)w);
3291
3292 EV_FREQUENT_CHECK;
2227} 3293}
2228 3294
2229void 3295void
2230ev_check_start (EV_P_ ev_check *w) 3296ev_check_start (EV_P_ ev_check *w)
2231{ 3297{
2232 if (expect_false (ev_is_active (w))) 3298 if (expect_false (ev_is_active (w)))
2233 return; 3299 return;
3300
3301 EV_FREQUENT_CHECK;
2234 3302
2235 ev_start (EV_A_ (W)w, ++checkcnt); 3303 ev_start (EV_A_ (W)w, ++checkcnt);
2236 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3304 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2237 checks [checkcnt - 1] = w; 3305 checks [checkcnt - 1] = w;
3306
3307 EV_FREQUENT_CHECK;
2238} 3308}
2239 3309
2240void 3310void
2241ev_check_stop (EV_P_ ev_check *w) 3311ev_check_stop (EV_P_ ev_check *w)
2242{ 3312{
2243 clear_pending (EV_A_ (W)w); 3313 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 3314 if (expect_false (!ev_is_active (w)))
2245 return; 3315 return;
2246 3316
3317 EV_FREQUENT_CHECK;
3318
2247 { 3319 {
2248 int active = ((W)w)->active; 3320 int active = ev_active (w);
3321
2249 checks [active - 1] = checks [--checkcnt]; 3322 checks [active - 1] = checks [--checkcnt];
2250 ((W)checks [active - 1])->active = active; 3323 ev_active (checks [active - 1]) = active;
2251 } 3324 }
2252 3325
2253 ev_stop (EV_A_ (W)w); 3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
2254} 3329}
2255 3330
2256#if EV_EMBED_ENABLE 3331#if EV_EMBED_ENABLE
2257void noinline 3332void noinline
2258ev_embed_sweep (EV_P_ ev_embed *w) 3333ev_embed_sweep (EV_P_ ev_embed *w)
2275embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3350embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2276{ 3351{
2277 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3352 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2278 3353
2279 { 3354 {
2280 struct ev_loop *loop = w->other; 3355 EV_P = w->other;
2281 3356
2282 while (fdchangecnt) 3357 while (fdchangecnt)
2283 { 3358 {
2284 fd_reify (EV_A); 3359 fd_reify (EV_A);
2285 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3360 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2286 } 3361 }
2287 } 3362 }
2288} 3363}
2289 3364
3365static void
3366embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3367{
3368 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3369
3370 ev_embed_stop (EV_A_ w);
3371
3372 {
3373 EV_P = w->other;
3374
3375 ev_loop_fork (EV_A);
3376 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3377 }
3378
3379 ev_embed_start (EV_A_ w);
3380}
3381
2290#if 0 3382#if 0
2291static void 3383static void
2292embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3384embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2293{ 3385{
2294 ev_idle_stop (EV_A_ idle); 3386 ev_idle_stop (EV_A_ idle);
2300{ 3392{
2301 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2302 return; 3394 return;
2303 3395
2304 { 3396 {
2305 struct ev_loop *loop = w->other; 3397 EV_P = w->other;
2306 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3398 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2307 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3399 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2308 } 3400 }
3401
3402 EV_FREQUENT_CHECK;
2309 3403
2310 ev_set_priority (&w->io, ev_priority (w)); 3404 ev_set_priority (&w->io, ev_priority (w));
2311 ev_io_start (EV_A_ &w->io); 3405 ev_io_start (EV_A_ &w->io);
2312 3406
2313 ev_prepare_init (&w->prepare, embed_prepare_cb); 3407 ev_prepare_init (&w->prepare, embed_prepare_cb);
2314 ev_set_priority (&w->prepare, EV_MINPRI); 3408 ev_set_priority (&w->prepare, EV_MINPRI);
2315 ev_prepare_start (EV_A_ &w->prepare); 3409 ev_prepare_start (EV_A_ &w->prepare);
2316 3410
3411 ev_fork_init (&w->fork, embed_fork_cb);
3412 ev_fork_start (EV_A_ &w->fork);
3413
2317 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3414 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2318 3415
2319 ev_start (EV_A_ (W)w, 1); 3416 ev_start (EV_A_ (W)w, 1);
3417
3418 EV_FREQUENT_CHECK;
2320} 3419}
2321 3420
2322void 3421void
2323ev_embed_stop (EV_P_ ev_embed *w) 3422ev_embed_stop (EV_P_ ev_embed *w)
2324{ 3423{
2325 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2326 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2327 return; 3426 return;
2328 3427
3428 EV_FREQUENT_CHECK;
3429
2329 ev_io_stop (EV_A_ &w->io); 3430 ev_io_stop (EV_A_ &w->io);
2330 ev_prepare_stop (EV_A_ &w->prepare); 3431 ev_prepare_stop (EV_A_ &w->prepare);
3432 ev_fork_stop (EV_A_ &w->fork);
2331 3433
2332 ev_stop (EV_A_ (W)w); 3434 ev_stop (EV_A_ (W)w);
3435
3436 EV_FREQUENT_CHECK;
2333} 3437}
2334#endif 3438#endif
2335 3439
2336#if EV_FORK_ENABLE 3440#if EV_FORK_ENABLE
2337void 3441void
2338ev_fork_start (EV_P_ ev_fork *w) 3442ev_fork_start (EV_P_ ev_fork *w)
2339{ 3443{
2340 if (expect_false (ev_is_active (w))) 3444 if (expect_false (ev_is_active (w)))
2341 return; 3445 return;
3446
3447 EV_FREQUENT_CHECK;
2342 3448
2343 ev_start (EV_A_ (W)w, ++forkcnt); 3449 ev_start (EV_A_ (W)w, ++forkcnt);
2344 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3450 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2345 forks [forkcnt - 1] = w; 3451 forks [forkcnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
2346} 3454}
2347 3455
2348void 3456void
2349ev_fork_stop (EV_P_ ev_fork *w) 3457ev_fork_stop (EV_P_ ev_fork *w)
2350{ 3458{
2351 clear_pending (EV_A_ (W)w); 3459 clear_pending (EV_A_ (W)w);
2352 if (expect_false (!ev_is_active (w))) 3460 if (expect_false (!ev_is_active (w)))
2353 return; 3461 return;
2354 3462
3463 EV_FREQUENT_CHECK;
3464
2355 { 3465 {
2356 int active = ((W)w)->active; 3466 int active = ev_active (w);
3467
2357 forks [active - 1] = forks [--forkcnt]; 3468 forks [active - 1] = forks [--forkcnt];
2358 ((W)forks [active - 1])->active = active; 3469 ev_active (forks [active - 1]) = active;
2359 } 3470 }
2360 3471
2361 ev_stop (EV_A_ (W)w); 3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476#endif
3477
3478#if EV_ASYNC_ENABLE
3479void
3480ev_async_start (EV_P_ ev_async *w)
3481{
3482 if (expect_false (ev_is_active (w)))
3483 return;
3484
3485 evpipe_init (EV_A);
3486
3487 EV_FREQUENT_CHECK;
3488
3489 ev_start (EV_A_ (W)w, ++asynccnt);
3490 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3491 asyncs [asynccnt - 1] = w;
3492
3493 EV_FREQUENT_CHECK;
3494}
3495
3496void
3497ev_async_stop (EV_P_ ev_async *w)
3498{
3499 clear_pending (EV_A_ (W)w);
3500 if (expect_false (!ev_is_active (w)))
3501 return;
3502
3503 EV_FREQUENT_CHECK;
3504
3505 {
3506 int active = ev_active (w);
3507
3508 asyncs [active - 1] = asyncs [--asynccnt];
3509 ev_active (asyncs [active - 1]) = active;
3510 }
3511
3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
3515}
3516
3517void
3518ev_async_send (EV_P_ ev_async *w)
3519{
3520 w->sent = 1;
3521 evpipe_write (EV_A_ &async_pending);
2362} 3522}
2363#endif 3523#endif
2364 3524
2365/*****************************************************************************/ 3525/*****************************************************************************/
2366 3526
2376once_cb (EV_P_ struct ev_once *once, int revents) 3536once_cb (EV_P_ struct ev_once *once, int revents)
2377{ 3537{
2378 void (*cb)(int revents, void *arg) = once->cb; 3538 void (*cb)(int revents, void *arg) = once->cb;
2379 void *arg = once->arg; 3539 void *arg = once->arg;
2380 3540
2381 ev_io_stop (EV_A_ &once->io); 3541 ev_io_stop (EV_A_ &once->io);
2382 ev_timer_stop (EV_A_ &once->to); 3542 ev_timer_stop (EV_A_ &once->to);
2383 ev_free (once); 3543 ev_free (once);
2384 3544
2385 cb (revents, arg); 3545 cb (revents, arg);
2386} 3546}
2387 3547
2388static void 3548static void
2389once_cb_io (EV_P_ ev_io *w, int revents) 3549once_cb_io (EV_P_ ev_io *w, int revents)
2390{ 3550{
2391 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3551 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3552
3553 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2392} 3554}
2393 3555
2394static void 3556static void
2395once_cb_to (EV_P_ ev_timer *w, int revents) 3557once_cb_to (EV_P_ ev_timer *w, int revents)
2396{ 3558{
2397 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3559 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3560
3561 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2398} 3562}
2399 3563
2400void 3564void
2401ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3565ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2402{ 3566{
2424 ev_timer_set (&once->to, timeout, 0.); 3588 ev_timer_set (&once->to, timeout, 0.);
2425 ev_timer_start (EV_A_ &once->to); 3589 ev_timer_start (EV_A_ &once->to);
2426 } 3590 }
2427} 3591}
2428 3592
3593/*****************************************************************************/
3594
3595#if EV_WALK_ENABLE
3596void
3597ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3598{
3599 int i, j;
3600 ev_watcher_list *wl, *wn;
3601
3602 if (types & (EV_IO | EV_EMBED))
3603 for (i = 0; i < anfdmax; ++i)
3604 for (wl = anfds [i].head; wl; )
3605 {
3606 wn = wl->next;
3607
3608#if EV_EMBED_ENABLE
3609 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3610 {
3611 if (types & EV_EMBED)
3612 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3613 }
3614 else
3615#endif
3616#if EV_USE_INOTIFY
3617 if (ev_cb ((ev_io *)wl) == infy_cb)
3618 ;
3619 else
3620#endif
3621 if ((ev_io *)wl != &pipe_w)
3622 if (types & EV_IO)
3623 cb (EV_A_ EV_IO, wl);
3624
3625 wl = wn;
3626 }
3627
3628 if (types & (EV_TIMER | EV_STAT))
3629 for (i = timercnt + HEAP0; i-- > HEAP0; )
3630#if EV_STAT_ENABLE
3631 /*TODO: timer is not always active*/
3632 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3633 {
3634 if (types & EV_STAT)
3635 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3636 }
3637 else
3638#endif
3639 if (types & EV_TIMER)
3640 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3641
3642#if EV_PERIODIC_ENABLE
3643 if (types & EV_PERIODIC)
3644 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3645 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3646#endif
3647
3648#if EV_IDLE_ENABLE
3649 if (types & EV_IDLE)
3650 for (j = NUMPRI; i--; )
3651 for (i = idlecnt [j]; i--; )
3652 cb (EV_A_ EV_IDLE, idles [j][i]);
3653#endif
3654
3655#if EV_FORK_ENABLE
3656 if (types & EV_FORK)
3657 for (i = forkcnt; i--; )
3658 if (ev_cb (forks [i]) != embed_fork_cb)
3659 cb (EV_A_ EV_FORK, forks [i]);
3660#endif
3661
3662#if EV_ASYNC_ENABLE
3663 if (types & EV_ASYNC)
3664 for (i = asynccnt; i--; )
3665 cb (EV_A_ EV_ASYNC, asyncs [i]);
3666#endif
3667
3668 if (types & EV_PREPARE)
3669 for (i = preparecnt; i--; )
3670#if EV_EMBED_ENABLE
3671 if (ev_cb (prepares [i]) != embed_prepare_cb)
3672#endif
3673 cb (EV_A_ EV_PREPARE, prepares [i]);
3674
3675 if (types & EV_CHECK)
3676 for (i = checkcnt; i--; )
3677 cb (EV_A_ EV_CHECK, checks [i]);
3678
3679 if (types & EV_SIGNAL)
3680 for (i = 0; i < EV_NSIG - 1; ++i)
3681 for (wl = signals [i].head; wl; )
3682 {
3683 wn = wl->next;
3684 cb (EV_A_ EV_SIGNAL, wl);
3685 wl = wn;
3686 }
3687
3688 if (types & EV_CHILD)
3689 for (i = EV_PID_HASHSIZE; i--; )
3690 for (wl = childs [i]; wl; )
3691 {
3692 wn = wl->next;
3693 cb (EV_A_ EV_CHILD, wl);
3694 wl = wn;
3695 }
3696/* EV_STAT 0x00001000 /* stat data changed */
3697/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3698}
3699#endif
3700
2429#if EV_MULTIPLICITY 3701#if EV_MULTIPLICITY
2430 #include "ev_wrap.h" 3702 #include "ev_wrap.h"
2431#endif 3703#endif
2432 3704
2433#ifdef __cplusplus 3705#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines