ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.238 by root, Thu May 8 20:49:12 2008 UTC vs.
Revision 1.330 by root, Tue Mar 9 08:46:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
164#endif 189#endif
165 190
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
167 192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
227
168#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
169# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
233# endif
170#endif 234#endif
171 235
172#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 238#endif
175 239
176#ifndef EV_USE_NANOSLEEP 240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
177# define EV_USE_NANOSLEEP 0 244# define EV_USE_NANOSLEEP 0
245# endif
178#endif 246#endif
179 247
180#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
182#endif 250#endif
235# else 303# else
236# define EV_USE_EVENTFD 0 304# define EV_USE_EVENTFD 0
237# endif 305# endif
238#endif 306#endif
239 307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
241 355
242#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
245#endif 359#endif
259# include <sys/select.h> 373# include <sys/select.h>
260# endif 374# endif
261#endif 375#endif
262 376
263#if EV_USE_INOTIFY 377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
264# include <sys/inotify.h> 380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
265#endif 386#endif
266 387
267#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 389# include <winsock.h>
269#endif 390#endif
270 391
271#if EV_USE_EVENTFD 392#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
274# ifdef __cplusplus 405# ifdef __cplusplus
275extern "C" { 406extern "C" {
276# endif 407# endif
277int eventfd (unsigned int initval, int flags); 408int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 409# ifdef __cplusplus
279} 410}
280# endif 411# endif
281#endif 412#endif
282 413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
283/**/ 443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
284 450
285/* 451/*
286 * This is used to avoid floating point rounding problems. 452 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 453 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 454 * to ensure progress, time-wise, even when rounding
292 */ 458 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 460
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 463
299#if __GNUC__ >= 4 464#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
302#else 467#else
315# define inline_speed static noinline 480# define inline_speed static noinline
316#else 481#else
317# define inline_speed static inline 482# define inline_speed static inline
318#endif 483#endif
319 484
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
322 492
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
325 495
326typedef ev_watcher *W; 496typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
329 499
330#define ev_active(w) ((W)(w))->active 500#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 501#define ev_at(w) ((WT)(w))->at
332 502
333#if EV_USE_MONOTONIC 503#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 521#endif
338 522
339#ifdef _WIN32 523#ifdef _WIN32
340# include "ev_win32.c" 524# include "ev_win32.c"
341#endif 525#endif
349{ 533{
350 syserr_cb = cb; 534 syserr_cb = cb;
351} 535}
352 536
353static void noinline 537static void noinline
354syserr (const char *msg) 538ev_syserr (const char *msg)
355{ 539{
356 if (!msg) 540 if (!msg)
357 msg = "(libev) system error"; 541 msg = "(libev) system error";
358 542
359 if (syserr_cb) 543 if (syserr_cb)
360 syserr_cb (msg); 544 syserr_cb (msg);
361 else 545 else
362 { 546 {
547#if EV_AVOID_STDIO
548 write (STDERR_FILENO, msg, strlen (msg));
549 write (STDERR_FILENO, ": ", 2);
550 msg = strerror (errno);
551 write (STDERR_FILENO, msg, strlen (msg));
552 write (STDERR_FILENO, "\n", 1);
553#else
363 perror (msg); 554 perror (msg);
555#endif
364 abort (); 556 abort ();
365 } 557 }
366} 558}
367 559
368static void * 560static void *
393{ 585{
394 ptr = alloc (ptr, size); 586 ptr = alloc (ptr, size);
395 587
396 if (!ptr && size) 588 if (!ptr && size)
397 { 589 {
590#if EV_AVOID_STDIO
591 write (STDERR_FILENO, "libev: memory allocation failed, aborting.",
592 sizeof ("libev: memory allocation failed, aborting.") - 1);
593#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 594 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
595#endif
399 abort (); 596 abort ();
400 } 597 }
401 598
402 return ptr; 599 return ptr;
403} 600}
405#define ev_malloc(size) ev_realloc (0, (size)) 602#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 603#define ev_free(ptr) ev_realloc ((ptr), 0)
407 604
408/*****************************************************************************/ 605/*****************************************************************************/
409 606
607/* set in reify when reification needed */
608#define EV_ANFD_REIFY 1
609
610/* file descriptor info structure */
410typedef struct 611typedef struct
411{ 612{
412 WL head; 613 WL head;
413 unsigned char events; 614 unsigned char events; /* the events watched for */
615 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
616 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 617 unsigned char unused;
618#if EV_USE_EPOLL
619 unsigned int egen; /* generation counter to counter epoll bugs */
620#endif
415#if EV_SELECT_IS_WINSOCKET 621#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 622 SOCKET handle;
417#endif 623#endif
418} ANFD; 624} ANFD;
419 625
626/* stores the pending event set for a given watcher */
420typedef struct 627typedef struct
421{ 628{
422 W w; 629 W w;
423 int events; 630 int events; /* the pending event set for the given watcher */
424} ANPENDING; 631} ANPENDING;
425 632
426#if EV_USE_INOTIFY 633#if EV_USE_INOTIFY
634/* hash table entry per inotify-id */
427typedef struct 635typedef struct
428{ 636{
429 WL head; 637 WL head;
430} ANFS; 638} ANFS;
639#endif
640
641/* Heap Entry */
642#if EV_HEAP_CACHE_AT
643 /* a heap element */
644 typedef struct {
645 ev_tstamp at;
646 WT w;
647 } ANHE;
648
649 #define ANHE_w(he) (he).w /* access watcher, read-write */
650 #define ANHE_at(he) (he).at /* access cached at, read-only */
651 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
652#else
653 /* a heap element */
654 typedef WT ANHE;
655
656 #define ANHE_w(he) (he)
657 #define ANHE_at(he) (he)->at
658 #define ANHE_at_cache(he)
431#endif 659#endif
432 660
433#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
434 662
435 struct ev_loop 663 struct ev_loop
454 682
455 static int ev_default_loop_ptr; 683 static int ev_default_loop_ptr;
456 684
457#endif 685#endif
458 686
687#if EV_MINIMAL < 2
688# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
689# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
690# define EV_INVOKE_PENDING invoke_cb (EV_A)
691#else
692# define EV_RELEASE_CB (void)0
693# define EV_ACQUIRE_CB (void)0
694# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
695#endif
696
697#define EVUNLOOP_RECURSE 0x80
698
459/*****************************************************************************/ 699/*****************************************************************************/
460 700
701#ifndef EV_HAVE_EV_TIME
461ev_tstamp 702ev_tstamp
462ev_time (void) 703ev_time (void)
463{ 704{
464#if EV_USE_REALTIME 705#if EV_USE_REALTIME
706 if (expect_true (have_realtime))
707 {
465 struct timespec ts; 708 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 709 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 710 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 711 }
712#endif
713
469 struct timeval tv; 714 struct timeval tv;
470 gettimeofday (&tv, 0); 715 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 716 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 717}
718#endif
474 719
475ev_tstamp inline_size 720inline_size ev_tstamp
476get_clock (void) 721get_clock (void)
477{ 722{
478#if EV_USE_MONOTONIC 723#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 724 if (expect_true (have_monotonic))
480 { 725 {
513 struct timeval tv; 758 struct timeval tv;
514 759
515 tv.tv_sec = (time_t)delay; 760 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 761 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 762
763 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
764 /* something not guaranteed by newer posix versions, but guaranteed */
765 /* by older ones */
518 select (0, 0, 0, 0, &tv); 766 select (0, 0, 0, 0, &tv);
519#endif 767#endif
520 } 768 }
521} 769}
522 770
523/*****************************************************************************/ 771/*****************************************************************************/
524 772
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 773#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 774
527int inline_size 775/* find a suitable new size for the given array, */
776/* hopefully by rounding to a ncie-to-malloc size */
777inline_size int
528array_nextsize (int elem, int cur, int cnt) 778array_nextsize (int elem, int cur, int cnt)
529{ 779{
530 int ncur = cur + 1; 780 int ncur = cur + 1;
531 781
532 do 782 do
549array_realloc (int elem, void *base, int *cur, int cnt) 799array_realloc (int elem, void *base, int *cur, int cnt)
550{ 800{
551 *cur = array_nextsize (elem, *cur, cnt); 801 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 802 return ev_realloc (base, elem * *cur);
553} 803}
804
805#define array_init_zero(base,count) \
806 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 807
555#define array_needsize(type,base,cur,cnt,init) \ 808#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 809 if (expect_false ((cnt) > (cur))) \
557 { \ 810 { \
558 int ocur_ = (cur); \ 811 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 823 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 824 }
572#endif 825#endif
573 826
574#define array_free(stem, idx) \ 827#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 828 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 829
577/*****************************************************************************/ 830/*****************************************************************************/
831
832/* dummy callback for pending events */
833static void noinline
834pendingcb (EV_P_ ev_prepare *w, int revents)
835{
836}
578 837
579void noinline 838void noinline
580ev_feed_event (EV_P_ void *w, int revents) 839ev_feed_event (EV_P_ void *w, int revents)
581{ 840{
582 W w_ = (W)w; 841 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 850 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 851 pendings [pri][w_->pending - 1].events = revents;
593 } 852 }
594} 853}
595 854
596void inline_speed 855inline_speed void
856feed_reverse (EV_P_ W w)
857{
858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
859 rfeeds [rfeedcnt++] = w;
860}
861
862inline_size void
863feed_reverse_done (EV_P_ int revents)
864{
865 do
866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
867 while (rfeedcnt);
868}
869
870inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 871queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 872{
599 int i; 873 int i;
600 874
601 for (i = 0; i < eventcnt; ++i) 875 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 876 ev_feed_event (EV_A_ events [i], type);
603} 877}
604 878
605/*****************************************************************************/ 879/*****************************************************************************/
606 880
607void inline_size 881inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 882fd_event_nc (EV_P_ int fd, int revents)
622{ 883{
623 ANFD *anfd = anfds + fd; 884 ANFD *anfd = anfds + fd;
624 ev_io *w; 885 ev_io *w;
625 886
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 891 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 892 ev_feed_event (EV_A_ (W)w, ev);
632 } 893 }
633} 894}
634 895
896/* do not submit kernel events for fds that have reify set */
897/* because that means they changed while we were polling for new events */
898inline_speed void
899fd_event (EV_P_ int fd, int revents)
900{
901 ANFD *anfd = anfds + fd;
902
903 if (expect_true (!anfd->reify))
904 fd_event_nc (EV_A_ fd, revents);
905}
906
635void 907void
636ev_feed_fd_event (EV_P_ int fd, int revents) 908ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 909{
638 if (fd >= 0 && fd < anfdmax) 910 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 911 fd_event_nc (EV_A_ fd, revents);
640} 912}
641 913
642void inline_size 914/* make sure the external fd watch events are in-sync */
915/* with the kernel/libev internal state */
916inline_size void
643fd_reify (EV_P) 917fd_reify (EV_P)
644{ 918{
645 int i; 919 int i;
646 920
647 for (i = 0; i < fdchangecnt; ++i) 921 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 930 events |= (unsigned char)w->events;
657 931
658#if EV_SELECT_IS_WINSOCKET 932#if EV_SELECT_IS_WINSOCKET
659 if (events) 933 if (events)
660 { 934 {
661 unsigned long argp; 935 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 936 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 937 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 938 }
669#endif 939#endif
670 940
671 { 941 {
672 unsigned char o_events = anfd->events; 942 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 943 unsigned char o_reify = anfd->reify;
674 944
675 anfd->reify = 0; 945 anfd->reify = 0;
676 anfd->events = events; 946 anfd->events = events;
677 947
678 if (o_events != events || o_reify & EV_IOFDSET) 948 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 949 backend_modify (EV_A_ fd, o_events, events);
680 } 950 }
681 } 951 }
682 952
683 fdchangecnt = 0; 953 fdchangecnt = 0;
684} 954}
685 955
686void inline_size 956/* something about the given fd changed */
957inline_size void
687fd_change (EV_P_ int fd, int flags) 958fd_change (EV_P_ int fd, int flags)
688{ 959{
689 unsigned char reify = anfds [fd].reify; 960 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 961 anfds [fd].reify |= flags;
691 962
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 966 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 967 fdchanges [fdchangecnt - 1] = fd;
697 } 968 }
698} 969}
699 970
700void inline_speed 971/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
972inline_speed void
701fd_kill (EV_P_ int fd) 973fd_kill (EV_P_ int fd)
702{ 974{
703 ev_io *w; 975 ev_io *w;
704 976
705 while ((w = (ev_io *)anfds [fd].head)) 977 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 979 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 980 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 981 }
710} 982}
711 983
712int inline_size 984/* check whether the given fd is atcually valid, for error recovery */
985inline_size int
713fd_valid (int fd) 986fd_valid (int fd)
714{ 987{
715#ifdef _WIN32 988#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 989 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 990#else
718 return fcntl (fd, F_GETFD) != -1; 991 return fcntl (fd, F_GETFD) != -1;
719#endif 992#endif
720} 993}
721 994
725{ 998{
726 int fd; 999 int fd;
727 1000
728 for (fd = 0; fd < anfdmax; ++fd) 1001 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1002 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1003 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1004 fd_kill (EV_A_ fd);
732} 1005}
733 1006
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1007/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1008static void noinline
739 1012
740 for (fd = anfdmax; fd--; ) 1013 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1014 if (anfds [fd].events)
742 { 1015 {
743 fd_kill (EV_A_ fd); 1016 fd_kill (EV_A_ fd);
744 return; 1017 break;
745 } 1018 }
746} 1019}
747 1020
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1021/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1022static void noinline
753 1026
754 for (fd = 0; fd < anfdmax; ++fd) 1027 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1028 if (anfds [fd].events)
756 { 1029 {
757 anfds [fd].events = 0; 1030 anfds [fd].events = 0;
1031 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1032 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1033 }
760} 1034}
761 1035
762/*****************************************************************************/ 1036/*****************************************************************************/
1037
1038/*
1039 * the heap functions want a real array index. array index 0 uis guaranteed to not
1040 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1041 * the branching factor of the d-tree.
1042 */
763 1043
764/* 1044/*
765 * at the moment we allow libev the luxury of two heaps, 1045 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1046 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1047 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1048 * the difference is about 5% with 50000+ watchers.
769 */ 1049 */
770#define USE_4HEAP !EV_MINIMAL
771#define USE_4HEAP 1/* they do not work corretcly */
772#if USE_4HEAP 1050#if EV_USE_4HEAP
773 1051
774#define DHEAP 4 1052#define DHEAP 4
775#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1053#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1054#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1055#define UPHEAP_DONE(p,k) ((p) == (k))
776 1056
777/* towards the root */ 1057/* away from the root */
778void inline_speed 1058inline_speed void
779upheap (WT *heap, int k) 1059downheap (ANHE *heap, int N, int k)
780{ 1060{
781 WT w = heap [k]; 1061 ANHE he = heap [k];
1062 ANHE *E = heap + N + HEAP0;
782 1063
783 for (;;) 1064 for (;;)
784 { 1065 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w->at)
788 break;
789
790 heap [k] = heap [p];
791 ev_active (heap [k]) = k;
792 k = p;
793 }
794
795 heap [k] = w;
796 ev_active (heap [k]) = k;
797}
798
799/* away from the root */
800void inline_speed
801downheap (WT *heap, int N, int k)
802{
803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
805
806 for (;;)
807 {
808 ev_tstamp minat; 1066 ev_tstamp minat;
809 WT *minpos; 1067 ANHE *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1068 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
811 1069
812 // find minimum child 1070 /* find minimum child */
813 if (expect_true (pos + DHEAP - 1 < E)) 1071 if (expect_true (pos + DHEAP - 1 < E))
814 { 1072 {
815 /* fast path */
816 (minpos = pos + 0), (minat = (*minpos)->at); 1073 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
817 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1074 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
818 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1075 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
819 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1076 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1077 }
1078 else if (pos < E)
1079 {
1080 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1081 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1082 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1083 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
820 } 1084 }
821 else 1085 else
822 {
823 /* slow path */
824 if (pos >= E)
825 break;
826 (minpos = pos + 0), (minat = (*minpos)->at);
827 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
828 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
829 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
830 }
831
832 if (w->at <= minat)
833 break; 1086 break;
834 1087
835 ev_active (*minpos) = k; 1088 if (ANHE_at (he) <= minat)
1089 break;
1090
836 heap [k] = *minpos; 1091 heap [k] = *minpos;
1092 ev_active (ANHE_w (*minpos)) = k;
837 1093
838 k = minpos - heap; 1094 k = minpos - heap;
839 } 1095 }
840 1096
841 heap [k] = w; 1097 heap [k] = he;
842 ev_active (heap [k]) = k; 1098 ev_active (ANHE_w (he)) = k;
843} 1099}
844 1100
845#else // 4HEAP 1101#else /* 4HEAP */
846 1102
847#define HEAP0 1 1103#define HEAP0 1
1104#define HPARENT(k) ((k) >> 1)
1105#define UPHEAP_DONE(p,k) (!(p))
848 1106
849/* towards the root */ 1107/* away from the root */
850void inline_speed 1108inline_speed void
851upheap (WT *heap, int k) 1109downheap (ANHE *heap, int N, int k)
852{ 1110{
853 WT w = heap [k]; 1111 ANHE he = heap [k];
854 1112
855 for (;;) 1113 for (;;)
856 { 1114 {
857 int p = k >> 1; 1115 int c = k << 1;
858 1116
859 /* maybe we could use a dummy element at heap [0]? */ 1117 if (c >= N + HEAP0)
860 if (!p || heap [p]->at <= w->at)
861 break; 1118 break;
862 1119
863 heap [k] = heap [p]; 1120 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
864 ev_active (heap [k]) = k; 1121 ? 1 : 0;
865 k = p;
866 }
867 1122
868 heap [k] = w; 1123 if (ANHE_at (he) <= ANHE_at (heap [c]))
869 ev_active (heap [k]) = k;
870}
871
872/* away from the root */
873void inline_speed
874downheap (WT *heap, int N, int k)
875{
876 WT w = heap [k];
877
878 for (;;)
879 {
880 int c = k << 1;
881
882 if (c > N)
883 break; 1124 break;
884 1125
885 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
886 ? 1 : 0;
887
888 if (w->at <= heap [c]->at)
889 break;
890
891 heap [k] = heap [c]; 1126 heap [k] = heap [c];
892 ((W)heap [k])->active = k; 1127 ev_active (ANHE_w (heap [k])) = k;
893 1128
894 k = c; 1129 k = c;
895 } 1130 }
896 1131
897 heap [k] = w; 1132 heap [k] = he;
1133 ev_active (ANHE_w (he)) = k;
1134}
1135#endif
1136
1137/* towards the root */
1138inline_speed void
1139upheap (ANHE *heap, int k)
1140{
1141 ANHE he = heap [k];
1142
1143 for (;;)
1144 {
1145 int p = HPARENT (k);
1146
1147 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1148 break;
1149
1150 heap [k] = heap [p];
898 ev_active (heap [k]) = k; 1151 ev_active (ANHE_w (heap [k])) = k;
899} 1152 k = p;
900#endif 1153 }
901 1154
902void inline_size 1155 heap [k] = he;
1156 ev_active (ANHE_w (he)) = k;
1157}
1158
1159/* move an element suitably so it is in a correct place */
1160inline_size void
903adjustheap (WT *heap, int N, int k) 1161adjustheap (ANHE *heap, int N, int k)
904{ 1162{
1163 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
905 upheap (heap, k); 1164 upheap (heap, k);
1165 else
906 downheap (heap, N, k); 1166 downheap (heap, N, k);
1167}
1168
1169/* rebuild the heap: this function is used only once and executed rarely */
1170inline_size void
1171reheap (ANHE *heap, int N)
1172{
1173 int i;
1174
1175 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1176 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1177 for (i = 0; i < N; ++i)
1178 upheap (heap, i + HEAP0);
907} 1179}
908 1180
909/*****************************************************************************/ 1181/*****************************************************************************/
910 1182
1183/* associate signal watchers to a signal signal */
911typedef struct 1184typedef struct
912{ 1185{
1186 EV_ATOMIC_T pending;
1187#if EV_MULTIPLICITY
1188 EV_P;
1189#endif
913 WL head; 1190 WL head;
914 EV_ATOMIC_T gotsig;
915} ANSIG; 1191} ANSIG;
916 1192
917static ANSIG *signals; 1193static ANSIG signals [EV_NSIG - 1];
918static int signalmax;
919
920static EV_ATOMIC_T gotsig;
921
922void inline_size
923signals_init (ANSIG *base, int count)
924{
925 while (count--)
926 {
927 base->head = 0;
928 base->gotsig = 0;
929
930 ++base;
931 }
932}
933 1194
934/*****************************************************************************/ 1195/*****************************************************************************/
935 1196
936void inline_speed 1197/* used to prepare libev internal fd's */
1198/* this is not fork-safe */
1199inline_speed void
937fd_intern (int fd) 1200fd_intern (int fd)
938{ 1201{
939#ifdef _WIN32 1202#ifdef _WIN32
940 int arg = 1; 1203 unsigned long arg = 1;
941 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1204 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
942#else 1205#else
943 fcntl (fd, F_SETFD, FD_CLOEXEC); 1206 fcntl (fd, F_SETFD, FD_CLOEXEC);
944 fcntl (fd, F_SETFL, O_NONBLOCK); 1207 fcntl (fd, F_SETFL, O_NONBLOCK);
945#endif 1208#endif
946} 1209}
947 1210
948static void noinline 1211static void noinline
949evpipe_init (EV_P) 1212evpipe_init (EV_P)
950{ 1213{
951 if (!ev_is_active (&pipeev)) 1214 if (!ev_is_active (&pipe_w))
952 { 1215 {
953#if EV_USE_EVENTFD 1216#if EV_USE_EVENTFD
1217 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1218 if (evfd < 0 && errno == EINVAL)
954 if ((evfd = eventfd (0, 0)) >= 0) 1219 evfd = eventfd (0, 0);
1220
1221 if (evfd >= 0)
955 { 1222 {
956 evpipe [0] = -1; 1223 evpipe [0] = -1;
957 fd_intern (evfd); 1224 fd_intern (evfd); /* doing it twice doesn't hurt */
958 ev_io_set (&pipeev, evfd, EV_READ); 1225 ev_io_set (&pipe_w, evfd, EV_READ);
959 } 1226 }
960 else 1227 else
961#endif 1228#endif
962 { 1229 {
963 while (pipe (evpipe)) 1230 while (pipe (evpipe))
964 syserr ("(libev) error creating signal/async pipe"); 1231 ev_syserr ("(libev) error creating signal/async pipe");
965 1232
966 fd_intern (evpipe [0]); 1233 fd_intern (evpipe [0]);
967 fd_intern (evpipe [1]); 1234 fd_intern (evpipe [1]);
968 ev_io_set (&pipeev, evpipe [0], EV_READ); 1235 ev_io_set (&pipe_w, evpipe [0], EV_READ);
969 } 1236 }
970 1237
971 ev_io_start (EV_A_ &pipeev); 1238 ev_io_start (EV_A_ &pipe_w);
972 ev_unref (EV_A); /* watcher should not keep loop alive */ 1239 ev_unref (EV_A); /* watcher should not keep loop alive */
973 } 1240 }
974} 1241}
975 1242
976void inline_size 1243inline_size void
977evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1244evpipe_write (EV_P_ EV_ATOMIC_T *flag)
978{ 1245{
979 if (!*flag) 1246 if (!*flag)
980 { 1247 {
981 int old_errno = errno; /* save errno because write might clobber it */ 1248 int old_errno = errno; /* save errno because write might clobber it */
994 1261
995 errno = old_errno; 1262 errno = old_errno;
996 } 1263 }
997} 1264}
998 1265
1266/* called whenever the libev signal pipe */
1267/* got some events (signal, async) */
999static void 1268static void
1000pipecb (EV_P_ ev_io *iow, int revents) 1269pipecb (EV_P_ ev_io *iow, int revents)
1001{ 1270{
1271 int i;
1272
1002#if EV_USE_EVENTFD 1273#if EV_USE_EVENTFD
1003 if (evfd >= 0) 1274 if (evfd >= 0)
1004 { 1275 {
1005 uint64_t counter; 1276 uint64_t counter;
1006 read (evfd, &counter, sizeof (uint64_t)); 1277 read (evfd, &counter, sizeof (uint64_t));
1010 { 1281 {
1011 char dummy; 1282 char dummy;
1012 read (evpipe [0], &dummy, 1); 1283 read (evpipe [0], &dummy, 1);
1013 } 1284 }
1014 1285
1015 if (gotsig && ev_is_default_loop (EV_A)) 1286 if (sig_pending)
1016 { 1287 {
1017 int signum; 1288 sig_pending = 0;
1018 gotsig = 0;
1019 1289
1020 for (signum = signalmax; signum--; ) 1290 for (i = EV_NSIG - 1; i--; )
1021 if (signals [signum].gotsig) 1291 if (expect_false (signals [i].pending))
1022 ev_feed_signal_event (EV_A_ signum + 1); 1292 ev_feed_signal_event (EV_A_ i + 1);
1023 } 1293 }
1024 1294
1025#if EV_ASYNC_ENABLE 1295#if EV_ASYNC_ENABLE
1026 if (gotasync) 1296 if (async_pending)
1027 { 1297 {
1028 int i; 1298 async_pending = 0;
1029 gotasync = 0;
1030 1299
1031 for (i = asynccnt; i--; ) 1300 for (i = asynccnt; i--; )
1032 if (asyncs [i]->sent) 1301 if (asyncs [i]->sent)
1033 { 1302 {
1034 asyncs [i]->sent = 0; 1303 asyncs [i]->sent = 0;
1042 1311
1043static void 1312static void
1044ev_sighandler (int signum) 1313ev_sighandler (int signum)
1045{ 1314{
1046#if EV_MULTIPLICITY 1315#if EV_MULTIPLICITY
1047 struct ev_loop *loop = &default_loop_struct; 1316 EV_P = signals [signum - 1].loop;
1048#endif 1317#endif
1049 1318
1050#if _WIN32 1319#ifdef _WIN32
1051 signal (signum, ev_sighandler); 1320 signal (signum, ev_sighandler);
1052#endif 1321#endif
1053 1322
1054 signals [signum - 1].gotsig = 1; 1323 signals [signum - 1].pending = 1;
1055 evpipe_write (EV_A_ &gotsig); 1324 evpipe_write (EV_A_ &sig_pending);
1056} 1325}
1057 1326
1058void noinline 1327void noinline
1059ev_feed_signal_event (EV_P_ int signum) 1328ev_feed_signal_event (EV_P_ int signum)
1060{ 1329{
1061 WL w; 1330 WL w;
1062 1331
1332 if (expect_false (signum <= 0 || signum > EV_NSIG))
1333 return;
1334
1335 --signum;
1336
1063#if EV_MULTIPLICITY 1337#if EV_MULTIPLICITY
1064 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1338 /* it is permissible to try to feed a signal to the wrong loop */
1065#endif 1339 /* or, likely more useful, feeding a signal nobody is waiting for */
1066 1340
1067 --signum; 1341 if (expect_false (signals [signum].loop != EV_A))
1068
1069 if (signum < 0 || signum >= signalmax)
1070 return; 1342 return;
1343#endif
1071 1344
1072 signals [signum].gotsig = 0; 1345 signals [signum].pending = 0;
1073 1346
1074 for (w = signals [signum].head; w; w = w->next) 1347 for (w = signals [signum].head; w; w = w->next)
1075 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1348 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1076} 1349}
1077 1350
1351#if EV_USE_SIGNALFD
1352static void
1353sigfdcb (EV_P_ ev_io *iow, int revents)
1354{
1355 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1356
1357 for (;;)
1358 {
1359 ssize_t res = read (sigfd, si, sizeof (si));
1360
1361 /* not ISO-C, as res might be -1, but works with SuS */
1362 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1363 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1364
1365 if (res < (ssize_t)sizeof (si))
1366 break;
1367 }
1368}
1369#endif
1370
1078/*****************************************************************************/ 1371/*****************************************************************************/
1079 1372
1080static WL childs [EV_PID_HASHSIZE]; 1373static WL childs [EV_PID_HASHSIZE];
1081 1374
1082#ifndef _WIN32 1375#ifndef _WIN32
1085 1378
1086#ifndef WIFCONTINUED 1379#ifndef WIFCONTINUED
1087# define WIFCONTINUED(status) 0 1380# define WIFCONTINUED(status) 0
1088#endif 1381#endif
1089 1382
1090void inline_speed 1383/* handle a single child status event */
1384inline_speed void
1091child_reap (EV_P_ int chain, int pid, int status) 1385child_reap (EV_P_ int chain, int pid, int status)
1092{ 1386{
1093 ev_child *w; 1387 ev_child *w;
1094 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1388 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1095 1389
1108 1402
1109#ifndef WCONTINUED 1403#ifndef WCONTINUED
1110# define WCONTINUED 0 1404# define WCONTINUED 0
1111#endif 1405#endif
1112 1406
1407/* called on sigchld etc., calls waitpid */
1113static void 1408static void
1114childcb (EV_P_ ev_signal *sw, int revents) 1409childcb (EV_P_ ev_signal *sw, int revents)
1115{ 1410{
1116 int pid, status; 1411 int pid, status;
1117 1412
1198 /* kqueue is borked on everything but netbsd apparently */ 1493 /* kqueue is borked on everything but netbsd apparently */
1199 /* it usually doesn't work correctly on anything but sockets and pipes */ 1494 /* it usually doesn't work correctly on anything but sockets and pipes */
1200 flags &= ~EVBACKEND_KQUEUE; 1495 flags &= ~EVBACKEND_KQUEUE;
1201#endif 1496#endif
1202#ifdef __APPLE__ 1497#ifdef __APPLE__
1203 // flags &= ~EVBACKEND_KQUEUE; for documentation 1498 /* only select works correctly on that "unix-certified" platform */
1204 flags &= ~EVBACKEND_POLL; 1499 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1500 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1205#endif 1501#endif
1206 1502
1207 return flags; 1503 return flags;
1208} 1504}
1209 1505
1223ev_backend (EV_P) 1519ev_backend (EV_P)
1224{ 1520{
1225 return backend; 1521 return backend;
1226} 1522}
1227 1523
1524#if EV_MINIMAL < 2
1228unsigned int 1525unsigned int
1229ev_loop_count (EV_P) 1526ev_loop_count (EV_P)
1230{ 1527{
1231 return loop_count; 1528 return loop_count;
1232} 1529}
1233 1530
1531unsigned int
1532ev_loop_depth (EV_P)
1533{
1534 return loop_depth;
1535}
1536
1234void 1537void
1235ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1538ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1236{ 1539{
1237 io_blocktime = interval; 1540 io_blocktime = interval;
1238} 1541}
1241ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1544ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1242{ 1545{
1243 timeout_blocktime = interval; 1546 timeout_blocktime = interval;
1244} 1547}
1245 1548
1549void
1550ev_set_userdata (EV_P_ void *data)
1551{
1552 userdata = data;
1553}
1554
1555void *
1556ev_userdata (EV_P)
1557{
1558 return userdata;
1559}
1560
1561void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1562{
1563 invoke_cb = invoke_pending_cb;
1564}
1565
1566void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1567{
1568 release_cb = release;
1569 acquire_cb = acquire;
1570}
1571#endif
1572
1573/* initialise a loop structure, must be zero-initialised */
1246static void noinline 1574static void noinline
1247loop_init (EV_P_ unsigned int flags) 1575loop_init (EV_P_ unsigned int flags)
1248{ 1576{
1249 if (!backend) 1577 if (!backend)
1250 { 1578 {
1579#if EV_USE_REALTIME
1580 if (!have_realtime)
1581 {
1582 struct timespec ts;
1583
1584 if (!clock_gettime (CLOCK_REALTIME, &ts))
1585 have_realtime = 1;
1586 }
1587#endif
1588
1251#if EV_USE_MONOTONIC 1589#if EV_USE_MONOTONIC
1590 if (!have_monotonic)
1252 { 1591 {
1253 struct timespec ts; 1592 struct timespec ts;
1593
1254 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1594 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1255 have_monotonic = 1; 1595 have_monotonic = 1;
1256 } 1596 }
1257#endif 1597#endif
1598
1599 /* pid check not overridable via env */
1600#ifndef _WIN32
1601 if (flags & EVFLAG_FORKCHECK)
1602 curpid = getpid ();
1603#endif
1604
1605 if (!(flags & EVFLAG_NOENV)
1606 && !enable_secure ()
1607 && getenv ("LIBEV_FLAGS"))
1608 flags = atoi (getenv ("LIBEV_FLAGS"));
1258 1609
1259 ev_rt_now = ev_time (); 1610 ev_rt_now = ev_time ();
1260 mn_now = get_clock (); 1611 mn_now = get_clock ();
1261 now_floor = mn_now; 1612 now_floor = mn_now;
1262 rtmn_diff = ev_rt_now - mn_now; 1613 rtmn_diff = ev_rt_now - mn_now;
1614#if EV_MINIMAL < 2
1615 invoke_cb = ev_invoke_pending;
1616#endif
1263 1617
1264 io_blocktime = 0.; 1618 io_blocktime = 0.;
1265 timeout_blocktime = 0.; 1619 timeout_blocktime = 0.;
1266 backend = 0; 1620 backend = 0;
1267 backend_fd = -1; 1621 backend_fd = -1;
1268 gotasync = 0; 1622 sig_pending = 0;
1623#if EV_ASYNC_ENABLE
1624 async_pending = 0;
1625#endif
1269#if EV_USE_INOTIFY 1626#if EV_USE_INOTIFY
1270 fs_fd = -2; 1627 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1271#endif 1628#endif
1272 1629#if EV_USE_SIGNALFD
1273 /* pid check not overridable via env */ 1630 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1274#ifndef _WIN32
1275 if (flags & EVFLAG_FORKCHECK)
1276 curpid = getpid ();
1277#endif 1631#endif
1278
1279 if (!(flags & EVFLAG_NOENV)
1280 && !enable_secure ()
1281 && getenv ("LIBEV_FLAGS"))
1282 flags = atoi (getenv ("LIBEV_FLAGS"));
1283 1632
1284 if (!(flags & 0x0000ffffU)) 1633 if (!(flags & 0x0000ffffU))
1285 flags |= ev_recommended_backends (); 1634 flags |= ev_recommended_backends ();
1286 1635
1287#if EV_USE_PORT 1636#if EV_USE_PORT
1298#endif 1647#endif
1299#if EV_USE_SELECT 1648#if EV_USE_SELECT
1300 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1649 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1301#endif 1650#endif
1302 1651
1652 ev_prepare_init (&pending_w, pendingcb);
1653
1303 ev_init (&pipeev, pipecb); 1654 ev_init (&pipe_w, pipecb);
1304 ev_set_priority (&pipeev, EV_MAXPRI); 1655 ev_set_priority (&pipe_w, EV_MAXPRI);
1305 } 1656 }
1306} 1657}
1307 1658
1659/* free up a loop structure */
1308static void noinline 1660static void noinline
1309loop_destroy (EV_P) 1661loop_destroy (EV_P)
1310{ 1662{
1311 int i; 1663 int i;
1312 1664
1313 if (ev_is_active (&pipeev)) 1665 if (ev_is_active (&pipe_w))
1314 { 1666 {
1315 ev_ref (EV_A); /* signal watcher */ 1667 /*ev_ref (EV_A);*/
1316 ev_io_stop (EV_A_ &pipeev); 1668 /*ev_io_stop (EV_A_ &pipe_w);*/
1317 1669
1318#if EV_USE_EVENTFD 1670#if EV_USE_EVENTFD
1319 if (evfd >= 0) 1671 if (evfd >= 0)
1320 close (evfd); 1672 close (evfd);
1321#endif 1673#endif
1322 1674
1323 if (evpipe [0] >= 0) 1675 if (evpipe [0] >= 0)
1324 { 1676 {
1325 close (evpipe [0]); 1677 EV_WIN32_CLOSE_FD (evpipe [0]);
1326 close (evpipe [1]); 1678 EV_WIN32_CLOSE_FD (evpipe [1]);
1327 } 1679 }
1328 } 1680 }
1681
1682#if EV_USE_SIGNALFD
1683 if (ev_is_active (&sigfd_w))
1684 close (sigfd);
1685#endif
1329 1686
1330#if EV_USE_INOTIFY 1687#if EV_USE_INOTIFY
1331 if (fs_fd >= 0) 1688 if (fs_fd >= 0)
1332 close (fs_fd); 1689 close (fs_fd);
1333#endif 1690#endif
1357#if EV_IDLE_ENABLE 1714#if EV_IDLE_ENABLE
1358 array_free (idle, [i]); 1715 array_free (idle, [i]);
1359#endif 1716#endif
1360 } 1717 }
1361 1718
1362 ev_free (anfds); anfdmax = 0; 1719 ev_free (anfds); anfds = 0; anfdmax = 0;
1363 1720
1364 /* have to use the microsoft-never-gets-it-right macro */ 1721 /* have to use the microsoft-never-gets-it-right macro */
1722 array_free (rfeed, EMPTY);
1365 array_free (fdchange, EMPTY); 1723 array_free (fdchange, EMPTY);
1366 array_free (timer, EMPTY); 1724 array_free (timer, EMPTY);
1367#if EV_PERIODIC_ENABLE 1725#if EV_PERIODIC_ENABLE
1368 array_free (periodic, EMPTY); 1726 array_free (periodic, EMPTY);
1369#endif 1727#endif
1378 1736
1379 backend = 0; 1737 backend = 0;
1380} 1738}
1381 1739
1382#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1383void inline_size infy_fork (EV_P); 1741inline_size void infy_fork (EV_P);
1384#endif 1742#endif
1385 1743
1386void inline_size 1744inline_size void
1387loop_fork (EV_P) 1745loop_fork (EV_P)
1388{ 1746{
1389#if EV_USE_PORT 1747#if EV_USE_PORT
1390 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1748 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1391#endif 1749#endif
1397#endif 1755#endif
1398#if EV_USE_INOTIFY 1756#if EV_USE_INOTIFY
1399 infy_fork (EV_A); 1757 infy_fork (EV_A);
1400#endif 1758#endif
1401 1759
1402 if (ev_is_active (&pipeev)) 1760 if (ev_is_active (&pipe_w))
1403 { 1761 {
1404 /* this "locks" the handlers against writing to the pipe */ 1762 /* this "locks" the handlers against writing to the pipe */
1405 /* while we modify the fd vars */ 1763 /* while we modify the fd vars */
1406 gotsig = 1; 1764 sig_pending = 1;
1407#if EV_ASYNC_ENABLE 1765#if EV_ASYNC_ENABLE
1408 gotasync = 1; 1766 async_pending = 1;
1409#endif 1767#endif
1410 1768
1411 ev_ref (EV_A); 1769 ev_ref (EV_A);
1412 ev_io_stop (EV_A_ &pipeev); 1770 ev_io_stop (EV_A_ &pipe_w);
1413 1771
1414#if EV_USE_EVENTFD 1772#if EV_USE_EVENTFD
1415 if (evfd >= 0) 1773 if (evfd >= 0)
1416 close (evfd); 1774 close (evfd);
1417#endif 1775#endif
1418 1776
1419 if (evpipe [0] >= 0) 1777 if (evpipe [0] >= 0)
1420 { 1778 {
1421 close (evpipe [0]); 1779 EV_WIN32_CLOSE_FD (evpipe [0]);
1422 close (evpipe [1]); 1780 EV_WIN32_CLOSE_FD (evpipe [1]);
1423 } 1781 }
1424 1782
1425 evpipe_init (EV_A); 1783 evpipe_init (EV_A);
1426 /* now iterate over everything, in case we missed something */ 1784 /* now iterate over everything, in case we missed something */
1427 pipecb (EV_A_ &pipeev, EV_READ); 1785 pipecb (EV_A_ &pipe_w, EV_READ);
1428 } 1786 }
1429 1787
1430 postfork = 0; 1788 postfork = 0;
1431} 1789}
1432 1790
1433#if EV_MULTIPLICITY 1791#if EV_MULTIPLICITY
1792
1434struct ev_loop * 1793struct ev_loop *
1435ev_loop_new (unsigned int flags) 1794ev_loop_new (unsigned int flags)
1436{ 1795{
1437 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1796 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1438 1797
1439 memset (loop, 0, sizeof (struct ev_loop)); 1798 memset (EV_A, 0, sizeof (struct ev_loop));
1440
1441 loop_init (EV_A_ flags); 1799 loop_init (EV_A_ flags);
1442 1800
1443 if (ev_backend (EV_A)) 1801 if (ev_backend (EV_A))
1444 return loop; 1802 return EV_A;
1445 1803
1446 return 0; 1804 return 0;
1447} 1805}
1448 1806
1449void 1807void
1455 1813
1456void 1814void
1457ev_loop_fork (EV_P) 1815ev_loop_fork (EV_P)
1458{ 1816{
1459 postfork = 1; /* must be in line with ev_default_fork */ 1817 postfork = 1; /* must be in line with ev_default_fork */
1818}
1819#endif /* multiplicity */
1820
1821#if EV_VERIFY
1822static void noinline
1823verify_watcher (EV_P_ W w)
1824{
1825 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1826
1827 if (w->pending)
1828 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1829}
1830
1831static void noinline
1832verify_heap (EV_P_ ANHE *heap, int N)
1833{
1834 int i;
1835
1836 for (i = HEAP0; i < N + HEAP0; ++i)
1837 {
1838 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1839 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1840 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1841
1842 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1843 }
1844}
1845
1846static void noinline
1847array_verify (EV_P_ W *ws, int cnt)
1848{
1849 while (cnt--)
1850 {
1851 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1852 verify_watcher (EV_A_ ws [cnt]);
1853 }
1854}
1855#endif
1856
1857#if EV_MINIMAL < 2
1858void
1859ev_loop_verify (EV_P)
1860{
1861#if EV_VERIFY
1862 int i;
1863 WL w;
1864
1865 assert (activecnt >= -1);
1866
1867 assert (fdchangemax >= fdchangecnt);
1868 for (i = 0; i < fdchangecnt; ++i)
1869 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1870
1871 assert (anfdmax >= 0);
1872 for (i = 0; i < anfdmax; ++i)
1873 for (w = anfds [i].head; w; w = w->next)
1874 {
1875 verify_watcher (EV_A_ (W)w);
1876 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1877 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1878 }
1879
1880 assert (timermax >= timercnt);
1881 verify_heap (EV_A_ timers, timercnt);
1882
1883#if EV_PERIODIC_ENABLE
1884 assert (periodicmax >= periodiccnt);
1885 verify_heap (EV_A_ periodics, periodiccnt);
1886#endif
1887
1888 for (i = NUMPRI; i--; )
1889 {
1890 assert (pendingmax [i] >= pendingcnt [i]);
1891#if EV_IDLE_ENABLE
1892 assert (idleall >= 0);
1893 assert (idlemax [i] >= idlecnt [i]);
1894 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1895#endif
1896 }
1897
1898#if EV_FORK_ENABLE
1899 assert (forkmax >= forkcnt);
1900 array_verify (EV_A_ (W *)forks, forkcnt);
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 assert (asyncmax >= asynccnt);
1905 array_verify (EV_A_ (W *)asyncs, asynccnt);
1906#endif
1907
1908 assert (preparemax >= preparecnt);
1909 array_verify (EV_A_ (W *)prepares, preparecnt);
1910
1911 assert (checkmax >= checkcnt);
1912 array_verify (EV_A_ (W *)checks, checkcnt);
1913
1914# if 0
1915 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1917# endif
1918#endif
1460} 1919}
1461#endif 1920#endif
1462 1921
1463#if EV_MULTIPLICITY 1922#if EV_MULTIPLICITY
1464struct ev_loop * 1923struct ev_loop *
1469#endif 1928#endif
1470{ 1929{
1471 if (!ev_default_loop_ptr) 1930 if (!ev_default_loop_ptr)
1472 { 1931 {
1473#if EV_MULTIPLICITY 1932#if EV_MULTIPLICITY
1474 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1933 EV_P = ev_default_loop_ptr = &default_loop_struct;
1475#else 1934#else
1476 ev_default_loop_ptr = 1; 1935 ev_default_loop_ptr = 1;
1477#endif 1936#endif
1478 1937
1479 loop_init (EV_A_ flags); 1938 loop_init (EV_A_ flags);
1496 1955
1497void 1956void
1498ev_default_destroy (void) 1957ev_default_destroy (void)
1499{ 1958{
1500#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
1501 struct ev_loop *loop = ev_default_loop_ptr; 1960 EV_P = ev_default_loop_ptr;
1502#endif 1961#endif
1962
1963 ev_default_loop_ptr = 0;
1503 1964
1504#ifndef _WIN32 1965#ifndef _WIN32
1505 ev_ref (EV_A); /* child watcher */ 1966 ev_ref (EV_A); /* child watcher */
1506 ev_signal_stop (EV_A_ &childev); 1967 ev_signal_stop (EV_A_ &childev);
1507#endif 1968#endif
1511 1972
1512void 1973void
1513ev_default_fork (void) 1974ev_default_fork (void)
1514{ 1975{
1515#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1516 struct ev_loop *loop = ev_default_loop_ptr; 1977 EV_P = ev_default_loop_ptr;
1517#endif 1978#endif
1518 1979
1519 if (backend)
1520 postfork = 1; /* must be in line with ev_loop_fork */ 1980 postfork = 1; /* must be in line with ev_loop_fork */
1521} 1981}
1522 1982
1523/*****************************************************************************/ 1983/*****************************************************************************/
1524 1984
1525void 1985void
1526ev_invoke (EV_P_ void *w, int revents) 1986ev_invoke (EV_P_ void *w, int revents)
1527{ 1987{
1528 EV_CB_INVOKE ((W)w, revents); 1988 EV_CB_INVOKE ((W)w, revents);
1529} 1989}
1530 1990
1531void inline_speed 1991unsigned int
1532call_pending (EV_P) 1992ev_pending_count (EV_P)
1993{
1994 int pri;
1995 unsigned int count = 0;
1996
1997 for (pri = NUMPRI; pri--; )
1998 count += pendingcnt [pri];
1999
2000 return count;
2001}
2002
2003void noinline
2004ev_invoke_pending (EV_P)
1533{ 2005{
1534 int pri; 2006 int pri;
1535 2007
1536 for (pri = NUMPRI; pri--; ) 2008 for (pri = NUMPRI; pri--; )
1537 while (pendingcnt [pri]) 2009 while (pendingcnt [pri])
1538 { 2010 {
1539 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2011 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1540 2012
1541 if (expect_true (p->w))
1542 {
1543 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2013 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2014 /* ^ this is no longer true, as pending_w could be here */
1544 2015
1545 p->w->pending = 0; 2016 p->w->pending = 0;
1546 EV_CB_INVOKE (p->w, p->events); 2017 EV_CB_INVOKE (p->w, p->events);
1547 } 2018 EV_FREQUENT_CHECK;
1548 } 2019 }
1549} 2020}
1550 2021
1551#if EV_IDLE_ENABLE 2022#if EV_IDLE_ENABLE
1552void inline_size 2023/* make idle watchers pending. this handles the "call-idle */
2024/* only when higher priorities are idle" logic */
2025inline_size void
1553idle_reify (EV_P) 2026idle_reify (EV_P)
1554{ 2027{
1555 if (expect_false (idleall)) 2028 if (expect_false (idleall))
1556 { 2029 {
1557 int pri; 2030 int pri;
1569 } 2042 }
1570 } 2043 }
1571} 2044}
1572#endif 2045#endif
1573 2046
1574void inline_size 2047/* make timers pending */
2048inline_size void
1575timers_reify (EV_P) 2049timers_reify (EV_P)
1576{ 2050{
2051 EV_FREQUENT_CHECK;
2052
1577 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2053 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1578 { 2054 {
1579 ev_timer *w = (ev_timer *)timers [HEAP0]; 2055 do
1580
1581 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1582
1583 /* first reschedule or stop timer */
1584 if (w->repeat)
1585 { 2056 {
2057 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2058
2059 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2060
2061 /* first reschedule or stop timer */
2062 if (w->repeat)
2063 {
2064 ev_at (w) += w->repeat;
2065 if (ev_at (w) < mn_now)
2066 ev_at (w) = mn_now;
2067
1586 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2068 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1587 2069
1588 ev_at (w) += w->repeat; 2070 ANHE_at_cache (timers [HEAP0]);
1589 if (ev_at (w) < mn_now)
1590 ev_at (w) = mn_now;
1591
1592 downheap (timers, timercnt, HEAP0); 2071 downheap (timers, timercnt, HEAP0);
2072 }
2073 else
2074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2075
2076 EV_FREQUENT_CHECK;
2077 feed_reverse (EV_A_ (W)w);
1593 } 2078 }
1594 else 2079 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1595 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1596 2080
1597 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2081 feed_reverse_done (EV_A_ EV_TIMEOUT);
1598 } 2082 }
1599} 2083}
1600 2084
1601#if EV_PERIODIC_ENABLE 2085#if EV_PERIODIC_ENABLE
1602void inline_size 2086/* make periodics pending */
2087inline_size void
1603periodics_reify (EV_P) 2088periodics_reify (EV_P)
1604{ 2089{
2090 EV_FREQUENT_CHECK;
2091
1605 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2092 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1606 { 2093 {
1607 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2094 int feed_count = 0;
1608 2095
1609 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2096 do
1610
1611 /* first reschedule or stop timer */
1612 if (w->reschedule_cb)
1613 { 2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2099
2100 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2101
2102 /* first reschedule or stop timer */
2103 if (w->reschedule_cb)
2104 {
1614 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2105 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2106
1615 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2107 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2108
2109 ANHE_at_cache (periodics [HEAP0]);
1616 downheap (periodics, periodiccnt, 1); 2110 downheap (periodics, periodiccnt, HEAP0);
2111 }
2112 else if (w->interval)
2113 {
2114 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2115 /* if next trigger time is not sufficiently in the future, put it there */
2116 /* this might happen because of floating point inexactness */
2117 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2118 {
2119 ev_at (w) += w->interval;
2120
2121 /* if interval is unreasonably low we might still have a time in the past */
2122 /* so correct this. this will make the periodic very inexact, but the user */
2123 /* has effectively asked to get triggered more often than possible */
2124 if (ev_at (w) < ev_rt_now)
2125 ev_at (w) = ev_rt_now;
2126 }
2127
2128 ANHE_at_cache (periodics [HEAP0]);
2129 downheap (periodics, periodiccnt, HEAP0);
2130 }
2131 else
2132 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2133
2134 EV_FREQUENT_CHECK;
2135 feed_reverse (EV_A_ (W)w);
1617 } 2136 }
1618 else if (w->interval) 2137 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1619 {
1620 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1621 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1622 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1623 downheap (periodics, periodiccnt, HEAP0);
1624 }
1625 else
1626 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1627 2138
1628 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2139 feed_reverse_done (EV_A_ EV_PERIODIC);
1629 } 2140 }
1630} 2141}
1631 2142
2143/* simply recalculate all periodics */
2144/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1632static void noinline 2145static void noinline
1633periodics_reschedule (EV_P) 2146periodics_reschedule (EV_P)
1634{ 2147{
1635 int i; 2148 int i;
1636 2149
1637 /* adjust periodics after time jump */ 2150 /* adjust periodics after time jump */
1638 for (i = 1; i <= periodiccnt; ++i) 2151 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1639 { 2152 {
1640 ev_periodic *w = (ev_periodic *)periodics [i]; 2153 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1641 2154
1642 if (w->reschedule_cb) 2155 if (w->reschedule_cb)
1643 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2156 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1644 else if (w->interval) 2157 else if (w->interval)
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159
2160 ANHE_at_cache (periodics [i]);
2161 }
2162
2163 reheap (periodics, periodiccnt);
2164}
2165#endif
2166
2167/* adjust all timers by a given offset */
2168static void noinline
2169timers_reschedule (EV_P_ ev_tstamp adjust)
2170{
2171 int i;
2172
2173 for (i = 0; i < timercnt; ++i)
1646 } 2174 {
1647 2175 ANHE *he = timers + i + HEAP0;
1648 /* now rebuild the heap */ 2176 ANHE_w (*he)->at += adjust;
1649 for (i = periodiccnt >> 1; --i; ) 2177 ANHE_at_cache (*he);
1650 downheap (periodics, periodiccnt, i + HEAP0); 2178 }
1651} 2179}
1652#endif
1653 2180
1654void inline_speed 2181/* fetch new monotonic and realtime times from the kernel */
2182/* also detect if there was a timejump, and act accordingly */
2183inline_speed void
1655time_update (EV_P_ ev_tstamp max_block) 2184time_update (EV_P_ ev_tstamp max_block)
1656{ 2185{
1657 int i;
1658
1659#if EV_USE_MONOTONIC 2186#if EV_USE_MONOTONIC
1660 if (expect_true (have_monotonic)) 2187 if (expect_true (have_monotonic))
1661 { 2188 {
2189 int i;
1662 ev_tstamp odiff = rtmn_diff; 2190 ev_tstamp odiff = rtmn_diff;
1663 2191
1664 mn_now = get_clock (); 2192 mn_now = get_clock ();
1665 2193
1666 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2194 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1692 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1693 mn_now = get_clock (); 2221 mn_now = get_clock ();
1694 now_floor = mn_now; 2222 now_floor = mn_now;
1695 } 2223 }
1696 2224
2225 /* no timer adjustment, as the monotonic clock doesn't jump */
2226 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1697# if EV_PERIODIC_ENABLE 2227# if EV_PERIODIC_ENABLE
1698 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1699# endif 2229# endif
1700 /* no timer adjustment, as the monotonic clock doesn't jump */
1701 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1702 } 2230 }
1703 else 2231 else
1704#endif 2232#endif
1705 { 2233 {
1706 ev_rt_now = ev_time (); 2234 ev_rt_now = ev_time ();
1707 2235
1708 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2236 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1709 { 2237 {
2238 /* adjust timers. this is easy, as the offset is the same for all of them */
2239 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1710#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1711 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1712#endif 2242#endif
1713 /* adjust timers. this is easy, as the offset is the same for all of them */
1714 for (i = 1; i <= timercnt; ++i)
1715 ev_at (timers [i]) += ev_rt_now - mn_now;
1716 } 2243 }
1717 2244
1718 mn_now = ev_rt_now; 2245 mn_now = ev_rt_now;
1719 } 2246 }
1720} 2247}
1721 2248
1722void 2249void
1723ev_ref (EV_P)
1724{
1725 ++activecnt;
1726}
1727
1728void
1729ev_unref (EV_P)
1730{
1731 --activecnt;
1732}
1733
1734static int loop_done;
1735
1736void
1737ev_loop (EV_P_ int flags) 2250ev_loop (EV_P_ int flags)
1738{ 2251{
2252#if EV_MINIMAL < 2
2253 ++loop_depth;
2254#endif
2255
2256 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2257
1739 loop_done = EVUNLOOP_CANCEL; 2258 loop_done = EVUNLOOP_CANCEL;
1740 2259
1741 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2260 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1742 2261
1743 do 2262 do
1744 { 2263 {
2264#if EV_VERIFY >= 2
2265 ev_loop_verify (EV_A);
2266#endif
2267
1745#ifndef _WIN32 2268#ifndef _WIN32
1746 if (expect_false (curpid)) /* penalise the forking check even more */ 2269 if (expect_false (curpid)) /* penalise the forking check even more */
1747 if (expect_false (getpid () != curpid)) 2270 if (expect_false (getpid () != curpid))
1748 { 2271 {
1749 curpid = getpid (); 2272 curpid = getpid ();
1755 /* we might have forked, so queue fork handlers */ 2278 /* we might have forked, so queue fork handlers */
1756 if (expect_false (postfork)) 2279 if (expect_false (postfork))
1757 if (forkcnt) 2280 if (forkcnt)
1758 { 2281 {
1759 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2282 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1760 call_pending (EV_A); 2283 EV_INVOKE_PENDING;
1761 } 2284 }
1762#endif 2285#endif
1763 2286
1764 /* queue prepare watchers (and execute them) */ 2287 /* queue prepare watchers (and execute them) */
1765 if (expect_false (preparecnt)) 2288 if (expect_false (preparecnt))
1766 { 2289 {
1767 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2290 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1768 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1769 } 2292 }
1770 2293
1771 if (expect_false (!activecnt)) 2294 if (expect_false (loop_done))
1772 break; 2295 break;
1773 2296
1774 /* we might have forked, so reify kernel state if necessary */ 2297 /* we might have forked, so reify kernel state if necessary */
1775 if (expect_false (postfork)) 2298 if (expect_false (postfork))
1776 loop_fork (EV_A); 2299 loop_fork (EV_A);
1783 ev_tstamp waittime = 0.; 2306 ev_tstamp waittime = 0.;
1784 ev_tstamp sleeptime = 0.; 2307 ev_tstamp sleeptime = 0.;
1785 2308
1786 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2309 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1787 { 2310 {
2311 /* remember old timestamp for io_blocktime calculation */
2312 ev_tstamp prev_mn_now = mn_now;
2313
1788 /* update time to cancel out callback processing overhead */ 2314 /* update time to cancel out callback processing overhead */
1789 time_update (EV_A_ 1e100); 2315 time_update (EV_A_ 1e100);
1790 2316
1791 waittime = MAX_BLOCKTIME; 2317 waittime = MAX_BLOCKTIME;
1792 2318
1793 if (timercnt) 2319 if (timercnt)
1794 { 2320 {
1795 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2321 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1796 if (waittime > to) waittime = to; 2322 if (waittime > to) waittime = to;
1797 } 2323 }
1798 2324
1799#if EV_PERIODIC_ENABLE 2325#if EV_PERIODIC_ENABLE
1800 if (periodiccnt) 2326 if (periodiccnt)
1801 { 2327 {
1802 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1803 if (waittime > to) waittime = to; 2329 if (waittime > to) waittime = to;
1804 } 2330 }
1805#endif 2331#endif
1806 2332
2333 /* don't let timeouts decrease the waittime below timeout_blocktime */
1807 if (expect_false (waittime < timeout_blocktime)) 2334 if (expect_false (waittime < timeout_blocktime))
1808 waittime = timeout_blocktime; 2335 waittime = timeout_blocktime;
1809 2336
1810 sleeptime = waittime - backend_fudge; 2337 /* extra check because io_blocktime is commonly 0 */
1811
1812 if (expect_true (sleeptime > io_blocktime)) 2338 if (expect_false (io_blocktime))
1813 sleeptime = io_blocktime;
1814
1815 if (sleeptime)
1816 { 2339 {
2340 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2341
2342 if (sleeptime > waittime - backend_fudge)
2343 sleeptime = waittime - backend_fudge;
2344
2345 if (expect_true (sleeptime > 0.))
2346 {
1817 ev_sleep (sleeptime); 2347 ev_sleep (sleeptime);
1818 waittime -= sleeptime; 2348 waittime -= sleeptime;
2349 }
1819 } 2350 }
1820 } 2351 }
1821 2352
2353#if EV_MINIMAL < 2
1822 ++loop_count; 2354 ++loop_count;
2355#endif
2356 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1823 backend_poll (EV_A_ waittime); 2357 backend_poll (EV_A_ waittime);
2358 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1824 2359
1825 /* update ev_rt_now, do magic */ 2360 /* update ev_rt_now, do magic */
1826 time_update (EV_A_ waittime + sleeptime); 2361 time_update (EV_A_ waittime + sleeptime);
1827 } 2362 }
1828 2363
1839 2374
1840 /* queue check watchers, to be executed first */ 2375 /* queue check watchers, to be executed first */
1841 if (expect_false (checkcnt)) 2376 if (expect_false (checkcnt))
1842 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2377 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1843 2378
1844 call_pending (EV_A); 2379 EV_INVOKE_PENDING;
1845 } 2380 }
1846 while (expect_true ( 2381 while (expect_true (
1847 activecnt 2382 activecnt
1848 && !loop_done 2383 && !loop_done
1849 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2384 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1850 )); 2385 ));
1851 2386
1852 if (loop_done == EVUNLOOP_ONE) 2387 if (loop_done == EVUNLOOP_ONE)
1853 loop_done = EVUNLOOP_CANCEL; 2388 loop_done = EVUNLOOP_CANCEL;
2389
2390#if EV_MINIMAL < 2
2391 --loop_depth;
2392#endif
1854} 2393}
1855 2394
1856void 2395void
1857ev_unloop (EV_P_ int how) 2396ev_unloop (EV_P_ int how)
1858{ 2397{
1859 loop_done = how; 2398 loop_done = how;
1860} 2399}
1861 2400
2401void
2402ev_ref (EV_P)
2403{
2404 ++activecnt;
2405}
2406
2407void
2408ev_unref (EV_P)
2409{
2410 --activecnt;
2411}
2412
2413void
2414ev_now_update (EV_P)
2415{
2416 time_update (EV_A_ 1e100);
2417}
2418
2419void
2420ev_suspend (EV_P)
2421{
2422 ev_now_update (EV_A);
2423}
2424
2425void
2426ev_resume (EV_P)
2427{
2428 ev_tstamp mn_prev = mn_now;
2429
2430 ev_now_update (EV_A);
2431 timers_reschedule (EV_A_ mn_now - mn_prev);
2432#if EV_PERIODIC_ENABLE
2433 /* TODO: really do this? */
2434 periodics_reschedule (EV_A);
2435#endif
2436}
2437
1862/*****************************************************************************/ 2438/*****************************************************************************/
2439/* singly-linked list management, used when the expected list length is short */
1863 2440
1864void inline_size 2441inline_size void
1865wlist_add (WL *head, WL elem) 2442wlist_add (WL *head, WL elem)
1866{ 2443{
1867 elem->next = *head; 2444 elem->next = *head;
1868 *head = elem; 2445 *head = elem;
1869} 2446}
1870 2447
1871void inline_size 2448inline_size void
1872wlist_del (WL *head, WL elem) 2449wlist_del (WL *head, WL elem)
1873{ 2450{
1874 while (*head) 2451 while (*head)
1875 { 2452 {
1876 if (*head == elem) 2453 if (expect_true (*head == elem))
1877 { 2454 {
1878 *head = elem->next; 2455 *head = elem->next;
1879 return; 2456 break;
1880 } 2457 }
1881 2458
1882 head = &(*head)->next; 2459 head = &(*head)->next;
1883 } 2460 }
1884} 2461}
1885 2462
1886void inline_speed 2463/* internal, faster, version of ev_clear_pending */
2464inline_speed void
1887clear_pending (EV_P_ W w) 2465clear_pending (EV_P_ W w)
1888{ 2466{
1889 if (w->pending) 2467 if (w->pending)
1890 { 2468 {
1891 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2469 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1892 w->pending = 0; 2470 w->pending = 0;
1893 } 2471 }
1894} 2472}
1895 2473
1896int 2474int
1900 int pending = w_->pending; 2478 int pending = w_->pending;
1901 2479
1902 if (expect_true (pending)) 2480 if (expect_true (pending))
1903 { 2481 {
1904 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2482 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2483 p->w = (W)&pending_w;
1905 w_->pending = 0; 2484 w_->pending = 0;
1906 p->w = 0;
1907 return p->events; 2485 return p->events;
1908 } 2486 }
1909 else 2487 else
1910 return 0; 2488 return 0;
1911} 2489}
1912 2490
1913void inline_size 2491inline_size void
1914pri_adjust (EV_P_ W w) 2492pri_adjust (EV_P_ W w)
1915{ 2493{
1916 int pri = w->priority; 2494 int pri = ev_priority (w);
1917 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2495 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1918 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2496 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1919 w->priority = pri; 2497 ev_set_priority (w, pri);
1920} 2498}
1921 2499
1922void inline_speed 2500inline_speed void
1923ev_start (EV_P_ W w, int active) 2501ev_start (EV_P_ W w, int active)
1924{ 2502{
1925 pri_adjust (EV_A_ w); 2503 pri_adjust (EV_A_ w);
1926 w->active = active; 2504 w->active = active;
1927 ev_ref (EV_A); 2505 ev_ref (EV_A);
1928} 2506}
1929 2507
1930void inline_size 2508inline_size void
1931ev_stop (EV_P_ W w) 2509ev_stop (EV_P_ W w)
1932{ 2510{
1933 ev_unref (EV_A); 2511 ev_unref (EV_A);
1934 w->active = 0; 2512 w->active = 0;
1935} 2513}
1942 int fd = w->fd; 2520 int fd = w->fd;
1943 2521
1944 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
1945 return; 2523 return;
1946 2524
1947 assert (("ev_io_start called with negative fd", fd >= 0)); 2525 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2526 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2527
2528 EV_FREQUENT_CHECK;
1948 2529
1949 ev_start (EV_A_ (W)w, 1); 2530 ev_start (EV_A_ (W)w, 1);
1950 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2531 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1951 wlist_add (&anfds[fd].head, (WL)w); 2532 wlist_add (&anfds[fd].head, (WL)w);
1952 2533
1953 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1954 w->events &= ~EV_IOFDSET; 2535 w->events &= ~EV__IOFDSET;
2536
2537 EV_FREQUENT_CHECK;
1955} 2538}
1956 2539
1957void noinline 2540void noinline
1958ev_io_stop (EV_P_ ev_io *w) 2541ev_io_stop (EV_P_ ev_io *w)
1959{ 2542{
1960 clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
1961 if (expect_false (!ev_is_active (w))) 2544 if (expect_false (!ev_is_active (w)))
1962 return; 2545 return;
1963 2546
1964 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2548
2549 EV_FREQUENT_CHECK;
1965 2550
1966 wlist_del (&anfds[w->fd].head, (WL)w); 2551 wlist_del (&anfds[w->fd].head, (WL)w);
1967 ev_stop (EV_A_ (W)w); 2552 ev_stop (EV_A_ (W)w);
1968 2553
1969 fd_change (EV_A_ w->fd, 1); 2554 fd_change (EV_A_ w->fd, 1);
2555
2556 EV_FREQUENT_CHECK;
1970} 2557}
1971 2558
1972void noinline 2559void noinline
1973ev_timer_start (EV_P_ ev_timer *w) 2560ev_timer_start (EV_P_ ev_timer *w)
1974{ 2561{
1975 if (expect_false (ev_is_active (w))) 2562 if (expect_false (ev_is_active (w)))
1976 return; 2563 return;
1977 2564
1978 ev_at (w) += mn_now; 2565 ev_at (w) += mn_now;
1979 2566
1980 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1981 2568
2569 EV_FREQUENT_CHECK;
2570
2571 ++timercnt;
1982 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1983 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2573 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1984 timers [ev_active (w)] = (WT)w; 2574 ANHE_w (timers [ev_active (w)]) = (WT)w;
2575 ANHE_at_cache (timers [ev_active (w)]);
1985 upheap (timers, ev_active (w)); 2576 upheap (timers, ev_active (w));
1986 2577
2578 EV_FREQUENT_CHECK;
2579
1987 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1988} 2581}
1989 2582
1990void noinline 2583void noinline
1991ev_timer_stop (EV_P_ ev_timer *w) 2584ev_timer_stop (EV_P_ ev_timer *w)
1992{ 2585{
1993 clear_pending (EV_A_ (W)w); 2586 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 2587 if (expect_false (!ev_is_active (w)))
1995 return; 2588 return;
1996 2589
2590 EV_FREQUENT_CHECK;
2591
1997 { 2592 {
1998 int active = ev_active (w); 2593 int active = ev_active (w);
1999 2594
2000 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2001 2596
2597 --timercnt;
2598
2002 if (expect_true (active < timercnt + HEAP0 - 1)) 2599 if (expect_true (active < timercnt + HEAP0))
2003 { 2600 {
2004 timers [active] = timers [timercnt + HEAP0 - 1]; 2601 timers [active] = timers [timercnt + HEAP0];
2005 adjustheap (timers, timercnt, active); 2602 adjustheap (timers, timercnt, active);
2006 } 2603 }
2007
2008 --timercnt;
2009 } 2604 }
2010 2605
2011 ev_at (w) -= mn_now; 2606 ev_at (w) -= mn_now;
2012 2607
2013 ev_stop (EV_A_ (W)w); 2608 ev_stop (EV_A_ (W)w);
2609
2610 EV_FREQUENT_CHECK;
2014} 2611}
2015 2612
2016void noinline 2613void noinline
2017ev_timer_again (EV_P_ ev_timer *w) 2614ev_timer_again (EV_P_ ev_timer *w)
2018{ 2615{
2616 EV_FREQUENT_CHECK;
2617
2019 if (ev_is_active (w)) 2618 if (ev_is_active (w))
2020 { 2619 {
2021 if (w->repeat) 2620 if (w->repeat)
2022 { 2621 {
2023 ev_at (w) = mn_now + w->repeat; 2622 ev_at (w) = mn_now + w->repeat;
2623 ANHE_at_cache (timers [ev_active (w)]);
2024 adjustheap (timers, timercnt, ev_active (w)); 2624 adjustheap (timers, timercnt, ev_active (w));
2025 } 2625 }
2026 else 2626 else
2027 ev_timer_stop (EV_A_ w); 2627 ev_timer_stop (EV_A_ w);
2028 } 2628 }
2029 else if (w->repeat) 2629 else if (w->repeat)
2030 { 2630 {
2031 ev_at (w) = w->repeat; 2631 ev_at (w) = w->repeat;
2032 ev_timer_start (EV_A_ w); 2632 ev_timer_start (EV_A_ w);
2033 } 2633 }
2634
2635 EV_FREQUENT_CHECK;
2636}
2637
2638ev_tstamp
2639ev_timer_remaining (EV_P_ ev_timer *w)
2640{
2641 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2034} 2642}
2035 2643
2036#if EV_PERIODIC_ENABLE 2644#if EV_PERIODIC_ENABLE
2037void noinline 2645void noinline
2038ev_periodic_start (EV_P_ ev_periodic *w) 2646ev_periodic_start (EV_P_ ev_periodic *w)
2042 2650
2043 if (w->reschedule_cb) 2651 if (w->reschedule_cb)
2044 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2045 else if (w->interval) 2653 else if (w->interval)
2046 { 2654 {
2047 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2655 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2048 /* this formula differs from the one in periodic_reify because we do not always round up */ 2656 /* this formula differs from the one in periodic_reify because we do not always round up */
2049 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2050 } 2658 }
2051 else 2659 else
2052 ev_at (w) = w->offset; 2660 ev_at (w) = w->offset;
2053 2661
2662 EV_FREQUENT_CHECK;
2663
2664 ++periodiccnt;
2054 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2665 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2055 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2666 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2056 periodics [ev_active (w)] = (WT)w; 2667 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2668 ANHE_at_cache (periodics [ev_active (w)]);
2057 upheap (periodics, ev_active (w)); 2669 upheap (periodics, ev_active (w));
2058 2670
2671 EV_FREQUENT_CHECK;
2672
2059 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2673 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2060} 2674}
2061 2675
2062void noinline 2676void noinline
2063ev_periodic_stop (EV_P_ ev_periodic *w) 2677ev_periodic_stop (EV_P_ ev_periodic *w)
2064{ 2678{
2065 clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
2067 return; 2681 return;
2068 2682
2683 EV_FREQUENT_CHECK;
2684
2069 { 2685 {
2070 int active = ev_active (w); 2686 int active = ev_active (w);
2071 2687
2072 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2688 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2073 2689
2690 --periodiccnt;
2691
2074 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2692 if (expect_true (active < periodiccnt + HEAP0))
2075 { 2693 {
2076 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2694 periodics [active] = periodics [periodiccnt + HEAP0];
2077 adjustheap (periodics, periodiccnt, active); 2695 adjustheap (periodics, periodiccnt, active);
2078 } 2696 }
2079
2080 --periodiccnt;
2081 } 2697 }
2082 2698
2083 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2700
2701 EV_FREQUENT_CHECK;
2084} 2702}
2085 2703
2086void noinline 2704void noinline
2087ev_periodic_again (EV_P_ ev_periodic *w) 2705ev_periodic_again (EV_P_ ev_periodic *w)
2088{ 2706{
2097#endif 2715#endif
2098 2716
2099void noinline 2717void noinline
2100ev_signal_start (EV_P_ ev_signal *w) 2718ev_signal_start (EV_P_ ev_signal *w)
2101{ 2719{
2102#if EV_MULTIPLICITY
2103 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2104#endif
2105 if (expect_false (ev_is_active (w))) 2720 if (expect_false (ev_is_active (w)))
2106 return; 2721 return;
2107 2722
2108 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2723 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2109 2724
2110 evpipe_init (EV_A); 2725#if EV_MULTIPLICITY
2726 assert (("libev: a signal must not be attached to two different loops",
2727 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2111 2728
2729 signals [w->signum - 1].loop = EV_A;
2730#endif
2731
2732 EV_FREQUENT_CHECK;
2733
2734#if EV_USE_SIGNALFD
2735 if (sigfd == -2)
2112 { 2736 {
2113#ifndef _WIN32 2737 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2114 sigset_t full, prev; 2738 if (sigfd < 0 && errno == EINVAL)
2115 sigfillset (&full); 2739 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2116 sigprocmask (SIG_SETMASK, &full, &prev);
2117#endif
2118 2740
2119 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2741 if (sigfd >= 0)
2742 {
2743 fd_intern (sigfd); /* doing it twice will not hurt */
2120 2744
2121#ifndef _WIN32 2745 sigemptyset (&sigfd_set);
2122 sigprocmask (SIG_SETMASK, &prev, 0); 2746
2123#endif 2747 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2748 ev_set_priority (&sigfd_w, EV_MAXPRI);
2749 ev_io_start (EV_A_ &sigfd_w);
2750 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2751 }
2124 } 2752 }
2753
2754 if (sigfd >= 0)
2755 {
2756 /* TODO: check .head */
2757 sigaddset (&sigfd_set, w->signum);
2758 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2759
2760 signalfd (sigfd, &sigfd_set, 0);
2761 }
2762#endif
2125 2763
2126 ev_start (EV_A_ (W)w, 1); 2764 ev_start (EV_A_ (W)w, 1);
2127 wlist_add (&signals [w->signum - 1].head, (WL)w); 2765 wlist_add (&signals [w->signum - 1].head, (WL)w);
2128 2766
2129 if (!((WL)w)->next) 2767 if (!((WL)w)->next)
2768# if EV_USE_SIGNALFD
2769 if (sigfd < 0) /*TODO*/
2770# endif
2130 { 2771 {
2131#if _WIN32 2772# ifdef _WIN32
2773 evpipe_init (EV_A);
2774
2132 signal (w->signum, ev_sighandler); 2775 signal (w->signum, ev_sighandler);
2133#else 2776# else
2134 struct sigaction sa; 2777 struct sigaction sa;
2778
2779 evpipe_init (EV_A);
2780
2135 sa.sa_handler = ev_sighandler; 2781 sa.sa_handler = ev_sighandler;
2136 sigfillset (&sa.sa_mask); 2782 sigfillset (&sa.sa_mask);
2137 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2138 sigaction (w->signum, &sa, 0); 2784 sigaction (w->signum, &sa, 0);
2785
2786 sigemptyset (&sa.sa_mask);
2787 sigaddset (&sa.sa_mask, w->signum);
2788 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2139#endif 2789#endif
2140 } 2790 }
2791
2792 EV_FREQUENT_CHECK;
2141} 2793}
2142 2794
2143void noinline 2795void noinline
2144ev_signal_stop (EV_P_ ev_signal *w) 2796ev_signal_stop (EV_P_ ev_signal *w)
2145{ 2797{
2146 clear_pending (EV_A_ (W)w); 2798 clear_pending (EV_A_ (W)w);
2147 if (expect_false (!ev_is_active (w))) 2799 if (expect_false (!ev_is_active (w)))
2148 return; 2800 return;
2149 2801
2802 EV_FREQUENT_CHECK;
2803
2150 wlist_del (&signals [w->signum - 1].head, (WL)w); 2804 wlist_del (&signals [w->signum - 1].head, (WL)w);
2151 ev_stop (EV_A_ (W)w); 2805 ev_stop (EV_A_ (W)w);
2152 2806
2153 if (!signals [w->signum - 1].head) 2807 if (!signals [w->signum - 1].head)
2808 {
2809#if EV_MULTIPLICITY
2810 signals [w->signum - 1].loop = 0; /* unattach from signal */
2811#endif
2812#if EV_USE_SIGNALFD
2813 if (sigfd >= 0)
2814 {
2815 sigset_t ss;
2816
2817 sigemptyset (&ss);
2818 sigaddset (&ss, w->signum);
2819 sigdelset (&sigfd_set, w->signum);
2820
2821 signalfd (sigfd, &sigfd_set, 0);
2822 sigprocmask (SIG_UNBLOCK, &ss, 0);
2823 }
2824 else
2825#endif
2154 signal (w->signum, SIG_DFL); 2826 signal (w->signum, SIG_DFL);
2827 }
2828
2829 EV_FREQUENT_CHECK;
2155} 2830}
2156 2831
2157void 2832void
2158ev_child_start (EV_P_ ev_child *w) 2833ev_child_start (EV_P_ ev_child *w)
2159{ 2834{
2160#if EV_MULTIPLICITY 2835#if EV_MULTIPLICITY
2161 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2836 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2162#endif 2837#endif
2163 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
2164 return; 2839 return;
2165 2840
2841 EV_FREQUENT_CHECK;
2842
2166 ev_start (EV_A_ (W)w, 1); 2843 ev_start (EV_A_ (W)w, 1);
2167 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2844 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2845
2846 EV_FREQUENT_CHECK;
2168} 2847}
2169 2848
2170void 2849void
2171ev_child_stop (EV_P_ ev_child *w) 2850ev_child_stop (EV_P_ ev_child *w)
2172{ 2851{
2173 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2174 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2175 return; 2854 return;
2176 2855
2856 EV_FREQUENT_CHECK;
2857
2177 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2858 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2178 ev_stop (EV_A_ (W)w); 2859 ev_stop (EV_A_ (W)w);
2860
2861 EV_FREQUENT_CHECK;
2179} 2862}
2180 2863
2181#if EV_STAT_ENABLE 2864#if EV_STAT_ENABLE
2182 2865
2183# ifdef _WIN32 2866# ifdef _WIN32
2184# undef lstat 2867# undef lstat
2185# define lstat(a,b) _stati64 (a,b) 2868# define lstat(a,b) _stati64 (a,b)
2186# endif 2869# endif
2187 2870
2188#define DEF_STAT_INTERVAL 5.0074891 2871#define DEF_STAT_INTERVAL 5.0074891
2872#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2189#define MIN_STAT_INTERVAL 0.1074891 2873#define MIN_STAT_INTERVAL 0.1074891
2190 2874
2191static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2875static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2192 2876
2193#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2194# define EV_INOTIFY_BUFSIZE 8192 2878
2879/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2880# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2195 2881
2196static void noinline 2882static void noinline
2197infy_add (EV_P_ ev_stat *w) 2883infy_add (EV_P_ ev_stat *w)
2198{ 2884{
2199 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2885 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2200 2886
2201 if (w->wd < 0) 2887 if (w->wd >= 0)
2888 {
2889 struct statfs sfs;
2890
2891 /* now local changes will be tracked by inotify, but remote changes won't */
2892 /* unless the filesystem is known to be local, we therefore still poll */
2893 /* also do poll on <2.6.25, but with normal frequency */
2894
2895 if (!fs_2625)
2896 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2897 else if (!statfs (w->path, &sfs)
2898 && (sfs.f_type == 0x1373 /* devfs */
2899 || sfs.f_type == 0xEF53 /* ext2/3 */
2900 || sfs.f_type == 0x3153464a /* jfs */
2901 || sfs.f_type == 0x52654973 /* reiser3 */
2902 || sfs.f_type == 0x01021994 /* tempfs */
2903 || sfs.f_type == 0x58465342 /* xfs */))
2904 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2905 else
2906 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2202 { 2907 }
2203 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2908 else
2909 {
2910 /* can't use inotify, continue to stat */
2911 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2204 2912
2205 /* monitor some parent directory for speedup hints */ 2913 /* if path is not there, monitor some parent directory for speedup hints */
2206 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2914 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2207 /* but an efficiency issue only */ 2915 /* but an efficiency issue only */
2208 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2916 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2209 { 2917 {
2210 char path [4096]; 2918 char path [4096];
2211 strcpy (path, w->path); 2919 strcpy (path, w->path);
2215 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2923 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2216 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2924 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2217 2925
2218 char *pend = strrchr (path, '/'); 2926 char *pend = strrchr (path, '/');
2219 2927
2220 if (!pend) 2928 if (!pend || pend == path)
2221 break; /* whoops, no '/', complain to your admin */ 2929 break;
2222 2930
2223 *pend = 0; 2931 *pend = 0;
2224 w->wd = inotify_add_watch (fs_fd, path, mask); 2932 w->wd = inotify_add_watch (fs_fd, path, mask);
2225 } 2933 }
2226 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2934 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2227 } 2935 }
2228 } 2936 }
2229 else
2230 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2231 2937
2232 if (w->wd >= 0) 2938 if (w->wd >= 0)
2233 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2939 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2940
2941 /* now re-arm timer, if required */
2942 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2943 ev_timer_again (EV_A_ &w->timer);
2944 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2234} 2945}
2235 2946
2236static void noinline 2947static void noinline
2237infy_del (EV_P_ ev_stat *w) 2948infy_del (EV_P_ ev_stat *w)
2238{ 2949{
2252 2963
2253static void noinline 2964static void noinline
2254infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2965infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2255{ 2966{
2256 if (slot < 0) 2967 if (slot < 0)
2257 /* overflow, need to check for all hahs slots */ 2968 /* overflow, need to check for all hash slots */
2258 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2259 infy_wd (EV_A_ slot, wd, ev); 2970 infy_wd (EV_A_ slot, wd, ev);
2260 else 2971 else
2261 { 2972 {
2262 WL w_; 2973 WL w_;
2268 2979
2269 if (w->wd == wd || wd == -1) 2980 if (w->wd == wd || wd == -1)
2270 { 2981 {
2271 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2982 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2272 { 2983 {
2984 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2273 w->wd = -1; 2985 w->wd = -1;
2274 infy_add (EV_A_ w); /* re-add, no matter what */ 2986 infy_add (EV_A_ w); /* re-add, no matter what */
2275 } 2987 }
2276 2988
2277 stat_timer_cb (EV_A_ &w->timer, 0); 2989 stat_timer_cb (EV_A_ &w->timer, 0);
2282 2994
2283static void 2995static void
2284infy_cb (EV_P_ ev_io *w, int revents) 2996infy_cb (EV_P_ ev_io *w, int revents)
2285{ 2997{
2286 char buf [EV_INOTIFY_BUFSIZE]; 2998 char buf [EV_INOTIFY_BUFSIZE];
2287 struct inotify_event *ev = (struct inotify_event *)buf;
2288 int ofs; 2999 int ofs;
2289 int len = read (fs_fd, buf, sizeof (buf)); 3000 int len = read (fs_fd, buf, sizeof (buf));
2290 3001
2291 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3002 for (ofs = 0; ofs < len; )
3003 {
3004 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2292 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3005 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3006 ofs += sizeof (struct inotify_event) + ev->len;
3007 }
2293} 3008}
2294 3009
2295void inline_size 3010inline_size unsigned int
3011ev_linux_version (void)
3012{
3013 struct utsname buf;
3014 unsigned int v;
3015 int i;
3016 char *p = buf.release;
3017
3018 if (uname (&buf))
3019 return 0;
3020
3021 for (i = 3+1; --i; )
3022 {
3023 unsigned int c = 0;
3024
3025 for (;;)
3026 {
3027 if (*p >= '0' && *p <= '9')
3028 c = c * 10 + *p++ - '0';
3029 else
3030 {
3031 p += *p == '.';
3032 break;
3033 }
3034 }
3035
3036 v = (v << 8) | c;
3037 }
3038
3039 return v;
3040}
3041
3042inline_size void
3043ev_check_2625 (EV_P)
3044{
3045 /* kernels < 2.6.25 are borked
3046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3047 */
3048 if (ev_linux_version () < 0x020619)
3049 return;
3050
3051 fs_2625 = 1;
3052}
3053
3054inline_size int
3055infy_newfd (void)
3056{
3057#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3059 if (fd >= 0)
3060 return fd;
3061#endif
3062 return inotify_init ();
3063}
3064
3065inline_size void
2296infy_init (EV_P) 3066infy_init (EV_P)
2297{ 3067{
2298 if (fs_fd != -2) 3068 if (fs_fd != -2)
2299 return; 3069 return;
2300 3070
3071 fs_fd = -1;
3072
3073 ev_check_2625 (EV_A);
3074
2301 fs_fd = inotify_init (); 3075 fs_fd = infy_newfd ();
2302 3076
2303 if (fs_fd >= 0) 3077 if (fs_fd >= 0)
2304 { 3078 {
3079 fd_intern (fs_fd);
2305 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2306 ev_set_priority (&fs_w, EV_MAXPRI); 3081 ev_set_priority (&fs_w, EV_MAXPRI);
2307 ev_io_start (EV_A_ &fs_w); 3082 ev_io_start (EV_A_ &fs_w);
3083 ev_unref (EV_A);
2308 } 3084 }
2309} 3085}
2310 3086
2311void inline_size 3087inline_size void
2312infy_fork (EV_P) 3088infy_fork (EV_P)
2313{ 3089{
2314 int slot; 3090 int slot;
2315 3091
2316 if (fs_fd < 0) 3092 if (fs_fd < 0)
2317 return; 3093 return;
2318 3094
3095 ev_ref (EV_A);
3096 ev_io_stop (EV_A_ &fs_w);
2319 close (fs_fd); 3097 close (fs_fd);
2320 fs_fd = inotify_init (); 3098 fs_fd = infy_newfd ();
3099
3100 if (fs_fd >= 0)
3101 {
3102 fd_intern (fs_fd);
3103 ev_io_set (&fs_w, fs_fd, EV_READ);
3104 ev_io_start (EV_A_ &fs_w);
3105 ev_unref (EV_A);
3106 }
2321 3107
2322 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3108 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2323 { 3109 {
2324 WL w_ = fs_hash [slot].head; 3110 WL w_ = fs_hash [slot].head;
2325 fs_hash [slot].head = 0; 3111 fs_hash [slot].head = 0;
2332 w->wd = -1; 3118 w->wd = -1;
2333 3119
2334 if (fs_fd >= 0) 3120 if (fs_fd >= 0)
2335 infy_add (EV_A_ w); /* re-add, no matter what */ 3121 infy_add (EV_A_ w); /* re-add, no matter what */
2336 else 3122 else
3123 {
3124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2337 ev_timer_start (EV_A_ &w->timer); 3126 ev_timer_again (EV_A_ &w->timer);
3127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3128 }
2338 } 3129 }
2339
2340 } 3130 }
2341} 3131}
2342 3132
3133#endif
3134
3135#ifdef _WIN32
3136# define EV_LSTAT(p,b) _stati64 (p, b)
3137#else
3138# define EV_LSTAT(p,b) lstat (p, b)
2343#endif 3139#endif
2344 3140
2345void 3141void
2346ev_stat_stat (EV_P_ ev_stat *w) 3142ev_stat_stat (EV_P_ ev_stat *w)
2347{ 3143{
2354static void noinline 3150static void noinline
2355stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2356{ 3152{
2357 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2358 3154
2359 /* we copy this here each the time so that */ 3155 ev_statdata prev = w->attr;
2360 /* prev has the old value when the callback gets invoked */
2361 w->prev = w->attr;
2362 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2363 3157
2364 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2365 if ( 3159 if (
2366 w->prev.st_dev != w->attr.st_dev 3160 prev.st_dev != w->attr.st_dev
2367 || w->prev.st_ino != w->attr.st_ino 3161 || prev.st_ino != w->attr.st_ino
2368 || w->prev.st_mode != w->attr.st_mode 3162 || prev.st_mode != w->attr.st_mode
2369 || w->prev.st_nlink != w->attr.st_nlink 3163 || prev.st_nlink != w->attr.st_nlink
2370 || w->prev.st_uid != w->attr.st_uid 3164 || prev.st_uid != w->attr.st_uid
2371 || w->prev.st_gid != w->attr.st_gid 3165 || prev.st_gid != w->attr.st_gid
2372 || w->prev.st_rdev != w->attr.st_rdev 3166 || prev.st_rdev != w->attr.st_rdev
2373 || w->prev.st_size != w->attr.st_size 3167 || prev.st_size != w->attr.st_size
2374 || w->prev.st_atime != w->attr.st_atime 3168 || prev.st_atime != w->attr.st_atime
2375 || w->prev.st_mtime != w->attr.st_mtime 3169 || prev.st_mtime != w->attr.st_mtime
2376 || w->prev.st_ctime != w->attr.st_ctime 3170 || prev.st_ctime != w->attr.st_ctime
2377 ) { 3171 ) {
3172 /* we only update w->prev on actual differences */
3173 /* in case we test more often than invoke the callback, */
3174 /* to ensure that prev is always different to attr */
3175 w->prev = prev;
3176
2378 #if EV_USE_INOTIFY 3177 #if EV_USE_INOTIFY
3178 if (fs_fd >= 0)
3179 {
2379 infy_del (EV_A_ w); 3180 infy_del (EV_A_ w);
2380 infy_add (EV_A_ w); 3181 infy_add (EV_A_ w);
2381 ev_stat_stat (EV_A_ w); /* avoid race... */ 3182 ev_stat_stat (EV_A_ w); /* avoid race... */
3183 }
2382 #endif 3184 #endif
2383 3185
2384 ev_feed_event (EV_A_ w, EV_STAT); 3186 ev_feed_event (EV_A_ w, EV_STAT);
2385 } 3187 }
2386} 3188}
2389ev_stat_start (EV_P_ ev_stat *w) 3191ev_stat_start (EV_P_ ev_stat *w)
2390{ 3192{
2391 if (expect_false (ev_is_active (w))) 3193 if (expect_false (ev_is_active (w)))
2392 return; 3194 return;
2393 3195
2394 /* since we use memcmp, we need to clear any padding data etc. */
2395 memset (&w->prev, 0, sizeof (ev_statdata));
2396 memset (&w->attr, 0, sizeof (ev_statdata));
2397
2398 ev_stat_stat (EV_A_ w); 3196 ev_stat_stat (EV_A_ w);
2399 3197
3198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2400 if (w->interval < MIN_STAT_INTERVAL) 3199 w->interval = MIN_STAT_INTERVAL;
2401 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2402 3200
2403 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2404 ev_set_priority (&w->timer, ev_priority (w)); 3202 ev_set_priority (&w->timer, ev_priority (w));
2405 3203
2406#if EV_USE_INOTIFY 3204#if EV_USE_INOTIFY
2407 infy_init (EV_A); 3205 infy_init (EV_A);
2408 3206
2409 if (fs_fd >= 0) 3207 if (fs_fd >= 0)
2410 infy_add (EV_A_ w); 3208 infy_add (EV_A_ w);
2411 else 3209 else
2412#endif 3210#endif
3211 {
2413 ev_timer_start (EV_A_ &w->timer); 3212 ev_timer_again (EV_A_ &w->timer);
3213 ev_unref (EV_A);
3214 }
2414 3215
2415 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
3217
3218 EV_FREQUENT_CHECK;
2416} 3219}
2417 3220
2418void 3221void
2419ev_stat_stop (EV_P_ ev_stat *w) 3222ev_stat_stop (EV_P_ ev_stat *w)
2420{ 3223{
2421 clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
2423 return; 3226 return;
2424 3227
3228 EV_FREQUENT_CHECK;
3229
2425#if EV_USE_INOTIFY 3230#if EV_USE_INOTIFY
2426 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2427#endif 3232#endif
3233
3234 if (ev_is_active (&w->timer))
3235 {
3236 ev_ref (EV_A);
2428 ev_timer_stop (EV_A_ &w->timer); 3237 ev_timer_stop (EV_A_ &w->timer);
3238 }
2429 3239
2430 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
3241
3242 EV_FREQUENT_CHECK;
2431} 3243}
2432#endif 3244#endif
2433 3245
2434#if EV_IDLE_ENABLE 3246#if EV_IDLE_ENABLE
2435void 3247void
2437{ 3249{
2438 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
2439 return; 3251 return;
2440 3252
2441 pri_adjust (EV_A_ (W)w); 3253 pri_adjust (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
2442 3256
2443 { 3257 {
2444 int active = ++idlecnt [ABSPRI (w)]; 3258 int active = ++idlecnt [ABSPRI (w)];
2445 3259
2446 ++idleall; 3260 ++idleall;
2447 ev_start (EV_A_ (W)w, active); 3261 ev_start (EV_A_ (W)w, active);
2448 3262
2449 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3263 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2450 idles [ABSPRI (w)][active - 1] = w; 3264 idles [ABSPRI (w)][active - 1] = w;
2451 } 3265 }
3266
3267 EV_FREQUENT_CHECK;
2452} 3268}
2453 3269
2454void 3270void
2455ev_idle_stop (EV_P_ ev_idle *w) 3271ev_idle_stop (EV_P_ ev_idle *w)
2456{ 3272{
2457 clear_pending (EV_A_ (W)w); 3273 clear_pending (EV_A_ (W)w);
2458 if (expect_false (!ev_is_active (w))) 3274 if (expect_false (!ev_is_active (w)))
2459 return; 3275 return;
2460 3276
3277 EV_FREQUENT_CHECK;
3278
2461 { 3279 {
2462 int active = ev_active (w); 3280 int active = ev_active (w);
2463 3281
2464 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3282 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2465 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3283 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2466 3284
2467 ev_stop (EV_A_ (W)w); 3285 ev_stop (EV_A_ (W)w);
2468 --idleall; 3286 --idleall;
2469 } 3287 }
3288
3289 EV_FREQUENT_CHECK;
2470} 3290}
2471#endif 3291#endif
2472 3292
2473void 3293void
2474ev_prepare_start (EV_P_ ev_prepare *w) 3294ev_prepare_start (EV_P_ ev_prepare *w)
2475{ 3295{
2476 if (expect_false (ev_is_active (w))) 3296 if (expect_false (ev_is_active (w)))
2477 return; 3297 return;
3298
3299 EV_FREQUENT_CHECK;
2478 3300
2479 ev_start (EV_A_ (W)w, ++preparecnt); 3301 ev_start (EV_A_ (W)w, ++preparecnt);
2480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3302 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2481 prepares [preparecnt - 1] = w; 3303 prepares [preparecnt - 1] = w;
3304
3305 EV_FREQUENT_CHECK;
2482} 3306}
2483 3307
2484void 3308void
2485ev_prepare_stop (EV_P_ ev_prepare *w) 3309ev_prepare_stop (EV_P_ ev_prepare *w)
2486{ 3310{
2487 clear_pending (EV_A_ (W)w); 3311 clear_pending (EV_A_ (W)w);
2488 if (expect_false (!ev_is_active (w))) 3312 if (expect_false (!ev_is_active (w)))
2489 return; 3313 return;
2490 3314
3315 EV_FREQUENT_CHECK;
3316
2491 { 3317 {
2492 int active = ev_active (w); 3318 int active = ev_active (w);
2493 3319
2494 prepares [active - 1] = prepares [--preparecnt]; 3320 prepares [active - 1] = prepares [--preparecnt];
2495 ev_active (prepares [active - 1]) = active; 3321 ev_active (prepares [active - 1]) = active;
2496 } 3322 }
2497 3323
2498 ev_stop (EV_A_ (W)w); 3324 ev_stop (EV_A_ (W)w);
3325
3326 EV_FREQUENT_CHECK;
2499} 3327}
2500 3328
2501void 3329void
2502ev_check_start (EV_P_ ev_check *w) 3330ev_check_start (EV_P_ ev_check *w)
2503{ 3331{
2504 if (expect_false (ev_is_active (w))) 3332 if (expect_false (ev_is_active (w)))
2505 return; 3333 return;
3334
3335 EV_FREQUENT_CHECK;
2506 3336
2507 ev_start (EV_A_ (W)w, ++checkcnt); 3337 ev_start (EV_A_ (W)w, ++checkcnt);
2508 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3338 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2509 checks [checkcnt - 1] = w; 3339 checks [checkcnt - 1] = w;
3340
3341 EV_FREQUENT_CHECK;
2510} 3342}
2511 3343
2512void 3344void
2513ev_check_stop (EV_P_ ev_check *w) 3345ev_check_stop (EV_P_ ev_check *w)
2514{ 3346{
2515 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2516 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2517 return; 3349 return;
2518 3350
3351 EV_FREQUENT_CHECK;
3352
2519 { 3353 {
2520 int active = ev_active (w); 3354 int active = ev_active (w);
2521 3355
2522 checks [active - 1] = checks [--checkcnt]; 3356 checks [active - 1] = checks [--checkcnt];
2523 ev_active (checks [active - 1]) = active; 3357 ev_active (checks [active - 1]) = active;
2524 } 3358 }
2525 3359
2526 ev_stop (EV_A_ (W)w); 3360 ev_stop (EV_A_ (W)w);
3361
3362 EV_FREQUENT_CHECK;
2527} 3363}
2528 3364
2529#if EV_EMBED_ENABLE 3365#if EV_EMBED_ENABLE
2530void noinline 3366void noinline
2531ev_embed_sweep (EV_P_ ev_embed *w) 3367ev_embed_sweep (EV_P_ ev_embed *w)
2548embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3384embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2549{ 3385{
2550 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3386 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2551 3387
2552 { 3388 {
2553 struct ev_loop *loop = w->other; 3389 EV_P = w->other;
2554 3390
2555 while (fdchangecnt) 3391 while (fdchangecnt)
2556 { 3392 {
2557 fd_reify (EV_A); 3393 fd_reify (EV_A);
2558 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3394 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2559 } 3395 }
2560 } 3396 }
2561} 3397}
2562 3398
3399static void
3400embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3401{
3402 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3403
3404 ev_embed_stop (EV_A_ w);
3405
3406 {
3407 EV_P = w->other;
3408
3409 ev_loop_fork (EV_A);
3410 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3411 }
3412
3413 ev_embed_start (EV_A_ w);
3414}
3415
2563#if 0 3416#if 0
2564static void 3417static void
2565embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3418embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2566{ 3419{
2567 ev_idle_stop (EV_A_ idle); 3420 ev_idle_stop (EV_A_ idle);
2573{ 3426{
2574 if (expect_false (ev_is_active (w))) 3427 if (expect_false (ev_is_active (w)))
2575 return; 3428 return;
2576 3429
2577 { 3430 {
2578 struct ev_loop *loop = w->other; 3431 EV_P = w->other;
2579 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3432 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2580 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3433 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2581 } 3434 }
3435
3436 EV_FREQUENT_CHECK;
2582 3437
2583 ev_set_priority (&w->io, ev_priority (w)); 3438 ev_set_priority (&w->io, ev_priority (w));
2584 ev_io_start (EV_A_ &w->io); 3439 ev_io_start (EV_A_ &w->io);
2585 3440
2586 ev_prepare_init (&w->prepare, embed_prepare_cb); 3441 ev_prepare_init (&w->prepare, embed_prepare_cb);
2587 ev_set_priority (&w->prepare, EV_MINPRI); 3442 ev_set_priority (&w->prepare, EV_MINPRI);
2588 ev_prepare_start (EV_A_ &w->prepare); 3443 ev_prepare_start (EV_A_ &w->prepare);
2589 3444
3445 ev_fork_init (&w->fork, embed_fork_cb);
3446 ev_fork_start (EV_A_ &w->fork);
3447
2590 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3448 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2591 3449
2592 ev_start (EV_A_ (W)w, 1); 3450 ev_start (EV_A_ (W)w, 1);
3451
3452 EV_FREQUENT_CHECK;
2593} 3453}
2594 3454
2595void 3455void
2596ev_embed_stop (EV_P_ ev_embed *w) 3456ev_embed_stop (EV_P_ ev_embed *w)
2597{ 3457{
2598 clear_pending (EV_A_ (W)w); 3458 clear_pending (EV_A_ (W)w);
2599 if (expect_false (!ev_is_active (w))) 3459 if (expect_false (!ev_is_active (w)))
2600 return; 3460 return;
2601 3461
3462 EV_FREQUENT_CHECK;
3463
2602 ev_io_stop (EV_A_ &w->io); 3464 ev_io_stop (EV_A_ &w->io);
2603 ev_prepare_stop (EV_A_ &w->prepare); 3465 ev_prepare_stop (EV_A_ &w->prepare);
3466 ev_fork_stop (EV_A_ &w->fork);
2604 3467
2605 ev_stop (EV_A_ (W)w); 3468 ev_stop (EV_A_ (W)w);
3469
3470 EV_FREQUENT_CHECK;
2606} 3471}
2607#endif 3472#endif
2608 3473
2609#if EV_FORK_ENABLE 3474#if EV_FORK_ENABLE
2610void 3475void
2611ev_fork_start (EV_P_ ev_fork *w) 3476ev_fork_start (EV_P_ ev_fork *w)
2612{ 3477{
2613 if (expect_false (ev_is_active (w))) 3478 if (expect_false (ev_is_active (w)))
2614 return; 3479 return;
3480
3481 EV_FREQUENT_CHECK;
2615 3482
2616 ev_start (EV_A_ (W)w, ++forkcnt); 3483 ev_start (EV_A_ (W)w, ++forkcnt);
2617 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3484 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2618 forks [forkcnt - 1] = w; 3485 forks [forkcnt - 1] = w;
3486
3487 EV_FREQUENT_CHECK;
2619} 3488}
2620 3489
2621void 3490void
2622ev_fork_stop (EV_P_ ev_fork *w) 3491ev_fork_stop (EV_P_ ev_fork *w)
2623{ 3492{
2624 clear_pending (EV_A_ (W)w); 3493 clear_pending (EV_A_ (W)w);
2625 if (expect_false (!ev_is_active (w))) 3494 if (expect_false (!ev_is_active (w)))
2626 return; 3495 return;
2627 3496
3497 EV_FREQUENT_CHECK;
3498
2628 { 3499 {
2629 int active = ev_active (w); 3500 int active = ev_active (w);
2630 3501
2631 forks [active - 1] = forks [--forkcnt]; 3502 forks [active - 1] = forks [--forkcnt];
2632 ev_active (forks [active - 1]) = active; 3503 ev_active (forks [active - 1]) = active;
2633 } 3504 }
2634 3505
2635 ev_stop (EV_A_ (W)w); 3506 ev_stop (EV_A_ (W)w);
3507
3508 EV_FREQUENT_CHECK;
2636} 3509}
2637#endif 3510#endif
2638 3511
2639#if EV_ASYNC_ENABLE 3512#if EV_ASYNC_ENABLE
2640void 3513void
2642{ 3515{
2643 if (expect_false (ev_is_active (w))) 3516 if (expect_false (ev_is_active (w)))
2644 return; 3517 return;
2645 3518
2646 evpipe_init (EV_A); 3519 evpipe_init (EV_A);
3520
3521 EV_FREQUENT_CHECK;
2647 3522
2648 ev_start (EV_A_ (W)w, ++asynccnt); 3523 ev_start (EV_A_ (W)w, ++asynccnt);
2649 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2650 asyncs [asynccnt - 1] = w; 3525 asyncs [asynccnt - 1] = w;
3526
3527 EV_FREQUENT_CHECK;
2651} 3528}
2652 3529
2653void 3530void
2654ev_async_stop (EV_P_ ev_async *w) 3531ev_async_stop (EV_P_ ev_async *w)
2655{ 3532{
2656 clear_pending (EV_A_ (W)w); 3533 clear_pending (EV_A_ (W)w);
2657 if (expect_false (!ev_is_active (w))) 3534 if (expect_false (!ev_is_active (w)))
2658 return; 3535 return;
2659 3536
3537 EV_FREQUENT_CHECK;
3538
2660 { 3539 {
2661 int active = ev_active (w); 3540 int active = ev_active (w);
2662 3541
2663 asyncs [active - 1] = asyncs [--asynccnt]; 3542 asyncs [active - 1] = asyncs [--asynccnt];
2664 ev_active (asyncs [active - 1]) = active; 3543 ev_active (asyncs [active - 1]) = active;
2665 } 3544 }
2666 3545
2667 ev_stop (EV_A_ (W)w); 3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
2668} 3549}
2669 3550
2670void 3551void
2671ev_async_send (EV_P_ ev_async *w) 3552ev_async_send (EV_P_ ev_async *w)
2672{ 3553{
2673 w->sent = 1; 3554 w->sent = 1;
2674 evpipe_write (EV_A_ &gotasync); 3555 evpipe_write (EV_A_ &async_pending);
2675} 3556}
2676#endif 3557#endif
2677 3558
2678/*****************************************************************************/ 3559/*****************************************************************************/
2679 3560
2689once_cb (EV_P_ struct ev_once *once, int revents) 3570once_cb (EV_P_ struct ev_once *once, int revents)
2690{ 3571{
2691 void (*cb)(int revents, void *arg) = once->cb; 3572 void (*cb)(int revents, void *arg) = once->cb;
2692 void *arg = once->arg; 3573 void *arg = once->arg;
2693 3574
2694 ev_io_stop (EV_A_ &once->io); 3575 ev_io_stop (EV_A_ &once->io);
2695 ev_timer_stop (EV_A_ &once->to); 3576 ev_timer_stop (EV_A_ &once->to);
2696 ev_free (once); 3577 ev_free (once);
2697 3578
2698 cb (revents, arg); 3579 cb (revents, arg);
2699} 3580}
2700 3581
2701static void 3582static void
2702once_cb_io (EV_P_ ev_io *w, int revents) 3583once_cb_io (EV_P_ ev_io *w, int revents)
2703{ 3584{
2704 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3585 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3586
3587 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2705} 3588}
2706 3589
2707static void 3590static void
2708once_cb_to (EV_P_ ev_timer *w, int revents) 3591once_cb_to (EV_P_ ev_timer *w, int revents)
2709{ 3592{
2710 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3593 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3594
3595 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2711} 3596}
2712 3597
2713void 3598void
2714ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3599ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2715{ 3600{
2737 ev_timer_set (&once->to, timeout, 0.); 3622 ev_timer_set (&once->to, timeout, 0.);
2738 ev_timer_start (EV_A_ &once->to); 3623 ev_timer_start (EV_A_ &once->to);
2739 } 3624 }
2740} 3625}
2741 3626
3627/*****************************************************************************/
3628
3629#if EV_WALK_ENABLE
3630void
3631ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3632{
3633 int i, j;
3634 ev_watcher_list *wl, *wn;
3635
3636 if (types & (EV_IO | EV_EMBED))
3637 for (i = 0; i < anfdmax; ++i)
3638 for (wl = anfds [i].head; wl; )
3639 {
3640 wn = wl->next;
3641
3642#if EV_EMBED_ENABLE
3643 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3644 {
3645 if (types & EV_EMBED)
3646 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3647 }
3648 else
3649#endif
3650#if EV_USE_INOTIFY
3651 if (ev_cb ((ev_io *)wl) == infy_cb)
3652 ;
3653 else
3654#endif
3655 if ((ev_io *)wl != &pipe_w)
3656 if (types & EV_IO)
3657 cb (EV_A_ EV_IO, wl);
3658
3659 wl = wn;
3660 }
3661
3662 if (types & (EV_TIMER | EV_STAT))
3663 for (i = timercnt + HEAP0; i-- > HEAP0; )
3664#if EV_STAT_ENABLE
3665 /*TODO: timer is not always active*/
3666 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3667 {
3668 if (types & EV_STAT)
3669 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3670 }
3671 else
3672#endif
3673 if (types & EV_TIMER)
3674 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3675
3676#if EV_PERIODIC_ENABLE
3677 if (types & EV_PERIODIC)
3678 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3679 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3680#endif
3681
3682#if EV_IDLE_ENABLE
3683 if (types & EV_IDLE)
3684 for (j = NUMPRI; i--; )
3685 for (i = idlecnt [j]; i--; )
3686 cb (EV_A_ EV_IDLE, idles [j][i]);
3687#endif
3688
3689#if EV_FORK_ENABLE
3690 if (types & EV_FORK)
3691 for (i = forkcnt; i--; )
3692 if (ev_cb (forks [i]) != embed_fork_cb)
3693 cb (EV_A_ EV_FORK, forks [i]);
3694#endif
3695
3696#if EV_ASYNC_ENABLE
3697 if (types & EV_ASYNC)
3698 for (i = asynccnt; i--; )
3699 cb (EV_A_ EV_ASYNC, asyncs [i]);
3700#endif
3701
3702 if (types & EV_PREPARE)
3703 for (i = preparecnt; i--; )
3704#if EV_EMBED_ENABLE
3705 if (ev_cb (prepares [i]) != embed_prepare_cb)
3706#endif
3707 cb (EV_A_ EV_PREPARE, prepares [i]);
3708
3709 if (types & EV_CHECK)
3710 for (i = checkcnt; i--; )
3711 cb (EV_A_ EV_CHECK, checks [i]);
3712
3713 if (types & EV_SIGNAL)
3714 for (i = 0; i < EV_NSIG - 1; ++i)
3715 for (wl = signals [i].head; wl; )
3716 {
3717 wn = wl->next;
3718 cb (EV_A_ EV_SIGNAL, wl);
3719 wl = wn;
3720 }
3721
3722 if (types & EV_CHILD)
3723 for (i = EV_PID_HASHSIZE; i--; )
3724 for (wl = childs [i]; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_CHILD, wl);
3728 wl = wn;
3729 }
3730/* EV_STAT 0x00001000 /* stat data changed */
3731/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3732}
3733#endif
3734
2742#if EV_MULTIPLICITY 3735#if EV_MULTIPLICITY
2743 #include "ev_wrap.h" 3736 #include "ev_wrap.h"
2744#endif 3737#endif
2745 3738
2746#ifdef __cplusplus 3739#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines