ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.330 by root, Tue Mar 9 08:46:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
164#endif 189#endif
165 190
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 191/* this block tries to deduce configuration from header-defined symbols and defaults */
167 192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
227
168#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
230# define EV_USE_MONOTONIC 1
231# else
169# define EV_USE_MONOTONIC 0 232# define EV_USE_MONOTONIC 0
233# endif
170#endif 234#endif
171 235
172#ifndef EV_USE_REALTIME 236#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 238#endif
175 239
176#ifndef EV_USE_NANOSLEEP 240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
177# define EV_USE_NANOSLEEP 0 244# define EV_USE_NANOSLEEP 0
245# endif
178#endif 246#endif
179 247
180#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
182#endif 250#endif
235# else 303# else
236# define EV_USE_EVENTFD 0 304# define EV_USE_EVENTFD 0
237# endif 305# endif
238#endif 306#endif
239 307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
240#ifndef EV_USE_4HEAP 326#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 327# define EV_USE_4HEAP !EV_MINIMAL
242#endif 328#endif
243 329
244#ifndef EV_HEAP_CACHE_AT 330#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 331# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif 332#endif
247 333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
249 355
250#ifndef CLOCK_MONOTONIC 356#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 357# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 358# define EV_USE_MONOTONIC 0
253#endif 359#endif
267# include <sys/select.h> 373# include <sys/select.h>
268# endif 374# endif
269#endif 375#endif
270 376
271#if EV_USE_INOTIFY 377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
272# include <sys/inotify.h> 380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
273#endif 386#endif
274 387
275#if EV_SELECT_IS_WINSOCKET 388#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 389# include <winsock.h>
277#endif 390#endif
278 391
279#if EV_USE_EVENTFD 392#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
282# ifdef __cplusplus 405# ifdef __cplusplus
283extern "C" { 406extern "C" {
284# endif 407# endif
285int eventfd (unsigned int initval, int flags); 408int (eventfd) (unsigned int initval, int flags);
286# ifdef __cplusplus 409# ifdef __cplusplus
287} 410}
288# endif 411# endif
289#endif 412#endif
290 413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
291/**/ 443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
292 450
293/* 451/*
294 * This is used to avoid floating point rounding problems. 452 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 453 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 454 * to ensure progress, time-wise, even when rounding
300 */ 458 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 460
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 463
307#if __GNUC__ >= 4 464#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 465# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 466# define noinline __attribute__ ((noinline))
310#else 467#else
323# define inline_speed static noinline 480# define inline_speed static noinline
324#else 481#else
325# define inline_speed static inline 482# define inline_speed static inline
326#endif 483#endif
327 484
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
330 492
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 493#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 494#define EMPTY2(a,b) /* used to suppress some warnings */
333 495
334typedef ev_watcher *W; 496typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
337 499
338#define ev_active(w) ((W)(w))->active 500#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 501#define ev_at(w) ((WT)(w))->at
340 502
341#if EV_USE_MONOTONIC 503#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
508
509#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 521#endif
346 522
347#ifdef _WIN32 523#ifdef _WIN32
348# include "ev_win32.c" 524# include "ev_win32.c"
349#endif 525#endif
357{ 533{
358 syserr_cb = cb; 534 syserr_cb = cb;
359} 535}
360 536
361static void noinline 537static void noinline
362syserr (const char *msg) 538ev_syserr (const char *msg)
363{ 539{
364 if (!msg) 540 if (!msg)
365 msg = "(libev) system error"; 541 msg = "(libev) system error";
366 542
367 if (syserr_cb) 543 if (syserr_cb)
368 syserr_cb (msg); 544 syserr_cb (msg);
369 else 545 else
370 { 546 {
547#if EV_AVOID_STDIO
548 write (STDERR_FILENO, msg, strlen (msg));
549 write (STDERR_FILENO, ": ", 2);
550 msg = strerror (errno);
551 write (STDERR_FILENO, msg, strlen (msg));
552 write (STDERR_FILENO, "\n", 1);
553#else
371 perror (msg); 554 perror (msg);
555#endif
372 abort (); 556 abort ();
373 } 557 }
374} 558}
375 559
376static void * 560static void *
401{ 585{
402 ptr = alloc (ptr, size); 586 ptr = alloc (ptr, size);
403 587
404 if (!ptr && size) 588 if (!ptr && size)
405 { 589 {
590#if EV_AVOID_STDIO
591 write (STDERR_FILENO, "libev: memory allocation failed, aborting.",
592 sizeof ("libev: memory allocation failed, aborting.") - 1);
593#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 594 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
595#endif
407 abort (); 596 abort ();
408 } 597 }
409 598
410 return ptr; 599 return ptr;
411} 600}
413#define ev_malloc(size) ev_realloc (0, (size)) 602#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 603#define ev_free(ptr) ev_realloc ((ptr), 0)
415 604
416/*****************************************************************************/ 605/*****************************************************************************/
417 606
607/* set in reify when reification needed */
608#define EV_ANFD_REIFY 1
609
610/* file descriptor info structure */
418typedef struct 611typedef struct
419{ 612{
420 WL head; 613 WL head;
421 unsigned char events; 614 unsigned char events; /* the events watched for */
615 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
616 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 617 unsigned char unused;
618#if EV_USE_EPOLL
619 unsigned int egen; /* generation counter to counter epoll bugs */
620#endif
423#if EV_SELECT_IS_WINSOCKET 621#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 622 SOCKET handle;
425#endif 623#endif
426} ANFD; 624} ANFD;
427 625
626/* stores the pending event set for a given watcher */
428typedef struct 627typedef struct
429{ 628{
430 W w; 629 W w;
431 int events; 630 int events; /* the pending event set for the given watcher */
432} ANPENDING; 631} ANPENDING;
433 632
434#if EV_USE_INOTIFY 633#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 634/* hash table entry per inotify-id */
436typedef struct 635typedef struct
439} ANFS; 638} ANFS;
440#endif 639#endif
441 640
442/* Heap Entry */ 641/* Heap Entry */
443#if EV_HEAP_CACHE_AT 642#if EV_HEAP_CACHE_AT
643 /* a heap element */
444 typedef struct { 644 typedef struct {
445 ev_tstamp at; 645 ev_tstamp at;
446 WT w; 646 WT w;
447 } ANHE; 647 } ANHE;
448 648
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 649 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 650 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 651 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 652#else
653 /* a heap element */
453 typedef WT ANHE; 654 typedef WT ANHE;
454 655
455 #define ANHE_w(he) (he) 656 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 657 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 658 #define ANHE_at_cache(he)
458#endif 659#endif
459 660
460#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
461 662
462 struct ev_loop 663 struct ev_loop
481 682
482 static int ev_default_loop_ptr; 683 static int ev_default_loop_ptr;
483 684
484#endif 685#endif
485 686
687#if EV_MINIMAL < 2
688# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
689# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
690# define EV_INVOKE_PENDING invoke_cb (EV_A)
691#else
692# define EV_RELEASE_CB (void)0
693# define EV_ACQUIRE_CB (void)0
694# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
695#endif
696
697#define EVUNLOOP_RECURSE 0x80
698
486/*****************************************************************************/ 699/*****************************************************************************/
487 700
701#ifndef EV_HAVE_EV_TIME
488ev_tstamp 702ev_tstamp
489ev_time (void) 703ev_time (void)
490{ 704{
491#if EV_USE_REALTIME 705#if EV_USE_REALTIME
706 if (expect_true (have_realtime))
707 {
492 struct timespec ts; 708 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 709 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 710 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 711 }
712#endif
713
496 struct timeval tv; 714 struct timeval tv;
497 gettimeofday (&tv, 0); 715 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 716 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 717}
718#endif
501 719
502ev_tstamp inline_size 720inline_size ev_tstamp
503get_clock (void) 721get_clock (void)
504{ 722{
505#if EV_USE_MONOTONIC 723#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 724 if (expect_true (have_monotonic))
507 { 725 {
540 struct timeval tv; 758 struct timeval tv;
541 759
542 tv.tv_sec = (time_t)delay; 760 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 761 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 762
763 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
764 /* something not guaranteed by newer posix versions, but guaranteed */
765 /* by older ones */
545 select (0, 0, 0, 0, &tv); 766 select (0, 0, 0, 0, &tv);
546#endif 767#endif
547 } 768 }
548} 769}
549 770
550/*****************************************************************************/ 771/*****************************************************************************/
551 772
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 773#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 774
554int inline_size 775/* find a suitable new size for the given array, */
776/* hopefully by rounding to a ncie-to-malloc size */
777inline_size int
555array_nextsize (int elem, int cur, int cnt) 778array_nextsize (int elem, int cur, int cnt)
556{ 779{
557 int ncur = cur + 1; 780 int ncur = cur + 1;
558 781
559 do 782 do
576array_realloc (int elem, void *base, int *cur, int cnt) 799array_realloc (int elem, void *base, int *cur, int cnt)
577{ 800{
578 *cur = array_nextsize (elem, *cur, cnt); 801 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 802 return ev_realloc (base, elem * *cur);
580} 803}
804
805#define array_init_zero(base,count) \
806 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 807
582#define array_needsize(type,base,cur,cnt,init) \ 808#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 809 if (expect_false ((cnt) > (cur))) \
584 { \ 810 { \
585 int ocur_ = (cur); \ 811 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 823 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 824 }
599#endif 825#endif
600 826
601#define array_free(stem, idx) \ 827#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 828 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 829
604/*****************************************************************************/ 830/*****************************************************************************/
831
832/* dummy callback for pending events */
833static void noinline
834pendingcb (EV_P_ ev_prepare *w, int revents)
835{
836}
605 837
606void noinline 838void noinline
607ev_feed_event (EV_P_ void *w, int revents) 839ev_feed_event (EV_P_ void *w, int revents)
608{ 840{
609 W w_ = (W)w; 841 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 850 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 851 pendings [pri][w_->pending - 1].events = revents;
620 } 852 }
621} 853}
622 854
623void inline_speed 855inline_speed void
856feed_reverse (EV_P_ W w)
857{
858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
859 rfeeds [rfeedcnt++] = w;
860}
861
862inline_size void
863feed_reverse_done (EV_P_ int revents)
864{
865 do
866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
867 while (rfeedcnt);
868}
869
870inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 871queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 872{
626 int i; 873 int i;
627 874
628 for (i = 0; i < eventcnt; ++i) 875 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 876 ev_feed_event (EV_A_ events [i], type);
630} 877}
631 878
632/*****************************************************************************/ 879/*****************************************************************************/
633 880
634void inline_size 881inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 882fd_event_nc (EV_P_ int fd, int revents)
649{ 883{
650 ANFD *anfd = anfds + fd; 884 ANFD *anfd = anfds + fd;
651 ev_io *w; 885 ev_io *w;
652 886
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 891 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 892 ev_feed_event (EV_A_ (W)w, ev);
659 } 893 }
660} 894}
661 895
896/* do not submit kernel events for fds that have reify set */
897/* because that means they changed while we were polling for new events */
898inline_speed void
899fd_event (EV_P_ int fd, int revents)
900{
901 ANFD *anfd = anfds + fd;
902
903 if (expect_true (!anfd->reify))
904 fd_event_nc (EV_A_ fd, revents);
905}
906
662void 907void
663ev_feed_fd_event (EV_P_ int fd, int revents) 908ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 909{
665 if (fd >= 0 && fd < anfdmax) 910 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 911 fd_event_nc (EV_A_ fd, revents);
667} 912}
668 913
669void inline_size 914/* make sure the external fd watch events are in-sync */
915/* with the kernel/libev internal state */
916inline_size void
670fd_reify (EV_P) 917fd_reify (EV_P)
671{ 918{
672 int i; 919 int i;
673 920
674 for (i = 0; i < fdchangecnt; ++i) 921 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 930 events |= (unsigned char)w->events;
684 931
685#if EV_SELECT_IS_WINSOCKET 932#if EV_SELECT_IS_WINSOCKET
686 if (events) 933 if (events)
687 { 934 {
688 unsigned long argp; 935 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 936 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 937 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 938 }
696#endif 939#endif
697 940
698 { 941 {
699 unsigned char o_events = anfd->events; 942 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 943 unsigned char o_reify = anfd->reify;
701 944
702 anfd->reify = 0; 945 anfd->reify = 0;
703 anfd->events = events; 946 anfd->events = events;
704 947
705 if (o_events != events || o_reify & EV_IOFDSET) 948 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 949 backend_modify (EV_A_ fd, o_events, events);
707 } 950 }
708 } 951 }
709 952
710 fdchangecnt = 0; 953 fdchangecnt = 0;
711} 954}
712 955
713void inline_size 956/* something about the given fd changed */
957inline_size void
714fd_change (EV_P_ int fd, int flags) 958fd_change (EV_P_ int fd, int flags)
715{ 959{
716 unsigned char reify = anfds [fd].reify; 960 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 961 anfds [fd].reify |= flags;
718 962
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 966 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 967 fdchanges [fdchangecnt - 1] = fd;
724 } 968 }
725} 969}
726 970
727void inline_speed 971/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
972inline_speed void
728fd_kill (EV_P_ int fd) 973fd_kill (EV_P_ int fd)
729{ 974{
730 ev_io *w; 975 ev_io *w;
731 976
732 while ((w = (ev_io *)anfds [fd].head)) 977 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 979 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 980 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 981 }
737} 982}
738 983
739int inline_size 984/* check whether the given fd is atcually valid, for error recovery */
985inline_size int
740fd_valid (int fd) 986fd_valid (int fd)
741{ 987{
742#ifdef _WIN32 988#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 989 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 990#else
745 return fcntl (fd, F_GETFD) != -1; 991 return fcntl (fd, F_GETFD) != -1;
746#endif 992#endif
747} 993}
748 994
752{ 998{
753 int fd; 999 int fd;
754 1000
755 for (fd = 0; fd < anfdmax; ++fd) 1001 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1002 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1003 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1004 fd_kill (EV_A_ fd);
759} 1005}
760 1006
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1007/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1008static void noinline
766 1012
767 for (fd = anfdmax; fd--; ) 1013 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1014 if (anfds [fd].events)
769 { 1015 {
770 fd_kill (EV_A_ fd); 1016 fd_kill (EV_A_ fd);
771 return; 1017 break;
772 } 1018 }
773} 1019}
774 1020
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1021/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1022static void noinline
780 1026
781 for (fd = 0; fd < anfdmax; ++fd) 1027 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1028 if (anfds [fd].events)
783 { 1029 {
784 anfds [fd].events = 0; 1030 anfds [fd].events = 0;
1031 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1032 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1033 }
787} 1034}
788 1035
789/*****************************************************************************/ 1036/*****************************************************************************/
790 1037
803#if EV_USE_4HEAP 1050#if EV_USE_4HEAP
804 1051
805#define DHEAP 4 1052#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1053#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1054#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1055#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1056
831/* away from the root */ 1057/* away from the root */
832void inline_speed 1058inline_speed void
833downheap (ANHE *heap, int N, int k) 1059downheap (ANHE *heap, int N, int k)
834{ 1060{
835 ANHE he = heap [k]; 1061 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1062 ANHE *E = heap + N + HEAP0;
837 1063
838 for (;;) 1064 for (;;)
839 { 1065 {
840 ev_tstamp minat; 1066 ev_tstamp minat;
841 ANHE *minpos; 1067 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1068 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1069
844 // find minimum child 1070 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1071 if (expect_true (pos + DHEAP - 1 < E))
846 { 1072 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1073 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1074 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1075 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1096
871 heap [k] = he; 1097 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1098 ev_active (ANHE_w (he)) = k;
873} 1099}
874 1100
875#else // 4HEAP 1101#else /* 4HEAP */
876 1102
877#define HEAP0 1 1103#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1104#define HPARENT(k) ((k) >> 1)
1105#define UPHEAP_DONE(p,k) (!(p))
879 1106
880/* towards the root */ 1107/* away from the root */
881void inline_speed 1108inline_speed void
882upheap (ANHE *heap, int k) 1109downheap (ANHE *heap, int N, int k)
883{ 1110{
884 ANHE he = heap [k]; 1111 ANHE he = heap [k];
885 1112
886 for (;;) 1113 for (;;)
887 { 1114 {
888 int p = HPARENT (k); 1115 int c = k << 1;
889 1116
890 /* maybe we could use a dummy element at heap [0]? */ 1117 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1118 break;
893 1119
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1120 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1121 ? 1 : 0;
918 1122
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1123 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1124 break;
921 1125
928 heap [k] = he; 1132 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1133 ev_active (ANHE_w (he)) = k;
930} 1134}
931#endif 1135#endif
932 1136
933void inline_size 1137/* towards the root */
1138inline_speed void
1139upheap (ANHE *heap, int k)
1140{
1141 ANHE he = heap [k];
1142
1143 for (;;)
1144 {
1145 int p = HPARENT (k);
1146
1147 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1148 break;
1149
1150 heap [k] = heap [p];
1151 ev_active (ANHE_w (heap [k])) = k;
1152 k = p;
1153 }
1154
1155 heap [k] = he;
1156 ev_active (ANHE_w (he)) = k;
1157}
1158
1159/* move an element suitably so it is in a correct place */
1160inline_size void
934adjustheap (ANHE *heap, int N, int k) 1161adjustheap (ANHE *heap, int N, int k)
935{ 1162{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1163 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1164 upheap (heap, k);
938 else 1165 else
939 downheap (heap, N, k); 1166 downheap (heap, N, k);
940} 1167}
941 1168
1169/* rebuild the heap: this function is used only once and executed rarely */
1170inline_size void
1171reheap (ANHE *heap, int N)
1172{
1173 int i;
1174
1175 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1176 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1177 for (i = 0; i < N; ++i)
1178 upheap (heap, i + HEAP0);
1179}
1180
942/*****************************************************************************/ 1181/*****************************************************************************/
943 1182
1183/* associate signal watchers to a signal signal */
944typedef struct 1184typedef struct
945{ 1185{
1186 EV_ATOMIC_T pending;
1187#if EV_MULTIPLICITY
1188 EV_P;
1189#endif
946 WL head; 1190 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1191} ANSIG;
949 1192
950static ANSIG *signals; 1193static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1194
967/*****************************************************************************/ 1195/*****************************************************************************/
968 1196
969void inline_speed 1197/* used to prepare libev internal fd's */
1198/* this is not fork-safe */
1199inline_speed void
970fd_intern (int fd) 1200fd_intern (int fd)
971{ 1201{
972#ifdef _WIN32 1202#ifdef _WIN32
973 int arg = 1; 1203 unsigned long arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1204 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
975#else 1205#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC); 1206 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK); 1207 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif 1208#endif
979} 1209}
980 1210
981static void noinline 1211static void noinline
982evpipe_init (EV_P) 1212evpipe_init (EV_P)
983{ 1213{
984 if (!ev_is_active (&pipeev)) 1214 if (!ev_is_active (&pipe_w))
985 { 1215 {
986#if EV_USE_EVENTFD 1216#if EV_USE_EVENTFD
1217 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1218 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1219 evfd = eventfd (0, 0);
1220
1221 if (evfd >= 0)
988 { 1222 {
989 evpipe [0] = -1; 1223 evpipe [0] = -1;
990 fd_intern (evfd); 1224 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1225 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1226 }
993 else 1227 else
994#endif 1228#endif
995 { 1229 {
996 while (pipe (evpipe)) 1230 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1231 ev_syserr ("(libev) error creating signal/async pipe");
998 1232
999 fd_intern (evpipe [0]); 1233 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1234 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1235 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1236 }
1003 1237
1004 ev_io_start (EV_A_ &pipeev); 1238 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1239 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1240 }
1007} 1241}
1008 1242
1009void inline_size 1243inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1244evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1245{
1012 if (!*flag) 1246 if (!*flag)
1013 { 1247 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1248 int old_errno = errno; /* save errno because write might clobber it */
1027 1261
1028 errno = old_errno; 1262 errno = old_errno;
1029 } 1263 }
1030} 1264}
1031 1265
1266/* called whenever the libev signal pipe */
1267/* got some events (signal, async) */
1032static void 1268static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1269pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1270{
1271 int i;
1272
1035#if EV_USE_EVENTFD 1273#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1274 if (evfd >= 0)
1037 { 1275 {
1038 uint64_t counter; 1276 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1277 read (evfd, &counter, sizeof (uint64_t));
1043 { 1281 {
1044 char dummy; 1282 char dummy;
1045 read (evpipe [0], &dummy, 1); 1283 read (evpipe [0], &dummy, 1);
1046 } 1284 }
1047 1285
1048 if (gotsig && ev_is_default_loop (EV_A)) 1286 if (sig_pending)
1049 { 1287 {
1050 int signum; 1288 sig_pending = 0;
1051 gotsig = 0;
1052 1289
1053 for (signum = signalmax; signum--; ) 1290 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 1291 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 1292 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1293 }
1057 1294
1058#if EV_ASYNC_ENABLE 1295#if EV_ASYNC_ENABLE
1059 if (gotasync) 1296 if (async_pending)
1060 { 1297 {
1061 int i; 1298 async_pending = 0;
1062 gotasync = 0;
1063 1299
1064 for (i = asynccnt; i--; ) 1300 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1301 if (asyncs [i]->sent)
1066 { 1302 {
1067 asyncs [i]->sent = 0; 1303 asyncs [i]->sent = 0;
1075 1311
1076static void 1312static void
1077ev_sighandler (int signum) 1313ev_sighandler (int signum)
1078{ 1314{
1079#if EV_MULTIPLICITY 1315#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 1316 EV_P = signals [signum - 1].loop;
1081#endif 1317#endif
1082 1318
1083#if _WIN32 1319#ifdef _WIN32
1084 signal (signum, ev_sighandler); 1320 signal (signum, ev_sighandler);
1085#endif 1321#endif
1086 1322
1087 signals [signum - 1].gotsig = 1; 1323 signals [signum - 1].pending = 1;
1088 evpipe_write (EV_A_ &gotsig); 1324 evpipe_write (EV_A_ &sig_pending);
1089} 1325}
1090 1326
1091void noinline 1327void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1328ev_feed_signal_event (EV_P_ int signum)
1093{ 1329{
1094 WL w; 1330 WL w;
1095 1331
1332 if (expect_false (signum <= 0 || signum > EV_NSIG))
1333 return;
1334
1335 --signum;
1336
1096#if EV_MULTIPLICITY 1337#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1338 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1339 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1340
1100 --signum; 1341 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1342 return;
1343#endif
1104 1344
1105 signals [signum].gotsig = 0; 1345 signals [signum].pending = 0;
1106 1346
1107 for (w = signals [signum].head; w; w = w->next) 1347 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1348 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1349}
1110 1350
1351#if EV_USE_SIGNALFD
1352static void
1353sigfdcb (EV_P_ ev_io *iow, int revents)
1354{
1355 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1356
1357 for (;;)
1358 {
1359 ssize_t res = read (sigfd, si, sizeof (si));
1360
1361 /* not ISO-C, as res might be -1, but works with SuS */
1362 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1363 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1364
1365 if (res < (ssize_t)sizeof (si))
1366 break;
1367 }
1368}
1369#endif
1370
1111/*****************************************************************************/ 1371/*****************************************************************************/
1112 1372
1113static WL childs [EV_PID_HASHSIZE]; 1373static WL childs [EV_PID_HASHSIZE];
1114 1374
1115#ifndef _WIN32 1375#ifndef _WIN32
1118 1378
1119#ifndef WIFCONTINUED 1379#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1380# define WIFCONTINUED(status) 0
1121#endif 1381#endif
1122 1382
1123void inline_speed 1383/* handle a single child status event */
1384inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1385child_reap (EV_P_ int chain, int pid, int status)
1125{ 1386{
1126 ev_child *w; 1387 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1388 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1389
1141 1402
1142#ifndef WCONTINUED 1403#ifndef WCONTINUED
1143# define WCONTINUED 0 1404# define WCONTINUED 0
1144#endif 1405#endif
1145 1406
1407/* called on sigchld etc., calls waitpid */
1146static void 1408static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1409childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1410{
1149 int pid, status; 1411 int pid, status;
1150 1412
1231 /* kqueue is borked on everything but netbsd apparently */ 1493 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1494 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1495 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1496#endif
1235#ifdef __APPLE__ 1497#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1498 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1499 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1500 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1238#endif 1501#endif
1239 1502
1240 return flags; 1503 return flags;
1241} 1504}
1242 1505
1256ev_backend (EV_P) 1519ev_backend (EV_P)
1257{ 1520{
1258 return backend; 1521 return backend;
1259} 1522}
1260 1523
1524#if EV_MINIMAL < 2
1261unsigned int 1525unsigned int
1262ev_loop_count (EV_P) 1526ev_loop_count (EV_P)
1263{ 1527{
1264 return loop_count; 1528 return loop_count;
1265} 1529}
1266 1530
1531unsigned int
1532ev_loop_depth (EV_P)
1533{
1534 return loop_depth;
1535}
1536
1267void 1537void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1538ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1539{
1270 io_blocktime = interval; 1540 io_blocktime = interval;
1271} 1541}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1544ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1545{
1276 timeout_blocktime = interval; 1546 timeout_blocktime = interval;
1277} 1547}
1278 1548
1549void
1550ev_set_userdata (EV_P_ void *data)
1551{
1552 userdata = data;
1553}
1554
1555void *
1556ev_userdata (EV_P)
1557{
1558 return userdata;
1559}
1560
1561void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1562{
1563 invoke_cb = invoke_pending_cb;
1564}
1565
1566void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1567{
1568 release_cb = release;
1569 acquire_cb = acquire;
1570}
1571#endif
1572
1573/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1574static void noinline
1280loop_init (EV_P_ unsigned int flags) 1575loop_init (EV_P_ unsigned int flags)
1281{ 1576{
1282 if (!backend) 1577 if (!backend)
1283 { 1578 {
1579#if EV_USE_REALTIME
1580 if (!have_realtime)
1581 {
1582 struct timespec ts;
1583
1584 if (!clock_gettime (CLOCK_REALTIME, &ts))
1585 have_realtime = 1;
1586 }
1587#endif
1588
1284#if EV_USE_MONOTONIC 1589#if EV_USE_MONOTONIC
1590 if (!have_monotonic)
1285 { 1591 {
1286 struct timespec ts; 1592 struct timespec ts;
1593
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1594 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1595 have_monotonic = 1;
1289 } 1596 }
1290#endif 1597#endif
1598
1599 /* pid check not overridable via env */
1600#ifndef _WIN32
1601 if (flags & EVFLAG_FORKCHECK)
1602 curpid = getpid ();
1603#endif
1604
1605 if (!(flags & EVFLAG_NOENV)
1606 && !enable_secure ()
1607 && getenv ("LIBEV_FLAGS"))
1608 flags = atoi (getenv ("LIBEV_FLAGS"));
1291 1609
1292 ev_rt_now = ev_time (); 1610 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1611 mn_now = get_clock ();
1294 now_floor = mn_now; 1612 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1613 rtmn_diff = ev_rt_now - mn_now;
1614#if EV_MINIMAL < 2
1615 invoke_cb = ev_invoke_pending;
1616#endif
1296 1617
1297 io_blocktime = 0.; 1618 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1619 timeout_blocktime = 0.;
1299 backend = 0; 1620 backend = 0;
1300 backend_fd = -1; 1621 backend_fd = -1;
1301 gotasync = 0; 1622 sig_pending = 0;
1623#if EV_ASYNC_ENABLE
1624 async_pending = 0;
1625#endif
1302#if EV_USE_INOTIFY 1626#if EV_USE_INOTIFY
1303 fs_fd = -2; 1627 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1304#endif 1628#endif
1305 1629#if EV_USE_SIGNALFD
1306 /* pid check not overridable via env */ 1630 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif 1631#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1632
1317 if (!(flags & 0x0000ffffU)) 1633 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends (); 1634 flags |= ev_recommended_backends ();
1319 1635
1320#if EV_USE_PORT 1636#if EV_USE_PORT
1331#endif 1647#endif
1332#if EV_USE_SELECT 1648#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1649 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1650#endif
1335 1651
1652 ev_prepare_init (&pending_w, pendingcb);
1653
1336 ev_init (&pipeev, pipecb); 1654 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1655 ev_set_priority (&pipe_w, EV_MAXPRI);
1338 } 1656 }
1339} 1657}
1340 1658
1659/* free up a loop structure */
1341static void noinline 1660static void noinline
1342loop_destroy (EV_P) 1661loop_destroy (EV_P)
1343{ 1662{
1344 int i; 1663 int i;
1345 1664
1346 if (ev_is_active (&pipeev)) 1665 if (ev_is_active (&pipe_w))
1347 { 1666 {
1348 ev_ref (EV_A); /* signal watcher */ 1667 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1668 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1669
1351#if EV_USE_EVENTFD 1670#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1671 if (evfd >= 0)
1353 close (evfd); 1672 close (evfd);
1354#endif 1673#endif
1355 1674
1356 if (evpipe [0] >= 0) 1675 if (evpipe [0] >= 0)
1357 { 1676 {
1358 close (evpipe [0]); 1677 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1678 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1679 }
1361 } 1680 }
1681
1682#if EV_USE_SIGNALFD
1683 if (ev_is_active (&sigfd_w))
1684 close (sigfd);
1685#endif
1362 1686
1363#if EV_USE_INOTIFY 1687#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1688 if (fs_fd >= 0)
1365 close (fs_fd); 1689 close (fs_fd);
1366#endif 1690#endif
1390#if EV_IDLE_ENABLE 1714#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 1715 array_free (idle, [i]);
1392#endif 1716#endif
1393 } 1717 }
1394 1718
1395 ev_free (anfds); anfdmax = 0; 1719 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 1720
1397 /* have to use the microsoft-never-gets-it-right macro */ 1721 /* have to use the microsoft-never-gets-it-right macro */
1722 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1723 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1724 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1725#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1726 array_free (periodic, EMPTY);
1402#endif 1727#endif
1411 1736
1412 backend = 0; 1737 backend = 0;
1413} 1738}
1414 1739
1415#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1741inline_size void infy_fork (EV_P);
1417#endif 1742#endif
1418 1743
1419void inline_size 1744inline_size void
1420loop_fork (EV_P) 1745loop_fork (EV_P)
1421{ 1746{
1422#if EV_USE_PORT 1747#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1748 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1749#endif
1430#endif 1755#endif
1431#if EV_USE_INOTIFY 1756#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1757 infy_fork (EV_A);
1433#endif 1758#endif
1434 1759
1435 if (ev_is_active (&pipeev)) 1760 if (ev_is_active (&pipe_w))
1436 { 1761 {
1437 /* this "locks" the handlers against writing to the pipe */ 1762 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1763 /* while we modify the fd vars */
1439 gotsig = 1; 1764 sig_pending = 1;
1440#if EV_ASYNC_ENABLE 1765#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1766 async_pending = 1;
1442#endif 1767#endif
1443 1768
1444 ev_ref (EV_A); 1769 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1770 ev_io_stop (EV_A_ &pipe_w);
1446 1771
1447#if EV_USE_EVENTFD 1772#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1773 if (evfd >= 0)
1449 close (evfd); 1774 close (evfd);
1450#endif 1775#endif
1451 1776
1452 if (evpipe [0] >= 0) 1777 if (evpipe [0] >= 0)
1453 { 1778 {
1454 close (evpipe [0]); 1779 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 1780 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 1781 }
1457 1782
1458 evpipe_init (EV_A); 1783 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1784 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1785 pipecb (EV_A_ &pipe_w, EV_READ);
1461 } 1786 }
1462 1787
1463 postfork = 0; 1788 postfork = 0;
1464} 1789}
1465 1790
1466#if EV_MULTIPLICITY 1791#if EV_MULTIPLICITY
1792
1467struct ev_loop * 1793struct ev_loop *
1468ev_loop_new (unsigned int flags) 1794ev_loop_new (unsigned int flags)
1469{ 1795{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1796 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1797
1472 memset (loop, 0, sizeof (struct ev_loop)); 1798 memset (EV_A, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags); 1799 loop_init (EV_A_ flags);
1475 1800
1476 if (ev_backend (EV_A)) 1801 if (ev_backend (EV_A))
1477 return loop; 1802 return EV_A;
1478 1803
1479 return 0; 1804 return 0;
1480} 1805}
1481 1806
1482void 1807void
1488 1813
1489void 1814void
1490ev_loop_fork (EV_P) 1815ev_loop_fork (EV_P)
1491{ 1816{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1817 postfork = 1; /* must be in line with ev_default_fork */
1818}
1819#endif /* multiplicity */
1820
1821#if EV_VERIFY
1822static void noinline
1823verify_watcher (EV_P_ W w)
1824{
1825 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1826
1827 if (w->pending)
1828 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1829}
1830
1831static void noinline
1832verify_heap (EV_P_ ANHE *heap, int N)
1833{
1834 int i;
1835
1836 for (i = HEAP0; i < N + HEAP0; ++i)
1837 {
1838 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1839 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1840 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1841
1842 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1843 }
1844}
1845
1846static void noinline
1847array_verify (EV_P_ W *ws, int cnt)
1848{
1849 while (cnt--)
1850 {
1851 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1852 verify_watcher (EV_A_ ws [cnt]);
1853 }
1854}
1855#endif
1856
1857#if EV_MINIMAL < 2
1858void
1859ev_loop_verify (EV_P)
1860{
1861#if EV_VERIFY
1862 int i;
1863 WL w;
1864
1865 assert (activecnt >= -1);
1866
1867 assert (fdchangemax >= fdchangecnt);
1868 for (i = 0; i < fdchangecnt; ++i)
1869 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1870
1871 assert (anfdmax >= 0);
1872 for (i = 0; i < anfdmax; ++i)
1873 for (w = anfds [i].head; w; w = w->next)
1874 {
1875 verify_watcher (EV_A_ (W)w);
1876 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1877 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1878 }
1879
1880 assert (timermax >= timercnt);
1881 verify_heap (EV_A_ timers, timercnt);
1882
1883#if EV_PERIODIC_ENABLE
1884 assert (periodicmax >= periodiccnt);
1885 verify_heap (EV_A_ periodics, periodiccnt);
1886#endif
1887
1888 for (i = NUMPRI; i--; )
1889 {
1890 assert (pendingmax [i] >= pendingcnt [i]);
1891#if EV_IDLE_ENABLE
1892 assert (idleall >= 0);
1893 assert (idlemax [i] >= idlecnt [i]);
1894 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1895#endif
1896 }
1897
1898#if EV_FORK_ENABLE
1899 assert (forkmax >= forkcnt);
1900 array_verify (EV_A_ (W *)forks, forkcnt);
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 assert (asyncmax >= asynccnt);
1905 array_verify (EV_A_ (W *)asyncs, asynccnt);
1906#endif
1907
1908 assert (preparemax >= preparecnt);
1909 array_verify (EV_A_ (W *)prepares, preparecnt);
1910
1911 assert (checkmax >= checkcnt);
1912 array_verify (EV_A_ (W *)checks, checkcnt);
1913
1914# if 0
1915 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1917# endif
1918#endif
1493} 1919}
1494#endif 1920#endif
1495 1921
1496#if EV_MULTIPLICITY 1922#if EV_MULTIPLICITY
1497struct ev_loop * 1923struct ev_loop *
1502#endif 1928#endif
1503{ 1929{
1504 if (!ev_default_loop_ptr) 1930 if (!ev_default_loop_ptr)
1505 { 1931 {
1506#if EV_MULTIPLICITY 1932#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1933 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 1934#else
1509 ev_default_loop_ptr = 1; 1935 ev_default_loop_ptr = 1;
1510#endif 1936#endif
1511 1937
1512 loop_init (EV_A_ flags); 1938 loop_init (EV_A_ flags);
1529 1955
1530void 1956void
1531ev_default_destroy (void) 1957ev_default_destroy (void)
1532{ 1958{
1533#if EV_MULTIPLICITY 1959#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 1960 EV_P = ev_default_loop_ptr;
1535#endif 1961#endif
1962
1963 ev_default_loop_ptr = 0;
1536 1964
1537#ifndef _WIN32 1965#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */ 1966 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 1967 ev_signal_stop (EV_A_ &childev);
1540#endif 1968#endif
1544 1972
1545void 1973void
1546ev_default_fork (void) 1974ev_default_fork (void)
1547{ 1975{
1548#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 1977 EV_P = ev_default_loop_ptr;
1550#endif 1978#endif
1551 1979
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 1980 postfork = 1; /* must be in line with ev_loop_fork */
1554} 1981}
1555 1982
1556/*****************************************************************************/ 1983/*****************************************************************************/
1557 1984
1558void 1985void
1559ev_invoke (EV_P_ void *w, int revents) 1986ev_invoke (EV_P_ void *w, int revents)
1560{ 1987{
1561 EV_CB_INVOKE ((W)w, revents); 1988 EV_CB_INVOKE ((W)w, revents);
1562} 1989}
1563 1990
1564void inline_speed 1991unsigned int
1565call_pending (EV_P) 1992ev_pending_count (EV_P)
1993{
1994 int pri;
1995 unsigned int count = 0;
1996
1997 for (pri = NUMPRI; pri--; )
1998 count += pendingcnt [pri];
1999
2000 return count;
2001}
2002
2003void noinline
2004ev_invoke_pending (EV_P)
1566{ 2005{
1567 int pri; 2006 int pri;
1568 2007
1569 for (pri = NUMPRI; pri--; ) 2008 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 2009 while (pendingcnt [pri])
1571 { 2010 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2011 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 2012
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2013 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2014 /* ^ this is no longer true, as pending_w could be here */
1577 2015
1578 p->w->pending = 0; 2016 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 2017 EV_CB_INVOKE (p->w, p->events);
1580 } 2018 EV_FREQUENT_CHECK;
1581 } 2019 }
1582} 2020}
1583 2021
1584#if EV_IDLE_ENABLE 2022#if EV_IDLE_ENABLE
1585void inline_size 2023/* make idle watchers pending. this handles the "call-idle */
2024/* only when higher priorities are idle" logic */
2025inline_size void
1586idle_reify (EV_P) 2026idle_reify (EV_P)
1587{ 2027{
1588 if (expect_false (idleall)) 2028 if (expect_false (idleall))
1589 { 2029 {
1590 int pri; 2030 int pri;
1602 } 2042 }
1603 } 2043 }
1604} 2044}
1605#endif 2045#endif
1606 2046
1607void inline_size 2047/* make timers pending */
2048inline_size void
1608timers_reify (EV_P) 2049timers_reify (EV_P)
1609{ 2050{
2051 EV_FREQUENT_CHECK;
2052
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2053 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2054 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2055 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2056 {
2057 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2058
2059 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2060
2061 /* first reschedule or stop timer */
2062 if (w->repeat)
2063 {
1619 ev_at (w) += w->repeat; 2064 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2065 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2066 ev_at (w) = mn_now;
1622 2067
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2068 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2069
1625 ANHE_at_set (timers [HEAP0]); 2070 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2071 downheap (timers, timercnt, HEAP0);
2072 }
2073 else
2074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2075
2076 EV_FREQUENT_CHECK;
2077 feed_reverse (EV_A_ (W)w);
1627 } 2078 }
1628 else 2079 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2080
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2081 feed_reverse_done (EV_A_ EV_TIMEOUT);
1632 } 2082 }
1633} 2083}
1634 2084
1635#if EV_PERIODIC_ENABLE 2085#if EV_PERIODIC_ENABLE
1636void inline_size 2086/* make periodics pending */
2087inline_size void
1637periodics_reify (EV_P) 2088periodics_reify (EV_P)
1638{ 2089{
2090 EV_FREQUENT_CHECK;
2091
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2092 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2093 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2094 int feed_count = 0;
1642 2095
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2096 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2099
2100 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2101
2102 /* first reschedule or stop timer */
2103 if (w->reschedule_cb)
2104 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2105 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2106
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2107 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2108
1652 ANHE_at_set (periodics [HEAP0]); 2109 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2110 downheap (periodics, periodiccnt, HEAP0);
2111 }
2112 else if (w->interval)
2113 {
2114 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2115 /* if next trigger time is not sufficiently in the future, put it there */
2116 /* this might happen because of floating point inexactness */
2117 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2118 {
2119 ev_at (w) += w->interval;
2120
2121 /* if interval is unreasonably low we might still have a time in the past */
2122 /* so correct this. this will make the periodic very inexact, but the user */
2123 /* has effectively asked to get triggered more often than possible */
2124 if (ev_at (w) < ev_rt_now)
2125 ev_at (w) = ev_rt_now;
2126 }
2127
2128 ANHE_at_cache (periodics [HEAP0]);
2129 downheap (periodics, periodiccnt, HEAP0);
2130 }
2131 else
2132 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2133
2134 EV_FREQUENT_CHECK;
2135 feed_reverse (EV_A_ (W)w);
1654 } 2136 }
1655 else if (w->interval) 2137 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2138
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2139 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2140 }
1679} 2141}
1680 2142
2143/* simply recalculate all periodics */
2144/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1681static void noinline 2145static void noinline
1682periodics_reschedule (EV_P) 2146periodics_reschedule (EV_P)
1683{ 2147{
1684 int i; 2148 int i;
1685 2149
1691 if (w->reschedule_cb) 2155 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2156 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2157 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2159
1696 ANHE_at_set (periodics [i]); 2160 ANHE_at_cache (periodics [i]);
1697 } 2161 }
1698 2162
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2163 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2164}
2165#endif
2166
2167/* adjust all timers by a given offset */
2168static void noinline
2169timers_reschedule (EV_P_ ev_tstamp adjust)
2170{
2171 int i;
2172
1701 for (i = 0; i < periodiccnt; ++i) 2173 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2174 {
2175 ANHE *he = timers + i + HEAP0;
2176 ANHE_w (*he)->at += adjust;
2177 ANHE_at_cache (*he);
2178 }
1703} 2179}
1704#endif
1705 2180
1706void inline_speed 2181/* fetch new monotonic and realtime times from the kernel */
2182/* also detect if there was a timejump, and act accordingly */
2183inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2184time_update (EV_P_ ev_tstamp max_block)
1708{ 2185{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2186#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2187 if (expect_true (have_monotonic))
1713 { 2188 {
2189 int i;
1714 ev_tstamp odiff = rtmn_diff; 2190 ev_tstamp odiff = rtmn_diff;
1715 2191
1716 mn_now = get_clock (); 2192 mn_now = get_clock ();
1717 2193
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2194 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2220 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2221 mn_now = get_clock ();
1746 now_floor = mn_now; 2222 now_floor = mn_now;
1747 } 2223 }
1748 2224
2225 /* no timer adjustment, as the monotonic clock doesn't jump */
2226 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2227# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2228 periodics_reschedule (EV_A);
1751# endif 2229# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2230 }
1755 else 2231 else
1756#endif 2232#endif
1757 { 2233 {
1758 ev_rt_now = ev_time (); 2234 ev_rt_now = ev_time ();
1759 2235
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2236 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2237 {
2238 /* adjust timers. this is easy, as the offset is the same for all of them */
2239 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1764#endif 2242#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2243 }
1773 2244
1774 mn_now = ev_rt_now; 2245 mn_now = ev_rt_now;
1775 } 2246 }
1776} 2247}
1777 2248
1778void 2249void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2250ev_loop (EV_P_ int flags)
1794{ 2251{
2252#if EV_MINIMAL < 2
2253 ++loop_depth;
2254#endif
2255
2256 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2257
1795 loop_done = EVUNLOOP_CANCEL; 2258 loop_done = EVUNLOOP_CANCEL;
1796 2259
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2260 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2261
1799 do 2262 do
1800 { 2263 {
2264#if EV_VERIFY >= 2
2265 ev_loop_verify (EV_A);
2266#endif
2267
1801#ifndef _WIN32 2268#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2269 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2270 if (expect_false (getpid () != curpid))
1804 { 2271 {
1805 curpid = getpid (); 2272 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2278 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2279 if (expect_false (postfork))
1813 if (forkcnt) 2280 if (forkcnt)
1814 { 2281 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2282 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2283 EV_INVOKE_PENDING;
1817 } 2284 }
1818#endif 2285#endif
1819 2286
1820 /* queue prepare watchers (and execute them) */ 2287 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2288 if (expect_false (preparecnt))
1822 { 2289 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2290 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1825 } 2292 }
1826 2293
1827 if (expect_false (!activecnt)) 2294 if (expect_false (loop_done))
1828 break; 2295 break;
1829 2296
1830 /* we might have forked, so reify kernel state if necessary */ 2297 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2298 if (expect_false (postfork))
1832 loop_fork (EV_A); 2299 loop_fork (EV_A);
1839 ev_tstamp waittime = 0.; 2306 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2307 ev_tstamp sleeptime = 0.;
1841 2308
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2309 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2310 {
2311 /* remember old timestamp for io_blocktime calculation */
2312 ev_tstamp prev_mn_now = mn_now;
2313
1844 /* update time to cancel out callback processing overhead */ 2314 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2315 time_update (EV_A_ 1e100);
1846 2316
1847 waittime = MAX_BLOCKTIME; 2317 waittime = MAX_BLOCKTIME;
1848 2318
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2329 if (waittime > to) waittime = to;
1860 } 2330 }
1861#endif 2331#endif
1862 2332
2333 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2334 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2335 waittime = timeout_blocktime;
1865 2336
1866 sleeptime = waittime - backend_fudge; 2337 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2338 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2339 {
2340 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2341
2342 if (sleeptime > waittime - backend_fudge)
2343 sleeptime = waittime - backend_fudge;
2344
2345 if (expect_true (sleeptime > 0.))
2346 {
1873 ev_sleep (sleeptime); 2347 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2348 waittime -= sleeptime;
2349 }
1875 } 2350 }
1876 } 2351 }
1877 2352
2353#if EV_MINIMAL < 2
1878 ++loop_count; 2354 ++loop_count;
2355#endif
2356 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2357 backend_poll (EV_A_ waittime);
2358 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1880 2359
1881 /* update ev_rt_now, do magic */ 2360 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2361 time_update (EV_A_ waittime + sleeptime);
1883 } 2362 }
1884 2363
1895 2374
1896 /* queue check watchers, to be executed first */ 2375 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2376 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2377 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1899 2378
1900 call_pending (EV_A); 2379 EV_INVOKE_PENDING;
1901 } 2380 }
1902 while (expect_true ( 2381 while (expect_true (
1903 activecnt 2382 activecnt
1904 && !loop_done 2383 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2384 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2385 ));
1907 2386
1908 if (loop_done == EVUNLOOP_ONE) 2387 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2388 loop_done = EVUNLOOP_CANCEL;
2389
2390#if EV_MINIMAL < 2
2391 --loop_depth;
2392#endif
1910} 2393}
1911 2394
1912void 2395void
1913ev_unloop (EV_P_ int how) 2396ev_unloop (EV_P_ int how)
1914{ 2397{
1915 loop_done = how; 2398 loop_done = how;
1916} 2399}
1917 2400
2401void
2402ev_ref (EV_P)
2403{
2404 ++activecnt;
2405}
2406
2407void
2408ev_unref (EV_P)
2409{
2410 --activecnt;
2411}
2412
2413void
2414ev_now_update (EV_P)
2415{
2416 time_update (EV_A_ 1e100);
2417}
2418
2419void
2420ev_suspend (EV_P)
2421{
2422 ev_now_update (EV_A);
2423}
2424
2425void
2426ev_resume (EV_P)
2427{
2428 ev_tstamp mn_prev = mn_now;
2429
2430 ev_now_update (EV_A);
2431 timers_reschedule (EV_A_ mn_now - mn_prev);
2432#if EV_PERIODIC_ENABLE
2433 /* TODO: really do this? */
2434 periodics_reschedule (EV_A);
2435#endif
2436}
2437
1918/*****************************************************************************/ 2438/*****************************************************************************/
2439/* singly-linked list management, used when the expected list length is short */
1919 2440
1920void inline_size 2441inline_size void
1921wlist_add (WL *head, WL elem) 2442wlist_add (WL *head, WL elem)
1922{ 2443{
1923 elem->next = *head; 2444 elem->next = *head;
1924 *head = elem; 2445 *head = elem;
1925} 2446}
1926 2447
1927void inline_size 2448inline_size void
1928wlist_del (WL *head, WL elem) 2449wlist_del (WL *head, WL elem)
1929{ 2450{
1930 while (*head) 2451 while (*head)
1931 { 2452 {
1932 if (*head == elem) 2453 if (expect_true (*head == elem))
1933 { 2454 {
1934 *head = elem->next; 2455 *head = elem->next;
1935 return; 2456 break;
1936 } 2457 }
1937 2458
1938 head = &(*head)->next; 2459 head = &(*head)->next;
1939 } 2460 }
1940} 2461}
1941 2462
1942void inline_speed 2463/* internal, faster, version of ev_clear_pending */
2464inline_speed void
1943clear_pending (EV_P_ W w) 2465clear_pending (EV_P_ W w)
1944{ 2466{
1945 if (w->pending) 2467 if (w->pending)
1946 { 2468 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2469 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2470 w->pending = 0;
1949 } 2471 }
1950} 2472}
1951 2473
1952int 2474int
1956 int pending = w_->pending; 2478 int pending = w_->pending;
1957 2479
1958 if (expect_true (pending)) 2480 if (expect_true (pending))
1959 { 2481 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2482 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2483 p->w = (W)&pending_w;
1961 w_->pending = 0; 2484 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2485 return p->events;
1964 } 2486 }
1965 else 2487 else
1966 return 0; 2488 return 0;
1967} 2489}
1968 2490
1969void inline_size 2491inline_size void
1970pri_adjust (EV_P_ W w) 2492pri_adjust (EV_P_ W w)
1971{ 2493{
1972 int pri = w->priority; 2494 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2495 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2496 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2497 ev_set_priority (w, pri);
1976} 2498}
1977 2499
1978void inline_speed 2500inline_speed void
1979ev_start (EV_P_ W w, int active) 2501ev_start (EV_P_ W w, int active)
1980{ 2502{
1981 pri_adjust (EV_A_ w); 2503 pri_adjust (EV_A_ w);
1982 w->active = active; 2504 w->active = active;
1983 ev_ref (EV_A); 2505 ev_ref (EV_A);
1984} 2506}
1985 2507
1986void inline_size 2508inline_size void
1987ev_stop (EV_P_ W w) 2509ev_stop (EV_P_ W w)
1988{ 2510{
1989 ev_unref (EV_A); 2511 ev_unref (EV_A);
1990 w->active = 0; 2512 w->active = 0;
1991} 2513}
1998 int fd = w->fd; 2520 int fd = w->fd;
1999 2521
2000 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
2001 return; 2523 return;
2002 2524
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2525 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2526 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2527
2528 EV_FREQUENT_CHECK;
2004 2529
2005 ev_start (EV_A_ (W)w, 1); 2530 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2531 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2532 wlist_add (&anfds[fd].head, (WL)w);
2008 2533
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2535 w->events &= ~EV__IOFDSET;
2536
2537 EV_FREQUENT_CHECK;
2011} 2538}
2012 2539
2013void noinline 2540void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2541ev_io_stop (EV_P_ ev_io *w)
2015{ 2542{
2016 clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2544 if (expect_false (!ev_is_active (w)))
2018 return; 2545 return;
2019 2546
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2548
2549 EV_FREQUENT_CHECK;
2021 2550
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2551 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2552 ev_stop (EV_A_ (W)w);
2024 2553
2025 fd_change (EV_A_ w->fd, 1); 2554 fd_change (EV_A_ w->fd, 1);
2555
2556 EV_FREQUENT_CHECK;
2026} 2557}
2027 2558
2028void noinline 2559void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2560ev_timer_start (EV_P_ ev_timer *w)
2030{ 2561{
2031 if (expect_false (ev_is_active (w))) 2562 if (expect_false (ev_is_active (w)))
2032 return; 2563 return;
2033 2564
2034 ev_at (w) += mn_now; 2565 ev_at (w) += mn_now;
2035 2566
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2568
2569 EV_FREQUENT_CHECK;
2570
2571 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2573 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2574 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2575 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2576 upheap (timers, ev_active (w));
2043 2577
2578 EV_FREQUENT_CHECK;
2579
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2581}
2046 2582
2047void noinline 2583void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2584ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2585{
2050 clear_pending (EV_A_ (W)w); 2586 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2587 if (expect_false (!ev_is_active (w)))
2052 return; 2588 return;
2053 2589
2590 EV_FREQUENT_CHECK;
2591
2054 { 2592 {
2055 int active = ev_active (w); 2593 int active = ev_active (w);
2056 2594
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2596
2597 --timercnt;
2598
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2599 if (expect_true (active < timercnt + HEAP0))
2060 { 2600 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2601 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2602 adjustheap (timers, timercnt, active);
2063 } 2603 }
2064
2065 --timercnt;
2066 } 2604 }
2067 2605
2068 ev_at (w) -= mn_now; 2606 ev_at (w) -= mn_now;
2069 2607
2070 ev_stop (EV_A_ (W)w); 2608 ev_stop (EV_A_ (W)w);
2609
2610 EV_FREQUENT_CHECK;
2071} 2611}
2072 2612
2073void noinline 2613void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2614ev_timer_again (EV_P_ ev_timer *w)
2075{ 2615{
2616 EV_FREQUENT_CHECK;
2617
2076 if (ev_is_active (w)) 2618 if (ev_is_active (w))
2077 { 2619 {
2078 if (w->repeat) 2620 if (w->repeat)
2079 { 2621 {
2080 ev_at (w) = mn_now + w->repeat; 2622 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2623 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2624 adjustheap (timers, timercnt, ev_active (w));
2083 } 2625 }
2084 else 2626 else
2085 ev_timer_stop (EV_A_ w); 2627 ev_timer_stop (EV_A_ w);
2086 } 2628 }
2087 else if (w->repeat) 2629 else if (w->repeat)
2088 { 2630 {
2089 ev_at (w) = w->repeat; 2631 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2632 ev_timer_start (EV_A_ w);
2091 } 2633 }
2634
2635 EV_FREQUENT_CHECK;
2636}
2637
2638ev_tstamp
2639ev_timer_remaining (EV_P_ ev_timer *w)
2640{
2641 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2642}
2093 2643
2094#if EV_PERIODIC_ENABLE 2644#if EV_PERIODIC_ENABLE
2095void noinline 2645void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2646ev_periodic_start (EV_P_ ev_periodic *w)
2100 2650
2101 if (w->reschedule_cb) 2651 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2653 else if (w->interval)
2104 { 2654 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2655 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2656 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2658 }
2109 else 2659 else
2110 ev_at (w) = w->offset; 2660 ev_at (w) = w->offset;
2111 2661
2662 EV_FREQUENT_CHECK;
2663
2664 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2665 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2666 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2667 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2668 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2669 upheap (periodics, ev_active (w));
2117 2670
2671 EV_FREQUENT_CHECK;
2672
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2673 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2674}
2120 2675
2121void noinline 2676void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2677ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2678{
2124 clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
2126 return; 2681 return;
2127 2682
2683 EV_FREQUENT_CHECK;
2684
2128 { 2685 {
2129 int active = ev_active (w); 2686 int active = ev_active (w);
2130 2687
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2688 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2689
2690 --periodiccnt;
2691
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2692 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2693 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2694 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2695 adjustheap (periodics, periodiccnt, active);
2137 } 2696 }
2138
2139 --periodiccnt;
2140 } 2697 }
2141 2698
2142 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2700
2701 EV_FREQUENT_CHECK;
2143} 2702}
2144 2703
2145void noinline 2704void noinline
2146ev_periodic_again (EV_P_ ev_periodic *w) 2705ev_periodic_again (EV_P_ ev_periodic *w)
2147{ 2706{
2156#endif 2715#endif
2157 2716
2158void noinline 2717void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2718ev_signal_start (EV_P_ ev_signal *w)
2160{ 2719{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 2720 if (expect_false (ev_is_active (w)))
2165 return; 2721 return;
2166 2722
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2723 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 2724
2169 evpipe_init (EV_A); 2725#if EV_MULTIPLICITY
2726 assert (("libev: a signal must not be attached to two different loops",
2727 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 2728
2729 signals [w->signum - 1].loop = EV_A;
2730#endif
2731
2732 EV_FREQUENT_CHECK;
2733
2734#if EV_USE_SIGNALFD
2735 if (sigfd == -2)
2171 { 2736 {
2172#ifndef _WIN32 2737 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 2738 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 2739 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 2740
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2741 if (sigfd >= 0)
2742 {
2743 fd_intern (sigfd); /* doing it twice will not hurt */
2179 2744
2180#ifndef _WIN32 2745 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2746
2182#endif 2747 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2748 ev_set_priority (&sigfd_w, EV_MAXPRI);
2749 ev_io_start (EV_A_ &sigfd_w);
2750 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2751 }
2183 } 2752 }
2753
2754 if (sigfd >= 0)
2755 {
2756 /* TODO: check .head */
2757 sigaddset (&sigfd_set, w->signum);
2758 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2759
2760 signalfd (sigfd, &sigfd_set, 0);
2761 }
2762#endif
2184 2763
2185 ev_start (EV_A_ (W)w, 1); 2764 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 2765 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 2766
2188 if (!((WL)w)->next) 2767 if (!((WL)w)->next)
2768# if EV_USE_SIGNALFD
2769 if (sigfd < 0) /*TODO*/
2770# endif
2189 { 2771 {
2190#if _WIN32 2772# ifdef _WIN32
2773 evpipe_init (EV_A);
2774
2191 signal (w->signum, ev_sighandler); 2775 signal (w->signum, ev_sighandler);
2192#else 2776# else
2193 struct sigaction sa; 2777 struct sigaction sa;
2778
2779 evpipe_init (EV_A);
2780
2194 sa.sa_handler = ev_sighandler; 2781 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2782 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2784 sigaction (w->signum, &sa, 0);
2785
2786 sigemptyset (&sa.sa_mask);
2787 sigaddset (&sa.sa_mask, w->signum);
2788 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2198#endif 2789#endif
2199 } 2790 }
2791
2792 EV_FREQUENT_CHECK;
2200} 2793}
2201 2794
2202void noinline 2795void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2796ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2797{
2205 clear_pending (EV_A_ (W)w); 2798 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2799 if (expect_false (!ev_is_active (w)))
2207 return; 2800 return;
2208 2801
2802 EV_FREQUENT_CHECK;
2803
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2804 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2805 ev_stop (EV_A_ (W)w);
2211 2806
2212 if (!signals [w->signum - 1].head) 2807 if (!signals [w->signum - 1].head)
2808 {
2809#if EV_MULTIPLICITY
2810 signals [w->signum - 1].loop = 0; /* unattach from signal */
2811#endif
2812#if EV_USE_SIGNALFD
2813 if (sigfd >= 0)
2814 {
2815 sigset_t ss;
2816
2817 sigemptyset (&ss);
2818 sigaddset (&ss, w->signum);
2819 sigdelset (&sigfd_set, w->signum);
2820
2821 signalfd (sigfd, &sigfd_set, 0);
2822 sigprocmask (SIG_UNBLOCK, &ss, 0);
2823 }
2824 else
2825#endif
2213 signal (w->signum, SIG_DFL); 2826 signal (w->signum, SIG_DFL);
2827 }
2828
2829 EV_FREQUENT_CHECK;
2214} 2830}
2215 2831
2216void 2832void
2217ev_child_start (EV_P_ ev_child *w) 2833ev_child_start (EV_P_ ev_child *w)
2218{ 2834{
2219#if EV_MULTIPLICITY 2835#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2836 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2837#endif
2222 if (expect_false (ev_is_active (w))) 2838 if (expect_false (ev_is_active (w)))
2223 return; 2839 return;
2224 2840
2841 EV_FREQUENT_CHECK;
2842
2225 ev_start (EV_A_ (W)w, 1); 2843 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2844 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2845
2846 EV_FREQUENT_CHECK;
2227} 2847}
2228 2848
2229void 2849void
2230ev_child_stop (EV_P_ ev_child *w) 2850ev_child_stop (EV_P_ ev_child *w)
2231{ 2851{
2232 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2234 return; 2854 return;
2235 2855
2856 EV_FREQUENT_CHECK;
2857
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2858 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2859 ev_stop (EV_A_ (W)w);
2860
2861 EV_FREQUENT_CHECK;
2238} 2862}
2239 2863
2240#if EV_STAT_ENABLE 2864#if EV_STAT_ENABLE
2241 2865
2242# ifdef _WIN32 2866# ifdef _WIN32
2243# undef lstat 2867# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2868# define lstat(a,b) _stati64 (a,b)
2245# endif 2869# endif
2246 2870
2247#define DEF_STAT_INTERVAL 5.0074891 2871#define DEF_STAT_INTERVAL 5.0074891
2872#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2873#define MIN_STAT_INTERVAL 0.1074891
2249 2874
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2875static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2876
2252#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2878
2879/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2880# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2254 2881
2255static void noinline 2882static void noinline
2256infy_add (EV_P_ ev_stat *w) 2883infy_add (EV_P_ ev_stat *w)
2257{ 2884{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2885 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2886
2260 if (w->wd < 0) 2887 if (w->wd >= 0)
2888 {
2889 struct statfs sfs;
2890
2891 /* now local changes will be tracked by inotify, but remote changes won't */
2892 /* unless the filesystem is known to be local, we therefore still poll */
2893 /* also do poll on <2.6.25, but with normal frequency */
2894
2895 if (!fs_2625)
2896 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2897 else if (!statfs (w->path, &sfs)
2898 && (sfs.f_type == 0x1373 /* devfs */
2899 || sfs.f_type == 0xEF53 /* ext2/3 */
2900 || sfs.f_type == 0x3153464a /* jfs */
2901 || sfs.f_type == 0x52654973 /* reiser3 */
2902 || sfs.f_type == 0x01021994 /* tempfs */
2903 || sfs.f_type == 0x58465342 /* xfs */))
2904 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2905 else
2906 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 2907 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2908 else
2909 {
2910 /* can't use inotify, continue to stat */
2911 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 2912
2264 /* monitor some parent directory for speedup hints */ 2913 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2914 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2915 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2916 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2917 {
2269 char path [4096]; 2918 char path [4096];
2270 strcpy (path, w->path); 2919 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2923 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2924 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2925
2277 char *pend = strrchr (path, '/'); 2926 char *pend = strrchr (path, '/');
2278 2927
2279 if (!pend) 2928 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2929 break;
2281 2930
2282 *pend = 0; 2931 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2932 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2933 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2934 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2935 }
2287 } 2936 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2937
2291 if (w->wd >= 0) 2938 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2939 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2940
2941 /* now re-arm timer, if required */
2942 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2943 ev_timer_again (EV_A_ &w->timer);
2944 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 2945}
2294 2946
2295static void noinline 2947static void noinline
2296infy_del (EV_P_ ev_stat *w) 2948infy_del (EV_P_ ev_stat *w)
2297{ 2949{
2311 2963
2312static void noinline 2964static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2965infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 2966{
2315 if (slot < 0) 2967 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 2968 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 2970 infy_wd (EV_A_ slot, wd, ev);
2319 else 2971 else
2320 { 2972 {
2321 WL w_; 2973 WL w_;
2327 2979
2328 if (w->wd == wd || wd == -1) 2980 if (w->wd == wd || wd == -1)
2329 { 2981 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2982 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 2983 {
2984 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2332 w->wd = -1; 2985 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2986 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 2987 }
2335 2988
2336 stat_timer_cb (EV_A_ &w->timer, 0); 2989 stat_timer_cb (EV_A_ &w->timer, 0);
2341 2994
2342static void 2995static void
2343infy_cb (EV_P_ ev_io *w, int revents) 2996infy_cb (EV_P_ ev_io *w, int revents)
2344{ 2997{
2345 char buf [EV_INOTIFY_BUFSIZE]; 2998 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 2999 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 3000 int len = read (fs_fd, buf, sizeof (buf));
2349 3001
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3002 for (ofs = 0; ofs < len; )
3003 {
3004 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3005 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3006 ofs += sizeof (struct inotify_event) + ev->len;
3007 }
2352} 3008}
2353 3009
2354void inline_size 3010inline_size unsigned int
3011ev_linux_version (void)
3012{
3013 struct utsname buf;
3014 unsigned int v;
3015 int i;
3016 char *p = buf.release;
3017
3018 if (uname (&buf))
3019 return 0;
3020
3021 for (i = 3+1; --i; )
3022 {
3023 unsigned int c = 0;
3024
3025 for (;;)
3026 {
3027 if (*p >= '0' && *p <= '9')
3028 c = c * 10 + *p++ - '0';
3029 else
3030 {
3031 p += *p == '.';
3032 break;
3033 }
3034 }
3035
3036 v = (v << 8) | c;
3037 }
3038
3039 return v;
3040}
3041
3042inline_size void
3043ev_check_2625 (EV_P)
3044{
3045 /* kernels < 2.6.25 are borked
3046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3047 */
3048 if (ev_linux_version () < 0x020619)
3049 return;
3050
3051 fs_2625 = 1;
3052}
3053
3054inline_size int
3055infy_newfd (void)
3056{
3057#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3059 if (fd >= 0)
3060 return fd;
3061#endif
3062 return inotify_init ();
3063}
3064
3065inline_size void
2355infy_init (EV_P) 3066infy_init (EV_P)
2356{ 3067{
2357 if (fs_fd != -2) 3068 if (fs_fd != -2)
2358 return; 3069 return;
2359 3070
3071 fs_fd = -1;
3072
3073 ev_check_2625 (EV_A);
3074
2360 fs_fd = inotify_init (); 3075 fs_fd = infy_newfd ();
2361 3076
2362 if (fs_fd >= 0) 3077 if (fs_fd >= 0)
2363 { 3078 {
3079 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3081 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3082 ev_io_start (EV_A_ &fs_w);
3083 ev_unref (EV_A);
2367 } 3084 }
2368} 3085}
2369 3086
2370void inline_size 3087inline_size void
2371infy_fork (EV_P) 3088infy_fork (EV_P)
2372{ 3089{
2373 int slot; 3090 int slot;
2374 3091
2375 if (fs_fd < 0) 3092 if (fs_fd < 0)
2376 return; 3093 return;
2377 3094
3095 ev_ref (EV_A);
3096 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3097 close (fs_fd);
2379 fs_fd = inotify_init (); 3098 fs_fd = infy_newfd ();
3099
3100 if (fs_fd >= 0)
3101 {
3102 fd_intern (fs_fd);
3103 ev_io_set (&fs_w, fs_fd, EV_READ);
3104 ev_io_start (EV_A_ &fs_w);
3105 ev_unref (EV_A);
3106 }
2380 3107
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3108 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2382 { 3109 {
2383 WL w_ = fs_hash [slot].head; 3110 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3111 fs_hash [slot].head = 0;
2391 w->wd = -1; 3118 w->wd = -1;
2392 3119
2393 if (fs_fd >= 0) 3120 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3121 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3122 else
3123 {
3124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 3126 ev_timer_again (EV_A_ &w->timer);
3127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3128 }
2397 } 3129 }
2398
2399 } 3130 }
2400} 3131}
2401 3132
3133#endif
3134
3135#ifdef _WIN32
3136# define EV_LSTAT(p,b) _stati64 (p, b)
3137#else
3138# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3139#endif
2403 3140
2404void 3141void
2405ev_stat_stat (EV_P_ ev_stat *w) 3142ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3143{
2413static void noinline 3150static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 3152{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 3154
2418 /* we copy this here each the time so that */ 3155 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 3156 ev_stat_stat (EV_A_ w);
2422 3157
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 3159 if (
2425 w->prev.st_dev != w->attr.st_dev 3160 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 3161 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 3162 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 3163 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 3164 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 3165 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 3166 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 3167 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 3168 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3169 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3170 || prev.st_ctime != w->attr.st_ctime
2436 ) { 3171 ) {
3172 /* we only update w->prev on actual differences */
3173 /* in case we test more often than invoke the callback, */
3174 /* to ensure that prev is always different to attr */
3175 w->prev = prev;
3176
2437 #if EV_USE_INOTIFY 3177 #if EV_USE_INOTIFY
3178 if (fs_fd >= 0)
3179 {
2438 infy_del (EV_A_ w); 3180 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3181 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3182 ev_stat_stat (EV_A_ w); /* avoid race... */
3183 }
2441 #endif 3184 #endif
2442 3185
2443 ev_feed_event (EV_A_ w, EV_STAT); 3186 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3187 }
2445} 3188}
2448ev_stat_start (EV_P_ ev_stat *w) 3191ev_stat_start (EV_P_ ev_stat *w)
2449{ 3192{
2450 if (expect_false (ev_is_active (w))) 3193 if (expect_false (ev_is_active (w)))
2451 return; 3194 return;
2452 3195
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3196 ev_stat_stat (EV_A_ w);
2458 3197
3198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3199 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3200
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3202 ev_set_priority (&w->timer, ev_priority (w));
2464 3203
2465#if EV_USE_INOTIFY 3204#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3205 infy_init (EV_A);
2467 3206
2468 if (fs_fd >= 0) 3207 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3208 infy_add (EV_A_ w);
2470 else 3209 else
2471#endif 3210#endif
3211 {
2472 ev_timer_start (EV_A_ &w->timer); 3212 ev_timer_again (EV_A_ &w->timer);
3213 ev_unref (EV_A);
3214 }
2473 3215
2474 ev_start (EV_A_ (W)w, 1); 3216 ev_start (EV_A_ (W)w, 1);
3217
3218 EV_FREQUENT_CHECK;
2475} 3219}
2476 3220
2477void 3221void
2478ev_stat_stop (EV_P_ ev_stat *w) 3222ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3223{
2480 clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
2482 return; 3226 return;
2483 3227
3228 EV_FREQUENT_CHECK;
3229
2484#if EV_USE_INOTIFY 3230#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2486#endif 3232#endif
3233
3234 if (ev_is_active (&w->timer))
3235 {
3236 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 3237 ev_timer_stop (EV_A_ &w->timer);
3238 }
2488 3239
2489 ev_stop (EV_A_ (W)w); 3240 ev_stop (EV_A_ (W)w);
3241
3242 EV_FREQUENT_CHECK;
2490} 3243}
2491#endif 3244#endif
2492 3245
2493#if EV_IDLE_ENABLE 3246#if EV_IDLE_ENABLE
2494void 3247void
2496{ 3249{
2497 if (expect_false (ev_is_active (w))) 3250 if (expect_false (ev_is_active (w)))
2498 return; 3251 return;
2499 3252
2500 pri_adjust (EV_A_ (W)w); 3253 pri_adjust (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
2501 3256
2502 { 3257 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3258 int active = ++idlecnt [ABSPRI (w)];
2504 3259
2505 ++idleall; 3260 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3261 ev_start (EV_A_ (W)w, active);
2507 3262
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3263 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3264 idles [ABSPRI (w)][active - 1] = w;
2510 } 3265 }
3266
3267 EV_FREQUENT_CHECK;
2511} 3268}
2512 3269
2513void 3270void
2514ev_idle_stop (EV_P_ ev_idle *w) 3271ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3272{
2516 clear_pending (EV_A_ (W)w); 3273 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3274 if (expect_false (!ev_is_active (w)))
2518 return; 3275 return;
2519 3276
3277 EV_FREQUENT_CHECK;
3278
2520 { 3279 {
2521 int active = ev_active (w); 3280 int active = ev_active (w);
2522 3281
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3282 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3283 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3284
2526 ev_stop (EV_A_ (W)w); 3285 ev_stop (EV_A_ (W)w);
2527 --idleall; 3286 --idleall;
2528 } 3287 }
3288
3289 EV_FREQUENT_CHECK;
2529} 3290}
2530#endif 3291#endif
2531 3292
2532void 3293void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3294ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3295{
2535 if (expect_false (ev_is_active (w))) 3296 if (expect_false (ev_is_active (w)))
2536 return; 3297 return;
3298
3299 EV_FREQUENT_CHECK;
2537 3300
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3301 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3302 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3303 prepares [preparecnt - 1] = w;
3304
3305 EV_FREQUENT_CHECK;
2541} 3306}
2542 3307
2543void 3308void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3309ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3310{
2546 clear_pending (EV_A_ (W)w); 3311 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3312 if (expect_false (!ev_is_active (w)))
2548 return; 3313 return;
2549 3314
3315 EV_FREQUENT_CHECK;
3316
2550 { 3317 {
2551 int active = ev_active (w); 3318 int active = ev_active (w);
2552 3319
2553 prepares [active - 1] = prepares [--preparecnt]; 3320 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3321 ev_active (prepares [active - 1]) = active;
2555 } 3322 }
2556 3323
2557 ev_stop (EV_A_ (W)w); 3324 ev_stop (EV_A_ (W)w);
3325
3326 EV_FREQUENT_CHECK;
2558} 3327}
2559 3328
2560void 3329void
2561ev_check_start (EV_P_ ev_check *w) 3330ev_check_start (EV_P_ ev_check *w)
2562{ 3331{
2563 if (expect_false (ev_is_active (w))) 3332 if (expect_false (ev_is_active (w)))
2564 return; 3333 return;
3334
3335 EV_FREQUENT_CHECK;
2565 3336
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3337 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3338 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3339 checks [checkcnt - 1] = w;
3340
3341 EV_FREQUENT_CHECK;
2569} 3342}
2570 3343
2571void 3344void
2572ev_check_stop (EV_P_ ev_check *w) 3345ev_check_stop (EV_P_ ev_check *w)
2573{ 3346{
2574 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2576 return; 3349 return;
2577 3350
3351 EV_FREQUENT_CHECK;
3352
2578 { 3353 {
2579 int active = ev_active (w); 3354 int active = ev_active (w);
2580 3355
2581 checks [active - 1] = checks [--checkcnt]; 3356 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3357 ev_active (checks [active - 1]) = active;
2583 } 3358 }
2584 3359
2585 ev_stop (EV_A_ (W)w); 3360 ev_stop (EV_A_ (W)w);
3361
3362 EV_FREQUENT_CHECK;
2586} 3363}
2587 3364
2588#if EV_EMBED_ENABLE 3365#if EV_EMBED_ENABLE
2589void noinline 3366void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3367ev_embed_sweep (EV_P_ ev_embed *w)
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3384embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3385{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3386 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3387
2611 { 3388 {
2612 struct ev_loop *loop = w->other; 3389 EV_P = w->other;
2613 3390
2614 while (fdchangecnt) 3391 while (fdchangecnt)
2615 { 3392 {
2616 fd_reify (EV_A); 3393 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3394 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3395 }
2619 } 3396 }
2620} 3397}
2621 3398
3399static void
3400embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3401{
3402 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3403
3404 ev_embed_stop (EV_A_ w);
3405
3406 {
3407 EV_P = w->other;
3408
3409 ev_loop_fork (EV_A);
3410 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3411 }
3412
3413 ev_embed_start (EV_A_ w);
3414}
3415
2622#if 0 3416#if 0
2623static void 3417static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3418embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3419{
2626 ev_idle_stop (EV_A_ idle); 3420 ev_idle_stop (EV_A_ idle);
2632{ 3426{
2633 if (expect_false (ev_is_active (w))) 3427 if (expect_false (ev_is_active (w)))
2634 return; 3428 return;
2635 3429
2636 { 3430 {
2637 struct ev_loop *loop = w->other; 3431 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3432 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3433 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3434 }
3435
3436 EV_FREQUENT_CHECK;
2641 3437
2642 ev_set_priority (&w->io, ev_priority (w)); 3438 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3439 ev_io_start (EV_A_ &w->io);
2644 3440
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3441 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3442 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3443 ev_prepare_start (EV_A_ &w->prepare);
2648 3444
3445 ev_fork_init (&w->fork, embed_fork_cb);
3446 ev_fork_start (EV_A_ &w->fork);
3447
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3448 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3449
2651 ev_start (EV_A_ (W)w, 1); 3450 ev_start (EV_A_ (W)w, 1);
3451
3452 EV_FREQUENT_CHECK;
2652} 3453}
2653 3454
2654void 3455void
2655ev_embed_stop (EV_P_ ev_embed *w) 3456ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3457{
2657 clear_pending (EV_A_ (W)w); 3458 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3459 if (expect_false (!ev_is_active (w)))
2659 return; 3460 return;
2660 3461
3462 EV_FREQUENT_CHECK;
3463
2661 ev_io_stop (EV_A_ &w->io); 3464 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3465 ev_prepare_stop (EV_A_ &w->prepare);
3466 ev_fork_stop (EV_A_ &w->fork);
2663 3467
2664 ev_stop (EV_A_ (W)w); 3468 ev_stop (EV_A_ (W)w);
3469
3470 EV_FREQUENT_CHECK;
2665} 3471}
2666#endif 3472#endif
2667 3473
2668#if EV_FORK_ENABLE 3474#if EV_FORK_ENABLE
2669void 3475void
2670ev_fork_start (EV_P_ ev_fork *w) 3476ev_fork_start (EV_P_ ev_fork *w)
2671{ 3477{
2672 if (expect_false (ev_is_active (w))) 3478 if (expect_false (ev_is_active (w)))
2673 return; 3479 return;
3480
3481 EV_FREQUENT_CHECK;
2674 3482
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3483 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3484 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3485 forks [forkcnt - 1] = w;
3486
3487 EV_FREQUENT_CHECK;
2678} 3488}
2679 3489
2680void 3490void
2681ev_fork_stop (EV_P_ ev_fork *w) 3491ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3492{
2683 clear_pending (EV_A_ (W)w); 3493 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3494 if (expect_false (!ev_is_active (w)))
2685 return; 3495 return;
2686 3496
3497 EV_FREQUENT_CHECK;
3498
2687 { 3499 {
2688 int active = ev_active (w); 3500 int active = ev_active (w);
2689 3501
2690 forks [active - 1] = forks [--forkcnt]; 3502 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3503 ev_active (forks [active - 1]) = active;
2692 } 3504 }
2693 3505
2694 ev_stop (EV_A_ (W)w); 3506 ev_stop (EV_A_ (W)w);
3507
3508 EV_FREQUENT_CHECK;
2695} 3509}
2696#endif 3510#endif
2697 3511
2698#if EV_ASYNC_ENABLE 3512#if EV_ASYNC_ENABLE
2699void 3513void
2701{ 3515{
2702 if (expect_false (ev_is_active (w))) 3516 if (expect_false (ev_is_active (w)))
2703 return; 3517 return;
2704 3518
2705 evpipe_init (EV_A); 3519 evpipe_init (EV_A);
3520
3521 EV_FREQUENT_CHECK;
2706 3522
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3523 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3525 asyncs [asynccnt - 1] = w;
3526
3527 EV_FREQUENT_CHECK;
2710} 3528}
2711 3529
2712void 3530void
2713ev_async_stop (EV_P_ ev_async *w) 3531ev_async_stop (EV_P_ ev_async *w)
2714{ 3532{
2715 clear_pending (EV_A_ (W)w); 3533 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3534 if (expect_false (!ev_is_active (w)))
2717 return; 3535 return;
2718 3536
3537 EV_FREQUENT_CHECK;
3538
2719 { 3539 {
2720 int active = ev_active (w); 3540 int active = ev_active (w);
2721 3541
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3542 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3543 ev_active (asyncs [active - 1]) = active;
2724 } 3544 }
2725 3545
2726 ev_stop (EV_A_ (W)w); 3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
2727} 3549}
2728 3550
2729void 3551void
2730ev_async_send (EV_P_ ev_async *w) 3552ev_async_send (EV_P_ ev_async *w)
2731{ 3553{
2732 w->sent = 1; 3554 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3555 evpipe_write (EV_A_ &async_pending);
2734} 3556}
2735#endif 3557#endif
2736 3558
2737/*****************************************************************************/ 3559/*****************************************************************************/
2738 3560
2748once_cb (EV_P_ struct ev_once *once, int revents) 3570once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3571{
2750 void (*cb)(int revents, void *arg) = once->cb; 3572 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3573 void *arg = once->arg;
2752 3574
2753 ev_io_stop (EV_A_ &once->io); 3575 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3576 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3577 ev_free (once);
2756 3578
2757 cb (revents, arg); 3579 cb (revents, arg);
2758} 3580}
2759 3581
2760static void 3582static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3583once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3584{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3585 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3586
3587 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3588}
2765 3589
2766static void 3590static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3591once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3592{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3593 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3594
3595 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3596}
2771 3597
2772void 3598void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3599ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3600{
2796 ev_timer_set (&once->to, timeout, 0.); 3622 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3623 ev_timer_start (EV_A_ &once->to);
2798 } 3624 }
2799} 3625}
2800 3626
3627/*****************************************************************************/
3628
3629#if EV_WALK_ENABLE
3630void
3631ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3632{
3633 int i, j;
3634 ev_watcher_list *wl, *wn;
3635
3636 if (types & (EV_IO | EV_EMBED))
3637 for (i = 0; i < anfdmax; ++i)
3638 for (wl = anfds [i].head; wl; )
3639 {
3640 wn = wl->next;
3641
3642#if EV_EMBED_ENABLE
3643 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3644 {
3645 if (types & EV_EMBED)
3646 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3647 }
3648 else
3649#endif
3650#if EV_USE_INOTIFY
3651 if (ev_cb ((ev_io *)wl) == infy_cb)
3652 ;
3653 else
3654#endif
3655 if ((ev_io *)wl != &pipe_w)
3656 if (types & EV_IO)
3657 cb (EV_A_ EV_IO, wl);
3658
3659 wl = wn;
3660 }
3661
3662 if (types & (EV_TIMER | EV_STAT))
3663 for (i = timercnt + HEAP0; i-- > HEAP0; )
3664#if EV_STAT_ENABLE
3665 /*TODO: timer is not always active*/
3666 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3667 {
3668 if (types & EV_STAT)
3669 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3670 }
3671 else
3672#endif
3673 if (types & EV_TIMER)
3674 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3675
3676#if EV_PERIODIC_ENABLE
3677 if (types & EV_PERIODIC)
3678 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3679 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3680#endif
3681
3682#if EV_IDLE_ENABLE
3683 if (types & EV_IDLE)
3684 for (j = NUMPRI; i--; )
3685 for (i = idlecnt [j]; i--; )
3686 cb (EV_A_ EV_IDLE, idles [j][i]);
3687#endif
3688
3689#if EV_FORK_ENABLE
3690 if (types & EV_FORK)
3691 for (i = forkcnt; i--; )
3692 if (ev_cb (forks [i]) != embed_fork_cb)
3693 cb (EV_A_ EV_FORK, forks [i]);
3694#endif
3695
3696#if EV_ASYNC_ENABLE
3697 if (types & EV_ASYNC)
3698 for (i = asynccnt; i--; )
3699 cb (EV_A_ EV_ASYNC, asyncs [i]);
3700#endif
3701
3702 if (types & EV_PREPARE)
3703 for (i = preparecnt; i--; )
3704#if EV_EMBED_ENABLE
3705 if (ev_cb (prepares [i]) != embed_prepare_cb)
3706#endif
3707 cb (EV_A_ EV_PREPARE, prepares [i]);
3708
3709 if (types & EV_CHECK)
3710 for (i = checkcnt; i--; )
3711 cb (EV_A_ EV_CHECK, checks [i]);
3712
3713 if (types & EV_SIGNAL)
3714 for (i = 0; i < EV_NSIG - 1; ++i)
3715 for (wl = signals [i].head; wl; )
3716 {
3717 wn = wl->next;
3718 cb (EV_A_ EV_SIGNAL, wl);
3719 wl = wn;
3720 }
3721
3722 if (types & EV_CHILD)
3723 for (i = EV_PID_HASHSIZE; i--; )
3724 for (wl = childs [i]; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_CHILD, wl);
3728 wl = wn;
3729 }
3730/* EV_STAT 0x00001000 /* stat data changed */
3731/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3732}
3733#endif
3734
2801#if EV_MULTIPLICITY 3735#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3736 #include "ev_wrap.h"
2803#endif 3737#endif
2804 3738
2805#ifdef __cplusplus 3739#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines