ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.206 by root, Fri Jan 25 15:45:08 2008 UTC vs.
Revision 1.333 by root, Tue Mar 9 08:58:22 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
95# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
96# endif 111# endif
97# endif 112# endif
98 113
99# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
101# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
102# else 117# else
103# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
104# endif 119# endif
105# endif 120# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
127#include <fcntl.h> 159#include <fcntl.h>
128#include <stddef.h> 160#include <stddef.h>
129 161
130#include <stdio.h> 162#include <stdio.h>
131 163
132#include <assert.h> 164#include <assert.h>
133#include <errno.h> 165#include <errno.h>
134#include <sys/types.h> 166#include <sys/types.h>
135#include <time.h> 167#include <time.h>
168#include <limits.h>
136 169
137#include <signal.h> 170#include <signal.h>
138 171
139#ifdef EV_H 172#ifdef EV_H
140# include EV_H 173# include EV_H
145#ifndef _WIN32 178#ifndef _WIN32
146# include <sys/time.h> 179# include <sys/time.h>
147# include <sys/wait.h> 180# include <sys/wait.h>
148# include <unistd.h> 181# include <unistd.h>
149#else 182#else
183# include <io.h>
150# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 185# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
154# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
155#endif 226# endif
156 227#endif
157/**/
158 228
159#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
160# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
161#endif 235#endif
162 236
163#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 239#endif
166 240
167#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
168# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
169#endif 247#endif
170 248
171#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
173#endif 251#endif
179# define EV_USE_POLL 1 257# define EV_USE_POLL 1
180# endif 258# endif
181#endif 259#endif
182 260
183#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
184# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
185#endif 267#endif
186 268
187#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
189#endif 271#endif
191#ifndef EV_USE_PORT 273#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 274# define EV_USE_PORT 0
193#endif 275#endif
194 276
195#ifndef EV_USE_INOTIFY 277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_INOTIFY 1
280# else
196# define EV_USE_INOTIFY 0 281# define EV_USE_INOTIFY 0
282# endif
197#endif 283#endif
198 284
199#ifndef EV_PID_HASHSIZE 285#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 286# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 287# define EV_PID_HASHSIZE 1
210# else 296# else
211# define EV_INOTIFY_HASHSIZE 16 297# define EV_INOTIFY_HASHSIZE 16
212# endif 298# endif
213#endif 299#endif
214 300
215/**/ 301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
216 356
217#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
220#endif 360#endif
234# include <sys/select.h> 374# include <sys/select.h>
235# endif 375# endif
236#endif 376#endif
237 377
238#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
239# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
240#endif 387#endif
241 388
242#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 390# include <winsock.h>
244#endif 391#endif
245 392
393#if EV_USE_EVENTFD
394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
246/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
247 451
248/* 452/*
249 * This is used to avoid floating point rounding problems. 453 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 454 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 455 * to ensure progress, time-wise, even when rounding
255 */ 459 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 461
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261 464
262#if __GNUC__ >= 4 465#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
265#else 468#else
266# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
267# define noinline 470# define noinline
268# if __STDC_VERSION__ < 199901L 471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 472# define inline
270# endif 473# endif
271#endif 474#endif
272 475
273#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 481# define inline_speed static noinline
279#else 482#else
280# define inline_speed static inline 483# define inline_speed static inline
281#endif 484#endif
282 485
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
285 493
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
288 496
289typedef ev_watcher *W; 497typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
292 500
293#if EV_USE_MONOTONIC 501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 522#endif
298 523
299#ifdef _WIN32 524#ifdef _WIN32
300# include "ev_win32.c" 525# include "ev_win32.c"
301#endif 526#endif
302 527
303/*****************************************************************************/ 528/*****************************************************************************/
304 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
305static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
306 539
307void 540void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 542{
310 syserr_cb = cb; 543 syserr_cb = cb;
311} 544}
312 545
313static void noinline 546static void noinline
314syserr (const char *msg) 547ev_syserr (const char *msg)
315{ 548{
316 if (!msg) 549 if (!msg)
317 msg = "(libev) system error"; 550 msg = "(libev) system error";
318 551
319 if (syserr_cb) 552 if (syserr_cb)
320 syserr_cb (msg); 553 syserr_cb (msg);
321 else 554 else
322 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
323 perror (msg); 564 perror (msg);
565#endif
324 abort (); 566 abort ();
325 } 567 }
326} 568}
327 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573 /* some systems, notably openbsd and darwin, fail to properly
574 * implement realloc (x, 0) (as required by both ansi c-98 and
575 * the single unix specification, so work around them here.
576 */
577
578 if (size)
579 return realloc (ptr, size);
580
581 free (ptr);
582 return 0;
583}
584
328static void *(*alloc)(void *ptr, long size); 585static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 586
330void 587void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 588ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 589{
333 alloc = cb; 590 alloc = cb;
334} 591}
335 592
336inline_speed void * 593inline_speed void *
337ev_realloc (void *ptr, long size) 594ev_realloc (void *ptr, long size)
338{ 595{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 596 ptr = alloc (ptr, size);
340 597
341 if (!ptr && size) 598 if (!ptr && size)
342 { 599 {
600#if EV_AVOID_STDIO
601 ev_printerr ("libev: memory allocation failed, aborting.\n");
602#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 603 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
604#endif
344 abort (); 605 abort ();
345 } 606 }
346 607
347 return ptr; 608 return ptr;
348} 609}
350#define ev_malloc(size) ev_realloc (0, (size)) 611#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 612#define ev_free(ptr) ev_realloc ((ptr), 0)
352 613
353/*****************************************************************************/ 614/*****************************************************************************/
354 615
616/* set in reify when reification needed */
617#define EV_ANFD_REIFY 1
618
619/* file descriptor info structure */
355typedef struct 620typedef struct
356{ 621{
357 WL head; 622 WL head;
358 unsigned char events; 623 unsigned char events; /* the events watched for */
624 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
625 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 626 unsigned char unused;
627#if EV_USE_EPOLL
628 unsigned int egen; /* generation counter to counter epoll bugs */
629#endif
360#if EV_SELECT_IS_WINSOCKET 630#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 631 SOCKET handle;
362#endif 632#endif
363} ANFD; 633} ANFD;
364 634
635/* stores the pending event set for a given watcher */
365typedef struct 636typedef struct
366{ 637{
367 W w; 638 W w;
368 int events; 639 int events; /* the pending event set for the given watcher */
369} ANPENDING; 640} ANPENDING;
370 641
371#if EV_USE_INOTIFY 642#if EV_USE_INOTIFY
643/* hash table entry per inotify-id */
372typedef struct 644typedef struct
373{ 645{
374 WL head; 646 WL head;
375} ANFS; 647} ANFS;
648#endif
649
650/* Heap Entry */
651#if EV_HEAP_CACHE_AT
652 /* a heap element */
653 typedef struct {
654 ev_tstamp at;
655 WT w;
656 } ANHE;
657
658 #define ANHE_w(he) (he).w /* access watcher, read-write */
659 #define ANHE_at(he) (he).at /* access cached at, read-only */
660 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
661#else
662 /* a heap element */
663 typedef WT ANHE;
664
665 #define ANHE_w(he) (he)
666 #define ANHE_at(he) (he)->at
667 #define ANHE_at_cache(he)
376#endif 668#endif
377 669
378#if EV_MULTIPLICITY 670#if EV_MULTIPLICITY
379 671
380 struct ev_loop 672 struct ev_loop
399 691
400 static int ev_default_loop_ptr; 692 static int ev_default_loop_ptr;
401 693
402#endif 694#endif
403 695
696#if EV_MINIMAL < 2
697# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
698# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
699# define EV_INVOKE_PENDING invoke_cb (EV_A)
700#else
701# define EV_RELEASE_CB (void)0
702# define EV_ACQUIRE_CB (void)0
703# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
704#endif
705
706#define EVUNLOOP_RECURSE 0x80
707
404/*****************************************************************************/ 708/*****************************************************************************/
405 709
710#ifndef EV_HAVE_EV_TIME
406ev_tstamp 711ev_tstamp
407ev_time (void) 712ev_time (void)
408{ 713{
409#if EV_USE_REALTIME 714#if EV_USE_REALTIME
715 if (expect_true (have_realtime))
716 {
410 struct timespec ts; 717 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 718 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 719 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 720 }
721#endif
722
414 struct timeval tv; 723 struct timeval tv;
415 gettimeofday (&tv, 0); 724 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 725 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 726}
727#endif
419 728
420ev_tstamp inline_size 729inline_size ev_tstamp
421get_clock (void) 730get_clock (void)
422{ 731{
423#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 733 if (expect_true (have_monotonic))
425 { 734 {
451 ts.tv_sec = (time_t)delay; 760 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 761 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 762
454 nanosleep (&ts, 0); 763 nanosleep (&ts, 0);
455#elif defined(_WIN32) 764#elif defined(_WIN32)
456 Sleep (delay * 1e3); 765 Sleep ((unsigned long)(delay * 1e3));
457#else 766#else
458 struct timeval tv; 767 struct timeval tv;
459 768
460 tv.tv_sec = (time_t)delay; 769 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 770 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 771
772 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
773 /* something not guaranteed by newer posix versions, but guaranteed */
774 /* by older ones */
463 select (0, 0, 0, 0, &tv); 775 select (0, 0, 0, 0, &tv);
464#endif 776#endif
465 } 777 }
466} 778}
467 779
468/*****************************************************************************/ 780/*****************************************************************************/
469 781
470int inline_size 782#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
783
784/* find a suitable new size for the given array, */
785/* hopefully by rounding to a ncie-to-malloc size */
786inline_size int
471array_nextsize (int elem, int cur, int cnt) 787array_nextsize (int elem, int cur, int cnt)
472{ 788{
473 int ncur = cur + 1; 789 int ncur = cur + 1;
474 790
475 do 791 do
476 ncur <<= 1; 792 ncur <<= 1;
477 while (cnt > ncur); 793 while (cnt > ncur);
478 794
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 795 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 796 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 797 {
482 ncur *= elem; 798 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 799 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 800 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 801 ncur /= elem;
486 } 802 }
487 803
488 return ncur; 804 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 808array_realloc (int elem, void *base, int *cur, int cnt)
493{ 809{
494 *cur = array_nextsize (elem, *cur, cnt); 810 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 811 return ev_realloc (base, elem * *cur);
496} 812}
813
814#define array_init_zero(base,count) \
815 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 816
498#define array_needsize(type,base,cur,cnt,init) \ 817#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 818 if (expect_false ((cnt) > (cur))) \
500 { \ 819 { \
501 int ocur_ = (cur); \ 820 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 832 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 833 }
515#endif 834#endif
516 835
517#define array_free(stem, idx) \ 836#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 837 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 838
520/*****************************************************************************/ 839/*****************************************************************************/
840
841/* dummy callback for pending events */
842static void noinline
843pendingcb (EV_P_ ev_prepare *w, int revents)
844{
845}
521 846
522void noinline 847void noinline
523ev_feed_event (EV_P_ void *w, int revents) 848ev_feed_event (EV_P_ void *w, int revents)
524{ 849{
525 W w_ = (W)w; 850 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 859 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 860 pendings [pri][w_->pending - 1].events = revents;
536 } 861 }
537} 862}
538 863
539void inline_speed 864inline_speed void
865feed_reverse (EV_P_ W w)
866{
867 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
868 rfeeds [rfeedcnt++] = w;
869}
870
871inline_size void
872feed_reverse_done (EV_P_ int revents)
873{
874 do
875 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
876 while (rfeedcnt);
877}
878
879inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 880queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 881{
542 int i; 882 int i;
543 883
544 for (i = 0; i < eventcnt; ++i) 884 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 885 ev_feed_event (EV_A_ events [i], type);
546} 886}
547 887
548/*****************************************************************************/ 888/*****************************************************************************/
549 889
550void inline_size 890inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 891fd_event_nc (EV_P_ int fd, int revents)
565{ 892{
566 ANFD *anfd = anfds + fd; 893 ANFD *anfd = anfds + fd;
567 ev_io *w; 894 ev_io *w;
568 895
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 896 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 900 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 901 ev_feed_event (EV_A_ (W)w, ev);
575 } 902 }
576} 903}
577 904
905/* do not submit kernel events for fds that have reify set */
906/* because that means they changed while we were polling for new events */
907inline_speed void
908fd_event (EV_P_ int fd, int revents)
909{
910 ANFD *anfd = anfds + fd;
911
912 if (expect_true (!anfd->reify))
913 fd_event_nc (EV_A_ fd, revents);
914}
915
578void 916void
579ev_feed_fd_event (EV_P_ int fd, int revents) 917ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 918{
581 if (fd >= 0 && fd < anfdmax) 919 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 920 fd_event_nc (EV_A_ fd, revents);
583} 921}
584 922
585void inline_size 923/* make sure the external fd watch events are in-sync */
924/* with the kernel/libev internal state */
925inline_size void
586fd_reify (EV_P) 926fd_reify (EV_P)
587{ 927{
588 int i; 928 int i;
589 929
590 for (i = 0; i < fdchangecnt; ++i) 930 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 939 events |= (unsigned char)w->events;
600 940
601#if EV_SELECT_IS_WINSOCKET 941#if EV_SELECT_IS_WINSOCKET
602 if (events) 942 if (events)
603 { 943 {
604 unsigned long argp; 944 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 945 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 946 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 947 }
612#endif 948#endif
613 949
614 { 950 {
615 unsigned char o_events = anfd->events; 951 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 952 unsigned char o_reify = anfd->reify;
617 953
618 anfd->reify = 0; 954 anfd->reify = 0;
619 anfd->events = events; 955 anfd->events = events;
620 956
621 if (o_events != events || o_reify & EV_IOFDSET) 957 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 958 backend_modify (EV_A_ fd, o_events, events);
623 } 959 }
624 } 960 }
625 961
626 fdchangecnt = 0; 962 fdchangecnt = 0;
627} 963}
628 964
629void inline_size 965/* something about the given fd changed */
966inline_size void
630fd_change (EV_P_ int fd, int flags) 967fd_change (EV_P_ int fd, int flags)
631{ 968{
632 unsigned char reify = anfds [fd].reify; 969 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 970 anfds [fd].reify |= flags;
634 971
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 975 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 976 fdchanges [fdchangecnt - 1] = fd;
640 } 977 }
641} 978}
642 979
643void inline_speed 980/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
981inline_speed void
644fd_kill (EV_P_ int fd) 982fd_kill (EV_P_ int fd)
645{ 983{
646 ev_io *w; 984 ev_io *w;
647 985
648 while ((w = (ev_io *)anfds [fd].head)) 986 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 988 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 989 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 990 }
653} 991}
654 992
655int inline_size 993/* check whether the given fd is atcually valid, for error recovery */
994inline_size int
656fd_valid (int fd) 995fd_valid (int fd)
657{ 996{
658#ifdef _WIN32 997#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 998 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 999#else
661 return fcntl (fd, F_GETFD) != -1; 1000 return fcntl (fd, F_GETFD) != -1;
662#endif 1001#endif
663} 1002}
664 1003
668{ 1007{
669 int fd; 1008 int fd;
670 1009
671 for (fd = 0; fd < anfdmax; ++fd) 1010 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1011 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1012 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1013 fd_kill (EV_A_ fd);
675} 1014}
676 1015
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1016/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1017static void noinline
682 1021
683 for (fd = anfdmax; fd--; ) 1022 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1023 if (anfds [fd].events)
685 { 1024 {
686 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
687 return; 1026 break;
688 } 1027 }
689} 1028}
690 1029
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1030/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1031static void noinline
696 1035
697 for (fd = 0; fd < anfdmax; ++fd) 1036 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1037 if (anfds [fd].events)
699 { 1038 {
700 anfds [fd].events = 0; 1039 anfds [fd].events = 0;
1040 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1041 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1042 }
703} 1043}
704 1044
705/*****************************************************************************/ 1045/*****************************************************************************/
706 1046
707void inline_speed 1047/*
708upheap (WT *heap, int k) 1048 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 1049 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 1050 * the branching factor of the d-tree.
1051 */
711 1052
712 while (k) 1053/*
713 { 1054 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 1055 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1056 * which is more cache-efficient.
1057 * the difference is about 5% with 50000+ watchers.
1058 */
1059#if EV_USE_4HEAP
715 1060
716 if (heap [p]->at <= w->at) 1061#define DHEAP 4
1062#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1063#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1064#define UPHEAP_DONE(p,k) ((p) == (k))
1065
1066/* away from the root */
1067inline_speed void
1068downheap (ANHE *heap, int N, int k)
1069{
1070 ANHE he = heap [k];
1071 ANHE *E = heap + N + HEAP0;
1072
1073 for (;;)
1074 {
1075 ev_tstamp minat;
1076 ANHE *minpos;
1077 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1078
1079 /* find minimum child */
1080 if (expect_true (pos + DHEAP - 1 < E))
1081 {
1082 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1083 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1084 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1085 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1086 }
1087 else if (pos < E)
1088 {
1089 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1090 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1091 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1092 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1093 }
1094 else
717 break; 1095 break;
718 1096
1097 if (ANHE_at (he) <= minat)
1098 break;
1099
1100 heap [k] = *minpos;
1101 ev_active (ANHE_w (*minpos)) = k;
1102
1103 k = minpos - heap;
1104 }
1105
1106 heap [k] = he;
1107 ev_active (ANHE_w (he)) = k;
1108}
1109
1110#else /* 4HEAP */
1111
1112#define HEAP0 1
1113#define HPARENT(k) ((k) >> 1)
1114#define UPHEAP_DONE(p,k) (!(p))
1115
1116/* away from the root */
1117inline_speed void
1118downheap (ANHE *heap, int N, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int c = k << 1;
1125
1126 if (c >= N + HEAP0)
1127 break;
1128
1129 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1130 ? 1 : 0;
1131
1132 if (ANHE_at (he) <= ANHE_at (heap [c]))
1133 break;
1134
1135 heap [k] = heap [c];
1136 ev_active (ANHE_w (heap [k])) = k;
1137
1138 k = c;
1139 }
1140
1141 heap [k] = he;
1142 ev_active (ANHE_w (he)) = k;
1143}
1144#endif
1145
1146/* towards the root */
1147inline_speed void
1148upheap (ANHE *heap, int k)
1149{
1150 ANHE he = heap [k];
1151
1152 for (;;)
1153 {
1154 int p = HPARENT (k);
1155
1156 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1157 break;
1158
719 heap [k] = heap [p]; 1159 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1160 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1161 k = p;
722 } 1162 }
723 1163
724 heap [k] = w; 1164 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1165 ev_active (ANHE_w (he)) = k;
726} 1166}
727 1167
728void inline_speed 1168/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1169inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1170adjustheap (ANHE *heap, int N, int k)
758{ 1171{
1172 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
759 upheap (heap, k); 1173 upheap (heap, k);
1174 else
760 downheap (heap, N, k); 1175 downheap (heap, N, k);
1176}
1177
1178/* rebuild the heap: this function is used only once and executed rarely */
1179inline_size void
1180reheap (ANHE *heap, int N)
1181{
1182 int i;
1183
1184 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1185 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1186 for (i = 0; i < N; ++i)
1187 upheap (heap, i + HEAP0);
761} 1188}
762 1189
763/*****************************************************************************/ 1190/*****************************************************************************/
764 1191
1192/* associate signal watchers to a signal signal */
765typedef struct 1193typedef struct
766{ 1194{
1195 EV_ATOMIC_T pending;
1196#if EV_MULTIPLICITY
1197 EV_P;
1198#endif
767 WL head; 1199 WL head;
768 sig_atomic_t volatile gotsig;
769} ANSIG; 1200} ANSIG;
770 1201
771static ANSIG *signals; 1202static ANSIG signals [EV_NSIG - 1];
772static int signalmax;
773 1203
774static int sigpipe [2]; 1204/*****************************************************************************/
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777 1205
778void inline_size 1206/* used to prepare libev internal fd's */
779signals_init (ANSIG *base, int count) 1207/* this is not fork-safe */
780{ 1208inline_speed void
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1209fd_intern (int fd)
843{ 1210{
844#ifdef _WIN32 1211#ifdef _WIN32
845 int arg = 1; 1212 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1213 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
847#else 1214#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1215 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1216 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1217#endif
851} 1218}
852 1219
853static void noinline 1220static void noinline
854siginit (EV_P) 1221evpipe_init (EV_P)
855{ 1222{
1223 if (!ev_is_active (&pipe_w))
1224 {
1225#if EV_USE_EVENTFD
1226 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1227 if (evfd < 0 && errno == EINVAL)
1228 evfd = eventfd (0, 0);
1229
1230 if (evfd >= 0)
1231 {
1232 evpipe [0] = -1;
1233 fd_intern (evfd); /* doing it twice doesn't hurt */
1234 ev_io_set (&pipe_w, evfd, EV_READ);
1235 }
1236 else
1237#endif
1238 {
1239 while (pipe (evpipe))
1240 ev_syserr ("(libev) error creating signal/async pipe");
1241
856 fd_intern (sigpipe [0]); 1242 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1243 fd_intern (evpipe [1]);
1244 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1245 }
858 1246
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1247 ev_io_start (EV_A_ &pipe_w);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1248 ev_unref (EV_A); /* watcher should not keep loop alive */
1249 }
862} 1250}
1251
1252inline_size void
1253evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1254{
1255 if (!*flag)
1256 {
1257 int old_errno = errno; /* save errno because write might clobber it */
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &old_errno, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
1317}
1318
1319/*****************************************************************************/
1320
1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
1327
1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
863 1379
864/*****************************************************************************/ 1380/*****************************************************************************/
865 1381
866static WL childs [EV_PID_HASHSIZE]; 1382static WL childs [EV_PID_HASHSIZE];
867 1383
871 1387
872#ifndef WIFCONTINUED 1388#ifndef WIFCONTINUED
873# define WIFCONTINUED(status) 0 1389# define WIFCONTINUED(status) 0
874#endif 1390#endif
875 1391
876void inline_speed 1392/* handle a single child status event */
1393inline_speed void
877child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1394child_reap (EV_P_ int chain, int pid, int status)
878{ 1395{
879 ev_child *w; 1396 ev_child *w;
880 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1397 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
881 1398
882 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1399 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
883 { 1400 {
884 if ((w->pid == pid || !w->pid) 1401 if ((w->pid == pid || !w->pid)
885 && (!traced || (w->flags & 1))) 1402 && (!traced || (w->flags & 1)))
886 { 1403 {
887 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1404 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
888 w->rpid = pid; 1405 w->rpid = pid;
889 w->rstatus = status; 1406 w->rstatus = status;
890 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1407 ev_feed_event (EV_A_ (W)w, EV_CHILD);
891 } 1408 }
892 } 1409 }
894 1411
895#ifndef WCONTINUED 1412#ifndef WCONTINUED
896# define WCONTINUED 0 1413# define WCONTINUED 0
897#endif 1414#endif
898 1415
1416/* called on sigchld etc., calls waitpid */
899static void 1417static void
900childcb (EV_P_ ev_signal *sw, int revents) 1418childcb (EV_P_ ev_signal *sw, int revents)
901{ 1419{
902 int pid, status; 1420 int pid, status;
903 1421
906 if (!WCONTINUED 1424 if (!WCONTINUED
907 || errno != EINVAL 1425 || errno != EINVAL
908 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1426 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
909 return; 1427 return;
910 1428
911 /* make sure we are called again until all childs have been reaped */ 1429 /* make sure we are called again until all children have been reaped */
912 /* we need to do it this way so that the callback gets called before we continue */ 1430 /* we need to do it this way so that the callback gets called before we continue */
913 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1431 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
914 1432
915 child_reap (EV_A_ sw, pid, pid, status); 1433 child_reap (EV_A_ pid, pid, status);
916 if (EV_PID_HASHSIZE > 1) 1434 if (EV_PID_HASHSIZE > 1)
917 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1435 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
918} 1436}
919 1437
920#endif 1438#endif
921 1439
922/*****************************************************************************/ 1440/*****************************************************************************/
984 /* kqueue is borked on everything but netbsd apparently */ 1502 /* kqueue is borked on everything but netbsd apparently */
985 /* it usually doesn't work correctly on anything but sockets and pipes */ 1503 /* it usually doesn't work correctly on anything but sockets and pipes */
986 flags &= ~EVBACKEND_KQUEUE; 1504 flags &= ~EVBACKEND_KQUEUE;
987#endif 1505#endif
988#ifdef __APPLE__ 1506#ifdef __APPLE__
989 // flags &= ~EVBACKEND_KQUEUE; for documentation 1507 /* only select works correctly on that "unix-certified" platform */
990 flags &= ~EVBACKEND_POLL; 1508 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1509 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
991#endif 1510#endif
992 1511
993 return flags; 1512 return flags;
994} 1513}
995 1514
1009ev_backend (EV_P) 1528ev_backend (EV_P)
1010{ 1529{
1011 return backend; 1530 return backend;
1012} 1531}
1013 1532
1533#if EV_MINIMAL < 2
1014unsigned int 1534unsigned int
1015ev_loop_count (EV_P) 1535ev_loop_count (EV_P)
1016{ 1536{
1017 return loop_count; 1537 return loop_count;
1018} 1538}
1019 1539
1540unsigned int
1541ev_loop_depth (EV_P)
1542{
1543 return loop_depth;
1544}
1545
1020void 1546void
1021ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1547ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1022{ 1548{
1023 io_blocktime = interval; 1549 io_blocktime = interval;
1024} 1550}
1027ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1553ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1028{ 1554{
1029 timeout_blocktime = interval; 1555 timeout_blocktime = interval;
1030} 1556}
1031 1557
1558void
1559ev_set_userdata (EV_P_ void *data)
1560{
1561 userdata = data;
1562}
1563
1564void *
1565ev_userdata (EV_P)
1566{
1567 return userdata;
1568}
1569
1570void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1571{
1572 invoke_cb = invoke_pending_cb;
1573}
1574
1575void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1576{
1577 release_cb = release;
1578 acquire_cb = acquire;
1579}
1580#endif
1581
1582/* initialise a loop structure, must be zero-initialised */
1032static void noinline 1583static void noinline
1033loop_init (EV_P_ unsigned int flags) 1584loop_init (EV_P_ unsigned int flags)
1034{ 1585{
1035 if (!backend) 1586 if (!backend)
1036 { 1587 {
1588#if EV_USE_REALTIME
1589 if (!have_realtime)
1590 {
1591 struct timespec ts;
1592
1593 if (!clock_gettime (CLOCK_REALTIME, &ts))
1594 have_realtime = 1;
1595 }
1596#endif
1597
1037#if EV_USE_MONOTONIC 1598#if EV_USE_MONOTONIC
1599 if (!have_monotonic)
1038 { 1600 {
1039 struct timespec ts; 1601 struct timespec ts;
1602
1040 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1603 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1041 have_monotonic = 1; 1604 have_monotonic = 1;
1042 } 1605 }
1043#endif 1606#endif
1044
1045 ev_rt_now = ev_time ();
1046 mn_now = get_clock ();
1047 now_floor = mn_now;
1048 rtmn_diff = ev_rt_now - mn_now;
1049
1050 io_blocktime = 0.;
1051 timeout_blocktime = 0.;
1052 1607
1053 /* pid check not overridable via env */ 1608 /* pid check not overridable via env */
1054#ifndef _WIN32 1609#ifndef _WIN32
1055 if (flags & EVFLAG_FORKCHECK) 1610 if (flags & EVFLAG_FORKCHECK)
1056 curpid = getpid (); 1611 curpid = getpid ();
1059 if (!(flags & EVFLAG_NOENV) 1614 if (!(flags & EVFLAG_NOENV)
1060 && !enable_secure () 1615 && !enable_secure ()
1061 && getenv ("LIBEV_FLAGS")) 1616 && getenv ("LIBEV_FLAGS"))
1062 flags = atoi (getenv ("LIBEV_FLAGS")); 1617 flags = atoi (getenv ("LIBEV_FLAGS"));
1063 1618
1619 ev_rt_now = ev_time ();
1620 mn_now = get_clock ();
1621 now_floor = mn_now;
1622 rtmn_diff = ev_rt_now - mn_now;
1623#if EV_MINIMAL < 2
1624 invoke_cb = ev_invoke_pending;
1625#endif
1626
1627 io_blocktime = 0.;
1628 timeout_blocktime = 0.;
1629 backend = 0;
1630 backend_fd = -1;
1631 sig_pending = 0;
1632#if EV_ASYNC_ENABLE
1633 async_pending = 0;
1634#endif
1635#if EV_USE_INOTIFY
1636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1637#endif
1638#if EV_USE_SIGNALFD
1639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1640#endif
1641
1064 if (!(flags & 0x0000ffffUL)) 1642 if (!(flags & 0x0000ffffU))
1065 flags |= ev_recommended_backends (); 1643 flags |= ev_recommended_backends ();
1066
1067 backend = 0;
1068 backend_fd = -1;
1069#if EV_USE_INOTIFY
1070 fs_fd = -2;
1071#endif
1072 1644
1073#if EV_USE_PORT 1645#if EV_USE_PORT
1074 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1646 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1075#endif 1647#endif
1076#if EV_USE_KQUEUE 1648#if EV_USE_KQUEUE
1084#endif 1656#endif
1085#if EV_USE_SELECT 1657#if EV_USE_SELECT
1086 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1658 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1087#endif 1659#endif
1088 1660
1661 ev_prepare_init (&pending_w, pendingcb);
1662
1089 ev_init (&sigev, sigcb); 1663 ev_init (&pipe_w, pipecb);
1090 ev_set_priority (&sigev, EV_MAXPRI); 1664 ev_set_priority (&pipe_w, EV_MAXPRI);
1091 } 1665 }
1092} 1666}
1093 1667
1668/* free up a loop structure */
1094static void noinline 1669static void noinline
1095loop_destroy (EV_P) 1670loop_destroy (EV_P)
1096{ 1671{
1097 int i; 1672 int i;
1673
1674 if (ev_is_active (&pipe_w))
1675 {
1676 /*ev_ref (EV_A);*/
1677 /*ev_io_stop (EV_A_ &pipe_w);*/
1678
1679#if EV_USE_EVENTFD
1680 if (evfd >= 0)
1681 close (evfd);
1682#endif
1683
1684 if (evpipe [0] >= 0)
1685 {
1686 EV_WIN32_CLOSE_FD (evpipe [0]);
1687 EV_WIN32_CLOSE_FD (evpipe [1]);
1688 }
1689 }
1690
1691#if EV_USE_SIGNALFD
1692 if (ev_is_active (&sigfd_w))
1693 close (sigfd);
1694#endif
1098 1695
1099#if EV_USE_INOTIFY 1696#if EV_USE_INOTIFY
1100 if (fs_fd >= 0) 1697 if (fs_fd >= 0)
1101 close (fs_fd); 1698 close (fs_fd);
1102#endif 1699#endif
1126#if EV_IDLE_ENABLE 1723#if EV_IDLE_ENABLE
1127 array_free (idle, [i]); 1724 array_free (idle, [i]);
1128#endif 1725#endif
1129 } 1726 }
1130 1727
1131 ev_free (anfds); anfdmax = 0; 1728 ev_free (anfds); anfds = 0; anfdmax = 0;
1132 1729
1133 /* have to use the microsoft-never-gets-it-right macro */ 1730 /* have to use the microsoft-never-gets-it-right macro */
1731 array_free (rfeed, EMPTY);
1134 array_free (fdchange, EMPTY); 1732 array_free (fdchange, EMPTY);
1135 array_free (timer, EMPTY); 1733 array_free (timer, EMPTY);
1136#if EV_PERIODIC_ENABLE 1734#if EV_PERIODIC_ENABLE
1137 array_free (periodic, EMPTY); 1735 array_free (periodic, EMPTY);
1138#endif 1736#endif
1139#if EV_FORK_ENABLE 1737#if EV_FORK_ENABLE
1140 array_free (fork, EMPTY); 1738 array_free (fork, EMPTY);
1141#endif 1739#endif
1142 array_free (prepare, EMPTY); 1740 array_free (prepare, EMPTY);
1143 array_free (check, EMPTY); 1741 array_free (check, EMPTY);
1742#if EV_ASYNC_ENABLE
1743 array_free (async, EMPTY);
1744#endif
1144 1745
1145 backend = 0; 1746 backend = 0;
1146} 1747}
1147 1748
1749#if EV_USE_INOTIFY
1148void inline_size infy_fork (EV_P); 1750inline_size void infy_fork (EV_P);
1751#endif
1149 1752
1150void inline_size 1753inline_size void
1151loop_fork (EV_P) 1754loop_fork (EV_P)
1152{ 1755{
1153#if EV_USE_PORT 1756#if EV_USE_PORT
1154 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1757 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1155#endif 1758#endif
1161#endif 1764#endif
1162#if EV_USE_INOTIFY 1765#if EV_USE_INOTIFY
1163 infy_fork (EV_A); 1766 infy_fork (EV_A);
1164#endif 1767#endif
1165 1768
1166 if (ev_is_active (&sigev)) 1769 if (ev_is_active (&pipe_w))
1167 { 1770 {
1168 /* default loop */ 1771 /* this "locks" the handlers against writing to the pipe */
1772 /* while we modify the fd vars */
1773 sig_pending = 1;
1774#if EV_ASYNC_ENABLE
1775 async_pending = 1;
1776#endif
1169 1777
1170 ev_ref (EV_A); 1778 ev_ref (EV_A);
1171 ev_io_stop (EV_A_ &sigev); 1779 ev_io_stop (EV_A_ &pipe_w);
1172 close (sigpipe [0]);
1173 close (sigpipe [1]);
1174 1780
1175 while (pipe (sigpipe)) 1781#if EV_USE_EVENTFD
1176 syserr ("(libev) error creating pipe"); 1782 if (evfd >= 0)
1783 close (evfd);
1784#endif
1177 1785
1786 if (evpipe [0] >= 0)
1787 {
1788 EV_WIN32_CLOSE_FD (evpipe [0]);
1789 EV_WIN32_CLOSE_FD (evpipe [1]);
1790 }
1791
1178 siginit (EV_A); 1792 evpipe_init (EV_A);
1793 /* now iterate over everything, in case we missed something */
1179 sigcb (EV_A_ &sigev, EV_READ); 1794 pipecb (EV_A_ &pipe_w, EV_READ);
1180 } 1795 }
1181 1796
1182 postfork = 0; 1797 postfork = 0;
1183} 1798}
1184 1799
1185#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1801
1186struct ev_loop * 1802struct ev_loop *
1187ev_loop_new (unsigned int flags) 1803ev_loop_new (unsigned int flags)
1188{ 1804{
1189 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1805 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1190 1806
1191 memset (loop, 0, sizeof (struct ev_loop)); 1807 memset (EV_A, 0, sizeof (struct ev_loop));
1192
1193 loop_init (EV_A_ flags); 1808 loop_init (EV_A_ flags);
1194 1809
1195 if (ev_backend (EV_A)) 1810 if (ev_backend (EV_A))
1196 return loop; 1811 return EV_A;
1197 1812
1198 return 0; 1813 return 0;
1199} 1814}
1200 1815
1201void 1816void
1208void 1823void
1209ev_loop_fork (EV_P) 1824ev_loop_fork (EV_P)
1210{ 1825{
1211 postfork = 1; /* must be in line with ev_default_fork */ 1826 postfork = 1; /* must be in line with ev_default_fork */
1212} 1827}
1828#endif /* multiplicity */
1213 1829
1830#if EV_VERIFY
1831static void noinline
1832verify_watcher (EV_P_ W w)
1833{
1834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1835
1836 if (w->pending)
1837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1838}
1839
1840static void noinline
1841verify_heap (EV_P_ ANHE *heap, int N)
1842{
1843 int i;
1844
1845 for (i = HEAP0; i < N + HEAP0; ++i)
1846 {
1847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1850
1851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1852 }
1853}
1854
1855static void noinline
1856array_verify (EV_P_ W *ws, int cnt)
1857{
1858 while (cnt--)
1859 {
1860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1861 verify_watcher (EV_A_ ws [cnt]);
1862 }
1863}
1864#endif
1865
1866#if EV_MINIMAL < 2
1867void
1868ev_loop_verify (EV_P)
1869{
1870#if EV_VERIFY
1871 int i;
1872 WL w;
1873
1874 assert (activecnt >= -1);
1875
1876 assert (fdchangemax >= fdchangecnt);
1877 for (i = 0; i < fdchangecnt; ++i)
1878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1879
1880 assert (anfdmax >= 0);
1881 for (i = 0; i < anfdmax; ++i)
1882 for (w = anfds [i].head; w; w = w->next)
1883 {
1884 verify_watcher (EV_A_ (W)w);
1885 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1886 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1887 }
1888
1889 assert (timermax >= timercnt);
1890 verify_heap (EV_A_ timers, timercnt);
1891
1892#if EV_PERIODIC_ENABLE
1893 assert (periodicmax >= periodiccnt);
1894 verify_heap (EV_A_ periodics, periodiccnt);
1895#endif
1896
1897 for (i = NUMPRI; i--; )
1898 {
1899 assert (pendingmax [i] >= pendingcnt [i]);
1900#if EV_IDLE_ENABLE
1901 assert (idleall >= 0);
1902 assert (idlemax [i] >= idlecnt [i]);
1903 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1904#endif
1905 }
1906
1907#if EV_FORK_ENABLE
1908 assert (forkmax >= forkcnt);
1909 array_verify (EV_A_ (W *)forks, forkcnt);
1910#endif
1911
1912#if EV_ASYNC_ENABLE
1913 assert (asyncmax >= asynccnt);
1914 array_verify (EV_A_ (W *)asyncs, asynccnt);
1915#endif
1916
1917 assert (preparemax >= preparecnt);
1918 array_verify (EV_A_ (W *)prepares, preparecnt);
1919
1920 assert (checkmax >= checkcnt);
1921 array_verify (EV_A_ (W *)checks, checkcnt);
1922
1923# if 0
1924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1926# endif
1927#endif
1928}
1214#endif 1929#endif
1215 1930
1216#if EV_MULTIPLICITY 1931#if EV_MULTIPLICITY
1217struct ev_loop * 1932struct ev_loop *
1218ev_default_loop_init (unsigned int flags) 1933ev_default_loop_init (unsigned int flags)
1219#else 1934#else
1220int 1935int
1221ev_default_loop (unsigned int flags) 1936ev_default_loop (unsigned int flags)
1222#endif 1937#endif
1223{ 1938{
1224 if (sigpipe [0] == sigpipe [1])
1225 if (pipe (sigpipe))
1226 return 0;
1227
1228 if (!ev_default_loop_ptr) 1939 if (!ev_default_loop_ptr)
1229 { 1940 {
1230#if EV_MULTIPLICITY 1941#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1232#else 1943#else
1233 ev_default_loop_ptr = 1; 1944 ev_default_loop_ptr = 1;
1234#endif 1945#endif
1235 1946
1236 loop_init (EV_A_ flags); 1947 loop_init (EV_A_ flags);
1237 1948
1238 if (ev_backend (EV_A)) 1949 if (ev_backend (EV_A))
1239 { 1950 {
1240 siginit (EV_A);
1241
1242#ifndef _WIN32 1951#ifndef _WIN32
1243 ev_signal_init (&childev, childcb, SIGCHLD); 1952 ev_signal_init (&childev, childcb, SIGCHLD);
1244 ev_set_priority (&childev, EV_MAXPRI); 1953 ev_set_priority (&childev, EV_MAXPRI);
1245 ev_signal_start (EV_A_ &childev); 1954 ev_signal_start (EV_A_ &childev);
1246 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1955 ev_unref (EV_A); /* child watcher should not keep loop alive */
1255 1964
1256void 1965void
1257ev_default_destroy (void) 1966ev_default_destroy (void)
1258{ 1967{
1259#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1260 struct ev_loop *loop = ev_default_loop_ptr; 1969 EV_P = ev_default_loop_ptr;
1261#endif 1970#endif
1971
1972 ev_default_loop_ptr = 0;
1262 1973
1263#ifndef _WIN32 1974#ifndef _WIN32
1264 ev_ref (EV_A); /* child watcher */ 1975 ev_ref (EV_A); /* child watcher */
1265 ev_signal_stop (EV_A_ &childev); 1976 ev_signal_stop (EV_A_ &childev);
1266#endif 1977#endif
1267 1978
1268 ev_ref (EV_A); /* signal watcher */
1269 ev_io_stop (EV_A_ &sigev);
1270
1271 close (sigpipe [0]); sigpipe [0] = 0;
1272 close (sigpipe [1]); sigpipe [1] = 0;
1273
1274 loop_destroy (EV_A); 1979 loop_destroy (EV_A);
1275} 1980}
1276 1981
1277void 1982void
1278ev_default_fork (void) 1983ev_default_fork (void)
1279{ 1984{
1280#if EV_MULTIPLICITY 1985#if EV_MULTIPLICITY
1281 struct ev_loop *loop = ev_default_loop_ptr; 1986 EV_P = ev_default_loop_ptr;
1282#endif 1987#endif
1283 1988
1284 if (backend)
1285 postfork = 1; /* must be in line with ev_loop_fork */ 1989 postfork = 1; /* must be in line with ev_loop_fork */
1286} 1990}
1287 1991
1288/*****************************************************************************/ 1992/*****************************************************************************/
1289 1993
1290void 1994void
1291ev_invoke (EV_P_ void *w, int revents) 1995ev_invoke (EV_P_ void *w, int revents)
1292{ 1996{
1293 EV_CB_INVOKE ((W)w, revents); 1997 EV_CB_INVOKE ((W)w, revents);
1294} 1998}
1295 1999
1296void inline_speed 2000unsigned int
1297call_pending (EV_P) 2001ev_pending_count (EV_P)
2002{
2003 int pri;
2004 unsigned int count = 0;
2005
2006 for (pri = NUMPRI; pri--; )
2007 count += pendingcnt [pri];
2008
2009 return count;
2010}
2011
2012void noinline
2013ev_invoke_pending (EV_P)
1298{ 2014{
1299 int pri; 2015 int pri;
1300 2016
1301 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1302 while (pendingcnt [pri]) 2018 while (pendingcnt [pri])
1303 { 2019 {
1304 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2020 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1305 2021
1306 if (expect_true (p->w))
1307 {
1308 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2022 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2023 /* ^ this is no longer true, as pending_w could be here */
1309 2024
1310 p->w->pending = 0; 2025 p->w->pending = 0;
1311 EV_CB_INVOKE (p->w, p->events); 2026 EV_CB_INVOKE (p->w, p->events);
1312 } 2027 EV_FREQUENT_CHECK;
1313 } 2028 }
1314} 2029}
1315 2030
1316void inline_size
1317timers_reify (EV_P)
1318{
1319 while (timercnt && ((WT)timers [0])->at <= mn_now)
1320 {
1321 ev_timer *w = (ev_timer *)timers [0];
1322
1323 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1324
1325 /* first reschedule or stop timer */
1326 if (w->repeat)
1327 {
1328 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1329
1330 ((WT)w)->at += w->repeat;
1331 if (((WT)w)->at < mn_now)
1332 ((WT)w)->at = mn_now;
1333
1334 downheap (timers, timercnt, 0);
1335 }
1336 else
1337 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1338
1339 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1340 }
1341}
1342
1343#if EV_PERIODIC_ENABLE
1344void inline_size
1345periodics_reify (EV_P)
1346{
1347 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1348 {
1349 ev_periodic *w = (ev_periodic *)periodics [0];
1350
1351 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1352
1353 /* first reschedule or stop timer */
1354 if (w->reschedule_cb)
1355 {
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1357 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1358 downheap (periodics, periodiccnt, 0);
1359 }
1360 else if (w->interval)
1361 {
1362 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1363 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1364 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1365 downheap (periodics, periodiccnt, 0);
1366 }
1367 else
1368 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1369
1370 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1371 }
1372}
1373
1374static void noinline
1375periodics_reschedule (EV_P)
1376{
1377 int i;
1378
1379 /* adjust periodics after time jump */
1380 for (i = 0; i < periodiccnt; ++i)
1381 {
1382 ev_periodic *w = (ev_periodic *)periodics [i];
1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1388 }
1389
1390 /* now rebuild the heap */
1391 for (i = periodiccnt >> 1; i--; )
1392 downheap (periodics, periodiccnt, i);
1393}
1394#endif
1395
1396#if EV_IDLE_ENABLE 2031#if EV_IDLE_ENABLE
1397void inline_size 2032/* make idle watchers pending. this handles the "call-idle */
2033/* only when higher priorities are idle" logic */
2034inline_size void
1398idle_reify (EV_P) 2035idle_reify (EV_P)
1399{ 2036{
1400 if (expect_false (idleall)) 2037 if (expect_false (idleall))
1401 { 2038 {
1402 int pri; 2039 int pri;
1414 } 2051 }
1415 } 2052 }
1416} 2053}
1417#endif 2054#endif
1418 2055
1419void inline_speed 2056/* make timers pending */
2057inline_size void
2058timers_reify (EV_P)
2059{
2060 EV_FREQUENT_CHECK;
2061
2062 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2063 {
2064 do
2065 {
2066 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2067
2068 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2069
2070 /* first reschedule or stop timer */
2071 if (w->repeat)
2072 {
2073 ev_at (w) += w->repeat;
2074 if (ev_at (w) < mn_now)
2075 ev_at (w) = mn_now;
2076
2077 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2078
2079 ANHE_at_cache (timers [HEAP0]);
2080 downheap (timers, timercnt, HEAP0);
2081 }
2082 else
2083 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2084
2085 EV_FREQUENT_CHECK;
2086 feed_reverse (EV_A_ (W)w);
2087 }
2088 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2089
2090 feed_reverse_done (EV_A_ EV_TIMEOUT);
2091 }
2092}
2093
2094#if EV_PERIODIC_ENABLE
2095/* make periodics pending */
2096inline_size void
2097periodics_reify (EV_P)
2098{
2099 EV_FREQUENT_CHECK;
2100
2101 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2102 {
2103 int feed_count = 0;
2104
2105 do
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2108
2109 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2110
2111 /* first reschedule or stop timer */
2112 if (w->reschedule_cb)
2113 {
2114 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2115
2116 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2117
2118 ANHE_at_cache (periodics [HEAP0]);
2119 downheap (periodics, periodiccnt, HEAP0);
2120 }
2121 else if (w->interval)
2122 {
2123 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2124 /* if next trigger time is not sufficiently in the future, put it there */
2125 /* this might happen because of floating point inexactness */
2126 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2127 {
2128 ev_at (w) += w->interval;
2129
2130 /* if interval is unreasonably low we might still have a time in the past */
2131 /* so correct this. this will make the periodic very inexact, but the user */
2132 /* has effectively asked to get triggered more often than possible */
2133 if (ev_at (w) < ev_rt_now)
2134 ev_at (w) = ev_rt_now;
2135 }
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else
2141 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2142
2143 EV_FREQUENT_CHECK;
2144 feed_reverse (EV_A_ (W)w);
2145 }
2146 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2147
2148 feed_reverse_done (EV_A_ EV_PERIODIC);
2149 }
2150}
2151
2152/* simply recalculate all periodics */
2153/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2154static void noinline
2155periodics_reschedule (EV_P)
2156{
2157 int i;
2158
2159 /* adjust periodics after time jump */
2160 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2161 {
2162 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2163
2164 if (w->reschedule_cb)
2165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2166 else if (w->interval)
2167 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2168
2169 ANHE_at_cache (periodics [i]);
2170 }
2171
2172 reheap (periodics, periodiccnt);
2173}
2174#endif
2175
2176/* adjust all timers by a given offset */
2177static void noinline
2178timers_reschedule (EV_P_ ev_tstamp adjust)
2179{
2180 int i;
2181
2182 for (i = 0; i < timercnt; ++i)
2183 {
2184 ANHE *he = timers + i + HEAP0;
2185 ANHE_w (*he)->at += adjust;
2186 ANHE_at_cache (*he);
2187 }
2188}
2189
2190/* fetch new monotonic and realtime times from the kernel */
2191/* also detect if there was a timejump, and act accordingly */
2192inline_speed void
1420time_update (EV_P_ ev_tstamp max_block) 2193time_update (EV_P_ ev_tstamp max_block)
1421{ 2194{
1422 int i;
1423
1424#if EV_USE_MONOTONIC 2195#if EV_USE_MONOTONIC
1425 if (expect_true (have_monotonic)) 2196 if (expect_true (have_monotonic))
1426 { 2197 {
2198 int i;
1427 ev_tstamp odiff = rtmn_diff; 2199 ev_tstamp odiff = rtmn_diff;
1428 2200
1429 mn_now = get_clock (); 2201 mn_now = get_clock ();
1430 2202
1431 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2203 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1449 */ 2221 */
1450 for (i = 4; --i; ) 2222 for (i = 4; --i; )
1451 { 2223 {
1452 rtmn_diff = ev_rt_now - mn_now; 2224 rtmn_diff = ev_rt_now - mn_now;
1453 2225
1454 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2226 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1455 return; /* all is well */ 2227 return; /* all is well */
1456 2228
1457 ev_rt_now = ev_time (); 2229 ev_rt_now = ev_time ();
1458 mn_now = get_clock (); 2230 mn_now = get_clock ();
1459 now_floor = mn_now; 2231 now_floor = mn_now;
1460 } 2232 }
1461 2233
2234 /* no timer adjustment, as the monotonic clock doesn't jump */
2235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1462# if EV_PERIODIC_ENABLE 2236# if EV_PERIODIC_ENABLE
1463 periodics_reschedule (EV_A); 2237 periodics_reschedule (EV_A);
1464# endif 2238# endif
1465 /* no timer adjustment, as the monotonic clock doesn't jump */
1466 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1467 } 2239 }
1468 else 2240 else
1469#endif 2241#endif
1470 { 2242 {
1471 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1472 2244
1473 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2245 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1474 { 2246 {
2247 /* adjust timers. this is easy, as the offset is the same for all of them */
2248 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1475#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1476 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1477#endif 2251#endif
1478 /* adjust timers. this is easy, as the offset is the same for all of them */
1479 for (i = 0; i < timercnt; ++i)
1480 ((WT)timers [i])->at += ev_rt_now - mn_now;
1481 } 2252 }
1482 2253
1483 mn_now = ev_rt_now; 2254 mn_now = ev_rt_now;
1484 } 2255 }
1485} 2256}
1486 2257
1487void 2258void
1488ev_ref (EV_P)
1489{
1490 ++activecnt;
1491}
1492
1493void
1494ev_unref (EV_P)
1495{
1496 --activecnt;
1497}
1498
1499static int loop_done;
1500
1501void
1502ev_loop (EV_P_ int flags) 2259ev_loop (EV_P_ int flags)
1503{ 2260{
1504 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2261#if EV_MINIMAL < 2
1505 ? EVUNLOOP_ONE 2262 ++loop_depth;
1506 : EVUNLOOP_CANCEL; 2263#endif
1507 2264
2265 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2266
2267 loop_done = EVUNLOOP_CANCEL;
2268
1508 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2269 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1509 2270
1510 do 2271 do
1511 { 2272 {
2273#if EV_VERIFY >= 2
2274 ev_loop_verify (EV_A);
2275#endif
2276
1512#ifndef _WIN32 2277#ifndef _WIN32
1513 if (expect_false (curpid)) /* penalise the forking check even more */ 2278 if (expect_false (curpid)) /* penalise the forking check even more */
1514 if (expect_false (getpid () != curpid)) 2279 if (expect_false (getpid () != curpid))
1515 { 2280 {
1516 curpid = getpid (); 2281 curpid = getpid ();
1522 /* we might have forked, so queue fork handlers */ 2287 /* we might have forked, so queue fork handlers */
1523 if (expect_false (postfork)) 2288 if (expect_false (postfork))
1524 if (forkcnt) 2289 if (forkcnt)
1525 { 2290 {
1526 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2291 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1527 call_pending (EV_A); 2292 EV_INVOKE_PENDING;
1528 } 2293 }
1529#endif 2294#endif
1530 2295
1531 /* queue prepare watchers (and execute them) */ 2296 /* queue prepare watchers (and execute them) */
1532 if (expect_false (preparecnt)) 2297 if (expect_false (preparecnt))
1533 { 2298 {
1534 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2299 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1535 call_pending (EV_A); 2300 EV_INVOKE_PENDING;
1536 } 2301 }
1537 2302
1538 if (expect_false (!activecnt)) 2303 if (expect_false (loop_done))
1539 break; 2304 break;
1540 2305
1541 /* we might have forked, so reify kernel state if necessary */ 2306 /* we might have forked, so reify kernel state if necessary */
1542 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1543 loop_fork (EV_A); 2308 loop_fork (EV_A);
1550 ev_tstamp waittime = 0.; 2315 ev_tstamp waittime = 0.;
1551 ev_tstamp sleeptime = 0.; 2316 ev_tstamp sleeptime = 0.;
1552 2317
1553 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2318 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1554 { 2319 {
2320 /* remember old timestamp for io_blocktime calculation */
2321 ev_tstamp prev_mn_now = mn_now;
2322
1555 /* update time to cancel out callback processing overhead */ 2323 /* update time to cancel out callback processing overhead */
1556 time_update (EV_A_ 1e100); 2324 time_update (EV_A_ 1e100);
1557 2325
1558 waittime = MAX_BLOCKTIME; 2326 waittime = MAX_BLOCKTIME;
1559 2327
1560 if (timercnt) 2328 if (timercnt)
1561 { 2329 {
1562 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1563 if (waittime > to) waittime = to; 2331 if (waittime > to) waittime = to;
1564 } 2332 }
1565 2333
1566#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1567 if (periodiccnt) 2335 if (periodiccnt)
1568 { 2336 {
1569 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1570 if (waittime > to) waittime = to; 2338 if (waittime > to) waittime = to;
1571 } 2339 }
1572#endif 2340#endif
1573 2341
2342 /* don't let timeouts decrease the waittime below timeout_blocktime */
1574 if (expect_false (waittime < timeout_blocktime)) 2343 if (expect_false (waittime < timeout_blocktime))
1575 waittime = timeout_blocktime; 2344 waittime = timeout_blocktime;
1576 2345
1577 sleeptime = waittime - backend_fudge; 2346 /* extra check because io_blocktime is commonly 0 */
1578
1579 if (expect_true (sleeptime > io_blocktime)) 2347 if (expect_false (io_blocktime))
1580 sleeptime = io_blocktime;
1581
1582 if (sleeptime)
1583 { 2348 {
2349 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2350
2351 if (sleeptime > waittime - backend_fudge)
2352 sleeptime = waittime - backend_fudge;
2353
2354 if (expect_true (sleeptime > 0.))
2355 {
1584 ev_sleep (sleeptime); 2356 ev_sleep (sleeptime);
1585 waittime -= sleeptime; 2357 waittime -= sleeptime;
2358 }
1586 } 2359 }
1587 } 2360 }
1588 2361
2362#if EV_MINIMAL < 2
1589 ++loop_count; 2363 ++loop_count;
2364#endif
2365 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1590 backend_poll (EV_A_ waittime); 2366 backend_poll (EV_A_ waittime);
2367 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1591 2368
1592 /* update ev_rt_now, do magic */ 2369 /* update ev_rt_now, do magic */
1593 time_update (EV_A_ waittime + sleeptime); 2370 time_update (EV_A_ waittime + sleeptime);
1594 } 2371 }
1595 2372
1606 2383
1607 /* queue check watchers, to be executed first */ 2384 /* queue check watchers, to be executed first */
1608 if (expect_false (checkcnt)) 2385 if (expect_false (checkcnt))
1609 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2386 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1610 2387
1611 call_pending (EV_A); 2388 EV_INVOKE_PENDING;
1612
1613 } 2389 }
1614 while (expect_true (activecnt && !loop_done)); 2390 while (expect_true (
2391 activecnt
2392 && !loop_done
2393 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2394 ));
1615 2395
1616 if (loop_done == EVUNLOOP_ONE) 2396 if (loop_done == EVUNLOOP_ONE)
1617 loop_done = EVUNLOOP_CANCEL; 2397 loop_done = EVUNLOOP_CANCEL;
2398
2399#if EV_MINIMAL < 2
2400 --loop_depth;
2401#endif
1618} 2402}
1619 2403
1620void 2404void
1621ev_unloop (EV_P_ int how) 2405ev_unloop (EV_P_ int how)
1622{ 2406{
1623 loop_done = how; 2407 loop_done = how;
1624} 2408}
1625 2409
2410void
2411ev_ref (EV_P)
2412{
2413 ++activecnt;
2414}
2415
2416void
2417ev_unref (EV_P)
2418{
2419 --activecnt;
2420}
2421
2422void
2423ev_now_update (EV_P)
2424{
2425 time_update (EV_A_ 1e100);
2426}
2427
2428void
2429ev_suspend (EV_P)
2430{
2431 ev_now_update (EV_A);
2432}
2433
2434void
2435ev_resume (EV_P)
2436{
2437 ev_tstamp mn_prev = mn_now;
2438
2439 ev_now_update (EV_A);
2440 timers_reschedule (EV_A_ mn_now - mn_prev);
2441#if EV_PERIODIC_ENABLE
2442 /* TODO: really do this? */
2443 periodics_reschedule (EV_A);
2444#endif
2445}
2446
1626/*****************************************************************************/ 2447/*****************************************************************************/
2448/* singly-linked list management, used when the expected list length is short */
1627 2449
1628void inline_size 2450inline_size void
1629wlist_add (WL *head, WL elem) 2451wlist_add (WL *head, WL elem)
1630{ 2452{
1631 elem->next = *head; 2453 elem->next = *head;
1632 *head = elem; 2454 *head = elem;
1633} 2455}
1634 2456
1635void inline_size 2457inline_size void
1636wlist_del (WL *head, WL elem) 2458wlist_del (WL *head, WL elem)
1637{ 2459{
1638 while (*head) 2460 while (*head)
1639 { 2461 {
1640 if (*head == elem) 2462 if (expect_true (*head == elem))
1641 { 2463 {
1642 *head = elem->next; 2464 *head = elem->next;
1643 return; 2465 break;
1644 } 2466 }
1645 2467
1646 head = &(*head)->next; 2468 head = &(*head)->next;
1647 } 2469 }
1648} 2470}
1649 2471
1650void inline_speed 2472/* internal, faster, version of ev_clear_pending */
2473inline_speed void
1651clear_pending (EV_P_ W w) 2474clear_pending (EV_P_ W w)
1652{ 2475{
1653 if (w->pending) 2476 if (w->pending)
1654 { 2477 {
1655 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2478 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1656 w->pending = 0; 2479 w->pending = 0;
1657 } 2480 }
1658} 2481}
1659 2482
1660int 2483int
1664 int pending = w_->pending; 2487 int pending = w_->pending;
1665 2488
1666 if (expect_true (pending)) 2489 if (expect_true (pending))
1667 { 2490 {
1668 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2491 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2492 p->w = (W)&pending_w;
1669 w_->pending = 0; 2493 w_->pending = 0;
1670 p->w = 0;
1671 return p->events; 2494 return p->events;
1672 } 2495 }
1673 else 2496 else
1674 return 0; 2497 return 0;
1675} 2498}
1676 2499
1677void inline_size 2500inline_size void
1678pri_adjust (EV_P_ W w) 2501pri_adjust (EV_P_ W w)
1679{ 2502{
1680 int pri = w->priority; 2503 int pri = ev_priority (w);
1681 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2504 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1682 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2505 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1683 w->priority = pri; 2506 ev_set_priority (w, pri);
1684} 2507}
1685 2508
1686void inline_speed 2509inline_speed void
1687ev_start (EV_P_ W w, int active) 2510ev_start (EV_P_ W w, int active)
1688{ 2511{
1689 pri_adjust (EV_A_ w); 2512 pri_adjust (EV_A_ w);
1690 w->active = active; 2513 w->active = active;
1691 ev_ref (EV_A); 2514 ev_ref (EV_A);
1692} 2515}
1693 2516
1694void inline_size 2517inline_size void
1695ev_stop (EV_P_ W w) 2518ev_stop (EV_P_ W w)
1696{ 2519{
1697 ev_unref (EV_A); 2520 ev_unref (EV_A);
1698 w->active = 0; 2521 w->active = 0;
1699} 2522}
1706 int fd = w->fd; 2529 int fd = w->fd;
1707 2530
1708 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
1709 return; 2532 return;
1710 2533
1711 assert (("ev_io_start called with negative fd", fd >= 0)); 2534 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2535 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2536
2537 EV_FREQUENT_CHECK;
1712 2538
1713 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1714 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2540 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1715 wlist_add (&anfds[fd].head, (WL)w); 2541 wlist_add (&anfds[fd].head, (WL)w);
1716 2542
1717 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2543 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1718 w->events &= ~EV_IOFDSET; 2544 w->events &= ~EV__IOFDSET;
2545
2546 EV_FREQUENT_CHECK;
1719} 2547}
1720 2548
1721void noinline 2549void noinline
1722ev_io_stop (EV_P_ ev_io *w) 2550ev_io_stop (EV_P_ ev_io *w)
1723{ 2551{
1724 clear_pending (EV_A_ (W)w); 2552 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 2553 if (expect_false (!ev_is_active (w)))
1726 return; 2554 return;
1727 2555
1728 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2556 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2557
2558 EV_FREQUENT_CHECK;
1729 2559
1730 wlist_del (&anfds[w->fd].head, (WL)w); 2560 wlist_del (&anfds[w->fd].head, (WL)w);
1731 ev_stop (EV_A_ (W)w); 2561 ev_stop (EV_A_ (W)w);
1732 2562
1733 fd_change (EV_A_ w->fd, 1); 2563 fd_change (EV_A_ w->fd, 1);
2564
2565 EV_FREQUENT_CHECK;
1734} 2566}
1735 2567
1736void noinline 2568void noinline
1737ev_timer_start (EV_P_ ev_timer *w) 2569ev_timer_start (EV_P_ ev_timer *w)
1738{ 2570{
1739 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
1740 return; 2572 return;
1741 2573
1742 ((WT)w)->at += mn_now; 2574 ev_at (w) += mn_now;
1743 2575
1744 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2576 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1745 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++timercnt;
1746 ev_start (EV_A_ (W)w, ++timercnt); 2581 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1747 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2582 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1748 timers [timercnt - 1] = (WT)w; 2583 ANHE_w (timers [ev_active (w)]) = (WT)w;
1749 upheap (timers, timercnt - 1); 2584 ANHE_at_cache (timers [ev_active (w)]);
2585 upheap (timers, ev_active (w));
1750 2586
2587 EV_FREQUENT_CHECK;
2588
1751 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1752} 2590}
1753 2591
1754void noinline 2592void noinline
1755ev_timer_stop (EV_P_ ev_timer *w) 2593ev_timer_stop (EV_P_ ev_timer *w)
1756{ 2594{
1757 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1758 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1759 return; 2597 return;
1760 2598
1761 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2599 EV_FREQUENT_CHECK;
1762 2600
1763 { 2601 {
1764 int active = ((W)w)->active; 2602 int active = ev_active (w);
1765 2603
2604 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2605
2606 --timercnt;
2607
1766 if (expect_true (--active < --timercnt)) 2608 if (expect_true (active < timercnt + HEAP0))
1767 { 2609 {
1768 timers [active] = timers [timercnt]; 2610 timers [active] = timers [timercnt + HEAP0];
1769 adjustheap (timers, timercnt, active); 2611 adjustheap (timers, timercnt, active);
1770 } 2612 }
1771 } 2613 }
1772 2614
1773 ((WT)w)->at -= mn_now; 2615 ev_at (w) -= mn_now;
1774 2616
1775 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
2618
2619 EV_FREQUENT_CHECK;
1776} 2620}
1777 2621
1778void noinline 2622void noinline
1779ev_timer_again (EV_P_ ev_timer *w) 2623ev_timer_again (EV_P_ ev_timer *w)
1780{ 2624{
2625 EV_FREQUENT_CHECK;
2626
1781 if (ev_is_active (w)) 2627 if (ev_is_active (w))
1782 { 2628 {
1783 if (w->repeat) 2629 if (w->repeat)
1784 { 2630 {
1785 ((WT)w)->at = mn_now + w->repeat; 2631 ev_at (w) = mn_now + w->repeat;
2632 ANHE_at_cache (timers [ev_active (w)]);
1786 adjustheap (timers, timercnt, ((W)w)->active - 1); 2633 adjustheap (timers, timercnt, ev_active (w));
1787 } 2634 }
1788 else 2635 else
1789 ev_timer_stop (EV_A_ w); 2636 ev_timer_stop (EV_A_ w);
1790 } 2637 }
1791 else if (w->repeat) 2638 else if (w->repeat)
1792 { 2639 {
1793 w->at = w->repeat; 2640 ev_at (w) = w->repeat;
1794 ev_timer_start (EV_A_ w); 2641 ev_timer_start (EV_A_ w);
1795 } 2642 }
2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647ev_tstamp
2648ev_timer_remaining (EV_P_ ev_timer *w)
2649{
2650 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1796} 2651}
1797 2652
1798#if EV_PERIODIC_ENABLE 2653#if EV_PERIODIC_ENABLE
1799void noinline 2654void noinline
1800ev_periodic_start (EV_P_ ev_periodic *w) 2655ev_periodic_start (EV_P_ ev_periodic *w)
1801{ 2656{
1802 if (expect_false (ev_is_active (w))) 2657 if (expect_false (ev_is_active (w)))
1803 return; 2658 return;
1804 2659
1805 if (w->reschedule_cb) 2660 if (w->reschedule_cb)
1806 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2661 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval) 2662 else if (w->interval)
1808 { 2663 {
1809 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2664 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1810 /* this formula differs from the one in periodic_reify because we do not always round up */ 2665 /* this formula differs from the one in periodic_reify because we do not always round up */
1811 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2666 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1812 } 2667 }
1813 else 2668 else
1814 ((WT)w)->at = w->offset; 2669 ev_at (w) = w->offset;
1815 2670
2671 EV_FREQUENT_CHECK;
2672
2673 ++periodiccnt;
1816 ev_start (EV_A_ (W)w, ++periodiccnt); 2674 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1817 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2675 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1818 periodics [periodiccnt - 1] = (WT)w; 2676 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1819 upheap (periodics, periodiccnt - 1); 2677 ANHE_at_cache (periodics [ev_active (w)]);
2678 upheap (periodics, ev_active (w));
1820 2679
2680 EV_FREQUENT_CHECK;
2681
1821 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2682 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1822} 2683}
1823 2684
1824void noinline 2685void noinline
1825ev_periodic_stop (EV_P_ ev_periodic *w) 2686ev_periodic_stop (EV_P_ ev_periodic *w)
1826{ 2687{
1827 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
1828 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
1829 return; 2690 return;
1830 2691
1831 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2692 EV_FREQUENT_CHECK;
1832 2693
1833 { 2694 {
1834 int active = ((W)w)->active; 2695 int active = ev_active (w);
1835 2696
2697 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2698
2699 --periodiccnt;
2700
1836 if (expect_true (--active < --periodiccnt)) 2701 if (expect_true (active < periodiccnt + HEAP0))
1837 { 2702 {
1838 periodics [active] = periodics [periodiccnt]; 2703 periodics [active] = periodics [periodiccnt + HEAP0];
1839 adjustheap (periodics, periodiccnt, active); 2704 adjustheap (periodics, periodiccnt, active);
1840 } 2705 }
1841 } 2706 }
1842 2707
1843 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
1844} 2711}
1845 2712
1846void noinline 2713void noinline
1847ev_periodic_again (EV_P_ ev_periodic *w) 2714ev_periodic_again (EV_P_ ev_periodic *w)
1848{ 2715{
1857#endif 2724#endif
1858 2725
1859void noinline 2726void noinline
1860ev_signal_start (EV_P_ ev_signal *w) 2727ev_signal_start (EV_P_ ev_signal *w)
1861{ 2728{
1862#if EV_MULTIPLICITY
1863 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1864#endif
1865 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
1866 return; 2730 return;
1867 2731
1868 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2732 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1869 2733
2734#if EV_MULTIPLICITY
2735 assert (("libev: a signal must not be attached to two different loops",
2736 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2737
2738 signals [w->signum - 1].loop = EV_A;
2739#endif
2740
2741 EV_FREQUENT_CHECK;
2742
2743#if EV_USE_SIGNALFD
2744 if (sigfd == -2)
1870 { 2745 {
1871#ifndef _WIN32 2746 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1872 sigset_t full, prev; 2747 if (sigfd < 0 && errno == EINVAL)
1873 sigfillset (&full); 2748 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1874 sigprocmask (SIG_SETMASK, &full, &prev);
1875#endif
1876 2749
1877 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2750 if (sigfd >= 0)
2751 {
2752 fd_intern (sigfd); /* doing it twice will not hurt */
1878 2753
1879#ifndef _WIN32 2754 sigemptyset (&sigfd_set);
1880 sigprocmask (SIG_SETMASK, &prev, 0); 2755
1881#endif 2756 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2757 ev_set_priority (&sigfd_w, EV_MAXPRI);
2758 ev_io_start (EV_A_ &sigfd_w);
2759 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2760 }
1882 } 2761 }
2762
2763 if (sigfd >= 0)
2764 {
2765 /* TODO: check .head */
2766 sigaddset (&sigfd_set, w->signum);
2767 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2768
2769 signalfd (sigfd, &sigfd_set, 0);
2770 }
2771#endif
1883 2772
1884 ev_start (EV_A_ (W)w, 1); 2773 ev_start (EV_A_ (W)w, 1);
1885 wlist_add (&signals [w->signum - 1].head, (WL)w); 2774 wlist_add (&signals [w->signum - 1].head, (WL)w);
1886 2775
1887 if (!((WL)w)->next) 2776 if (!((WL)w)->next)
2777# if EV_USE_SIGNALFD
2778 if (sigfd < 0) /*TODO*/
2779# endif
1888 { 2780 {
1889#if _WIN32 2781# ifdef _WIN32
2782 evpipe_init (EV_A);
2783
1890 signal (w->signum, sighandler); 2784 signal (w->signum, ev_sighandler);
1891#else 2785# else
1892 struct sigaction sa; 2786 struct sigaction sa;
2787
2788 evpipe_init (EV_A);
2789
1893 sa.sa_handler = sighandler; 2790 sa.sa_handler = ev_sighandler;
1894 sigfillset (&sa.sa_mask); 2791 sigfillset (&sa.sa_mask);
1895 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2792 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1896 sigaction (w->signum, &sa, 0); 2793 sigaction (w->signum, &sa, 0);
2794
2795 sigemptyset (&sa.sa_mask);
2796 sigaddset (&sa.sa_mask, w->signum);
2797 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1897#endif 2798#endif
1898 } 2799 }
2800
2801 EV_FREQUENT_CHECK;
1899} 2802}
1900 2803
1901void noinline 2804void noinline
1902ev_signal_stop (EV_P_ ev_signal *w) 2805ev_signal_stop (EV_P_ ev_signal *w)
1903{ 2806{
1904 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1905 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1906 return; 2809 return;
1907 2810
2811 EV_FREQUENT_CHECK;
2812
1908 wlist_del (&signals [w->signum - 1].head, (WL)w); 2813 wlist_del (&signals [w->signum - 1].head, (WL)w);
1909 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
1910 2815
1911 if (!signals [w->signum - 1].head) 2816 if (!signals [w->signum - 1].head)
2817 {
2818#if EV_MULTIPLICITY
2819 signals [w->signum - 1].loop = 0; /* unattach from signal */
2820#endif
2821#if EV_USE_SIGNALFD
2822 if (sigfd >= 0)
2823 {
2824 sigset_t ss;
2825
2826 sigemptyset (&ss);
2827 sigaddset (&ss, w->signum);
2828 sigdelset (&sigfd_set, w->signum);
2829
2830 signalfd (sigfd, &sigfd_set, 0);
2831 sigprocmask (SIG_UNBLOCK, &ss, 0);
2832 }
2833 else
2834#endif
1912 signal (w->signum, SIG_DFL); 2835 signal (w->signum, SIG_DFL);
2836 }
2837
2838 EV_FREQUENT_CHECK;
1913} 2839}
1914 2840
1915void 2841void
1916ev_child_start (EV_P_ ev_child *w) 2842ev_child_start (EV_P_ ev_child *w)
1917{ 2843{
1918#if EV_MULTIPLICITY 2844#if EV_MULTIPLICITY
1919 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2845 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1920#endif 2846#endif
1921 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
1922 return; 2848 return;
1923 2849
2850 EV_FREQUENT_CHECK;
2851
1924 ev_start (EV_A_ (W)w, 1); 2852 ev_start (EV_A_ (W)w, 1);
1925 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2853 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2854
2855 EV_FREQUENT_CHECK;
1926} 2856}
1927 2857
1928void 2858void
1929ev_child_stop (EV_P_ ev_child *w) 2859ev_child_stop (EV_P_ ev_child *w)
1930{ 2860{
1931 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
1932 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
1933 return; 2863 return;
1934 2864
2865 EV_FREQUENT_CHECK;
2866
1935 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2867 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1936 ev_stop (EV_A_ (W)w); 2868 ev_stop (EV_A_ (W)w);
2869
2870 EV_FREQUENT_CHECK;
1937} 2871}
1938 2872
1939#if EV_STAT_ENABLE 2873#if EV_STAT_ENABLE
1940 2874
1941# ifdef _WIN32 2875# ifdef _WIN32
1942# undef lstat 2876# undef lstat
1943# define lstat(a,b) _stati64 (a,b) 2877# define lstat(a,b) _stati64 (a,b)
1944# endif 2878# endif
1945 2879
1946#define DEF_STAT_INTERVAL 5.0074891 2880#define DEF_STAT_INTERVAL 5.0074891
2881#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1947#define MIN_STAT_INTERVAL 0.1074891 2882#define MIN_STAT_INTERVAL 0.1074891
1948 2883
1949static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2884static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1950 2885
1951#if EV_USE_INOTIFY 2886#if EV_USE_INOTIFY
1952# define EV_INOTIFY_BUFSIZE 8192 2887
2888/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2889# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1953 2890
1954static void noinline 2891static void noinline
1955infy_add (EV_P_ ev_stat *w) 2892infy_add (EV_P_ ev_stat *w)
1956{ 2893{
1957 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2894 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1958 2895
1959 if (w->wd < 0) 2896 if (w->wd >= 0)
2897 {
2898 struct statfs sfs;
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem is known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (!fs_2625)
2905 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2906 else if (!statfs (w->path, &sfs)
2907 && (sfs.f_type == 0x1373 /* devfs */
2908 || sfs.f_type == 0xEF53 /* ext2/3 */
2909 || sfs.f_type == 0x3153464a /* jfs */
2910 || sfs.f_type == 0x52654973 /* reiser3 */
2911 || sfs.f_type == 0x01021994 /* tempfs */
2912 || sfs.f_type == 0x58465342 /* xfs */))
2913 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2914 else
2915 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1960 { 2916 }
1961 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2917 else
2918 {
2919 /* can't use inotify, continue to stat */
2920 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1962 2921
1963 /* monitor some parent directory for speedup hints */ 2922 /* if path is not there, monitor some parent directory for speedup hints */
2923 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2924 /* but an efficiency issue only */
1964 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2925 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1965 { 2926 {
1966 char path [4096]; 2927 char path [4096];
1967 strcpy (path, w->path); 2928 strcpy (path, w->path);
1968 2929
1971 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2932 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1972 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2933 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1973 2934
1974 char *pend = strrchr (path, '/'); 2935 char *pend = strrchr (path, '/');
1975 2936
1976 if (!pend) 2937 if (!pend || pend == path)
1977 break; /* whoops, no '/', complain to your admin */ 2938 break;
1978 2939
1979 *pend = 0; 2940 *pend = 0;
1980 w->wd = inotify_add_watch (fs_fd, path, mask); 2941 w->wd = inotify_add_watch (fs_fd, path, mask);
1981 } 2942 }
1982 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2943 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1983 } 2944 }
1984 } 2945 }
1985 else
1986 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1987 2946
1988 if (w->wd >= 0) 2947 if (w->wd >= 0)
1989 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2948 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2949
2950 /* now re-arm timer, if required */
2951 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2952 ev_timer_again (EV_A_ &w->timer);
2953 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1990} 2954}
1991 2955
1992static void noinline 2956static void noinline
1993infy_del (EV_P_ ev_stat *w) 2957infy_del (EV_P_ ev_stat *w)
1994{ 2958{
2008 2972
2009static void noinline 2973static void noinline
2010infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2974infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2011{ 2975{
2012 if (slot < 0) 2976 if (slot < 0)
2013 /* overflow, need to check for all hahs slots */ 2977 /* overflow, need to check for all hash slots */
2014 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2015 infy_wd (EV_A_ slot, wd, ev); 2979 infy_wd (EV_A_ slot, wd, ev);
2016 else 2980 else
2017 { 2981 {
2018 WL w_; 2982 WL w_;
2024 2988
2025 if (w->wd == wd || wd == -1) 2989 if (w->wd == wd || wd == -1)
2026 { 2990 {
2027 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2991 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2028 { 2992 {
2993 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2029 w->wd = -1; 2994 w->wd = -1;
2030 infy_add (EV_A_ w); /* re-add, no matter what */ 2995 infy_add (EV_A_ w); /* re-add, no matter what */
2031 } 2996 }
2032 2997
2033 stat_timer_cb (EV_A_ &w->timer, 0); 2998 stat_timer_cb (EV_A_ &w->timer, 0);
2038 3003
2039static void 3004static void
2040infy_cb (EV_P_ ev_io *w, int revents) 3005infy_cb (EV_P_ ev_io *w, int revents)
2041{ 3006{
2042 char buf [EV_INOTIFY_BUFSIZE]; 3007 char buf [EV_INOTIFY_BUFSIZE];
2043 struct inotify_event *ev = (struct inotify_event *)buf;
2044 int ofs; 3008 int ofs;
2045 int len = read (fs_fd, buf, sizeof (buf)); 3009 int len = read (fs_fd, buf, sizeof (buf));
2046 3010
2047 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3011 for (ofs = 0; ofs < len; )
3012 {
3013 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2048 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3014 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3015 ofs += sizeof (struct inotify_event) + ev->len;
3016 }
2049} 3017}
2050 3018
2051void inline_size 3019inline_size unsigned int
3020ev_linux_version (void)
3021{
3022 struct utsname buf;
3023 unsigned int v;
3024 int i;
3025 char *p = buf.release;
3026
3027 if (uname (&buf))
3028 return 0;
3029
3030 for (i = 3+1; --i; )
3031 {
3032 unsigned int c = 0;
3033
3034 for (;;)
3035 {
3036 if (*p >= '0' && *p <= '9')
3037 c = c * 10 + *p++ - '0';
3038 else
3039 {
3040 p += *p == '.';
3041 break;
3042 }
3043 }
3044
3045 v = (v << 8) | c;
3046 }
3047
3048 return v;
3049}
3050
3051inline_size void
3052ev_check_2625 (EV_P)
3053{
3054 /* kernels < 2.6.25 are borked
3055 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3056 */
3057 if (ev_linux_version () < 0x020619)
3058 return;
3059
3060 fs_2625 = 1;
3061}
3062
3063inline_size int
3064infy_newfd (void)
3065{
3066#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3067 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3068 if (fd >= 0)
3069 return fd;
3070#endif
3071 return inotify_init ();
3072}
3073
3074inline_size void
2052infy_init (EV_P) 3075infy_init (EV_P)
2053{ 3076{
2054 if (fs_fd != -2) 3077 if (fs_fd != -2)
2055 return; 3078 return;
2056 3079
3080 fs_fd = -1;
3081
3082 ev_check_2625 (EV_A);
3083
2057 fs_fd = inotify_init (); 3084 fs_fd = infy_newfd ();
2058 3085
2059 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2060 { 3087 {
3088 fd_intern (fs_fd);
2061 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3089 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2062 ev_set_priority (&fs_w, EV_MAXPRI); 3090 ev_set_priority (&fs_w, EV_MAXPRI);
2063 ev_io_start (EV_A_ &fs_w); 3091 ev_io_start (EV_A_ &fs_w);
3092 ev_unref (EV_A);
2064 } 3093 }
2065} 3094}
2066 3095
2067void inline_size 3096inline_size void
2068infy_fork (EV_P) 3097infy_fork (EV_P)
2069{ 3098{
2070 int slot; 3099 int slot;
2071 3100
2072 if (fs_fd < 0) 3101 if (fs_fd < 0)
2073 return; 3102 return;
2074 3103
3104 ev_ref (EV_A);
3105 ev_io_stop (EV_A_ &fs_w);
2075 close (fs_fd); 3106 close (fs_fd);
2076 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_set (&fs_w, fs_fd, EV_READ);
3113 ev_io_start (EV_A_ &fs_w);
3114 ev_unref (EV_A);
3115 }
2077 3116
2078 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3117 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2079 { 3118 {
2080 WL w_ = fs_hash [slot].head; 3119 WL w_ = fs_hash [slot].head;
2081 fs_hash [slot].head = 0; 3120 fs_hash [slot].head = 0;
2088 w->wd = -1; 3127 w->wd = -1;
2089 3128
2090 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
2091 infy_add (EV_A_ w); /* re-add, no matter what */ 3130 infy_add (EV_A_ w); /* re-add, no matter what */
2092 else 3131 else
3132 {
3133 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3134 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2093 ev_timer_start (EV_A_ &w->timer); 3135 ev_timer_again (EV_A_ &w->timer);
3136 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3137 }
2094 } 3138 }
2095
2096 } 3139 }
2097} 3140}
2098 3141
3142#endif
3143
3144#ifdef _WIN32
3145# define EV_LSTAT(p,b) _stati64 (p, b)
3146#else
3147# define EV_LSTAT(p,b) lstat (p, b)
2099#endif 3148#endif
2100 3149
2101void 3150void
2102ev_stat_stat (EV_P_ ev_stat *w) 3151ev_stat_stat (EV_P_ ev_stat *w)
2103{ 3152{
2110static void noinline 3159static void noinline
2111stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3160stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2112{ 3161{
2113 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3162 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2114 3163
2115 /* we copy this here each the time so that */ 3164 ev_statdata prev = w->attr;
2116 /* prev has the old value when the callback gets invoked */
2117 w->prev = w->attr;
2118 ev_stat_stat (EV_A_ w); 3165 ev_stat_stat (EV_A_ w);
2119 3166
2120 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2121 if ( 3168 if (
2122 w->prev.st_dev != w->attr.st_dev 3169 prev.st_dev != w->attr.st_dev
2123 || w->prev.st_ino != w->attr.st_ino 3170 || prev.st_ino != w->attr.st_ino
2124 || w->prev.st_mode != w->attr.st_mode 3171 || prev.st_mode != w->attr.st_mode
2125 || w->prev.st_nlink != w->attr.st_nlink 3172 || prev.st_nlink != w->attr.st_nlink
2126 || w->prev.st_uid != w->attr.st_uid 3173 || prev.st_uid != w->attr.st_uid
2127 || w->prev.st_gid != w->attr.st_gid 3174 || prev.st_gid != w->attr.st_gid
2128 || w->prev.st_rdev != w->attr.st_rdev 3175 || prev.st_rdev != w->attr.st_rdev
2129 || w->prev.st_size != w->attr.st_size 3176 || prev.st_size != w->attr.st_size
2130 || w->prev.st_atime != w->attr.st_atime 3177 || prev.st_atime != w->attr.st_atime
2131 || w->prev.st_mtime != w->attr.st_mtime 3178 || prev.st_mtime != w->attr.st_mtime
2132 || w->prev.st_ctime != w->attr.st_ctime 3179 || prev.st_ctime != w->attr.st_ctime
2133 ) { 3180 ) {
3181 /* we only update w->prev on actual differences */
3182 /* in case we test more often than invoke the callback, */
3183 /* to ensure that prev is always different to attr */
3184 w->prev = prev;
3185
2134 #if EV_USE_INOTIFY 3186 #if EV_USE_INOTIFY
3187 if (fs_fd >= 0)
3188 {
2135 infy_del (EV_A_ w); 3189 infy_del (EV_A_ w);
2136 infy_add (EV_A_ w); 3190 infy_add (EV_A_ w);
2137 ev_stat_stat (EV_A_ w); /* avoid race... */ 3191 ev_stat_stat (EV_A_ w); /* avoid race... */
3192 }
2138 #endif 3193 #endif
2139 3194
2140 ev_feed_event (EV_A_ w, EV_STAT); 3195 ev_feed_event (EV_A_ w, EV_STAT);
2141 } 3196 }
2142} 3197}
2145ev_stat_start (EV_P_ ev_stat *w) 3200ev_stat_start (EV_P_ ev_stat *w)
2146{ 3201{
2147 if (expect_false (ev_is_active (w))) 3202 if (expect_false (ev_is_active (w)))
2148 return; 3203 return;
2149 3204
2150 /* since we use memcmp, we need to clear any padding data etc. */
2151 memset (&w->prev, 0, sizeof (ev_statdata));
2152 memset (&w->attr, 0, sizeof (ev_statdata));
2153
2154 ev_stat_stat (EV_A_ w); 3205 ev_stat_stat (EV_A_ w);
2155 3206
3207 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2156 if (w->interval < MIN_STAT_INTERVAL) 3208 w->interval = MIN_STAT_INTERVAL;
2157 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2158 3209
2159 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3210 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2160 ev_set_priority (&w->timer, ev_priority (w)); 3211 ev_set_priority (&w->timer, ev_priority (w));
2161 3212
2162#if EV_USE_INOTIFY 3213#if EV_USE_INOTIFY
2163 infy_init (EV_A); 3214 infy_init (EV_A);
2164 3215
2165 if (fs_fd >= 0) 3216 if (fs_fd >= 0)
2166 infy_add (EV_A_ w); 3217 infy_add (EV_A_ w);
2167 else 3218 else
2168#endif 3219#endif
3220 {
2169 ev_timer_start (EV_A_ &w->timer); 3221 ev_timer_again (EV_A_ &w->timer);
3222 ev_unref (EV_A);
3223 }
2170 3224
2171 ev_start (EV_A_ (W)w, 1); 3225 ev_start (EV_A_ (W)w, 1);
3226
3227 EV_FREQUENT_CHECK;
2172} 3228}
2173 3229
2174void 3230void
2175ev_stat_stop (EV_P_ ev_stat *w) 3231ev_stat_stop (EV_P_ ev_stat *w)
2176{ 3232{
2177 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2178 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2179 return; 3235 return;
2180 3236
3237 EV_FREQUENT_CHECK;
3238
2181#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2182 infy_del (EV_A_ w); 3240 infy_del (EV_A_ w);
2183#endif 3241#endif
3242
3243 if (ev_is_active (&w->timer))
3244 {
3245 ev_ref (EV_A);
2184 ev_timer_stop (EV_A_ &w->timer); 3246 ev_timer_stop (EV_A_ &w->timer);
3247 }
2185 3248
2186 ev_stop (EV_A_ (W)w); 3249 ev_stop (EV_A_ (W)w);
3250
3251 EV_FREQUENT_CHECK;
2187} 3252}
2188#endif 3253#endif
2189 3254
2190#if EV_IDLE_ENABLE 3255#if EV_IDLE_ENABLE
2191void 3256void
2193{ 3258{
2194 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
2195 return; 3260 return;
2196 3261
2197 pri_adjust (EV_A_ (W)w); 3262 pri_adjust (EV_A_ (W)w);
3263
3264 EV_FREQUENT_CHECK;
2198 3265
2199 { 3266 {
2200 int active = ++idlecnt [ABSPRI (w)]; 3267 int active = ++idlecnt [ABSPRI (w)];
2201 3268
2202 ++idleall; 3269 ++idleall;
2203 ev_start (EV_A_ (W)w, active); 3270 ev_start (EV_A_ (W)w, active);
2204 3271
2205 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3272 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2206 idles [ABSPRI (w)][active - 1] = w; 3273 idles [ABSPRI (w)][active - 1] = w;
2207 } 3274 }
3275
3276 EV_FREQUENT_CHECK;
2208} 3277}
2209 3278
2210void 3279void
2211ev_idle_stop (EV_P_ ev_idle *w) 3280ev_idle_stop (EV_P_ ev_idle *w)
2212{ 3281{
2213 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2214 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2215 return; 3284 return;
2216 3285
3286 EV_FREQUENT_CHECK;
3287
2217 { 3288 {
2218 int active = ((W)w)->active; 3289 int active = ev_active (w);
2219 3290
2220 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3291 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2221 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3292 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2222 3293
2223 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
2224 --idleall; 3295 --idleall;
2225 } 3296 }
3297
3298 EV_FREQUENT_CHECK;
2226} 3299}
2227#endif 3300#endif
2228 3301
2229void 3302void
2230ev_prepare_start (EV_P_ ev_prepare *w) 3303ev_prepare_start (EV_P_ ev_prepare *w)
2231{ 3304{
2232 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
2233 return; 3306 return;
3307
3308 EV_FREQUENT_CHECK;
2234 3309
2235 ev_start (EV_A_ (W)w, ++preparecnt); 3310 ev_start (EV_A_ (W)w, ++preparecnt);
2236 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3311 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2237 prepares [preparecnt - 1] = w; 3312 prepares [preparecnt - 1] = w;
3313
3314 EV_FREQUENT_CHECK;
2238} 3315}
2239 3316
2240void 3317void
2241ev_prepare_stop (EV_P_ ev_prepare *w) 3318ev_prepare_stop (EV_P_ ev_prepare *w)
2242{ 3319{
2243 clear_pending (EV_A_ (W)w); 3320 clear_pending (EV_A_ (W)w);
2244 if (expect_false (!ev_is_active (w))) 3321 if (expect_false (!ev_is_active (w)))
2245 return; 3322 return;
2246 3323
3324 EV_FREQUENT_CHECK;
3325
2247 { 3326 {
2248 int active = ((W)w)->active; 3327 int active = ev_active (w);
3328
2249 prepares [active - 1] = prepares [--preparecnt]; 3329 prepares [active - 1] = prepares [--preparecnt];
2250 ((W)prepares [active - 1])->active = active; 3330 ev_active (prepares [active - 1]) = active;
2251 } 3331 }
2252 3332
2253 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
2254} 3336}
2255 3337
2256void 3338void
2257ev_check_start (EV_P_ ev_check *w) 3339ev_check_start (EV_P_ ev_check *w)
2258{ 3340{
2259 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2260 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2261 3345
2262 ev_start (EV_A_ (W)w, ++checkcnt); 3346 ev_start (EV_A_ (W)w, ++checkcnt);
2263 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3347 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2264 checks [checkcnt - 1] = w; 3348 checks [checkcnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2265} 3351}
2266 3352
2267void 3353void
2268ev_check_stop (EV_P_ ev_check *w) 3354ev_check_stop (EV_P_ ev_check *w)
2269{ 3355{
2270 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2271 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2272 return; 3358 return;
2273 3359
3360 EV_FREQUENT_CHECK;
3361
2274 { 3362 {
2275 int active = ((W)w)->active; 3363 int active = ev_active (w);
3364
2276 checks [active - 1] = checks [--checkcnt]; 3365 checks [active - 1] = checks [--checkcnt];
2277 ((W)checks [active - 1])->active = active; 3366 ev_active (checks [active - 1]) = active;
2278 } 3367 }
2279 3368
2280 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
2281} 3372}
2282 3373
2283#if EV_EMBED_ENABLE 3374#if EV_EMBED_ENABLE
2284void noinline 3375void noinline
2285ev_embed_sweep (EV_P_ ev_embed *w) 3376ev_embed_sweep (EV_P_ ev_embed *w)
2302embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3393embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2303{ 3394{
2304 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3395 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2305 3396
2306 { 3397 {
2307 struct ev_loop *loop = w->other; 3398 EV_P = w->other;
2308 3399
2309 while (fdchangecnt) 3400 while (fdchangecnt)
2310 { 3401 {
2311 fd_reify (EV_A); 3402 fd_reify (EV_A);
2312 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3403 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2313 } 3404 }
2314 } 3405 }
2315} 3406}
2316 3407
3408static void
3409embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3412
3413 ev_embed_stop (EV_A_ w);
3414
3415 {
3416 EV_P = w->other;
3417
3418 ev_loop_fork (EV_A);
3419 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3420 }
3421
3422 ev_embed_start (EV_A_ w);
3423}
3424
2317#if 0 3425#if 0
2318static void 3426static void
2319embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3427embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2320{ 3428{
2321 ev_idle_stop (EV_A_ idle); 3429 ev_idle_stop (EV_A_ idle);
2327{ 3435{
2328 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2329 return; 3437 return;
2330 3438
2331 { 3439 {
2332 struct ev_loop *loop = w->other; 3440 EV_P = w->other;
2333 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3441 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2334 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3442 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2335 } 3443 }
3444
3445 EV_FREQUENT_CHECK;
2336 3446
2337 ev_set_priority (&w->io, ev_priority (w)); 3447 ev_set_priority (&w->io, ev_priority (w));
2338 ev_io_start (EV_A_ &w->io); 3448 ev_io_start (EV_A_ &w->io);
2339 3449
2340 ev_prepare_init (&w->prepare, embed_prepare_cb); 3450 ev_prepare_init (&w->prepare, embed_prepare_cb);
2341 ev_set_priority (&w->prepare, EV_MINPRI); 3451 ev_set_priority (&w->prepare, EV_MINPRI);
2342 ev_prepare_start (EV_A_ &w->prepare); 3452 ev_prepare_start (EV_A_ &w->prepare);
2343 3453
3454 ev_fork_init (&w->fork, embed_fork_cb);
3455 ev_fork_start (EV_A_ &w->fork);
3456
2344 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3457 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2345 3458
2346 ev_start (EV_A_ (W)w, 1); 3459 ev_start (EV_A_ (W)w, 1);
3460
3461 EV_FREQUENT_CHECK;
2347} 3462}
2348 3463
2349void 3464void
2350ev_embed_stop (EV_P_ ev_embed *w) 3465ev_embed_stop (EV_P_ ev_embed *w)
2351{ 3466{
2352 clear_pending (EV_A_ (W)w); 3467 clear_pending (EV_A_ (W)w);
2353 if (expect_false (!ev_is_active (w))) 3468 if (expect_false (!ev_is_active (w)))
2354 return; 3469 return;
2355 3470
3471 EV_FREQUENT_CHECK;
3472
2356 ev_io_stop (EV_A_ &w->io); 3473 ev_io_stop (EV_A_ &w->io);
2357 ev_prepare_stop (EV_A_ &w->prepare); 3474 ev_prepare_stop (EV_A_ &w->prepare);
3475 ev_fork_stop (EV_A_ &w->fork);
2358 3476
2359 ev_stop (EV_A_ (W)w); 3477 ev_stop (EV_A_ (W)w);
3478
3479 EV_FREQUENT_CHECK;
2360} 3480}
2361#endif 3481#endif
2362 3482
2363#if EV_FORK_ENABLE 3483#if EV_FORK_ENABLE
2364void 3484void
2365ev_fork_start (EV_P_ ev_fork *w) 3485ev_fork_start (EV_P_ ev_fork *w)
2366{ 3486{
2367 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2368 return; 3488 return;
3489
3490 EV_FREQUENT_CHECK;
2369 3491
2370 ev_start (EV_A_ (W)w, ++forkcnt); 3492 ev_start (EV_A_ (W)w, ++forkcnt);
2371 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2372 forks [forkcnt - 1] = w; 3494 forks [forkcnt - 1] = w;
3495
3496 EV_FREQUENT_CHECK;
2373} 3497}
2374 3498
2375void 3499void
2376ev_fork_stop (EV_P_ ev_fork *w) 3500ev_fork_stop (EV_P_ ev_fork *w)
2377{ 3501{
2378 clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2379 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2380 return; 3504 return;
2381 3505
3506 EV_FREQUENT_CHECK;
3507
2382 { 3508 {
2383 int active = ((W)w)->active; 3509 int active = ev_active (w);
3510
2384 forks [active - 1] = forks [--forkcnt]; 3511 forks [active - 1] = forks [--forkcnt];
2385 ((W)forks [active - 1])->active = active; 3512 ev_active (forks [active - 1]) = active;
2386 } 3513 }
2387 3514
2388 ev_stop (EV_A_ (W)w); 3515 ev_stop (EV_A_ (W)w);
3516
3517 EV_FREQUENT_CHECK;
3518}
3519#endif
3520
3521#if EV_ASYNC_ENABLE
3522void
3523ev_async_start (EV_P_ ev_async *w)
3524{
3525 if (expect_false (ev_is_active (w)))
3526 return;
3527
3528 evpipe_init (EV_A);
3529
3530 EV_FREQUENT_CHECK;
3531
3532 ev_start (EV_A_ (W)w, ++asynccnt);
3533 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3534 asyncs [asynccnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
3537}
3538
3539void
3540ev_async_stop (EV_P_ ev_async *w)
3541{
3542 clear_pending (EV_A_ (W)w);
3543 if (expect_false (!ev_is_active (w)))
3544 return;
3545
3546 EV_FREQUENT_CHECK;
3547
3548 {
3549 int active = ev_active (w);
3550
3551 asyncs [active - 1] = asyncs [--asynccnt];
3552 ev_active (asyncs [active - 1]) = active;
3553 }
3554
3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
3558}
3559
3560void
3561ev_async_send (EV_P_ ev_async *w)
3562{
3563 w->sent = 1;
3564 evpipe_write (EV_A_ &async_pending);
2389} 3565}
2390#endif 3566#endif
2391 3567
2392/*****************************************************************************/ 3568/*****************************************************************************/
2393 3569
2403once_cb (EV_P_ struct ev_once *once, int revents) 3579once_cb (EV_P_ struct ev_once *once, int revents)
2404{ 3580{
2405 void (*cb)(int revents, void *arg) = once->cb; 3581 void (*cb)(int revents, void *arg) = once->cb;
2406 void *arg = once->arg; 3582 void *arg = once->arg;
2407 3583
2408 ev_io_stop (EV_A_ &once->io); 3584 ev_io_stop (EV_A_ &once->io);
2409 ev_timer_stop (EV_A_ &once->to); 3585 ev_timer_stop (EV_A_ &once->to);
2410 ev_free (once); 3586 ev_free (once);
2411 3587
2412 cb (revents, arg); 3588 cb (revents, arg);
2413} 3589}
2414 3590
2415static void 3591static void
2416once_cb_io (EV_P_ ev_io *w, int revents) 3592once_cb_io (EV_P_ ev_io *w, int revents)
2417{ 3593{
2418 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3594 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3595
3596 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2419} 3597}
2420 3598
2421static void 3599static void
2422once_cb_to (EV_P_ ev_timer *w, int revents) 3600once_cb_to (EV_P_ ev_timer *w, int revents)
2423{ 3601{
2424 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3602 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3603
3604 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2425} 3605}
2426 3606
2427void 3607void
2428ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3608ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2429{ 3609{
2451 ev_timer_set (&once->to, timeout, 0.); 3631 ev_timer_set (&once->to, timeout, 0.);
2452 ev_timer_start (EV_A_ &once->to); 3632 ev_timer_start (EV_A_ &once->to);
2453 } 3633 }
2454} 3634}
2455 3635
3636/*****************************************************************************/
3637
3638#if EV_WALK_ENABLE
3639void
3640ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3641{
3642 int i, j;
3643 ev_watcher_list *wl, *wn;
3644
3645 if (types & (EV_IO | EV_EMBED))
3646 for (i = 0; i < anfdmax; ++i)
3647 for (wl = anfds [i].head; wl; )
3648 {
3649 wn = wl->next;
3650
3651#if EV_EMBED_ENABLE
3652 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3653 {
3654 if (types & EV_EMBED)
3655 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3656 }
3657 else
3658#endif
3659#if EV_USE_INOTIFY
3660 if (ev_cb ((ev_io *)wl) == infy_cb)
3661 ;
3662 else
3663#endif
3664 if ((ev_io *)wl != &pipe_w)
3665 if (types & EV_IO)
3666 cb (EV_A_ EV_IO, wl);
3667
3668 wl = wn;
3669 }
3670
3671 if (types & (EV_TIMER | EV_STAT))
3672 for (i = timercnt + HEAP0; i-- > HEAP0; )
3673#if EV_STAT_ENABLE
3674 /*TODO: timer is not always active*/
3675 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3676 {
3677 if (types & EV_STAT)
3678 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3679 }
3680 else
3681#endif
3682 if (types & EV_TIMER)
3683 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3684
3685#if EV_PERIODIC_ENABLE
3686 if (types & EV_PERIODIC)
3687 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3688 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3689#endif
3690
3691#if EV_IDLE_ENABLE
3692 if (types & EV_IDLE)
3693 for (j = NUMPRI; i--; )
3694 for (i = idlecnt [j]; i--; )
3695 cb (EV_A_ EV_IDLE, idles [j][i]);
3696#endif
3697
3698#if EV_FORK_ENABLE
3699 if (types & EV_FORK)
3700 for (i = forkcnt; i--; )
3701 if (ev_cb (forks [i]) != embed_fork_cb)
3702 cb (EV_A_ EV_FORK, forks [i]);
3703#endif
3704
3705#if EV_ASYNC_ENABLE
3706 if (types & EV_ASYNC)
3707 for (i = asynccnt; i--; )
3708 cb (EV_A_ EV_ASYNC, asyncs [i]);
3709#endif
3710
3711 if (types & EV_PREPARE)
3712 for (i = preparecnt; i--; )
3713#if EV_EMBED_ENABLE
3714 if (ev_cb (prepares [i]) != embed_prepare_cb)
3715#endif
3716 cb (EV_A_ EV_PREPARE, prepares [i]);
3717
3718 if (types & EV_CHECK)
3719 for (i = checkcnt; i--; )
3720 cb (EV_A_ EV_CHECK, checks [i]);
3721
3722 if (types & EV_SIGNAL)
3723 for (i = 0; i < EV_NSIG - 1; ++i)
3724 for (wl = signals [i].head; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_SIGNAL, wl);
3728 wl = wn;
3729 }
3730
3731 if (types & EV_CHILD)
3732 for (i = EV_PID_HASHSIZE; i--; )
3733 for (wl = childs [i]; wl; )
3734 {
3735 wn = wl->next;
3736 cb (EV_A_ EV_CHILD, wl);
3737 wl = wn;
3738 }
3739/* EV_STAT 0x00001000 /* stat data changed */
3740/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3741}
3742#endif
3743
2456#if EV_MULTIPLICITY 3744#if EV_MULTIPLICITY
2457 #include "ev_wrap.h" 3745 #include "ev_wrap.h"
2458#endif 3746#endif
2459 3747
2460#ifdef __cplusplus 3748#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines