ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC vs.
Revision 1.332 by root, Tue Mar 9 08:58:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
226# endif
227#endif
228
168#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
169# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
170#endif 235#endif
171 236
172#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 239#endif
175 240
176#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
177# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
178#endif 247#endif
179 248
180#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
182#endif 251#endif
235# else 304# else
236# define EV_USE_EVENTFD 0 305# define EV_USE_EVENTFD 0
237# endif 306# endif
238#endif 307#endif
239 308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
240#if 0 /* debugging */ 317#if 0 /* debugging */
241# define EV_VERIFY 3 318# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 319# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 320# define EV_HEAP_CACHE_AT 1
244#endif 321#endif
253 330
254#ifndef EV_HEAP_CACHE_AT 331#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 332# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif 333#endif
257 334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
259 356
260#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
263#endif 360#endif
277# include <sys/select.h> 374# include <sys/select.h>
278# endif 375# endif
279#endif 376#endif
280 377
281#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
282# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
283#endif 387#endif
284 388
285#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h> 390# include <winsock.h>
287#endif 391#endif
288 392
289#if EV_USE_EVENTFD 393#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
292# ifdef __cplusplus 406# ifdef __cplusplus
293extern "C" { 407extern "C" {
294# endif 408# endif
295int eventfd (unsigned int initval, int flags); 409int (eventfd) (unsigned int initval, int flags);
296# ifdef __cplusplus 410# ifdef __cplusplus
297} 411}
298# endif 412# endif
299#endif 413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
300 443
301/**/ 444/**/
302 445
303#if EV_VERIFY >= 3 446#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
316 */ 459 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
318 461
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322 464
323#if __GNUC__ >= 4 465#if __GNUC__ >= 4
324# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
325# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
326#else 468#else
339# define inline_speed static noinline 481# define inline_speed static noinline
340#else 482#else
341# define inline_speed static inline 483# define inline_speed static inline
342#endif 484#endif
343 485
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
346 493
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
349 496
350typedef ev_watcher *W; 497typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
353 500
354#define ev_active(w) ((W)(w))->active 501#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 502#define ev_at(w) ((WT)(w))->at
356 503
357#if EV_USE_MONOTONIC 504#if EV_USE_REALTIME
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 522#endif
362 523
363#ifdef _WIN32 524#ifdef _WIN32
364# include "ev_win32.c" 525# include "ev_win32.c"
365#endif 526#endif
366 527
367/*****************************************************************************/ 528/*****************************************************************************/
368 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
369static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
370 539
371void 540void
372ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
373{ 542{
374 syserr_cb = cb; 543 syserr_cb = cb;
375} 544}
376 545
377static void noinline 546static void noinline
378syserr (const char *msg) 547ev_syserr (const char *msg)
379{ 548{
380 if (!msg) 549 if (!msg)
381 msg = "(libev) system error"; 550 msg = "(libev) system error";
382 551
383 if (syserr_cb) 552 if (syserr_cb)
384 syserr_cb (msg); 553 syserr_cb (msg);
385 else 554 else
386 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
387 perror (msg); 564 perror (msg);
565#endif
388 abort (); 566 abort ();
389 } 567 }
390} 568}
391 569
392static void * 570static void *
394{ 572{
395 /* some systems, notably openbsd and darwin, fail to properly 573 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 574 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here. 575 * the single unix specification, so work around them here.
398 */ 576 */
399
400 if (size) 577 if (size)
401 return realloc (ptr, size); 578 return realloc (ptr, size);
402 579
403 free (ptr); 580 free (ptr);
404 return 0; 581 return 0;
417{ 594{
418 ptr = alloc (ptr, size); 595 ptr = alloc (ptr, size);
419 596
420 if (!ptr && size) 597 if (!ptr && size)
421 { 598 {
599#if EV_AVOID_STDIO
600 ev_printerr ("libev: memory allocation failed, aborting.\n");
601#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 602 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
603#endif
423 abort (); 604 abort ();
424 } 605 }
425 606
426 return ptr; 607 return ptr;
427} 608}
429#define ev_malloc(size) ev_realloc (0, (size)) 610#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 611#define ev_free(ptr) ev_realloc ((ptr), 0)
431 612
432/*****************************************************************************/ 613/*****************************************************************************/
433 614
615/* set in reify when reification needed */
616#define EV_ANFD_REIFY 1
617
618/* file descriptor info structure */
434typedef struct 619typedef struct
435{ 620{
436 WL head; 621 WL head;
437 unsigned char events; 622 unsigned char events; /* the events watched for */
623 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
624 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 625 unsigned char unused;
626#if EV_USE_EPOLL
627 unsigned int egen; /* generation counter to counter epoll bugs */
628#endif
439#if EV_SELECT_IS_WINSOCKET 629#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle; 630 SOCKET handle;
441#endif 631#endif
442} ANFD; 632} ANFD;
443 633
634/* stores the pending event set for a given watcher */
444typedef struct 635typedef struct
445{ 636{
446 W w; 637 W w;
447 int events; 638 int events; /* the pending event set for the given watcher */
448} ANPENDING; 639} ANPENDING;
449 640
450#if EV_USE_INOTIFY 641#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 642/* hash table entry per inotify-id */
452typedef struct 643typedef struct
455} ANFS; 646} ANFS;
456#endif 647#endif
457 648
458/* Heap Entry */ 649/* Heap Entry */
459#if EV_HEAP_CACHE_AT 650#if EV_HEAP_CACHE_AT
651 /* a heap element */
460 typedef struct { 652 typedef struct {
461 ev_tstamp at; 653 ev_tstamp at;
462 WT w; 654 WT w;
463 } ANHE; 655 } ANHE;
464 656
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 657 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 658 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 659 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 660#else
661 /* a heap element */
469 typedef WT ANHE; 662 typedef WT ANHE;
470 663
471 #define ANHE_w(he) (he) 664 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 665 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 666 #define ANHE_at_cache(he)
497 690
498 static int ev_default_loop_ptr; 691 static int ev_default_loop_ptr;
499 692
500#endif 693#endif
501 694
695#if EV_MINIMAL < 2
696# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
697# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
698# define EV_INVOKE_PENDING invoke_cb (EV_A)
699#else
700# define EV_RELEASE_CB (void)0
701# define EV_ACQUIRE_CB (void)0
702# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
703#endif
704
705#define EVUNLOOP_RECURSE 0x80
706
502/*****************************************************************************/ 707/*****************************************************************************/
503 708
709#ifndef EV_HAVE_EV_TIME
504ev_tstamp 710ev_tstamp
505ev_time (void) 711ev_time (void)
506{ 712{
507#if EV_USE_REALTIME 713#if EV_USE_REALTIME
714 if (expect_true (have_realtime))
715 {
508 struct timespec ts; 716 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 717 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 718 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 719 }
720#endif
721
512 struct timeval tv; 722 struct timeval tv;
513 gettimeofday (&tv, 0); 723 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 724 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 725}
726#endif
517 727
518ev_tstamp inline_size 728inline_size ev_tstamp
519get_clock (void) 729get_clock (void)
520{ 730{
521#if EV_USE_MONOTONIC 731#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 732 if (expect_true (have_monotonic))
523 { 733 {
556 struct timeval tv; 766 struct timeval tv;
557 767
558 tv.tv_sec = (time_t)delay; 768 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 769 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560 770
771 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
772 /* something not guaranteed by newer posix versions, but guaranteed */
773 /* by older ones */
561 select (0, 0, 0, 0, &tv); 774 select (0, 0, 0, 0, &tv);
562#endif 775#endif
563 } 776 }
564} 777}
565 778
566/*****************************************************************************/ 779/*****************************************************************************/
567 780
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 781#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 782
570int inline_size 783/* find a suitable new size for the given array, */
784/* hopefully by rounding to a ncie-to-malloc size */
785inline_size int
571array_nextsize (int elem, int cur, int cnt) 786array_nextsize (int elem, int cur, int cnt)
572{ 787{
573 int ncur = cur + 1; 788 int ncur = cur + 1;
574 789
575 do 790 do
592array_realloc (int elem, void *base, int *cur, int cnt) 807array_realloc (int elem, void *base, int *cur, int cnt)
593{ 808{
594 *cur = array_nextsize (elem, *cur, cnt); 809 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 810 return ev_realloc (base, elem * *cur);
596} 811}
812
813#define array_init_zero(base,count) \
814 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 815
598#define array_needsize(type,base,cur,cnt,init) \ 816#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 817 if (expect_false ((cnt) > (cur))) \
600 { \ 818 { \
601 int ocur_ = (cur); \ 819 int ocur_ = (cur); \
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 831 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 832 }
615#endif 833#endif
616 834
617#define array_free(stem, idx) \ 835#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 836 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 837
620/*****************************************************************************/ 838/*****************************************************************************/
839
840/* dummy callback for pending events */
841static void noinline
842pendingcb (EV_P_ ev_prepare *w, int revents)
843{
844}
621 845
622void noinline 846void noinline
623ev_feed_event (EV_P_ void *w, int revents) 847ev_feed_event (EV_P_ void *w, int revents)
624{ 848{
625 W w_ = (W)w; 849 W w_ = (W)w;
634 pendings [pri][w_->pending - 1].w = w_; 858 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 859 pendings [pri][w_->pending - 1].events = revents;
636 } 860 }
637} 861}
638 862
639void inline_speed 863inline_speed void
864feed_reverse (EV_P_ W w)
865{
866 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
867 rfeeds [rfeedcnt++] = w;
868}
869
870inline_size void
871feed_reverse_done (EV_P_ int revents)
872{
873 do
874 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
875 while (rfeedcnt);
876}
877
878inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 879queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 880{
642 int i; 881 int i;
643 882
644 for (i = 0; i < eventcnt; ++i) 883 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 884 ev_feed_event (EV_A_ events [i], type);
646} 885}
647 886
648/*****************************************************************************/ 887/*****************************************************************************/
649 888
650void inline_size 889inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 890fd_event_nc (EV_P_ int fd, int revents)
665{ 891{
666 ANFD *anfd = anfds + fd; 892 ANFD *anfd = anfds + fd;
667 ev_io *w; 893 ev_io *w;
668 894
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 895 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 899 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 900 ev_feed_event (EV_A_ (W)w, ev);
675 } 901 }
676} 902}
677 903
904/* do not submit kernel events for fds that have reify set */
905/* because that means they changed while we were polling for new events */
906inline_speed void
907fd_event (EV_P_ int fd, int revents)
908{
909 ANFD *anfd = anfds + fd;
910
911 if (expect_true (!anfd->reify))
912 fd_event_nc (EV_A_ fd, revents);
913}
914
678void 915void
679ev_feed_fd_event (EV_P_ int fd, int revents) 916ev_feed_fd_event (EV_P_ int fd, int revents)
680{ 917{
681 if (fd >= 0 && fd < anfdmax) 918 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 919 fd_event_nc (EV_A_ fd, revents);
683} 920}
684 921
685void inline_size 922/* make sure the external fd watch events are in-sync */
923/* with the kernel/libev internal state */
924inline_size void
686fd_reify (EV_P) 925fd_reify (EV_P)
687{ 926{
688 int i; 927 int i;
689 928
690 for (i = 0; i < fdchangecnt; ++i) 929 for (i = 0; i < fdchangecnt; ++i)
699 events |= (unsigned char)w->events; 938 events |= (unsigned char)w->events;
700 939
701#if EV_SELECT_IS_WINSOCKET 940#if EV_SELECT_IS_WINSOCKET
702 if (events) 941 if (events)
703 { 942 {
704 unsigned long argp; 943 unsigned long arg;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 944 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 945 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
711 } 946 }
712#endif 947#endif
713 948
714 { 949 {
715 unsigned char o_events = anfd->events; 950 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify; 951 unsigned char o_reify = anfd->reify;
717 952
718 anfd->reify = 0; 953 anfd->reify = 0;
719 anfd->events = events; 954 anfd->events = events;
720 955
721 if (o_events != events || o_reify & EV_IOFDSET) 956 if (o_events != events || o_reify & EV__IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 957 backend_modify (EV_A_ fd, o_events, events);
723 } 958 }
724 } 959 }
725 960
726 fdchangecnt = 0; 961 fdchangecnt = 0;
727} 962}
728 963
729void inline_size 964/* something about the given fd changed */
965inline_size void
730fd_change (EV_P_ int fd, int flags) 966fd_change (EV_P_ int fd, int flags)
731{ 967{
732 unsigned char reify = anfds [fd].reify; 968 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 969 anfds [fd].reify |= flags;
734 970
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 974 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 975 fdchanges [fdchangecnt - 1] = fd;
740 } 976 }
741} 977}
742 978
743void inline_speed 979/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
980inline_speed void
744fd_kill (EV_P_ int fd) 981fd_kill (EV_P_ int fd)
745{ 982{
746 ev_io *w; 983 ev_io *w;
747 984
748 while ((w = (ev_io *)anfds [fd].head)) 985 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 987 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 988 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 989 }
753} 990}
754 991
755int inline_size 992/* check whether the given fd is atcually valid, for error recovery */
993inline_size int
756fd_valid (int fd) 994fd_valid (int fd)
757{ 995{
758#ifdef _WIN32 996#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 997 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 998#else
761 return fcntl (fd, F_GETFD) != -1; 999 return fcntl (fd, F_GETFD) != -1;
762#endif 1000#endif
763} 1001}
764 1002
768{ 1006{
769 int fd; 1007 int fd;
770 1008
771 for (fd = 0; fd < anfdmax; ++fd) 1009 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1010 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1011 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1012 fd_kill (EV_A_ fd);
775} 1013}
776 1014
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1015/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1016static void noinline
782 1020
783 for (fd = anfdmax; fd--; ) 1021 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1022 if (anfds [fd].events)
785 { 1023 {
786 fd_kill (EV_A_ fd); 1024 fd_kill (EV_A_ fd);
787 return; 1025 break;
788 } 1026 }
789} 1027}
790 1028
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1029/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1030static void noinline
796 1034
797 for (fd = 0; fd < anfdmax; ++fd) 1035 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1036 if (anfds [fd].events)
799 { 1037 {
800 anfds [fd].events = 0; 1038 anfds [fd].events = 0;
1039 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1040 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1041 }
803} 1042}
804 1043
805/*****************************************************************************/ 1044/*****************************************************************************/
806 1045
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1061#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1062#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 1063#define UPHEAP_DONE(p,k) ((p) == (k))
825 1064
826/* away from the root */ 1065/* away from the root */
827void inline_speed 1066inline_speed void
828downheap (ANHE *heap, int N, int k) 1067downheap (ANHE *heap, int N, int k)
829{ 1068{
830 ANHE he = heap [k]; 1069 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 1070 ANHE *E = heap + N + HEAP0;
832 1071
872#define HEAP0 1 1111#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 1112#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 1113#define UPHEAP_DONE(p,k) (!(p))
875 1114
876/* away from the root */ 1115/* away from the root */
877void inline_speed 1116inline_speed void
878downheap (ANHE *heap, int N, int k) 1117downheap (ANHE *heap, int N, int k)
879{ 1118{
880 ANHE he = heap [k]; 1119 ANHE he = heap [k];
881 1120
882 for (;;) 1121 for (;;)
883 { 1122 {
884 int c = k << 1; 1123 int c = k << 1;
885 1124
886 if (c > N + HEAP0 - 1) 1125 if (c >= N + HEAP0)
887 break; 1126 break;
888 1127
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1128 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 1129 ? 1 : 0;
891 1130
902 ev_active (ANHE_w (he)) = k; 1141 ev_active (ANHE_w (he)) = k;
903} 1142}
904#endif 1143#endif
905 1144
906/* towards the root */ 1145/* towards the root */
907void inline_speed 1146inline_speed void
908upheap (ANHE *heap, int k) 1147upheap (ANHE *heap, int k)
909{ 1148{
910 ANHE he = heap [k]; 1149 ANHE he = heap [k];
911 1150
912 for (;;) 1151 for (;;)
923 1162
924 heap [k] = he; 1163 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 1164 ev_active (ANHE_w (he)) = k;
926} 1165}
927 1166
928void inline_size 1167/* move an element suitably so it is in a correct place */
1168inline_size void
929adjustheap (ANHE *heap, int N, int k) 1169adjustheap (ANHE *heap, int N, int k)
930{ 1170{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1171 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 1172 upheap (heap, k);
933 else 1173 else
934 downheap (heap, N, k); 1174 downheap (heap, N, k);
935} 1175}
936 1176
937/* rebuild the heap: this function is used only once and executed rarely */ 1177/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 1178inline_size void
939reheap (ANHE *heap, int N) 1179reheap (ANHE *heap, int N)
940{ 1180{
941 int i; 1181 int i;
942 1182
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1183 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
946 upheap (heap, i + HEAP0); 1186 upheap (heap, i + HEAP0);
947} 1187}
948 1188
949/*****************************************************************************/ 1189/*****************************************************************************/
950 1190
1191/* associate signal watchers to a signal signal */
951typedef struct 1192typedef struct
952{ 1193{
1194 EV_ATOMIC_T pending;
1195#if EV_MULTIPLICITY
1196 EV_P;
1197#endif
953 WL head; 1198 WL head;
954 EV_ATOMIC_T gotsig;
955} ANSIG; 1199} ANSIG;
956 1200
957static ANSIG *signals; 1201static ANSIG signals [EV_NSIG - 1];
958static int signalmax;
959
960static EV_ATOMIC_T gotsig;
961
962void inline_size
963signals_init (ANSIG *base, int count)
964{
965 while (count--)
966 {
967 base->head = 0;
968 base->gotsig = 0;
969
970 ++base;
971 }
972}
973 1202
974/*****************************************************************************/ 1203/*****************************************************************************/
975 1204
976void inline_speed 1205/* used to prepare libev internal fd's */
1206/* this is not fork-safe */
1207inline_speed void
977fd_intern (int fd) 1208fd_intern (int fd)
978{ 1209{
979#ifdef _WIN32 1210#ifdef _WIN32
980 int arg = 1; 1211 unsigned long arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1212 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
982#else 1213#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC); 1214 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK); 1215 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif 1216#endif
986} 1217}
987 1218
988static void noinline 1219static void noinline
989evpipe_init (EV_P) 1220evpipe_init (EV_P)
990{ 1221{
991 if (!ev_is_active (&pipeev)) 1222 if (!ev_is_active (&pipe_w))
992 { 1223 {
993#if EV_USE_EVENTFD 1224#if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
994 if ((evfd = eventfd (0, 0)) >= 0) 1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
995 { 1230 {
996 evpipe [0] = -1; 1231 evpipe [0] = -1;
997 fd_intern (evfd); 1232 fd_intern (evfd); /* doing it twice doesn't hurt */
998 ev_io_set (&pipeev, evfd, EV_READ); 1233 ev_io_set (&pipe_w, evfd, EV_READ);
999 } 1234 }
1000 else 1235 else
1001#endif 1236#endif
1002 { 1237 {
1003 while (pipe (evpipe)) 1238 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe"); 1239 ev_syserr ("(libev) error creating signal/async pipe");
1005 1240
1006 fd_intern (evpipe [0]); 1241 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]); 1242 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ); 1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1009 } 1244 }
1010 1245
1011 ev_io_start (EV_A_ &pipeev); 1246 ev_io_start (EV_A_ &pipe_w);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 } 1248 }
1014} 1249}
1015 1250
1016void inline_size 1251inline_size void
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{ 1253{
1019 if (!*flag) 1254 if (!*flag)
1020 { 1255 {
1021 int old_errno = errno; /* save errno because write might clobber it */ 1256 int old_errno = errno; /* save errno because write might clobber it */
1034 1269
1035 errno = old_errno; 1270 errno = old_errno;
1036 } 1271 }
1037} 1272}
1038 1273
1274/* called whenever the libev signal pipe */
1275/* got some events (signal, async) */
1039static void 1276static void
1040pipecb (EV_P_ ev_io *iow, int revents) 1277pipecb (EV_P_ ev_io *iow, int revents)
1041{ 1278{
1279 int i;
1280
1042#if EV_USE_EVENTFD 1281#if EV_USE_EVENTFD
1043 if (evfd >= 0) 1282 if (evfd >= 0)
1044 { 1283 {
1045 uint64_t counter; 1284 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t)); 1285 read (evfd, &counter, sizeof (uint64_t));
1050 { 1289 {
1051 char dummy; 1290 char dummy;
1052 read (evpipe [0], &dummy, 1); 1291 read (evpipe [0], &dummy, 1);
1053 } 1292 }
1054 1293
1055 if (gotsig && ev_is_default_loop (EV_A)) 1294 if (sig_pending)
1056 { 1295 {
1057 int signum; 1296 sig_pending = 0;
1058 gotsig = 0;
1059 1297
1060 for (signum = signalmax; signum--; ) 1298 for (i = EV_NSIG - 1; i--; )
1061 if (signals [signum].gotsig) 1299 if (expect_false (signals [i].pending))
1062 ev_feed_signal_event (EV_A_ signum + 1); 1300 ev_feed_signal_event (EV_A_ i + 1);
1063 } 1301 }
1064 1302
1065#if EV_ASYNC_ENABLE 1303#if EV_ASYNC_ENABLE
1066 if (gotasync) 1304 if (async_pending)
1067 { 1305 {
1068 int i; 1306 async_pending = 0;
1069 gotasync = 0;
1070 1307
1071 for (i = asynccnt; i--; ) 1308 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent) 1309 if (asyncs [i]->sent)
1073 { 1310 {
1074 asyncs [i]->sent = 0; 1311 asyncs [i]->sent = 0;
1082 1319
1083static void 1320static void
1084ev_sighandler (int signum) 1321ev_sighandler (int signum)
1085{ 1322{
1086#if EV_MULTIPLICITY 1323#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct; 1324 EV_P = signals [signum - 1].loop;
1088#endif 1325#endif
1089 1326
1090#if _WIN32 1327#ifdef _WIN32
1091 signal (signum, ev_sighandler); 1328 signal (signum, ev_sighandler);
1092#endif 1329#endif
1093 1330
1094 signals [signum - 1].gotsig = 1; 1331 signals [signum - 1].pending = 1;
1095 evpipe_write (EV_A_ &gotsig); 1332 evpipe_write (EV_A_ &sig_pending);
1096} 1333}
1097 1334
1098void noinline 1335void noinline
1099ev_feed_signal_event (EV_P_ int signum) 1336ev_feed_signal_event (EV_P_ int signum)
1100{ 1337{
1101 WL w; 1338 WL w;
1102 1339
1340 if (expect_false (signum <= 0 || signum > EV_NSIG))
1341 return;
1342
1343 --signum;
1344
1103#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1346 /* it is permissible to try to feed a signal to the wrong loop */
1105#endif 1347 /* or, likely more useful, feeding a signal nobody is waiting for */
1106 1348
1107 --signum; 1349 if (expect_false (signals [signum].loop != EV_A))
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return; 1350 return;
1351#endif
1111 1352
1112 signals [signum].gotsig = 0; 1353 signals [signum].pending = 0;
1113 1354
1114 for (w = signals [signum].head; w; w = w->next) 1355 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1356 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116} 1357}
1117 1358
1359#if EV_USE_SIGNALFD
1360static void
1361sigfdcb (EV_P_ ev_io *iow, int revents)
1362{
1363 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1364
1365 for (;;)
1366 {
1367 ssize_t res = read (sigfd, si, sizeof (si));
1368
1369 /* not ISO-C, as res might be -1, but works with SuS */
1370 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1371 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1372
1373 if (res < (ssize_t)sizeof (si))
1374 break;
1375 }
1376}
1377#endif
1378
1118/*****************************************************************************/ 1379/*****************************************************************************/
1119 1380
1120static WL childs [EV_PID_HASHSIZE]; 1381static WL childs [EV_PID_HASHSIZE];
1121 1382
1122#ifndef _WIN32 1383#ifndef _WIN32
1125 1386
1126#ifndef WIFCONTINUED 1387#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0 1388# define WIFCONTINUED(status) 0
1128#endif 1389#endif
1129 1390
1130void inline_speed 1391/* handle a single child status event */
1392inline_speed void
1131child_reap (EV_P_ int chain, int pid, int status) 1393child_reap (EV_P_ int chain, int pid, int status)
1132{ 1394{
1133 ev_child *w; 1395 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1396 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135 1397
1148 1410
1149#ifndef WCONTINUED 1411#ifndef WCONTINUED
1150# define WCONTINUED 0 1412# define WCONTINUED 0
1151#endif 1413#endif
1152 1414
1415/* called on sigchld etc., calls waitpid */
1153static void 1416static void
1154childcb (EV_P_ ev_signal *sw, int revents) 1417childcb (EV_P_ ev_signal *sw, int revents)
1155{ 1418{
1156 int pid, status; 1419 int pid, status;
1157 1420
1238 /* kqueue is borked on everything but netbsd apparently */ 1501 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */ 1502 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE; 1503 flags &= ~EVBACKEND_KQUEUE;
1241#endif 1504#endif
1242#ifdef __APPLE__ 1505#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation 1506 /* only select works correctly on that "unix-certified" platform */
1244 flags &= ~EVBACKEND_POLL; 1507 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1508 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1245#endif 1509#endif
1246 1510
1247 return flags; 1511 return flags;
1248} 1512}
1249 1513
1263ev_backend (EV_P) 1527ev_backend (EV_P)
1264{ 1528{
1265 return backend; 1529 return backend;
1266} 1530}
1267 1531
1532#if EV_MINIMAL < 2
1268unsigned int 1533unsigned int
1269ev_loop_count (EV_P) 1534ev_loop_count (EV_P)
1270{ 1535{
1271 return loop_count; 1536 return loop_count;
1272} 1537}
1273 1538
1539unsigned int
1540ev_loop_depth (EV_P)
1541{
1542 return loop_depth;
1543}
1544
1274void 1545void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1546ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{ 1547{
1277 io_blocktime = interval; 1548 io_blocktime = interval;
1278} 1549}
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1552ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{ 1553{
1283 timeout_blocktime = interval; 1554 timeout_blocktime = interval;
1284} 1555}
1285 1556
1557void
1558ev_set_userdata (EV_P_ void *data)
1559{
1560 userdata = data;
1561}
1562
1563void *
1564ev_userdata (EV_P)
1565{
1566 return userdata;
1567}
1568
1569void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1570{
1571 invoke_cb = invoke_pending_cb;
1572}
1573
1574void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1575{
1576 release_cb = release;
1577 acquire_cb = acquire;
1578}
1579#endif
1580
1581/* initialise a loop structure, must be zero-initialised */
1286static void noinline 1582static void noinline
1287loop_init (EV_P_ unsigned int flags) 1583loop_init (EV_P_ unsigned int flags)
1288{ 1584{
1289 if (!backend) 1585 if (!backend)
1290 { 1586 {
1587#if EV_USE_REALTIME
1588 if (!have_realtime)
1589 {
1590 struct timespec ts;
1591
1592 if (!clock_gettime (CLOCK_REALTIME, &ts))
1593 have_realtime = 1;
1594 }
1595#endif
1596
1291#if EV_USE_MONOTONIC 1597#if EV_USE_MONOTONIC
1598 if (!have_monotonic)
1292 { 1599 {
1293 struct timespec ts; 1600 struct timespec ts;
1601
1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1602 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1295 have_monotonic = 1; 1603 have_monotonic = 1;
1296 } 1604 }
1297#endif 1605#endif
1606
1607 /* pid check not overridable via env */
1608#ifndef _WIN32
1609 if (flags & EVFLAG_FORKCHECK)
1610 curpid = getpid ();
1611#endif
1612
1613 if (!(flags & EVFLAG_NOENV)
1614 && !enable_secure ()
1615 && getenv ("LIBEV_FLAGS"))
1616 flags = atoi (getenv ("LIBEV_FLAGS"));
1298 1617
1299 ev_rt_now = ev_time (); 1618 ev_rt_now = ev_time ();
1300 mn_now = get_clock (); 1619 mn_now = get_clock ();
1301 now_floor = mn_now; 1620 now_floor = mn_now;
1302 rtmn_diff = ev_rt_now - mn_now; 1621 rtmn_diff = ev_rt_now - mn_now;
1622#if EV_MINIMAL < 2
1623 invoke_cb = ev_invoke_pending;
1624#endif
1303 1625
1304 io_blocktime = 0.; 1626 io_blocktime = 0.;
1305 timeout_blocktime = 0.; 1627 timeout_blocktime = 0.;
1306 backend = 0; 1628 backend = 0;
1307 backend_fd = -1; 1629 backend_fd = -1;
1308 gotasync = 0; 1630 sig_pending = 0;
1631#if EV_ASYNC_ENABLE
1632 async_pending = 0;
1633#endif
1309#if EV_USE_INOTIFY 1634#if EV_USE_INOTIFY
1310 fs_fd = -2; 1635 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1311#endif 1636#endif
1312 1637#if EV_USE_SIGNALFD
1313 /* pid check not overridable via env */ 1638 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1314#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317#endif 1639#endif
1318
1319 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS"))
1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1323 1640
1324 if (!(flags & 0x0000ffffU)) 1641 if (!(flags & 0x0000ffffU))
1325 flags |= ev_recommended_backends (); 1642 flags |= ev_recommended_backends ();
1326 1643
1327#if EV_USE_PORT 1644#if EV_USE_PORT
1338#endif 1655#endif
1339#if EV_USE_SELECT 1656#if EV_USE_SELECT
1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1657 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1341#endif 1658#endif
1342 1659
1660 ev_prepare_init (&pending_w, pendingcb);
1661
1343 ev_init (&pipeev, pipecb); 1662 ev_init (&pipe_w, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI); 1663 ev_set_priority (&pipe_w, EV_MAXPRI);
1345 } 1664 }
1346} 1665}
1347 1666
1667/* free up a loop structure */
1348static void noinline 1668static void noinline
1349loop_destroy (EV_P) 1669loop_destroy (EV_P)
1350{ 1670{
1351 int i; 1671 int i;
1352 1672
1353 if (ev_is_active (&pipeev)) 1673 if (ev_is_active (&pipe_w))
1354 { 1674 {
1355 ev_ref (EV_A); /* signal watcher */ 1675 /*ev_ref (EV_A);*/
1356 ev_io_stop (EV_A_ &pipeev); 1676 /*ev_io_stop (EV_A_ &pipe_w);*/
1357 1677
1358#if EV_USE_EVENTFD 1678#if EV_USE_EVENTFD
1359 if (evfd >= 0) 1679 if (evfd >= 0)
1360 close (evfd); 1680 close (evfd);
1361#endif 1681#endif
1362 1682
1363 if (evpipe [0] >= 0) 1683 if (evpipe [0] >= 0)
1364 { 1684 {
1365 close (evpipe [0]); 1685 EV_WIN32_CLOSE_FD (evpipe [0]);
1366 close (evpipe [1]); 1686 EV_WIN32_CLOSE_FD (evpipe [1]);
1367 } 1687 }
1368 } 1688 }
1689
1690#if EV_USE_SIGNALFD
1691 if (ev_is_active (&sigfd_w))
1692 close (sigfd);
1693#endif
1369 1694
1370#if EV_USE_INOTIFY 1695#if EV_USE_INOTIFY
1371 if (fs_fd >= 0) 1696 if (fs_fd >= 0)
1372 close (fs_fd); 1697 close (fs_fd);
1373#endif 1698#endif
1397#if EV_IDLE_ENABLE 1722#if EV_IDLE_ENABLE
1398 array_free (idle, [i]); 1723 array_free (idle, [i]);
1399#endif 1724#endif
1400 } 1725 }
1401 1726
1402 ev_free (anfds); anfdmax = 0; 1727 ev_free (anfds); anfds = 0; anfdmax = 0;
1403 1728
1404 /* have to use the microsoft-never-gets-it-right macro */ 1729 /* have to use the microsoft-never-gets-it-right macro */
1730 array_free (rfeed, EMPTY);
1405 array_free (fdchange, EMPTY); 1731 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY); 1732 array_free (timer, EMPTY);
1407#if EV_PERIODIC_ENABLE 1733#if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY); 1734 array_free (periodic, EMPTY);
1409#endif 1735#endif
1418 1744
1419 backend = 0; 1745 backend = 0;
1420} 1746}
1421 1747
1422#if EV_USE_INOTIFY 1748#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P); 1749inline_size void infy_fork (EV_P);
1424#endif 1750#endif
1425 1751
1426void inline_size 1752inline_size void
1427loop_fork (EV_P) 1753loop_fork (EV_P)
1428{ 1754{
1429#if EV_USE_PORT 1755#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1756 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif 1757#endif
1437#endif 1763#endif
1438#if EV_USE_INOTIFY 1764#if EV_USE_INOTIFY
1439 infy_fork (EV_A); 1765 infy_fork (EV_A);
1440#endif 1766#endif
1441 1767
1442 if (ev_is_active (&pipeev)) 1768 if (ev_is_active (&pipe_w))
1443 { 1769 {
1444 /* this "locks" the handlers against writing to the pipe */ 1770 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */ 1771 /* while we modify the fd vars */
1446 gotsig = 1; 1772 sig_pending = 1;
1447#if EV_ASYNC_ENABLE 1773#if EV_ASYNC_ENABLE
1448 gotasync = 1; 1774 async_pending = 1;
1449#endif 1775#endif
1450 1776
1451 ev_ref (EV_A); 1777 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev); 1778 ev_io_stop (EV_A_ &pipe_w);
1453 1779
1454#if EV_USE_EVENTFD 1780#if EV_USE_EVENTFD
1455 if (evfd >= 0) 1781 if (evfd >= 0)
1456 close (evfd); 1782 close (evfd);
1457#endif 1783#endif
1458 1784
1459 if (evpipe [0] >= 0) 1785 if (evpipe [0] >= 0)
1460 { 1786 {
1461 close (evpipe [0]); 1787 EV_WIN32_CLOSE_FD (evpipe [0]);
1462 close (evpipe [1]); 1788 EV_WIN32_CLOSE_FD (evpipe [1]);
1463 } 1789 }
1464 1790
1465 evpipe_init (EV_A); 1791 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */ 1792 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ); 1793 pipecb (EV_A_ &pipe_w, EV_READ);
1468 } 1794 }
1469 1795
1470 postfork = 0; 1796 postfork = 0;
1471} 1797}
1472 1798
1473#if EV_MULTIPLICITY 1799#if EV_MULTIPLICITY
1474 1800
1475struct ev_loop * 1801struct ev_loop *
1476ev_loop_new (unsigned int flags) 1802ev_loop_new (unsigned int flags)
1477{ 1803{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1804 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479 1805
1480 memset (loop, 0, sizeof (struct ev_loop)); 1806 memset (EV_A, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags); 1807 loop_init (EV_A_ flags);
1483 1808
1484 if (ev_backend (EV_A)) 1809 if (ev_backend (EV_A))
1485 return loop; 1810 return EV_A;
1486 1811
1487 return 0; 1812 return 0;
1488} 1813}
1489 1814
1490void 1815void
1497void 1822void
1498ev_loop_fork (EV_P) 1823ev_loop_fork (EV_P)
1499{ 1824{
1500 postfork = 1; /* must be in line with ev_default_fork */ 1825 postfork = 1; /* must be in line with ev_default_fork */
1501} 1826}
1827#endif /* multiplicity */
1502 1828
1503#if EV_VERIFY 1829#if EV_VERIFY
1504void noinline 1830static void noinline
1505verify_watcher (EV_P_ W w) 1831verify_watcher (EV_P_ W w)
1506{ 1832{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1833 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508 1834
1509 if (w->pending) 1835 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1836 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511} 1837}
1512 1838
1513static void noinline 1839static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N) 1840verify_heap (EV_P_ ANHE *heap, int N)
1515{ 1841{
1516 int i; 1842 int i;
1517 1843
1518 for (i = HEAP0; i < N + HEAP0; ++i) 1844 for (i = HEAP0; i < N + HEAP0; ++i)
1519 { 1845 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1846 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1847 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1848 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523 1849
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1850 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 } 1851 }
1526} 1852}
1527 1853
1528static void noinline 1854static void noinline
1529array_verify (EV_P_ W *ws, int cnt) 1855array_verify (EV_P_ W *ws, int cnt)
1530{ 1856{
1531 while (cnt--) 1857 while (cnt--)
1532 { 1858 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1859 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]); 1860 verify_watcher (EV_A_ ws [cnt]);
1535 } 1861 }
1536} 1862}
1537#endif 1863#endif
1538 1864
1865#if EV_MINIMAL < 2
1539void 1866void
1540ev_loop_verify (EV_P) 1867ev_loop_verify (EV_P)
1541{ 1868{
1542#if EV_VERIFY 1869#if EV_VERIFY
1543 int i; 1870 int i;
1545 1872
1546 assert (activecnt >= -1); 1873 assert (activecnt >= -1);
1547 1874
1548 assert (fdchangemax >= fdchangecnt); 1875 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i) 1876 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1877 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1551 1878
1552 assert (anfdmax >= 0); 1879 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i) 1880 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next) 1881 for (w = anfds [i].head; w; w = w->next)
1555 { 1882 {
1556 verify_watcher (EV_A_ (W)w); 1883 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1884 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1885 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 } 1886 }
1560 1887
1561 assert (timermax >= timercnt); 1888 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt); 1889 verify_heap (EV_A_ timers, timercnt);
1563 1890
1568 1895
1569 for (i = NUMPRI; i--; ) 1896 for (i = NUMPRI; i--; )
1570 { 1897 {
1571 assert (pendingmax [i] >= pendingcnt [i]); 1898 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE 1899#if EV_IDLE_ENABLE
1900 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]); 1901 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]); 1902 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif 1903#endif
1576 } 1904 }
1577 1905
1591 assert (checkmax >= checkcnt); 1919 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt); 1920 array_verify (EV_A_ (W *)checks, checkcnt);
1593 1921
1594# if 0 1922# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1924 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1597# endif
1598#endif 1925# endif
1926#endif
1599} 1927}
1600 1928#endif
1601#endif /* multiplicity */
1602 1929
1603#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1604struct ev_loop * 1931struct ev_loop *
1605ev_default_loop_init (unsigned int flags) 1932ev_default_loop_init (unsigned int flags)
1606#else 1933#else
1609#endif 1936#endif
1610{ 1937{
1611 if (!ev_default_loop_ptr) 1938 if (!ev_default_loop_ptr)
1612 { 1939 {
1613#if EV_MULTIPLICITY 1940#if EV_MULTIPLICITY
1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1941 EV_P = ev_default_loop_ptr = &default_loop_struct;
1615#else 1942#else
1616 ev_default_loop_ptr = 1; 1943 ev_default_loop_ptr = 1;
1617#endif 1944#endif
1618 1945
1619 loop_init (EV_A_ flags); 1946 loop_init (EV_A_ flags);
1636 1963
1637void 1964void
1638ev_default_destroy (void) 1965ev_default_destroy (void)
1639{ 1966{
1640#if EV_MULTIPLICITY 1967#if EV_MULTIPLICITY
1641 struct ev_loop *loop = ev_default_loop_ptr; 1968 EV_P = ev_default_loop_ptr;
1642#endif 1969#endif
1970
1971 ev_default_loop_ptr = 0;
1643 1972
1644#ifndef _WIN32 1973#ifndef _WIN32
1645 ev_ref (EV_A); /* child watcher */ 1974 ev_ref (EV_A); /* child watcher */
1646 ev_signal_stop (EV_A_ &childev); 1975 ev_signal_stop (EV_A_ &childev);
1647#endif 1976#endif
1651 1980
1652void 1981void
1653ev_default_fork (void) 1982ev_default_fork (void)
1654{ 1983{
1655#if EV_MULTIPLICITY 1984#if EV_MULTIPLICITY
1656 struct ev_loop *loop = ev_default_loop_ptr; 1985 EV_P = ev_default_loop_ptr;
1657#endif 1986#endif
1658 1987
1659 if (backend)
1660 postfork = 1; /* must be in line with ev_loop_fork */ 1988 postfork = 1; /* must be in line with ev_loop_fork */
1661} 1989}
1662 1990
1663/*****************************************************************************/ 1991/*****************************************************************************/
1664 1992
1665void 1993void
1666ev_invoke (EV_P_ void *w, int revents) 1994ev_invoke (EV_P_ void *w, int revents)
1667{ 1995{
1668 EV_CB_INVOKE ((W)w, revents); 1996 EV_CB_INVOKE ((W)w, revents);
1669} 1997}
1670 1998
1671void inline_speed 1999unsigned int
1672call_pending (EV_P) 2000ev_pending_count (EV_P)
2001{
2002 int pri;
2003 unsigned int count = 0;
2004
2005 for (pri = NUMPRI; pri--; )
2006 count += pendingcnt [pri];
2007
2008 return count;
2009}
2010
2011void noinline
2012ev_invoke_pending (EV_P)
1673{ 2013{
1674 int pri; 2014 int pri;
1675 2015
1676 for (pri = NUMPRI; pri--; ) 2016 for (pri = NUMPRI; pri--; )
1677 while (pendingcnt [pri]) 2017 while (pendingcnt [pri])
1678 { 2018 {
1679 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2019 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1680 2020
1681 if (expect_true (p->w))
1682 {
1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2021 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2022 /* ^ this is no longer true, as pending_w could be here */
1684 2023
1685 p->w->pending = 0; 2024 p->w->pending = 0;
1686 EV_CB_INVOKE (p->w, p->events); 2025 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK; 2026 EV_FREQUENT_CHECK;
1688 }
1689 } 2027 }
1690} 2028}
1691 2029
1692#if EV_IDLE_ENABLE 2030#if EV_IDLE_ENABLE
1693void inline_size 2031/* make idle watchers pending. this handles the "call-idle */
2032/* only when higher priorities are idle" logic */
2033inline_size void
1694idle_reify (EV_P) 2034idle_reify (EV_P)
1695{ 2035{
1696 if (expect_false (idleall)) 2036 if (expect_false (idleall))
1697 { 2037 {
1698 int pri; 2038 int pri;
1710 } 2050 }
1711 } 2051 }
1712} 2052}
1713#endif 2053#endif
1714 2054
1715void inline_size 2055/* make timers pending */
2056inline_size void
1716timers_reify (EV_P) 2057timers_reify (EV_P)
1717{ 2058{
1718 EV_FREQUENT_CHECK; 2059 EV_FREQUENT_CHECK;
1719 2060
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2061 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 { 2062 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2063 do
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 { 2064 {
2065 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2066
2067 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2068
2069 /* first reschedule or stop timer */
2070 if (w->repeat)
2071 {
1729 ev_at (w) += w->repeat; 2072 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now) 2073 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now; 2074 ev_at (w) = mn_now;
1732 2075
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2076 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734 2077
1735 ANHE_at_cache (timers [HEAP0]); 2078 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0); 2079 downheap (timers, timercnt, HEAP0);
2080 }
2081 else
2082 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
1737 } 2086 }
1738 else 2087 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740 2088
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2089 feed_reverse_done (EV_A_ EV_TIMEOUT);
1743 } 2090 }
1744} 2091}
1745 2092
1746#if EV_PERIODIC_ENABLE 2093#if EV_PERIODIC_ENABLE
1747void inline_size 2094/* make periodics pending */
2095inline_size void
1748periodics_reify (EV_P) 2096periodics_reify (EV_P)
1749{ 2097{
1750 EV_FREQUENT_CHECK; 2098 EV_FREQUENT_CHECK;
1751 2099
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2100 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 { 2101 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2102 int feed_count = 0;
1755 2103
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2104 do
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 { 2105 {
2106 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2107
2108 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2109
2110 /* first reschedule or stop timer */
2111 if (w->reschedule_cb)
2112 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2113 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762 2114
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2115 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764 2116
1765 ANHE_at_cache (periodics [HEAP0]); 2117 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0); 2118 downheap (periodics, periodiccnt, HEAP0);
2119 }
2120 else if (w->interval)
2121 {
2122 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2123 /* if next trigger time is not sufficiently in the future, put it there */
2124 /* this might happen because of floating point inexactness */
2125 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2126 {
2127 ev_at (w) += w->interval;
2128
2129 /* if interval is unreasonably low we might still have a time in the past */
2130 /* so correct this. this will make the periodic very inexact, but the user */
2131 /* has effectively asked to get triggered more often than possible */
2132 if (ev_at (w) < ev_rt_now)
2133 ev_at (w) = ev_rt_now;
2134 }
2135
2136 ANHE_at_cache (periodics [HEAP0]);
2137 downheap (periodics, periodiccnt, HEAP0);
2138 }
2139 else
2140 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2141
2142 EV_FREQUENT_CHECK;
2143 feed_reverse (EV_A_ (W)w);
1767 } 2144 }
1768 else if (w->interval) 2145 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776 2146
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2147 feed_reverse_done (EV_A_ EV_PERIODIC);
1792 } 2148 }
1793} 2149}
1794 2150
2151/* simply recalculate all periodics */
2152/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1795static void noinline 2153static void noinline
1796periodics_reschedule (EV_P) 2154periodics_reschedule (EV_P)
1797{ 2155{
1798 int i; 2156 int i;
1799 2157
1812 2170
1813 reheap (periodics, periodiccnt); 2171 reheap (periodics, periodiccnt);
1814} 2172}
1815#endif 2173#endif
1816 2174
1817void inline_speed 2175/* adjust all timers by a given offset */
2176static void noinline
2177timers_reschedule (EV_P_ ev_tstamp adjust)
2178{
2179 int i;
2180
2181 for (i = 0; i < timercnt; ++i)
2182 {
2183 ANHE *he = timers + i + HEAP0;
2184 ANHE_w (*he)->at += adjust;
2185 ANHE_at_cache (*he);
2186 }
2187}
2188
2189/* fetch new monotonic and realtime times from the kernel */
2190/* also detect if there was a timejump, and act accordingly */
2191inline_speed void
1818time_update (EV_P_ ev_tstamp max_block) 2192time_update (EV_P_ ev_tstamp max_block)
1819{ 2193{
1820 int i;
1821
1822#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic)) 2195 if (expect_true (have_monotonic))
1824 { 2196 {
2197 int i;
1825 ev_tstamp odiff = rtmn_diff; 2198 ev_tstamp odiff = rtmn_diff;
1826 2199
1827 mn_now = get_clock (); 2200 mn_now = get_clock ();
1828 2201
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2202 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1855 ev_rt_now = ev_time (); 2228 ev_rt_now = ev_time ();
1856 mn_now = get_clock (); 2229 mn_now = get_clock ();
1857 now_floor = mn_now; 2230 now_floor = mn_now;
1858 } 2231 }
1859 2232
2233 /* no timer adjustment, as the monotonic clock doesn't jump */
2234 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1860# if EV_PERIODIC_ENABLE 2235# if EV_PERIODIC_ENABLE
1861 periodics_reschedule (EV_A); 2236 periodics_reschedule (EV_A);
1862# endif 2237# endif
1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865 } 2238 }
1866 else 2239 else
1867#endif 2240#endif
1868 { 2241 {
1869 ev_rt_now = ev_time (); 2242 ev_rt_now = ev_time ();
1870 2243
1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2244 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1872 { 2245 {
2246 /* adjust timers. this is easy, as the offset is the same for all of them */
2247 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1873#if EV_PERIODIC_ENABLE 2248#if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 2249 periodics_reschedule (EV_A);
1875#endif 2250#endif
1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1883 } 2251 }
1884 2252
1885 mn_now = ev_rt_now; 2253 mn_now = ev_rt_now;
1886 } 2254 }
1887} 2255}
1888 2256
1889void 2257void
1890ev_ref (EV_P)
1891{
1892 ++activecnt;
1893}
1894
1895void
1896ev_unref (EV_P)
1897{
1898 --activecnt;
1899}
1900
1901static int loop_done;
1902
1903void
1904ev_loop (EV_P_ int flags) 2258ev_loop (EV_P_ int flags)
1905{ 2259{
2260#if EV_MINIMAL < 2
2261 ++loop_depth;
2262#endif
2263
2264 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2265
1906 loop_done = EVUNLOOP_CANCEL; 2266 loop_done = EVUNLOOP_CANCEL;
1907 2267
1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2268 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1909 2269
1910 do 2270 do
1911 { 2271 {
1912#if EV_VERIFY >= 2 2272#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A); 2273 ev_loop_verify (EV_A);
1926 /* we might have forked, so queue fork handlers */ 2286 /* we might have forked, so queue fork handlers */
1927 if (expect_false (postfork)) 2287 if (expect_false (postfork))
1928 if (forkcnt) 2288 if (forkcnt)
1929 { 2289 {
1930 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2290 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1931 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1932 } 2292 }
1933#endif 2293#endif
1934 2294
1935 /* queue prepare watchers (and execute them) */ 2295 /* queue prepare watchers (and execute them) */
1936 if (expect_false (preparecnt)) 2296 if (expect_false (preparecnt))
1937 { 2297 {
1938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2298 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1939 call_pending (EV_A); 2299 EV_INVOKE_PENDING;
1940 } 2300 }
1941 2301
1942 if (expect_false (!activecnt)) 2302 if (expect_false (loop_done))
1943 break; 2303 break;
1944 2304
1945 /* we might have forked, so reify kernel state if necessary */ 2305 /* we might have forked, so reify kernel state if necessary */
1946 if (expect_false (postfork)) 2306 if (expect_false (postfork))
1947 loop_fork (EV_A); 2307 loop_fork (EV_A);
1954 ev_tstamp waittime = 0.; 2314 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.; 2315 ev_tstamp sleeptime = 0.;
1956 2316
1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2317 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1958 { 2318 {
2319 /* remember old timestamp for io_blocktime calculation */
2320 ev_tstamp prev_mn_now = mn_now;
2321
1959 /* update time to cancel out callback processing overhead */ 2322 /* update time to cancel out callback processing overhead */
1960 time_update (EV_A_ 1e100); 2323 time_update (EV_A_ 1e100);
1961 2324
1962 waittime = MAX_BLOCKTIME; 2325 waittime = MAX_BLOCKTIME;
1963 2326
1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2336 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1974 if (waittime > to) waittime = to; 2337 if (waittime > to) waittime = to;
1975 } 2338 }
1976#endif 2339#endif
1977 2340
2341 /* don't let timeouts decrease the waittime below timeout_blocktime */
1978 if (expect_false (waittime < timeout_blocktime)) 2342 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime; 2343 waittime = timeout_blocktime;
1980 2344
1981 sleeptime = waittime - backend_fudge; 2345 /* extra check because io_blocktime is commonly 0 */
1982
1983 if (expect_true (sleeptime > io_blocktime)) 2346 if (expect_false (io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 { 2347 {
2348 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2349
2350 if (sleeptime > waittime - backend_fudge)
2351 sleeptime = waittime - backend_fudge;
2352
2353 if (expect_true (sleeptime > 0.))
2354 {
1988 ev_sleep (sleeptime); 2355 ev_sleep (sleeptime);
1989 waittime -= sleeptime; 2356 waittime -= sleeptime;
2357 }
1990 } 2358 }
1991 } 2359 }
1992 2360
2361#if EV_MINIMAL < 2
1993 ++loop_count; 2362 ++loop_count;
2363#endif
2364 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1994 backend_poll (EV_A_ waittime); 2365 backend_poll (EV_A_ waittime);
2366 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1995 2367
1996 /* update ev_rt_now, do magic */ 2368 /* update ev_rt_now, do magic */
1997 time_update (EV_A_ waittime + sleeptime); 2369 time_update (EV_A_ waittime + sleeptime);
1998 } 2370 }
1999 2371
2010 2382
2011 /* queue check watchers, to be executed first */ 2383 /* queue check watchers, to be executed first */
2012 if (expect_false (checkcnt)) 2384 if (expect_false (checkcnt))
2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2385 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2014 2386
2015 call_pending (EV_A); 2387 EV_INVOKE_PENDING;
2016 } 2388 }
2017 while (expect_true ( 2389 while (expect_true (
2018 activecnt 2390 activecnt
2019 && !loop_done 2391 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2392 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 )); 2393 ));
2022 2394
2023 if (loop_done == EVUNLOOP_ONE) 2395 if (loop_done == EVUNLOOP_ONE)
2024 loop_done = EVUNLOOP_CANCEL; 2396 loop_done = EVUNLOOP_CANCEL;
2397
2398#if EV_MINIMAL < 2
2399 --loop_depth;
2400#endif
2025} 2401}
2026 2402
2027void 2403void
2028ev_unloop (EV_P_ int how) 2404ev_unloop (EV_P_ int how)
2029{ 2405{
2030 loop_done = how; 2406 loop_done = how;
2031} 2407}
2032 2408
2409void
2410ev_ref (EV_P)
2411{
2412 ++activecnt;
2413}
2414
2415void
2416ev_unref (EV_P)
2417{
2418 --activecnt;
2419}
2420
2421void
2422ev_now_update (EV_P)
2423{
2424 time_update (EV_A_ 1e100);
2425}
2426
2427void
2428ev_suspend (EV_P)
2429{
2430 ev_now_update (EV_A);
2431}
2432
2433void
2434ev_resume (EV_P)
2435{
2436 ev_tstamp mn_prev = mn_now;
2437
2438 ev_now_update (EV_A);
2439 timers_reschedule (EV_A_ mn_now - mn_prev);
2440#if EV_PERIODIC_ENABLE
2441 /* TODO: really do this? */
2442 periodics_reschedule (EV_A);
2443#endif
2444}
2445
2033/*****************************************************************************/ 2446/*****************************************************************************/
2447/* singly-linked list management, used when the expected list length is short */
2034 2448
2035void inline_size 2449inline_size void
2036wlist_add (WL *head, WL elem) 2450wlist_add (WL *head, WL elem)
2037{ 2451{
2038 elem->next = *head; 2452 elem->next = *head;
2039 *head = elem; 2453 *head = elem;
2040} 2454}
2041 2455
2042void inline_size 2456inline_size void
2043wlist_del (WL *head, WL elem) 2457wlist_del (WL *head, WL elem)
2044{ 2458{
2045 while (*head) 2459 while (*head)
2046 { 2460 {
2047 if (*head == elem) 2461 if (expect_true (*head == elem))
2048 { 2462 {
2049 *head = elem->next; 2463 *head = elem->next;
2050 return; 2464 break;
2051 } 2465 }
2052 2466
2053 head = &(*head)->next; 2467 head = &(*head)->next;
2054 } 2468 }
2055} 2469}
2056 2470
2057void inline_speed 2471/* internal, faster, version of ev_clear_pending */
2472inline_speed void
2058clear_pending (EV_P_ W w) 2473clear_pending (EV_P_ W w)
2059{ 2474{
2060 if (w->pending) 2475 if (w->pending)
2061 { 2476 {
2062 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2477 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2063 w->pending = 0; 2478 w->pending = 0;
2064 } 2479 }
2065} 2480}
2066 2481
2067int 2482int
2071 int pending = w_->pending; 2486 int pending = w_->pending;
2072 2487
2073 if (expect_true (pending)) 2488 if (expect_true (pending))
2074 { 2489 {
2075 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2490 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2491 p->w = (W)&pending_w;
2076 w_->pending = 0; 2492 w_->pending = 0;
2077 p->w = 0;
2078 return p->events; 2493 return p->events;
2079 } 2494 }
2080 else 2495 else
2081 return 0; 2496 return 0;
2082} 2497}
2083 2498
2084void inline_size 2499inline_size void
2085pri_adjust (EV_P_ W w) 2500pri_adjust (EV_P_ W w)
2086{ 2501{
2087 int pri = w->priority; 2502 int pri = ev_priority (w);
2088 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2503 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2089 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2504 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2090 w->priority = pri; 2505 ev_set_priority (w, pri);
2091} 2506}
2092 2507
2093void inline_speed 2508inline_speed void
2094ev_start (EV_P_ W w, int active) 2509ev_start (EV_P_ W w, int active)
2095{ 2510{
2096 pri_adjust (EV_A_ w); 2511 pri_adjust (EV_A_ w);
2097 w->active = active; 2512 w->active = active;
2098 ev_ref (EV_A); 2513 ev_ref (EV_A);
2099} 2514}
2100 2515
2101void inline_size 2516inline_size void
2102ev_stop (EV_P_ W w) 2517ev_stop (EV_P_ W w)
2103{ 2518{
2104 ev_unref (EV_A); 2519 ev_unref (EV_A);
2105 w->active = 0; 2520 w->active = 0;
2106} 2521}
2113 int fd = w->fd; 2528 int fd = w->fd;
2114 2529
2115 if (expect_false (ev_is_active (w))) 2530 if (expect_false (ev_is_active (w)))
2116 return; 2531 return;
2117 2532
2118 assert (("ev_io_start called with negative fd", fd >= 0)); 2533 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2534 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2119 2535
2120 EV_FREQUENT_CHECK; 2536 EV_FREQUENT_CHECK;
2121 2537
2122 ev_start (EV_A_ (W)w, 1); 2538 ev_start (EV_A_ (W)w, 1);
2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2539 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2124 wlist_add (&anfds[fd].head, (WL)w); 2540 wlist_add (&anfds[fd].head, (WL)w);
2125 2541
2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2542 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2127 w->events &= ~EV_IOFDSET; 2543 w->events &= ~EV__IOFDSET;
2128 2544
2129 EV_FREQUENT_CHECK; 2545 EV_FREQUENT_CHECK;
2130} 2546}
2131 2547
2132void noinline 2548void noinline
2134{ 2550{
2135 clear_pending (EV_A_ (W)w); 2551 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w))) 2552 if (expect_false (!ev_is_active (w)))
2137 return; 2553 return;
2138 2554
2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2555 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140 2556
2141 EV_FREQUENT_CHECK; 2557 EV_FREQUENT_CHECK;
2142 2558
2143 wlist_del (&anfds[w->fd].head, (WL)w); 2559 wlist_del (&anfds[w->fd].head, (WL)w);
2144 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2154 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
2155 return; 2571 return;
2156 2572
2157 ev_at (w) += mn_now; 2573 ev_at (w) += mn_now;
2158 2574
2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2575 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2160 2576
2161 EV_FREQUENT_CHECK; 2577 EV_FREQUENT_CHECK;
2162 2578
2163 ++timercnt; 2579 ++timercnt;
2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2580 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2167 ANHE_at_cache (timers [ev_active (w)]); 2583 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w)); 2584 upheap (timers, ev_active (w));
2169 2585
2170 EV_FREQUENT_CHECK; 2586 EV_FREQUENT_CHECK;
2171 2587
2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2588 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2173} 2589}
2174 2590
2175void noinline 2591void noinline
2176ev_timer_stop (EV_P_ ev_timer *w) 2592ev_timer_stop (EV_P_ ev_timer *w)
2177{ 2593{
2182 EV_FREQUENT_CHECK; 2598 EV_FREQUENT_CHECK;
2183 2599
2184 { 2600 {
2185 int active = ev_active (w); 2601 int active = ev_active (w);
2186 2602
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2603 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188 2604
2189 --timercnt; 2605 --timercnt;
2190 2606
2191 if (expect_true (active < timercnt + HEAP0)) 2607 if (expect_true (active < timercnt + HEAP0))
2192 { 2608 {
2193 timers [active] = timers [timercnt + HEAP0]; 2609 timers [active] = timers [timercnt + HEAP0];
2194 adjustheap (timers, timercnt, active); 2610 adjustheap (timers, timercnt, active);
2195 } 2611 }
2196 } 2612 }
2197 2613
2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now; 2614 ev_at (w) -= mn_now;
2201 2615
2202 ev_stop (EV_A_ (W)w); 2616 ev_stop (EV_A_ (W)w);
2617
2618 EV_FREQUENT_CHECK;
2203} 2619}
2204 2620
2205void noinline 2621void noinline
2206ev_timer_again (EV_P_ ev_timer *w) 2622ev_timer_again (EV_P_ ev_timer *w)
2207{ 2623{
2225 } 2641 }
2226 2642
2227 EV_FREQUENT_CHECK; 2643 EV_FREQUENT_CHECK;
2228} 2644}
2229 2645
2646ev_tstamp
2647ev_timer_remaining (EV_P_ ev_timer *w)
2648{
2649 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2650}
2651
2230#if EV_PERIODIC_ENABLE 2652#if EV_PERIODIC_ENABLE
2231void noinline 2653void noinline
2232ev_periodic_start (EV_P_ ev_periodic *w) 2654ev_periodic_start (EV_P_ ev_periodic *w)
2233{ 2655{
2234 if (expect_false (ev_is_active (w))) 2656 if (expect_false (ev_is_active (w)))
2236 2658
2237 if (w->reschedule_cb) 2659 if (w->reschedule_cb)
2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2660 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2239 else if (w->interval) 2661 else if (w->interval)
2240 { 2662 {
2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2663 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2242 /* this formula differs from the one in periodic_reify because we do not always round up */ 2664 /* this formula differs from the one in periodic_reify because we do not always round up */
2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2665 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2244 } 2666 }
2245 else 2667 else
2246 ev_at (w) = w->offset; 2668 ev_at (w) = w->offset;
2254 ANHE_at_cache (periodics [ev_active (w)]); 2676 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w)); 2677 upheap (periodics, ev_active (w));
2256 2678
2257 EV_FREQUENT_CHECK; 2679 EV_FREQUENT_CHECK;
2258 2680
2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2681 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2260} 2682}
2261 2683
2262void noinline 2684void noinline
2263ev_periodic_stop (EV_P_ ev_periodic *w) 2685ev_periodic_stop (EV_P_ ev_periodic *w)
2264{ 2686{
2269 EV_FREQUENT_CHECK; 2691 EV_FREQUENT_CHECK;
2270 2692
2271 { 2693 {
2272 int active = ev_active (w); 2694 int active = ev_active (w);
2273 2695
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2696 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275 2697
2276 --periodiccnt; 2698 --periodiccnt;
2277 2699
2278 if (expect_true (active < periodiccnt + HEAP0)) 2700 if (expect_true (active < periodiccnt + HEAP0))
2279 { 2701 {
2280 periodics [active] = periodics [periodiccnt + HEAP0]; 2702 periodics [active] = periodics [periodiccnt + HEAP0];
2281 adjustheap (periodics, periodiccnt, active); 2703 adjustheap (periodics, periodiccnt, active);
2282 } 2704 }
2283 } 2705 }
2284 2706
2285 EV_FREQUENT_CHECK;
2286
2287 ev_stop (EV_A_ (W)w); 2707 ev_stop (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2288} 2710}
2289 2711
2290void noinline 2712void noinline
2291ev_periodic_again (EV_P_ ev_periodic *w) 2713ev_periodic_again (EV_P_ ev_periodic *w)
2292{ 2714{
2301#endif 2723#endif
2302 2724
2303void noinline 2725void noinline
2304ev_signal_start (EV_P_ ev_signal *w) 2726ev_signal_start (EV_P_ ev_signal *w)
2305{ 2727{
2306#if EV_MULTIPLICITY
2307 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2308#endif
2309 if (expect_false (ev_is_active (w))) 2728 if (expect_false (ev_is_active (w)))
2310 return; 2729 return;
2311 2730
2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2731 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2313 2732
2314 evpipe_init (EV_A); 2733#if EV_MULTIPLICITY
2734 assert (("libev: a signal must not be attached to two different loops",
2735 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2315 2736
2316 EV_FREQUENT_CHECK; 2737 signals [w->signum - 1].loop = EV_A;
2738#endif
2317 2739
2740 EV_FREQUENT_CHECK;
2741
2742#if EV_USE_SIGNALFD
2743 if (sigfd == -2)
2318 { 2744 {
2319#ifndef _WIN32 2745 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2320 sigset_t full, prev; 2746 if (sigfd < 0 && errno == EINVAL)
2321 sigfillset (&full); 2747 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324 2748
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2749 if (sigfd >= 0)
2750 {
2751 fd_intern (sigfd); /* doing it twice will not hurt */
2326 2752
2327#ifndef _WIN32 2753 sigemptyset (&sigfd_set);
2328 sigprocmask (SIG_SETMASK, &prev, 0); 2754
2329#endif 2755 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2756 ev_set_priority (&sigfd_w, EV_MAXPRI);
2757 ev_io_start (EV_A_ &sigfd_w);
2758 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2759 }
2330 } 2760 }
2761
2762 if (sigfd >= 0)
2763 {
2764 /* TODO: check .head */
2765 sigaddset (&sigfd_set, w->signum);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2767
2768 signalfd (sigfd, &sigfd_set, 0);
2769 }
2770#endif
2331 2771
2332 ev_start (EV_A_ (W)w, 1); 2772 ev_start (EV_A_ (W)w, 1);
2333 wlist_add (&signals [w->signum - 1].head, (WL)w); 2773 wlist_add (&signals [w->signum - 1].head, (WL)w);
2334 2774
2335 if (!((WL)w)->next) 2775 if (!((WL)w)->next)
2776# if EV_USE_SIGNALFD
2777 if (sigfd < 0) /*TODO*/
2778# endif
2336 { 2779 {
2337#if _WIN32 2780# ifdef _WIN32
2781 evpipe_init (EV_A);
2782
2338 signal (w->signum, ev_sighandler); 2783 signal (w->signum, ev_sighandler);
2339#else 2784# else
2340 struct sigaction sa; 2785 struct sigaction sa;
2786
2787 evpipe_init (EV_A);
2788
2341 sa.sa_handler = ev_sighandler; 2789 sa.sa_handler = ev_sighandler;
2342 sigfillset (&sa.sa_mask); 2790 sigfillset (&sa.sa_mask);
2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2791 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2344 sigaction (w->signum, &sa, 0); 2792 sigaction (w->signum, &sa, 0);
2793
2794 sigemptyset (&sa.sa_mask);
2795 sigaddset (&sa.sa_mask, w->signum);
2796 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2345#endif 2797#endif
2346 } 2798 }
2347 2799
2348 EV_FREQUENT_CHECK; 2800 EV_FREQUENT_CHECK;
2349} 2801}
2350 2802
2351void noinline 2803void noinline
2359 2811
2360 wlist_del (&signals [w->signum - 1].head, (WL)w); 2812 wlist_del (&signals [w->signum - 1].head, (WL)w);
2361 ev_stop (EV_A_ (W)w); 2813 ev_stop (EV_A_ (W)w);
2362 2814
2363 if (!signals [w->signum - 1].head) 2815 if (!signals [w->signum - 1].head)
2816 {
2817#if EV_MULTIPLICITY
2818 signals [w->signum - 1].loop = 0; /* unattach from signal */
2819#endif
2820#if EV_USE_SIGNALFD
2821 if (sigfd >= 0)
2822 {
2823 sigset_t ss;
2824
2825 sigemptyset (&ss);
2826 sigaddset (&ss, w->signum);
2827 sigdelset (&sigfd_set, w->signum);
2828
2829 signalfd (sigfd, &sigfd_set, 0);
2830 sigprocmask (SIG_UNBLOCK, &ss, 0);
2831 }
2832 else
2833#endif
2364 signal (w->signum, SIG_DFL); 2834 signal (w->signum, SIG_DFL);
2835 }
2365 2836
2366 EV_FREQUENT_CHECK; 2837 EV_FREQUENT_CHECK;
2367} 2838}
2368 2839
2369void 2840void
2370ev_child_start (EV_P_ ev_child *w) 2841ev_child_start (EV_P_ ev_child *w)
2371{ 2842{
2372#if EV_MULTIPLICITY 2843#if EV_MULTIPLICITY
2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2844 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2374#endif 2845#endif
2375 if (expect_false (ev_is_active (w))) 2846 if (expect_false (ev_is_active (w)))
2376 return; 2847 return;
2377 2848
2378 EV_FREQUENT_CHECK; 2849 EV_FREQUENT_CHECK;
2403# ifdef _WIN32 2874# ifdef _WIN32
2404# undef lstat 2875# undef lstat
2405# define lstat(a,b) _stati64 (a,b) 2876# define lstat(a,b) _stati64 (a,b)
2406# endif 2877# endif
2407 2878
2408#define DEF_STAT_INTERVAL 5.0074891 2879#define DEF_STAT_INTERVAL 5.0074891
2880#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2409#define MIN_STAT_INTERVAL 0.1074891 2881#define MIN_STAT_INTERVAL 0.1074891
2410 2882
2411static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2883static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2412 2884
2413#if EV_USE_INOTIFY 2885#if EV_USE_INOTIFY
2414# define EV_INOTIFY_BUFSIZE 8192 2886
2887/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2888# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2415 2889
2416static void noinline 2890static void noinline
2417infy_add (EV_P_ ev_stat *w) 2891infy_add (EV_P_ ev_stat *w)
2418{ 2892{
2419 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2893 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2420 2894
2421 if (w->wd < 0) 2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
2899 /* now local changes will be tracked by inotify, but remote changes won't */
2900 /* unless the filesystem is known to be local, we therefore still poll */
2901 /* also do poll on <2.6.25, but with normal frequency */
2902
2903 if (!fs_2625)
2904 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2905 else if (!statfs (w->path, &sfs)
2906 && (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */))
2912 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2913 else
2914 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2422 { 2915 }
2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2916 else
2917 {
2918 /* can't use inotify, continue to stat */
2919 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2424 2920
2425 /* monitor some parent directory for speedup hints */ 2921 /* if path is not there, monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2922 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2427 /* but an efficiency issue only */ 2923 /* but an efficiency issue only */
2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2924 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2429 { 2925 {
2430 char path [4096]; 2926 char path [4096];
2431 strcpy (path, w->path); 2927 strcpy (path, w->path);
2435 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2931 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2436 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2932 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2437 2933
2438 char *pend = strrchr (path, '/'); 2934 char *pend = strrchr (path, '/');
2439 2935
2440 if (!pend) 2936 if (!pend || pend == path)
2441 break; /* whoops, no '/', complain to your admin */ 2937 break;
2442 2938
2443 *pend = 0; 2939 *pend = 0;
2444 w->wd = inotify_add_watch (fs_fd, path, mask); 2940 w->wd = inotify_add_watch (fs_fd, path, mask);
2445 } 2941 }
2446 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2942 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2447 } 2943 }
2448 } 2944 }
2449 else
2450 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2451 2945
2452 if (w->wd >= 0) 2946 if (w->wd >= 0)
2453 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2947 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2948
2949 /* now re-arm timer, if required */
2950 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2951 ev_timer_again (EV_A_ &w->timer);
2952 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2454} 2953}
2455 2954
2456static void noinline 2955static void noinline
2457infy_del (EV_P_ ev_stat *w) 2956infy_del (EV_P_ ev_stat *w)
2458{ 2957{
2472 2971
2473static void noinline 2972static void noinline
2474infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2973infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2475{ 2974{
2476 if (slot < 0) 2975 if (slot < 0)
2477 /* overflow, need to check for all hahs slots */ 2976 /* overflow, need to check for all hash slots */
2478 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2977 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2479 infy_wd (EV_A_ slot, wd, ev); 2978 infy_wd (EV_A_ slot, wd, ev);
2480 else 2979 else
2481 { 2980 {
2482 WL w_; 2981 WL w_;
2488 2987
2489 if (w->wd == wd || wd == -1) 2988 if (w->wd == wd || wd == -1)
2490 { 2989 {
2491 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2990 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2492 { 2991 {
2992 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2493 w->wd = -1; 2993 w->wd = -1;
2494 infy_add (EV_A_ w); /* re-add, no matter what */ 2994 infy_add (EV_A_ w); /* re-add, no matter what */
2495 } 2995 }
2496 2996
2497 stat_timer_cb (EV_A_ &w->timer, 0); 2997 stat_timer_cb (EV_A_ &w->timer, 0);
2502 3002
2503static void 3003static void
2504infy_cb (EV_P_ ev_io *w, int revents) 3004infy_cb (EV_P_ ev_io *w, int revents)
2505{ 3005{
2506 char buf [EV_INOTIFY_BUFSIZE]; 3006 char buf [EV_INOTIFY_BUFSIZE];
2507 struct inotify_event *ev = (struct inotify_event *)buf;
2508 int ofs; 3007 int ofs;
2509 int len = read (fs_fd, buf, sizeof (buf)); 3008 int len = read (fs_fd, buf, sizeof (buf));
2510 3009
2511 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3010 for (ofs = 0; ofs < len; )
3011 {
3012 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2512 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3013 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3014 ofs += sizeof (struct inotify_event) + ev->len;
3015 }
2513} 3016}
2514 3017
2515void inline_size 3018inline_size unsigned int
3019ev_linux_version (void)
3020{
3021 struct utsname buf;
3022 unsigned int v;
3023 int i;
3024 char *p = buf.release;
3025
3026 if (uname (&buf))
3027 return 0;
3028
3029 for (i = 3+1; --i; )
3030 {
3031 unsigned int c = 0;
3032
3033 for (;;)
3034 {
3035 if (*p >= '0' && *p <= '9')
3036 c = c * 10 + *p++ - '0';
3037 else
3038 {
3039 p += *p == '.';
3040 break;
3041 }
3042 }
3043
3044 v = (v << 8) | c;
3045 }
3046
3047 return v;
3048}
3049
3050inline_size void
3051ev_check_2625 (EV_P)
3052{
3053 /* kernels < 2.6.25 are borked
3054 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3055 */
3056 if (ev_linux_version () < 0x020619)
3057 return;
3058
3059 fs_2625 = 1;
3060}
3061
3062inline_size int
3063infy_newfd (void)
3064{
3065#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3066 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3067 if (fd >= 0)
3068 return fd;
3069#endif
3070 return inotify_init ();
3071}
3072
3073inline_size void
2516infy_init (EV_P) 3074infy_init (EV_P)
2517{ 3075{
2518 if (fs_fd != -2) 3076 if (fs_fd != -2)
2519 return; 3077 return;
2520 3078
3079 fs_fd = -1;
3080
3081 ev_check_2625 (EV_A);
3082
2521 fs_fd = inotify_init (); 3083 fs_fd = infy_newfd ();
2522 3084
2523 if (fs_fd >= 0) 3085 if (fs_fd >= 0)
2524 { 3086 {
3087 fd_intern (fs_fd);
2525 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3088 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2526 ev_set_priority (&fs_w, EV_MAXPRI); 3089 ev_set_priority (&fs_w, EV_MAXPRI);
2527 ev_io_start (EV_A_ &fs_w); 3090 ev_io_start (EV_A_ &fs_w);
3091 ev_unref (EV_A);
2528 } 3092 }
2529} 3093}
2530 3094
2531void inline_size 3095inline_size void
2532infy_fork (EV_P) 3096infy_fork (EV_P)
2533{ 3097{
2534 int slot; 3098 int slot;
2535 3099
2536 if (fs_fd < 0) 3100 if (fs_fd < 0)
2537 return; 3101 return;
2538 3102
3103 ev_ref (EV_A);
3104 ev_io_stop (EV_A_ &fs_w);
2539 close (fs_fd); 3105 close (fs_fd);
2540 fs_fd = inotify_init (); 3106 fs_fd = infy_newfd ();
3107
3108 if (fs_fd >= 0)
3109 {
3110 fd_intern (fs_fd);
3111 ev_io_set (&fs_w, fs_fd, EV_READ);
3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
3114 }
2541 3115
2542 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3116 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2543 { 3117 {
2544 WL w_ = fs_hash [slot].head; 3118 WL w_ = fs_hash [slot].head;
2545 fs_hash [slot].head = 0; 3119 fs_hash [slot].head = 0;
2552 w->wd = -1; 3126 w->wd = -1;
2553 3127
2554 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
2555 infy_add (EV_A_ w); /* re-add, no matter what */ 3129 infy_add (EV_A_ w); /* re-add, no matter what */
2556 else 3130 else
3131 {
3132 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3133 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2557 ev_timer_start (EV_A_ &w->timer); 3134 ev_timer_again (EV_A_ &w->timer);
3135 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3136 }
2558 } 3137 }
2559
2560 } 3138 }
2561} 3139}
2562 3140
3141#endif
3142
3143#ifdef _WIN32
3144# define EV_LSTAT(p,b) _stati64 (p, b)
3145#else
3146# define EV_LSTAT(p,b) lstat (p, b)
2563#endif 3147#endif
2564 3148
2565void 3149void
2566ev_stat_stat (EV_P_ ev_stat *w) 3150ev_stat_stat (EV_P_ ev_stat *w)
2567{ 3151{
2574static void noinline 3158static void noinline
2575stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3159stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2576{ 3160{
2577 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3161 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2578 3162
2579 /* we copy this here each the time so that */ 3163 ev_statdata prev = w->attr;
2580 /* prev has the old value when the callback gets invoked */
2581 w->prev = w->attr;
2582 ev_stat_stat (EV_A_ w); 3164 ev_stat_stat (EV_A_ w);
2583 3165
2584 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2585 if ( 3167 if (
2586 w->prev.st_dev != w->attr.st_dev 3168 prev.st_dev != w->attr.st_dev
2587 || w->prev.st_ino != w->attr.st_ino 3169 || prev.st_ino != w->attr.st_ino
2588 || w->prev.st_mode != w->attr.st_mode 3170 || prev.st_mode != w->attr.st_mode
2589 || w->prev.st_nlink != w->attr.st_nlink 3171 || prev.st_nlink != w->attr.st_nlink
2590 || w->prev.st_uid != w->attr.st_uid 3172 || prev.st_uid != w->attr.st_uid
2591 || w->prev.st_gid != w->attr.st_gid 3173 || prev.st_gid != w->attr.st_gid
2592 || w->prev.st_rdev != w->attr.st_rdev 3174 || prev.st_rdev != w->attr.st_rdev
2593 || w->prev.st_size != w->attr.st_size 3175 || prev.st_size != w->attr.st_size
2594 || w->prev.st_atime != w->attr.st_atime 3176 || prev.st_atime != w->attr.st_atime
2595 || w->prev.st_mtime != w->attr.st_mtime 3177 || prev.st_mtime != w->attr.st_mtime
2596 || w->prev.st_ctime != w->attr.st_ctime 3178 || prev.st_ctime != w->attr.st_ctime
2597 ) { 3179 ) {
3180 /* we only update w->prev on actual differences */
3181 /* in case we test more often than invoke the callback, */
3182 /* to ensure that prev is always different to attr */
3183 w->prev = prev;
3184
2598 #if EV_USE_INOTIFY 3185 #if EV_USE_INOTIFY
3186 if (fs_fd >= 0)
3187 {
2599 infy_del (EV_A_ w); 3188 infy_del (EV_A_ w);
2600 infy_add (EV_A_ w); 3189 infy_add (EV_A_ w);
2601 ev_stat_stat (EV_A_ w); /* avoid race... */ 3190 ev_stat_stat (EV_A_ w); /* avoid race... */
3191 }
2602 #endif 3192 #endif
2603 3193
2604 ev_feed_event (EV_A_ w, EV_STAT); 3194 ev_feed_event (EV_A_ w, EV_STAT);
2605 } 3195 }
2606} 3196}
2609ev_stat_start (EV_P_ ev_stat *w) 3199ev_stat_start (EV_P_ ev_stat *w)
2610{ 3200{
2611 if (expect_false (ev_is_active (w))) 3201 if (expect_false (ev_is_active (w)))
2612 return; 3202 return;
2613 3203
2614 /* since we use memcmp, we need to clear any padding data etc. */
2615 memset (&w->prev, 0, sizeof (ev_statdata));
2616 memset (&w->attr, 0, sizeof (ev_statdata));
2617
2618 ev_stat_stat (EV_A_ w); 3204 ev_stat_stat (EV_A_ w);
2619 3205
3206 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2620 if (w->interval < MIN_STAT_INTERVAL) 3207 w->interval = MIN_STAT_INTERVAL;
2621 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2622 3208
2623 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3209 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2624 ev_set_priority (&w->timer, ev_priority (w)); 3210 ev_set_priority (&w->timer, ev_priority (w));
2625 3211
2626#if EV_USE_INOTIFY 3212#if EV_USE_INOTIFY
2627 infy_init (EV_A); 3213 infy_init (EV_A);
2628 3214
2629 if (fs_fd >= 0) 3215 if (fs_fd >= 0)
2630 infy_add (EV_A_ w); 3216 infy_add (EV_A_ w);
2631 else 3217 else
2632#endif 3218#endif
3219 {
2633 ev_timer_start (EV_A_ &w->timer); 3220 ev_timer_again (EV_A_ &w->timer);
3221 ev_unref (EV_A);
3222 }
2634 3223
2635 ev_start (EV_A_ (W)w, 1); 3224 ev_start (EV_A_ (W)w, 1);
2636 3225
2637 EV_FREQUENT_CHECK; 3226 EV_FREQUENT_CHECK;
2638} 3227}
2647 EV_FREQUENT_CHECK; 3236 EV_FREQUENT_CHECK;
2648 3237
2649#if EV_USE_INOTIFY 3238#if EV_USE_INOTIFY
2650 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2651#endif 3240#endif
3241
3242 if (ev_is_active (&w->timer))
3243 {
3244 ev_ref (EV_A);
2652 ev_timer_stop (EV_A_ &w->timer); 3245 ev_timer_stop (EV_A_ &w->timer);
3246 }
2653 3247
2654 ev_stop (EV_A_ (W)w); 3248 ev_stop (EV_A_ (W)w);
2655 3249
2656 EV_FREQUENT_CHECK; 3250 EV_FREQUENT_CHECK;
2657} 3251}
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3392embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{ 3393{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3394 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801 3395
2802 { 3396 {
2803 struct ev_loop *loop = w->other; 3397 EV_P = w->other;
2804 3398
2805 while (fdchangecnt) 3399 while (fdchangecnt)
2806 { 3400 {
2807 fd_reify (EV_A); 3401 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3402 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 } 3403 }
2810 } 3404 }
2811} 3405}
2812 3406
3407static void
3408embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3409{
3410 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3411
3412 ev_embed_stop (EV_A_ w);
3413
3414 {
3415 EV_P = w->other;
3416
3417 ev_loop_fork (EV_A);
3418 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3419 }
3420
3421 ev_embed_start (EV_A_ w);
3422}
3423
2813#if 0 3424#if 0
2814static void 3425static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3426embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{ 3427{
2817 ev_idle_stop (EV_A_ idle); 3428 ev_idle_stop (EV_A_ idle);
2823{ 3434{
2824 if (expect_false (ev_is_active (w))) 3435 if (expect_false (ev_is_active (w)))
2825 return; 3436 return;
2826 3437
2827 { 3438 {
2828 struct ev_loop *loop = w->other; 3439 EV_P = w->other;
2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3440 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3441 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2831 } 3442 }
2832 3443
2833 EV_FREQUENT_CHECK; 3444 EV_FREQUENT_CHECK;
2834 3445
2837 3448
2838 ev_prepare_init (&w->prepare, embed_prepare_cb); 3449 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI); 3450 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare); 3451 ev_prepare_start (EV_A_ &w->prepare);
2841 3452
3453 ev_fork_init (&w->fork, embed_fork_cb);
3454 ev_fork_start (EV_A_ &w->fork);
3455
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3456 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843 3457
2844 ev_start (EV_A_ (W)w, 1); 3458 ev_start (EV_A_ (W)w, 1);
2845 3459
2846 EV_FREQUENT_CHECK; 3460 EV_FREQUENT_CHECK;
2853 if (expect_false (!ev_is_active (w))) 3467 if (expect_false (!ev_is_active (w)))
2854 return; 3468 return;
2855 3469
2856 EV_FREQUENT_CHECK; 3470 EV_FREQUENT_CHECK;
2857 3471
2858 ev_io_stop (EV_A_ &w->io); 3472 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare); 3473 ev_prepare_stop (EV_A_ &w->prepare);
3474 ev_fork_stop (EV_A_ &w->fork);
2860 3475
2861 ev_stop (EV_A_ (W)w); 3476 ev_stop (EV_A_ (W)w);
2862 3477
2863 EV_FREQUENT_CHECK; 3478 EV_FREQUENT_CHECK;
2864} 3479}
2943 3558
2944void 3559void
2945ev_async_send (EV_P_ ev_async *w) 3560ev_async_send (EV_P_ ev_async *w)
2946{ 3561{
2947 w->sent = 1; 3562 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync); 3563 evpipe_write (EV_A_ &async_pending);
2949} 3564}
2950#endif 3565#endif
2951 3566
2952/*****************************************************************************/ 3567/*****************************************************************************/
2953 3568
2963once_cb (EV_P_ struct ev_once *once, int revents) 3578once_cb (EV_P_ struct ev_once *once, int revents)
2964{ 3579{
2965 void (*cb)(int revents, void *arg) = once->cb; 3580 void (*cb)(int revents, void *arg) = once->cb;
2966 void *arg = once->arg; 3581 void *arg = once->arg;
2967 3582
2968 ev_io_stop (EV_A_ &once->io); 3583 ev_io_stop (EV_A_ &once->io);
2969 ev_timer_stop (EV_A_ &once->to); 3584 ev_timer_stop (EV_A_ &once->to);
2970 ev_free (once); 3585 ev_free (once);
2971 3586
2972 cb (revents, arg); 3587 cb (revents, arg);
2973} 3588}
2974 3589
2975static void 3590static void
2976once_cb_io (EV_P_ ev_io *w, int revents) 3591once_cb_io (EV_P_ ev_io *w, int revents)
2977{ 3592{
2978 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3593 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3594
3595 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2979} 3596}
2980 3597
2981static void 3598static void
2982once_cb_to (EV_P_ ev_timer *w, int revents) 3599once_cb_to (EV_P_ ev_timer *w, int revents)
2983{ 3600{
2984 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3601 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3602
3603 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2985} 3604}
2986 3605
2987void 3606void
2988ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3607ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2989{ 3608{
3011 ev_timer_set (&once->to, timeout, 0.); 3630 ev_timer_set (&once->to, timeout, 0.);
3012 ev_timer_start (EV_A_ &once->to); 3631 ev_timer_start (EV_A_ &once->to);
3013 } 3632 }
3014} 3633}
3015 3634
3635/*****************************************************************************/
3636
3637#if EV_WALK_ENABLE
3638void
3639ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3640{
3641 int i, j;
3642 ev_watcher_list *wl, *wn;
3643
3644 if (types & (EV_IO | EV_EMBED))
3645 for (i = 0; i < anfdmax; ++i)
3646 for (wl = anfds [i].head; wl; )
3647 {
3648 wn = wl->next;
3649
3650#if EV_EMBED_ENABLE
3651 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3652 {
3653 if (types & EV_EMBED)
3654 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3655 }
3656 else
3657#endif
3658#if EV_USE_INOTIFY
3659 if (ev_cb ((ev_io *)wl) == infy_cb)
3660 ;
3661 else
3662#endif
3663 if ((ev_io *)wl != &pipe_w)
3664 if (types & EV_IO)
3665 cb (EV_A_ EV_IO, wl);
3666
3667 wl = wn;
3668 }
3669
3670 if (types & (EV_TIMER | EV_STAT))
3671 for (i = timercnt + HEAP0; i-- > HEAP0; )
3672#if EV_STAT_ENABLE
3673 /*TODO: timer is not always active*/
3674 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3675 {
3676 if (types & EV_STAT)
3677 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3678 }
3679 else
3680#endif
3681 if (types & EV_TIMER)
3682 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3683
3684#if EV_PERIODIC_ENABLE
3685 if (types & EV_PERIODIC)
3686 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3687 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3688#endif
3689
3690#if EV_IDLE_ENABLE
3691 if (types & EV_IDLE)
3692 for (j = NUMPRI; i--; )
3693 for (i = idlecnt [j]; i--; )
3694 cb (EV_A_ EV_IDLE, idles [j][i]);
3695#endif
3696
3697#if EV_FORK_ENABLE
3698 if (types & EV_FORK)
3699 for (i = forkcnt; i--; )
3700 if (ev_cb (forks [i]) != embed_fork_cb)
3701 cb (EV_A_ EV_FORK, forks [i]);
3702#endif
3703
3704#if EV_ASYNC_ENABLE
3705 if (types & EV_ASYNC)
3706 for (i = asynccnt; i--; )
3707 cb (EV_A_ EV_ASYNC, asyncs [i]);
3708#endif
3709
3710 if (types & EV_PREPARE)
3711 for (i = preparecnt; i--; )
3712#if EV_EMBED_ENABLE
3713 if (ev_cb (prepares [i]) != embed_prepare_cb)
3714#endif
3715 cb (EV_A_ EV_PREPARE, prepares [i]);
3716
3717 if (types & EV_CHECK)
3718 for (i = checkcnt; i--; )
3719 cb (EV_A_ EV_CHECK, checks [i]);
3720
3721 if (types & EV_SIGNAL)
3722 for (i = 0; i < EV_NSIG - 1; ++i)
3723 for (wl = signals [i].head; wl; )
3724 {
3725 wn = wl->next;
3726 cb (EV_A_ EV_SIGNAL, wl);
3727 wl = wn;
3728 }
3729
3730 if (types & EV_CHILD)
3731 for (i = EV_PID_HASHSIZE; i--; )
3732 for (wl = childs [i]; wl; )
3733 {
3734 wn = wl->next;
3735 cb (EV_A_ EV_CHILD, wl);
3736 wl = wn;
3737 }
3738/* EV_STAT 0x00001000 /* stat data changed */
3739/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3740}
3741#endif
3742
3016#if EV_MULTIPLICITY 3743#if EV_MULTIPLICITY
3017 #include "ev_wrap.h" 3744 #include "ev_wrap.h"
3018#endif 3745#endif
3019 3746
3020#ifdef __cplusplus 3747#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines