ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.116 by root, Thu Nov 15 09:19:42 2007 UTC vs.
Revision 1.333 by root, Tue Mar 9 08:58:22 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
46# endif 76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
50# endif 95# endif
96# endif
51 97
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
54# endif 103# endif
55 104# endif
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
58# endif 111# endif
59 112# endif
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
61# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
62# endif 119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
64#endif 154#endif
65 155
66#include <math.h> 156#include <math.h>
67#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
68#include <fcntl.h> 159#include <fcntl.h>
69#include <stddef.h> 160#include <stddef.h>
70 161
71#include <stdio.h> 162#include <stdio.h>
72 163
73#include <assert.h> 164#include <assert.h>
74#include <errno.h> 165#include <errno.h>
75#include <sys/types.h> 166#include <sys/types.h>
76#include <time.h> 167#include <time.h>
168#include <limits.h>
77 169
78#include <signal.h> 170#include <signal.h>
79 171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
80#ifndef _WIN32 178#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 179# include <sys/time.h>
83# include <sys/wait.h> 180# include <sys/wait.h>
181# include <unistd.h>
84#else 182#else
183# include <io.h>
85# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 185# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
89# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
90#endif 226# endif
91 227#endif
92/**/
93 228
94#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 231# define EV_USE_MONOTONIC 1
232# else
233# define EV_USE_MONOTONIC 0
234# endif
235#endif
236
237#ifndef EV_USE_REALTIME
238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
239#endif
240
241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
245# define EV_USE_NANOSLEEP 0
246# endif
96#endif 247#endif
97 248
98#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 251#endif
102 252
103#ifndef EV_USE_POLL 253#ifndef EV_USE_POLL
104# ifdef _WIN32 254# ifdef _WIN32
105# define EV_USE_POLL 0 255# define EV_USE_POLL 0
107# define EV_USE_POLL 1 257# define EV_USE_POLL 1
108# endif 258# endif
109#endif 259#endif
110 260
111#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
112# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
113#endif 267#endif
114 268
115#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
117#endif 271#endif
118 272
119#ifndef EV_USE_REALTIME 273#ifndef EV_USE_PORT
274# define EV_USE_PORT 0
275#endif
276
277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 279# define EV_USE_INOTIFY 1
280# else
281# define EV_USE_INOTIFY 0
121#endif 282# endif
283#endif
122 284
123/**/ 285#ifndef EV_PID_HASHSIZE
286# if EV_MINIMAL
287# define EV_PID_HASHSIZE 1
288# else
289# define EV_PID_HASHSIZE 16
290# endif
291#endif
124 292
125/* darwin simply cannot be helped */ 293#ifndef EV_INOTIFY_HASHSIZE
126#ifdef __APPLE__ 294# if EV_MINIMAL
295# define EV_INOTIFY_HASHSIZE 1
296# else
297# define EV_INOTIFY_HASHSIZE 16
298# endif
299#endif
300
301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
127# undef EV_USE_POLL 353# undef EV_USE_POLL
128# undef EV_USE_KQUEUE 354# define EV_USE_POLL 0
129#endif 355#endif
130 356
131#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
136#ifndef CLOCK_REALTIME 362#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 363# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 364# define EV_USE_REALTIME 0
139#endif 365#endif
140 366
367#if !EV_STAT_ENABLE
368# undef EV_USE_INOTIFY
369# define EV_USE_INOTIFY 0
370#endif
371
372#if !EV_USE_NANOSLEEP
373# ifndef _WIN32
374# include <sys/select.h>
375# endif
376#endif
377
378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
387#endif
388
141#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 390# include <winsock.h>
143#endif 391#endif
144 392
393#if EV_USE_EVENTFD
394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
145/**/ 444/**/
146 445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
451
452/*
453 * This is used to avoid floating point rounding problems.
454 * It is added to ev_rt_now when scheduling periodics
455 * to ensure progress, time-wise, even when rounding
456 * errors are against us.
457 * This value is good at least till the year 4000.
458 * Better solutions welcome.
459 */
460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
461
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
151 464
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 465#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 467# define noinline __attribute__ ((noinline))
161#else 468#else
162# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
163# define inline static 470# define noinline
471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
472# define inline
473# endif
164#endif 474#endif
165 475
166#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 477#define expect_true(expr) expect ((expr) != 0, 1)
478#define inline_size static inline
168 479
480#if EV_MINIMAL
481# define inline_speed static noinline
482#else
483# define inline_speed static inline
484#endif
485
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
171 493
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
174 496
175typedef struct ev_watcher *W; 497typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
178 500
501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
522#endif
180 523
181#ifdef _WIN32 524#ifdef _WIN32
182# include "ev_win32.c" 525# include "ev_win32.c"
183#endif 526#endif
184 527
185/*****************************************************************************/ 528/*****************************************************************************/
186 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
187static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
188 539
540void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 542{
191 syserr_cb = cb; 543 syserr_cb = cb;
192} 544}
193 545
194static void 546static void noinline
195syserr (const char *msg) 547ev_syserr (const char *msg)
196{ 548{
197 if (!msg) 549 if (!msg)
198 msg = "(libev) system error"; 550 msg = "(libev) system error";
199 551
200 if (syserr_cb) 552 if (syserr_cb)
201 syserr_cb (msg); 553 syserr_cb (msg);
202 else 554 else
203 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
204 perror (msg); 564 perror (msg);
565#endif
205 abort (); 566 abort ();
206 } 567 }
207} 568}
208 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573 /* some systems, notably openbsd and darwin, fail to properly
574 * implement realloc (x, 0) (as required by both ansi c-98 and
575 * the single unix specification, so work around them here.
576 */
577
578 if (size)
579 return realloc (ptr, size);
580
581 free (ptr);
582 return 0;
583}
584
209static void *(*alloc)(void *ptr, long size); 585static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
210 586
587void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 588ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 589{
213 alloc = cb; 590 alloc = cb;
214} 591}
215 592
216static void * 593inline_speed void *
217ev_realloc (void *ptr, long size) 594ev_realloc (void *ptr, long size)
218{ 595{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 596 ptr = alloc (ptr, size);
220 597
221 if (!ptr && size) 598 if (!ptr && size)
222 { 599 {
600#if EV_AVOID_STDIO
601 ev_printerr ("libev: memory allocation failed, aborting.\n");
602#else
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 603 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
604#endif
224 abort (); 605 abort ();
225 } 606 }
226 607
227 return ptr; 608 return ptr;
228} 609}
230#define ev_malloc(size) ev_realloc (0, (size)) 611#define ev_malloc(size) ev_realloc (0, (size))
231#define ev_free(ptr) ev_realloc ((ptr), 0) 612#define ev_free(ptr) ev_realloc ((ptr), 0)
232 613
233/*****************************************************************************/ 614/*****************************************************************************/
234 615
616/* set in reify when reification needed */
617#define EV_ANFD_REIFY 1
618
619/* file descriptor info structure */
235typedef struct 620typedef struct
236{ 621{
237 WL head; 622 WL head;
238 unsigned char events; 623 unsigned char events; /* the events watched for */
624 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
625 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
239 unsigned char reify; 626 unsigned char unused;
627#if EV_USE_EPOLL
628 unsigned int egen; /* generation counter to counter epoll bugs */
629#endif
240#if EV_SELECT_IS_WINSOCKET 630#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle; 631 SOCKET handle;
242#endif 632#endif
243} ANFD; 633} ANFD;
244 634
635/* stores the pending event set for a given watcher */
245typedef struct 636typedef struct
246{ 637{
247 W w; 638 W w;
248 int events; 639 int events; /* the pending event set for the given watcher */
249} ANPENDING; 640} ANPENDING;
641
642#if EV_USE_INOTIFY
643/* hash table entry per inotify-id */
644typedef struct
645{
646 WL head;
647} ANFS;
648#endif
649
650/* Heap Entry */
651#if EV_HEAP_CACHE_AT
652 /* a heap element */
653 typedef struct {
654 ev_tstamp at;
655 WT w;
656 } ANHE;
657
658 #define ANHE_w(he) (he).w /* access watcher, read-write */
659 #define ANHE_at(he) (he).at /* access cached at, read-only */
660 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
661#else
662 /* a heap element */
663 typedef WT ANHE;
664
665 #define ANHE_w(he) (he)
666 #define ANHE_at(he) (he)->at
667 #define ANHE_at_cache(he)
668#endif
250 669
251#if EV_MULTIPLICITY 670#if EV_MULTIPLICITY
252 671
253 struct ev_loop 672 struct ev_loop
254 { 673 {
272 691
273 static int ev_default_loop_ptr; 692 static int ev_default_loop_ptr;
274 693
275#endif 694#endif
276 695
696#if EV_MINIMAL < 2
697# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
698# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
699# define EV_INVOKE_PENDING invoke_cb (EV_A)
700#else
701# define EV_RELEASE_CB (void)0
702# define EV_ACQUIRE_CB (void)0
703# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
704#endif
705
706#define EVUNLOOP_RECURSE 0x80
707
277/*****************************************************************************/ 708/*****************************************************************************/
278 709
710#ifndef EV_HAVE_EV_TIME
279ev_tstamp 711ev_tstamp
280ev_time (void) 712ev_time (void)
281{ 713{
282#if EV_USE_REALTIME 714#if EV_USE_REALTIME
715 if (expect_true (have_realtime))
716 {
283 struct timespec ts; 717 struct timespec ts;
284 clock_gettime (CLOCK_REALTIME, &ts); 718 clock_gettime (CLOCK_REALTIME, &ts);
285 return ts.tv_sec + ts.tv_nsec * 1e-9; 719 return ts.tv_sec + ts.tv_nsec * 1e-9;
286#else 720 }
721#endif
722
287 struct timeval tv; 723 struct timeval tv;
288 gettimeofday (&tv, 0); 724 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 725 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif
291} 726}
727#endif
292 728
293inline ev_tstamp 729inline_size ev_tstamp
294get_clock (void) 730get_clock (void)
295{ 731{
296#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 733 if (expect_true (have_monotonic))
298 { 734 {
311{ 747{
312 return ev_rt_now; 748 return ev_rt_now;
313} 749}
314#endif 750#endif
315 751
316#define array_roundsize(type,n) (((n) | 4) & ~3) 752void
753ev_sleep (ev_tstamp delay)
754{
755 if (delay > 0.)
756 {
757#if EV_USE_NANOSLEEP
758 struct timespec ts;
759
760 ts.tv_sec = (time_t)delay;
761 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
762
763 nanosleep (&ts, 0);
764#elif defined(_WIN32)
765 Sleep ((unsigned long)(delay * 1e3));
766#else
767 struct timeval tv;
768
769 tv.tv_sec = (time_t)delay;
770 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
771
772 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
773 /* something not guaranteed by newer posix versions, but guaranteed */
774 /* by older ones */
775 select (0, 0, 0, 0, &tv);
776#endif
777 }
778}
779
780/*****************************************************************************/
781
782#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
783
784/* find a suitable new size for the given array, */
785/* hopefully by rounding to a ncie-to-malloc size */
786inline_size int
787array_nextsize (int elem, int cur, int cnt)
788{
789 int ncur = cur + 1;
790
791 do
792 ncur <<= 1;
793 while (cnt > ncur);
794
795 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
796 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
797 {
798 ncur *= elem;
799 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
800 ncur = ncur - sizeof (void *) * 4;
801 ncur /= elem;
802 }
803
804 return ncur;
805}
806
807static noinline void *
808array_realloc (int elem, void *base, int *cur, int cnt)
809{
810 *cur = array_nextsize (elem, *cur, cnt);
811 return ev_realloc (base, elem * *cur);
812}
813
814#define array_init_zero(base,count) \
815 memset ((void *)(base), 0, sizeof (*(base)) * (count))
317 816
318#define array_needsize(type,base,cur,cnt,init) \ 817#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 818 if (expect_false ((cnt) > (cur))) \
320 { \ 819 { \
321 int newcnt = cur; \ 820 int ocur_ = (cur); \
322 do \ 821 (base) = (type *)array_realloc \
323 { \ 822 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 823 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 824 }
332 825
826#if 0
333#define array_slim(type,stem) \ 827#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 828 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 829 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 830 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 831 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 832 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 833 }
834#endif
340 835
341#define array_free(stem, idx) \ 836#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 837 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
343 838
344/*****************************************************************************/ 839/*****************************************************************************/
345 840
346static void 841/* dummy callback for pending events */
347anfds_init (ANFD *base, int count) 842static void noinline
843pendingcb (EV_P_ ev_prepare *w, int revents)
348{ 844{
349 while (count--)
350 {
351 base->head = 0;
352 base->events = EV_NONE;
353 base->reify = 0;
354
355 ++base;
356 }
357} 845}
358 846
359void 847void noinline
360ev_feed_event (EV_P_ void *w, int revents) 848ev_feed_event (EV_P_ void *w, int revents)
361{ 849{
362 W w_ = (W)w; 850 W w_ = (W)w;
851 int pri = ABSPRI (w_);
363 852
364 if (w_->pending) 853 if (expect_false (w_->pending))
854 pendings [pri][w_->pending - 1].events |= revents;
855 else
365 { 856 {
857 w_->pending = ++pendingcnt [pri];
858 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
859 pendings [pri][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 860 pendings [pri][w_->pending - 1].events = revents;
367 return;
368 } 861 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374} 862}
375 863
376static void 864inline_speed void
865feed_reverse (EV_P_ W w)
866{
867 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
868 rfeeds [rfeedcnt++] = w;
869}
870
871inline_size void
872feed_reverse_done (EV_P_ int revents)
873{
874 do
875 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
876 while (rfeedcnt);
877}
878
879inline_speed void
377queue_events (EV_P_ W *events, int eventcnt, int type) 880queue_events (EV_P_ W *events, int eventcnt, int type)
378{ 881{
379 int i; 882 int i;
380 883
381 for (i = 0; i < eventcnt; ++i) 884 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type); 885 ev_feed_event (EV_A_ events [i], type);
383} 886}
384 887
888/*****************************************************************************/
889
385inline void 890inline_speed void
386fd_event (EV_P_ int fd, int revents) 891fd_event_nc (EV_P_ int fd, int revents)
387{ 892{
388 ANFD *anfd = anfds + fd; 893 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 894 ev_io *w;
390 895
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 896 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 897 {
393 int ev = w->events & revents; 898 int ev = w->events & revents;
394 899
395 if (ev) 900 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 901 ev_feed_event (EV_A_ (W)w, ev);
397 } 902 }
398} 903}
399 904
905/* do not submit kernel events for fds that have reify set */
906/* because that means they changed while we were polling for new events */
907inline_speed void
908fd_event (EV_P_ int fd, int revents)
909{
910 ANFD *anfd = anfds + fd;
911
912 if (expect_true (!anfd->reify))
913 fd_event_nc (EV_A_ fd, revents);
914}
915
400void 916void
401ev_feed_fd_event (EV_P_ int fd, int revents) 917ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 918{
919 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 920 fd_event_nc (EV_A_ fd, revents);
404} 921}
405 922
406/*****************************************************************************/ 923/* make sure the external fd watch events are in-sync */
407 924/* with the kernel/libev internal state */
408static void 925inline_size void
409fd_reify (EV_P) 926fd_reify (EV_P)
410{ 927{
411 int i; 928 int i;
412 929
413 for (i = 0; i < fdchangecnt; ++i) 930 for (i = 0; i < fdchangecnt; ++i)
414 { 931 {
415 int fd = fdchanges [i]; 932 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 934 ev_io *w;
418 935
419 int events = 0; 936 unsigned char events = 0;
420 937
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 939 events |= (unsigned char)w->events;
423 940
424#if EV_SELECT_IS_WINSOCKET 941#if EV_SELECT_IS_WINSOCKET
425 if (events) 942 if (events)
426 { 943 {
427 unsigned long argp; 944 unsigned long arg;
428 anfd->handle = _get_osfhandle (fd); 945 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 946 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
430 } 947 }
431#endif 948#endif
432 949
950 {
951 unsigned char o_events = anfd->events;
952 unsigned char o_reify = anfd->reify;
953
433 anfd->reify = 0; 954 anfd->reify = 0;
434
435 method_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 955 anfd->events = events;
956
957 if (o_events != events || o_reify & EV__IOFDSET)
958 backend_modify (EV_A_ fd, o_events, events);
959 }
437 } 960 }
438 961
439 fdchangecnt = 0; 962 fdchangecnt = 0;
440} 963}
441 964
442static void 965/* something about the given fd changed */
966inline_size void
443fd_change (EV_P_ int fd) 967fd_change (EV_P_ int fd, int flags)
444{ 968{
445 if (anfds [fd].reify) 969 unsigned char reify = anfds [fd].reify;
446 return;
447
448 anfds [fd].reify = 1; 970 anfds [fd].reify |= flags;
449 971
972 if (expect_true (!reify))
973 {
450 ++fdchangecnt; 974 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 975 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 976 fdchanges [fdchangecnt - 1] = fd;
977 }
453} 978}
454 979
455static void 980/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
981inline_speed void
456fd_kill (EV_P_ int fd) 982fd_kill (EV_P_ int fd)
457{ 983{
458 struct ev_io *w; 984 ev_io *w;
459 985
460 while ((w = (struct ev_io *)anfds [fd].head)) 986 while ((w = (ev_io *)anfds [fd].head))
461 { 987 {
462 ev_io_stop (EV_A_ w); 988 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 989 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 990 }
465} 991}
466 992
467static int 993/* check whether the given fd is atcually valid, for error recovery */
994inline_size int
468fd_valid (int fd) 995fd_valid (int fd)
469{ 996{
470#ifdef _WIN32 997#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 998 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
472#else 999#else
473 return fcntl (fd, F_GETFD) != -1; 1000 return fcntl (fd, F_GETFD) != -1;
474#endif 1001#endif
475} 1002}
476 1003
477/* called on EBADF to verify fds */ 1004/* called on EBADF to verify fds */
478static void 1005static void noinline
479fd_ebadf (EV_P) 1006fd_ebadf (EV_P)
480{ 1007{
481 int fd; 1008 int fd;
482 1009
483 for (fd = 0; fd < anfdmax; ++fd) 1010 for (fd = 0; fd < anfdmax; ++fd)
484 if (anfds [fd].events) 1011 if (anfds [fd].events)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 1012 if (!fd_valid (fd) && errno == EBADF)
486 fd_kill (EV_A_ fd); 1013 fd_kill (EV_A_ fd);
487} 1014}
488 1015
489/* called on ENOMEM in select/poll to kill some fds and retry */ 1016/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 1017static void noinline
491fd_enomem (EV_P) 1018fd_enomem (EV_P)
492{ 1019{
493 int fd; 1020 int fd;
494 1021
495 for (fd = anfdmax; fd--; ) 1022 for (fd = anfdmax; fd--; )
496 if (anfds [fd].events) 1023 if (anfds [fd].events)
497 { 1024 {
498 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
499 return; 1026 break;
500 } 1027 }
501} 1028}
502 1029
503/* usually called after fork if method needs to re-arm all fds from scratch */ 1030/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 1031static void noinline
505fd_rearm_all (EV_P) 1032fd_rearm_all (EV_P)
506{ 1033{
507 int fd; 1034 int fd;
508 1035
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 1036 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 1037 if (anfds [fd].events)
512 { 1038 {
513 anfds [fd].events = 0; 1039 anfds [fd].events = 0;
514 fd_change (EV_A_ fd); 1040 anfds [fd].emask = 0;
1041 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
515 } 1042 }
516} 1043}
517 1044
518/*****************************************************************************/ 1045/*****************************************************************************/
519 1046
520static void 1047/*
521upheap (WT *heap, int k) 1048 * the heap functions want a real array index. array index 0 uis guaranteed to not
522{ 1049 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
523 WT w = heap [k]; 1050 * the branching factor of the d-tree.
1051 */
524 1052
525 while (k && heap [k >> 1]->at > w->at) 1053/*
526 { 1054 * at the moment we allow libev the luxury of two heaps,
527 heap [k] = heap [k >> 1]; 1055 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
528 ((W)heap [k])->active = k + 1; 1056 * which is more cache-efficient.
529 k >>= 1; 1057 * the difference is about 5% with 50000+ watchers.
530 } 1058 */
1059#if EV_USE_4HEAP
531 1060
532 heap [k] = w; 1061#define DHEAP 4
533 ((W)heap [k])->active = k + 1; 1062#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1063#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1064#define UPHEAP_DONE(p,k) ((p) == (k))
534 1065
535} 1066/* away from the root */
536 1067inline_speed void
537static void
538downheap (WT *heap, int N, int k) 1068downheap (ANHE *heap, int N, int k)
539{ 1069{
540 WT w = heap [k]; 1070 ANHE he = heap [k];
1071 ANHE *E = heap + N + HEAP0;
541 1072
542 while (k < (N >> 1)) 1073 for (;;)
543 { 1074 {
544 int j = k << 1; 1075 ev_tstamp minat;
1076 ANHE *minpos;
1077 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
545 1078
546 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1079 /* find minimum child */
1080 if (expect_true (pos + DHEAP - 1 < E))
547 ++j; 1081 {
548 1082 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
549 if (w->at <= heap [j]->at) 1083 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1084 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1085 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1086 }
1087 else if (pos < E)
1088 {
1089 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1090 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1091 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1092 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1093 }
1094 else
550 break; 1095 break;
551 1096
1097 if (ANHE_at (he) <= minat)
1098 break;
1099
1100 heap [k] = *minpos;
1101 ev_active (ANHE_w (*minpos)) = k;
1102
1103 k = minpos - heap;
1104 }
1105
1106 heap [k] = he;
1107 ev_active (ANHE_w (he)) = k;
1108}
1109
1110#else /* 4HEAP */
1111
1112#define HEAP0 1
1113#define HPARENT(k) ((k) >> 1)
1114#define UPHEAP_DONE(p,k) (!(p))
1115
1116/* away from the root */
1117inline_speed void
1118downheap (ANHE *heap, int N, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int c = k << 1;
1125
1126 if (c >= N + HEAP0)
1127 break;
1128
1129 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1130 ? 1 : 0;
1131
1132 if (ANHE_at (he) <= ANHE_at (heap [c]))
1133 break;
1134
552 heap [k] = heap [j]; 1135 heap [k] = heap [c];
553 ((W)heap [k])->active = k + 1; 1136 ev_active (ANHE_w (heap [k])) = k;
1137
554 k = j; 1138 k = c;
555 } 1139 }
556 1140
557 heap [k] = w; 1141 heap [k] = he;
558 ((W)heap [k])->active = k + 1; 1142 ev_active (ANHE_w (he)) = k;
559} 1143}
1144#endif
560 1145
1146/* towards the root */
1147inline_speed void
1148upheap (ANHE *heap, int k)
1149{
1150 ANHE he = heap [k];
1151
1152 for (;;)
1153 {
1154 int p = HPARENT (k);
1155
1156 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1157 break;
1158
1159 heap [k] = heap [p];
1160 ev_active (ANHE_w (heap [k])) = k;
1161 k = p;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168/* move an element suitably so it is in a correct place */
561inline void 1169inline_size void
562adjustheap (WT *heap, int N, int k) 1170adjustheap (ANHE *heap, int N, int k)
563{ 1171{
1172 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
564 upheap (heap, k); 1173 upheap (heap, k);
1174 else
565 downheap (heap, N, k); 1175 downheap (heap, N, k);
1176}
1177
1178/* rebuild the heap: this function is used only once and executed rarely */
1179inline_size void
1180reheap (ANHE *heap, int N)
1181{
1182 int i;
1183
1184 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1185 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1186 for (i = 0; i < N; ++i)
1187 upheap (heap, i + HEAP0);
566} 1188}
567 1189
568/*****************************************************************************/ 1190/*****************************************************************************/
569 1191
1192/* associate signal watchers to a signal signal */
570typedef struct 1193typedef struct
571{ 1194{
1195 EV_ATOMIC_T pending;
1196#if EV_MULTIPLICITY
1197 EV_P;
1198#endif
572 WL head; 1199 WL head;
573 sig_atomic_t volatile gotsig;
574} ANSIG; 1200} ANSIG;
575 1201
576static ANSIG *signals; 1202static ANSIG signals [EV_NSIG - 1];
577static int signalmax;
578 1203
579static int sigpipe [2]; 1204/*****************************************************************************/
580static sig_atomic_t volatile gotsig;
581static struct ev_io sigev;
582 1205
583static void 1206/* used to prepare libev internal fd's */
584signals_init (ANSIG *base, int count) 1207/* this is not fork-safe */
585{
586 while (count--)
587 {
588 base->head = 0;
589 base->gotsig = 0;
590
591 ++base;
592 }
593}
594
595static void
596sighandler (int signum)
597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601
602 signals [signum - 1].gotsig = 1;
603
604 if (!gotsig)
605 {
606 int old_errno = errno;
607 gotsig = 1;
608 write (sigpipe [1], &signum, 1);
609 errno = old_errno;
610 }
611}
612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
633static void
634sigcb (EV_P_ struct ev_io *iow, int revents)
635{
636 int signum;
637
638 read (sigpipe [0], &revents, 1);
639 gotsig = 0;
640
641 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1);
644}
645
646inline void 1208inline_speed void
647fd_intern (int fd) 1209fd_intern (int fd)
648{ 1210{
649#ifdef _WIN32 1211#ifdef _WIN32
650 int arg = 1; 1212 unsigned long arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1213 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
652#else 1214#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 1215 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 1216 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 1217#endif
656} 1218}
657 1219
1220static void noinline
1221evpipe_init (EV_P)
1222{
1223 if (!ev_is_active (&pipe_w))
1224 {
1225#if EV_USE_EVENTFD
1226 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1227 if (evfd < 0 && errno == EINVAL)
1228 evfd = eventfd (0, 0);
1229
1230 if (evfd >= 0)
1231 {
1232 evpipe [0] = -1;
1233 fd_intern (evfd); /* doing it twice doesn't hurt */
1234 ev_io_set (&pipe_w, evfd, EV_READ);
1235 }
1236 else
1237#endif
1238 {
1239 while (pipe (evpipe))
1240 ev_syserr ("(libev) error creating signal/async pipe");
1241
1242 fd_intern (evpipe [0]);
1243 fd_intern (evpipe [1]);
1244 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1245 }
1246
1247 ev_io_start (EV_A_ &pipe_w);
1248 ev_unref (EV_A); /* watcher should not keep loop alive */
1249 }
1250}
1251
1252inline_size void
1253evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1254{
1255 if (!*flag)
1256 {
1257 int old_errno = errno; /* save errno because write might clobber it */
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &old_errno, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
658static void 1277static void
659siginit (EV_P) 1278pipecb (EV_P_ ev_io *iow, int revents)
660{ 1279{
661 fd_intern (sigpipe [0]); 1280 int i;
662 fd_intern (sigpipe [1]);
663 1281
664 ev_io_set (&sigev, sigpipe [0], EV_READ); 1282#if EV_USE_EVENTFD
665 ev_io_start (EV_A_ &sigev); 1283 if (evfd >= 0)
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
667} 1317}
668 1318
669/*****************************************************************************/ 1319/*****************************************************************************/
670 1320
671static struct ev_child *childs [PID_HASHSIZE]; 1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
1327
1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380/*****************************************************************************/
1381
1382static WL childs [EV_PID_HASHSIZE];
672 1383
673#ifndef _WIN32 1384#ifndef _WIN32
674 1385
675static struct ev_signal childev; 1386static ev_signal childev;
1387
1388#ifndef WIFCONTINUED
1389# define WIFCONTINUED(status) 0
1390#endif
1391
1392/* handle a single child status event */
1393inline_speed void
1394child_reap (EV_P_ int chain, int pid, int status)
1395{
1396 ev_child *w;
1397 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1398
1399 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1400 {
1401 if ((w->pid == pid || !w->pid)
1402 && (!traced || (w->flags & 1)))
1403 {
1404 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1405 w->rpid = pid;
1406 w->rstatus = status;
1407 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1408 }
1409 }
1410}
676 1411
677#ifndef WCONTINUED 1412#ifndef WCONTINUED
678# define WCONTINUED 0 1413# define WCONTINUED 0
679#endif 1414#endif
680 1415
1416/* called on sigchld etc., calls waitpid */
681static void 1417static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 1418childcb (EV_P_ ev_signal *sw, int revents)
698{ 1419{
699 int pid, status; 1420 int pid, status;
700 1421
1422 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1423 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 1424 if (!WCONTINUED
1425 || errno != EINVAL
1426 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1427 return;
1428
703 /* make sure we are called again until all childs have been reaped */ 1429 /* make sure we are called again until all children have been reaped */
1430 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1431 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 1432
706 child_reap (EV_A_ sw, pid, pid, status); 1433 child_reap (EV_A_ pid, pid, status);
1434 if (EV_PID_HASHSIZE > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1435 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 1436}
710 1437
711#endif 1438#endif
712 1439
713/*****************************************************************************/ 1440/*****************************************************************************/
714 1441
1442#if EV_USE_PORT
1443# include "ev_port.c"
1444#endif
715#if EV_USE_KQUEUE 1445#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 1446# include "ev_kqueue.c"
717#endif 1447#endif
718#if EV_USE_EPOLL 1448#if EV_USE_EPOLL
719# include "ev_epoll.c" 1449# include "ev_epoll.c"
736{ 1466{
737 return EV_VERSION_MINOR; 1467 return EV_VERSION_MINOR;
738} 1468}
739 1469
740/* return true if we are running with elevated privileges and should ignore env variables */ 1470/* return true if we are running with elevated privileges and should ignore env variables */
741static int 1471int inline_size
742enable_secure (void) 1472enable_secure (void)
743{ 1473{
744#ifdef _WIN32 1474#ifdef _WIN32
745 return 0; 1475 return 0;
746#else 1476#else
748 || getgid () != getegid (); 1478 || getgid () != getegid ();
749#endif 1479#endif
750} 1480}
751 1481
752unsigned int 1482unsigned int
753ev_method (EV_P) 1483ev_supported_backends (void)
754{ 1484{
755 return method; 1485 unsigned int flags = 0;
756}
757 1486
758static void 1487 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1488 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1489 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1490 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1491 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1492
1493 return flags;
1494}
1495
1496unsigned int
1497ev_recommended_backends (void)
1498{
1499 unsigned int flags = ev_supported_backends ();
1500
1501#ifndef __NetBSD__
1502 /* kqueue is borked on everything but netbsd apparently */
1503 /* it usually doesn't work correctly on anything but sockets and pipes */
1504 flags &= ~EVBACKEND_KQUEUE;
1505#endif
1506#ifdef __APPLE__
1507 /* only select works correctly on that "unix-certified" platform */
1508 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1509 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1510#endif
1511
1512 return flags;
1513}
1514
1515unsigned int
1516ev_embeddable_backends (void)
1517{
1518 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1519
1520 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1521 /* please fix it and tell me how to detect the fix */
1522 flags &= ~EVBACKEND_EPOLL;
1523
1524 return flags;
1525}
1526
1527unsigned int
1528ev_backend (EV_P)
1529{
1530 return backend;
1531}
1532
1533#if EV_MINIMAL < 2
1534unsigned int
1535ev_loop_count (EV_P)
1536{
1537 return loop_count;
1538}
1539
1540unsigned int
1541ev_loop_depth (EV_P)
1542{
1543 return loop_depth;
1544}
1545
1546void
1547ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1548{
1549 io_blocktime = interval;
1550}
1551
1552void
1553ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1554{
1555 timeout_blocktime = interval;
1556}
1557
1558void
1559ev_set_userdata (EV_P_ void *data)
1560{
1561 userdata = data;
1562}
1563
1564void *
1565ev_userdata (EV_P)
1566{
1567 return userdata;
1568}
1569
1570void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1571{
1572 invoke_cb = invoke_pending_cb;
1573}
1574
1575void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1576{
1577 release_cb = release;
1578 acquire_cb = acquire;
1579}
1580#endif
1581
1582/* initialise a loop structure, must be zero-initialised */
1583static void noinline
759loop_init (EV_P_ unsigned int flags) 1584loop_init (EV_P_ unsigned int flags)
760{ 1585{
761 if (!method) 1586 if (!backend)
762 { 1587 {
1588#if EV_USE_REALTIME
1589 if (!have_realtime)
1590 {
1591 struct timespec ts;
1592
1593 if (!clock_gettime (CLOCK_REALTIME, &ts))
1594 have_realtime = 1;
1595 }
1596#endif
1597
763#if EV_USE_MONOTONIC 1598#if EV_USE_MONOTONIC
1599 if (!have_monotonic)
1600 {
1601 struct timespec ts;
1602
1603 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1604 have_monotonic = 1;
1605 }
1606#endif
1607
1608 /* pid check not overridable via env */
1609#ifndef _WIN32
1610 if (flags & EVFLAG_FORKCHECK)
1611 curpid = getpid ();
1612#endif
1613
1614 if (!(flags & EVFLAG_NOENV)
1615 && !enable_secure ()
1616 && getenv ("LIBEV_FLAGS"))
1617 flags = atoi (getenv ("LIBEV_FLAGS"));
1618
1619 ev_rt_now = ev_time ();
1620 mn_now = get_clock ();
1621 now_floor = mn_now;
1622 rtmn_diff = ev_rt_now - mn_now;
1623#if EV_MINIMAL < 2
1624 invoke_cb = ev_invoke_pending;
1625#endif
1626
1627 io_blocktime = 0.;
1628 timeout_blocktime = 0.;
1629 backend = 0;
1630 backend_fd = -1;
1631 sig_pending = 0;
1632#if EV_ASYNC_ENABLE
1633 async_pending = 0;
1634#endif
1635#if EV_USE_INOTIFY
1636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1637#endif
1638#if EV_USE_SIGNALFD
1639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1640#endif
1641
1642 if (!(flags & 0x0000ffffU))
1643 flags |= ev_recommended_backends ();
1644
1645#if EV_USE_PORT
1646 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1647#endif
1648#if EV_USE_KQUEUE
1649 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1650#endif
1651#if EV_USE_EPOLL
1652 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1653#endif
1654#if EV_USE_POLL
1655 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1656#endif
1657#if EV_USE_SELECT
1658 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1659#endif
1660
1661 ev_prepare_init (&pending_w, pendingcb);
1662
1663 ev_init (&pipe_w, pipecb);
1664 ev_set_priority (&pipe_w, EV_MAXPRI);
1665 }
1666}
1667
1668/* free up a loop structure */
1669static void noinline
1670loop_destroy (EV_P)
1671{
1672 int i;
1673
1674 if (ev_is_active (&pipe_w))
1675 {
1676 /*ev_ref (EV_A);*/
1677 /*ev_io_stop (EV_A_ &pipe_w);*/
1678
1679#if EV_USE_EVENTFD
1680 if (evfd >= 0)
1681 close (evfd);
1682#endif
1683
1684 if (evpipe [0] >= 0)
1685 {
1686 EV_WIN32_CLOSE_FD (evpipe [0]);
1687 EV_WIN32_CLOSE_FD (evpipe [1]);
1688 }
1689 }
1690
1691#if EV_USE_SIGNALFD
1692 if (ev_is_active (&sigfd_w))
1693 close (sigfd);
1694#endif
1695
1696#if EV_USE_INOTIFY
1697 if (fs_fd >= 0)
1698 close (fs_fd);
1699#endif
1700
1701 if (backend_fd >= 0)
1702 close (backend_fd);
1703
1704#if EV_USE_PORT
1705 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1706#endif
1707#if EV_USE_KQUEUE
1708 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1709#endif
1710#if EV_USE_EPOLL
1711 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1712#endif
1713#if EV_USE_POLL
1714 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1715#endif
1716#if EV_USE_SELECT
1717 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1718#endif
1719
1720 for (i = NUMPRI; i--; )
1721 {
1722 array_free (pending, [i]);
1723#if EV_IDLE_ENABLE
1724 array_free (idle, [i]);
1725#endif
1726 }
1727
1728 ev_free (anfds); anfds = 0; anfdmax = 0;
1729
1730 /* have to use the microsoft-never-gets-it-right macro */
1731 array_free (rfeed, EMPTY);
1732 array_free (fdchange, EMPTY);
1733 array_free (timer, EMPTY);
1734#if EV_PERIODIC_ENABLE
1735 array_free (periodic, EMPTY);
1736#endif
1737#if EV_FORK_ENABLE
1738 array_free (fork, EMPTY);
1739#endif
1740 array_free (prepare, EMPTY);
1741 array_free (check, EMPTY);
1742#if EV_ASYNC_ENABLE
1743 array_free (async, EMPTY);
1744#endif
1745
1746 backend = 0;
1747}
1748
1749#if EV_USE_INOTIFY
1750inline_size void infy_fork (EV_P);
1751#endif
1752
1753inline_size void
1754loop_fork (EV_P)
1755{
1756#if EV_USE_PORT
1757 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1758#endif
1759#if EV_USE_KQUEUE
1760 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1761#endif
1762#if EV_USE_EPOLL
1763 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1764#endif
1765#if EV_USE_INOTIFY
1766 infy_fork (EV_A);
1767#endif
1768
1769 if (ev_is_active (&pipe_w))
1770 {
1771 /* this "locks" the handlers against writing to the pipe */
1772 /* while we modify the fd vars */
1773 sig_pending = 1;
1774#if EV_ASYNC_ENABLE
1775 async_pending = 1;
1776#endif
1777
1778 ev_ref (EV_A);
1779 ev_io_stop (EV_A_ &pipe_w);
1780
1781#if EV_USE_EVENTFD
1782 if (evfd >= 0)
1783 close (evfd);
1784#endif
1785
1786 if (evpipe [0] >= 0)
1787 {
1788 EV_WIN32_CLOSE_FD (evpipe [0]);
1789 EV_WIN32_CLOSE_FD (evpipe [1]);
1790 }
1791
1792 evpipe_init (EV_A);
1793 /* now iterate over everything, in case we missed something */
1794 pipecb (EV_A_ &pipe_w, EV_READ);
1795 }
1796
1797 postfork = 0;
1798}
1799
1800#if EV_MULTIPLICITY
1801
1802struct ev_loop *
1803ev_loop_new (unsigned int flags)
1804{
1805 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1806
1807 memset (EV_A, 0, sizeof (struct ev_loop));
1808 loop_init (EV_A_ flags);
1809
1810 if (ev_backend (EV_A))
1811 return EV_A;
1812
1813 return 0;
1814}
1815
1816void
1817ev_loop_destroy (EV_P)
1818{
1819 loop_destroy (EV_A);
1820 ev_free (loop);
1821}
1822
1823void
1824ev_loop_fork (EV_P)
1825{
1826 postfork = 1; /* must be in line with ev_default_fork */
1827}
1828#endif /* multiplicity */
1829
1830#if EV_VERIFY
1831static void noinline
1832verify_watcher (EV_P_ W w)
1833{
1834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1835
1836 if (w->pending)
1837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1838}
1839
1840static void noinline
1841verify_heap (EV_P_ ANHE *heap, int N)
1842{
1843 int i;
1844
1845 for (i = HEAP0; i < N + HEAP0; ++i)
1846 {
1847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1850
1851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1852 }
1853}
1854
1855static void noinline
1856array_verify (EV_P_ W *ws, int cnt)
1857{
1858 while (cnt--)
1859 {
1860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1861 verify_watcher (EV_A_ ws [cnt]);
1862 }
1863}
1864#endif
1865
1866#if EV_MINIMAL < 2
1867void
1868ev_loop_verify (EV_P)
1869{
1870#if EV_VERIFY
1871 int i;
1872 WL w;
1873
1874 assert (activecnt >= -1);
1875
1876 assert (fdchangemax >= fdchangecnt);
1877 for (i = 0; i < fdchangecnt; ++i)
1878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1879
1880 assert (anfdmax >= 0);
1881 for (i = 0; i < anfdmax; ++i)
1882 for (w = anfds [i].head; w; w = w->next)
764 { 1883 {
765 struct timespec ts; 1884 verify_watcher (EV_A_ (W)w);
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1885 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
767 have_monotonic = 1; 1886 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
768 } 1887 }
769#endif
770 1888
771 ev_rt_now = ev_time (); 1889 assert (timermax >= timercnt);
772 mn_now = get_clock (); 1890 verify_heap (EV_A_ timers, timercnt);
773 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now;
775 1891
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1892#if EV_PERIODIC_ENABLE
777 flags = atoi (getenv ("LIBEV_FLAGS")); 1893 assert (periodicmax >= periodiccnt);
778 1894 verify_heap (EV_A_ periodics, periodiccnt);
779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
781
782 method = 0;
783#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
785#endif
786#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
788#endif
789#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
791#endif
792#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
794#endif
795
796 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI);
798 }
799}
800
801void
802loop_destroy (EV_P)
803{
804 int i;
805
806#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
808#endif
809#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
811#endif
812#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
814#endif
815#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
817#endif 1895#endif
818 1896
819 for (i = NUMPRI; i--; ) 1897 for (i = NUMPRI; i--; )
820 array_free (pending, [i]); 1898 {
1899 assert (pendingmax [i] >= pendingcnt [i]);
1900#if EV_IDLE_ENABLE
1901 assert (idleall >= 0);
1902 assert (idlemax [i] >= idlecnt [i]);
1903 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1904#endif
1905 }
821 1906
822 /* have to use the microsoft-never-gets-it-right macro */ 1907#if EV_FORK_ENABLE
823 array_free (fdchange, EMPTY0); 1908 assert (forkmax >= forkcnt);
824 array_free (timer, EMPTY0); 1909 array_verify (EV_A_ (W *)forks, forkcnt);
825#if EV_PERIODICS 1910#endif
826 array_free (periodic, EMPTY0); 1911
1912#if EV_ASYNC_ENABLE
1913 assert (asyncmax >= asynccnt);
1914 array_verify (EV_A_ (W *)asyncs, asynccnt);
1915#endif
1916
1917 assert (preparemax >= preparecnt);
1918 array_verify (EV_A_ (W *)prepares, preparecnt);
1919
1920 assert (checkmax >= checkcnt);
1921 array_verify (EV_A_ (W *)checks, checkcnt);
1922
1923# if 0
1924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
827#endif 1926# endif
828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
831
832 method = 0;
833}
834
835static void
836loop_fork (EV_P)
837{
838#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
840#endif 1927#endif
841#if EV_USE_KQUEUE
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
843#endif
844
845 if (ev_is_active (&sigev))
846 {
847 /* default loop */
848
849 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev);
851 close (sigpipe [0]);
852 close (sigpipe [1]);
853
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A);
858 }
859
860 postfork = 0;
861} 1928}
1929#endif
862 1930
863#if EV_MULTIPLICITY 1931#if EV_MULTIPLICITY
864struct ev_loop * 1932struct ev_loop *
865ev_loop_new (unsigned int flags)
866{
867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
868
869 memset (loop, 0, sizeof (struct ev_loop));
870
871 loop_init (EV_A_ flags);
872
873 if (ev_method (EV_A))
874 return loop;
875
876 return 0;
877}
878
879void
880ev_loop_destroy (EV_P)
881{
882 loop_destroy (EV_A);
883 ev_free (loop);
884}
885
886void
887ev_loop_fork (EV_P)
888{
889 postfork = 1;
890}
891
892#endif
893
894#if EV_MULTIPLICITY
895struct ev_loop *
896ev_default_loop_ (unsigned int flags) 1933ev_default_loop_init (unsigned int flags)
897#else 1934#else
898int 1935int
899ev_default_loop (unsigned int flags) 1936ev_default_loop (unsigned int flags)
900#endif 1937#endif
901{ 1938{
902 if (sigpipe [0] == sigpipe [1])
903 if (pipe (sigpipe))
904 return 0;
905
906 if (!ev_default_loop_ptr) 1939 if (!ev_default_loop_ptr)
907 { 1940 {
908#if EV_MULTIPLICITY 1941#if EV_MULTIPLICITY
909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1942 EV_P = ev_default_loop_ptr = &default_loop_struct;
910#else 1943#else
911 ev_default_default_loop_ptr = 1; 1944 ev_default_loop_ptr = 1;
912#endif 1945#endif
913 1946
914 loop_init (EV_A_ flags); 1947 loop_init (EV_A_ flags);
915 1948
916 if (ev_method (EV_A)) 1949 if (ev_backend (EV_A))
917 { 1950 {
918 siginit (EV_A);
919
920#ifndef _WIN32 1951#ifndef _WIN32
921 ev_signal_init (&childev, childcb, SIGCHLD); 1952 ev_signal_init (&childev, childcb, SIGCHLD);
922 ev_set_priority (&childev, EV_MAXPRI); 1953 ev_set_priority (&childev, EV_MAXPRI);
923 ev_signal_start (EV_A_ &childev); 1954 ev_signal_start (EV_A_ &childev);
924 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1955 ev_unref (EV_A); /* child watcher should not keep loop alive */
933 1964
934void 1965void
935ev_default_destroy (void) 1966ev_default_destroy (void)
936{ 1967{
937#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
938 struct ev_loop *loop = ev_default_loop_ptr; 1969 EV_P = ev_default_loop_ptr;
939#endif 1970#endif
1971
1972 ev_default_loop_ptr = 0;
940 1973
941#ifndef _WIN32 1974#ifndef _WIN32
942 ev_ref (EV_A); /* child watcher */ 1975 ev_ref (EV_A); /* child watcher */
943 ev_signal_stop (EV_A_ &childev); 1976 ev_signal_stop (EV_A_ &childev);
944#endif 1977#endif
945 1978
946 ev_ref (EV_A); /* signal watcher */
947 ev_io_stop (EV_A_ &sigev);
948
949 close (sigpipe [0]); sigpipe [0] = 0;
950 close (sigpipe [1]); sigpipe [1] = 0;
951
952 loop_destroy (EV_A); 1979 loop_destroy (EV_A);
953} 1980}
954 1981
955void 1982void
956ev_default_fork (void) 1983ev_default_fork (void)
957{ 1984{
958#if EV_MULTIPLICITY 1985#if EV_MULTIPLICITY
959 struct ev_loop *loop = ev_default_loop_ptr; 1986 EV_P = ev_default_loop_ptr;
960#endif 1987#endif
961 1988
962 if (method) 1989 postfork = 1; /* must be in line with ev_loop_fork */
963 postfork = 1;
964} 1990}
965 1991
966/*****************************************************************************/ 1992/*****************************************************************************/
967 1993
968static int 1994void
969any_pending (EV_P) 1995ev_invoke (EV_P_ void *w, int revents)
1996{
1997 EV_CB_INVOKE ((W)w, revents);
1998}
1999
2000unsigned int
2001ev_pending_count (EV_P)
970{ 2002{
971 int pri; 2003 int pri;
2004 unsigned int count = 0;
972 2005
973 for (pri = NUMPRI; pri--; ) 2006 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri]) 2007 count += pendingcnt [pri];
975 return 1;
976 2008
977 return 0; 2009 return count;
978} 2010}
979 2011
980static void 2012void noinline
981call_pending (EV_P) 2013ev_invoke_pending (EV_P)
982{ 2014{
983 int pri; 2015 int pri;
984 2016
985 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
986 while (pendingcnt [pri]) 2018 while (pendingcnt [pri])
987 { 2019 {
988 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2020 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
989 2021
990 if (p->w) 2022 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
991 { 2023 /* ^ this is no longer true, as pending_w could be here */
2024
992 p->w->pending = 0; 2025 p->w->pending = 0;
993 EV_CB_INVOKE (p->w, p->events); 2026 EV_CB_INVOKE (p->w, p->events);
994 } 2027 EV_FREQUENT_CHECK;
995 } 2028 }
996} 2029}
997 2030
998static void 2031#if EV_IDLE_ENABLE
2032/* make idle watchers pending. this handles the "call-idle */
2033/* only when higher priorities are idle" logic */
2034inline_size void
2035idle_reify (EV_P)
2036{
2037 if (expect_false (idleall))
2038 {
2039 int pri;
2040
2041 for (pri = NUMPRI; pri--; )
2042 {
2043 if (pendingcnt [pri])
2044 break;
2045
2046 if (idlecnt [pri])
2047 {
2048 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2049 break;
2050 }
2051 }
2052 }
2053}
2054#endif
2055
2056/* make timers pending */
2057inline_size void
999timers_reify (EV_P) 2058timers_reify (EV_P)
1000{ 2059{
2060 EV_FREQUENT_CHECK;
2061
1001 while (timercnt && ((WT)timers [0])->at <= mn_now) 2062 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1002 { 2063 {
1003 struct ev_timer *w = timers [0]; 2064 do
1004
1005 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1006
1007 /* first reschedule or stop timer */
1008 if (w->repeat)
1009 { 2065 {
2066 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2067
2068 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2069
2070 /* first reschedule or stop timer */
2071 if (w->repeat)
2072 {
2073 ev_at (w) += w->repeat;
2074 if (ev_at (w) < mn_now)
2075 ev_at (w) = mn_now;
2076
1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2077 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011 2078
1012 ((WT)w)->at += w->repeat; 2079 ANHE_at_cache (timers [HEAP0]);
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
1016 downheap ((WT *)timers, timercnt, 0); 2080 downheap (timers, timercnt, HEAP0);
2081 }
2082 else
2083 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2084
2085 EV_FREQUENT_CHECK;
2086 feed_reverse (EV_A_ (W)w);
1017 } 2087 }
1018 else 2088 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 2089
1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2090 feed_reverse_done (EV_A_ EV_TIMEOUT);
1022 } 2091 }
1023} 2092}
1024 2093
1025#if EV_PERIODICS 2094#if EV_PERIODIC_ENABLE
1026static void 2095/* make periodics pending */
2096inline_size void
1027periodics_reify (EV_P) 2097periodics_reify (EV_P)
1028{ 2098{
2099 EV_FREQUENT_CHECK;
2100
1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2101 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1030 { 2102 {
1031 struct ev_periodic *w = periodics [0]; 2103 int feed_count = 0;
1032 2104
2105 do
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2108
1033 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2109 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1034 2110
1035 /* first reschedule or stop timer */ 2111 /* first reschedule or stop timer */
2112 if (w->reschedule_cb)
2113 {
2114 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2115
2116 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2117
2118 ANHE_at_cache (periodics [HEAP0]);
2119 downheap (periodics, periodiccnt, HEAP0);
2120 }
2121 else if (w->interval)
2122 {
2123 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2124 /* if next trigger time is not sufficiently in the future, put it there */
2125 /* this might happen because of floating point inexactness */
2126 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2127 {
2128 ev_at (w) += w->interval;
2129
2130 /* if interval is unreasonably low we might still have a time in the past */
2131 /* so correct this. this will make the periodic very inexact, but the user */
2132 /* has effectively asked to get triggered more often than possible */
2133 if (ev_at (w) < ev_rt_now)
2134 ev_at (w) = ev_rt_now;
2135 }
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else
2141 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2142
2143 EV_FREQUENT_CHECK;
2144 feed_reverse (EV_A_ (W)w);
2145 }
2146 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2147
2148 feed_reverse_done (EV_A_ EV_PERIODIC);
2149 }
2150}
2151
2152/* simply recalculate all periodics */
2153/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2154static void noinline
2155periodics_reschedule (EV_P)
2156{
2157 int i;
2158
2159 /* adjust periodics after time jump */
2160 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2161 {
2162 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2163
1036 if (w->reschedule_cb) 2164 if (w->reschedule_cb)
2165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2166 else if (w->interval)
2167 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2168
2169 ANHE_at_cache (periodics [i]);
2170 }
2171
2172 reheap (periodics, periodiccnt);
2173}
2174#endif
2175
2176/* adjust all timers by a given offset */
2177static void noinline
2178timers_reschedule (EV_P_ ev_tstamp adjust)
2179{
2180 int i;
2181
2182 for (i = 0; i < timercnt; ++i)
2183 {
2184 ANHE *he = timers + i + HEAP0;
2185 ANHE_w (*he)->at += adjust;
2186 ANHE_at_cache (*he);
2187 }
2188}
2189
2190/* fetch new monotonic and realtime times from the kernel */
2191/* also detect if there was a timejump, and act accordingly */
2192inline_speed void
2193time_update (EV_P_ ev_tstamp max_block)
2194{
2195#if EV_USE_MONOTONIC
2196 if (expect_true (have_monotonic))
2197 {
2198 int i;
2199 ev_tstamp odiff = rtmn_diff;
2200
2201 mn_now = get_clock ();
2202
2203 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2204 /* interpolate in the meantime */
2205 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1037 { 2206 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2207 ev_rt_now = rtmn_diff + mn_now;
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2208 return;
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 } 2209 }
1042 else if (w->interval)
1043 {
1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1046 downheap ((WT *)periodics, periodiccnt, 0);
1047 }
1048 else
1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1050 2210
1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1052 }
1053}
1054
1055static void
1056periodics_reschedule (EV_P)
1057{
1058 int i;
1059
1060 /* adjust periodics after time jump */
1061 for (i = 0; i < periodiccnt; ++i)
1062 {
1063 struct ev_periodic *w = periodics [i];
1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1067 else if (w->interval)
1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
1074}
1075#endif
1076
1077inline int
1078time_update_monotonic (EV_P)
1079{
1080 mn_now = get_clock ();
1081
1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1083 {
1084 ev_rt_now = rtmn_diff + mn_now;
1085 return 0;
1086 }
1087 else
1088 {
1089 now_floor = mn_now; 2211 now_floor = mn_now;
1090 ev_rt_now = ev_time (); 2212 ev_rt_now = ev_time ();
1091 return 1;
1092 }
1093}
1094 2213
1095static void 2214 /* loop a few times, before making important decisions.
1096time_update (EV_P) 2215 * on the choice of "4": one iteration isn't enough,
1097{ 2216 * in case we get preempted during the calls to
1098 int i; 2217 * ev_time and get_clock. a second call is almost guaranteed
1099 2218 * to succeed in that case, though. and looping a few more times
1100#if EV_USE_MONOTONIC 2219 * doesn't hurt either as we only do this on time-jumps or
1101 if (expect_true (have_monotonic)) 2220 * in the unlikely event of having been preempted here.
1102 { 2221 */
1103 if (time_update_monotonic (EV_A)) 2222 for (i = 4; --i; )
1104 { 2223 {
1105 ev_tstamp odiff = rtmn_diff;
1106
1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1108 {
1109 rtmn_diff = ev_rt_now - mn_now; 2224 rtmn_diff = ev_rt_now - mn_now;
1110 2225
1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2226 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1112 return; /* all is well */ 2227 return; /* all is well */
1113 2228
1114 ev_rt_now = ev_time (); 2229 ev_rt_now = ev_time ();
1115 mn_now = get_clock (); 2230 mn_now = get_clock ();
1116 now_floor = mn_now; 2231 now_floor = mn_now;
1117 } 2232 }
1118 2233
2234 /* no timer adjustment, as the monotonic clock doesn't jump */
2235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1119# if EV_PERIODICS 2236# if EV_PERIODIC_ENABLE
2237 periodics_reschedule (EV_A);
2238# endif
2239 }
2240 else
2241#endif
2242 {
2243 ev_rt_now = ev_time ();
2244
2245 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2246 {
2247 /* adjust timers. this is easy, as the offset is the same for all of them */
2248 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2249#if EV_PERIODIC_ENABLE
1120 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1121# endif 2251#endif
1122 /* no timer adjustment, as the monotonic clock doesn't jump */
1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1124 } 2252 }
1125 }
1126 else
1127#endif
1128 {
1129 ev_rt_now = ev_time ();
1130
1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1132 {
1133#if EV_PERIODICS
1134 periodics_reschedule (EV_A);
1135#endif
1136
1137 /* adjust timers. this is easy, as the offset is the same for all */
1138 for (i = 0; i < timercnt; ++i)
1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
1140 }
1141 2253
1142 mn_now = ev_rt_now; 2254 mn_now = ev_rt_now;
1143 } 2255 }
1144} 2256}
1145 2257
1146void 2258void
1147ev_ref (EV_P)
1148{
1149 ++activecnt;
1150}
1151
1152void
1153ev_unref (EV_P)
1154{
1155 --activecnt;
1156}
1157
1158static int loop_done;
1159
1160void
1161ev_loop (EV_P_ int flags) 2259ev_loop (EV_P_ int flags)
1162{ 2260{
1163 double block; 2261#if EV_MINIMAL < 2
1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2262 ++loop_depth;
2263#endif
1165 2264
1166 while (activecnt) 2265 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2266
2267 loop_done = EVUNLOOP_CANCEL;
2268
2269 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2270
2271 do
1167 { 2272 {
2273#if EV_VERIFY >= 2
2274 ev_loop_verify (EV_A);
2275#endif
2276
2277#ifndef _WIN32
2278 if (expect_false (curpid)) /* penalise the forking check even more */
2279 if (expect_false (getpid () != curpid))
2280 {
2281 curpid = getpid ();
2282 postfork = 1;
2283 }
2284#endif
2285
2286#if EV_FORK_ENABLE
2287 /* we might have forked, so queue fork handlers */
2288 if (expect_false (postfork))
2289 if (forkcnt)
2290 {
2291 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2292 EV_INVOKE_PENDING;
2293 }
2294#endif
2295
1168 /* queue check watchers (and execute them) */ 2296 /* queue prepare watchers (and execute them) */
1169 if (expect_false (preparecnt)) 2297 if (expect_false (preparecnt))
1170 { 2298 {
1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2299 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1172 call_pending (EV_A); 2300 EV_INVOKE_PENDING;
1173 } 2301 }
2302
2303 if (expect_false (loop_done))
2304 break;
1174 2305
1175 /* we might have forked, so reify kernel state if necessary */ 2306 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1177 loop_fork (EV_A); 2308 loop_fork (EV_A);
1178 2309
1179 /* update fd-related kernel structures */ 2310 /* update fd-related kernel structures */
1180 fd_reify (EV_A); 2311 fd_reify (EV_A);
1181 2312
1182 /* calculate blocking time */ 2313 /* calculate blocking time */
2314 {
2315 ev_tstamp waittime = 0.;
2316 ev_tstamp sleeptime = 0.;
1183 2317
1184 /* we only need this for !monotonic clock or timers, but as we basically 2318 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1185 always have timers, we just calculate it always */
1186#if EV_USE_MONOTONIC
1187 if (expect_true (have_monotonic))
1188 time_update_monotonic (EV_A);
1189 else
1190#endif
1191 { 2319 {
1192 ev_rt_now = ev_time (); 2320 /* remember old timestamp for io_blocktime calculation */
1193 mn_now = ev_rt_now; 2321 ev_tstamp prev_mn_now = mn_now;
1194 }
1195 2322
1196 if (flags & EVLOOP_NONBLOCK || idlecnt) 2323 /* update time to cancel out callback processing overhead */
1197 block = 0.; 2324 time_update (EV_A_ 1e100);
1198 else 2325
1199 {
1200 block = MAX_BLOCKTIME; 2326 waittime = MAX_BLOCKTIME;
1201 2327
1202 if (timercnt) 2328 if (timercnt)
1203 { 2329 {
1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1205 if (block > to) block = to; 2331 if (waittime > to) waittime = to;
1206 } 2332 }
1207 2333
1208#if EV_PERIODICS 2334#if EV_PERIODIC_ENABLE
1209 if (periodiccnt) 2335 if (periodiccnt)
1210 { 2336 {
1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1212 if (block > to) block = to; 2338 if (waittime > to) waittime = to;
1213 } 2339 }
1214#endif 2340#endif
1215 2341
1216 if (block < 0.) block = 0.; 2342 /* don't let timeouts decrease the waittime below timeout_blocktime */
2343 if (expect_false (waittime < timeout_blocktime))
2344 waittime = timeout_blocktime;
2345
2346 /* extra check because io_blocktime is commonly 0 */
2347 if (expect_false (io_blocktime))
2348 {
2349 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2350
2351 if (sleeptime > waittime - backend_fudge)
2352 sleeptime = waittime - backend_fudge;
2353
2354 if (expect_true (sleeptime > 0.))
2355 {
2356 ev_sleep (sleeptime);
2357 waittime -= sleeptime;
2358 }
2359 }
1217 } 2360 }
1218 2361
1219 method_poll (EV_A_ block); 2362#if EV_MINIMAL < 2
2363 ++loop_count;
2364#endif
2365 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2366 backend_poll (EV_A_ waittime);
2367 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1220 2368
1221 /* update ev_rt_now, do magic */ 2369 /* update ev_rt_now, do magic */
1222 time_update (EV_A); 2370 time_update (EV_A_ waittime + sleeptime);
2371 }
1223 2372
1224 /* queue pending timers and reschedule them */ 2373 /* queue pending timers and reschedule them */
1225 timers_reify (EV_A); /* relative timers called last */ 2374 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS 2375#if EV_PERIODIC_ENABLE
1227 periodics_reify (EV_A); /* absolute timers called first */ 2376 periodics_reify (EV_A); /* absolute timers called first */
1228#endif 2377#endif
1229 2378
2379#if EV_IDLE_ENABLE
1230 /* queue idle watchers unless io or timers are pending */ 2380 /* queue idle watchers unless other events are pending */
1231 if (idlecnt && !any_pending (EV_A)) 2381 idle_reify (EV_A);
1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2382#endif
1233 2383
1234 /* queue check watchers, to be executed first */ 2384 /* queue check watchers, to be executed first */
1235 if (checkcnt) 2385 if (expect_false (checkcnt))
1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2386 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1237 2387
1238 call_pending (EV_A); 2388 EV_INVOKE_PENDING;
1239
1240 if (loop_done)
1241 break;
1242 } 2389 }
2390 while (expect_true (
2391 activecnt
2392 && !loop_done
2393 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2394 ));
1243 2395
1244 if (loop_done != 2) 2396 if (loop_done == EVUNLOOP_ONE)
1245 loop_done = 0; 2397 loop_done = EVUNLOOP_CANCEL;
2398
2399#if EV_MINIMAL < 2
2400 --loop_depth;
2401#endif
1246} 2402}
1247 2403
1248void 2404void
1249ev_unloop (EV_P_ int how) 2405ev_unloop (EV_P_ int how)
1250{ 2406{
1251 loop_done = how; 2407 loop_done = how;
1252} 2408}
1253 2409
2410void
2411ev_ref (EV_P)
2412{
2413 ++activecnt;
2414}
2415
2416void
2417ev_unref (EV_P)
2418{
2419 --activecnt;
2420}
2421
2422void
2423ev_now_update (EV_P)
2424{
2425 time_update (EV_A_ 1e100);
2426}
2427
2428void
2429ev_suspend (EV_P)
2430{
2431 ev_now_update (EV_A);
2432}
2433
2434void
2435ev_resume (EV_P)
2436{
2437 ev_tstamp mn_prev = mn_now;
2438
2439 ev_now_update (EV_A);
2440 timers_reschedule (EV_A_ mn_now - mn_prev);
2441#if EV_PERIODIC_ENABLE
2442 /* TODO: really do this? */
2443 periodics_reschedule (EV_A);
2444#endif
2445}
2446
1254/*****************************************************************************/ 2447/*****************************************************************************/
2448/* singly-linked list management, used when the expected list length is short */
1255 2449
1256inline void 2450inline_size void
1257wlist_add (WL *head, WL elem) 2451wlist_add (WL *head, WL elem)
1258{ 2452{
1259 elem->next = *head; 2453 elem->next = *head;
1260 *head = elem; 2454 *head = elem;
1261} 2455}
1262 2456
1263inline void 2457inline_size void
1264wlist_del (WL *head, WL elem) 2458wlist_del (WL *head, WL elem)
1265{ 2459{
1266 while (*head) 2460 while (*head)
1267 { 2461 {
1268 if (*head == elem) 2462 if (expect_true (*head == elem))
1269 { 2463 {
1270 *head = elem->next; 2464 *head = elem->next;
1271 return; 2465 break;
1272 } 2466 }
1273 2467
1274 head = &(*head)->next; 2468 head = &(*head)->next;
1275 } 2469 }
1276} 2470}
1277 2471
2472/* internal, faster, version of ev_clear_pending */
1278inline void 2473inline_speed void
1279ev_clear_pending (EV_P_ W w) 2474clear_pending (EV_P_ W w)
1280{ 2475{
1281 if (w->pending) 2476 if (w->pending)
1282 { 2477 {
1283 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2478 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1284 w->pending = 0; 2479 w->pending = 0;
1285 } 2480 }
1286} 2481}
1287 2482
2483int
2484ev_clear_pending (EV_P_ void *w)
2485{
2486 W w_ = (W)w;
2487 int pending = w_->pending;
2488
2489 if (expect_true (pending))
2490 {
2491 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2492 p->w = (W)&pending_w;
2493 w_->pending = 0;
2494 return p->events;
2495 }
2496 else
2497 return 0;
2498}
2499
1288inline void 2500inline_size void
2501pri_adjust (EV_P_ W w)
2502{
2503 int pri = ev_priority (w);
2504 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2505 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2506 ev_set_priority (w, pri);
2507}
2508
2509inline_speed void
1289ev_start (EV_P_ W w, int active) 2510ev_start (EV_P_ W w, int active)
1290{ 2511{
1291 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2512 pri_adjust (EV_A_ w);
1292 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1293
1294 w->active = active; 2513 w->active = active;
1295 ev_ref (EV_A); 2514 ev_ref (EV_A);
1296} 2515}
1297 2516
1298inline void 2517inline_size void
1299ev_stop (EV_P_ W w) 2518ev_stop (EV_P_ W w)
1300{ 2519{
1301 ev_unref (EV_A); 2520 ev_unref (EV_A);
1302 w->active = 0; 2521 w->active = 0;
1303} 2522}
1304 2523
1305/*****************************************************************************/ 2524/*****************************************************************************/
1306 2525
1307void 2526void noinline
1308ev_io_start (EV_P_ struct ev_io *w) 2527ev_io_start (EV_P_ ev_io *w)
1309{ 2528{
1310 int fd = w->fd; 2529 int fd = w->fd;
1311 2530
1312 if (ev_is_active (w)) 2531 if (expect_false (ev_is_active (w)))
1313 return; 2532 return;
1314 2533
1315 assert (("ev_io_start called with negative fd", fd >= 0)); 2534 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2535 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2536
2537 EV_FREQUENT_CHECK;
1316 2538
1317 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2540 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1319 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2541 wlist_add (&anfds[fd].head, (WL)w);
1320 2542
1321 fd_change (EV_A_ fd); 2543 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1322} 2544 w->events &= ~EV__IOFDSET;
1323 2545
1324void 2546 EV_FREQUENT_CHECK;
2547}
2548
2549void noinline
1325ev_io_stop (EV_P_ struct ev_io *w) 2550ev_io_stop (EV_P_ ev_io *w)
1326{ 2551{
1327 ev_clear_pending (EV_A_ (W)w); 2552 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 2553 if (expect_false (!ev_is_active (w)))
1329 return; 2554 return;
1330 2555
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2556 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332 2557
2558 EV_FREQUENT_CHECK;
2559
1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2560 wlist_del (&anfds[w->fd].head, (WL)w);
1334 ev_stop (EV_A_ (W)w); 2561 ev_stop (EV_A_ (W)w);
1335 2562
1336 fd_change (EV_A_ w->fd); 2563 fd_change (EV_A_ w->fd, 1);
1337}
1338 2564
1339void 2565 EV_FREQUENT_CHECK;
2566}
2567
2568void noinline
1340ev_timer_start (EV_P_ struct ev_timer *w) 2569ev_timer_start (EV_P_ ev_timer *w)
1341{ 2570{
1342 if (ev_is_active (w)) 2571 if (expect_false (ev_is_active (w)))
1343 return; 2572 return;
1344 2573
1345 ((WT)w)->at += mn_now; 2574 ev_at (w) += mn_now;
1346 2575
1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2576 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1348 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++timercnt;
1349 ev_start (EV_A_ (W)w, ++timercnt); 2581 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2582 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1351 timers [timercnt - 1] = w; 2583 ANHE_w (timers [ev_active (w)]) = (WT)w;
1352 upheap ((WT *)timers, timercnt - 1); 2584 ANHE_at_cache (timers [ev_active (w)]);
2585 upheap (timers, ev_active (w));
1353 2586
2587 EV_FREQUENT_CHECK;
2588
1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2589 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1355} 2590}
1356 2591
1357void 2592void noinline
1358ev_timer_stop (EV_P_ struct ev_timer *w) 2593ev_timer_stop (EV_P_ ev_timer *w)
1359{ 2594{
1360 ev_clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1361 if (!ev_is_active (w)) 2596 if (expect_false (!ev_is_active (w)))
1362 return; 2597 return;
1363 2598
2599 EV_FREQUENT_CHECK;
2600
2601 {
2602 int active = ev_active (w);
2603
1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2604 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1365 2605
1366 if (((W)w)->active < timercnt--) 2606 --timercnt;
2607
2608 if (expect_true (active < timercnt + HEAP0))
1367 { 2609 {
1368 timers [((W)w)->active - 1] = timers [timercnt]; 2610 timers [active] = timers [timercnt + HEAP0];
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2611 adjustheap (timers, timercnt, active);
1370 } 2612 }
2613 }
1371 2614
1372 ((WT)w)->at -= mn_now; 2615 ev_at (w) -= mn_now;
1373 2616
1374 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1375}
1376 2618
1377void 2619 EV_FREQUENT_CHECK;
2620}
2621
2622void noinline
1378ev_timer_again (EV_P_ struct ev_timer *w) 2623ev_timer_again (EV_P_ ev_timer *w)
1379{ 2624{
2625 EV_FREQUENT_CHECK;
2626
1380 if (ev_is_active (w)) 2627 if (ev_is_active (w))
1381 { 2628 {
1382 if (w->repeat) 2629 if (w->repeat)
1383 { 2630 {
1384 ((WT)w)->at = mn_now + w->repeat; 2631 ev_at (w) = mn_now + w->repeat;
2632 ANHE_at_cache (timers [ev_active (w)]);
1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2633 adjustheap (timers, timercnt, ev_active (w));
1386 } 2634 }
1387 else 2635 else
1388 ev_timer_stop (EV_A_ w); 2636 ev_timer_stop (EV_A_ w);
1389 } 2637 }
1390 else if (w->repeat) 2638 else if (w->repeat)
1391 { 2639 {
1392 w->at = w->repeat; 2640 ev_at (w) = w->repeat;
1393 ev_timer_start (EV_A_ w); 2641 ev_timer_start (EV_A_ w);
1394 } 2642 }
1395}
1396 2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647ev_tstamp
2648ev_timer_remaining (EV_P_ ev_timer *w)
2649{
2650 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2651}
2652
1397#if EV_PERIODICS 2653#if EV_PERIODIC_ENABLE
1398void 2654void noinline
1399ev_periodic_start (EV_P_ struct ev_periodic *w) 2655ev_periodic_start (EV_P_ ev_periodic *w)
1400{ 2656{
1401 if (ev_is_active (w)) 2657 if (expect_false (ev_is_active (w)))
1402 return; 2658 return;
1403 2659
1404 if (w->reschedule_cb) 2660 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2661 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval) 2662 else if (w->interval)
1407 { 2663 {
1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2664 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1409 /* this formula differs from the one in periodic_reify because we do not always round up */ 2665 /* this formula differs from the one in periodic_reify because we do not always round up */
1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2666 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1411 } 2667 }
2668 else
2669 ev_at (w) = w->offset;
1412 2670
2671 EV_FREQUENT_CHECK;
2672
2673 ++periodiccnt;
1413 ev_start (EV_A_ (W)w, ++periodiccnt); 2674 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2675 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1415 periodics [periodiccnt - 1] = w; 2676 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1416 upheap ((WT *)periodics, periodiccnt - 1); 2677 ANHE_at_cache (periodics [ev_active (w)]);
2678 upheap (periodics, ev_active (w));
1417 2679
2680 EV_FREQUENT_CHECK;
2681
1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2682 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1419} 2683}
1420 2684
1421void 2685void noinline
1422ev_periodic_stop (EV_P_ struct ev_periodic *w) 2686ev_periodic_stop (EV_P_ ev_periodic *w)
1423{ 2687{
1424 ev_clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
1425 if (!ev_is_active (w)) 2689 if (expect_false (!ev_is_active (w)))
1426 return; 2690 return;
1427 2691
2692 EV_FREQUENT_CHECK;
2693
2694 {
2695 int active = ev_active (w);
2696
1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2697 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1429 2698
1430 if (((W)w)->active < periodiccnt--) 2699 --periodiccnt;
2700
2701 if (expect_true (active < periodiccnt + HEAP0))
1431 { 2702 {
1432 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2703 periodics [active] = periodics [periodiccnt + HEAP0];
1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2704 adjustheap (periodics, periodiccnt, active);
1434 } 2705 }
2706 }
1435 2707
1436 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
1437}
1438 2709
1439void 2710 EV_FREQUENT_CHECK;
2711}
2712
2713void noinline
1440ev_periodic_again (EV_P_ struct ev_periodic *w) 2714ev_periodic_again (EV_P_ ev_periodic *w)
1441{ 2715{
1442 /* TODO: use adjustheap and recalculation */ 2716 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w); 2717 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w); 2718 ev_periodic_start (EV_A_ w);
1445} 2719}
1446#endif 2720#endif
1447 2721
1448void
1449ev_idle_start (EV_P_ struct ev_idle *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++idlecnt);
1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1456 idles [idlecnt - 1] = w;
1457}
1458
1459void
1460ev_idle_stop (EV_P_ struct ev_idle *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (!ev_is_active (w))
1464 return;
1465
1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469
1470void
1471ev_prepare_start (EV_P_ struct ev_prepare *w)
1472{
1473 if (ev_is_active (w))
1474 return;
1475
1476 ev_start (EV_A_ (W)w, ++preparecnt);
1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1478 prepares [preparecnt - 1] = w;
1479}
1480
1481void
1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1483{
1484 ev_clear_pending (EV_A_ (W)w);
1485 if (!ev_is_active (w))
1486 return;
1487
1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1489 ev_stop (EV_A_ (W)w);
1490}
1491
1492void
1493ev_check_start (EV_P_ struct ev_check *w)
1494{
1495 if (ev_is_active (w))
1496 return;
1497
1498 ev_start (EV_A_ (W)w, ++checkcnt);
1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1500 checks [checkcnt - 1] = w;
1501}
1502
1503void
1504ev_check_stop (EV_P_ struct ev_check *w)
1505{
1506 ev_clear_pending (EV_A_ (W)w);
1507 if (!ev_is_active (w))
1508 return;
1509
1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1511 ev_stop (EV_A_ (W)w);
1512}
1513
1514#ifndef SA_RESTART 2722#ifndef SA_RESTART
1515# define SA_RESTART 0 2723# define SA_RESTART 0
1516#endif 2724#endif
1517 2725
1518void 2726void noinline
1519ev_signal_start (EV_P_ struct ev_signal *w) 2727ev_signal_start (EV_P_ ev_signal *w)
1520{ 2728{
2729 if (expect_false (ev_is_active (w)))
2730 return;
2731
2732 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2733
1521#if EV_MULTIPLICITY 2734#if EV_MULTIPLICITY
1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2735 assert (("libev: a signal must not be attached to two different loops",
2736 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2737
2738 signals [w->signum - 1].loop = EV_A;
2739#endif
2740
2741 EV_FREQUENT_CHECK;
2742
2743#if EV_USE_SIGNALFD
2744 if (sigfd == -2)
2745 {
2746 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2747 if (sigfd < 0 && errno == EINVAL)
2748 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2749
2750 if (sigfd >= 0)
2751 {
2752 fd_intern (sigfd); /* doing it twice will not hurt */
2753
2754 sigemptyset (&sigfd_set);
2755
2756 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2757 ev_set_priority (&sigfd_w, EV_MAXPRI);
2758 ev_io_start (EV_A_ &sigfd_w);
2759 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2760 }
2761 }
2762
2763 if (sigfd >= 0)
2764 {
2765 /* TODO: check .head */
2766 sigaddset (&sigfd_set, w->signum);
2767 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2768
2769 signalfd (sigfd, &sigfd_set, 0);
2770 }
2771#endif
2772
2773 ev_start (EV_A_ (W)w, 1);
2774 wlist_add (&signals [w->signum - 1].head, (WL)w);
2775
2776 if (!((WL)w)->next)
2777# if EV_USE_SIGNALFD
2778 if (sigfd < 0) /*TODO*/
1523#endif 2779# endif
1524 if (ev_is_active (w)) 2780 {
2781# ifdef _WIN32
2782 evpipe_init (EV_A);
2783
2784 signal (w->signum, ev_sighandler);
2785# else
2786 struct sigaction sa;
2787
2788 evpipe_init (EV_A);
2789
2790 sa.sa_handler = ev_sighandler;
2791 sigfillset (&sa.sa_mask);
2792 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2793 sigaction (w->signum, &sa, 0);
2794
2795 sigemptyset (&sa.sa_mask);
2796 sigaddset (&sa.sa_mask, w->signum);
2797 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2798#endif
2799 }
2800
2801 EV_FREQUENT_CHECK;
2802}
2803
2804void noinline
2805ev_signal_stop (EV_P_ ev_signal *w)
2806{
2807 clear_pending (EV_A_ (W)w);
2808 if (expect_false (!ev_is_active (w)))
1525 return; 2809 return;
1526 2810
1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2811 EV_FREQUENT_CHECK;
2812
2813 wlist_del (&signals [w->signum - 1].head, (WL)w);
2814 ev_stop (EV_A_ (W)w);
2815
2816 if (!signals [w->signum - 1].head)
2817 {
2818#if EV_MULTIPLICITY
2819 signals [w->signum - 1].loop = 0; /* unattach from signal */
2820#endif
2821#if EV_USE_SIGNALFD
2822 if (sigfd >= 0)
2823 {
2824 sigset_t ss;
2825
2826 sigemptyset (&ss);
2827 sigaddset (&ss, w->signum);
2828 sigdelset (&sigfd_set, w->signum);
2829
2830 signalfd (sigfd, &sigfd_set, 0);
2831 sigprocmask (SIG_UNBLOCK, &ss, 0);
2832 }
2833 else
2834#endif
2835 signal (w->signum, SIG_DFL);
2836 }
2837
2838 EV_FREQUENT_CHECK;
2839}
2840
2841void
2842ev_child_start (EV_P_ ev_child *w)
2843{
2844#if EV_MULTIPLICITY
2845 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2846#endif
2847 if (expect_false (ev_is_active (w)))
2848 return;
2849
2850 EV_FREQUENT_CHECK;
1528 2851
1529 ev_start (EV_A_ (W)w, 1); 2852 ev_start (EV_A_ (W)w, 1);
1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2853 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1532 2854
1533 if (!((WL)w)->next) 2855 EV_FREQUENT_CHECK;
2856}
2857
2858void
2859ev_child_stop (EV_P_ ev_child *w)
2860{
2861 clear_pending (EV_A_ (W)w);
2862 if (expect_false (!ev_is_active (w)))
2863 return;
2864
2865 EV_FREQUENT_CHECK;
2866
2867 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2868 ev_stop (EV_A_ (W)w);
2869
2870 EV_FREQUENT_CHECK;
2871}
2872
2873#if EV_STAT_ENABLE
2874
2875# ifdef _WIN32
2876# undef lstat
2877# define lstat(a,b) _stati64 (a,b)
2878# endif
2879
2880#define DEF_STAT_INTERVAL 5.0074891
2881#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2882#define MIN_STAT_INTERVAL 0.1074891
2883
2884static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2885
2886#if EV_USE_INOTIFY
2887
2888/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2889# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2890
2891static void noinline
2892infy_add (EV_P_ ev_stat *w)
2893{
2894 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2895
2896 if (w->wd >= 0)
2897 {
2898 struct statfs sfs;
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem is known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (!fs_2625)
2905 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2906 else if (!statfs (w->path, &sfs)
2907 && (sfs.f_type == 0x1373 /* devfs */
2908 || sfs.f_type == 0xEF53 /* ext2/3 */
2909 || sfs.f_type == 0x3153464a /* jfs */
2910 || sfs.f_type == 0x52654973 /* reiser3 */
2911 || sfs.f_type == 0x01021994 /* tempfs */
2912 || sfs.f_type == 0x58465342 /* xfs */))
2913 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2914 else
2915 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1534 { 2916 }
2917 else
2918 {
2919 /* can't use inotify, continue to stat */
2920 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2921
2922 /* if path is not there, monitor some parent directory for speedup hints */
2923 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2924 /* but an efficiency issue only */
2925 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2926 {
2927 char path [4096];
2928 strcpy (path, w->path);
2929
2930 do
2931 {
2932 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2933 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2934
2935 char *pend = strrchr (path, '/');
2936
2937 if (!pend || pend == path)
2938 break;
2939
2940 *pend = 0;
2941 w->wd = inotify_add_watch (fs_fd, path, mask);
2942 }
2943 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2944 }
2945 }
2946
2947 if (w->wd >= 0)
2948 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2949
2950 /* now re-arm timer, if required */
2951 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2952 ev_timer_again (EV_A_ &w->timer);
2953 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2954}
2955
2956static void noinline
2957infy_del (EV_P_ ev_stat *w)
2958{
2959 int slot;
2960 int wd = w->wd;
2961
2962 if (wd < 0)
2963 return;
2964
2965 w->wd = -2;
2966 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2967 wlist_del (&fs_hash [slot].head, (WL)w);
2968
2969 /* remove this watcher, if others are watching it, they will rearm */
2970 inotify_rm_watch (fs_fd, wd);
2971}
2972
2973static void noinline
2974infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2975{
2976 if (slot < 0)
2977 /* overflow, need to check for all hash slots */
2978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2979 infy_wd (EV_A_ slot, wd, ev);
2980 else
2981 {
2982 WL w_;
2983
2984 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2985 {
2986 ev_stat *w = (ev_stat *)w_;
2987 w_ = w_->next; /* lets us remove this watcher and all before it */
2988
2989 if (w->wd == wd || wd == -1)
2990 {
2991 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2992 {
2993 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2994 w->wd = -1;
2995 infy_add (EV_A_ w); /* re-add, no matter what */
2996 }
2997
2998 stat_timer_cb (EV_A_ &w->timer, 0);
2999 }
3000 }
3001 }
3002}
3003
3004static void
3005infy_cb (EV_P_ ev_io *w, int revents)
3006{
3007 char buf [EV_INOTIFY_BUFSIZE];
3008 int ofs;
3009 int len = read (fs_fd, buf, sizeof (buf));
3010
3011 for (ofs = 0; ofs < len; )
3012 {
3013 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3014 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3015 ofs += sizeof (struct inotify_event) + ev->len;
3016 }
3017}
3018
3019inline_size unsigned int
3020ev_linux_version (void)
3021{
3022 struct utsname buf;
3023 unsigned int v;
3024 int i;
3025 char *p = buf.release;
3026
3027 if (uname (&buf))
3028 return 0;
3029
3030 for (i = 3+1; --i; )
3031 {
3032 unsigned int c = 0;
3033
3034 for (;;)
3035 {
3036 if (*p >= '0' && *p <= '9')
3037 c = c * 10 + *p++ - '0';
3038 else
3039 {
3040 p += *p == '.';
3041 break;
3042 }
3043 }
3044
3045 v = (v << 8) | c;
3046 }
3047
3048 return v;
3049}
3050
3051inline_size void
3052ev_check_2625 (EV_P)
3053{
3054 /* kernels < 2.6.25 are borked
3055 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3056 */
3057 if (ev_linux_version () < 0x020619)
3058 return;
3059
3060 fs_2625 = 1;
3061}
3062
3063inline_size int
3064infy_newfd (void)
3065{
3066#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3067 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3068 if (fd >= 0)
3069 return fd;
3070#endif
3071 return inotify_init ();
3072}
3073
3074inline_size void
3075infy_init (EV_P)
3076{
3077 if (fs_fd != -2)
3078 return;
3079
3080 fs_fd = -1;
3081
3082 ev_check_2625 (EV_A);
3083
3084 fs_fd = infy_newfd ();
3085
3086 if (fs_fd >= 0)
3087 {
3088 fd_intern (fs_fd);
3089 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3090 ev_set_priority (&fs_w, EV_MAXPRI);
3091 ev_io_start (EV_A_ &fs_w);
3092 ev_unref (EV_A);
3093 }
3094}
3095
3096inline_size void
3097infy_fork (EV_P)
3098{
3099 int slot;
3100
3101 if (fs_fd < 0)
3102 return;
3103
3104 ev_ref (EV_A);
3105 ev_io_stop (EV_A_ &fs_w);
3106 close (fs_fd);
3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_set (&fs_w, fs_fd, EV_READ);
3113 ev_io_start (EV_A_ &fs_w);
3114 ev_unref (EV_A);
3115 }
3116
3117 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3118 {
3119 WL w_ = fs_hash [slot].head;
3120 fs_hash [slot].head = 0;
3121
3122 while (w_)
3123 {
3124 ev_stat *w = (ev_stat *)w_;
3125 w_ = w_->next; /* lets us add this watcher */
3126
3127 w->wd = -1;
3128
3129 if (fs_fd >= 0)
3130 infy_add (EV_A_ w); /* re-add, no matter what */
3131 else
3132 {
3133 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3134 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3135 ev_timer_again (EV_A_ &w->timer);
3136 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3137 }
3138 }
3139 }
3140}
3141
3142#endif
3143
1535#if _WIN32 3144#ifdef _WIN32
1536 signal (w->signum, sighandler); 3145# define EV_LSTAT(p,b) _stati64 (p, b)
1537#else 3146#else
1538 struct sigaction sa; 3147# define EV_LSTAT(p,b) lstat (p, b)
1539 sa.sa_handler = sighandler;
1540 sigfillset (&sa.sa_mask);
1541 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1542 sigaction (w->signum, &sa, 0);
1543#endif 3148#endif
1544 }
1545}
1546 3149
1547void 3150void
1548ev_signal_stop (EV_P_ struct ev_signal *w) 3151ev_stat_stat (EV_P_ ev_stat *w)
1549{ 3152{
1550 ev_clear_pending (EV_A_ (W)w); 3153 if (lstat (w->path, &w->attr) < 0)
1551 if (!ev_is_active (w)) 3154 w->attr.st_nlink = 0;
3155 else if (!w->attr.st_nlink)
3156 w->attr.st_nlink = 1;
3157}
3158
3159static void noinline
3160stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3161{
3162 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3163
3164 ev_statdata prev = w->attr;
3165 ev_stat_stat (EV_A_ w);
3166
3167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3168 if (
3169 prev.st_dev != w->attr.st_dev
3170 || prev.st_ino != w->attr.st_ino
3171 || prev.st_mode != w->attr.st_mode
3172 || prev.st_nlink != w->attr.st_nlink
3173 || prev.st_uid != w->attr.st_uid
3174 || prev.st_gid != w->attr.st_gid
3175 || prev.st_rdev != w->attr.st_rdev
3176 || prev.st_size != w->attr.st_size
3177 || prev.st_atime != w->attr.st_atime
3178 || prev.st_mtime != w->attr.st_mtime
3179 || prev.st_ctime != w->attr.st_ctime
3180 ) {
3181 /* we only update w->prev on actual differences */
3182 /* in case we test more often than invoke the callback, */
3183 /* to ensure that prev is always different to attr */
3184 w->prev = prev;
3185
3186 #if EV_USE_INOTIFY
3187 if (fs_fd >= 0)
3188 {
3189 infy_del (EV_A_ w);
3190 infy_add (EV_A_ w);
3191 ev_stat_stat (EV_A_ w); /* avoid race... */
3192 }
3193 #endif
3194
3195 ev_feed_event (EV_A_ w, EV_STAT);
3196 }
3197}
3198
3199void
3200ev_stat_start (EV_P_ ev_stat *w)
3201{
3202 if (expect_false (ev_is_active (w)))
1552 return; 3203 return;
1553 3204
1554 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3205 ev_stat_stat (EV_A_ w);
3206
3207 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3208 w->interval = MIN_STAT_INTERVAL;
3209
3210 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3211 ev_set_priority (&w->timer, ev_priority (w));
3212
3213#if EV_USE_INOTIFY
3214 infy_init (EV_A);
3215
3216 if (fs_fd >= 0)
3217 infy_add (EV_A_ w);
3218 else
3219#endif
3220 {
3221 ev_timer_again (EV_A_ &w->timer);
3222 ev_unref (EV_A);
3223 }
3224
3225 ev_start (EV_A_ (W)w, 1);
3226
3227 EV_FREQUENT_CHECK;
3228}
3229
3230void
3231ev_stat_stop (EV_P_ ev_stat *w)
3232{
3233 clear_pending (EV_A_ (W)w);
3234 if (expect_false (!ev_is_active (w)))
3235 return;
3236
3237 EV_FREQUENT_CHECK;
3238
3239#if EV_USE_INOTIFY
3240 infy_del (EV_A_ w);
3241#endif
3242
3243 if (ev_is_active (&w->timer))
3244 {
3245 ev_ref (EV_A);
3246 ev_timer_stop (EV_A_ &w->timer);
3247 }
3248
1555 ev_stop (EV_A_ (W)w); 3249 ev_stop (EV_A_ (W)w);
1556 3250
1557 if (!signals [w->signum - 1].head) 3251 EV_FREQUENT_CHECK;
1558 signal (w->signum, SIG_DFL);
1559} 3252}
3253#endif
1560 3254
3255#if EV_IDLE_ENABLE
1561void 3256void
1562ev_child_start (EV_P_ struct ev_child *w) 3257ev_idle_start (EV_P_ ev_idle *w)
1563{ 3258{
1564#if EV_MULTIPLICITY
1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1566#endif
1567 if (ev_is_active (w)) 3259 if (expect_false (ev_is_active (w)))
1568 return; 3260 return;
1569 3261
3262 pri_adjust (EV_A_ (W)w);
3263
3264 EV_FREQUENT_CHECK;
3265
3266 {
3267 int active = ++idlecnt [ABSPRI (w)];
3268
3269 ++idleall;
3270 ev_start (EV_A_ (W)w, active);
3271
3272 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3273 idles [ABSPRI (w)][active - 1] = w;
3274 }
3275
3276 EV_FREQUENT_CHECK;
3277}
3278
3279void
3280ev_idle_stop (EV_P_ ev_idle *w)
3281{
3282 clear_pending (EV_A_ (W)w);
3283 if (expect_false (!ev_is_active (w)))
3284 return;
3285
3286 EV_FREQUENT_CHECK;
3287
3288 {
3289 int active = ev_active (w);
3290
3291 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3292 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3293
3294 ev_stop (EV_A_ (W)w);
3295 --idleall;
3296 }
3297
3298 EV_FREQUENT_CHECK;
3299}
3300#endif
3301
3302void
3303ev_prepare_start (EV_P_ ev_prepare *w)
3304{
3305 if (expect_false (ev_is_active (w)))
3306 return;
3307
3308 EV_FREQUENT_CHECK;
3309
3310 ev_start (EV_A_ (W)w, ++preparecnt);
3311 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3312 prepares [preparecnt - 1] = w;
3313
3314 EV_FREQUENT_CHECK;
3315}
3316
3317void
3318ev_prepare_stop (EV_P_ ev_prepare *w)
3319{
3320 clear_pending (EV_A_ (W)w);
3321 if (expect_false (!ev_is_active (w)))
3322 return;
3323
3324 EV_FREQUENT_CHECK;
3325
3326 {
3327 int active = ev_active (w);
3328
3329 prepares [active - 1] = prepares [--preparecnt];
3330 ev_active (prepares [active - 1]) = active;
3331 }
3332
3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
3336}
3337
3338void
3339ev_check_start (EV_P_ ev_check *w)
3340{
3341 if (expect_false (ev_is_active (w)))
3342 return;
3343
3344 EV_FREQUENT_CHECK;
3345
3346 ev_start (EV_A_ (W)w, ++checkcnt);
3347 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3348 checks [checkcnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
3351}
3352
3353void
3354ev_check_stop (EV_P_ ev_check *w)
3355{
3356 clear_pending (EV_A_ (W)w);
3357 if (expect_false (!ev_is_active (w)))
3358 return;
3359
3360 EV_FREQUENT_CHECK;
3361
3362 {
3363 int active = ev_active (w);
3364
3365 checks [active - 1] = checks [--checkcnt];
3366 ev_active (checks [active - 1]) = active;
3367 }
3368
3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
3372}
3373
3374#if EV_EMBED_ENABLE
3375void noinline
3376ev_embed_sweep (EV_P_ ev_embed *w)
3377{
3378 ev_loop (w->other, EVLOOP_NONBLOCK);
3379}
3380
3381static void
3382embed_io_cb (EV_P_ ev_io *io, int revents)
3383{
3384 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3385
3386 if (ev_cb (w))
3387 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3388 else
3389 ev_loop (w->other, EVLOOP_NONBLOCK);
3390}
3391
3392static void
3393embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3394{
3395 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3396
3397 {
3398 EV_P = w->other;
3399
3400 while (fdchangecnt)
3401 {
3402 fd_reify (EV_A);
3403 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3404 }
3405 }
3406}
3407
3408static void
3409embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3412
3413 ev_embed_stop (EV_A_ w);
3414
3415 {
3416 EV_P = w->other;
3417
3418 ev_loop_fork (EV_A);
3419 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3420 }
3421
3422 ev_embed_start (EV_A_ w);
3423}
3424
3425#if 0
3426static void
3427embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3428{
3429 ev_idle_stop (EV_A_ idle);
3430}
3431#endif
3432
3433void
3434ev_embed_start (EV_P_ ev_embed *w)
3435{
3436 if (expect_false (ev_is_active (w)))
3437 return;
3438
3439 {
3440 EV_P = w->other;
3441 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3442 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3443 }
3444
3445 EV_FREQUENT_CHECK;
3446
3447 ev_set_priority (&w->io, ev_priority (w));
3448 ev_io_start (EV_A_ &w->io);
3449
3450 ev_prepare_init (&w->prepare, embed_prepare_cb);
3451 ev_set_priority (&w->prepare, EV_MINPRI);
3452 ev_prepare_start (EV_A_ &w->prepare);
3453
3454 ev_fork_init (&w->fork, embed_fork_cb);
3455 ev_fork_start (EV_A_ &w->fork);
3456
3457 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3458
1570 ev_start (EV_A_ (W)w, 1); 3459 ev_start (EV_A_ (W)w, 1);
1571 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1572}
1573 3460
3461 EV_FREQUENT_CHECK;
3462}
3463
1574void 3464void
1575ev_child_stop (EV_P_ struct ev_child *w) 3465ev_embed_stop (EV_P_ ev_embed *w)
1576{ 3466{
1577 ev_clear_pending (EV_A_ (W)w); 3467 clear_pending (EV_A_ (W)w);
1578 if (!ev_is_active (w)) 3468 if (expect_false (!ev_is_active (w)))
1579 return; 3469 return;
1580 3470
1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3471 EV_FREQUENT_CHECK;
3472
3473 ev_io_stop (EV_A_ &w->io);
3474 ev_prepare_stop (EV_A_ &w->prepare);
3475 ev_fork_stop (EV_A_ &w->fork);
3476
1582 ev_stop (EV_A_ (W)w); 3477 ev_stop (EV_A_ (W)w);
3478
3479 EV_FREQUENT_CHECK;
1583} 3480}
3481#endif
3482
3483#if EV_FORK_ENABLE
3484void
3485ev_fork_start (EV_P_ ev_fork *w)
3486{
3487 if (expect_false (ev_is_active (w)))
3488 return;
3489
3490 EV_FREQUENT_CHECK;
3491
3492 ev_start (EV_A_ (W)w, ++forkcnt);
3493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3494 forks [forkcnt - 1] = w;
3495
3496 EV_FREQUENT_CHECK;
3497}
3498
3499void
3500ev_fork_stop (EV_P_ ev_fork *w)
3501{
3502 clear_pending (EV_A_ (W)w);
3503 if (expect_false (!ev_is_active (w)))
3504 return;
3505
3506 EV_FREQUENT_CHECK;
3507
3508 {
3509 int active = ev_active (w);
3510
3511 forks [active - 1] = forks [--forkcnt];
3512 ev_active (forks [active - 1]) = active;
3513 }
3514
3515 ev_stop (EV_A_ (W)w);
3516
3517 EV_FREQUENT_CHECK;
3518}
3519#endif
3520
3521#if EV_ASYNC_ENABLE
3522void
3523ev_async_start (EV_P_ ev_async *w)
3524{
3525 if (expect_false (ev_is_active (w)))
3526 return;
3527
3528 evpipe_init (EV_A);
3529
3530 EV_FREQUENT_CHECK;
3531
3532 ev_start (EV_A_ (W)w, ++asynccnt);
3533 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3534 asyncs [asynccnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
3537}
3538
3539void
3540ev_async_stop (EV_P_ ev_async *w)
3541{
3542 clear_pending (EV_A_ (W)w);
3543 if (expect_false (!ev_is_active (w)))
3544 return;
3545
3546 EV_FREQUENT_CHECK;
3547
3548 {
3549 int active = ev_active (w);
3550
3551 asyncs [active - 1] = asyncs [--asynccnt];
3552 ev_active (asyncs [active - 1]) = active;
3553 }
3554
3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
3558}
3559
3560void
3561ev_async_send (EV_P_ ev_async *w)
3562{
3563 w->sent = 1;
3564 evpipe_write (EV_A_ &async_pending);
3565}
3566#endif
1584 3567
1585/*****************************************************************************/ 3568/*****************************************************************************/
1586 3569
1587struct ev_once 3570struct ev_once
1588{ 3571{
1589 struct ev_io io; 3572 ev_io io;
1590 struct ev_timer to; 3573 ev_timer to;
1591 void (*cb)(int revents, void *arg); 3574 void (*cb)(int revents, void *arg);
1592 void *arg; 3575 void *arg;
1593}; 3576};
1594 3577
1595static void 3578static void
1596once_cb (EV_P_ struct ev_once *once, int revents) 3579once_cb (EV_P_ struct ev_once *once, int revents)
1597{ 3580{
1598 void (*cb)(int revents, void *arg) = once->cb; 3581 void (*cb)(int revents, void *arg) = once->cb;
1599 void *arg = once->arg; 3582 void *arg = once->arg;
1600 3583
1601 ev_io_stop (EV_A_ &once->io); 3584 ev_io_stop (EV_A_ &once->io);
1602 ev_timer_stop (EV_A_ &once->to); 3585 ev_timer_stop (EV_A_ &once->to);
1603 ev_free (once); 3586 ev_free (once);
1604 3587
1605 cb (revents, arg); 3588 cb (revents, arg);
1606} 3589}
1607 3590
1608static void 3591static void
1609once_cb_io (EV_P_ struct ev_io *w, int revents) 3592once_cb_io (EV_P_ ev_io *w, int revents)
1610{ 3593{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3594 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3595
3596 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1612} 3597}
1613 3598
1614static void 3599static void
1615once_cb_to (EV_P_ struct ev_timer *w, int revents) 3600once_cb_to (EV_P_ ev_timer *w, int revents)
1616{ 3601{
1617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3602 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3603
3604 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1618} 3605}
1619 3606
1620void 3607void
1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3608ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1622{ 3609{
1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3610 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1624 3611
1625 if (!once) 3612 if (expect_false (!once))
3613 {
1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1627 else 3615 return;
1628 { 3616 }
3617
1629 once->cb = cb; 3618 once->cb = cb;
1630 once->arg = arg; 3619 once->arg = arg;
1631 3620
1632 ev_init (&once->io, once_cb_io); 3621 ev_init (&once->io, once_cb_io);
1633 if (fd >= 0) 3622 if (fd >= 0)
3623 {
3624 ev_io_set (&once->io, fd, events);
3625 ev_io_start (EV_A_ &once->io);
3626 }
3627
3628 ev_init (&once->to, once_cb_to);
3629 if (timeout >= 0.)
3630 {
3631 ev_timer_set (&once->to, timeout, 0.);
3632 ev_timer_start (EV_A_ &once->to);
3633 }
3634}
3635
3636/*****************************************************************************/
3637
3638#if EV_WALK_ENABLE
3639void
3640ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3641{
3642 int i, j;
3643 ev_watcher_list *wl, *wn;
3644
3645 if (types & (EV_IO | EV_EMBED))
3646 for (i = 0; i < anfdmax; ++i)
3647 for (wl = anfds [i].head; wl; )
1634 { 3648 {
1635 ev_io_set (&once->io, fd, events); 3649 wn = wl->next;
1636 ev_io_start (EV_A_ &once->io); 3650
3651#if EV_EMBED_ENABLE
3652 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3653 {
3654 if (types & EV_EMBED)
3655 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3656 }
3657 else
3658#endif
3659#if EV_USE_INOTIFY
3660 if (ev_cb ((ev_io *)wl) == infy_cb)
3661 ;
3662 else
3663#endif
3664 if ((ev_io *)wl != &pipe_w)
3665 if (types & EV_IO)
3666 cb (EV_A_ EV_IO, wl);
3667
3668 wl = wn;
1637 } 3669 }
1638 3670
1639 ev_init (&once->to, once_cb_to); 3671 if (types & (EV_TIMER | EV_STAT))
1640 if (timeout >= 0.) 3672 for (i = timercnt + HEAP0; i-- > HEAP0; )
3673#if EV_STAT_ENABLE
3674 /*TODO: timer is not always active*/
3675 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1641 { 3676 {
1642 ev_timer_set (&once->to, timeout, 0.); 3677 if (types & EV_STAT)
1643 ev_timer_start (EV_A_ &once->to); 3678 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1644 } 3679 }
1645 } 3680 else
3681#endif
3682 if (types & EV_TIMER)
3683 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3684
3685#if EV_PERIODIC_ENABLE
3686 if (types & EV_PERIODIC)
3687 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3688 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3689#endif
3690
3691#if EV_IDLE_ENABLE
3692 if (types & EV_IDLE)
3693 for (j = NUMPRI; i--; )
3694 for (i = idlecnt [j]; i--; )
3695 cb (EV_A_ EV_IDLE, idles [j][i]);
3696#endif
3697
3698#if EV_FORK_ENABLE
3699 if (types & EV_FORK)
3700 for (i = forkcnt; i--; )
3701 if (ev_cb (forks [i]) != embed_fork_cb)
3702 cb (EV_A_ EV_FORK, forks [i]);
3703#endif
3704
3705#if EV_ASYNC_ENABLE
3706 if (types & EV_ASYNC)
3707 for (i = asynccnt; i--; )
3708 cb (EV_A_ EV_ASYNC, asyncs [i]);
3709#endif
3710
3711 if (types & EV_PREPARE)
3712 for (i = preparecnt; i--; )
3713#if EV_EMBED_ENABLE
3714 if (ev_cb (prepares [i]) != embed_prepare_cb)
3715#endif
3716 cb (EV_A_ EV_PREPARE, prepares [i]);
3717
3718 if (types & EV_CHECK)
3719 for (i = checkcnt; i--; )
3720 cb (EV_A_ EV_CHECK, checks [i]);
3721
3722 if (types & EV_SIGNAL)
3723 for (i = 0; i < EV_NSIG - 1; ++i)
3724 for (wl = signals [i].head; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_SIGNAL, wl);
3728 wl = wn;
3729 }
3730
3731 if (types & EV_CHILD)
3732 for (i = EV_PID_HASHSIZE; i--; )
3733 for (wl = childs [i]; wl; )
3734 {
3735 wn = wl->next;
3736 cb (EV_A_ EV_CHILD, wl);
3737 wl = wn;
3738 }
3739/* EV_STAT 0x00001000 /* stat data changed */
3740/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1646} 3741}
3742#endif
3743
3744#if EV_MULTIPLICITY
3745 #include "ev_wrap.h"
3746#endif
1647 3747
1648#ifdef __cplusplus 3748#ifdef __cplusplus
1649} 3749}
1650#endif 3750#endif
1651 3751

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines