ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.331 by root, Tue Mar 9 08:55:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
226# endif
227#endif
228
168#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
169# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
170#endif 235#endif
171 236
172#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 239#endif
175 240
176#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
177# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
178#endif 247#endif
179 248
180#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
182#endif 251#endif
235# else 304# else
236# define EV_USE_EVENTFD 0 305# define EV_USE_EVENTFD 0
237# endif 306# endif
238#endif 307#endif
239 308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
241 356
242#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
245#endif 360#endif
259# include <sys/select.h> 374# include <sys/select.h>
260# endif 375# endif
261#endif 376#endif
262 377
263#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
264# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
265#endif 387#endif
266 388
267#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 390# include <winsock.h>
269#endif 391#endif
270 392
271#if EV_USE_EVENTFD 393#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
274int eventfd (unsigned int initval, int flags); 409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
275#endif 412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
276 443
277/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
278 451
279/* 452/*
280 * This is used to avoid floating point rounding problems. 453 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics 454 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding 455 * to ensure progress, time-wise, even when rounding
286 */ 459 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
288 461
289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
292 464
293#if __GNUC__ >= 4 465#if __GNUC__ >= 4
294# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
296#else 468#else
297# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
298# define noinline 470# define noinline
299# if __STDC_VERSION__ < 199901L 471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
300# define inline 472# define inline
301# endif 473# endif
302#endif 474#endif
303 475
304#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
309# define inline_speed static noinline 481# define inline_speed static noinline
310#else 482#else
311# define inline_speed static inline 483# define inline_speed static inline
312#endif 484#endif
313 485
314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
316 493
317#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
318#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
319 496
320typedef ev_watcher *W; 497typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
323 500
324#if EV_USE_MONOTONIC 501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
328#endif 522#endif
329 523
330#ifdef _WIN32 524#ifdef _WIN32
331# include "ev_win32.c" 525# include "ev_win32.c"
332#endif 526#endif
333 527
334/*****************************************************************************/ 528/*****************************************************************************/
335 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
336static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
337 539
338void 540void
339ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
340{ 542{
341 syserr_cb = cb; 543 syserr_cb = cb;
342} 544}
343 545
344static void noinline 546static void noinline
345syserr (const char *msg) 547ev_syserr (const char *msg)
346{ 548{
347 if (!msg) 549 if (!msg)
348 msg = "(libev) system error"; 550 msg = "(libev) system error";
349 551
350 if (syserr_cb) 552 if (syserr_cb)
351 syserr_cb (msg); 553 syserr_cb (msg);
352 else 554 else
353 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
354 perror (msg); 564 perror (msg);
565#endif
355 abort (); 566 abort ();
356 } 567 }
357} 568}
358 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573 /* some systems, notably openbsd and darwin, fail to properly
574 * implement realloc (x, 0) (as required by both ansi c-98 and
575 * the single unix specification, so work around them here.
576 */
577
578 if (size)
579 return realloc (ptr, size);
580
581 free (ptr);
582 return 0;
583}
584
359static void *(*alloc)(void *ptr, long size); 585static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 586
361void 587void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 588ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 589{
364 alloc = cb; 590 alloc = cb;
365} 591}
366 592
367inline_speed void * 593inline_speed void *
368ev_realloc (void *ptr, long size) 594ev_realloc (void *ptr, long size)
369{ 595{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 596 ptr = alloc (ptr, size);
371 597
372 if (!ptr && size) 598 if (!ptr && size)
373 { 599 {
600#if EV_AVOID_STDIO
601 ev_printerr ("libev: memory allocation failed, aborting.\n");
602#else
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 603 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
604#endif
375 abort (); 605 abort ();
376 } 606 }
377 607
378 return ptr; 608 return ptr;
379} 609}
381#define ev_malloc(size) ev_realloc (0, (size)) 611#define ev_malloc(size) ev_realloc (0, (size))
382#define ev_free(ptr) ev_realloc ((ptr), 0) 612#define ev_free(ptr) ev_realloc ((ptr), 0)
383 613
384/*****************************************************************************/ 614/*****************************************************************************/
385 615
616/* set in reify when reification needed */
617#define EV_ANFD_REIFY 1
618
619/* file descriptor info structure */
386typedef struct 620typedef struct
387{ 621{
388 WL head; 622 WL head;
389 unsigned char events; 623 unsigned char events; /* the events watched for */
624 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
625 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
390 unsigned char reify; 626 unsigned char unused;
627#if EV_USE_EPOLL
628 unsigned int egen; /* generation counter to counter epoll bugs */
629#endif
391#if EV_SELECT_IS_WINSOCKET 630#if EV_SELECT_IS_WINSOCKET
392 SOCKET handle; 631 SOCKET handle;
393#endif 632#endif
394} ANFD; 633} ANFD;
395 634
635/* stores the pending event set for a given watcher */
396typedef struct 636typedef struct
397{ 637{
398 W w; 638 W w;
399 int events; 639 int events; /* the pending event set for the given watcher */
400} ANPENDING; 640} ANPENDING;
401 641
402#if EV_USE_INOTIFY 642#if EV_USE_INOTIFY
643/* hash table entry per inotify-id */
403typedef struct 644typedef struct
404{ 645{
405 WL head; 646 WL head;
406} ANFS; 647} ANFS;
648#endif
649
650/* Heap Entry */
651#if EV_HEAP_CACHE_AT
652 /* a heap element */
653 typedef struct {
654 ev_tstamp at;
655 WT w;
656 } ANHE;
657
658 #define ANHE_w(he) (he).w /* access watcher, read-write */
659 #define ANHE_at(he) (he).at /* access cached at, read-only */
660 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
661#else
662 /* a heap element */
663 typedef WT ANHE;
664
665 #define ANHE_w(he) (he)
666 #define ANHE_at(he) (he)->at
667 #define ANHE_at_cache(he)
407#endif 668#endif
408 669
409#if EV_MULTIPLICITY 670#if EV_MULTIPLICITY
410 671
411 struct ev_loop 672 struct ev_loop
430 691
431 static int ev_default_loop_ptr; 692 static int ev_default_loop_ptr;
432 693
433#endif 694#endif
434 695
696#if EV_MINIMAL < 2
697# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
698# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
699# define EV_INVOKE_PENDING invoke_cb (EV_A)
700#else
701# define EV_RELEASE_CB (void)0
702# define EV_ACQUIRE_CB (void)0
703# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
704#endif
705
706#define EVUNLOOP_RECURSE 0x80
707
435/*****************************************************************************/ 708/*****************************************************************************/
436 709
710#ifndef EV_HAVE_EV_TIME
437ev_tstamp 711ev_tstamp
438ev_time (void) 712ev_time (void)
439{ 713{
440#if EV_USE_REALTIME 714#if EV_USE_REALTIME
715 if (expect_true (have_realtime))
716 {
441 struct timespec ts; 717 struct timespec ts;
442 clock_gettime (CLOCK_REALTIME, &ts); 718 clock_gettime (CLOCK_REALTIME, &ts);
443 return ts.tv_sec + ts.tv_nsec * 1e-9; 719 return ts.tv_sec + ts.tv_nsec * 1e-9;
444#else 720 }
721#endif
722
445 struct timeval tv; 723 struct timeval tv;
446 gettimeofday (&tv, 0); 724 gettimeofday (&tv, 0);
447 return tv.tv_sec + tv.tv_usec * 1e-6; 725 return tv.tv_sec + tv.tv_usec * 1e-6;
448#endif
449} 726}
727#endif
450 728
451ev_tstamp inline_size 729inline_size ev_tstamp
452get_clock (void) 730get_clock (void)
453{ 731{
454#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
455 if (expect_true (have_monotonic)) 733 if (expect_true (have_monotonic))
456 { 734 {
489 struct timeval tv; 767 struct timeval tv;
490 768
491 tv.tv_sec = (time_t)delay; 769 tv.tv_sec = (time_t)delay;
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 770 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
493 771
772 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
773 /* something not guaranteed by newer posix versions, but guaranteed */
774 /* by older ones */
494 select (0, 0, 0, 0, &tv); 775 select (0, 0, 0, 0, &tv);
495#endif 776#endif
496 } 777 }
497} 778}
498 779
499/*****************************************************************************/ 780/*****************************************************************************/
500 781
501int inline_size 782#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
783
784/* find a suitable new size for the given array, */
785/* hopefully by rounding to a ncie-to-malloc size */
786inline_size int
502array_nextsize (int elem, int cur, int cnt) 787array_nextsize (int elem, int cur, int cnt)
503{ 788{
504 int ncur = cur + 1; 789 int ncur = cur + 1;
505 790
506 do 791 do
507 ncur <<= 1; 792 ncur <<= 1;
508 while (cnt > ncur); 793 while (cnt > ncur);
509 794
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 795 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 796 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 797 {
513 ncur *= elem; 798 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 799 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 800 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 801 ncur /= elem;
517 } 802 }
518 803
519 return ncur; 804 return ncur;
523array_realloc (int elem, void *base, int *cur, int cnt) 808array_realloc (int elem, void *base, int *cur, int cnt)
524{ 809{
525 *cur = array_nextsize (elem, *cur, cnt); 810 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur); 811 return ev_realloc (base, elem * *cur);
527} 812}
813
814#define array_init_zero(base,count) \
815 memset ((void *)(base), 0, sizeof (*(base)) * (count))
528 816
529#define array_needsize(type,base,cur,cnt,init) \ 817#define array_needsize(type,base,cur,cnt,init) \
530 if (expect_false ((cnt) > (cur))) \ 818 if (expect_false ((cnt) > (cur))) \
531 { \ 819 { \
532 int ocur_ = (cur); \ 820 int ocur_ = (cur); \
544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 832 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
545 } 833 }
546#endif 834#endif
547 835
548#define array_free(stem, idx) \ 836#define array_free(stem, idx) \
549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 837 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
550 838
551/*****************************************************************************/ 839/*****************************************************************************/
840
841/* dummy callback for pending events */
842static void noinline
843pendingcb (EV_P_ ev_prepare *w, int revents)
844{
845}
552 846
553void noinline 847void noinline
554ev_feed_event (EV_P_ void *w, int revents) 848ev_feed_event (EV_P_ void *w, int revents)
555{ 849{
556 W w_ = (W)w; 850 W w_ = (W)w;
565 pendings [pri][w_->pending - 1].w = w_; 859 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents; 860 pendings [pri][w_->pending - 1].events = revents;
567 } 861 }
568} 862}
569 863
570void inline_speed 864inline_speed void
865feed_reverse (EV_P_ W w)
866{
867 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
868 rfeeds [rfeedcnt++] = w;
869}
870
871inline_size void
872feed_reverse_done (EV_P_ int revents)
873{
874 do
875 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
876 while (rfeedcnt);
877}
878
879inline_speed void
571queue_events (EV_P_ W *events, int eventcnt, int type) 880queue_events (EV_P_ W *events, int eventcnt, int type)
572{ 881{
573 int i; 882 int i;
574 883
575 for (i = 0; i < eventcnt; ++i) 884 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type); 885 ev_feed_event (EV_A_ events [i], type);
577} 886}
578 887
579/*****************************************************************************/ 888/*****************************************************************************/
580 889
581void inline_size 890inline_speed void
582anfds_init (ANFD *base, int count)
583{
584 while (count--)
585 {
586 base->head = 0;
587 base->events = EV_NONE;
588 base->reify = 0;
589
590 ++base;
591 }
592}
593
594void inline_speed
595fd_event (EV_P_ int fd, int revents) 891fd_event_nc (EV_P_ int fd, int revents)
596{ 892{
597 ANFD *anfd = anfds + fd; 893 ANFD *anfd = anfds + fd;
598 ev_io *w; 894 ev_io *w;
599 895
600 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 896 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
604 if (ev) 900 if (ev)
605 ev_feed_event (EV_A_ (W)w, ev); 901 ev_feed_event (EV_A_ (W)w, ev);
606 } 902 }
607} 903}
608 904
905/* do not submit kernel events for fds that have reify set */
906/* because that means they changed while we were polling for new events */
907inline_speed void
908fd_event (EV_P_ int fd, int revents)
909{
910 ANFD *anfd = anfds + fd;
911
912 if (expect_true (!anfd->reify))
913 fd_event_nc (EV_A_ fd, revents);
914}
915
609void 916void
610ev_feed_fd_event (EV_P_ int fd, int revents) 917ev_feed_fd_event (EV_P_ int fd, int revents)
611{ 918{
612 if (fd >= 0 && fd < anfdmax) 919 if (fd >= 0 && fd < anfdmax)
613 fd_event (EV_A_ fd, revents); 920 fd_event_nc (EV_A_ fd, revents);
614} 921}
615 922
616void inline_size 923/* make sure the external fd watch events are in-sync */
924/* with the kernel/libev internal state */
925inline_size void
617fd_reify (EV_P) 926fd_reify (EV_P)
618{ 927{
619 int i; 928 int i;
620 929
621 for (i = 0; i < fdchangecnt; ++i) 930 for (i = 0; i < fdchangecnt; ++i)
630 events |= (unsigned char)w->events; 939 events |= (unsigned char)w->events;
631 940
632#if EV_SELECT_IS_WINSOCKET 941#if EV_SELECT_IS_WINSOCKET
633 if (events) 942 if (events)
634 { 943 {
635 unsigned long argp; 944 unsigned long arg;
636 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 945 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else
639 anfd->handle = _get_osfhandle (fd);
640 #endif
641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 946 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
642 } 947 }
643#endif 948#endif
644 949
645 { 950 {
646 unsigned char o_events = anfd->events; 951 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify; 952 unsigned char o_reify = anfd->reify;
648 953
649 anfd->reify = 0; 954 anfd->reify = 0;
650 anfd->events = events; 955 anfd->events = events;
651 956
652 if (o_events != events || o_reify & EV_IOFDSET) 957 if (o_events != events || o_reify & EV__IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events); 958 backend_modify (EV_A_ fd, o_events, events);
654 } 959 }
655 } 960 }
656 961
657 fdchangecnt = 0; 962 fdchangecnt = 0;
658} 963}
659 964
660void inline_size 965/* something about the given fd changed */
966inline_size void
661fd_change (EV_P_ int fd, int flags) 967fd_change (EV_P_ int fd, int flags)
662{ 968{
663 unsigned char reify = anfds [fd].reify; 969 unsigned char reify = anfds [fd].reify;
664 anfds [fd].reify |= flags; 970 anfds [fd].reify |= flags;
665 971
669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 975 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
670 fdchanges [fdchangecnt - 1] = fd; 976 fdchanges [fdchangecnt - 1] = fd;
671 } 977 }
672} 978}
673 979
674void inline_speed 980/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
981inline_speed void
675fd_kill (EV_P_ int fd) 982fd_kill (EV_P_ int fd)
676{ 983{
677 ev_io *w; 984 ev_io *w;
678 985
679 while ((w = (ev_io *)anfds [fd].head)) 986 while ((w = (ev_io *)anfds [fd].head))
681 ev_io_stop (EV_A_ w); 988 ev_io_stop (EV_A_ w);
682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 989 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
683 } 990 }
684} 991}
685 992
686int inline_size 993/* check whether the given fd is atcually valid, for error recovery */
994inline_size int
687fd_valid (int fd) 995fd_valid (int fd)
688{ 996{
689#ifdef _WIN32 997#ifdef _WIN32
690 return _get_osfhandle (fd) != -1; 998 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
691#else 999#else
692 return fcntl (fd, F_GETFD) != -1; 1000 return fcntl (fd, F_GETFD) != -1;
693#endif 1001#endif
694} 1002}
695 1003
699{ 1007{
700 int fd; 1008 int fd;
701 1009
702 for (fd = 0; fd < anfdmax; ++fd) 1010 for (fd = 0; fd < anfdmax; ++fd)
703 if (anfds [fd].events) 1011 if (anfds [fd].events)
704 if (!fd_valid (fd) == -1 && errno == EBADF) 1012 if (!fd_valid (fd) && errno == EBADF)
705 fd_kill (EV_A_ fd); 1013 fd_kill (EV_A_ fd);
706} 1014}
707 1015
708/* called on ENOMEM in select/poll to kill some fds and retry */ 1016/* called on ENOMEM in select/poll to kill some fds and retry */
709static void noinline 1017static void noinline
713 1021
714 for (fd = anfdmax; fd--; ) 1022 for (fd = anfdmax; fd--; )
715 if (anfds [fd].events) 1023 if (anfds [fd].events)
716 { 1024 {
717 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
718 return; 1026 break;
719 } 1027 }
720} 1028}
721 1029
722/* usually called after fork if backend needs to re-arm all fds from scratch */ 1030/* usually called after fork if backend needs to re-arm all fds from scratch */
723static void noinline 1031static void noinline
727 1035
728 for (fd = 0; fd < anfdmax; ++fd) 1036 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1037 if (anfds [fd].events)
730 { 1038 {
731 anfds [fd].events = 0; 1039 anfds [fd].events = 0;
1040 anfds [fd].emask = 0;
732 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1041 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
733 } 1042 }
734} 1043}
735 1044
736/*****************************************************************************/ 1045/*****************************************************************************/
737 1046
738void inline_speed 1047/*
739upheap (WT *heap, int k) 1048 * the heap functions want a real array index. array index 0 uis guaranteed to not
740{ 1049 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
741 WT w = heap [k]; 1050 * the branching factor of the d-tree.
1051 */
742 1052
743 while (k) 1053/*
744 { 1054 * at the moment we allow libev the luxury of two heaps,
745 int p = (k - 1) >> 1; 1055 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1056 * which is more cache-efficient.
1057 * the difference is about 5% with 50000+ watchers.
1058 */
1059#if EV_USE_4HEAP
746 1060
747 if (heap [p]->at <= w->at) 1061#define DHEAP 4
1062#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1063#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1064#define UPHEAP_DONE(p,k) ((p) == (k))
1065
1066/* away from the root */
1067inline_speed void
1068downheap (ANHE *heap, int N, int k)
1069{
1070 ANHE he = heap [k];
1071 ANHE *E = heap + N + HEAP0;
1072
1073 for (;;)
1074 {
1075 ev_tstamp minat;
1076 ANHE *minpos;
1077 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1078
1079 /* find minimum child */
1080 if (expect_true (pos + DHEAP - 1 < E))
1081 {
1082 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1083 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1084 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1085 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1086 }
1087 else if (pos < E)
1088 {
1089 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1090 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1091 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1092 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1093 }
1094 else
748 break; 1095 break;
749 1096
1097 if (ANHE_at (he) <= minat)
1098 break;
1099
1100 heap [k] = *minpos;
1101 ev_active (ANHE_w (*minpos)) = k;
1102
1103 k = minpos - heap;
1104 }
1105
1106 heap [k] = he;
1107 ev_active (ANHE_w (he)) = k;
1108}
1109
1110#else /* 4HEAP */
1111
1112#define HEAP0 1
1113#define HPARENT(k) ((k) >> 1)
1114#define UPHEAP_DONE(p,k) (!(p))
1115
1116/* away from the root */
1117inline_speed void
1118downheap (ANHE *heap, int N, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int c = k << 1;
1125
1126 if (c >= N + HEAP0)
1127 break;
1128
1129 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1130 ? 1 : 0;
1131
1132 if (ANHE_at (he) <= ANHE_at (heap [c]))
1133 break;
1134
1135 heap [k] = heap [c];
1136 ev_active (ANHE_w (heap [k])) = k;
1137
1138 k = c;
1139 }
1140
1141 heap [k] = he;
1142 ev_active (ANHE_w (he)) = k;
1143}
1144#endif
1145
1146/* towards the root */
1147inline_speed void
1148upheap (ANHE *heap, int k)
1149{
1150 ANHE he = heap [k];
1151
1152 for (;;)
1153 {
1154 int p = HPARENT (k);
1155
1156 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1157 break;
1158
750 heap [k] = heap [p]; 1159 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1; 1160 ev_active (ANHE_w (heap [k])) = k;
752 k = p; 1161 k = p;
753 } 1162 }
754 1163
755 heap [k] = w; 1164 heap [k] = he;
756 ((W)heap [k])->active = k + 1; 1165 ev_active (ANHE_w (he)) = k;
757} 1166}
758 1167
759void inline_speed 1168/* move an element suitably so it is in a correct place */
760downheap (WT *heap, int N, int k) 1169inline_size void
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785}
786
787void inline_size
788adjustheap (WT *heap, int N, int k) 1170adjustheap (ANHE *heap, int N, int k)
789{ 1171{
1172 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
790 upheap (heap, k); 1173 upheap (heap, k);
1174 else
791 downheap (heap, N, k); 1175 downheap (heap, N, k);
1176}
1177
1178/* rebuild the heap: this function is used only once and executed rarely */
1179inline_size void
1180reheap (ANHE *heap, int N)
1181{
1182 int i;
1183
1184 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1185 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1186 for (i = 0; i < N; ++i)
1187 upheap (heap, i + HEAP0);
792} 1188}
793 1189
794/*****************************************************************************/ 1190/*****************************************************************************/
795 1191
1192/* associate signal watchers to a signal signal */
796typedef struct 1193typedef struct
797{ 1194{
1195 EV_ATOMIC_T pending;
1196#if EV_MULTIPLICITY
1197 EV_P;
1198#endif
798 WL head; 1199 WL head;
799 EV_ATOMIC_T gotsig;
800} ANSIG; 1200} ANSIG;
801 1201
802static ANSIG *signals; 1202static ANSIG signals [EV_NSIG - 1];
803static int signalmax;
804
805static EV_ATOMIC_T gotsig;
806
807void inline_size
808signals_init (ANSIG *base, int count)
809{
810 while (count--)
811 {
812 base->head = 0;
813 base->gotsig = 0;
814
815 ++base;
816 }
817}
818 1203
819/*****************************************************************************/ 1204/*****************************************************************************/
820 1205
821void inline_speed 1206/* used to prepare libev internal fd's */
1207/* this is not fork-safe */
1208inline_speed void
822fd_intern (int fd) 1209fd_intern (int fd)
823{ 1210{
824#ifdef _WIN32 1211#ifdef _WIN32
825 int arg = 1; 1212 unsigned long arg = 1;
826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1213 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
827#else 1214#else
828 fcntl (fd, F_SETFD, FD_CLOEXEC); 1215 fcntl (fd, F_SETFD, FD_CLOEXEC);
829 fcntl (fd, F_SETFL, O_NONBLOCK); 1216 fcntl (fd, F_SETFL, O_NONBLOCK);
830#endif 1217#endif
831} 1218}
832 1219
833static void noinline 1220static void noinline
834evpipe_init (EV_P) 1221evpipe_init (EV_P)
835{ 1222{
836 if (!ev_is_active (&pipeev)) 1223 if (!ev_is_active (&pipe_w))
837 { 1224 {
838#if EV_USE_EVENTFD 1225#if EV_USE_EVENTFD
1226 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1227 if (evfd < 0 && errno == EINVAL)
839 if ((evfd = eventfd (0, 0)) >= 0) 1228 evfd = eventfd (0, 0);
1229
1230 if (evfd >= 0)
840 { 1231 {
841 evpipe [0] = -1; 1232 evpipe [0] = -1;
842 fd_intern (evfd); 1233 fd_intern (evfd); /* doing it twice doesn't hurt */
843 ev_io_set (&pipeev, evfd, EV_READ); 1234 ev_io_set (&pipe_w, evfd, EV_READ);
844 } 1235 }
845 else 1236 else
846#endif 1237#endif
847 { 1238 {
848 while (pipe (evpipe)) 1239 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe"); 1240 ev_syserr ("(libev) error creating signal/async pipe");
850 1241
851 fd_intern (evpipe [0]); 1242 fd_intern (evpipe [0]);
852 fd_intern (evpipe [1]); 1243 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ); 1244 ev_io_set (&pipe_w, evpipe [0], EV_READ);
854 } 1245 }
855 1246
856 ev_io_start (EV_A_ &pipeev); 1247 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* watcher should not keep loop alive */ 1248 ev_unref (EV_A); /* watcher should not keep loop alive */
858 } 1249 }
859} 1250}
860 1251
861void inline_size 1252inline_size void
862evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1253evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{ 1254{
864 if (!*flag) 1255 if (!*flag)
865 { 1256 {
866 int old_errno = errno; /* save errno because write might clobber it */ 1257 int old_errno = errno; /* save errno because write might clobber it */
879 1270
880 errno = old_errno; 1271 errno = old_errno;
881 } 1272 }
882} 1273}
883 1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
884static void 1277static void
885pipecb (EV_P_ ev_io *iow, int revents) 1278pipecb (EV_P_ ev_io *iow, int revents)
886{ 1279{
1280 int i;
1281
887#if EV_USE_EVENTFD 1282#if EV_USE_EVENTFD
888 if (evfd >= 0) 1283 if (evfd >= 0)
889 { 1284 {
890 uint64_t counter = 1; 1285 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1286 read (evfd, &counter, sizeof (uint64_t));
892 } 1287 }
893 else 1288 else
894#endif 1289#endif
895 { 1290 {
896 char dummy; 1291 char dummy;
897 read (evpipe [0], &dummy, 1); 1292 read (evpipe [0], &dummy, 1);
898 } 1293 }
899 1294
900 if (gotsig && ev_is_default_loop (EV_A)) 1295 if (sig_pending)
901 { 1296 {
902 int signum; 1297 sig_pending = 0;
903 gotsig = 0;
904 1298
905 for (signum = signalmax; signum--; ) 1299 for (i = EV_NSIG - 1; i--; )
906 if (signals [signum].gotsig) 1300 if (expect_false (signals [i].pending))
907 ev_feed_signal_event (EV_A_ signum + 1); 1301 ev_feed_signal_event (EV_A_ i + 1);
908 } 1302 }
909 1303
910#if EV_ASYNC_ENABLE 1304#if EV_ASYNC_ENABLE
911 if (gotasync) 1305 if (async_pending)
912 { 1306 {
913 int i; 1307 async_pending = 0;
914 gotasync = 0;
915 1308
916 for (i = asynccnt; i--; ) 1309 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent) 1310 if (asyncs [i]->sent)
918 { 1311 {
919 asyncs [i]->sent = 0; 1312 asyncs [i]->sent = 0;
927 1320
928static void 1321static void
929ev_sighandler (int signum) 1322ev_sighandler (int signum)
930{ 1323{
931#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct; 1325 EV_P = signals [signum - 1].loop;
933#endif 1326#endif
934 1327
935#if _WIN32 1328#ifdef _WIN32
936 signal (signum, ev_sighandler); 1329 signal (signum, ev_sighandler);
937#endif 1330#endif
938 1331
939 signals [signum - 1].gotsig = 1; 1332 signals [signum - 1].pending = 1;
940 evpipe_write (EV_A_ &gotsig); 1333 evpipe_write (EV_A_ &sig_pending);
941} 1334}
942 1335
943void noinline 1336void noinline
944ev_feed_signal_event (EV_P_ int signum) 1337ev_feed_signal_event (EV_P_ int signum)
945{ 1338{
946 WL w; 1339 WL w;
947 1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
948#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1347 /* it is permissible to try to feed a signal to the wrong loop */
950#endif 1348 /* or, likely more useful, feeding a signal nobody is waiting for */
951 1349
952 --signum; 1350 if (expect_false (signals [signum].loop != EV_A))
953
954 if (signum < 0 || signum >= signalmax)
955 return; 1351 return;
1352#endif
956 1353
957 signals [signum].gotsig = 0; 1354 signals [signum].pending = 0;
958 1355
959 for (w = signals [signum].head; w; w = w->next) 1356 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961} 1358}
962 1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
963/*****************************************************************************/ 1380/*****************************************************************************/
964 1381
965static WL childs [EV_PID_HASHSIZE]; 1382static WL childs [EV_PID_HASHSIZE];
966 1383
967#ifndef _WIN32 1384#ifndef _WIN32
970 1387
971#ifndef WIFCONTINUED 1388#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0 1389# define WIFCONTINUED(status) 0
973#endif 1390#endif
974 1391
975void inline_speed 1392/* handle a single child status event */
1393inline_speed void
976child_reap (EV_P_ int chain, int pid, int status) 1394child_reap (EV_P_ int chain, int pid, int status)
977{ 1395{
978 ev_child *w; 1396 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1397 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980 1398
993 1411
994#ifndef WCONTINUED 1412#ifndef WCONTINUED
995# define WCONTINUED 0 1413# define WCONTINUED 0
996#endif 1414#endif
997 1415
1416/* called on sigchld etc., calls waitpid */
998static void 1417static void
999childcb (EV_P_ ev_signal *sw, int revents) 1418childcb (EV_P_ ev_signal *sw, int revents)
1000{ 1419{
1001 int pid, status; 1420 int pid, status;
1002 1421
1083 /* kqueue is borked on everything but netbsd apparently */ 1502 /* kqueue is borked on everything but netbsd apparently */
1084 /* it usually doesn't work correctly on anything but sockets and pipes */ 1503 /* it usually doesn't work correctly on anything but sockets and pipes */
1085 flags &= ~EVBACKEND_KQUEUE; 1504 flags &= ~EVBACKEND_KQUEUE;
1086#endif 1505#endif
1087#ifdef __APPLE__ 1506#ifdef __APPLE__
1088 // flags &= ~EVBACKEND_KQUEUE; for documentation 1507 /* only select works correctly on that "unix-certified" platform */
1089 flags &= ~EVBACKEND_POLL; 1508 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1509 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1090#endif 1510#endif
1091 1511
1092 return flags; 1512 return flags;
1093} 1513}
1094 1514
1108ev_backend (EV_P) 1528ev_backend (EV_P)
1109{ 1529{
1110 return backend; 1530 return backend;
1111} 1531}
1112 1532
1533#if EV_MINIMAL < 2
1113unsigned int 1534unsigned int
1114ev_loop_count (EV_P) 1535ev_loop_count (EV_P)
1115{ 1536{
1116 return loop_count; 1537 return loop_count;
1117} 1538}
1118 1539
1540unsigned int
1541ev_loop_depth (EV_P)
1542{
1543 return loop_depth;
1544}
1545
1119void 1546void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1547ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{ 1548{
1122 io_blocktime = interval; 1549 io_blocktime = interval;
1123} 1550}
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1553ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{ 1554{
1128 timeout_blocktime = interval; 1555 timeout_blocktime = interval;
1129} 1556}
1130 1557
1558void
1559ev_set_userdata (EV_P_ void *data)
1560{
1561 userdata = data;
1562}
1563
1564void *
1565ev_userdata (EV_P)
1566{
1567 return userdata;
1568}
1569
1570void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1571{
1572 invoke_cb = invoke_pending_cb;
1573}
1574
1575void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1576{
1577 release_cb = release;
1578 acquire_cb = acquire;
1579}
1580#endif
1581
1582/* initialise a loop structure, must be zero-initialised */
1131static void noinline 1583static void noinline
1132loop_init (EV_P_ unsigned int flags) 1584loop_init (EV_P_ unsigned int flags)
1133{ 1585{
1134 if (!backend) 1586 if (!backend)
1135 { 1587 {
1588#if EV_USE_REALTIME
1589 if (!have_realtime)
1590 {
1591 struct timespec ts;
1592
1593 if (!clock_gettime (CLOCK_REALTIME, &ts))
1594 have_realtime = 1;
1595 }
1596#endif
1597
1136#if EV_USE_MONOTONIC 1598#if EV_USE_MONOTONIC
1599 if (!have_monotonic)
1137 { 1600 {
1138 struct timespec ts; 1601 struct timespec ts;
1602
1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1603 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1140 have_monotonic = 1; 1604 have_monotonic = 1;
1141 } 1605 }
1142#endif 1606#endif
1607
1608 /* pid check not overridable via env */
1609#ifndef _WIN32
1610 if (flags & EVFLAG_FORKCHECK)
1611 curpid = getpid ();
1612#endif
1613
1614 if (!(flags & EVFLAG_NOENV)
1615 && !enable_secure ()
1616 && getenv ("LIBEV_FLAGS"))
1617 flags = atoi (getenv ("LIBEV_FLAGS"));
1143 1618
1144 ev_rt_now = ev_time (); 1619 ev_rt_now = ev_time ();
1145 mn_now = get_clock (); 1620 mn_now = get_clock ();
1146 now_floor = mn_now; 1621 now_floor = mn_now;
1147 rtmn_diff = ev_rt_now - mn_now; 1622 rtmn_diff = ev_rt_now - mn_now;
1623#if EV_MINIMAL < 2
1624 invoke_cb = ev_invoke_pending;
1625#endif
1148 1626
1149 io_blocktime = 0.; 1627 io_blocktime = 0.;
1150 timeout_blocktime = 0.; 1628 timeout_blocktime = 0.;
1151 backend = 0; 1629 backend = 0;
1152 backend_fd = -1; 1630 backend_fd = -1;
1153 gotasync = 0; 1631 sig_pending = 0;
1632#if EV_ASYNC_ENABLE
1633 async_pending = 0;
1634#endif
1154#if EV_USE_INOTIFY 1635#if EV_USE_INOTIFY
1155 fs_fd = -2; 1636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1156#endif 1637#endif
1157 1638#if EV_USE_SIGNALFD
1158 /* pid check not overridable via env */ 1639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1159#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK)
1161 curpid = getpid ();
1162#endif 1640#endif
1163 1641
1164 if (!(flags & EVFLAG_NOENV)
1165 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS"));
1168
1169 if (!(flags & 0x0000ffffUL)) 1642 if (!(flags & 0x0000ffffU))
1170 flags |= ev_recommended_backends (); 1643 flags |= ev_recommended_backends ();
1171 1644
1172#if EV_USE_PORT 1645#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1646 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 1647#endif
1183#endif 1656#endif
1184#if EV_USE_SELECT 1657#if EV_USE_SELECT
1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1658 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1186#endif 1659#endif
1187 1660
1661 ev_prepare_init (&pending_w, pendingcb);
1662
1188 ev_init (&pipeev, pipecb); 1663 ev_init (&pipe_w, pipecb);
1189 ev_set_priority (&pipeev, EV_MAXPRI); 1664 ev_set_priority (&pipe_w, EV_MAXPRI);
1190 } 1665 }
1191} 1666}
1192 1667
1668/* free up a loop structure */
1193static void noinline 1669static void noinline
1194loop_destroy (EV_P) 1670loop_destroy (EV_P)
1195{ 1671{
1196 int i; 1672 int i;
1197 1673
1198 if (ev_is_active (&pipeev)) 1674 if (ev_is_active (&pipe_w))
1199 { 1675 {
1200 ev_ref (EV_A); /* signal watcher */ 1676 /*ev_ref (EV_A);*/
1201 ev_io_stop (EV_A_ &pipeev); 1677 /*ev_io_stop (EV_A_ &pipe_w);*/
1202 1678
1203#if EV_USE_EVENTFD 1679#if EV_USE_EVENTFD
1204 if (evfd >= 0) 1680 if (evfd >= 0)
1205 close (evfd); 1681 close (evfd);
1206#endif 1682#endif
1207 1683
1208 if (evpipe [0] >= 0) 1684 if (evpipe [0] >= 0)
1209 { 1685 {
1210 close (evpipe [0]); 1686 EV_WIN32_CLOSE_FD (evpipe [0]);
1211 close (evpipe [1]); 1687 EV_WIN32_CLOSE_FD (evpipe [1]);
1212 } 1688 }
1213 } 1689 }
1690
1691#if EV_USE_SIGNALFD
1692 if (ev_is_active (&sigfd_w))
1693 close (sigfd);
1694#endif
1214 1695
1215#if EV_USE_INOTIFY 1696#if EV_USE_INOTIFY
1216 if (fs_fd >= 0) 1697 if (fs_fd >= 0)
1217 close (fs_fd); 1698 close (fs_fd);
1218#endif 1699#endif
1242#if EV_IDLE_ENABLE 1723#if EV_IDLE_ENABLE
1243 array_free (idle, [i]); 1724 array_free (idle, [i]);
1244#endif 1725#endif
1245 } 1726 }
1246 1727
1247 ev_free (anfds); anfdmax = 0; 1728 ev_free (anfds); anfds = 0; anfdmax = 0;
1248 1729
1249 /* have to use the microsoft-never-gets-it-right macro */ 1730 /* have to use the microsoft-never-gets-it-right macro */
1731 array_free (rfeed, EMPTY);
1250 array_free (fdchange, EMPTY); 1732 array_free (fdchange, EMPTY);
1251 array_free (timer, EMPTY); 1733 array_free (timer, EMPTY);
1252#if EV_PERIODIC_ENABLE 1734#if EV_PERIODIC_ENABLE
1253 array_free (periodic, EMPTY); 1735 array_free (periodic, EMPTY);
1254#endif 1736#endif
1262#endif 1744#endif
1263 1745
1264 backend = 0; 1746 backend = 0;
1265} 1747}
1266 1748
1749#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 1750inline_size void infy_fork (EV_P);
1751#endif
1268 1752
1269void inline_size 1753inline_size void
1270loop_fork (EV_P) 1754loop_fork (EV_P)
1271{ 1755{
1272#if EV_USE_PORT 1756#if EV_USE_PORT
1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1757 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1274#endif 1758#endif
1280#endif 1764#endif
1281#if EV_USE_INOTIFY 1765#if EV_USE_INOTIFY
1282 infy_fork (EV_A); 1766 infy_fork (EV_A);
1283#endif 1767#endif
1284 1768
1285 if (ev_is_active (&pipeev)) 1769 if (ev_is_active (&pipe_w))
1286 { 1770 {
1287 /* this "locks" the handlers against writing to the pipe */ 1771 /* this "locks" the handlers against writing to the pipe */
1288 /* while we modify the fd vars */ 1772 /* while we modify the fd vars */
1289 gotsig = 1; 1773 sig_pending = 1;
1290#if EV_ASYNC_ENABLE 1774#if EV_ASYNC_ENABLE
1291 gotasync = 1; 1775 async_pending = 1;
1292#endif 1776#endif
1293 1777
1294 ev_ref (EV_A); 1778 ev_ref (EV_A);
1295 ev_io_stop (EV_A_ &pipeev); 1779 ev_io_stop (EV_A_ &pipe_w);
1296 1780
1297#if EV_USE_EVENTFD 1781#if EV_USE_EVENTFD
1298 if (evfd >= 0) 1782 if (evfd >= 0)
1299 close (evfd); 1783 close (evfd);
1300#endif 1784#endif
1301 1785
1302 if (evpipe [0] >= 0) 1786 if (evpipe [0] >= 0)
1303 { 1787 {
1304 close (evpipe [0]); 1788 EV_WIN32_CLOSE_FD (evpipe [0]);
1305 close (evpipe [1]); 1789 EV_WIN32_CLOSE_FD (evpipe [1]);
1306 } 1790 }
1307 1791
1308 evpipe_init (EV_A); 1792 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */ 1793 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ); 1794 pipecb (EV_A_ &pipe_w, EV_READ);
1311 } 1795 }
1312 1796
1313 postfork = 0; 1797 postfork = 0;
1314} 1798}
1315 1799
1316#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1801
1317struct ev_loop * 1802struct ev_loop *
1318ev_loop_new (unsigned int flags) 1803ev_loop_new (unsigned int flags)
1319{ 1804{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1805 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321 1806
1322 memset (loop, 0, sizeof (struct ev_loop)); 1807 memset (EV_A, 0, sizeof (struct ev_loop));
1323
1324 loop_init (EV_A_ flags); 1808 loop_init (EV_A_ flags);
1325 1809
1326 if (ev_backend (EV_A)) 1810 if (ev_backend (EV_A))
1327 return loop; 1811 return EV_A;
1328 1812
1329 return 0; 1813 return 0;
1330} 1814}
1331 1815
1332void 1816void
1339void 1823void
1340ev_loop_fork (EV_P) 1824ev_loop_fork (EV_P)
1341{ 1825{
1342 postfork = 1; /* must be in line with ev_default_fork */ 1826 postfork = 1; /* must be in line with ev_default_fork */
1343} 1827}
1828#endif /* multiplicity */
1344 1829
1830#if EV_VERIFY
1831static void noinline
1832verify_watcher (EV_P_ W w)
1833{
1834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1835
1836 if (w->pending)
1837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1838}
1839
1840static void noinline
1841verify_heap (EV_P_ ANHE *heap, int N)
1842{
1843 int i;
1844
1845 for (i = HEAP0; i < N + HEAP0; ++i)
1846 {
1847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1850
1851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1852 }
1853}
1854
1855static void noinline
1856array_verify (EV_P_ W *ws, int cnt)
1857{
1858 while (cnt--)
1859 {
1860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1861 verify_watcher (EV_A_ ws [cnt]);
1862 }
1863}
1864#endif
1865
1866#if EV_MINIMAL < 2
1867void
1868ev_loop_verify (EV_P)
1869{
1870#if EV_VERIFY
1871 int i;
1872 WL w;
1873
1874 assert (activecnt >= -1);
1875
1876 assert (fdchangemax >= fdchangecnt);
1877 for (i = 0; i < fdchangecnt; ++i)
1878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1879
1880 assert (anfdmax >= 0);
1881 for (i = 0; i < anfdmax; ++i)
1882 for (w = anfds [i].head; w; w = w->next)
1883 {
1884 verify_watcher (EV_A_ (W)w);
1885 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1886 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1887 }
1888
1889 assert (timermax >= timercnt);
1890 verify_heap (EV_A_ timers, timercnt);
1891
1892#if EV_PERIODIC_ENABLE
1893 assert (periodicmax >= periodiccnt);
1894 verify_heap (EV_A_ periodics, periodiccnt);
1895#endif
1896
1897 for (i = NUMPRI; i--; )
1898 {
1899 assert (pendingmax [i] >= pendingcnt [i]);
1900#if EV_IDLE_ENABLE
1901 assert (idleall >= 0);
1902 assert (idlemax [i] >= idlecnt [i]);
1903 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1904#endif
1905 }
1906
1907#if EV_FORK_ENABLE
1908 assert (forkmax >= forkcnt);
1909 array_verify (EV_A_ (W *)forks, forkcnt);
1910#endif
1911
1912#if EV_ASYNC_ENABLE
1913 assert (asyncmax >= asynccnt);
1914 array_verify (EV_A_ (W *)asyncs, asynccnt);
1915#endif
1916
1917 assert (preparemax >= preparecnt);
1918 array_verify (EV_A_ (W *)prepares, preparecnt);
1919
1920 assert (checkmax >= checkcnt);
1921 array_verify (EV_A_ (W *)checks, checkcnt);
1922
1923# if 0
1924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1926# endif
1927#endif
1928}
1345#endif 1929#endif
1346 1930
1347#if EV_MULTIPLICITY 1931#if EV_MULTIPLICITY
1348struct ev_loop * 1932struct ev_loop *
1349ev_default_loop_init (unsigned int flags) 1933ev_default_loop_init (unsigned int flags)
1353#endif 1937#endif
1354{ 1938{
1355 if (!ev_default_loop_ptr) 1939 if (!ev_default_loop_ptr)
1356 { 1940 {
1357#if EV_MULTIPLICITY 1941#if EV_MULTIPLICITY
1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1359#else 1943#else
1360 ev_default_loop_ptr = 1; 1944 ev_default_loop_ptr = 1;
1361#endif 1945#endif
1362 1946
1363 loop_init (EV_A_ flags); 1947 loop_init (EV_A_ flags);
1380 1964
1381void 1965void
1382ev_default_destroy (void) 1966ev_default_destroy (void)
1383{ 1967{
1384#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1385 struct ev_loop *loop = ev_default_loop_ptr; 1969 EV_P = ev_default_loop_ptr;
1386#endif 1970#endif
1971
1972 ev_default_loop_ptr = 0;
1387 1973
1388#ifndef _WIN32 1974#ifndef _WIN32
1389 ev_ref (EV_A); /* child watcher */ 1975 ev_ref (EV_A); /* child watcher */
1390 ev_signal_stop (EV_A_ &childev); 1976 ev_signal_stop (EV_A_ &childev);
1391#endif 1977#endif
1395 1981
1396void 1982void
1397ev_default_fork (void) 1983ev_default_fork (void)
1398{ 1984{
1399#if EV_MULTIPLICITY 1985#if EV_MULTIPLICITY
1400 struct ev_loop *loop = ev_default_loop_ptr; 1986 EV_P = ev_default_loop_ptr;
1401#endif 1987#endif
1402 1988
1403 if (backend)
1404 postfork = 1; /* must be in line with ev_loop_fork */ 1989 postfork = 1; /* must be in line with ev_loop_fork */
1405} 1990}
1406 1991
1407/*****************************************************************************/ 1992/*****************************************************************************/
1408 1993
1409void 1994void
1410ev_invoke (EV_P_ void *w, int revents) 1995ev_invoke (EV_P_ void *w, int revents)
1411{ 1996{
1412 EV_CB_INVOKE ((W)w, revents); 1997 EV_CB_INVOKE ((W)w, revents);
1413} 1998}
1414 1999
1415void inline_speed 2000unsigned int
1416call_pending (EV_P) 2001ev_pending_count (EV_P)
2002{
2003 int pri;
2004 unsigned int count = 0;
2005
2006 for (pri = NUMPRI; pri--; )
2007 count += pendingcnt [pri];
2008
2009 return count;
2010}
2011
2012void noinline
2013ev_invoke_pending (EV_P)
1417{ 2014{
1418 int pri; 2015 int pri;
1419 2016
1420 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1421 while (pendingcnt [pri]) 2018 while (pendingcnt [pri])
1422 { 2019 {
1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2020 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1424 2021
1425 if (expect_true (p->w))
1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2022 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2023 /* ^ this is no longer true, as pending_w could be here */
1428 2024
1429 p->w->pending = 0; 2025 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events); 2026 EV_CB_INVOKE (p->w, p->events);
1431 } 2027 EV_FREQUENT_CHECK;
1432 } 2028 }
1433} 2029}
1434 2030
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514
1515#if EV_IDLE_ENABLE 2031#if EV_IDLE_ENABLE
1516void inline_size 2032/* make idle watchers pending. this handles the "call-idle */
2033/* only when higher priorities are idle" logic */
2034inline_size void
1517idle_reify (EV_P) 2035idle_reify (EV_P)
1518{ 2036{
1519 if (expect_false (idleall)) 2037 if (expect_false (idleall))
1520 { 2038 {
1521 int pri; 2039 int pri;
1533 } 2051 }
1534 } 2052 }
1535} 2053}
1536#endif 2054#endif
1537 2055
1538void inline_speed 2056/* make timers pending */
2057inline_size void
2058timers_reify (EV_P)
2059{
2060 EV_FREQUENT_CHECK;
2061
2062 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2063 {
2064 do
2065 {
2066 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2067
2068 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2069
2070 /* first reschedule or stop timer */
2071 if (w->repeat)
2072 {
2073 ev_at (w) += w->repeat;
2074 if (ev_at (w) < mn_now)
2075 ev_at (w) = mn_now;
2076
2077 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2078
2079 ANHE_at_cache (timers [HEAP0]);
2080 downheap (timers, timercnt, HEAP0);
2081 }
2082 else
2083 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2084
2085 EV_FREQUENT_CHECK;
2086 feed_reverse (EV_A_ (W)w);
2087 }
2088 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2089
2090 feed_reverse_done (EV_A_ EV_TIMEOUT);
2091 }
2092}
2093
2094#if EV_PERIODIC_ENABLE
2095/* make periodics pending */
2096inline_size void
2097periodics_reify (EV_P)
2098{
2099 EV_FREQUENT_CHECK;
2100
2101 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2102 {
2103 int feed_count = 0;
2104
2105 do
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2108
2109 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2110
2111 /* first reschedule or stop timer */
2112 if (w->reschedule_cb)
2113 {
2114 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2115
2116 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2117
2118 ANHE_at_cache (periodics [HEAP0]);
2119 downheap (periodics, periodiccnt, HEAP0);
2120 }
2121 else if (w->interval)
2122 {
2123 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2124 /* if next trigger time is not sufficiently in the future, put it there */
2125 /* this might happen because of floating point inexactness */
2126 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2127 {
2128 ev_at (w) += w->interval;
2129
2130 /* if interval is unreasonably low we might still have a time in the past */
2131 /* so correct this. this will make the periodic very inexact, but the user */
2132 /* has effectively asked to get triggered more often than possible */
2133 if (ev_at (w) < ev_rt_now)
2134 ev_at (w) = ev_rt_now;
2135 }
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else
2141 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2142
2143 EV_FREQUENT_CHECK;
2144 feed_reverse (EV_A_ (W)w);
2145 }
2146 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2147
2148 feed_reverse_done (EV_A_ EV_PERIODIC);
2149 }
2150}
2151
2152/* simply recalculate all periodics */
2153/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2154static void noinline
2155periodics_reschedule (EV_P)
2156{
2157 int i;
2158
2159 /* adjust periodics after time jump */
2160 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2161 {
2162 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2163
2164 if (w->reschedule_cb)
2165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2166 else if (w->interval)
2167 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2168
2169 ANHE_at_cache (periodics [i]);
2170 }
2171
2172 reheap (periodics, periodiccnt);
2173}
2174#endif
2175
2176/* adjust all timers by a given offset */
2177static void noinline
2178timers_reschedule (EV_P_ ev_tstamp adjust)
2179{
2180 int i;
2181
2182 for (i = 0; i < timercnt; ++i)
2183 {
2184 ANHE *he = timers + i + HEAP0;
2185 ANHE_w (*he)->at += adjust;
2186 ANHE_at_cache (*he);
2187 }
2188}
2189
2190/* fetch new monotonic and realtime times from the kernel */
2191/* also detect if there was a timejump, and act accordingly */
2192inline_speed void
1539time_update (EV_P_ ev_tstamp max_block) 2193time_update (EV_P_ ev_tstamp max_block)
1540{ 2194{
1541 int i;
1542
1543#if EV_USE_MONOTONIC 2195#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic)) 2196 if (expect_true (have_monotonic))
1545 { 2197 {
2198 int i;
1546 ev_tstamp odiff = rtmn_diff; 2199 ev_tstamp odiff = rtmn_diff;
1547 2200
1548 mn_now = get_clock (); 2201 mn_now = get_clock ();
1549 2202
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2203 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1568 */ 2221 */
1569 for (i = 4; --i; ) 2222 for (i = 4; --i; )
1570 { 2223 {
1571 rtmn_diff = ev_rt_now - mn_now; 2224 rtmn_diff = ev_rt_now - mn_now;
1572 2225
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2226 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 2227 return; /* all is well */
1575 2228
1576 ev_rt_now = ev_time (); 2229 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 2230 mn_now = get_clock ();
1578 now_floor = mn_now; 2231 now_floor = mn_now;
1579 } 2232 }
1580 2233
2234 /* no timer adjustment, as the monotonic clock doesn't jump */
2235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1581# if EV_PERIODIC_ENABLE 2236# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A); 2237 periodics_reschedule (EV_A);
1583# endif 2238# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 } 2239 }
1587 else 2240 else
1588#endif 2241#endif
1589 { 2242 {
1590 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1591 2244
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2245 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1593 { 2246 {
2247 /* adjust timers. this is easy, as the offset is the same for all of them */
2248 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1594#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1596#endif 2251#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i)
1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1600 } 2252 }
1601 2253
1602 mn_now = ev_rt_now; 2254 mn_now = ev_rt_now;
1603 } 2255 }
1604} 2256}
1605 2257
1606void 2258void
1607ev_ref (EV_P)
1608{
1609 ++activecnt;
1610}
1611
1612void
1613ev_unref (EV_P)
1614{
1615 --activecnt;
1616}
1617
1618static int loop_done;
1619
1620void
1621ev_loop (EV_P_ int flags) 2259ev_loop (EV_P_ int flags)
1622{ 2260{
2261#if EV_MINIMAL < 2
2262 ++loop_depth;
2263#endif
2264
2265 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2266
1623 loop_done = EVUNLOOP_CANCEL; 2267 loop_done = EVUNLOOP_CANCEL;
1624 2268
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2269 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1626 2270
1627 do 2271 do
1628 { 2272 {
2273#if EV_VERIFY >= 2
2274 ev_loop_verify (EV_A);
2275#endif
2276
1629#ifndef _WIN32 2277#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 2278 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 2279 if (expect_false (getpid () != curpid))
1632 { 2280 {
1633 curpid = getpid (); 2281 curpid = getpid ();
1639 /* we might have forked, so queue fork handlers */ 2287 /* we might have forked, so queue fork handlers */
1640 if (expect_false (postfork)) 2288 if (expect_false (postfork))
1641 if (forkcnt) 2289 if (forkcnt)
1642 { 2290 {
1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2291 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1644 call_pending (EV_A); 2292 EV_INVOKE_PENDING;
1645 } 2293 }
1646#endif 2294#endif
1647 2295
1648 /* queue prepare watchers (and execute them) */ 2296 /* queue prepare watchers (and execute them) */
1649 if (expect_false (preparecnt)) 2297 if (expect_false (preparecnt))
1650 { 2298 {
1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2299 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1652 call_pending (EV_A); 2300 EV_INVOKE_PENDING;
1653 } 2301 }
1654 2302
1655 if (expect_false (!activecnt)) 2303 if (expect_false (loop_done))
1656 break; 2304 break;
1657 2305
1658 /* we might have forked, so reify kernel state if necessary */ 2306 /* we might have forked, so reify kernel state if necessary */
1659 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1660 loop_fork (EV_A); 2308 loop_fork (EV_A);
1667 ev_tstamp waittime = 0.; 2315 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.; 2316 ev_tstamp sleeptime = 0.;
1669 2317
1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2318 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1671 { 2319 {
2320 /* remember old timestamp for io_blocktime calculation */
2321 ev_tstamp prev_mn_now = mn_now;
2322
1672 /* update time to cancel out callback processing overhead */ 2323 /* update time to cancel out callback processing overhead */
1673 time_update (EV_A_ 1e100); 2324 time_update (EV_A_ 1e100);
1674 2325
1675 waittime = MAX_BLOCKTIME; 2326 waittime = MAX_BLOCKTIME;
1676 2327
1677 if (timercnt) 2328 if (timercnt)
1678 { 2329 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1680 if (waittime > to) waittime = to; 2331 if (waittime > to) waittime = to;
1681 } 2332 }
1682 2333
1683#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 2335 if (periodiccnt)
1685 { 2336 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1687 if (waittime > to) waittime = to; 2338 if (waittime > to) waittime = to;
1688 } 2339 }
1689#endif 2340#endif
1690 2341
2342 /* don't let timeouts decrease the waittime below timeout_blocktime */
1691 if (expect_false (waittime < timeout_blocktime)) 2343 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime; 2344 waittime = timeout_blocktime;
1693 2345
1694 sleeptime = waittime - backend_fudge; 2346 /* extra check because io_blocktime is commonly 0 */
1695
1696 if (expect_true (sleeptime > io_blocktime)) 2347 if (expect_false (io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 { 2348 {
2349 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2350
2351 if (sleeptime > waittime - backend_fudge)
2352 sleeptime = waittime - backend_fudge;
2353
2354 if (expect_true (sleeptime > 0.))
2355 {
1701 ev_sleep (sleeptime); 2356 ev_sleep (sleeptime);
1702 waittime -= sleeptime; 2357 waittime -= sleeptime;
2358 }
1703 } 2359 }
1704 } 2360 }
1705 2361
2362#if EV_MINIMAL < 2
1706 ++loop_count; 2363 ++loop_count;
2364#endif
2365 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1707 backend_poll (EV_A_ waittime); 2366 backend_poll (EV_A_ waittime);
2367 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1708 2368
1709 /* update ev_rt_now, do magic */ 2369 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime); 2370 time_update (EV_A_ waittime + sleeptime);
1711 } 2371 }
1712 2372
1723 2383
1724 /* queue check watchers, to be executed first */ 2384 /* queue check watchers, to be executed first */
1725 if (expect_false (checkcnt)) 2385 if (expect_false (checkcnt))
1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2386 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1727 2387
1728 call_pending (EV_A); 2388 EV_INVOKE_PENDING;
1729 } 2389 }
1730 while (expect_true ( 2390 while (expect_true (
1731 activecnt 2391 activecnt
1732 && !loop_done 2392 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2393 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1734 )); 2394 ));
1735 2395
1736 if (loop_done == EVUNLOOP_ONE) 2396 if (loop_done == EVUNLOOP_ONE)
1737 loop_done = EVUNLOOP_CANCEL; 2397 loop_done = EVUNLOOP_CANCEL;
2398
2399#if EV_MINIMAL < 2
2400 --loop_depth;
2401#endif
1738} 2402}
1739 2403
1740void 2404void
1741ev_unloop (EV_P_ int how) 2405ev_unloop (EV_P_ int how)
1742{ 2406{
1743 loop_done = how; 2407 loop_done = how;
1744} 2408}
1745 2409
2410void
2411ev_ref (EV_P)
2412{
2413 ++activecnt;
2414}
2415
2416void
2417ev_unref (EV_P)
2418{
2419 --activecnt;
2420}
2421
2422void
2423ev_now_update (EV_P)
2424{
2425 time_update (EV_A_ 1e100);
2426}
2427
2428void
2429ev_suspend (EV_P)
2430{
2431 ev_now_update (EV_A);
2432}
2433
2434void
2435ev_resume (EV_P)
2436{
2437 ev_tstamp mn_prev = mn_now;
2438
2439 ev_now_update (EV_A);
2440 timers_reschedule (EV_A_ mn_now - mn_prev);
2441#if EV_PERIODIC_ENABLE
2442 /* TODO: really do this? */
2443 periodics_reschedule (EV_A);
2444#endif
2445}
2446
1746/*****************************************************************************/ 2447/*****************************************************************************/
2448/* singly-linked list management, used when the expected list length is short */
1747 2449
1748void inline_size 2450inline_size void
1749wlist_add (WL *head, WL elem) 2451wlist_add (WL *head, WL elem)
1750{ 2452{
1751 elem->next = *head; 2453 elem->next = *head;
1752 *head = elem; 2454 *head = elem;
1753} 2455}
1754 2456
1755void inline_size 2457inline_size void
1756wlist_del (WL *head, WL elem) 2458wlist_del (WL *head, WL elem)
1757{ 2459{
1758 while (*head) 2460 while (*head)
1759 { 2461 {
1760 if (*head == elem) 2462 if (expect_true (*head == elem))
1761 { 2463 {
1762 *head = elem->next; 2464 *head = elem->next;
1763 return; 2465 break;
1764 } 2466 }
1765 2467
1766 head = &(*head)->next; 2468 head = &(*head)->next;
1767 } 2469 }
1768} 2470}
1769 2471
1770void inline_speed 2472/* internal, faster, version of ev_clear_pending */
2473inline_speed void
1771clear_pending (EV_P_ W w) 2474clear_pending (EV_P_ W w)
1772{ 2475{
1773 if (w->pending) 2476 if (w->pending)
1774 { 2477 {
1775 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2478 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1776 w->pending = 0; 2479 w->pending = 0;
1777 } 2480 }
1778} 2481}
1779 2482
1780int 2483int
1784 int pending = w_->pending; 2487 int pending = w_->pending;
1785 2488
1786 if (expect_true (pending)) 2489 if (expect_true (pending))
1787 { 2490 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2491 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2492 p->w = (W)&pending_w;
1789 w_->pending = 0; 2493 w_->pending = 0;
1790 p->w = 0;
1791 return p->events; 2494 return p->events;
1792 } 2495 }
1793 else 2496 else
1794 return 0; 2497 return 0;
1795} 2498}
1796 2499
1797void inline_size 2500inline_size void
1798pri_adjust (EV_P_ W w) 2501pri_adjust (EV_P_ W w)
1799{ 2502{
1800 int pri = w->priority; 2503 int pri = ev_priority (w);
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2504 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2505 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri; 2506 ev_set_priority (w, pri);
1804} 2507}
1805 2508
1806void inline_speed 2509inline_speed void
1807ev_start (EV_P_ W w, int active) 2510ev_start (EV_P_ W w, int active)
1808{ 2511{
1809 pri_adjust (EV_A_ w); 2512 pri_adjust (EV_A_ w);
1810 w->active = active; 2513 w->active = active;
1811 ev_ref (EV_A); 2514 ev_ref (EV_A);
1812} 2515}
1813 2516
1814void inline_size 2517inline_size void
1815ev_stop (EV_P_ W w) 2518ev_stop (EV_P_ W w)
1816{ 2519{
1817 ev_unref (EV_A); 2520 ev_unref (EV_A);
1818 w->active = 0; 2521 w->active = 0;
1819} 2522}
1826 int fd = w->fd; 2529 int fd = w->fd;
1827 2530
1828 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
1829 return; 2532 return;
1830 2533
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 2534 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2535 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2536
2537 EV_FREQUENT_CHECK;
1832 2538
1833 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2540 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1835 wlist_add (&anfds[fd].head, (WL)w); 2541 wlist_add (&anfds[fd].head, (WL)w);
1836 2542
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2543 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1838 w->events &= ~EV_IOFDSET; 2544 w->events &= ~EV__IOFDSET;
2545
2546 EV_FREQUENT_CHECK;
1839} 2547}
1840 2548
1841void noinline 2549void noinline
1842ev_io_stop (EV_P_ ev_io *w) 2550ev_io_stop (EV_P_ ev_io *w)
1843{ 2551{
1844 clear_pending (EV_A_ (W)w); 2552 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 2553 if (expect_false (!ev_is_active (w)))
1846 return; 2554 return;
1847 2555
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2556 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2557
2558 EV_FREQUENT_CHECK;
1849 2559
1850 wlist_del (&anfds[w->fd].head, (WL)w); 2560 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 2561 ev_stop (EV_A_ (W)w);
1852 2562
1853 fd_change (EV_A_ w->fd, 1); 2563 fd_change (EV_A_ w->fd, 1);
2564
2565 EV_FREQUENT_CHECK;
1854} 2566}
1855 2567
1856void noinline 2568void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 2569ev_timer_start (EV_P_ ev_timer *w)
1858{ 2570{
1859 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
1860 return; 2572 return;
1861 2573
1862 ((WT)w)->at += mn_now; 2574 ev_at (w) += mn_now;
1863 2575
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2576 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 2581 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2582 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 2583 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 2584 ANHE_at_cache (timers [ev_active (w)]);
2585 upheap (timers, ev_active (w));
1870 2586
2587 EV_FREQUENT_CHECK;
2588
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 2590}
1873 2591
1874void noinline 2592void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 2593ev_timer_stop (EV_P_ ev_timer *w)
1876{ 2594{
1877 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1879 return; 2597 return;
1880 2598
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2599 EV_FREQUENT_CHECK;
1882 2600
1883 { 2601 {
1884 int active = ((W)w)->active; 2602 int active = ev_active (w);
1885 2603
2604 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2605
2606 --timercnt;
2607
1886 if (expect_true (--active < --timercnt)) 2608 if (expect_true (active < timercnt + HEAP0))
1887 { 2609 {
1888 timers [active] = timers [timercnt]; 2610 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 2611 adjustheap (timers, timercnt, active);
1890 } 2612 }
1891 } 2613 }
1892 2614
1893 ((WT)w)->at -= mn_now; 2615 ev_at (w) -= mn_now;
1894 2616
1895 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
2618
2619 EV_FREQUENT_CHECK;
1896} 2620}
1897 2621
1898void noinline 2622void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 2623ev_timer_again (EV_P_ ev_timer *w)
1900{ 2624{
2625 EV_FREQUENT_CHECK;
2626
1901 if (ev_is_active (w)) 2627 if (ev_is_active (w))
1902 { 2628 {
1903 if (w->repeat) 2629 if (w->repeat)
1904 { 2630 {
1905 ((WT)w)->at = mn_now + w->repeat; 2631 ev_at (w) = mn_now + w->repeat;
2632 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 2633 adjustheap (timers, timercnt, ev_active (w));
1907 } 2634 }
1908 else 2635 else
1909 ev_timer_stop (EV_A_ w); 2636 ev_timer_stop (EV_A_ w);
1910 } 2637 }
1911 else if (w->repeat) 2638 else if (w->repeat)
1912 { 2639 {
1913 w->at = w->repeat; 2640 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 2641 ev_timer_start (EV_A_ w);
1915 } 2642 }
2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647ev_tstamp
2648ev_timer_remaining (EV_P_ ev_timer *w)
2649{
2650 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1916} 2651}
1917 2652
1918#if EV_PERIODIC_ENABLE 2653#if EV_PERIODIC_ENABLE
1919void noinline 2654void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 2655ev_periodic_start (EV_P_ ev_periodic *w)
1921{ 2656{
1922 if (expect_false (ev_is_active (w))) 2657 if (expect_false (ev_is_active (w)))
1923 return; 2658 return;
1924 2659
1925 if (w->reschedule_cb) 2660 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2661 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 2662 else if (w->interval)
1928 { 2663 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2664 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 2665 /* this formula differs from the one in periodic_reify because we do not always round up */
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2666 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 2667 }
1933 else 2668 else
1934 ((WT)w)->at = w->offset; 2669 ev_at (w) = w->offset;
1935 2670
2671 EV_FREQUENT_CHECK;
2672
2673 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 2674 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2675 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 2676 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 2677 ANHE_at_cache (periodics [ev_active (w)]);
2678 upheap (periodics, ev_active (w));
1940 2679
2680 EV_FREQUENT_CHECK;
2681
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2682 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 2683}
1943 2684
1944void noinline 2685void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 2686ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 2687{
1947 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
1949 return; 2690 return;
1950 2691
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2692 EV_FREQUENT_CHECK;
1952 2693
1953 { 2694 {
1954 int active = ((W)w)->active; 2695 int active = ev_active (w);
1955 2696
2697 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2698
2699 --periodiccnt;
2700
1956 if (expect_true (--active < --periodiccnt)) 2701 if (expect_true (active < periodiccnt + HEAP0))
1957 { 2702 {
1958 periodics [active] = periodics [periodiccnt]; 2703 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 2704 adjustheap (periodics, periodiccnt, active);
1960 } 2705 }
1961 } 2706 }
1962 2707
1963 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
1964} 2711}
1965 2712
1966void noinline 2713void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 2714ev_periodic_again (EV_P_ ev_periodic *w)
1968{ 2715{
1977#endif 2724#endif
1978 2725
1979void noinline 2726void noinline
1980ev_signal_start (EV_P_ ev_signal *w) 2727ev_signal_start (EV_P_ ev_signal *w)
1981{ 2728{
1982#if EV_MULTIPLICITY
1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1984#endif
1985 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
1986 return; 2730 return;
1987 2731
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2732 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1989 2733
1990 evpipe_init (EV_A); 2734#if EV_MULTIPLICITY
2735 assert (("libev: a signal must not be attached to two different loops",
2736 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1991 2737
2738 signals [w->signum - 1].loop = EV_A;
2739#endif
2740
2741 EV_FREQUENT_CHECK;
2742
2743#if EV_USE_SIGNALFD
2744 if (sigfd == -2)
1992 { 2745 {
1993#ifndef _WIN32 2746 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1994 sigset_t full, prev; 2747 if (sigfd < 0 && errno == EINVAL)
1995 sigfillset (&full); 2748 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998 2749
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2750 if (sigfd >= 0)
2751 {
2752 fd_intern (sigfd); /* doing it twice will not hurt */
2000 2753
2001#ifndef _WIN32 2754 sigemptyset (&sigfd_set);
2002 sigprocmask (SIG_SETMASK, &prev, 0); 2755
2003#endif 2756 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2757 ev_set_priority (&sigfd_w, EV_MAXPRI);
2758 ev_io_start (EV_A_ &sigfd_w);
2759 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2760 }
2004 } 2761 }
2762
2763 if (sigfd >= 0)
2764 {
2765 /* TODO: check .head */
2766 sigaddset (&sigfd_set, w->signum);
2767 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2768
2769 signalfd (sigfd, &sigfd_set, 0);
2770 }
2771#endif
2005 2772
2006 ev_start (EV_A_ (W)w, 1); 2773 ev_start (EV_A_ (W)w, 1);
2007 wlist_add (&signals [w->signum - 1].head, (WL)w); 2774 wlist_add (&signals [w->signum - 1].head, (WL)w);
2008 2775
2009 if (!((WL)w)->next) 2776 if (!((WL)w)->next)
2777# if EV_USE_SIGNALFD
2778 if (sigfd < 0) /*TODO*/
2779# endif
2010 { 2780 {
2011#if _WIN32 2781# ifdef _WIN32
2782 evpipe_init (EV_A);
2783
2012 signal (w->signum, ev_sighandler); 2784 signal (w->signum, ev_sighandler);
2013#else 2785# else
2014 struct sigaction sa; 2786 struct sigaction sa;
2787
2788 evpipe_init (EV_A);
2789
2015 sa.sa_handler = ev_sighandler; 2790 sa.sa_handler = ev_sighandler;
2016 sigfillset (&sa.sa_mask); 2791 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2792 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 2793 sigaction (w->signum, &sa, 0);
2794
2795 sigemptyset (&sa.sa_mask);
2796 sigaddset (&sa.sa_mask, w->signum);
2797 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2019#endif 2798#endif
2020 } 2799 }
2800
2801 EV_FREQUENT_CHECK;
2021} 2802}
2022 2803
2023void noinline 2804void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 2805ev_signal_stop (EV_P_ ev_signal *w)
2025{ 2806{
2026 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
2028 return; 2809 return;
2029 2810
2811 EV_FREQUENT_CHECK;
2812
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 2813 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2032 2815
2033 if (!signals [w->signum - 1].head) 2816 if (!signals [w->signum - 1].head)
2817 {
2818#if EV_MULTIPLICITY
2819 signals [w->signum - 1].loop = 0; /* unattach from signal */
2820#endif
2821#if EV_USE_SIGNALFD
2822 if (sigfd >= 0)
2823 {
2824 sigset_t ss;
2825
2826 sigemptyset (&ss);
2827 sigaddset (&ss, w->signum);
2828 sigdelset (&sigfd_set, w->signum);
2829
2830 signalfd (sigfd, &sigfd_set, 0);
2831 sigprocmask (SIG_UNBLOCK, &ss, 0);
2832 }
2833 else
2834#endif
2034 signal (w->signum, SIG_DFL); 2835 signal (w->signum, SIG_DFL);
2836 }
2837
2838 EV_FREQUENT_CHECK;
2035} 2839}
2036 2840
2037void 2841void
2038ev_child_start (EV_P_ ev_child *w) 2842ev_child_start (EV_P_ ev_child *w)
2039{ 2843{
2040#if EV_MULTIPLICITY 2844#if EV_MULTIPLICITY
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2845 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 2846#endif
2043 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
2044 return; 2848 return;
2045 2849
2850 EV_FREQUENT_CHECK;
2851
2046 ev_start (EV_A_ (W)w, 1); 2852 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2853 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2854
2855 EV_FREQUENT_CHECK;
2048} 2856}
2049 2857
2050void 2858void
2051ev_child_stop (EV_P_ ev_child *w) 2859ev_child_stop (EV_P_ ev_child *w)
2052{ 2860{
2053 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2055 return; 2863 return;
2056 2864
2865 EV_FREQUENT_CHECK;
2866
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2867 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 2868 ev_stop (EV_A_ (W)w);
2869
2870 EV_FREQUENT_CHECK;
2059} 2871}
2060 2872
2061#if EV_STAT_ENABLE 2873#if EV_STAT_ENABLE
2062 2874
2063# ifdef _WIN32 2875# ifdef _WIN32
2064# undef lstat 2876# undef lstat
2065# define lstat(a,b) _stati64 (a,b) 2877# define lstat(a,b) _stati64 (a,b)
2066# endif 2878# endif
2067 2879
2068#define DEF_STAT_INTERVAL 5.0074891 2880#define DEF_STAT_INTERVAL 5.0074891
2881#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2069#define MIN_STAT_INTERVAL 0.1074891 2882#define MIN_STAT_INTERVAL 0.1074891
2070 2883
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2884static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072 2885
2073#if EV_USE_INOTIFY 2886#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192 2887
2888/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2889# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2075 2890
2076static void noinline 2891static void noinline
2077infy_add (EV_P_ ev_stat *w) 2892infy_add (EV_P_ ev_stat *w)
2078{ 2893{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2894 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2080 2895
2081 if (w->wd < 0) 2896 if (w->wd >= 0)
2897 {
2898 struct statfs sfs;
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem is known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (!fs_2625)
2905 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2906 else if (!statfs (w->path, &sfs)
2907 && (sfs.f_type == 0x1373 /* devfs */
2908 || sfs.f_type == 0xEF53 /* ext2/3 */
2909 || sfs.f_type == 0x3153464a /* jfs */
2910 || sfs.f_type == 0x52654973 /* reiser3 */
2911 || sfs.f_type == 0x01021994 /* tempfs */
2912 || sfs.f_type == 0x58465342 /* xfs */))
2913 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2914 else
2915 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2082 { 2916 }
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2917 else
2918 {
2919 /* can't use inotify, continue to stat */
2920 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2084 2921
2085 /* monitor some parent directory for speedup hints */ 2922 /* if path is not there, monitor some parent directory for speedup hints */
2923 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2924 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2925 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 2926 {
2088 char path [4096]; 2927 char path [4096];
2089 strcpy (path, w->path); 2928 strcpy (path, w->path);
2090 2929
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2932 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2933 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095 2934
2096 char *pend = strrchr (path, '/'); 2935 char *pend = strrchr (path, '/');
2097 2936
2098 if (!pend) 2937 if (!pend || pend == path)
2099 break; /* whoops, no '/', complain to your admin */ 2938 break;
2100 2939
2101 *pend = 0; 2940 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask); 2941 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 } 2942 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2943 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 } 2944 }
2106 } 2945 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109 2946
2110 if (w->wd >= 0) 2947 if (w->wd >= 0)
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2948 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2949
2950 /* now re-arm timer, if required */
2951 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2952 ev_timer_again (EV_A_ &w->timer);
2953 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2112} 2954}
2113 2955
2114static void noinline 2956static void noinline
2115infy_del (EV_P_ ev_stat *w) 2957infy_del (EV_P_ ev_stat *w)
2116{ 2958{
2130 2972
2131static void noinline 2973static void noinline
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2974infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{ 2975{
2134 if (slot < 0) 2976 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */ 2977 /* overflow, need to check for all hash slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2137 infy_wd (EV_A_ slot, wd, ev); 2979 infy_wd (EV_A_ slot, wd, ev);
2138 else 2980 else
2139 { 2981 {
2140 WL w_; 2982 WL w_;
2146 2988
2147 if (w->wd == wd || wd == -1) 2989 if (w->wd == wd || wd == -1)
2148 { 2990 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2991 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 { 2992 {
2993 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2151 w->wd = -1; 2994 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */ 2995 infy_add (EV_A_ w); /* re-add, no matter what */
2153 } 2996 }
2154 2997
2155 stat_timer_cb (EV_A_ &w->timer, 0); 2998 stat_timer_cb (EV_A_ &w->timer, 0);
2160 3003
2161static void 3004static void
2162infy_cb (EV_P_ ev_io *w, int revents) 3005infy_cb (EV_P_ ev_io *w, int revents)
2163{ 3006{
2164 char buf [EV_INOTIFY_BUFSIZE]; 3007 char buf [EV_INOTIFY_BUFSIZE];
2165 struct inotify_event *ev = (struct inotify_event *)buf;
2166 int ofs; 3008 int ofs;
2167 int len = read (fs_fd, buf, sizeof (buf)); 3009 int len = read (fs_fd, buf, sizeof (buf));
2168 3010
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3011 for (ofs = 0; ofs < len; )
3012 {
3013 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3014 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3015 ofs += sizeof (struct inotify_event) + ev->len;
3016 }
2171} 3017}
2172 3018
2173void inline_size 3019inline_size unsigned int
3020ev_linux_version (void)
3021{
3022 struct utsname buf;
3023 unsigned int v;
3024 int i;
3025 char *p = buf.release;
3026
3027 if (uname (&buf))
3028 return 0;
3029
3030 for (i = 3+1; --i; )
3031 {
3032 unsigned int c = 0;
3033
3034 for (;;)
3035 {
3036 if (*p >= '0' && *p <= '9')
3037 c = c * 10 + *p++ - '0';
3038 else
3039 {
3040 p += *p == '.';
3041 break;
3042 }
3043 }
3044
3045 v = (v << 8) | c;
3046 }
3047
3048 return v;
3049}
3050
3051inline_size void
3052ev_check_2625 (EV_P)
3053{
3054 /* kernels < 2.6.25 are borked
3055 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3056 */
3057 if (ev_linux_version () < 0x020619)
3058 return;
3059
3060 fs_2625 = 1;
3061}
3062
3063inline_size int
3064infy_newfd (void)
3065{
3066#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3067 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3068 if (fd >= 0)
3069 return fd;
3070#endif
3071 return inotify_init ();
3072}
3073
3074inline_size void
2174infy_init (EV_P) 3075infy_init (EV_P)
2175{ 3076{
2176 if (fs_fd != -2) 3077 if (fs_fd != -2)
2177 return; 3078 return;
2178 3079
3080 fs_fd = -1;
3081
3082 ev_check_2625 (EV_A);
3083
2179 fs_fd = inotify_init (); 3084 fs_fd = infy_newfd ();
2180 3085
2181 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2182 { 3087 {
3088 fd_intern (fs_fd);
2183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3089 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2184 ev_set_priority (&fs_w, EV_MAXPRI); 3090 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w); 3091 ev_io_start (EV_A_ &fs_w);
3092 ev_unref (EV_A);
2186 } 3093 }
2187} 3094}
2188 3095
2189void inline_size 3096inline_size void
2190infy_fork (EV_P) 3097infy_fork (EV_P)
2191{ 3098{
2192 int slot; 3099 int slot;
2193 3100
2194 if (fs_fd < 0) 3101 if (fs_fd < 0)
2195 return; 3102 return;
2196 3103
3104 ev_ref (EV_A);
3105 ev_io_stop (EV_A_ &fs_w);
2197 close (fs_fd); 3106 close (fs_fd);
2198 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_set (&fs_w, fs_fd, EV_READ);
3113 ev_io_start (EV_A_ &fs_w);
3114 ev_unref (EV_A);
3115 }
2199 3116
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3117 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2201 { 3118 {
2202 WL w_ = fs_hash [slot].head; 3119 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0; 3120 fs_hash [slot].head = 0;
2210 w->wd = -1; 3127 w->wd = -1;
2211 3128
2212 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */ 3130 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else 3131 else
3132 {
3133 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3134 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2215 ev_timer_start (EV_A_ &w->timer); 3135 ev_timer_again (EV_A_ &w->timer);
3136 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3137 }
2216 } 3138 }
2217
2218 } 3139 }
2219} 3140}
2220 3141
3142#endif
3143
3144#ifdef _WIN32
3145# define EV_LSTAT(p,b) _stati64 (p, b)
3146#else
3147# define EV_LSTAT(p,b) lstat (p, b)
2221#endif 3148#endif
2222 3149
2223void 3150void
2224ev_stat_stat (EV_P_ ev_stat *w) 3151ev_stat_stat (EV_P_ ev_stat *w)
2225{ 3152{
2232static void noinline 3159static void noinline
2233stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3160stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2234{ 3161{
2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3162 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2236 3163
2237 /* we copy this here each the time so that */ 3164 ev_statdata prev = w->attr;
2238 /* prev has the old value when the callback gets invoked */
2239 w->prev = w->attr;
2240 ev_stat_stat (EV_A_ w); 3165 ev_stat_stat (EV_A_ w);
2241 3166
2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if ( 3168 if (
2244 w->prev.st_dev != w->attr.st_dev 3169 prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino 3170 || prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode 3171 || prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink 3172 || prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid 3173 || prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid 3174 || prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev 3175 || prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size 3176 || prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime 3177 || prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime 3178 || prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime 3179 || prev.st_ctime != w->attr.st_ctime
2255 ) { 3180 ) {
3181 /* we only update w->prev on actual differences */
3182 /* in case we test more often than invoke the callback, */
3183 /* to ensure that prev is always different to attr */
3184 w->prev = prev;
3185
2256 #if EV_USE_INOTIFY 3186 #if EV_USE_INOTIFY
3187 if (fs_fd >= 0)
3188 {
2257 infy_del (EV_A_ w); 3189 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w); 3190 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */ 3191 ev_stat_stat (EV_A_ w); /* avoid race... */
3192 }
2260 #endif 3193 #endif
2261 3194
2262 ev_feed_event (EV_A_ w, EV_STAT); 3195 ev_feed_event (EV_A_ w, EV_STAT);
2263 } 3196 }
2264} 3197}
2267ev_stat_start (EV_P_ ev_stat *w) 3200ev_stat_start (EV_P_ ev_stat *w)
2268{ 3201{
2269 if (expect_false (ev_is_active (w))) 3202 if (expect_false (ev_is_active (w)))
2270 return; 3203 return;
2271 3204
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w); 3205 ev_stat_stat (EV_A_ w);
2277 3206
3207 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2278 if (w->interval < MIN_STAT_INTERVAL) 3208 w->interval = MIN_STAT_INTERVAL;
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280 3209
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3210 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2282 ev_set_priority (&w->timer, ev_priority (w)); 3211 ev_set_priority (&w->timer, ev_priority (w));
2283 3212
2284#if EV_USE_INOTIFY 3213#if EV_USE_INOTIFY
2285 infy_init (EV_A); 3214 infy_init (EV_A);
2286 3215
2287 if (fs_fd >= 0) 3216 if (fs_fd >= 0)
2288 infy_add (EV_A_ w); 3217 infy_add (EV_A_ w);
2289 else 3218 else
2290#endif 3219#endif
3220 {
2291 ev_timer_start (EV_A_ &w->timer); 3221 ev_timer_again (EV_A_ &w->timer);
3222 ev_unref (EV_A);
3223 }
2292 3224
2293 ev_start (EV_A_ (W)w, 1); 3225 ev_start (EV_A_ (W)w, 1);
3226
3227 EV_FREQUENT_CHECK;
2294} 3228}
2295 3229
2296void 3230void
2297ev_stat_stop (EV_P_ ev_stat *w) 3231ev_stat_stop (EV_P_ ev_stat *w)
2298{ 3232{
2299 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2301 return; 3235 return;
2302 3236
3237 EV_FREQUENT_CHECK;
3238
2303#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 3240 infy_del (EV_A_ w);
2305#endif 3241#endif
3242
3243 if (ev_is_active (&w->timer))
3244 {
3245 ev_ref (EV_A);
2306 ev_timer_stop (EV_A_ &w->timer); 3246 ev_timer_stop (EV_A_ &w->timer);
3247 }
2307 3248
2308 ev_stop (EV_A_ (W)w); 3249 ev_stop (EV_A_ (W)w);
3250
3251 EV_FREQUENT_CHECK;
2309} 3252}
2310#endif 3253#endif
2311 3254
2312#if EV_IDLE_ENABLE 3255#if EV_IDLE_ENABLE
2313void 3256void
2315{ 3258{
2316 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
2317 return; 3260 return;
2318 3261
2319 pri_adjust (EV_A_ (W)w); 3262 pri_adjust (EV_A_ (W)w);
3263
3264 EV_FREQUENT_CHECK;
2320 3265
2321 { 3266 {
2322 int active = ++idlecnt [ABSPRI (w)]; 3267 int active = ++idlecnt [ABSPRI (w)];
2323 3268
2324 ++idleall; 3269 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 3270 ev_start (EV_A_ (W)w, active);
2326 3271
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3272 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 3273 idles [ABSPRI (w)][active - 1] = w;
2329 } 3274 }
3275
3276 EV_FREQUENT_CHECK;
2330} 3277}
2331 3278
2332void 3279void
2333ev_idle_stop (EV_P_ ev_idle *w) 3280ev_idle_stop (EV_P_ ev_idle *w)
2334{ 3281{
2335 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2337 return; 3284 return;
2338 3285
3286 EV_FREQUENT_CHECK;
3287
2339 { 3288 {
2340 int active = ((W)w)->active; 3289 int active = ev_active (w);
2341 3290
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3291 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3292 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 3293
2345 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
2346 --idleall; 3295 --idleall;
2347 } 3296 }
3297
3298 EV_FREQUENT_CHECK;
2348} 3299}
2349#endif 3300#endif
2350 3301
2351void 3302void
2352ev_prepare_start (EV_P_ ev_prepare *w) 3303ev_prepare_start (EV_P_ ev_prepare *w)
2353{ 3304{
2354 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
2355 return; 3306 return;
3307
3308 EV_FREQUENT_CHECK;
2356 3309
2357 ev_start (EV_A_ (W)w, ++preparecnt); 3310 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3311 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 3312 prepares [preparecnt - 1] = w;
3313
3314 EV_FREQUENT_CHECK;
2360} 3315}
2361 3316
2362void 3317void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 3318ev_prepare_stop (EV_P_ ev_prepare *w)
2364{ 3319{
2365 clear_pending (EV_A_ (W)w); 3320 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3321 if (expect_false (!ev_is_active (w)))
2367 return; 3322 return;
2368 3323
3324 EV_FREQUENT_CHECK;
3325
2369 { 3326 {
2370 int active = ((W)w)->active; 3327 int active = ev_active (w);
3328
2371 prepares [active - 1] = prepares [--preparecnt]; 3329 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 3330 ev_active (prepares [active - 1]) = active;
2373 } 3331 }
2374 3332
2375 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
2376} 3336}
2377 3337
2378void 3338void
2379ev_check_start (EV_P_ ev_check *w) 3339ev_check_start (EV_P_ ev_check *w)
2380{ 3340{
2381 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2382 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2383 3345
2384 ev_start (EV_A_ (W)w, ++checkcnt); 3346 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3347 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 3348 checks [checkcnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2387} 3351}
2388 3352
2389void 3353void
2390ev_check_stop (EV_P_ ev_check *w) 3354ev_check_stop (EV_P_ ev_check *w)
2391{ 3355{
2392 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2394 return; 3358 return;
2395 3359
3360 EV_FREQUENT_CHECK;
3361
2396 { 3362 {
2397 int active = ((W)w)->active; 3363 int active = ev_active (w);
3364
2398 checks [active - 1] = checks [--checkcnt]; 3365 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 3366 ev_active (checks [active - 1]) = active;
2400 } 3367 }
2401 3368
2402 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
2403} 3372}
2404 3373
2405#if EV_EMBED_ENABLE 3374#if EV_EMBED_ENABLE
2406void noinline 3375void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 3376ev_embed_sweep (EV_P_ ev_embed *w)
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3393embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{ 3394{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3395 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427 3396
2428 { 3397 {
2429 struct ev_loop *loop = w->other; 3398 EV_P = w->other;
2430 3399
2431 while (fdchangecnt) 3400 while (fdchangecnt)
2432 { 3401 {
2433 fd_reify (EV_A); 3402 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3403 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2435 } 3404 }
2436 } 3405 }
2437} 3406}
2438 3407
3408static void
3409embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3412
3413 ev_embed_stop (EV_A_ w);
3414
3415 {
3416 EV_P = w->other;
3417
3418 ev_loop_fork (EV_A);
3419 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3420 }
3421
3422 ev_embed_start (EV_A_ w);
3423}
3424
2439#if 0 3425#if 0
2440static void 3426static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3427embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2442{ 3428{
2443 ev_idle_stop (EV_A_ idle); 3429 ev_idle_stop (EV_A_ idle);
2449{ 3435{
2450 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2451 return; 3437 return;
2452 3438
2453 { 3439 {
2454 struct ev_loop *loop = w->other; 3440 EV_P = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3441 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3442 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 3443 }
3444
3445 EV_FREQUENT_CHECK;
2458 3446
2459 ev_set_priority (&w->io, ev_priority (w)); 3447 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 3448 ev_io_start (EV_A_ &w->io);
2461 3449
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 3450 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 3451 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 3452 ev_prepare_start (EV_A_ &w->prepare);
2465 3453
3454 ev_fork_init (&w->fork, embed_fork_cb);
3455 ev_fork_start (EV_A_ &w->fork);
3456
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3457 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 3458
2468 ev_start (EV_A_ (W)w, 1); 3459 ev_start (EV_A_ (W)w, 1);
3460
3461 EV_FREQUENT_CHECK;
2469} 3462}
2470 3463
2471void 3464void
2472ev_embed_stop (EV_P_ ev_embed *w) 3465ev_embed_stop (EV_P_ ev_embed *w)
2473{ 3466{
2474 clear_pending (EV_A_ (W)w); 3467 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 3468 if (expect_false (!ev_is_active (w)))
2476 return; 3469 return;
2477 3470
3471 EV_FREQUENT_CHECK;
3472
2478 ev_io_stop (EV_A_ &w->io); 3473 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 3474 ev_prepare_stop (EV_A_ &w->prepare);
3475 ev_fork_stop (EV_A_ &w->fork);
2480 3476
2481 ev_stop (EV_A_ (W)w); 3477 ev_stop (EV_A_ (W)w);
3478
3479 EV_FREQUENT_CHECK;
2482} 3480}
2483#endif 3481#endif
2484 3482
2485#if EV_FORK_ENABLE 3483#if EV_FORK_ENABLE
2486void 3484void
2487ev_fork_start (EV_P_ ev_fork *w) 3485ev_fork_start (EV_P_ ev_fork *w)
2488{ 3486{
2489 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2490 return; 3488 return;
3489
3490 EV_FREQUENT_CHECK;
2491 3491
2492 ev_start (EV_A_ (W)w, ++forkcnt); 3492 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 3494 forks [forkcnt - 1] = w;
3495
3496 EV_FREQUENT_CHECK;
2495} 3497}
2496 3498
2497void 3499void
2498ev_fork_stop (EV_P_ ev_fork *w) 3500ev_fork_stop (EV_P_ ev_fork *w)
2499{ 3501{
2500 clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2502 return; 3504 return;
2503 3505
3506 EV_FREQUENT_CHECK;
3507
2504 { 3508 {
2505 int active = ((W)w)->active; 3509 int active = ev_active (w);
3510
2506 forks [active - 1] = forks [--forkcnt]; 3511 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 3512 ev_active (forks [active - 1]) = active;
2508 } 3513 }
2509 3514
2510 ev_stop (EV_A_ (W)w); 3515 ev_stop (EV_A_ (W)w);
3516
3517 EV_FREQUENT_CHECK;
2511} 3518}
2512#endif 3519#endif
2513 3520
2514#if EV_ASYNC_ENABLE 3521#if EV_ASYNC_ENABLE
2515void 3522void
2517{ 3524{
2518 if (expect_false (ev_is_active (w))) 3525 if (expect_false (ev_is_active (w)))
2519 return; 3526 return;
2520 3527
2521 evpipe_init (EV_A); 3528 evpipe_init (EV_A);
3529
3530 EV_FREQUENT_CHECK;
2522 3531
2523 ev_start (EV_A_ (W)w, ++asynccnt); 3532 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3533 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 3534 asyncs [asynccnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
2526} 3537}
2527 3538
2528void 3539void
2529ev_async_stop (EV_P_ ev_async *w) 3540ev_async_stop (EV_P_ ev_async *w)
2530{ 3541{
2531 clear_pending (EV_A_ (W)w); 3542 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 3543 if (expect_false (!ev_is_active (w)))
2533 return; 3544 return;
2534 3545
3546 EV_FREQUENT_CHECK;
3547
2535 { 3548 {
2536 int active = ((W)w)->active; 3549 int active = ev_active (w);
3550
2537 asyncs [active - 1] = asyncs [--asynccnt]; 3551 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 3552 ev_active (asyncs [active - 1]) = active;
2539 } 3553 }
2540 3554
2541 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2542} 3558}
2543 3559
2544void 3560void
2545ev_async_send (EV_P_ ev_async *w) 3561ev_async_send (EV_P_ ev_async *w)
2546{ 3562{
2547 w->sent = 1; 3563 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync); 3564 evpipe_write (EV_A_ &async_pending);
2549} 3565}
2550#endif 3566#endif
2551 3567
2552/*****************************************************************************/ 3568/*****************************************************************************/
2553 3569
2563once_cb (EV_P_ struct ev_once *once, int revents) 3579once_cb (EV_P_ struct ev_once *once, int revents)
2564{ 3580{
2565 void (*cb)(int revents, void *arg) = once->cb; 3581 void (*cb)(int revents, void *arg) = once->cb;
2566 void *arg = once->arg; 3582 void *arg = once->arg;
2567 3583
2568 ev_io_stop (EV_A_ &once->io); 3584 ev_io_stop (EV_A_ &once->io);
2569 ev_timer_stop (EV_A_ &once->to); 3585 ev_timer_stop (EV_A_ &once->to);
2570 ev_free (once); 3586 ev_free (once);
2571 3587
2572 cb (revents, arg); 3588 cb (revents, arg);
2573} 3589}
2574 3590
2575static void 3591static void
2576once_cb_io (EV_P_ ev_io *w, int revents) 3592once_cb_io (EV_P_ ev_io *w, int revents)
2577{ 3593{
2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3594 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3595
3596 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2579} 3597}
2580 3598
2581static void 3599static void
2582once_cb_to (EV_P_ ev_timer *w, int revents) 3600once_cb_to (EV_P_ ev_timer *w, int revents)
2583{ 3601{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3602 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3603
3604 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2585} 3605}
2586 3606
2587void 3607void
2588ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3608ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2589{ 3609{
2611 ev_timer_set (&once->to, timeout, 0.); 3631 ev_timer_set (&once->to, timeout, 0.);
2612 ev_timer_start (EV_A_ &once->to); 3632 ev_timer_start (EV_A_ &once->to);
2613 } 3633 }
2614} 3634}
2615 3635
3636/*****************************************************************************/
3637
3638#if EV_WALK_ENABLE
3639void
3640ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3641{
3642 int i, j;
3643 ev_watcher_list *wl, *wn;
3644
3645 if (types & (EV_IO | EV_EMBED))
3646 for (i = 0; i < anfdmax; ++i)
3647 for (wl = anfds [i].head; wl; )
3648 {
3649 wn = wl->next;
3650
3651#if EV_EMBED_ENABLE
3652 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3653 {
3654 if (types & EV_EMBED)
3655 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3656 }
3657 else
3658#endif
3659#if EV_USE_INOTIFY
3660 if (ev_cb ((ev_io *)wl) == infy_cb)
3661 ;
3662 else
3663#endif
3664 if ((ev_io *)wl != &pipe_w)
3665 if (types & EV_IO)
3666 cb (EV_A_ EV_IO, wl);
3667
3668 wl = wn;
3669 }
3670
3671 if (types & (EV_TIMER | EV_STAT))
3672 for (i = timercnt + HEAP0; i-- > HEAP0; )
3673#if EV_STAT_ENABLE
3674 /*TODO: timer is not always active*/
3675 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3676 {
3677 if (types & EV_STAT)
3678 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3679 }
3680 else
3681#endif
3682 if (types & EV_TIMER)
3683 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3684
3685#if EV_PERIODIC_ENABLE
3686 if (types & EV_PERIODIC)
3687 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3688 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3689#endif
3690
3691#if EV_IDLE_ENABLE
3692 if (types & EV_IDLE)
3693 for (j = NUMPRI; i--; )
3694 for (i = idlecnt [j]; i--; )
3695 cb (EV_A_ EV_IDLE, idles [j][i]);
3696#endif
3697
3698#if EV_FORK_ENABLE
3699 if (types & EV_FORK)
3700 for (i = forkcnt; i--; )
3701 if (ev_cb (forks [i]) != embed_fork_cb)
3702 cb (EV_A_ EV_FORK, forks [i]);
3703#endif
3704
3705#if EV_ASYNC_ENABLE
3706 if (types & EV_ASYNC)
3707 for (i = asynccnt; i--; )
3708 cb (EV_A_ EV_ASYNC, asyncs [i]);
3709#endif
3710
3711 if (types & EV_PREPARE)
3712 for (i = preparecnt; i--; )
3713#if EV_EMBED_ENABLE
3714 if (ev_cb (prepares [i]) != embed_prepare_cb)
3715#endif
3716 cb (EV_A_ EV_PREPARE, prepares [i]);
3717
3718 if (types & EV_CHECK)
3719 for (i = checkcnt; i--; )
3720 cb (EV_A_ EV_CHECK, checks [i]);
3721
3722 if (types & EV_SIGNAL)
3723 for (i = 0; i < EV_NSIG - 1; ++i)
3724 for (wl = signals [i].head; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_SIGNAL, wl);
3728 wl = wn;
3729 }
3730
3731 if (types & EV_CHILD)
3732 for (i = EV_PID_HASHSIZE; i--; )
3733 for (wl = childs [i]; wl; )
3734 {
3735 wn = wl->next;
3736 cb (EV_A_ EV_CHILD, wl);
3737 wl = wn;
3738 }
3739/* EV_STAT 0x00001000 /* stat data changed */
3740/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3741}
3742#endif
3743
2616#if EV_MULTIPLICITY 3744#if EV_MULTIPLICITY
2617 #include "ev_wrap.h" 3745 #include "ev_wrap.h"
2618#endif 3746#endif
2619 3747
2620#ifdef __cplusplus 3748#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines