ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.209 by root, Tue Feb 5 23:56:33 2008 UTC vs.
Revision 1.331 by root, Tue Mar 9 08:55:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
95# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
96# endif 111# endif
97# endif 112# endif
98 113
99# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
101# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
102# else 117# else
103# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
104# endif 119# endif
105# endif 120# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
127#include <fcntl.h> 159#include <fcntl.h>
128#include <stddef.h> 160#include <stddef.h>
129 161
130#include <stdio.h> 162#include <stdio.h>
131 163
132#include <assert.h> 164#include <assert.h>
133#include <errno.h> 165#include <errno.h>
134#include <sys/types.h> 166#include <sys/types.h>
135#include <time.h> 167#include <time.h>
168#include <limits.h>
136 169
137#include <signal.h> 170#include <signal.h>
138 171
139#ifdef EV_H 172#ifdef EV_H
140# include EV_H 173# include EV_H
145#ifndef _WIN32 178#ifndef _WIN32
146# include <sys/time.h> 179# include <sys/time.h>
147# include <sys/wait.h> 180# include <sys/wait.h>
148# include <unistd.h> 181# include <unistd.h>
149#else 182#else
183# include <io.h>
150# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 185# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
154# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
155#endif 226# endif
156 227#endif
157/**/
158 228
159#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
160# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
161#endif 235#endif
162 236
163#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 239#endif
166 240
167#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
168# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
169#endif 247#endif
170 248
171#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
173#endif 251#endif
179# define EV_USE_POLL 1 257# define EV_USE_POLL 1
180# endif 258# endif
181#endif 259#endif
182 260
183#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
184# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
185#endif 267#endif
186 268
187#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
189#endif 271#endif
191#ifndef EV_USE_PORT 273#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 274# define EV_USE_PORT 0
193#endif 275#endif
194 276
195#ifndef EV_USE_INOTIFY 277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_INOTIFY 1
280# else
196# define EV_USE_INOTIFY 0 281# define EV_USE_INOTIFY 0
282# endif
197#endif 283#endif
198 284
199#ifndef EV_PID_HASHSIZE 285#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 286# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 287# define EV_PID_HASHSIZE 1
210# else 296# else
211# define EV_INOTIFY_HASHSIZE 16 297# define EV_INOTIFY_HASHSIZE 16
212# endif 298# endif
213#endif 299#endif
214 300
215/**/ 301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
216 356
217#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
220#endif 360#endif
234# include <sys/select.h> 374# include <sys/select.h>
235# endif 375# endif
236#endif 376#endif
237 377
238#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
239# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
240#endif 387#endif
241 388
242#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 390# include <winsock.h>
244#endif 391#endif
245 392
393#if EV_USE_EVENTFD
394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
246/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
247 451
248/* 452/*
249 * This is used to avoid floating point rounding problems. 453 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 454 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 455 * to ensure progress, time-wise, even when rounding
255 */ 459 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 461
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 464
262#if __GNUC__ >= 4 465#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
265#else 468#else
266# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
267# define noinline 470# define noinline
268# if __STDC_VERSION__ < 199901L 471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 472# define inline
270# endif 473# endif
271#endif 474#endif
272 475
273#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 481# define inline_speed static noinline
279#else 482#else
280# define inline_speed static inline 483# define inline_speed static inline
281#endif 484#endif
282 485
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
285 493
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
288 496
289typedef ev_watcher *W; 497typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
292 500
293#if EV_USE_MONOTONIC 501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 522#endif
298 523
299#ifdef _WIN32 524#ifdef _WIN32
300# include "ev_win32.c" 525# include "ev_win32.c"
301#endif 526#endif
302 527
303/*****************************************************************************/ 528/*****************************************************************************/
304 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
305static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
306 539
307void 540void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 542{
310 syserr_cb = cb; 543 syserr_cb = cb;
311} 544}
312 545
313static void noinline 546static void noinline
314syserr (const char *msg) 547ev_syserr (const char *msg)
315{ 548{
316 if (!msg) 549 if (!msg)
317 msg = "(libev) system error"; 550 msg = "(libev) system error";
318 551
319 if (syserr_cb) 552 if (syserr_cb)
320 syserr_cb (msg); 553 syserr_cb (msg);
321 else 554 else
322 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
323 perror (msg); 564 perror (msg);
565#endif
324 abort (); 566 abort ();
325 } 567 }
326} 568}
327 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573 /* some systems, notably openbsd and darwin, fail to properly
574 * implement realloc (x, 0) (as required by both ansi c-98 and
575 * the single unix specification, so work around them here.
576 */
577
578 if (size)
579 return realloc (ptr, size);
580
581 free (ptr);
582 return 0;
583}
584
328static void *(*alloc)(void *ptr, long size); 585static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 586
330void 587void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 588ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 589{
333 alloc = cb; 590 alloc = cb;
334} 591}
335 592
336inline_speed void * 593inline_speed void *
337ev_realloc (void *ptr, long size) 594ev_realloc (void *ptr, long size)
338{ 595{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 596 ptr = alloc (ptr, size);
340 597
341 if (!ptr && size) 598 if (!ptr && size)
342 { 599 {
600#if EV_AVOID_STDIO
601 ev_printerr ("libev: memory allocation failed, aborting.\n");
602#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 603 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
604#endif
344 abort (); 605 abort ();
345 } 606 }
346 607
347 return ptr; 608 return ptr;
348} 609}
350#define ev_malloc(size) ev_realloc (0, (size)) 611#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 612#define ev_free(ptr) ev_realloc ((ptr), 0)
352 613
353/*****************************************************************************/ 614/*****************************************************************************/
354 615
616/* set in reify when reification needed */
617#define EV_ANFD_REIFY 1
618
619/* file descriptor info structure */
355typedef struct 620typedef struct
356{ 621{
357 WL head; 622 WL head;
358 unsigned char events; 623 unsigned char events; /* the events watched for */
624 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
625 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 626 unsigned char unused;
627#if EV_USE_EPOLL
628 unsigned int egen; /* generation counter to counter epoll bugs */
629#endif
360#if EV_SELECT_IS_WINSOCKET 630#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 631 SOCKET handle;
362#endif 632#endif
363} ANFD; 633} ANFD;
364 634
635/* stores the pending event set for a given watcher */
365typedef struct 636typedef struct
366{ 637{
367 W w; 638 W w;
368 int events; 639 int events; /* the pending event set for the given watcher */
369} ANPENDING; 640} ANPENDING;
370 641
371#if EV_USE_INOTIFY 642#if EV_USE_INOTIFY
643/* hash table entry per inotify-id */
372typedef struct 644typedef struct
373{ 645{
374 WL head; 646 WL head;
375} ANFS; 647} ANFS;
648#endif
649
650/* Heap Entry */
651#if EV_HEAP_CACHE_AT
652 /* a heap element */
653 typedef struct {
654 ev_tstamp at;
655 WT w;
656 } ANHE;
657
658 #define ANHE_w(he) (he).w /* access watcher, read-write */
659 #define ANHE_at(he) (he).at /* access cached at, read-only */
660 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
661#else
662 /* a heap element */
663 typedef WT ANHE;
664
665 #define ANHE_w(he) (he)
666 #define ANHE_at(he) (he)->at
667 #define ANHE_at_cache(he)
376#endif 668#endif
377 669
378#if EV_MULTIPLICITY 670#if EV_MULTIPLICITY
379 671
380 struct ev_loop 672 struct ev_loop
399 691
400 static int ev_default_loop_ptr; 692 static int ev_default_loop_ptr;
401 693
402#endif 694#endif
403 695
696#if EV_MINIMAL < 2
697# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
698# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
699# define EV_INVOKE_PENDING invoke_cb (EV_A)
700#else
701# define EV_RELEASE_CB (void)0
702# define EV_ACQUIRE_CB (void)0
703# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
704#endif
705
706#define EVUNLOOP_RECURSE 0x80
707
404/*****************************************************************************/ 708/*****************************************************************************/
405 709
710#ifndef EV_HAVE_EV_TIME
406ev_tstamp 711ev_tstamp
407ev_time (void) 712ev_time (void)
408{ 713{
409#if EV_USE_REALTIME 714#if EV_USE_REALTIME
715 if (expect_true (have_realtime))
716 {
410 struct timespec ts; 717 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 718 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 719 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 720 }
721#endif
722
414 struct timeval tv; 723 struct timeval tv;
415 gettimeofday (&tv, 0); 724 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 725 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 726}
727#endif
419 728
420ev_tstamp inline_size 729inline_size ev_tstamp
421get_clock (void) 730get_clock (void)
422{ 731{
423#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 733 if (expect_true (have_monotonic))
425 { 734 {
451 ts.tv_sec = (time_t)delay; 760 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 761 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 762
454 nanosleep (&ts, 0); 763 nanosleep (&ts, 0);
455#elif defined(_WIN32) 764#elif defined(_WIN32)
456 Sleep (delay * 1e3); 765 Sleep ((unsigned long)(delay * 1e3));
457#else 766#else
458 struct timeval tv; 767 struct timeval tv;
459 768
460 tv.tv_sec = (time_t)delay; 769 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 770 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 771
772 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
773 /* something not guaranteed by newer posix versions, but guaranteed */
774 /* by older ones */
463 select (0, 0, 0, 0, &tv); 775 select (0, 0, 0, 0, &tv);
464#endif 776#endif
465 } 777 }
466} 778}
467 779
468/*****************************************************************************/ 780/*****************************************************************************/
469 781
470int inline_size 782#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
783
784/* find a suitable new size for the given array, */
785/* hopefully by rounding to a ncie-to-malloc size */
786inline_size int
471array_nextsize (int elem, int cur, int cnt) 787array_nextsize (int elem, int cur, int cnt)
472{ 788{
473 int ncur = cur + 1; 789 int ncur = cur + 1;
474 790
475 do 791 do
476 ncur <<= 1; 792 ncur <<= 1;
477 while (cnt > ncur); 793 while (cnt > ncur);
478 794
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 795 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 796 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 797 {
482 ncur *= elem; 798 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 799 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 800 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 801 ncur /= elem;
486 } 802 }
487 803
488 return ncur; 804 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 808array_realloc (int elem, void *base, int *cur, int cnt)
493{ 809{
494 *cur = array_nextsize (elem, *cur, cnt); 810 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 811 return ev_realloc (base, elem * *cur);
496} 812}
813
814#define array_init_zero(base,count) \
815 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 816
498#define array_needsize(type,base,cur,cnt,init) \ 817#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 818 if (expect_false ((cnt) > (cur))) \
500 { \ 819 { \
501 int ocur_ = (cur); \ 820 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 832 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 833 }
515#endif 834#endif
516 835
517#define array_free(stem, idx) \ 836#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 837 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 838
520/*****************************************************************************/ 839/*****************************************************************************/
840
841/* dummy callback for pending events */
842static void noinline
843pendingcb (EV_P_ ev_prepare *w, int revents)
844{
845}
521 846
522void noinline 847void noinline
523ev_feed_event (EV_P_ void *w, int revents) 848ev_feed_event (EV_P_ void *w, int revents)
524{ 849{
525 W w_ = (W)w; 850 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 859 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 860 pendings [pri][w_->pending - 1].events = revents;
536 } 861 }
537} 862}
538 863
539void inline_speed 864inline_speed void
865feed_reverse (EV_P_ W w)
866{
867 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
868 rfeeds [rfeedcnt++] = w;
869}
870
871inline_size void
872feed_reverse_done (EV_P_ int revents)
873{
874 do
875 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
876 while (rfeedcnt);
877}
878
879inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 880queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 881{
542 int i; 882 int i;
543 883
544 for (i = 0; i < eventcnt; ++i) 884 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 885 ev_feed_event (EV_A_ events [i], type);
546} 886}
547 887
548/*****************************************************************************/ 888/*****************************************************************************/
549 889
550void inline_size 890inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 891fd_event_nc (EV_P_ int fd, int revents)
565{ 892{
566 ANFD *anfd = anfds + fd; 893 ANFD *anfd = anfds + fd;
567 ev_io *w; 894 ev_io *w;
568 895
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 896 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 900 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 901 ev_feed_event (EV_A_ (W)w, ev);
575 } 902 }
576} 903}
577 904
905/* do not submit kernel events for fds that have reify set */
906/* because that means they changed while we were polling for new events */
907inline_speed void
908fd_event (EV_P_ int fd, int revents)
909{
910 ANFD *anfd = anfds + fd;
911
912 if (expect_true (!anfd->reify))
913 fd_event_nc (EV_A_ fd, revents);
914}
915
578void 916void
579ev_feed_fd_event (EV_P_ int fd, int revents) 917ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 918{
581 if (fd >= 0 && fd < anfdmax) 919 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 920 fd_event_nc (EV_A_ fd, revents);
583} 921}
584 922
585void inline_size 923/* make sure the external fd watch events are in-sync */
924/* with the kernel/libev internal state */
925inline_size void
586fd_reify (EV_P) 926fd_reify (EV_P)
587{ 927{
588 int i; 928 int i;
589 929
590 for (i = 0; i < fdchangecnt; ++i) 930 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 939 events |= (unsigned char)w->events;
600 940
601#if EV_SELECT_IS_WINSOCKET 941#if EV_SELECT_IS_WINSOCKET
602 if (events) 942 if (events)
603 { 943 {
604 unsigned long argp; 944 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 945 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 946 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 947 }
612#endif 948#endif
613 949
614 { 950 {
615 unsigned char o_events = anfd->events; 951 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 952 unsigned char o_reify = anfd->reify;
617 953
618 anfd->reify = 0; 954 anfd->reify = 0;
619 anfd->events = events; 955 anfd->events = events;
620 956
621 if (o_events != events || o_reify & EV_IOFDSET) 957 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 958 backend_modify (EV_A_ fd, o_events, events);
623 } 959 }
624 } 960 }
625 961
626 fdchangecnt = 0; 962 fdchangecnt = 0;
627} 963}
628 964
629void inline_size 965/* something about the given fd changed */
966inline_size void
630fd_change (EV_P_ int fd, int flags) 967fd_change (EV_P_ int fd, int flags)
631{ 968{
632 unsigned char reify = anfds [fd].reify; 969 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 970 anfds [fd].reify |= flags;
634 971
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 975 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 976 fdchanges [fdchangecnt - 1] = fd;
640 } 977 }
641} 978}
642 979
643void inline_speed 980/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
981inline_speed void
644fd_kill (EV_P_ int fd) 982fd_kill (EV_P_ int fd)
645{ 983{
646 ev_io *w; 984 ev_io *w;
647 985
648 while ((w = (ev_io *)anfds [fd].head)) 986 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 988 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 989 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 990 }
653} 991}
654 992
655int inline_size 993/* check whether the given fd is atcually valid, for error recovery */
994inline_size int
656fd_valid (int fd) 995fd_valid (int fd)
657{ 996{
658#ifdef _WIN32 997#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 998 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 999#else
661 return fcntl (fd, F_GETFD) != -1; 1000 return fcntl (fd, F_GETFD) != -1;
662#endif 1001#endif
663} 1002}
664 1003
668{ 1007{
669 int fd; 1008 int fd;
670 1009
671 for (fd = 0; fd < anfdmax; ++fd) 1010 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1011 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1012 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1013 fd_kill (EV_A_ fd);
675} 1014}
676 1015
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1016/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1017static void noinline
682 1021
683 for (fd = anfdmax; fd--; ) 1022 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1023 if (anfds [fd].events)
685 { 1024 {
686 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
687 return; 1026 break;
688 } 1027 }
689} 1028}
690 1029
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1030/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1031static void noinline
696 1035
697 for (fd = 0; fd < anfdmax; ++fd) 1036 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1037 if (anfds [fd].events)
699 { 1038 {
700 anfds [fd].events = 0; 1039 anfds [fd].events = 0;
1040 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1041 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1042 }
703} 1043}
704 1044
705/*****************************************************************************/ 1045/*****************************************************************************/
706 1046
707void inline_speed 1047/*
708upheap (WT *heap, int k) 1048 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 1049 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 1050 * the branching factor of the d-tree.
1051 */
711 1052
712 while (k) 1053/*
713 { 1054 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 1055 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1056 * which is more cache-efficient.
1057 * the difference is about 5% with 50000+ watchers.
1058 */
1059#if EV_USE_4HEAP
715 1060
716 if (heap [p]->at <= w->at) 1061#define DHEAP 4
1062#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1063#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1064#define UPHEAP_DONE(p,k) ((p) == (k))
1065
1066/* away from the root */
1067inline_speed void
1068downheap (ANHE *heap, int N, int k)
1069{
1070 ANHE he = heap [k];
1071 ANHE *E = heap + N + HEAP0;
1072
1073 for (;;)
1074 {
1075 ev_tstamp minat;
1076 ANHE *minpos;
1077 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1078
1079 /* find minimum child */
1080 if (expect_true (pos + DHEAP - 1 < E))
1081 {
1082 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1083 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1084 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1085 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1086 }
1087 else if (pos < E)
1088 {
1089 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1090 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1091 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1092 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1093 }
1094 else
717 break; 1095 break;
718 1096
1097 if (ANHE_at (he) <= minat)
1098 break;
1099
1100 heap [k] = *minpos;
1101 ev_active (ANHE_w (*minpos)) = k;
1102
1103 k = minpos - heap;
1104 }
1105
1106 heap [k] = he;
1107 ev_active (ANHE_w (he)) = k;
1108}
1109
1110#else /* 4HEAP */
1111
1112#define HEAP0 1
1113#define HPARENT(k) ((k) >> 1)
1114#define UPHEAP_DONE(p,k) (!(p))
1115
1116/* away from the root */
1117inline_speed void
1118downheap (ANHE *heap, int N, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int c = k << 1;
1125
1126 if (c >= N + HEAP0)
1127 break;
1128
1129 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1130 ? 1 : 0;
1131
1132 if (ANHE_at (he) <= ANHE_at (heap [c]))
1133 break;
1134
1135 heap [k] = heap [c];
1136 ev_active (ANHE_w (heap [k])) = k;
1137
1138 k = c;
1139 }
1140
1141 heap [k] = he;
1142 ev_active (ANHE_w (he)) = k;
1143}
1144#endif
1145
1146/* towards the root */
1147inline_speed void
1148upheap (ANHE *heap, int k)
1149{
1150 ANHE he = heap [k];
1151
1152 for (;;)
1153 {
1154 int p = HPARENT (k);
1155
1156 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1157 break;
1158
719 heap [k] = heap [p]; 1159 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1160 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1161 k = p;
722 } 1162 }
723 1163
724 heap [k] = w; 1164 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1165 ev_active (ANHE_w (he)) = k;
726} 1166}
727 1167
728void inline_speed 1168/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1169inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1170adjustheap (ANHE *heap, int N, int k)
758{ 1171{
1172 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
759 upheap (heap, k); 1173 upheap (heap, k);
1174 else
760 downheap (heap, N, k); 1175 downheap (heap, N, k);
1176}
1177
1178/* rebuild the heap: this function is used only once and executed rarely */
1179inline_size void
1180reheap (ANHE *heap, int N)
1181{
1182 int i;
1183
1184 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1185 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1186 for (i = 0; i < N; ++i)
1187 upheap (heap, i + HEAP0);
761} 1188}
762 1189
763/*****************************************************************************/ 1190/*****************************************************************************/
764 1191
1192/* associate signal watchers to a signal signal */
765typedef struct 1193typedef struct
766{ 1194{
1195 EV_ATOMIC_T pending;
1196#if EV_MULTIPLICITY
1197 EV_P;
1198#endif
767 WL head; 1199 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG; 1200} ANSIG;
770 1201
771static ANSIG *signals; 1202static ANSIG signals [EV_NSIG - 1];
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787 1203
788/*****************************************************************************/ 1204/*****************************************************************************/
789 1205
790void inline_speed 1206/* used to prepare libev internal fd's */
1207/* this is not fork-safe */
1208inline_speed void
791fd_intern (int fd) 1209fd_intern (int fd)
792{ 1210{
793#ifdef _WIN32 1211#ifdef _WIN32
794 int arg = 1; 1212 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1213 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
796#else 1214#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1215 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1216 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1217#endif
800} 1218}
801 1219
802static void noinline 1220static void noinline
803evpipe_init (EV_P) 1221evpipe_init (EV_P)
804{ 1222{
805 if (!ev_is_active (&pipeev)) 1223 if (!ev_is_active (&pipe_w))
806 { 1224 {
1225#if EV_USE_EVENTFD
1226 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1227 if (evfd < 0 && errno == EINVAL)
1228 evfd = eventfd (0, 0);
1229
1230 if (evfd >= 0)
1231 {
1232 evpipe [0] = -1;
1233 fd_intern (evfd); /* doing it twice doesn't hurt */
1234 ev_io_set (&pipe_w, evfd, EV_READ);
1235 }
1236 else
1237#endif
1238 {
807 while (pipe (evpipe)) 1239 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1240 ev_syserr ("(libev) error creating signal/async pipe");
809 1241
810 fd_intern (evpipe [0]); 1242 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1243 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1244 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1245 }
1246
814 ev_io_start (EV_A_ &pipeev); 1247 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1248 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 { 1249 }
824 int old_errno = errno; 1250}
825 1251
826 if (sig) gotsig = 1; 1252inline_size void
827 if (async) gotasync = 1; 1253evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1254{
1255 if (!*flag)
1256 {
1257 int old_errno = errno; /* save errno because write might clobber it */
828 1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
829 write (evpipe [1], &old_errno, 1); 1269 write (evpipe [1], &old_errno, 1);
1270
830 errno = old_errno; 1271 errno = old_errno;
831 } 1272 }
832} 1273}
833 1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
834static void 1277static void
835pipecb (EV_P_ ev_io *iow, int revents) 1278pipecb (EV_P_ ev_io *iow, int revents)
836{ 1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
837 { 1284 {
838 int dummy; 1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
839 read (evpipe [0], &dummy, 1); 1292 read (evpipe [0], &dummy, 1);
840 } 1293 }
841 1294
842 if (gotsig) 1295 if (sig_pending)
843 { 1296 {
844 int signum; 1297 sig_pending = 0;
845 gotsig = 0;
846 1298
847 for (signum = signalmax; signum--; ) 1299 for (i = EV_NSIG - 1; i--; )
848 if (signals [signum].gotsig) 1300 if (expect_false (signals [i].pending))
849 ev_feed_signal_event (EV_A_ signum + 1); 1301 ev_feed_signal_event (EV_A_ i + 1);
850 } 1302 }
851 1303
852#if EV_ASYNC_ENABLE 1304#if EV_ASYNC_ENABLE
853 if (gotasync) 1305 if (async_pending)
854 { 1306 {
855 int i; 1307 async_pending = 0;
856 gotasync = 0;
857 1308
858 for (i = asynccnt; i--; ) 1309 for (i = asynccnt; i--; )
859 if (asyncs [i]->sent) 1310 if (asyncs [i]->sent)
860 { 1311 {
861 asyncs [i]->sent = 0; 1312 asyncs [i]->sent = 0;
866} 1317}
867 1318
868/*****************************************************************************/ 1319/*****************************************************************************/
869 1320
870static void 1321static void
871sighandler (int signum) 1322ev_sighandler (int signum)
872{ 1323{
873#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
874 struct ev_loop *loop = &default_loop_struct; 1325 EV_P = signals [signum - 1].loop;
875#endif 1326#endif
876 1327
877#if _WIN32 1328#ifdef _WIN32
878 signal (signum, sighandler); 1329 signal (signum, ev_sighandler);
879#endif 1330#endif
880 1331
881 signals [signum - 1].gotsig = 1; 1332 signals [signum - 1].pending = 1;
882 evpipe_write (EV_A_ 1, 0); 1333 evpipe_write (EV_A_ &sig_pending);
883} 1334}
884 1335
885void noinline 1336void noinline
886ev_feed_signal_event (EV_P_ int signum) 1337ev_feed_signal_event (EV_P_ int signum)
887{ 1338{
888 WL w; 1339 WL w;
889 1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
890#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
891 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1347 /* it is permissible to try to feed a signal to the wrong loop */
892#endif 1348 /* or, likely more useful, feeding a signal nobody is waiting for */
893 1349
894 --signum; 1350 if (expect_false (signals [signum].loop != EV_A))
895
896 if (signum < 0 || signum >= signalmax)
897 return; 1351 return;
1352#endif
898 1353
899 signals [signum].gotsig = 0; 1354 signals [signum].pending = 0;
900 1355
901 for (w = signals [signum].head; w; w = w->next) 1356 for (w = signals [signum].head; w; w = w->next)
902 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
903} 1358}
904 1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
905/*****************************************************************************/ 1380/*****************************************************************************/
906 1381
907static WL childs [EV_PID_HASHSIZE]; 1382static WL childs [EV_PID_HASHSIZE];
908 1383
909#ifndef _WIN32 1384#ifndef _WIN32
912 1387
913#ifndef WIFCONTINUED 1388#ifndef WIFCONTINUED
914# define WIFCONTINUED(status) 0 1389# define WIFCONTINUED(status) 0
915#endif 1390#endif
916 1391
917void inline_speed 1392/* handle a single child status event */
1393inline_speed void
918child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1394child_reap (EV_P_ int chain, int pid, int status)
919{ 1395{
920 ev_child *w; 1396 ev_child *w;
921 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1397 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
922 1398
923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1399 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
924 { 1400 {
925 if ((w->pid == pid || !w->pid) 1401 if ((w->pid == pid || !w->pid)
926 && (!traced || (w->flags & 1))) 1402 && (!traced || (w->flags & 1)))
927 { 1403 {
928 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1404 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
929 w->rpid = pid; 1405 w->rpid = pid;
930 w->rstatus = status; 1406 w->rstatus = status;
931 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1407 ev_feed_event (EV_A_ (W)w, EV_CHILD);
932 } 1408 }
933 } 1409 }
935 1411
936#ifndef WCONTINUED 1412#ifndef WCONTINUED
937# define WCONTINUED 0 1413# define WCONTINUED 0
938#endif 1414#endif
939 1415
1416/* called on sigchld etc., calls waitpid */
940static void 1417static void
941childcb (EV_P_ ev_signal *sw, int revents) 1418childcb (EV_P_ ev_signal *sw, int revents)
942{ 1419{
943 int pid, status; 1420 int pid, status;
944 1421
947 if (!WCONTINUED 1424 if (!WCONTINUED
948 || errno != EINVAL 1425 || errno != EINVAL
949 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1426 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
950 return; 1427 return;
951 1428
952 /* make sure we are called again until all childs have been reaped */ 1429 /* make sure we are called again until all children have been reaped */
953 /* we need to do it this way so that the callback gets called before we continue */ 1430 /* we need to do it this way so that the callback gets called before we continue */
954 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1431 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
955 1432
956 child_reap (EV_A_ sw, pid, pid, status); 1433 child_reap (EV_A_ pid, pid, status);
957 if (EV_PID_HASHSIZE > 1) 1434 if (EV_PID_HASHSIZE > 1)
958 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1435 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
959} 1436}
960 1437
961#endif 1438#endif
962 1439
963/*****************************************************************************/ 1440/*****************************************************************************/
1025 /* kqueue is borked on everything but netbsd apparently */ 1502 /* kqueue is borked on everything but netbsd apparently */
1026 /* it usually doesn't work correctly on anything but sockets and pipes */ 1503 /* it usually doesn't work correctly on anything but sockets and pipes */
1027 flags &= ~EVBACKEND_KQUEUE; 1504 flags &= ~EVBACKEND_KQUEUE;
1028#endif 1505#endif
1029#ifdef __APPLE__ 1506#ifdef __APPLE__
1030 // flags &= ~EVBACKEND_KQUEUE; for documentation 1507 /* only select works correctly on that "unix-certified" platform */
1031 flags &= ~EVBACKEND_POLL; 1508 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1509 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1032#endif 1510#endif
1033 1511
1034 return flags; 1512 return flags;
1035} 1513}
1036 1514
1050ev_backend (EV_P) 1528ev_backend (EV_P)
1051{ 1529{
1052 return backend; 1530 return backend;
1053} 1531}
1054 1532
1533#if EV_MINIMAL < 2
1055unsigned int 1534unsigned int
1056ev_loop_count (EV_P) 1535ev_loop_count (EV_P)
1057{ 1536{
1058 return loop_count; 1537 return loop_count;
1059} 1538}
1060 1539
1540unsigned int
1541ev_loop_depth (EV_P)
1542{
1543 return loop_depth;
1544}
1545
1061void 1546void
1062ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1547ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1063{ 1548{
1064 io_blocktime = interval; 1549 io_blocktime = interval;
1065} 1550}
1068ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1553ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1069{ 1554{
1070 timeout_blocktime = interval; 1555 timeout_blocktime = interval;
1071} 1556}
1072 1557
1558void
1559ev_set_userdata (EV_P_ void *data)
1560{
1561 userdata = data;
1562}
1563
1564void *
1565ev_userdata (EV_P)
1566{
1567 return userdata;
1568}
1569
1570void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1571{
1572 invoke_cb = invoke_pending_cb;
1573}
1574
1575void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1576{
1577 release_cb = release;
1578 acquire_cb = acquire;
1579}
1580#endif
1581
1582/* initialise a loop structure, must be zero-initialised */
1073static void noinline 1583static void noinline
1074loop_init (EV_P_ unsigned int flags) 1584loop_init (EV_P_ unsigned int flags)
1075{ 1585{
1076 if (!backend) 1586 if (!backend)
1077 { 1587 {
1588#if EV_USE_REALTIME
1589 if (!have_realtime)
1590 {
1591 struct timespec ts;
1592
1593 if (!clock_gettime (CLOCK_REALTIME, &ts))
1594 have_realtime = 1;
1595 }
1596#endif
1597
1078#if EV_USE_MONOTONIC 1598#if EV_USE_MONOTONIC
1599 if (!have_monotonic)
1079 { 1600 {
1080 struct timespec ts; 1601 struct timespec ts;
1602
1081 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1603 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1082 have_monotonic = 1; 1604 have_monotonic = 1;
1083 } 1605 }
1084#endif 1606#endif
1607
1608 /* pid check not overridable via env */
1609#ifndef _WIN32
1610 if (flags & EVFLAG_FORKCHECK)
1611 curpid = getpid ();
1612#endif
1613
1614 if (!(flags & EVFLAG_NOENV)
1615 && !enable_secure ()
1616 && getenv ("LIBEV_FLAGS"))
1617 flags = atoi (getenv ("LIBEV_FLAGS"));
1085 1618
1086 ev_rt_now = ev_time (); 1619 ev_rt_now = ev_time ();
1087 mn_now = get_clock (); 1620 mn_now = get_clock ();
1088 now_floor = mn_now; 1621 now_floor = mn_now;
1089 rtmn_diff = ev_rt_now - mn_now; 1622 rtmn_diff = ev_rt_now - mn_now;
1623#if EV_MINIMAL < 2
1624 invoke_cb = ev_invoke_pending;
1625#endif
1090 1626
1091 io_blocktime = 0.; 1627 io_blocktime = 0.;
1092 timeout_blocktime = 0.; 1628 timeout_blocktime = 0.;
1093 backend = 0; 1629 backend = 0;
1094 backend_fd = -1; 1630 backend_fd = -1;
1095 gotasync = 0; 1631 sig_pending = 0;
1632#if EV_ASYNC_ENABLE
1633 async_pending = 0;
1634#endif
1096#if EV_USE_INOTIFY 1635#if EV_USE_INOTIFY
1097 fs_fd = -2; 1636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1098#endif 1637#endif
1099 1638#if EV_USE_SIGNALFD
1100 /* pid check not overridable via env */ 1639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1101#ifndef _WIN32
1102 if (flags & EVFLAG_FORKCHECK)
1103 curpid = getpid ();
1104#endif 1640#endif
1105 1641
1106 if (!(flags & EVFLAG_NOENV)
1107 && !enable_secure ()
1108 && getenv ("LIBEV_FLAGS"))
1109 flags = atoi (getenv ("LIBEV_FLAGS"));
1110
1111 if (!(flags & 0x0000ffffUL)) 1642 if (!(flags & 0x0000ffffU))
1112 flags |= ev_recommended_backends (); 1643 flags |= ev_recommended_backends ();
1113 1644
1114#if EV_USE_PORT 1645#if EV_USE_PORT
1115 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1646 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1116#endif 1647#endif
1125#endif 1656#endif
1126#if EV_USE_SELECT 1657#if EV_USE_SELECT
1127 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1658 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1128#endif 1659#endif
1129 1660
1661 ev_prepare_init (&pending_w, pendingcb);
1662
1130 ev_init (&pipeev, pipecb); 1663 ev_init (&pipe_w, pipecb);
1131 ev_set_priority (&pipeev, EV_MAXPRI); 1664 ev_set_priority (&pipe_w, EV_MAXPRI);
1132 } 1665 }
1133} 1666}
1134 1667
1668/* free up a loop structure */
1135static void noinline 1669static void noinline
1136loop_destroy (EV_P) 1670loop_destroy (EV_P)
1137{ 1671{
1138 int i; 1672 int i;
1139 1673
1140 if (ev_is_active (&pipeev)) 1674 if (ev_is_active (&pipe_w))
1141 { 1675 {
1142 ev_ref (EV_A); /* signal watcher */ 1676 /*ev_ref (EV_A);*/
1143 ev_io_stop (EV_A_ &pipeev); 1677 /*ev_io_stop (EV_A_ &pipe_w);*/
1144 1678
1145 close (evpipe [0]); evpipe [0] = 0; 1679#if EV_USE_EVENTFD
1146 close (evpipe [1]); evpipe [1] = 0; 1680 if (evfd >= 0)
1681 close (evfd);
1682#endif
1683
1684 if (evpipe [0] >= 0)
1685 {
1686 EV_WIN32_CLOSE_FD (evpipe [0]);
1687 EV_WIN32_CLOSE_FD (evpipe [1]);
1688 }
1147 } 1689 }
1690
1691#if EV_USE_SIGNALFD
1692 if (ev_is_active (&sigfd_w))
1693 close (sigfd);
1694#endif
1148 1695
1149#if EV_USE_INOTIFY 1696#if EV_USE_INOTIFY
1150 if (fs_fd >= 0) 1697 if (fs_fd >= 0)
1151 close (fs_fd); 1698 close (fs_fd);
1152#endif 1699#endif
1176#if EV_IDLE_ENABLE 1723#if EV_IDLE_ENABLE
1177 array_free (idle, [i]); 1724 array_free (idle, [i]);
1178#endif 1725#endif
1179 } 1726 }
1180 1727
1181 ev_free (anfds); anfdmax = 0; 1728 ev_free (anfds); anfds = 0; anfdmax = 0;
1182 1729
1183 /* have to use the microsoft-never-gets-it-right macro */ 1730 /* have to use the microsoft-never-gets-it-right macro */
1731 array_free (rfeed, EMPTY);
1184 array_free (fdchange, EMPTY); 1732 array_free (fdchange, EMPTY);
1185 array_free (timer, EMPTY); 1733 array_free (timer, EMPTY);
1186#if EV_PERIODIC_ENABLE 1734#if EV_PERIODIC_ENABLE
1187 array_free (periodic, EMPTY); 1735 array_free (periodic, EMPTY);
1188#endif 1736#endif
1196#endif 1744#endif
1197 1745
1198 backend = 0; 1746 backend = 0;
1199} 1747}
1200 1748
1749#if EV_USE_INOTIFY
1201void inline_size infy_fork (EV_P); 1750inline_size void infy_fork (EV_P);
1751#endif
1202 1752
1203void inline_size 1753inline_size void
1204loop_fork (EV_P) 1754loop_fork (EV_P)
1205{ 1755{
1206#if EV_USE_PORT 1756#if EV_USE_PORT
1207 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1757 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1208#endif 1758#endif
1214#endif 1764#endif
1215#if EV_USE_INOTIFY 1765#if EV_USE_INOTIFY
1216 infy_fork (EV_A); 1766 infy_fork (EV_A);
1217#endif 1767#endif
1218 1768
1219 if (ev_is_active (&pipeev)) 1769 if (ev_is_active (&pipe_w))
1220 { 1770 {
1221 /* this "locks" the handlers against writing to the pipe */ 1771 /* this "locks" the handlers against writing to the pipe */
1222 gotsig = gotasync = 1; 1772 /* while we modify the fd vars */
1773 sig_pending = 1;
1774#if EV_ASYNC_ENABLE
1775 async_pending = 1;
1776#endif
1223 1777
1224 ev_ref (EV_A); 1778 ev_ref (EV_A);
1225 ev_io_stop (EV_A_ &pipeev); 1779 ev_io_stop (EV_A_ &pipe_w);
1226 close (evpipe [0]); 1780
1227 close (evpipe [1]); 1781#if EV_USE_EVENTFD
1782 if (evfd >= 0)
1783 close (evfd);
1784#endif
1785
1786 if (evpipe [0] >= 0)
1787 {
1788 EV_WIN32_CLOSE_FD (evpipe [0]);
1789 EV_WIN32_CLOSE_FD (evpipe [1]);
1790 }
1228 1791
1229 evpipe_init (EV_A); 1792 evpipe_init (EV_A);
1230 /* now iterate over everything, in case we missed something */ 1793 /* now iterate over everything, in case we missed something */
1231 pipecb (EV_A_ &pipeev, EV_READ); 1794 pipecb (EV_A_ &pipe_w, EV_READ);
1232 } 1795 }
1233 1796
1234 postfork = 0; 1797 postfork = 0;
1235} 1798}
1236 1799
1237#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1801
1238struct ev_loop * 1802struct ev_loop *
1239ev_loop_new (unsigned int flags) 1803ev_loop_new (unsigned int flags)
1240{ 1804{
1241 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1805 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1242 1806
1243 memset (loop, 0, sizeof (struct ev_loop)); 1807 memset (EV_A, 0, sizeof (struct ev_loop));
1244
1245 loop_init (EV_A_ flags); 1808 loop_init (EV_A_ flags);
1246 1809
1247 if (ev_backend (EV_A)) 1810 if (ev_backend (EV_A))
1248 return loop; 1811 return EV_A;
1249 1812
1250 return 0; 1813 return 0;
1251} 1814}
1252 1815
1253void 1816void
1260void 1823void
1261ev_loop_fork (EV_P) 1824ev_loop_fork (EV_P)
1262{ 1825{
1263 postfork = 1; /* must be in line with ev_default_fork */ 1826 postfork = 1; /* must be in line with ev_default_fork */
1264} 1827}
1828#endif /* multiplicity */
1265 1829
1830#if EV_VERIFY
1831static void noinline
1832verify_watcher (EV_P_ W w)
1833{
1834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1835
1836 if (w->pending)
1837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1838}
1839
1840static void noinline
1841verify_heap (EV_P_ ANHE *heap, int N)
1842{
1843 int i;
1844
1845 for (i = HEAP0; i < N + HEAP0; ++i)
1846 {
1847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1850
1851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1852 }
1853}
1854
1855static void noinline
1856array_verify (EV_P_ W *ws, int cnt)
1857{
1858 while (cnt--)
1859 {
1860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1861 verify_watcher (EV_A_ ws [cnt]);
1862 }
1863}
1864#endif
1865
1866#if EV_MINIMAL < 2
1867void
1868ev_loop_verify (EV_P)
1869{
1870#if EV_VERIFY
1871 int i;
1872 WL w;
1873
1874 assert (activecnt >= -1);
1875
1876 assert (fdchangemax >= fdchangecnt);
1877 for (i = 0; i < fdchangecnt; ++i)
1878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1879
1880 assert (anfdmax >= 0);
1881 for (i = 0; i < anfdmax; ++i)
1882 for (w = anfds [i].head; w; w = w->next)
1883 {
1884 verify_watcher (EV_A_ (W)w);
1885 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1886 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1887 }
1888
1889 assert (timermax >= timercnt);
1890 verify_heap (EV_A_ timers, timercnt);
1891
1892#if EV_PERIODIC_ENABLE
1893 assert (periodicmax >= periodiccnt);
1894 verify_heap (EV_A_ periodics, periodiccnt);
1895#endif
1896
1897 for (i = NUMPRI; i--; )
1898 {
1899 assert (pendingmax [i] >= pendingcnt [i]);
1900#if EV_IDLE_ENABLE
1901 assert (idleall >= 0);
1902 assert (idlemax [i] >= idlecnt [i]);
1903 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1904#endif
1905 }
1906
1907#if EV_FORK_ENABLE
1908 assert (forkmax >= forkcnt);
1909 array_verify (EV_A_ (W *)forks, forkcnt);
1910#endif
1911
1912#if EV_ASYNC_ENABLE
1913 assert (asyncmax >= asynccnt);
1914 array_verify (EV_A_ (W *)asyncs, asynccnt);
1915#endif
1916
1917 assert (preparemax >= preparecnt);
1918 array_verify (EV_A_ (W *)prepares, preparecnt);
1919
1920 assert (checkmax >= checkcnt);
1921 array_verify (EV_A_ (W *)checks, checkcnt);
1922
1923# if 0
1924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1926# endif
1927#endif
1928}
1266#endif 1929#endif
1267 1930
1268#if EV_MULTIPLICITY 1931#if EV_MULTIPLICITY
1269struct ev_loop * 1932struct ev_loop *
1270ev_default_loop_init (unsigned int flags) 1933ev_default_loop_init (unsigned int flags)
1274#endif 1937#endif
1275{ 1938{
1276 if (!ev_default_loop_ptr) 1939 if (!ev_default_loop_ptr)
1277 { 1940 {
1278#if EV_MULTIPLICITY 1941#if EV_MULTIPLICITY
1279 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1280#else 1943#else
1281 ev_default_loop_ptr = 1; 1944 ev_default_loop_ptr = 1;
1282#endif 1945#endif
1283 1946
1284 loop_init (EV_A_ flags); 1947 loop_init (EV_A_ flags);
1301 1964
1302void 1965void
1303ev_default_destroy (void) 1966ev_default_destroy (void)
1304{ 1967{
1305#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1306 struct ev_loop *loop = ev_default_loop_ptr; 1969 EV_P = ev_default_loop_ptr;
1307#endif 1970#endif
1971
1972 ev_default_loop_ptr = 0;
1308 1973
1309#ifndef _WIN32 1974#ifndef _WIN32
1310 ev_ref (EV_A); /* child watcher */ 1975 ev_ref (EV_A); /* child watcher */
1311 ev_signal_stop (EV_A_ &childev); 1976 ev_signal_stop (EV_A_ &childev);
1312#endif 1977#endif
1316 1981
1317void 1982void
1318ev_default_fork (void) 1983ev_default_fork (void)
1319{ 1984{
1320#if EV_MULTIPLICITY 1985#if EV_MULTIPLICITY
1321 struct ev_loop *loop = ev_default_loop_ptr; 1986 EV_P = ev_default_loop_ptr;
1322#endif 1987#endif
1323 1988
1324 if (backend)
1325 postfork = 1; /* must be in line with ev_loop_fork */ 1989 postfork = 1; /* must be in line with ev_loop_fork */
1326} 1990}
1327 1991
1328/*****************************************************************************/ 1992/*****************************************************************************/
1329 1993
1330void 1994void
1331ev_invoke (EV_P_ void *w, int revents) 1995ev_invoke (EV_P_ void *w, int revents)
1332{ 1996{
1333 EV_CB_INVOKE ((W)w, revents); 1997 EV_CB_INVOKE ((W)w, revents);
1334} 1998}
1335 1999
1336void inline_speed 2000unsigned int
1337call_pending (EV_P) 2001ev_pending_count (EV_P)
2002{
2003 int pri;
2004 unsigned int count = 0;
2005
2006 for (pri = NUMPRI; pri--; )
2007 count += pendingcnt [pri];
2008
2009 return count;
2010}
2011
2012void noinline
2013ev_invoke_pending (EV_P)
1338{ 2014{
1339 int pri; 2015 int pri;
1340 2016
1341 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1342 while (pendingcnt [pri]) 2018 while (pendingcnt [pri])
1343 { 2019 {
1344 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2020 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1345 2021
1346 if (expect_true (p->w))
1347 {
1348 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2022 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2023 /* ^ this is no longer true, as pending_w could be here */
1349 2024
1350 p->w->pending = 0; 2025 p->w->pending = 0;
1351 EV_CB_INVOKE (p->w, p->events); 2026 EV_CB_INVOKE (p->w, p->events);
1352 } 2027 EV_FREQUENT_CHECK;
1353 } 2028 }
1354} 2029}
1355 2030
1356void inline_size
1357timers_reify (EV_P)
1358{
1359 while (timercnt && ((WT)timers [0])->at <= mn_now)
1360 {
1361 ev_timer *w = (ev_timer *)timers [0];
1362
1363 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1364
1365 /* first reschedule or stop timer */
1366 if (w->repeat)
1367 {
1368 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1369
1370 ((WT)w)->at += w->repeat;
1371 if (((WT)w)->at < mn_now)
1372 ((WT)w)->at = mn_now;
1373
1374 downheap (timers, timercnt, 0);
1375 }
1376 else
1377 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1378
1379 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1380 }
1381}
1382
1383#if EV_PERIODIC_ENABLE
1384void inline_size
1385periodics_reify (EV_P)
1386{
1387 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1388 {
1389 ev_periodic *w = (ev_periodic *)periodics [0];
1390
1391 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1392
1393 /* first reschedule or stop timer */
1394 if (w->reschedule_cb)
1395 {
1396 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1397 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1398 downheap (periodics, periodiccnt, 0);
1399 }
1400 else if (w->interval)
1401 {
1402 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1403 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1404 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1405 downheap (periodics, periodiccnt, 0);
1406 }
1407 else
1408 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1409
1410 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1411 }
1412}
1413
1414static void noinline
1415periodics_reschedule (EV_P)
1416{
1417 int i;
1418
1419 /* adjust periodics after time jump */
1420 for (i = 0; i < periodiccnt; ++i)
1421 {
1422 ev_periodic *w = (ev_periodic *)periodics [i];
1423
1424 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval)
1427 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1428 }
1429
1430 /* now rebuild the heap */
1431 for (i = periodiccnt >> 1; i--; )
1432 downheap (periodics, periodiccnt, i);
1433}
1434#endif
1435
1436#if EV_IDLE_ENABLE 2031#if EV_IDLE_ENABLE
1437void inline_size 2032/* make idle watchers pending. this handles the "call-idle */
2033/* only when higher priorities are idle" logic */
2034inline_size void
1438idle_reify (EV_P) 2035idle_reify (EV_P)
1439{ 2036{
1440 if (expect_false (idleall)) 2037 if (expect_false (idleall))
1441 { 2038 {
1442 int pri; 2039 int pri;
1454 } 2051 }
1455 } 2052 }
1456} 2053}
1457#endif 2054#endif
1458 2055
1459void inline_speed 2056/* make timers pending */
2057inline_size void
2058timers_reify (EV_P)
2059{
2060 EV_FREQUENT_CHECK;
2061
2062 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2063 {
2064 do
2065 {
2066 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2067
2068 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2069
2070 /* first reschedule or stop timer */
2071 if (w->repeat)
2072 {
2073 ev_at (w) += w->repeat;
2074 if (ev_at (w) < mn_now)
2075 ev_at (w) = mn_now;
2076
2077 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2078
2079 ANHE_at_cache (timers [HEAP0]);
2080 downheap (timers, timercnt, HEAP0);
2081 }
2082 else
2083 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2084
2085 EV_FREQUENT_CHECK;
2086 feed_reverse (EV_A_ (W)w);
2087 }
2088 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2089
2090 feed_reverse_done (EV_A_ EV_TIMEOUT);
2091 }
2092}
2093
2094#if EV_PERIODIC_ENABLE
2095/* make periodics pending */
2096inline_size void
2097periodics_reify (EV_P)
2098{
2099 EV_FREQUENT_CHECK;
2100
2101 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2102 {
2103 int feed_count = 0;
2104
2105 do
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2108
2109 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2110
2111 /* first reschedule or stop timer */
2112 if (w->reschedule_cb)
2113 {
2114 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2115
2116 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2117
2118 ANHE_at_cache (periodics [HEAP0]);
2119 downheap (periodics, periodiccnt, HEAP0);
2120 }
2121 else if (w->interval)
2122 {
2123 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2124 /* if next trigger time is not sufficiently in the future, put it there */
2125 /* this might happen because of floating point inexactness */
2126 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2127 {
2128 ev_at (w) += w->interval;
2129
2130 /* if interval is unreasonably low we might still have a time in the past */
2131 /* so correct this. this will make the periodic very inexact, but the user */
2132 /* has effectively asked to get triggered more often than possible */
2133 if (ev_at (w) < ev_rt_now)
2134 ev_at (w) = ev_rt_now;
2135 }
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else
2141 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2142
2143 EV_FREQUENT_CHECK;
2144 feed_reverse (EV_A_ (W)w);
2145 }
2146 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2147
2148 feed_reverse_done (EV_A_ EV_PERIODIC);
2149 }
2150}
2151
2152/* simply recalculate all periodics */
2153/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2154static void noinline
2155periodics_reschedule (EV_P)
2156{
2157 int i;
2158
2159 /* adjust periodics after time jump */
2160 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2161 {
2162 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2163
2164 if (w->reschedule_cb)
2165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2166 else if (w->interval)
2167 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2168
2169 ANHE_at_cache (periodics [i]);
2170 }
2171
2172 reheap (periodics, periodiccnt);
2173}
2174#endif
2175
2176/* adjust all timers by a given offset */
2177static void noinline
2178timers_reschedule (EV_P_ ev_tstamp adjust)
2179{
2180 int i;
2181
2182 for (i = 0; i < timercnt; ++i)
2183 {
2184 ANHE *he = timers + i + HEAP0;
2185 ANHE_w (*he)->at += adjust;
2186 ANHE_at_cache (*he);
2187 }
2188}
2189
2190/* fetch new monotonic and realtime times from the kernel */
2191/* also detect if there was a timejump, and act accordingly */
2192inline_speed void
1460time_update (EV_P_ ev_tstamp max_block) 2193time_update (EV_P_ ev_tstamp max_block)
1461{ 2194{
1462 int i;
1463
1464#if EV_USE_MONOTONIC 2195#if EV_USE_MONOTONIC
1465 if (expect_true (have_monotonic)) 2196 if (expect_true (have_monotonic))
1466 { 2197 {
2198 int i;
1467 ev_tstamp odiff = rtmn_diff; 2199 ev_tstamp odiff = rtmn_diff;
1468 2200
1469 mn_now = get_clock (); 2201 mn_now = get_clock ();
1470 2202
1471 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2203 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1489 */ 2221 */
1490 for (i = 4; --i; ) 2222 for (i = 4; --i; )
1491 { 2223 {
1492 rtmn_diff = ev_rt_now - mn_now; 2224 rtmn_diff = ev_rt_now - mn_now;
1493 2225
1494 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2226 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1495 return; /* all is well */ 2227 return; /* all is well */
1496 2228
1497 ev_rt_now = ev_time (); 2229 ev_rt_now = ev_time ();
1498 mn_now = get_clock (); 2230 mn_now = get_clock ();
1499 now_floor = mn_now; 2231 now_floor = mn_now;
1500 } 2232 }
1501 2233
2234 /* no timer adjustment, as the monotonic clock doesn't jump */
2235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1502# if EV_PERIODIC_ENABLE 2236# if EV_PERIODIC_ENABLE
1503 periodics_reschedule (EV_A); 2237 periodics_reschedule (EV_A);
1504# endif 2238# endif
1505 /* no timer adjustment, as the monotonic clock doesn't jump */
1506 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1507 } 2239 }
1508 else 2240 else
1509#endif 2241#endif
1510 { 2242 {
1511 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1512 2244
1513 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2245 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1514 { 2246 {
2247 /* adjust timers. this is easy, as the offset is the same for all of them */
2248 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1515#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1516 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1517#endif 2251#endif
1518 /* adjust timers. this is easy, as the offset is the same for all of them */
1519 for (i = 0; i < timercnt; ++i)
1520 ((WT)timers [i])->at += ev_rt_now - mn_now;
1521 } 2252 }
1522 2253
1523 mn_now = ev_rt_now; 2254 mn_now = ev_rt_now;
1524 } 2255 }
1525} 2256}
1526 2257
1527void 2258void
1528ev_ref (EV_P)
1529{
1530 ++activecnt;
1531}
1532
1533void
1534ev_unref (EV_P)
1535{
1536 --activecnt;
1537}
1538
1539static int loop_done;
1540
1541void
1542ev_loop (EV_P_ int flags) 2259ev_loop (EV_P_ int flags)
1543{ 2260{
1544 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2261#if EV_MINIMAL < 2
1545 ? EVUNLOOP_ONE 2262 ++loop_depth;
1546 : EVUNLOOP_CANCEL; 2263#endif
1547 2264
2265 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2266
2267 loop_done = EVUNLOOP_CANCEL;
2268
1548 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2269 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1549 2270
1550 do 2271 do
1551 { 2272 {
2273#if EV_VERIFY >= 2
2274 ev_loop_verify (EV_A);
2275#endif
2276
1552#ifndef _WIN32 2277#ifndef _WIN32
1553 if (expect_false (curpid)) /* penalise the forking check even more */ 2278 if (expect_false (curpid)) /* penalise the forking check even more */
1554 if (expect_false (getpid () != curpid)) 2279 if (expect_false (getpid () != curpid))
1555 { 2280 {
1556 curpid = getpid (); 2281 curpid = getpid ();
1562 /* we might have forked, so queue fork handlers */ 2287 /* we might have forked, so queue fork handlers */
1563 if (expect_false (postfork)) 2288 if (expect_false (postfork))
1564 if (forkcnt) 2289 if (forkcnt)
1565 { 2290 {
1566 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2291 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1567 call_pending (EV_A); 2292 EV_INVOKE_PENDING;
1568 } 2293 }
1569#endif 2294#endif
1570 2295
1571 /* queue prepare watchers (and execute them) */ 2296 /* queue prepare watchers (and execute them) */
1572 if (expect_false (preparecnt)) 2297 if (expect_false (preparecnt))
1573 { 2298 {
1574 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2299 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1575 call_pending (EV_A); 2300 EV_INVOKE_PENDING;
1576 } 2301 }
1577 2302
1578 if (expect_false (!activecnt)) 2303 if (expect_false (loop_done))
1579 break; 2304 break;
1580 2305
1581 /* we might have forked, so reify kernel state if necessary */ 2306 /* we might have forked, so reify kernel state if necessary */
1582 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1583 loop_fork (EV_A); 2308 loop_fork (EV_A);
1590 ev_tstamp waittime = 0.; 2315 ev_tstamp waittime = 0.;
1591 ev_tstamp sleeptime = 0.; 2316 ev_tstamp sleeptime = 0.;
1592 2317
1593 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2318 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1594 { 2319 {
2320 /* remember old timestamp for io_blocktime calculation */
2321 ev_tstamp prev_mn_now = mn_now;
2322
1595 /* update time to cancel out callback processing overhead */ 2323 /* update time to cancel out callback processing overhead */
1596 time_update (EV_A_ 1e100); 2324 time_update (EV_A_ 1e100);
1597 2325
1598 waittime = MAX_BLOCKTIME; 2326 waittime = MAX_BLOCKTIME;
1599 2327
1600 if (timercnt) 2328 if (timercnt)
1601 { 2329 {
1602 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1603 if (waittime > to) waittime = to; 2331 if (waittime > to) waittime = to;
1604 } 2332 }
1605 2333
1606#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1607 if (periodiccnt) 2335 if (periodiccnt)
1608 { 2336 {
1609 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1610 if (waittime > to) waittime = to; 2338 if (waittime > to) waittime = to;
1611 } 2339 }
1612#endif 2340#endif
1613 2341
2342 /* don't let timeouts decrease the waittime below timeout_blocktime */
1614 if (expect_false (waittime < timeout_blocktime)) 2343 if (expect_false (waittime < timeout_blocktime))
1615 waittime = timeout_blocktime; 2344 waittime = timeout_blocktime;
1616 2345
1617 sleeptime = waittime - backend_fudge; 2346 /* extra check because io_blocktime is commonly 0 */
1618
1619 if (expect_true (sleeptime > io_blocktime)) 2347 if (expect_false (io_blocktime))
1620 sleeptime = io_blocktime;
1621
1622 if (sleeptime)
1623 { 2348 {
2349 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2350
2351 if (sleeptime > waittime - backend_fudge)
2352 sleeptime = waittime - backend_fudge;
2353
2354 if (expect_true (sleeptime > 0.))
2355 {
1624 ev_sleep (sleeptime); 2356 ev_sleep (sleeptime);
1625 waittime -= sleeptime; 2357 waittime -= sleeptime;
2358 }
1626 } 2359 }
1627 } 2360 }
1628 2361
2362#if EV_MINIMAL < 2
1629 ++loop_count; 2363 ++loop_count;
2364#endif
2365 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1630 backend_poll (EV_A_ waittime); 2366 backend_poll (EV_A_ waittime);
2367 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1631 2368
1632 /* update ev_rt_now, do magic */ 2369 /* update ev_rt_now, do magic */
1633 time_update (EV_A_ waittime + sleeptime); 2370 time_update (EV_A_ waittime + sleeptime);
1634 } 2371 }
1635 2372
1646 2383
1647 /* queue check watchers, to be executed first */ 2384 /* queue check watchers, to be executed first */
1648 if (expect_false (checkcnt)) 2385 if (expect_false (checkcnt))
1649 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2386 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1650 2387
1651 call_pending (EV_A); 2388 EV_INVOKE_PENDING;
1652
1653 } 2389 }
1654 while (expect_true (activecnt && !loop_done)); 2390 while (expect_true (
2391 activecnt
2392 && !loop_done
2393 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2394 ));
1655 2395
1656 if (loop_done == EVUNLOOP_ONE) 2396 if (loop_done == EVUNLOOP_ONE)
1657 loop_done = EVUNLOOP_CANCEL; 2397 loop_done = EVUNLOOP_CANCEL;
2398
2399#if EV_MINIMAL < 2
2400 --loop_depth;
2401#endif
1658} 2402}
1659 2403
1660void 2404void
1661ev_unloop (EV_P_ int how) 2405ev_unloop (EV_P_ int how)
1662{ 2406{
1663 loop_done = how; 2407 loop_done = how;
1664} 2408}
1665 2409
2410void
2411ev_ref (EV_P)
2412{
2413 ++activecnt;
2414}
2415
2416void
2417ev_unref (EV_P)
2418{
2419 --activecnt;
2420}
2421
2422void
2423ev_now_update (EV_P)
2424{
2425 time_update (EV_A_ 1e100);
2426}
2427
2428void
2429ev_suspend (EV_P)
2430{
2431 ev_now_update (EV_A);
2432}
2433
2434void
2435ev_resume (EV_P)
2436{
2437 ev_tstamp mn_prev = mn_now;
2438
2439 ev_now_update (EV_A);
2440 timers_reschedule (EV_A_ mn_now - mn_prev);
2441#if EV_PERIODIC_ENABLE
2442 /* TODO: really do this? */
2443 periodics_reschedule (EV_A);
2444#endif
2445}
2446
1666/*****************************************************************************/ 2447/*****************************************************************************/
2448/* singly-linked list management, used when the expected list length is short */
1667 2449
1668void inline_size 2450inline_size void
1669wlist_add (WL *head, WL elem) 2451wlist_add (WL *head, WL elem)
1670{ 2452{
1671 elem->next = *head; 2453 elem->next = *head;
1672 *head = elem; 2454 *head = elem;
1673} 2455}
1674 2456
1675void inline_size 2457inline_size void
1676wlist_del (WL *head, WL elem) 2458wlist_del (WL *head, WL elem)
1677{ 2459{
1678 while (*head) 2460 while (*head)
1679 { 2461 {
1680 if (*head == elem) 2462 if (expect_true (*head == elem))
1681 { 2463 {
1682 *head = elem->next; 2464 *head = elem->next;
1683 return; 2465 break;
1684 } 2466 }
1685 2467
1686 head = &(*head)->next; 2468 head = &(*head)->next;
1687 } 2469 }
1688} 2470}
1689 2471
1690void inline_speed 2472/* internal, faster, version of ev_clear_pending */
2473inline_speed void
1691clear_pending (EV_P_ W w) 2474clear_pending (EV_P_ W w)
1692{ 2475{
1693 if (w->pending) 2476 if (w->pending)
1694 { 2477 {
1695 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2478 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1696 w->pending = 0; 2479 w->pending = 0;
1697 } 2480 }
1698} 2481}
1699 2482
1700int 2483int
1704 int pending = w_->pending; 2487 int pending = w_->pending;
1705 2488
1706 if (expect_true (pending)) 2489 if (expect_true (pending))
1707 { 2490 {
1708 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2491 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2492 p->w = (W)&pending_w;
1709 w_->pending = 0; 2493 w_->pending = 0;
1710 p->w = 0;
1711 return p->events; 2494 return p->events;
1712 } 2495 }
1713 else 2496 else
1714 return 0; 2497 return 0;
1715} 2498}
1716 2499
1717void inline_size 2500inline_size void
1718pri_adjust (EV_P_ W w) 2501pri_adjust (EV_P_ W w)
1719{ 2502{
1720 int pri = w->priority; 2503 int pri = ev_priority (w);
1721 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2504 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1722 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2505 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1723 w->priority = pri; 2506 ev_set_priority (w, pri);
1724} 2507}
1725 2508
1726void inline_speed 2509inline_speed void
1727ev_start (EV_P_ W w, int active) 2510ev_start (EV_P_ W w, int active)
1728{ 2511{
1729 pri_adjust (EV_A_ w); 2512 pri_adjust (EV_A_ w);
1730 w->active = active; 2513 w->active = active;
1731 ev_ref (EV_A); 2514 ev_ref (EV_A);
1732} 2515}
1733 2516
1734void inline_size 2517inline_size void
1735ev_stop (EV_P_ W w) 2518ev_stop (EV_P_ W w)
1736{ 2519{
1737 ev_unref (EV_A); 2520 ev_unref (EV_A);
1738 w->active = 0; 2521 w->active = 0;
1739} 2522}
1746 int fd = w->fd; 2529 int fd = w->fd;
1747 2530
1748 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
1749 return; 2532 return;
1750 2533
1751 assert (("ev_io_start called with negative fd", fd >= 0)); 2534 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2535 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2536
2537 EV_FREQUENT_CHECK;
1752 2538
1753 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1754 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2540 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1755 wlist_add (&anfds[fd].head, (WL)w); 2541 wlist_add (&anfds[fd].head, (WL)w);
1756 2542
1757 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2543 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1758 w->events &= ~EV_IOFDSET; 2544 w->events &= ~EV__IOFDSET;
2545
2546 EV_FREQUENT_CHECK;
1759} 2547}
1760 2548
1761void noinline 2549void noinline
1762ev_io_stop (EV_P_ ev_io *w) 2550ev_io_stop (EV_P_ ev_io *w)
1763{ 2551{
1764 clear_pending (EV_A_ (W)w); 2552 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2553 if (expect_false (!ev_is_active (w)))
1766 return; 2554 return;
1767 2555
1768 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2556 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2557
2558 EV_FREQUENT_CHECK;
1769 2559
1770 wlist_del (&anfds[w->fd].head, (WL)w); 2560 wlist_del (&anfds[w->fd].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2561 ev_stop (EV_A_ (W)w);
1772 2562
1773 fd_change (EV_A_ w->fd, 1); 2563 fd_change (EV_A_ w->fd, 1);
2564
2565 EV_FREQUENT_CHECK;
1774} 2566}
1775 2567
1776void noinline 2568void noinline
1777ev_timer_start (EV_P_ ev_timer *w) 2569ev_timer_start (EV_P_ ev_timer *w)
1778{ 2570{
1779 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
1780 return; 2572 return;
1781 2573
1782 ((WT)w)->at += mn_now; 2574 ev_at (w) += mn_now;
1783 2575
1784 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2576 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1785 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++timercnt;
1786 ev_start (EV_A_ (W)w, ++timercnt); 2581 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1787 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2582 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1788 timers [timercnt - 1] = (WT)w; 2583 ANHE_w (timers [ev_active (w)]) = (WT)w;
1789 upheap (timers, timercnt - 1); 2584 ANHE_at_cache (timers [ev_active (w)]);
2585 upheap (timers, ev_active (w));
1790 2586
2587 EV_FREQUENT_CHECK;
2588
1791 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1792} 2590}
1793 2591
1794void noinline 2592void noinline
1795ev_timer_stop (EV_P_ ev_timer *w) 2593ev_timer_stop (EV_P_ ev_timer *w)
1796{ 2594{
1797 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1798 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1799 return; 2597 return;
1800 2598
1801 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2599 EV_FREQUENT_CHECK;
1802 2600
1803 { 2601 {
1804 int active = ((W)w)->active; 2602 int active = ev_active (w);
1805 2603
2604 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2605
2606 --timercnt;
2607
1806 if (expect_true (--active < --timercnt)) 2608 if (expect_true (active < timercnt + HEAP0))
1807 { 2609 {
1808 timers [active] = timers [timercnt]; 2610 timers [active] = timers [timercnt + HEAP0];
1809 adjustheap (timers, timercnt, active); 2611 adjustheap (timers, timercnt, active);
1810 } 2612 }
1811 } 2613 }
1812 2614
1813 ((WT)w)->at -= mn_now; 2615 ev_at (w) -= mn_now;
1814 2616
1815 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
2618
2619 EV_FREQUENT_CHECK;
1816} 2620}
1817 2621
1818void noinline 2622void noinline
1819ev_timer_again (EV_P_ ev_timer *w) 2623ev_timer_again (EV_P_ ev_timer *w)
1820{ 2624{
2625 EV_FREQUENT_CHECK;
2626
1821 if (ev_is_active (w)) 2627 if (ev_is_active (w))
1822 { 2628 {
1823 if (w->repeat) 2629 if (w->repeat)
1824 { 2630 {
1825 ((WT)w)->at = mn_now + w->repeat; 2631 ev_at (w) = mn_now + w->repeat;
2632 ANHE_at_cache (timers [ev_active (w)]);
1826 adjustheap (timers, timercnt, ((W)w)->active - 1); 2633 adjustheap (timers, timercnt, ev_active (w));
1827 } 2634 }
1828 else 2635 else
1829 ev_timer_stop (EV_A_ w); 2636 ev_timer_stop (EV_A_ w);
1830 } 2637 }
1831 else if (w->repeat) 2638 else if (w->repeat)
1832 { 2639 {
1833 w->at = w->repeat; 2640 ev_at (w) = w->repeat;
1834 ev_timer_start (EV_A_ w); 2641 ev_timer_start (EV_A_ w);
1835 } 2642 }
2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647ev_tstamp
2648ev_timer_remaining (EV_P_ ev_timer *w)
2649{
2650 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1836} 2651}
1837 2652
1838#if EV_PERIODIC_ENABLE 2653#if EV_PERIODIC_ENABLE
1839void noinline 2654void noinline
1840ev_periodic_start (EV_P_ ev_periodic *w) 2655ev_periodic_start (EV_P_ ev_periodic *w)
1841{ 2656{
1842 if (expect_false (ev_is_active (w))) 2657 if (expect_false (ev_is_active (w)))
1843 return; 2658 return;
1844 2659
1845 if (w->reschedule_cb) 2660 if (w->reschedule_cb)
1846 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2661 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1847 else if (w->interval) 2662 else if (w->interval)
1848 { 2663 {
1849 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2664 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1850 /* this formula differs from the one in periodic_reify because we do not always round up */ 2665 /* this formula differs from the one in periodic_reify because we do not always round up */
1851 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2666 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1852 } 2667 }
1853 else 2668 else
1854 ((WT)w)->at = w->offset; 2669 ev_at (w) = w->offset;
1855 2670
2671 EV_FREQUENT_CHECK;
2672
2673 ++periodiccnt;
1856 ev_start (EV_A_ (W)w, ++periodiccnt); 2674 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1857 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2675 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1858 periodics [periodiccnt - 1] = (WT)w; 2676 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1859 upheap (periodics, periodiccnt - 1); 2677 ANHE_at_cache (periodics [ev_active (w)]);
2678 upheap (periodics, ev_active (w));
1860 2679
2680 EV_FREQUENT_CHECK;
2681
1861 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2682 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1862} 2683}
1863 2684
1864void noinline 2685void noinline
1865ev_periodic_stop (EV_P_ ev_periodic *w) 2686ev_periodic_stop (EV_P_ ev_periodic *w)
1866{ 2687{
1867 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
1869 return; 2690 return;
1870 2691
1871 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2692 EV_FREQUENT_CHECK;
1872 2693
1873 { 2694 {
1874 int active = ((W)w)->active; 2695 int active = ev_active (w);
1875 2696
2697 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2698
2699 --periodiccnt;
2700
1876 if (expect_true (--active < --periodiccnt)) 2701 if (expect_true (active < periodiccnt + HEAP0))
1877 { 2702 {
1878 periodics [active] = periodics [periodiccnt]; 2703 periodics [active] = periodics [periodiccnt + HEAP0];
1879 adjustheap (periodics, periodiccnt, active); 2704 adjustheap (periodics, periodiccnt, active);
1880 } 2705 }
1881 } 2706 }
1882 2707
1883 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
1884} 2711}
1885 2712
1886void noinline 2713void noinline
1887ev_periodic_again (EV_P_ ev_periodic *w) 2714ev_periodic_again (EV_P_ ev_periodic *w)
1888{ 2715{
1897#endif 2724#endif
1898 2725
1899void noinline 2726void noinline
1900ev_signal_start (EV_P_ ev_signal *w) 2727ev_signal_start (EV_P_ ev_signal *w)
1901{ 2728{
1902#if EV_MULTIPLICITY
1903 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1904#endif
1905 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
1906 return; 2730 return;
1907 2731
1908 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2732 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1909 2733
1910 evpipe_init (EV_A); 2734#if EV_MULTIPLICITY
2735 assert (("libev: a signal must not be attached to two different loops",
2736 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1911 2737
2738 signals [w->signum - 1].loop = EV_A;
2739#endif
2740
2741 EV_FREQUENT_CHECK;
2742
2743#if EV_USE_SIGNALFD
2744 if (sigfd == -2)
1912 { 2745 {
1913#ifndef _WIN32 2746 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1914 sigset_t full, prev; 2747 if (sigfd < 0 && errno == EINVAL)
1915 sigfillset (&full); 2748 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1916 sigprocmask (SIG_SETMASK, &full, &prev);
1917#endif
1918 2749
1919 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2750 if (sigfd >= 0)
2751 {
2752 fd_intern (sigfd); /* doing it twice will not hurt */
1920 2753
1921#ifndef _WIN32 2754 sigemptyset (&sigfd_set);
1922 sigprocmask (SIG_SETMASK, &prev, 0); 2755
1923#endif 2756 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2757 ev_set_priority (&sigfd_w, EV_MAXPRI);
2758 ev_io_start (EV_A_ &sigfd_w);
2759 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2760 }
1924 } 2761 }
2762
2763 if (sigfd >= 0)
2764 {
2765 /* TODO: check .head */
2766 sigaddset (&sigfd_set, w->signum);
2767 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2768
2769 signalfd (sigfd, &sigfd_set, 0);
2770 }
2771#endif
1925 2772
1926 ev_start (EV_A_ (W)w, 1); 2773 ev_start (EV_A_ (W)w, 1);
1927 wlist_add (&signals [w->signum - 1].head, (WL)w); 2774 wlist_add (&signals [w->signum - 1].head, (WL)w);
1928 2775
1929 if (!((WL)w)->next) 2776 if (!((WL)w)->next)
2777# if EV_USE_SIGNALFD
2778 if (sigfd < 0) /*TODO*/
2779# endif
1930 { 2780 {
1931#if _WIN32 2781# ifdef _WIN32
2782 evpipe_init (EV_A);
2783
1932 signal (w->signum, sighandler); 2784 signal (w->signum, ev_sighandler);
1933#else 2785# else
1934 struct sigaction sa; 2786 struct sigaction sa;
2787
2788 evpipe_init (EV_A);
2789
1935 sa.sa_handler = sighandler; 2790 sa.sa_handler = ev_sighandler;
1936 sigfillset (&sa.sa_mask); 2791 sigfillset (&sa.sa_mask);
1937 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2792 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1938 sigaction (w->signum, &sa, 0); 2793 sigaction (w->signum, &sa, 0);
2794
2795 sigemptyset (&sa.sa_mask);
2796 sigaddset (&sa.sa_mask, w->signum);
2797 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1939#endif 2798#endif
1940 } 2799 }
2800
2801 EV_FREQUENT_CHECK;
1941} 2802}
1942 2803
1943void noinline 2804void noinline
1944ev_signal_stop (EV_P_ ev_signal *w) 2805ev_signal_stop (EV_P_ ev_signal *w)
1945{ 2806{
1946 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1948 return; 2809 return;
1949 2810
2811 EV_FREQUENT_CHECK;
2812
1950 wlist_del (&signals [w->signum - 1].head, (WL)w); 2813 wlist_del (&signals [w->signum - 1].head, (WL)w);
1951 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
1952 2815
1953 if (!signals [w->signum - 1].head) 2816 if (!signals [w->signum - 1].head)
2817 {
2818#if EV_MULTIPLICITY
2819 signals [w->signum - 1].loop = 0; /* unattach from signal */
2820#endif
2821#if EV_USE_SIGNALFD
2822 if (sigfd >= 0)
2823 {
2824 sigset_t ss;
2825
2826 sigemptyset (&ss);
2827 sigaddset (&ss, w->signum);
2828 sigdelset (&sigfd_set, w->signum);
2829
2830 signalfd (sigfd, &sigfd_set, 0);
2831 sigprocmask (SIG_UNBLOCK, &ss, 0);
2832 }
2833 else
2834#endif
1954 signal (w->signum, SIG_DFL); 2835 signal (w->signum, SIG_DFL);
2836 }
2837
2838 EV_FREQUENT_CHECK;
1955} 2839}
1956 2840
1957void 2841void
1958ev_child_start (EV_P_ ev_child *w) 2842ev_child_start (EV_P_ ev_child *w)
1959{ 2843{
1960#if EV_MULTIPLICITY 2844#if EV_MULTIPLICITY
1961 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2845 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1962#endif 2846#endif
1963 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
1964 return; 2848 return;
1965 2849
2850 EV_FREQUENT_CHECK;
2851
1966 ev_start (EV_A_ (W)w, 1); 2852 ev_start (EV_A_ (W)w, 1);
1967 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2853 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2854
2855 EV_FREQUENT_CHECK;
1968} 2856}
1969 2857
1970void 2858void
1971ev_child_stop (EV_P_ ev_child *w) 2859ev_child_stop (EV_P_ ev_child *w)
1972{ 2860{
1973 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
1974 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
1975 return; 2863 return;
1976 2864
2865 EV_FREQUENT_CHECK;
2866
1977 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2867 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1978 ev_stop (EV_A_ (W)w); 2868 ev_stop (EV_A_ (W)w);
2869
2870 EV_FREQUENT_CHECK;
1979} 2871}
1980 2872
1981#if EV_STAT_ENABLE 2873#if EV_STAT_ENABLE
1982 2874
1983# ifdef _WIN32 2875# ifdef _WIN32
1984# undef lstat 2876# undef lstat
1985# define lstat(a,b) _stati64 (a,b) 2877# define lstat(a,b) _stati64 (a,b)
1986# endif 2878# endif
1987 2879
1988#define DEF_STAT_INTERVAL 5.0074891 2880#define DEF_STAT_INTERVAL 5.0074891
2881#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1989#define MIN_STAT_INTERVAL 0.1074891 2882#define MIN_STAT_INTERVAL 0.1074891
1990 2883
1991static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2884static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1992 2885
1993#if EV_USE_INOTIFY 2886#if EV_USE_INOTIFY
1994# define EV_INOTIFY_BUFSIZE 8192 2887
2888/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2889# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1995 2890
1996static void noinline 2891static void noinline
1997infy_add (EV_P_ ev_stat *w) 2892infy_add (EV_P_ ev_stat *w)
1998{ 2893{
1999 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2894 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2000 2895
2001 if (w->wd < 0) 2896 if (w->wd >= 0)
2897 {
2898 struct statfs sfs;
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem is known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (!fs_2625)
2905 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2906 else if (!statfs (w->path, &sfs)
2907 && (sfs.f_type == 0x1373 /* devfs */
2908 || sfs.f_type == 0xEF53 /* ext2/3 */
2909 || sfs.f_type == 0x3153464a /* jfs */
2910 || sfs.f_type == 0x52654973 /* reiser3 */
2911 || sfs.f_type == 0x01021994 /* tempfs */
2912 || sfs.f_type == 0x58465342 /* xfs */))
2913 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2914 else
2915 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2002 { 2916 }
2003 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2917 else
2918 {
2919 /* can't use inotify, continue to stat */
2920 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2004 2921
2005 /* monitor some parent directory for speedup hints */ 2922 /* if path is not there, monitor some parent directory for speedup hints */
2923 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2924 /* but an efficiency issue only */
2006 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2925 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2007 { 2926 {
2008 char path [4096]; 2927 char path [4096];
2009 strcpy (path, w->path); 2928 strcpy (path, w->path);
2010 2929
2013 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2932 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2014 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2933 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2015 2934
2016 char *pend = strrchr (path, '/'); 2935 char *pend = strrchr (path, '/');
2017 2936
2018 if (!pend) 2937 if (!pend || pend == path)
2019 break; /* whoops, no '/', complain to your admin */ 2938 break;
2020 2939
2021 *pend = 0; 2940 *pend = 0;
2022 w->wd = inotify_add_watch (fs_fd, path, mask); 2941 w->wd = inotify_add_watch (fs_fd, path, mask);
2023 } 2942 }
2024 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2943 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2025 } 2944 }
2026 } 2945 }
2027 else
2028 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2029 2946
2030 if (w->wd >= 0) 2947 if (w->wd >= 0)
2031 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2948 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2949
2950 /* now re-arm timer, if required */
2951 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2952 ev_timer_again (EV_A_ &w->timer);
2953 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2032} 2954}
2033 2955
2034static void noinline 2956static void noinline
2035infy_del (EV_P_ ev_stat *w) 2957infy_del (EV_P_ ev_stat *w)
2036{ 2958{
2050 2972
2051static void noinline 2973static void noinline
2052infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2974infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2053{ 2975{
2054 if (slot < 0) 2976 if (slot < 0)
2055 /* overflow, need to check for all hahs slots */ 2977 /* overflow, need to check for all hash slots */
2056 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2057 infy_wd (EV_A_ slot, wd, ev); 2979 infy_wd (EV_A_ slot, wd, ev);
2058 else 2980 else
2059 { 2981 {
2060 WL w_; 2982 WL w_;
2066 2988
2067 if (w->wd == wd || wd == -1) 2989 if (w->wd == wd || wd == -1)
2068 { 2990 {
2069 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2991 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2070 { 2992 {
2993 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2071 w->wd = -1; 2994 w->wd = -1;
2072 infy_add (EV_A_ w); /* re-add, no matter what */ 2995 infy_add (EV_A_ w); /* re-add, no matter what */
2073 } 2996 }
2074 2997
2075 stat_timer_cb (EV_A_ &w->timer, 0); 2998 stat_timer_cb (EV_A_ &w->timer, 0);
2080 3003
2081static void 3004static void
2082infy_cb (EV_P_ ev_io *w, int revents) 3005infy_cb (EV_P_ ev_io *w, int revents)
2083{ 3006{
2084 char buf [EV_INOTIFY_BUFSIZE]; 3007 char buf [EV_INOTIFY_BUFSIZE];
2085 struct inotify_event *ev = (struct inotify_event *)buf;
2086 int ofs; 3008 int ofs;
2087 int len = read (fs_fd, buf, sizeof (buf)); 3009 int len = read (fs_fd, buf, sizeof (buf));
2088 3010
2089 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3011 for (ofs = 0; ofs < len; )
3012 {
3013 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2090 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3014 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3015 ofs += sizeof (struct inotify_event) + ev->len;
3016 }
2091} 3017}
2092 3018
2093void inline_size 3019inline_size unsigned int
3020ev_linux_version (void)
3021{
3022 struct utsname buf;
3023 unsigned int v;
3024 int i;
3025 char *p = buf.release;
3026
3027 if (uname (&buf))
3028 return 0;
3029
3030 for (i = 3+1; --i; )
3031 {
3032 unsigned int c = 0;
3033
3034 for (;;)
3035 {
3036 if (*p >= '0' && *p <= '9')
3037 c = c * 10 + *p++ - '0';
3038 else
3039 {
3040 p += *p == '.';
3041 break;
3042 }
3043 }
3044
3045 v = (v << 8) | c;
3046 }
3047
3048 return v;
3049}
3050
3051inline_size void
3052ev_check_2625 (EV_P)
3053{
3054 /* kernels < 2.6.25 are borked
3055 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3056 */
3057 if (ev_linux_version () < 0x020619)
3058 return;
3059
3060 fs_2625 = 1;
3061}
3062
3063inline_size int
3064infy_newfd (void)
3065{
3066#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3067 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3068 if (fd >= 0)
3069 return fd;
3070#endif
3071 return inotify_init ();
3072}
3073
3074inline_size void
2094infy_init (EV_P) 3075infy_init (EV_P)
2095{ 3076{
2096 if (fs_fd != -2) 3077 if (fs_fd != -2)
2097 return; 3078 return;
2098 3079
3080 fs_fd = -1;
3081
3082 ev_check_2625 (EV_A);
3083
2099 fs_fd = inotify_init (); 3084 fs_fd = infy_newfd ();
2100 3085
2101 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2102 { 3087 {
3088 fd_intern (fs_fd);
2103 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3089 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2104 ev_set_priority (&fs_w, EV_MAXPRI); 3090 ev_set_priority (&fs_w, EV_MAXPRI);
2105 ev_io_start (EV_A_ &fs_w); 3091 ev_io_start (EV_A_ &fs_w);
3092 ev_unref (EV_A);
2106 } 3093 }
2107} 3094}
2108 3095
2109void inline_size 3096inline_size void
2110infy_fork (EV_P) 3097infy_fork (EV_P)
2111{ 3098{
2112 int slot; 3099 int slot;
2113 3100
2114 if (fs_fd < 0) 3101 if (fs_fd < 0)
2115 return; 3102 return;
2116 3103
3104 ev_ref (EV_A);
3105 ev_io_stop (EV_A_ &fs_w);
2117 close (fs_fd); 3106 close (fs_fd);
2118 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_set (&fs_w, fs_fd, EV_READ);
3113 ev_io_start (EV_A_ &fs_w);
3114 ev_unref (EV_A);
3115 }
2119 3116
2120 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3117 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2121 { 3118 {
2122 WL w_ = fs_hash [slot].head; 3119 WL w_ = fs_hash [slot].head;
2123 fs_hash [slot].head = 0; 3120 fs_hash [slot].head = 0;
2130 w->wd = -1; 3127 w->wd = -1;
2131 3128
2132 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
2133 infy_add (EV_A_ w); /* re-add, no matter what */ 3130 infy_add (EV_A_ w); /* re-add, no matter what */
2134 else 3131 else
3132 {
3133 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3134 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2135 ev_timer_start (EV_A_ &w->timer); 3135 ev_timer_again (EV_A_ &w->timer);
3136 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3137 }
2136 } 3138 }
2137
2138 } 3139 }
2139} 3140}
2140 3141
3142#endif
3143
3144#ifdef _WIN32
3145# define EV_LSTAT(p,b) _stati64 (p, b)
3146#else
3147# define EV_LSTAT(p,b) lstat (p, b)
2141#endif 3148#endif
2142 3149
2143void 3150void
2144ev_stat_stat (EV_P_ ev_stat *w) 3151ev_stat_stat (EV_P_ ev_stat *w)
2145{ 3152{
2152static void noinline 3159static void noinline
2153stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3160stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2154{ 3161{
2155 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3162 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2156 3163
2157 /* we copy this here each the time so that */ 3164 ev_statdata prev = w->attr;
2158 /* prev has the old value when the callback gets invoked */
2159 w->prev = w->attr;
2160 ev_stat_stat (EV_A_ w); 3165 ev_stat_stat (EV_A_ w);
2161 3166
2162 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2163 if ( 3168 if (
2164 w->prev.st_dev != w->attr.st_dev 3169 prev.st_dev != w->attr.st_dev
2165 || w->prev.st_ino != w->attr.st_ino 3170 || prev.st_ino != w->attr.st_ino
2166 || w->prev.st_mode != w->attr.st_mode 3171 || prev.st_mode != w->attr.st_mode
2167 || w->prev.st_nlink != w->attr.st_nlink 3172 || prev.st_nlink != w->attr.st_nlink
2168 || w->prev.st_uid != w->attr.st_uid 3173 || prev.st_uid != w->attr.st_uid
2169 || w->prev.st_gid != w->attr.st_gid 3174 || prev.st_gid != w->attr.st_gid
2170 || w->prev.st_rdev != w->attr.st_rdev 3175 || prev.st_rdev != w->attr.st_rdev
2171 || w->prev.st_size != w->attr.st_size 3176 || prev.st_size != w->attr.st_size
2172 || w->prev.st_atime != w->attr.st_atime 3177 || prev.st_atime != w->attr.st_atime
2173 || w->prev.st_mtime != w->attr.st_mtime 3178 || prev.st_mtime != w->attr.st_mtime
2174 || w->prev.st_ctime != w->attr.st_ctime 3179 || prev.st_ctime != w->attr.st_ctime
2175 ) { 3180 ) {
3181 /* we only update w->prev on actual differences */
3182 /* in case we test more often than invoke the callback, */
3183 /* to ensure that prev is always different to attr */
3184 w->prev = prev;
3185
2176 #if EV_USE_INOTIFY 3186 #if EV_USE_INOTIFY
3187 if (fs_fd >= 0)
3188 {
2177 infy_del (EV_A_ w); 3189 infy_del (EV_A_ w);
2178 infy_add (EV_A_ w); 3190 infy_add (EV_A_ w);
2179 ev_stat_stat (EV_A_ w); /* avoid race... */ 3191 ev_stat_stat (EV_A_ w); /* avoid race... */
3192 }
2180 #endif 3193 #endif
2181 3194
2182 ev_feed_event (EV_A_ w, EV_STAT); 3195 ev_feed_event (EV_A_ w, EV_STAT);
2183 } 3196 }
2184} 3197}
2187ev_stat_start (EV_P_ ev_stat *w) 3200ev_stat_start (EV_P_ ev_stat *w)
2188{ 3201{
2189 if (expect_false (ev_is_active (w))) 3202 if (expect_false (ev_is_active (w)))
2190 return; 3203 return;
2191 3204
2192 /* since we use memcmp, we need to clear any padding data etc. */
2193 memset (&w->prev, 0, sizeof (ev_statdata));
2194 memset (&w->attr, 0, sizeof (ev_statdata));
2195
2196 ev_stat_stat (EV_A_ w); 3205 ev_stat_stat (EV_A_ w);
2197 3206
3207 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2198 if (w->interval < MIN_STAT_INTERVAL) 3208 w->interval = MIN_STAT_INTERVAL;
2199 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2200 3209
2201 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3210 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2202 ev_set_priority (&w->timer, ev_priority (w)); 3211 ev_set_priority (&w->timer, ev_priority (w));
2203 3212
2204#if EV_USE_INOTIFY 3213#if EV_USE_INOTIFY
2205 infy_init (EV_A); 3214 infy_init (EV_A);
2206 3215
2207 if (fs_fd >= 0) 3216 if (fs_fd >= 0)
2208 infy_add (EV_A_ w); 3217 infy_add (EV_A_ w);
2209 else 3218 else
2210#endif 3219#endif
3220 {
2211 ev_timer_start (EV_A_ &w->timer); 3221 ev_timer_again (EV_A_ &w->timer);
3222 ev_unref (EV_A);
3223 }
2212 3224
2213 ev_start (EV_A_ (W)w, 1); 3225 ev_start (EV_A_ (W)w, 1);
3226
3227 EV_FREQUENT_CHECK;
2214} 3228}
2215 3229
2216void 3230void
2217ev_stat_stop (EV_P_ ev_stat *w) 3231ev_stat_stop (EV_P_ ev_stat *w)
2218{ 3232{
2219 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2221 return; 3235 return;
2222 3236
3237 EV_FREQUENT_CHECK;
3238
2223#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2224 infy_del (EV_A_ w); 3240 infy_del (EV_A_ w);
2225#endif 3241#endif
3242
3243 if (ev_is_active (&w->timer))
3244 {
3245 ev_ref (EV_A);
2226 ev_timer_stop (EV_A_ &w->timer); 3246 ev_timer_stop (EV_A_ &w->timer);
3247 }
2227 3248
2228 ev_stop (EV_A_ (W)w); 3249 ev_stop (EV_A_ (W)w);
3250
3251 EV_FREQUENT_CHECK;
2229} 3252}
2230#endif 3253#endif
2231 3254
2232#if EV_IDLE_ENABLE 3255#if EV_IDLE_ENABLE
2233void 3256void
2235{ 3258{
2236 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
2237 return; 3260 return;
2238 3261
2239 pri_adjust (EV_A_ (W)w); 3262 pri_adjust (EV_A_ (W)w);
3263
3264 EV_FREQUENT_CHECK;
2240 3265
2241 { 3266 {
2242 int active = ++idlecnt [ABSPRI (w)]; 3267 int active = ++idlecnt [ABSPRI (w)];
2243 3268
2244 ++idleall; 3269 ++idleall;
2245 ev_start (EV_A_ (W)w, active); 3270 ev_start (EV_A_ (W)w, active);
2246 3271
2247 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3272 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2248 idles [ABSPRI (w)][active - 1] = w; 3273 idles [ABSPRI (w)][active - 1] = w;
2249 } 3274 }
3275
3276 EV_FREQUENT_CHECK;
2250} 3277}
2251 3278
2252void 3279void
2253ev_idle_stop (EV_P_ ev_idle *w) 3280ev_idle_stop (EV_P_ ev_idle *w)
2254{ 3281{
2255 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2256 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2257 return; 3284 return;
2258 3285
3286 EV_FREQUENT_CHECK;
3287
2259 { 3288 {
2260 int active = ((W)w)->active; 3289 int active = ev_active (w);
2261 3290
2262 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3291 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2263 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3292 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2264 3293
2265 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
2266 --idleall; 3295 --idleall;
2267 } 3296 }
3297
3298 EV_FREQUENT_CHECK;
2268} 3299}
2269#endif 3300#endif
2270 3301
2271void 3302void
2272ev_prepare_start (EV_P_ ev_prepare *w) 3303ev_prepare_start (EV_P_ ev_prepare *w)
2273{ 3304{
2274 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
2275 return; 3306 return;
3307
3308 EV_FREQUENT_CHECK;
2276 3309
2277 ev_start (EV_A_ (W)w, ++preparecnt); 3310 ev_start (EV_A_ (W)w, ++preparecnt);
2278 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3311 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2279 prepares [preparecnt - 1] = w; 3312 prepares [preparecnt - 1] = w;
3313
3314 EV_FREQUENT_CHECK;
2280} 3315}
2281 3316
2282void 3317void
2283ev_prepare_stop (EV_P_ ev_prepare *w) 3318ev_prepare_stop (EV_P_ ev_prepare *w)
2284{ 3319{
2285 clear_pending (EV_A_ (W)w); 3320 clear_pending (EV_A_ (W)w);
2286 if (expect_false (!ev_is_active (w))) 3321 if (expect_false (!ev_is_active (w)))
2287 return; 3322 return;
2288 3323
3324 EV_FREQUENT_CHECK;
3325
2289 { 3326 {
2290 int active = ((W)w)->active; 3327 int active = ev_active (w);
3328
2291 prepares [active - 1] = prepares [--preparecnt]; 3329 prepares [active - 1] = prepares [--preparecnt];
2292 ((W)prepares [active - 1])->active = active; 3330 ev_active (prepares [active - 1]) = active;
2293 } 3331 }
2294 3332
2295 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
2296} 3336}
2297 3337
2298void 3338void
2299ev_check_start (EV_P_ ev_check *w) 3339ev_check_start (EV_P_ ev_check *w)
2300{ 3340{
2301 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2302 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2303 3345
2304 ev_start (EV_A_ (W)w, ++checkcnt); 3346 ev_start (EV_A_ (W)w, ++checkcnt);
2305 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3347 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2306 checks [checkcnt - 1] = w; 3348 checks [checkcnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2307} 3351}
2308 3352
2309void 3353void
2310ev_check_stop (EV_P_ ev_check *w) 3354ev_check_stop (EV_P_ ev_check *w)
2311{ 3355{
2312 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2313 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2314 return; 3358 return;
2315 3359
3360 EV_FREQUENT_CHECK;
3361
2316 { 3362 {
2317 int active = ((W)w)->active; 3363 int active = ev_active (w);
3364
2318 checks [active - 1] = checks [--checkcnt]; 3365 checks [active - 1] = checks [--checkcnt];
2319 ((W)checks [active - 1])->active = active; 3366 ev_active (checks [active - 1]) = active;
2320 } 3367 }
2321 3368
2322 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
2323} 3372}
2324 3373
2325#if EV_EMBED_ENABLE 3374#if EV_EMBED_ENABLE
2326void noinline 3375void noinline
2327ev_embed_sweep (EV_P_ ev_embed *w) 3376ev_embed_sweep (EV_P_ ev_embed *w)
2344embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3393embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2345{ 3394{
2346 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3395 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2347 3396
2348 { 3397 {
2349 struct ev_loop *loop = w->other; 3398 EV_P = w->other;
2350 3399
2351 while (fdchangecnt) 3400 while (fdchangecnt)
2352 { 3401 {
2353 fd_reify (EV_A); 3402 fd_reify (EV_A);
2354 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3403 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2355 } 3404 }
2356 } 3405 }
2357} 3406}
2358 3407
3408static void
3409embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3412
3413 ev_embed_stop (EV_A_ w);
3414
3415 {
3416 EV_P = w->other;
3417
3418 ev_loop_fork (EV_A);
3419 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3420 }
3421
3422 ev_embed_start (EV_A_ w);
3423}
3424
2359#if 0 3425#if 0
2360static void 3426static void
2361embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3427embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2362{ 3428{
2363 ev_idle_stop (EV_A_ idle); 3429 ev_idle_stop (EV_A_ idle);
2369{ 3435{
2370 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2371 return; 3437 return;
2372 3438
2373 { 3439 {
2374 struct ev_loop *loop = w->other; 3440 EV_P = w->other;
2375 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3441 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2376 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3442 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2377 } 3443 }
3444
3445 EV_FREQUENT_CHECK;
2378 3446
2379 ev_set_priority (&w->io, ev_priority (w)); 3447 ev_set_priority (&w->io, ev_priority (w));
2380 ev_io_start (EV_A_ &w->io); 3448 ev_io_start (EV_A_ &w->io);
2381 3449
2382 ev_prepare_init (&w->prepare, embed_prepare_cb); 3450 ev_prepare_init (&w->prepare, embed_prepare_cb);
2383 ev_set_priority (&w->prepare, EV_MINPRI); 3451 ev_set_priority (&w->prepare, EV_MINPRI);
2384 ev_prepare_start (EV_A_ &w->prepare); 3452 ev_prepare_start (EV_A_ &w->prepare);
2385 3453
3454 ev_fork_init (&w->fork, embed_fork_cb);
3455 ev_fork_start (EV_A_ &w->fork);
3456
2386 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3457 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2387 3458
2388 ev_start (EV_A_ (W)w, 1); 3459 ev_start (EV_A_ (W)w, 1);
3460
3461 EV_FREQUENT_CHECK;
2389} 3462}
2390 3463
2391void 3464void
2392ev_embed_stop (EV_P_ ev_embed *w) 3465ev_embed_stop (EV_P_ ev_embed *w)
2393{ 3466{
2394 clear_pending (EV_A_ (W)w); 3467 clear_pending (EV_A_ (W)w);
2395 if (expect_false (!ev_is_active (w))) 3468 if (expect_false (!ev_is_active (w)))
2396 return; 3469 return;
2397 3470
3471 EV_FREQUENT_CHECK;
3472
2398 ev_io_stop (EV_A_ &w->io); 3473 ev_io_stop (EV_A_ &w->io);
2399 ev_prepare_stop (EV_A_ &w->prepare); 3474 ev_prepare_stop (EV_A_ &w->prepare);
3475 ev_fork_stop (EV_A_ &w->fork);
2400 3476
2401 ev_stop (EV_A_ (W)w); 3477 ev_stop (EV_A_ (W)w);
3478
3479 EV_FREQUENT_CHECK;
2402} 3480}
2403#endif 3481#endif
2404 3482
2405#if EV_FORK_ENABLE 3483#if EV_FORK_ENABLE
2406void 3484void
2407ev_fork_start (EV_P_ ev_fork *w) 3485ev_fork_start (EV_P_ ev_fork *w)
2408{ 3486{
2409 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2410 return; 3488 return;
3489
3490 EV_FREQUENT_CHECK;
2411 3491
2412 ev_start (EV_A_ (W)w, ++forkcnt); 3492 ev_start (EV_A_ (W)w, ++forkcnt);
2413 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2414 forks [forkcnt - 1] = w; 3494 forks [forkcnt - 1] = w;
3495
3496 EV_FREQUENT_CHECK;
2415} 3497}
2416 3498
2417void 3499void
2418ev_fork_stop (EV_P_ ev_fork *w) 3500ev_fork_stop (EV_P_ ev_fork *w)
2419{ 3501{
2420 clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2422 return; 3504 return;
2423 3505
3506 EV_FREQUENT_CHECK;
3507
2424 { 3508 {
2425 int active = ((W)w)->active; 3509 int active = ev_active (w);
3510
2426 forks [active - 1] = forks [--forkcnt]; 3511 forks [active - 1] = forks [--forkcnt];
2427 ((W)forks [active - 1])->active = active; 3512 ev_active (forks [active - 1]) = active;
2428 } 3513 }
2429 3514
2430 ev_stop (EV_A_ (W)w); 3515 ev_stop (EV_A_ (W)w);
3516
3517 EV_FREQUENT_CHECK;
2431} 3518}
2432#endif 3519#endif
2433 3520
2434#if EV_ASYNC_ENABLE 3521#if EV_ASYNC_ENABLE
2435void 3522void
2437{ 3524{
2438 if (expect_false (ev_is_active (w))) 3525 if (expect_false (ev_is_active (w)))
2439 return; 3526 return;
2440 3527
2441 evpipe_init (EV_A); 3528 evpipe_init (EV_A);
3529
3530 EV_FREQUENT_CHECK;
2442 3531
2443 ev_start (EV_A_ (W)w, ++asynccnt); 3532 ev_start (EV_A_ (W)w, ++asynccnt);
2444 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3533 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2445 asyncs [asynccnt - 1] = w; 3534 asyncs [asynccnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
2446} 3537}
2447 3538
2448void 3539void
2449ev_async_stop (EV_P_ ev_async *w) 3540ev_async_stop (EV_P_ ev_async *w)
2450{ 3541{
2451 clear_pending (EV_A_ (W)w); 3542 clear_pending (EV_A_ (W)w);
2452 if (expect_false (!ev_is_active (w))) 3543 if (expect_false (!ev_is_active (w)))
2453 return; 3544 return;
2454 3545
3546 EV_FREQUENT_CHECK;
3547
2455 { 3548 {
2456 int active = ((W)w)->active; 3549 int active = ev_active (w);
3550
2457 asyncs [active - 1] = asyncs [--asynccnt]; 3551 asyncs [active - 1] = asyncs [--asynccnt];
2458 ((W)asyncs [active - 1])->active = active; 3552 ev_active (asyncs [active - 1]) = active;
2459 } 3553 }
2460 3554
2461 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2462} 3558}
2463 3559
2464void 3560void
2465ev_async_send (EV_P_ ev_async *w) 3561ev_async_send (EV_P_ ev_async *w)
2466{ 3562{
2467 w->sent = 1; 3563 w->sent = 1;
2468 evpipe_write (EV_A_ 0, 1); 3564 evpipe_write (EV_A_ &async_pending);
2469} 3565}
2470#endif 3566#endif
2471 3567
2472/*****************************************************************************/ 3568/*****************************************************************************/
2473 3569
2483once_cb (EV_P_ struct ev_once *once, int revents) 3579once_cb (EV_P_ struct ev_once *once, int revents)
2484{ 3580{
2485 void (*cb)(int revents, void *arg) = once->cb; 3581 void (*cb)(int revents, void *arg) = once->cb;
2486 void *arg = once->arg; 3582 void *arg = once->arg;
2487 3583
2488 ev_io_stop (EV_A_ &once->io); 3584 ev_io_stop (EV_A_ &once->io);
2489 ev_timer_stop (EV_A_ &once->to); 3585 ev_timer_stop (EV_A_ &once->to);
2490 ev_free (once); 3586 ev_free (once);
2491 3587
2492 cb (revents, arg); 3588 cb (revents, arg);
2493} 3589}
2494 3590
2495static void 3591static void
2496once_cb_io (EV_P_ ev_io *w, int revents) 3592once_cb_io (EV_P_ ev_io *w, int revents)
2497{ 3593{
2498 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3594 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3595
3596 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2499} 3597}
2500 3598
2501static void 3599static void
2502once_cb_to (EV_P_ ev_timer *w, int revents) 3600once_cb_to (EV_P_ ev_timer *w, int revents)
2503{ 3601{
2504 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3602 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3603
3604 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2505} 3605}
2506 3606
2507void 3607void
2508ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3608ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2509{ 3609{
2531 ev_timer_set (&once->to, timeout, 0.); 3631 ev_timer_set (&once->to, timeout, 0.);
2532 ev_timer_start (EV_A_ &once->to); 3632 ev_timer_start (EV_A_ &once->to);
2533 } 3633 }
2534} 3634}
2535 3635
3636/*****************************************************************************/
3637
3638#if EV_WALK_ENABLE
3639void
3640ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3641{
3642 int i, j;
3643 ev_watcher_list *wl, *wn;
3644
3645 if (types & (EV_IO | EV_EMBED))
3646 for (i = 0; i < anfdmax; ++i)
3647 for (wl = anfds [i].head; wl; )
3648 {
3649 wn = wl->next;
3650
3651#if EV_EMBED_ENABLE
3652 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3653 {
3654 if (types & EV_EMBED)
3655 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3656 }
3657 else
3658#endif
3659#if EV_USE_INOTIFY
3660 if (ev_cb ((ev_io *)wl) == infy_cb)
3661 ;
3662 else
3663#endif
3664 if ((ev_io *)wl != &pipe_w)
3665 if (types & EV_IO)
3666 cb (EV_A_ EV_IO, wl);
3667
3668 wl = wn;
3669 }
3670
3671 if (types & (EV_TIMER | EV_STAT))
3672 for (i = timercnt + HEAP0; i-- > HEAP0; )
3673#if EV_STAT_ENABLE
3674 /*TODO: timer is not always active*/
3675 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3676 {
3677 if (types & EV_STAT)
3678 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3679 }
3680 else
3681#endif
3682 if (types & EV_TIMER)
3683 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3684
3685#if EV_PERIODIC_ENABLE
3686 if (types & EV_PERIODIC)
3687 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3688 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3689#endif
3690
3691#if EV_IDLE_ENABLE
3692 if (types & EV_IDLE)
3693 for (j = NUMPRI; i--; )
3694 for (i = idlecnt [j]; i--; )
3695 cb (EV_A_ EV_IDLE, idles [j][i]);
3696#endif
3697
3698#if EV_FORK_ENABLE
3699 if (types & EV_FORK)
3700 for (i = forkcnt; i--; )
3701 if (ev_cb (forks [i]) != embed_fork_cb)
3702 cb (EV_A_ EV_FORK, forks [i]);
3703#endif
3704
3705#if EV_ASYNC_ENABLE
3706 if (types & EV_ASYNC)
3707 for (i = asynccnt; i--; )
3708 cb (EV_A_ EV_ASYNC, asyncs [i]);
3709#endif
3710
3711 if (types & EV_PREPARE)
3712 for (i = preparecnt; i--; )
3713#if EV_EMBED_ENABLE
3714 if (ev_cb (prepares [i]) != embed_prepare_cb)
3715#endif
3716 cb (EV_A_ EV_PREPARE, prepares [i]);
3717
3718 if (types & EV_CHECK)
3719 for (i = checkcnt; i--; )
3720 cb (EV_A_ EV_CHECK, checks [i]);
3721
3722 if (types & EV_SIGNAL)
3723 for (i = 0; i < EV_NSIG - 1; ++i)
3724 for (wl = signals [i].head; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_SIGNAL, wl);
3728 wl = wn;
3729 }
3730
3731 if (types & EV_CHILD)
3732 for (i = EV_PID_HASHSIZE; i--; )
3733 for (wl = childs [i]; wl; )
3734 {
3735 wn = wl->next;
3736 cb (EV_A_ EV_CHILD, wl);
3737 wl = wn;
3738 }
3739/* EV_STAT 0x00001000 /* stat data changed */
3740/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3741}
3742#endif
3743
2536#if EV_MULTIPLICITY 3744#if EV_MULTIPLICITY
2537 #include "ev_wrap.h" 3745 #include "ev_wrap.h"
2538#endif 3746#endif
2539 3747
2540#ifdef __cplusplus 3748#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines