ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.333 by root, Tue Mar 9 08:58:22 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
226# endif
227#endif
228
168#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
169# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
170#endif 235#endif
171 236
172#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 239#endif
175 240
176#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
177# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
178#endif 247#endif
179 248
180#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
182#endif 251#endif
235# else 304# else
236# define EV_USE_EVENTFD 0 305# define EV_USE_EVENTFD 0
237# endif 306# endif
238#endif 307#endif
239 308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
241 356
242#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
245#endif 360#endif
259# include <sys/select.h> 374# include <sys/select.h>
260# endif 375# endif
261#endif 376#endif
262 377
263#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
264# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
265#endif 387#endif
266 388
267#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 390# include <winsock.h>
269#endif 391#endif
270 392
271#if EV_USE_EVENTFD 393#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
274# ifdef __cplusplus 406# ifdef __cplusplus
275extern "C" { 407extern "C" {
276# endif 408# endif
277int eventfd (unsigned int initval, int flags); 409int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 410# ifdef __cplusplus
279} 411}
280# endif 412# endif
281#endif 413#endif
282 414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
283/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
284 451
285/* 452/*
286 * This is used to avoid floating point rounding problems. 453 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 454 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 455 * to ensure progress, time-wise, even when rounding
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 461
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 464
299#if __GNUC__ >= 4 465#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
302#else 468#else
315# define inline_speed static noinline 481# define inline_speed static noinline
316#else 482#else
317# define inline_speed static inline 483# define inline_speed static inline
318#endif 484#endif
319 485
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
322 493
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
325 496
326typedef ev_watcher *W; 497typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
329 500
330#define ev_active(w) ((W)(w))->active 501#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 502#define ev_at(w) ((WT)(w))->at
332 503
333#if EV_USE_MONOTONIC 504#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 522#endif
338 523
339#ifdef _WIN32 524#ifdef _WIN32
340# include "ev_win32.c" 525# include "ev_win32.c"
341#endif 526#endif
342 527
343/*****************************************************************************/ 528/*****************************************************************************/
344 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
345static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
346 539
347void 540void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 542{
350 syserr_cb = cb; 543 syserr_cb = cb;
351} 544}
352 545
353static void noinline 546static void noinline
354syserr (const char *msg) 547ev_syserr (const char *msg)
355{ 548{
356 if (!msg) 549 if (!msg)
357 msg = "(libev) system error"; 550 msg = "(libev) system error";
358 551
359 if (syserr_cb) 552 if (syserr_cb)
360 syserr_cb (msg); 553 syserr_cb (msg);
361 else 554 else
362 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
363 perror (msg); 564 perror (msg);
565#endif
364 abort (); 566 abort ();
365 } 567 }
366} 568}
367 569
368static void * 570static void *
393{ 595{
394 ptr = alloc (ptr, size); 596 ptr = alloc (ptr, size);
395 597
396 if (!ptr && size) 598 if (!ptr && size)
397 { 599 {
600#if EV_AVOID_STDIO
601 ev_printerr ("libev: memory allocation failed, aborting.\n");
602#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 603 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
604#endif
399 abort (); 605 abort ();
400 } 606 }
401 607
402 return ptr; 608 return ptr;
403} 609}
405#define ev_malloc(size) ev_realloc (0, (size)) 611#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 612#define ev_free(ptr) ev_realloc ((ptr), 0)
407 613
408/*****************************************************************************/ 614/*****************************************************************************/
409 615
616/* set in reify when reification needed */
617#define EV_ANFD_REIFY 1
618
619/* file descriptor info structure */
410typedef struct 620typedef struct
411{ 621{
412 WL head; 622 WL head;
413 unsigned char events; 623 unsigned char events; /* the events watched for */
624 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
625 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 626 unsigned char unused;
627#if EV_USE_EPOLL
628 unsigned int egen; /* generation counter to counter epoll bugs */
629#endif
415#if EV_SELECT_IS_WINSOCKET 630#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 631 SOCKET handle;
417#endif 632#endif
418} ANFD; 633} ANFD;
419 634
635/* stores the pending event set for a given watcher */
420typedef struct 636typedef struct
421{ 637{
422 W w; 638 W w;
423 int events; 639 int events; /* the pending event set for the given watcher */
424} ANPENDING; 640} ANPENDING;
425 641
426#if EV_USE_INOTIFY 642#if EV_USE_INOTIFY
643/* hash table entry per inotify-id */
427typedef struct 644typedef struct
428{ 645{
429 WL head; 646 WL head;
430} ANFS; 647} ANFS;
648#endif
649
650/* Heap Entry */
651#if EV_HEAP_CACHE_AT
652 /* a heap element */
653 typedef struct {
654 ev_tstamp at;
655 WT w;
656 } ANHE;
657
658 #define ANHE_w(he) (he).w /* access watcher, read-write */
659 #define ANHE_at(he) (he).at /* access cached at, read-only */
660 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
661#else
662 /* a heap element */
663 typedef WT ANHE;
664
665 #define ANHE_w(he) (he)
666 #define ANHE_at(he) (he)->at
667 #define ANHE_at_cache(he)
431#endif 668#endif
432 669
433#if EV_MULTIPLICITY 670#if EV_MULTIPLICITY
434 671
435 struct ev_loop 672 struct ev_loop
454 691
455 static int ev_default_loop_ptr; 692 static int ev_default_loop_ptr;
456 693
457#endif 694#endif
458 695
696#if EV_MINIMAL < 2
697# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
698# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
699# define EV_INVOKE_PENDING invoke_cb (EV_A)
700#else
701# define EV_RELEASE_CB (void)0
702# define EV_ACQUIRE_CB (void)0
703# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
704#endif
705
706#define EVUNLOOP_RECURSE 0x80
707
459/*****************************************************************************/ 708/*****************************************************************************/
460 709
710#ifndef EV_HAVE_EV_TIME
461ev_tstamp 711ev_tstamp
462ev_time (void) 712ev_time (void)
463{ 713{
464#if EV_USE_REALTIME 714#if EV_USE_REALTIME
715 if (expect_true (have_realtime))
716 {
465 struct timespec ts; 717 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 718 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 719 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 720 }
721#endif
722
469 struct timeval tv; 723 struct timeval tv;
470 gettimeofday (&tv, 0); 724 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 725 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 726}
727#endif
474 728
475ev_tstamp inline_size 729inline_size ev_tstamp
476get_clock (void) 730get_clock (void)
477{ 731{
478#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 733 if (expect_true (have_monotonic))
480 { 734 {
513 struct timeval tv; 767 struct timeval tv;
514 768
515 tv.tv_sec = (time_t)delay; 769 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 770 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 771
772 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
773 /* something not guaranteed by newer posix versions, but guaranteed */
774 /* by older ones */
518 select (0, 0, 0, 0, &tv); 775 select (0, 0, 0, 0, &tv);
519#endif 776#endif
520 } 777 }
521} 778}
522 779
523/*****************************************************************************/ 780/*****************************************************************************/
524 781
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 782#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 783
527int inline_size 784/* find a suitable new size for the given array, */
785/* hopefully by rounding to a ncie-to-malloc size */
786inline_size int
528array_nextsize (int elem, int cur, int cnt) 787array_nextsize (int elem, int cur, int cnt)
529{ 788{
530 int ncur = cur + 1; 789 int ncur = cur + 1;
531 790
532 do 791 do
549array_realloc (int elem, void *base, int *cur, int cnt) 808array_realloc (int elem, void *base, int *cur, int cnt)
550{ 809{
551 *cur = array_nextsize (elem, *cur, cnt); 810 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 811 return ev_realloc (base, elem * *cur);
553} 812}
813
814#define array_init_zero(base,count) \
815 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 816
555#define array_needsize(type,base,cur,cnt,init) \ 817#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 818 if (expect_false ((cnt) > (cur))) \
557 { \ 819 { \
558 int ocur_ = (cur); \ 820 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 832 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 833 }
572#endif 834#endif
573 835
574#define array_free(stem, idx) \ 836#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 837 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 838
577/*****************************************************************************/ 839/*****************************************************************************/
840
841/* dummy callback for pending events */
842static void noinline
843pendingcb (EV_P_ ev_prepare *w, int revents)
844{
845}
578 846
579void noinline 847void noinline
580ev_feed_event (EV_P_ void *w, int revents) 848ev_feed_event (EV_P_ void *w, int revents)
581{ 849{
582 W w_ = (W)w; 850 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 859 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 860 pendings [pri][w_->pending - 1].events = revents;
593 } 861 }
594} 862}
595 863
596void inline_speed 864inline_speed void
865feed_reverse (EV_P_ W w)
866{
867 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
868 rfeeds [rfeedcnt++] = w;
869}
870
871inline_size void
872feed_reverse_done (EV_P_ int revents)
873{
874 do
875 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
876 while (rfeedcnt);
877}
878
879inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 880queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 881{
599 int i; 882 int i;
600 883
601 for (i = 0; i < eventcnt; ++i) 884 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 885 ev_feed_event (EV_A_ events [i], type);
603} 886}
604 887
605/*****************************************************************************/ 888/*****************************************************************************/
606 889
607void inline_size 890inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 891fd_event_nc (EV_P_ int fd, int revents)
622{ 892{
623 ANFD *anfd = anfds + fd; 893 ANFD *anfd = anfds + fd;
624 ev_io *w; 894 ev_io *w;
625 895
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 896 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 900 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 901 ev_feed_event (EV_A_ (W)w, ev);
632 } 902 }
633} 903}
634 904
905/* do not submit kernel events for fds that have reify set */
906/* because that means they changed while we were polling for new events */
907inline_speed void
908fd_event (EV_P_ int fd, int revents)
909{
910 ANFD *anfd = anfds + fd;
911
912 if (expect_true (!anfd->reify))
913 fd_event_nc (EV_A_ fd, revents);
914}
915
635void 916void
636ev_feed_fd_event (EV_P_ int fd, int revents) 917ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 918{
638 if (fd >= 0 && fd < anfdmax) 919 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 920 fd_event_nc (EV_A_ fd, revents);
640} 921}
641 922
642void inline_size 923/* make sure the external fd watch events are in-sync */
924/* with the kernel/libev internal state */
925inline_size void
643fd_reify (EV_P) 926fd_reify (EV_P)
644{ 927{
645 int i; 928 int i;
646 929
647 for (i = 0; i < fdchangecnt; ++i) 930 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 939 events |= (unsigned char)w->events;
657 940
658#if EV_SELECT_IS_WINSOCKET 941#if EV_SELECT_IS_WINSOCKET
659 if (events) 942 if (events)
660 { 943 {
661 unsigned long argp; 944 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 945 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 946 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 947 }
669#endif 948#endif
670 949
671 { 950 {
672 unsigned char o_events = anfd->events; 951 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 952 unsigned char o_reify = anfd->reify;
674 953
675 anfd->reify = 0; 954 anfd->reify = 0;
676 anfd->events = events; 955 anfd->events = events;
677 956
678 if (o_events != events || o_reify & EV_IOFDSET) 957 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 958 backend_modify (EV_A_ fd, o_events, events);
680 } 959 }
681 } 960 }
682 961
683 fdchangecnt = 0; 962 fdchangecnt = 0;
684} 963}
685 964
686void inline_size 965/* something about the given fd changed */
966inline_size void
687fd_change (EV_P_ int fd, int flags) 967fd_change (EV_P_ int fd, int flags)
688{ 968{
689 unsigned char reify = anfds [fd].reify; 969 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 970 anfds [fd].reify |= flags;
691 971
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 975 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 976 fdchanges [fdchangecnt - 1] = fd;
697 } 977 }
698} 978}
699 979
700void inline_speed 980/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
981inline_speed void
701fd_kill (EV_P_ int fd) 982fd_kill (EV_P_ int fd)
702{ 983{
703 ev_io *w; 984 ev_io *w;
704 985
705 while ((w = (ev_io *)anfds [fd].head)) 986 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 988 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 989 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 990 }
710} 991}
711 992
712int inline_size 993/* check whether the given fd is atcually valid, for error recovery */
994inline_size int
713fd_valid (int fd) 995fd_valid (int fd)
714{ 996{
715#ifdef _WIN32 997#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 998 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 999#else
718 return fcntl (fd, F_GETFD) != -1; 1000 return fcntl (fd, F_GETFD) != -1;
719#endif 1001#endif
720} 1002}
721 1003
725{ 1007{
726 int fd; 1008 int fd;
727 1009
728 for (fd = 0; fd < anfdmax; ++fd) 1010 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1011 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1012 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1013 fd_kill (EV_A_ fd);
732} 1014}
733 1015
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1016/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1017static void noinline
739 1021
740 for (fd = anfdmax; fd--; ) 1022 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1023 if (anfds [fd].events)
742 { 1024 {
743 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
744 return; 1026 break;
745 } 1027 }
746} 1028}
747 1029
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1030/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1031static void noinline
753 1035
754 for (fd = 0; fd < anfdmax; ++fd) 1036 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1037 if (anfds [fd].events)
756 { 1038 {
757 anfds [fd].events = 0; 1039 anfds [fd].events = 0;
1040 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1041 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1042 }
760} 1043}
761 1044
762/*****************************************************************************/ 1045/*****************************************************************************/
1046
1047/*
1048 * the heap functions want a real array index. array index 0 uis guaranteed to not
1049 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1050 * the branching factor of the d-tree.
1051 */
763 1052
764/* 1053/*
765 * at the moment we allow libev the luxury of two heaps, 1054 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1055 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1056 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1057 * the difference is about 5% with 50000+ watchers.
769 */ 1058 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1059#if EV_USE_4HEAP
772 1060
1061#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 1062#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1063#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1064#define UPHEAP_DONE(p,k) ((p) == (k))
774 1065
775/* towards the root */ 1066/* away from the root */
776void inline_speed 1067inline_speed void
777upheap (WT *heap, int k) 1068downheap (ANHE *heap, int N, int k)
778{ 1069{
779 WT w = heap [k]; 1070 ANHE he = heap [k];
1071 ANHE *E = heap + N + HEAP0;
780 1072
781 for (;;) 1073 for (;;)
782 { 1074 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 1075 ev_tstamp minat;
807 WT *minpos; 1076 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 1077 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 1078
810 // find minimum child 1079 /* find minimum child */
811 if (expect_true (pos +3 < E)) 1080 if (expect_true (pos + DHEAP - 1 < E))
812 { 1081 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 1082 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1083 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1084 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1085 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1086 }
1087 else if (pos < E)
1088 {
1089 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1090 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1091 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1092 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 1093 }
818 else 1094 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 1095 break;
831 1096
832 ev_active (*minpos) = k; 1097 if (ANHE_at (he) <= minat)
1098 break;
1099
833 heap [k] = *minpos; 1100 heap [k] = *minpos;
1101 ev_active (ANHE_w (*minpos)) = k;
834 1102
835 k = minpos - heap; 1103 k = minpos - heap;
836 } 1104 }
837 1105
838 heap [k] = w; 1106 heap [k] = he;
839 ev_active (heap [k]) = k; 1107 ev_active (ANHE_w (he)) = k;
840} 1108}
841 1109
842#else // 4HEAP 1110#else /* 4HEAP */
843 1111
844#define HEAP0 1 1112#define HEAP0 1
1113#define HPARENT(k) ((k) >> 1)
1114#define UPHEAP_DONE(p,k) (!(p))
845 1115
846/* towards the root */ 1116/* away from the root */
847void inline_speed 1117inline_speed void
848upheap (WT *heap, int k) 1118downheap (ANHE *heap, int N, int k)
849{ 1119{
850 WT w = heap [k]; 1120 ANHE he = heap [k];
851 1121
852 for (;;) 1122 for (;;)
853 { 1123 {
854 int p = k >> 1; 1124 int c = k << 1;
855 1125
856 /* maybe we could use a dummy element at heap [0]? */ 1126 if (c >= N + HEAP0)
857 if (!p || heap [p]->at <= w->at)
858 break; 1127 break;
859 1128
860 heap [k] = heap [p]; 1129 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 1130 ? 1 : 0;
862 k = p;
863 }
864 1131
865 heap [k] = w; 1132 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 1133 break;
881 1134
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 1135 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 1136 ev_active (ANHE_w (heap [k])) = k;
890 1137
891 k = c; 1138 k = c;
892 } 1139 }
893 1140
894 heap [k] = w; 1141 heap [k] = he;
1142 ev_active (ANHE_w (he)) = k;
1143}
1144#endif
1145
1146/* towards the root */
1147inline_speed void
1148upheap (ANHE *heap, int k)
1149{
1150 ANHE he = heap [k];
1151
1152 for (;;)
1153 {
1154 int p = HPARENT (k);
1155
1156 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1157 break;
1158
1159 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1160 ev_active (ANHE_w (heap [k])) = k;
896} 1161 k = p;
897#endif 1162 }
898 1163
899void inline_size 1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168/* move an element suitably so it is in a correct place */
1169inline_size void
900adjustheap (WT *heap, int N, int k) 1170adjustheap (ANHE *heap, int N, int k)
901{ 1171{
1172 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
902 upheap (heap, k); 1173 upheap (heap, k);
1174 else
903 downheap (heap, N, k); 1175 downheap (heap, N, k);
1176}
1177
1178/* rebuild the heap: this function is used only once and executed rarely */
1179inline_size void
1180reheap (ANHE *heap, int N)
1181{
1182 int i;
1183
1184 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1185 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1186 for (i = 0; i < N; ++i)
1187 upheap (heap, i + HEAP0);
904} 1188}
905 1189
906/*****************************************************************************/ 1190/*****************************************************************************/
907 1191
1192/* associate signal watchers to a signal signal */
908typedef struct 1193typedef struct
909{ 1194{
1195 EV_ATOMIC_T pending;
1196#if EV_MULTIPLICITY
1197 EV_P;
1198#endif
910 WL head; 1199 WL head;
911 EV_ATOMIC_T gotsig;
912} ANSIG; 1200} ANSIG;
913 1201
914static ANSIG *signals; 1202static ANSIG signals [EV_NSIG - 1];
915static int signalmax;
916
917static EV_ATOMIC_T gotsig;
918
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930 1203
931/*****************************************************************************/ 1204/*****************************************************************************/
932 1205
933void inline_speed 1206/* used to prepare libev internal fd's */
1207/* this is not fork-safe */
1208inline_speed void
934fd_intern (int fd) 1209fd_intern (int fd)
935{ 1210{
936#ifdef _WIN32 1211#ifdef _WIN32
937 int arg = 1; 1212 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1213 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
939#else 1214#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 1215 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 1216 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 1217#endif
943} 1218}
944 1219
945static void noinline 1220static void noinline
946evpipe_init (EV_P) 1221evpipe_init (EV_P)
947{ 1222{
948 if (!ev_is_active (&pipeev)) 1223 if (!ev_is_active (&pipe_w))
949 { 1224 {
950#if EV_USE_EVENTFD 1225#if EV_USE_EVENTFD
1226 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1227 if (evfd < 0 && errno == EINVAL)
951 if ((evfd = eventfd (0, 0)) >= 0) 1228 evfd = eventfd (0, 0);
1229
1230 if (evfd >= 0)
952 { 1231 {
953 evpipe [0] = -1; 1232 evpipe [0] = -1;
954 fd_intern (evfd); 1233 fd_intern (evfd); /* doing it twice doesn't hurt */
955 ev_io_set (&pipeev, evfd, EV_READ); 1234 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1235 }
957 else 1236 else
958#endif 1237#endif
959 { 1238 {
960 while (pipe (evpipe)) 1239 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1240 ev_syserr ("(libev) error creating signal/async pipe");
962 1241
963 fd_intern (evpipe [0]); 1242 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1243 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1244 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1245 }
967 1246
968 ev_io_start (EV_A_ &pipeev); 1247 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1248 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1249 }
971} 1250}
972 1251
973void inline_size 1252inline_size void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1253evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1254{
976 if (!*flag) 1255 if (!*flag)
977 { 1256 {
978 int old_errno = errno; /* save errno because write might clobber it */ 1257 int old_errno = errno; /* save errno because write might clobber it */
991 1270
992 errno = old_errno; 1271 errno = old_errno;
993 } 1272 }
994} 1273}
995 1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
996static void 1277static void
997pipecb (EV_P_ ev_io *iow, int revents) 1278pipecb (EV_P_ ev_io *iow, int revents)
998{ 1279{
1280 int i;
1281
999#if EV_USE_EVENTFD 1282#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1283 if (evfd >= 0)
1001 { 1284 {
1002 uint64_t counter; 1285 uint64_t counter;
1003 read (evfd, &counter, sizeof (uint64_t)); 1286 read (evfd, &counter, sizeof (uint64_t));
1007 { 1290 {
1008 char dummy; 1291 char dummy;
1009 read (evpipe [0], &dummy, 1); 1292 read (evpipe [0], &dummy, 1);
1010 } 1293 }
1011 1294
1012 if (gotsig && ev_is_default_loop (EV_A)) 1295 if (sig_pending)
1013 { 1296 {
1014 int signum; 1297 sig_pending = 0;
1015 gotsig = 0;
1016 1298
1017 for (signum = signalmax; signum--; ) 1299 for (i = EV_NSIG - 1; i--; )
1018 if (signals [signum].gotsig) 1300 if (expect_false (signals [i].pending))
1019 ev_feed_signal_event (EV_A_ signum + 1); 1301 ev_feed_signal_event (EV_A_ i + 1);
1020 } 1302 }
1021 1303
1022#if EV_ASYNC_ENABLE 1304#if EV_ASYNC_ENABLE
1023 if (gotasync) 1305 if (async_pending)
1024 { 1306 {
1025 int i; 1307 async_pending = 0;
1026 gotasync = 0;
1027 1308
1028 for (i = asynccnt; i--; ) 1309 for (i = asynccnt; i--; )
1029 if (asyncs [i]->sent) 1310 if (asyncs [i]->sent)
1030 { 1311 {
1031 asyncs [i]->sent = 0; 1312 asyncs [i]->sent = 0;
1039 1320
1040static void 1321static void
1041ev_sighandler (int signum) 1322ev_sighandler (int signum)
1042{ 1323{
1043#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
1044 struct ev_loop *loop = &default_loop_struct; 1325 EV_P = signals [signum - 1].loop;
1045#endif 1326#endif
1046 1327
1047#if _WIN32 1328#ifdef _WIN32
1048 signal (signum, ev_sighandler); 1329 signal (signum, ev_sighandler);
1049#endif 1330#endif
1050 1331
1051 signals [signum - 1].gotsig = 1; 1332 signals [signum - 1].pending = 1;
1052 evpipe_write (EV_A_ &gotsig); 1333 evpipe_write (EV_A_ &sig_pending);
1053} 1334}
1054 1335
1055void noinline 1336void noinline
1056ev_feed_signal_event (EV_P_ int signum) 1337ev_feed_signal_event (EV_P_ int signum)
1057{ 1338{
1058 WL w; 1339 WL w;
1059 1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1060#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1347 /* it is permissible to try to feed a signal to the wrong loop */
1062#endif 1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1063 1349
1064 --signum; 1350 if (expect_false (signals [signum].loop != EV_A))
1065
1066 if (signum < 0 || signum >= signalmax)
1067 return; 1351 return;
1352#endif
1068 1353
1069 signals [signum].gotsig = 0; 1354 signals [signum].pending = 0;
1070 1355
1071 for (w = signals [signum].head; w; w = w->next) 1356 for (w = signals [signum].head; w; w = w->next)
1072 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1073} 1358}
1074 1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1075/*****************************************************************************/ 1380/*****************************************************************************/
1076 1381
1077static WL childs [EV_PID_HASHSIZE]; 1382static WL childs [EV_PID_HASHSIZE];
1078 1383
1079#ifndef _WIN32 1384#ifndef _WIN32
1082 1387
1083#ifndef WIFCONTINUED 1388#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 1389# define WIFCONTINUED(status) 0
1085#endif 1390#endif
1086 1391
1087void inline_speed 1392/* handle a single child status event */
1393inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 1394child_reap (EV_P_ int chain, int pid, int status)
1089{ 1395{
1090 ev_child *w; 1396 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1397 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 1398
1105 1411
1106#ifndef WCONTINUED 1412#ifndef WCONTINUED
1107# define WCONTINUED 0 1413# define WCONTINUED 0
1108#endif 1414#endif
1109 1415
1416/* called on sigchld etc., calls waitpid */
1110static void 1417static void
1111childcb (EV_P_ ev_signal *sw, int revents) 1418childcb (EV_P_ ev_signal *sw, int revents)
1112{ 1419{
1113 int pid, status; 1420 int pid, status;
1114 1421
1195 /* kqueue is borked on everything but netbsd apparently */ 1502 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 1503 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 1504 flags &= ~EVBACKEND_KQUEUE;
1198#endif 1505#endif
1199#ifdef __APPLE__ 1506#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 1507 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 1508 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1509 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1202#endif 1510#endif
1203 1511
1204 return flags; 1512 return flags;
1205} 1513}
1206 1514
1220ev_backend (EV_P) 1528ev_backend (EV_P)
1221{ 1529{
1222 return backend; 1530 return backend;
1223} 1531}
1224 1532
1533#if EV_MINIMAL < 2
1225unsigned int 1534unsigned int
1226ev_loop_count (EV_P) 1535ev_loop_count (EV_P)
1227{ 1536{
1228 return loop_count; 1537 return loop_count;
1229} 1538}
1230 1539
1540unsigned int
1541ev_loop_depth (EV_P)
1542{
1543 return loop_depth;
1544}
1545
1231void 1546void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1547ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{ 1548{
1234 io_blocktime = interval; 1549 io_blocktime = interval;
1235} 1550}
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1553ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{ 1554{
1240 timeout_blocktime = interval; 1555 timeout_blocktime = interval;
1241} 1556}
1242 1557
1558void
1559ev_set_userdata (EV_P_ void *data)
1560{
1561 userdata = data;
1562}
1563
1564void *
1565ev_userdata (EV_P)
1566{
1567 return userdata;
1568}
1569
1570void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1571{
1572 invoke_cb = invoke_pending_cb;
1573}
1574
1575void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1576{
1577 release_cb = release;
1578 acquire_cb = acquire;
1579}
1580#endif
1581
1582/* initialise a loop structure, must be zero-initialised */
1243static void noinline 1583static void noinline
1244loop_init (EV_P_ unsigned int flags) 1584loop_init (EV_P_ unsigned int flags)
1245{ 1585{
1246 if (!backend) 1586 if (!backend)
1247 { 1587 {
1588#if EV_USE_REALTIME
1589 if (!have_realtime)
1590 {
1591 struct timespec ts;
1592
1593 if (!clock_gettime (CLOCK_REALTIME, &ts))
1594 have_realtime = 1;
1595 }
1596#endif
1597
1248#if EV_USE_MONOTONIC 1598#if EV_USE_MONOTONIC
1599 if (!have_monotonic)
1249 { 1600 {
1250 struct timespec ts; 1601 struct timespec ts;
1602
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1603 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 1604 have_monotonic = 1;
1253 } 1605 }
1254#endif 1606#endif
1607
1608 /* pid check not overridable via env */
1609#ifndef _WIN32
1610 if (flags & EVFLAG_FORKCHECK)
1611 curpid = getpid ();
1612#endif
1613
1614 if (!(flags & EVFLAG_NOENV)
1615 && !enable_secure ()
1616 && getenv ("LIBEV_FLAGS"))
1617 flags = atoi (getenv ("LIBEV_FLAGS"));
1255 1618
1256 ev_rt_now = ev_time (); 1619 ev_rt_now = ev_time ();
1257 mn_now = get_clock (); 1620 mn_now = get_clock ();
1258 now_floor = mn_now; 1621 now_floor = mn_now;
1259 rtmn_diff = ev_rt_now - mn_now; 1622 rtmn_diff = ev_rt_now - mn_now;
1623#if EV_MINIMAL < 2
1624 invoke_cb = ev_invoke_pending;
1625#endif
1260 1626
1261 io_blocktime = 0.; 1627 io_blocktime = 0.;
1262 timeout_blocktime = 0.; 1628 timeout_blocktime = 0.;
1263 backend = 0; 1629 backend = 0;
1264 backend_fd = -1; 1630 backend_fd = -1;
1265 gotasync = 0; 1631 sig_pending = 0;
1632#if EV_ASYNC_ENABLE
1633 async_pending = 0;
1634#endif
1266#if EV_USE_INOTIFY 1635#if EV_USE_INOTIFY
1267 fs_fd = -2; 1636 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1268#endif 1637#endif
1269 1638#if EV_USE_SIGNALFD
1270 /* pid check not overridable via env */ 1639 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1271#ifndef _WIN32
1272 if (flags & EVFLAG_FORKCHECK)
1273 curpid = getpid ();
1274#endif 1640#endif
1275
1276 if (!(flags & EVFLAG_NOENV)
1277 && !enable_secure ()
1278 && getenv ("LIBEV_FLAGS"))
1279 flags = atoi (getenv ("LIBEV_FLAGS"));
1280 1641
1281 if (!(flags & 0x0000ffffU)) 1642 if (!(flags & 0x0000ffffU))
1282 flags |= ev_recommended_backends (); 1643 flags |= ev_recommended_backends ();
1283 1644
1284#if EV_USE_PORT 1645#if EV_USE_PORT
1295#endif 1656#endif
1296#if EV_USE_SELECT 1657#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1658 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 1659#endif
1299 1660
1661 ev_prepare_init (&pending_w, pendingcb);
1662
1300 ev_init (&pipeev, pipecb); 1663 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 1664 ev_set_priority (&pipe_w, EV_MAXPRI);
1302 } 1665 }
1303} 1666}
1304 1667
1668/* free up a loop structure */
1305static void noinline 1669static void noinline
1306loop_destroy (EV_P) 1670loop_destroy (EV_P)
1307{ 1671{
1308 int i; 1672 int i;
1309 1673
1310 if (ev_is_active (&pipeev)) 1674 if (ev_is_active (&pipe_w))
1311 { 1675 {
1312 ev_ref (EV_A); /* signal watcher */ 1676 /*ev_ref (EV_A);*/
1313 ev_io_stop (EV_A_ &pipeev); 1677 /*ev_io_stop (EV_A_ &pipe_w);*/
1314 1678
1315#if EV_USE_EVENTFD 1679#if EV_USE_EVENTFD
1316 if (evfd >= 0) 1680 if (evfd >= 0)
1317 close (evfd); 1681 close (evfd);
1318#endif 1682#endif
1319 1683
1320 if (evpipe [0] >= 0) 1684 if (evpipe [0] >= 0)
1321 { 1685 {
1322 close (evpipe [0]); 1686 EV_WIN32_CLOSE_FD (evpipe [0]);
1323 close (evpipe [1]); 1687 EV_WIN32_CLOSE_FD (evpipe [1]);
1324 } 1688 }
1325 } 1689 }
1690
1691#if EV_USE_SIGNALFD
1692 if (ev_is_active (&sigfd_w))
1693 close (sigfd);
1694#endif
1326 1695
1327#if EV_USE_INOTIFY 1696#if EV_USE_INOTIFY
1328 if (fs_fd >= 0) 1697 if (fs_fd >= 0)
1329 close (fs_fd); 1698 close (fs_fd);
1330#endif 1699#endif
1354#if EV_IDLE_ENABLE 1723#if EV_IDLE_ENABLE
1355 array_free (idle, [i]); 1724 array_free (idle, [i]);
1356#endif 1725#endif
1357 } 1726 }
1358 1727
1359 ev_free (anfds); anfdmax = 0; 1728 ev_free (anfds); anfds = 0; anfdmax = 0;
1360 1729
1361 /* have to use the microsoft-never-gets-it-right macro */ 1730 /* have to use the microsoft-never-gets-it-right macro */
1731 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 1732 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 1733 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 1734#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 1735 array_free (periodic, EMPTY);
1366#endif 1736#endif
1375 1745
1376 backend = 0; 1746 backend = 0;
1377} 1747}
1378 1748
1379#if EV_USE_INOTIFY 1749#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 1750inline_size void infy_fork (EV_P);
1381#endif 1751#endif
1382 1752
1383void inline_size 1753inline_size void
1384loop_fork (EV_P) 1754loop_fork (EV_P)
1385{ 1755{
1386#if EV_USE_PORT 1756#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1757 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 1758#endif
1394#endif 1764#endif
1395#if EV_USE_INOTIFY 1765#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 1766 infy_fork (EV_A);
1397#endif 1767#endif
1398 1768
1399 if (ev_is_active (&pipeev)) 1769 if (ev_is_active (&pipe_w))
1400 { 1770 {
1401 /* this "locks" the handlers against writing to the pipe */ 1771 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */ 1772 /* while we modify the fd vars */
1403 gotsig = 1; 1773 sig_pending = 1;
1404#if EV_ASYNC_ENABLE 1774#if EV_ASYNC_ENABLE
1405 gotasync = 1; 1775 async_pending = 1;
1406#endif 1776#endif
1407 1777
1408 ev_ref (EV_A); 1778 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 1779 ev_io_stop (EV_A_ &pipe_w);
1410 1780
1411#if EV_USE_EVENTFD 1781#if EV_USE_EVENTFD
1412 if (evfd >= 0) 1782 if (evfd >= 0)
1413 close (evfd); 1783 close (evfd);
1414#endif 1784#endif
1415 1785
1416 if (evpipe [0] >= 0) 1786 if (evpipe [0] >= 0)
1417 { 1787 {
1418 close (evpipe [0]); 1788 EV_WIN32_CLOSE_FD (evpipe [0]);
1419 close (evpipe [1]); 1789 EV_WIN32_CLOSE_FD (evpipe [1]);
1420 } 1790 }
1421 1791
1422 evpipe_init (EV_A); 1792 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 1793 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 1794 pipecb (EV_A_ &pipe_w, EV_READ);
1425 } 1795 }
1426 1796
1427 postfork = 0; 1797 postfork = 0;
1428} 1798}
1429 1799
1430#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1801
1431struct ev_loop * 1802struct ev_loop *
1432ev_loop_new (unsigned int flags) 1803ev_loop_new (unsigned int flags)
1433{ 1804{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1805 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1806
1436 memset (loop, 0, sizeof (struct ev_loop)); 1807 memset (EV_A, 0, sizeof (struct ev_loop));
1437
1438 loop_init (EV_A_ flags); 1808 loop_init (EV_A_ flags);
1439 1809
1440 if (ev_backend (EV_A)) 1810 if (ev_backend (EV_A))
1441 return loop; 1811 return EV_A;
1442 1812
1443 return 0; 1813 return 0;
1444} 1814}
1445 1815
1446void 1816void
1452 1822
1453void 1823void
1454ev_loop_fork (EV_P) 1824ev_loop_fork (EV_P)
1455{ 1825{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1826 postfork = 1; /* must be in line with ev_default_fork */
1827}
1828#endif /* multiplicity */
1829
1830#if EV_VERIFY
1831static void noinline
1832verify_watcher (EV_P_ W w)
1833{
1834 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1835
1836 if (w->pending)
1837 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1838}
1839
1840static void noinline
1841verify_heap (EV_P_ ANHE *heap, int N)
1842{
1843 int i;
1844
1845 for (i = HEAP0; i < N + HEAP0; ++i)
1846 {
1847 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1848 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1849 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1850
1851 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1852 }
1853}
1854
1855static void noinline
1856array_verify (EV_P_ W *ws, int cnt)
1857{
1858 while (cnt--)
1859 {
1860 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1861 verify_watcher (EV_A_ ws [cnt]);
1862 }
1863}
1864#endif
1865
1866#if EV_MINIMAL < 2
1867void
1868ev_loop_verify (EV_P)
1869{
1870#if EV_VERIFY
1871 int i;
1872 WL w;
1873
1874 assert (activecnt >= -1);
1875
1876 assert (fdchangemax >= fdchangecnt);
1877 for (i = 0; i < fdchangecnt; ++i)
1878 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1879
1880 assert (anfdmax >= 0);
1881 for (i = 0; i < anfdmax; ++i)
1882 for (w = anfds [i].head; w; w = w->next)
1883 {
1884 verify_watcher (EV_A_ (W)w);
1885 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1886 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1887 }
1888
1889 assert (timermax >= timercnt);
1890 verify_heap (EV_A_ timers, timercnt);
1891
1892#if EV_PERIODIC_ENABLE
1893 assert (periodicmax >= periodiccnt);
1894 verify_heap (EV_A_ periodics, periodiccnt);
1895#endif
1896
1897 for (i = NUMPRI; i--; )
1898 {
1899 assert (pendingmax [i] >= pendingcnt [i]);
1900#if EV_IDLE_ENABLE
1901 assert (idleall >= 0);
1902 assert (idlemax [i] >= idlecnt [i]);
1903 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1904#endif
1905 }
1906
1907#if EV_FORK_ENABLE
1908 assert (forkmax >= forkcnt);
1909 array_verify (EV_A_ (W *)forks, forkcnt);
1910#endif
1911
1912#if EV_ASYNC_ENABLE
1913 assert (asyncmax >= asynccnt);
1914 array_verify (EV_A_ (W *)asyncs, asynccnt);
1915#endif
1916
1917 assert (preparemax >= preparecnt);
1918 array_verify (EV_A_ (W *)prepares, preparecnt);
1919
1920 assert (checkmax >= checkcnt);
1921 array_verify (EV_A_ (W *)checks, checkcnt);
1922
1923# if 0
1924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1926# endif
1927#endif
1457} 1928}
1458#endif 1929#endif
1459 1930
1460#if EV_MULTIPLICITY 1931#if EV_MULTIPLICITY
1461struct ev_loop * 1932struct ev_loop *
1466#endif 1937#endif
1467{ 1938{
1468 if (!ev_default_loop_ptr) 1939 if (!ev_default_loop_ptr)
1469 { 1940 {
1470#if EV_MULTIPLICITY 1941#if EV_MULTIPLICITY
1471 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1472#else 1943#else
1473 ev_default_loop_ptr = 1; 1944 ev_default_loop_ptr = 1;
1474#endif 1945#endif
1475 1946
1476 loop_init (EV_A_ flags); 1947 loop_init (EV_A_ flags);
1493 1964
1494void 1965void
1495ev_default_destroy (void) 1966ev_default_destroy (void)
1496{ 1967{
1497#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr; 1969 EV_P = ev_default_loop_ptr;
1499#endif 1970#endif
1971
1972 ev_default_loop_ptr = 0;
1500 1973
1501#ifndef _WIN32 1974#ifndef _WIN32
1502 ev_ref (EV_A); /* child watcher */ 1975 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev); 1976 ev_signal_stop (EV_A_ &childev);
1504#endif 1977#endif
1508 1981
1509void 1982void
1510ev_default_fork (void) 1983ev_default_fork (void)
1511{ 1984{
1512#if EV_MULTIPLICITY 1985#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr; 1986 EV_P = ev_default_loop_ptr;
1514#endif 1987#endif
1515 1988
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 1989 postfork = 1; /* must be in line with ev_loop_fork */
1518} 1990}
1519 1991
1520/*****************************************************************************/ 1992/*****************************************************************************/
1521 1993
1522void 1994void
1523ev_invoke (EV_P_ void *w, int revents) 1995ev_invoke (EV_P_ void *w, int revents)
1524{ 1996{
1525 EV_CB_INVOKE ((W)w, revents); 1997 EV_CB_INVOKE ((W)w, revents);
1526} 1998}
1527 1999
1528void inline_speed 2000unsigned int
1529call_pending (EV_P) 2001ev_pending_count (EV_P)
2002{
2003 int pri;
2004 unsigned int count = 0;
2005
2006 for (pri = NUMPRI; pri--; )
2007 count += pendingcnt [pri];
2008
2009 return count;
2010}
2011
2012void noinline
2013ev_invoke_pending (EV_P)
1530{ 2014{
1531 int pri; 2015 int pri;
1532 2016
1533 for (pri = NUMPRI; pri--; ) 2017 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 2018 while (pendingcnt [pri])
1535 { 2019 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2020 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 2021
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2022 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2023 /* ^ this is no longer true, as pending_w could be here */
1541 2024
1542 p->w->pending = 0; 2025 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 2026 EV_CB_INVOKE (p->w, p->events);
1544 } 2027 EV_FREQUENT_CHECK;
1545 } 2028 }
1546} 2029}
1547 2030
1548#if EV_IDLE_ENABLE 2031#if EV_IDLE_ENABLE
1549void inline_size 2032/* make idle watchers pending. this handles the "call-idle */
2033/* only when higher priorities are idle" logic */
2034inline_size void
1550idle_reify (EV_P) 2035idle_reify (EV_P)
1551{ 2036{
1552 if (expect_false (idleall)) 2037 if (expect_false (idleall))
1553 { 2038 {
1554 int pri; 2039 int pri;
1566 } 2051 }
1567 } 2052 }
1568} 2053}
1569#endif 2054#endif
1570 2055
1571void inline_size 2056/* make timers pending */
2057inline_size void
1572timers_reify (EV_P) 2058timers_reify (EV_P)
1573{ 2059{
2060 EV_FREQUENT_CHECK;
2061
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2062 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 2063 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 2064 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 2065 {
2066 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2067
2068 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2069
2070 /* first reschedule or stop timer */
2071 if (w->repeat)
2072 {
2073 ev_at (w) += w->repeat;
2074 if (ev_at (w) < mn_now)
2075 ev_at (w) = mn_now;
2076
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2077 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 2078
1585 ev_at (w) += w->repeat; 2079 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 2080 downheap (timers, timercnt, HEAP0);
2081 }
2082 else
2083 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2084
2085 EV_FREQUENT_CHECK;
2086 feed_reverse (EV_A_ (W)w);
1590 } 2087 }
1591 else 2088 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 2089
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2090 feed_reverse_done (EV_A_ EV_TIMEOUT);
1595 } 2091 }
1596} 2092}
1597 2093
1598#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1599void inline_size 2095/* make periodics pending */
2096inline_size void
1600periodics_reify (EV_P) 2097periodics_reify (EV_P)
1601{ 2098{
2099 EV_FREQUENT_CHECK;
2100
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2101 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 2102 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2103 int feed_count = 0;
1605 2104
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2105 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2108
2109 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2110
2111 /* first reschedule or stop timer */
2112 if (w->reschedule_cb)
2113 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2114 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2115
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2116 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2117
2118 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 2119 downheap (periodics, periodiccnt, HEAP0);
2120 }
2121 else if (w->interval)
2122 {
2123 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2124 /* if next trigger time is not sufficiently in the future, put it there */
2125 /* this might happen because of floating point inexactness */
2126 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2127 {
2128 ev_at (w) += w->interval;
2129
2130 /* if interval is unreasonably low we might still have a time in the past */
2131 /* so correct this. this will make the periodic very inexact, but the user */
2132 /* has effectively asked to get triggered more often than possible */
2133 if (ev_at (w) < ev_rt_now)
2134 ev_at (w) = ev_rt_now;
2135 }
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else
2141 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2142
2143 EV_FREQUENT_CHECK;
2144 feed_reverse (EV_A_ (W)w);
1614 } 2145 }
1615 else if (w->interval) 2146 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 2147
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2148 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 2149 }
1627} 2150}
1628 2151
2152/* simply recalculate all periodics */
2153/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1629static void noinline 2154static void noinline
1630periodics_reschedule (EV_P) 2155periodics_reschedule (EV_P)
1631{ 2156{
1632 int i; 2157 int i;
1633 2158
1634 /* adjust periodics after time jump */ 2159 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 2160 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 2161 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 2162 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 2163
1639 if (w->reschedule_cb) 2164 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2165 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 2166 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2167 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2168
2169 ANHE_at_cache (periodics [i]);
2170 }
2171
2172 reheap (periodics, periodiccnt);
2173}
2174#endif
2175
2176/* adjust all timers by a given offset */
2177static void noinline
2178timers_reschedule (EV_P_ ev_tstamp adjust)
2179{
2180 int i;
2181
2182 for (i = 0; i < timercnt; ++i)
1643 } 2183 {
1644 2184 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 2185 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 2186 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 2187 }
1648} 2188}
1649#endif
1650 2189
1651void inline_speed 2190/* fetch new monotonic and realtime times from the kernel */
2191/* also detect if there was a timejump, and act accordingly */
2192inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 2193time_update (EV_P_ ev_tstamp max_block)
1653{ 2194{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 2195#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 2196 if (expect_true (have_monotonic))
1658 { 2197 {
2198 int i;
1659 ev_tstamp odiff = rtmn_diff; 2199 ev_tstamp odiff = rtmn_diff;
1660 2200
1661 mn_now = get_clock (); 2201 mn_now = get_clock ();
1662 2202
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2203 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 ev_rt_now = ev_time (); 2229 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2230 mn_now = get_clock ();
1691 now_floor = mn_now; 2231 now_floor = mn_now;
1692 } 2232 }
1693 2233
2234 /* no timer adjustment, as the monotonic clock doesn't jump */
2235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2236# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2237 periodics_reschedule (EV_A);
1696# endif 2238# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2239 }
1700 else 2240 else
1701#endif 2241#endif
1702 { 2242 {
1703 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1704 2244
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2245 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2246 {
2247 /* adjust timers. this is easy, as the offset is the same for all of them */
2248 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1709#endif 2251#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2252 }
1714 2253
1715 mn_now = ev_rt_now; 2254 mn_now = ev_rt_now;
1716 } 2255 }
1717} 2256}
1718 2257
1719void 2258void
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2259ev_loop (EV_P_ int flags)
1735{ 2260{
2261#if EV_MINIMAL < 2
2262 ++loop_depth;
2263#endif
2264
2265 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2266
1736 loop_done = EVUNLOOP_CANCEL; 2267 loop_done = EVUNLOOP_CANCEL;
1737 2268
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2269 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1739 2270
1740 do 2271 do
1741 { 2272 {
2273#if EV_VERIFY >= 2
2274 ev_loop_verify (EV_A);
2275#endif
2276
1742#ifndef _WIN32 2277#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2278 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2279 if (expect_false (getpid () != curpid))
1745 { 2280 {
1746 curpid = getpid (); 2281 curpid = getpid ();
1752 /* we might have forked, so queue fork handlers */ 2287 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork)) 2288 if (expect_false (postfork))
1754 if (forkcnt) 2289 if (forkcnt)
1755 { 2290 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2291 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A); 2292 EV_INVOKE_PENDING;
1758 } 2293 }
1759#endif 2294#endif
1760 2295
1761 /* queue prepare watchers (and execute them) */ 2296 /* queue prepare watchers (and execute them) */
1762 if (expect_false (preparecnt)) 2297 if (expect_false (preparecnt))
1763 { 2298 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2299 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2300 EV_INVOKE_PENDING;
1766 } 2301 }
1767 2302
1768 if (expect_false (!activecnt)) 2303 if (expect_false (loop_done))
1769 break; 2304 break;
1770 2305
1771 /* we might have forked, so reify kernel state if necessary */ 2306 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1773 loop_fork (EV_A); 2308 loop_fork (EV_A);
1780 ev_tstamp waittime = 0.; 2315 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 2316 ev_tstamp sleeptime = 0.;
1782 2317
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2318 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1784 { 2319 {
2320 /* remember old timestamp for io_blocktime calculation */
2321 ev_tstamp prev_mn_now = mn_now;
2322
1785 /* update time to cancel out callback processing overhead */ 2323 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100); 2324 time_update (EV_A_ 1e100);
1787 2325
1788 waittime = MAX_BLOCKTIME; 2326 waittime = MAX_BLOCKTIME;
1789 2327
1790 if (timercnt) 2328 if (timercnt)
1791 { 2329 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 2331 if (waittime > to) waittime = to;
1794 } 2332 }
1795 2333
1796#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 2335 if (periodiccnt)
1798 { 2336 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 2338 if (waittime > to) waittime = to;
1801 } 2339 }
1802#endif 2340#endif
1803 2341
2342 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 2343 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 2344 waittime = timeout_blocktime;
1806 2345
1807 sleeptime = waittime - backend_fudge; 2346 /* extra check because io_blocktime is commonly 0 */
1808
1809 if (expect_true (sleeptime > io_blocktime)) 2347 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 2348 {
2349 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2350
2351 if (sleeptime > waittime - backend_fudge)
2352 sleeptime = waittime - backend_fudge;
2353
2354 if (expect_true (sleeptime > 0.))
2355 {
1814 ev_sleep (sleeptime); 2356 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 2357 waittime -= sleeptime;
2358 }
1816 } 2359 }
1817 } 2360 }
1818 2361
2362#if EV_MINIMAL < 2
1819 ++loop_count; 2363 ++loop_count;
2364#endif
2365 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1820 backend_poll (EV_A_ waittime); 2366 backend_poll (EV_A_ waittime);
2367 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1821 2368
1822 /* update ev_rt_now, do magic */ 2369 /* update ev_rt_now, do magic */
1823 time_update (EV_A_ waittime + sleeptime); 2370 time_update (EV_A_ waittime + sleeptime);
1824 } 2371 }
1825 2372
1836 2383
1837 /* queue check watchers, to be executed first */ 2384 /* queue check watchers, to be executed first */
1838 if (expect_false (checkcnt)) 2385 if (expect_false (checkcnt))
1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2386 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1840 2387
1841 call_pending (EV_A); 2388 EV_INVOKE_PENDING;
1842 } 2389 }
1843 while (expect_true ( 2390 while (expect_true (
1844 activecnt 2391 activecnt
1845 && !loop_done 2392 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2393 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 )); 2394 ));
1848 2395
1849 if (loop_done == EVUNLOOP_ONE) 2396 if (loop_done == EVUNLOOP_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 2397 loop_done = EVUNLOOP_CANCEL;
2398
2399#if EV_MINIMAL < 2
2400 --loop_depth;
2401#endif
1851} 2402}
1852 2403
1853void 2404void
1854ev_unloop (EV_P_ int how) 2405ev_unloop (EV_P_ int how)
1855{ 2406{
1856 loop_done = how; 2407 loop_done = how;
1857} 2408}
1858 2409
2410void
2411ev_ref (EV_P)
2412{
2413 ++activecnt;
2414}
2415
2416void
2417ev_unref (EV_P)
2418{
2419 --activecnt;
2420}
2421
2422void
2423ev_now_update (EV_P)
2424{
2425 time_update (EV_A_ 1e100);
2426}
2427
2428void
2429ev_suspend (EV_P)
2430{
2431 ev_now_update (EV_A);
2432}
2433
2434void
2435ev_resume (EV_P)
2436{
2437 ev_tstamp mn_prev = mn_now;
2438
2439 ev_now_update (EV_A);
2440 timers_reschedule (EV_A_ mn_now - mn_prev);
2441#if EV_PERIODIC_ENABLE
2442 /* TODO: really do this? */
2443 periodics_reschedule (EV_A);
2444#endif
2445}
2446
1859/*****************************************************************************/ 2447/*****************************************************************************/
2448/* singly-linked list management, used when the expected list length is short */
1860 2449
1861void inline_size 2450inline_size void
1862wlist_add (WL *head, WL elem) 2451wlist_add (WL *head, WL elem)
1863{ 2452{
1864 elem->next = *head; 2453 elem->next = *head;
1865 *head = elem; 2454 *head = elem;
1866} 2455}
1867 2456
1868void inline_size 2457inline_size void
1869wlist_del (WL *head, WL elem) 2458wlist_del (WL *head, WL elem)
1870{ 2459{
1871 while (*head) 2460 while (*head)
1872 { 2461 {
1873 if (*head == elem) 2462 if (expect_true (*head == elem))
1874 { 2463 {
1875 *head = elem->next; 2464 *head = elem->next;
1876 return; 2465 break;
1877 } 2466 }
1878 2467
1879 head = &(*head)->next; 2468 head = &(*head)->next;
1880 } 2469 }
1881} 2470}
1882 2471
1883void inline_speed 2472/* internal, faster, version of ev_clear_pending */
2473inline_speed void
1884clear_pending (EV_P_ W w) 2474clear_pending (EV_P_ W w)
1885{ 2475{
1886 if (w->pending) 2476 if (w->pending)
1887 { 2477 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2478 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 2479 w->pending = 0;
1890 } 2480 }
1891} 2481}
1892 2482
1893int 2483int
1897 int pending = w_->pending; 2487 int pending = w_->pending;
1898 2488
1899 if (expect_true (pending)) 2489 if (expect_true (pending))
1900 { 2490 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2491 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2492 p->w = (W)&pending_w;
1902 w_->pending = 0; 2493 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 2494 return p->events;
1905 } 2495 }
1906 else 2496 else
1907 return 0; 2497 return 0;
1908} 2498}
1909 2499
1910void inline_size 2500inline_size void
1911pri_adjust (EV_P_ W w) 2501pri_adjust (EV_P_ W w)
1912{ 2502{
1913 int pri = w->priority; 2503 int pri = ev_priority (w);
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2504 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2505 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 2506 ev_set_priority (w, pri);
1917} 2507}
1918 2508
1919void inline_speed 2509inline_speed void
1920ev_start (EV_P_ W w, int active) 2510ev_start (EV_P_ W w, int active)
1921{ 2511{
1922 pri_adjust (EV_A_ w); 2512 pri_adjust (EV_A_ w);
1923 w->active = active; 2513 w->active = active;
1924 ev_ref (EV_A); 2514 ev_ref (EV_A);
1925} 2515}
1926 2516
1927void inline_size 2517inline_size void
1928ev_stop (EV_P_ W w) 2518ev_stop (EV_P_ W w)
1929{ 2519{
1930 ev_unref (EV_A); 2520 ev_unref (EV_A);
1931 w->active = 0; 2521 w->active = 0;
1932} 2522}
1939 int fd = w->fd; 2529 int fd = w->fd;
1940 2530
1941 if (expect_false (ev_is_active (w))) 2531 if (expect_false (ev_is_active (w)))
1942 return; 2532 return;
1943 2533
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2534 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2535 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2536
2537 EV_FREQUENT_CHECK;
1945 2538
1946 ev_start (EV_A_ (W)w, 1); 2539 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2540 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 2541 wlist_add (&anfds[fd].head, (WL)w);
1949 2542
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2543 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1951 w->events &= ~EV_IOFDSET; 2544 w->events &= ~EV__IOFDSET;
2545
2546 EV_FREQUENT_CHECK;
1952} 2547}
1953 2548
1954void noinline 2549void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2550ev_io_stop (EV_P_ ev_io *w)
1956{ 2551{
1957 clear_pending (EV_A_ (W)w); 2552 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2553 if (expect_false (!ev_is_active (w)))
1959 return; 2554 return;
1960 2555
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2556 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2557
2558 EV_FREQUENT_CHECK;
1962 2559
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2560 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2561 ev_stop (EV_A_ (W)w);
1965 2562
1966 fd_change (EV_A_ w->fd, 1); 2563 fd_change (EV_A_ w->fd, 1);
2564
2565 EV_FREQUENT_CHECK;
1967} 2566}
1968 2567
1969void noinline 2568void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2569ev_timer_start (EV_P_ ev_timer *w)
1971{ 2570{
1972 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
1973 return; 2572 return;
1974 2573
1975 ev_at (w) += mn_now; 2574 ev_at (w) += mn_now;
1976 2575
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2576 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2581 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2582 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2583 ANHE_w (timers [ev_active (w)]) = (WT)w;
2584 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2585 upheap (timers, ev_active (w));
1983 2586
2587 EV_FREQUENT_CHECK;
2588
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2589 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2590}
1986 2591
1987void noinline 2592void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2593ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2594{
1990 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1992 return; 2597 return;
1993 2598
2599 EV_FREQUENT_CHECK;
2600
1994 { 2601 {
1995 int active = ev_active (w); 2602 int active = ev_active (w);
1996 2603
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2604 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2605
2606 --timercnt;
2607
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2608 if (expect_true (active < timercnt + HEAP0))
2000 { 2609 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2610 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2611 adjustheap (timers, timercnt, active);
2003 } 2612 }
2004
2005 --timercnt;
2006 } 2613 }
2007 2614
2008 ev_at (w) -= mn_now; 2615 ev_at (w) -= mn_now;
2009 2616
2010 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
2618
2619 EV_FREQUENT_CHECK;
2011} 2620}
2012 2621
2013void noinline 2622void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2623ev_timer_again (EV_P_ ev_timer *w)
2015{ 2624{
2625 EV_FREQUENT_CHECK;
2626
2016 if (ev_is_active (w)) 2627 if (ev_is_active (w))
2017 { 2628 {
2018 if (w->repeat) 2629 if (w->repeat)
2019 { 2630 {
2020 ev_at (w) = mn_now + w->repeat; 2631 ev_at (w) = mn_now + w->repeat;
2632 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2633 adjustheap (timers, timercnt, ev_active (w));
2022 } 2634 }
2023 else 2635 else
2024 ev_timer_stop (EV_A_ w); 2636 ev_timer_stop (EV_A_ w);
2025 } 2637 }
2026 else if (w->repeat) 2638 else if (w->repeat)
2027 { 2639 {
2028 ev_at (w) = w->repeat; 2640 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2641 ev_timer_start (EV_A_ w);
2030 } 2642 }
2643
2644 EV_FREQUENT_CHECK;
2645}
2646
2647ev_tstamp
2648ev_timer_remaining (EV_P_ ev_timer *w)
2649{
2650 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2031} 2651}
2032 2652
2033#if EV_PERIODIC_ENABLE 2653#if EV_PERIODIC_ENABLE
2034void noinline 2654void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2655ev_periodic_start (EV_P_ ev_periodic *w)
2039 2659
2040 if (w->reschedule_cb) 2660 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2661 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 2662 else if (w->interval)
2043 { 2663 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2664 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 2665 /* this formula differs from the one in periodic_reify because we do not always round up */
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2666 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2667 }
2048 else 2668 else
2049 ev_at (w) = w->offset; 2669 ev_at (w) = w->offset;
2050 2670
2671 EV_FREQUENT_CHECK;
2672
2673 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2674 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2675 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2676 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2677 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2678 upheap (periodics, ev_active (w));
2055 2679
2680 EV_FREQUENT_CHECK;
2681
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2682 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2683}
2058 2684
2059void noinline 2685void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2686ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2687{
2062 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2064 return; 2690 return;
2065 2691
2692 EV_FREQUENT_CHECK;
2693
2066 { 2694 {
2067 int active = ev_active (w); 2695 int active = ev_active (w);
2068 2696
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2697 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2698
2699 --periodiccnt;
2700
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2701 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2702 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2703 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2704 adjustheap (periodics, periodiccnt, active);
2075 } 2705 }
2076
2077 --periodiccnt;
2078 } 2706 }
2079 2707
2080 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2081} 2711}
2082 2712
2083void noinline 2713void noinline
2084ev_periodic_again (EV_P_ ev_periodic *w) 2714ev_periodic_again (EV_P_ ev_periodic *w)
2085{ 2715{
2094#endif 2724#endif
2095 2725
2096void noinline 2726void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 2727ev_signal_start (EV_P_ ev_signal *w)
2098{ 2728{
2099#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif
2102 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2103 return; 2730 return;
2104 2731
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2732 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2106 2733
2107 evpipe_init (EV_A); 2734#if EV_MULTIPLICITY
2735 assert (("libev: a signal must not be attached to two different loops",
2736 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2108 2737
2738 signals [w->signum - 1].loop = EV_A;
2739#endif
2740
2741 EV_FREQUENT_CHECK;
2742
2743#if EV_USE_SIGNALFD
2744 if (sigfd == -2)
2109 { 2745 {
2110#ifndef _WIN32 2746 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2111 sigset_t full, prev; 2747 if (sigfd < 0 && errno == EINVAL)
2112 sigfillset (&full); 2748 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2113 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif
2115 2749
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2750 if (sigfd >= 0)
2751 {
2752 fd_intern (sigfd); /* doing it twice will not hurt */
2117 2753
2118#ifndef _WIN32 2754 sigemptyset (&sigfd_set);
2119 sigprocmask (SIG_SETMASK, &prev, 0); 2755
2120#endif 2756 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2757 ev_set_priority (&sigfd_w, EV_MAXPRI);
2758 ev_io_start (EV_A_ &sigfd_w);
2759 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2760 }
2121 } 2761 }
2762
2763 if (sigfd >= 0)
2764 {
2765 /* TODO: check .head */
2766 sigaddset (&sigfd_set, w->signum);
2767 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2768
2769 signalfd (sigfd, &sigfd_set, 0);
2770 }
2771#endif
2122 2772
2123 ev_start (EV_A_ (W)w, 1); 2773 ev_start (EV_A_ (W)w, 1);
2124 wlist_add (&signals [w->signum - 1].head, (WL)w); 2774 wlist_add (&signals [w->signum - 1].head, (WL)w);
2125 2775
2126 if (!((WL)w)->next) 2776 if (!((WL)w)->next)
2777# if EV_USE_SIGNALFD
2778 if (sigfd < 0) /*TODO*/
2779# endif
2127 { 2780 {
2128#if _WIN32 2781# ifdef _WIN32
2782 evpipe_init (EV_A);
2783
2129 signal (w->signum, ev_sighandler); 2784 signal (w->signum, ev_sighandler);
2130#else 2785# else
2131 struct sigaction sa; 2786 struct sigaction sa;
2787
2788 evpipe_init (EV_A);
2789
2132 sa.sa_handler = ev_sighandler; 2790 sa.sa_handler = ev_sighandler;
2133 sigfillset (&sa.sa_mask); 2791 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2792 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2793 sigaction (w->signum, &sa, 0);
2794
2795 sigemptyset (&sa.sa_mask);
2796 sigaddset (&sa.sa_mask, w->signum);
2797 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2136#endif 2798#endif
2137 } 2799 }
2800
2801 EV_FREQUENT_CHECK;
2138} 2802}
2139 2803
2140void noinline 2804void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2805ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2806{
2143 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
2145 return; 2809 return;
2146 2810
2811 EV_FREQUENT_CHECK;
2812
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2813 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2149 2815
2150 if (!signals [w->signum - 1].head) 2816 if (!signals [w->signum - 1].head)
2817 {
2818#if EV_MULTIPLICITY
2819 signals [w->signum - 1].loop = 0; /* unattach from signal */
2820#endif
2821#if EV_USE_SIGNALFD
2822 if (sigfd >= 0)
2823 {
2824 sigset_t ss;
2825
2826 sigemptyset (&ss);
2827 sigaddset (&ss, w->signum);
2828 sigdelset (&sigfd_set, w->signum);
2829
2830 signalfd (sigfd, &sigfd_set, 0);
2831 sigprocmask (SIG_UNBLOCK, &ss, 0);
2832 }
2833 else
2834#endif
2151 signal (w->signum, SIG_DFL); 2835 signal (w->signum, SIG_DFL);
2836 }
2837
2838 EV_FREQUENT_CHECK;
2152} 2839}
2153 2840
2154void 2841void
2155ev_child_start (EV_P_ ev_child *w) 2842ev_child_start (EV_P_ ev_child *w)
2156{ 2843{
2157#if EV_MULTIPLICITY 2844#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2845 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2846#endif
2160 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
2161 return; 2848 return;
2162 2849
2850 EV_FREQUENT_CHECK;
2851
2163 ev_start (EV_A_ (W)w, 1); 2852 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2853 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2854
2855 EV_FREQUENT_CHECK;
2165} 2856}
2166 2857
2167void 2858void
2168ev_child_stop (EV_P_ ev_child *w) 2859ev_child_stop (EV_P_ ev_child *w)
2169{ 2860{
2170 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2172 return; 2863 return;
2173 2864
2865 EV_FREQUENT_CHECK;
2866
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2867 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2868 ev_stop (EV_A_ (W)w);
2869
2870 EV_FREQUENT_CHECK;
2176} 2871}
2177 2872
2178#if EV_STAT_ENABLE 2873#if EV_STAT_ENABLE
2179 2874
2180# ifdef _WIN32 2875# ifdef _WIN32
2181# undef lstat 2876# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 2877# define lstat(a,b) _stati64 (a,b)
2183# endif 2878# endif
2184 2879
2185#define DEF_STAT_INTERVAL 5.0074891 2880#define DEF_STAT_INTERVAL 5.0074891
2881#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 2882#define MIN_STAT_INTERVAL 0.1074891
2187 2883
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2884static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 2885
2190#if EV_USE_INOTIFY 2886#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 2887
2888/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2889# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2192 2890
2193static void noinline 2891static void noinline
2194infy_add (EV_P_ ev_stat *w) 2892infy_add (EV_P_ ev_stat *w)
2195{ 2893{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2894 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 2895
2198 if (w->wd < 0) 2896 if (w->wd >= 0)
2897 {
2898 struct statfs sfs;
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem is known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (!fs_2625)
2905 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2906 else if (!statfs (w->path, &sfs)
2907 && (sfs.f_type == 0x1373 /* devfs */
2908 || sfs.f_type == 0xEF53 /* ext2/3 */
2909 || sfs.f_type == 0x3153464a /* jfs */
2910 || sfs.f_type == 0x52654973 /* reiser3 */
2911 || sfs.f_type == 0x01021994 /* tempfs */
2912 || sfs.f_type == 0x58465342 /* xfs */))
2913 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2914 else
2915 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2199 { 2916 }
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2917 else
2918 {
2919 /* can't use inotify, continue to stat */
2920 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2201 2921
2202 /* monitor some parent directory for speedup hints */ 2922 /* if path is not there, monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2923 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 2924 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2925 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 2926 {
2207 char path [4096]; 2927 char path [4096];
2208 strcpy (path, w->path); 2928 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2932 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2933 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 2934
2215 char *pend = strrchr (path, '/'); 2935 char *pend = strrchr (path, '/');
2216 2936
2217 if (!pend) 2937 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 2938 break;
2219 2939
2220 *pend = 0; 2940 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 2941 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 2942 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2943 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 2944 }
2225 } 2945 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 2946
2229 if (w->wd >= 0) 2947 if (w->wd >= 0)
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2948 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2949
2950 /* now re-arm timer, if required */
2951 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2952 ev_timer_again (EV_A_ &w->timer);
2953 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2231} 2954}
2232 2955
2233static void noinline 2956static void noinline
2234infy_del (EV_P_ ev_stat *w) 2957infy_del (EV_P_ ev_stat *w)
2235{ 2958{
2249 2972
2250static void noinline 2973static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2974infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 2975{
2253 if (slot < 0) 2976 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 2977 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2978 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 2979 infy_wd (EV_A_ slot, wd, ev);
2257 else 2980 else
2258 { 2981 {
2259 WL w_; 2982 WL w_;
2265 2988
2266 if (w->wd == wd || wd == -1) 2989 if (w->wd == wd || wd == -1)
2267 { 2990 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2991 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 2992 {
2993 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2270 w->wd = -1; 2994 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 2995 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 2996 }
2273 2997
2274 stat_timer_cb (EV_A_ &w->timer, 0); 2998 stat_timer_cb (EV_A_ &w->timer, 0);
2279 3003
2280static void 3004static void
2281infy_cb (EV_P_ ev_io *w, int revents) 3005infy_cb (EV_P_ ev_io *w, int revents)
2282{ 3006{
2283 char buf [EV_INOTIFY_BUFSIZE]; 3007 char buf [EV_INOTIFY_BUFSIZE];
2284 struct inotify_event *ev = (struct inotify_event *)buf;
2285 int ofs; 3008 int ofs;
2286 int len = read (fs_fd, buf, sizeof (buf)); 3009 int len = read (fs_fd, buf, sizeof (buf));
2287 3010
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3011 for (ofs = 0; ofs < len; )
3012 {
3013 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3014 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3015 ofs += sizeof (struct inotify_event) + ev->len;
3016 }
2290} 3017}
2291 3018
2292void inline_size 3019inline_size unsigned int
3020ev_linux_version (void)
3021{
3022 struct utsname buf;
3023 unsigned int v;
3024 int i;
3025 char *p = buf.release;
3026
3027 if (uname (&buf))
3028 return 0;
3029
3030 for (i = 3+1; --i; )
3031 {
3032 unsigned int c = 0;
3033
3034 for (;;)
3035 {
3036 if (*p >= '0' && *p <= '9')
3037 c = c * 10 + *p++ - '0';
3038 else
3039 {
3040 p += *p == '.';
3041 break;
3042 }
3043 }
3044
3045 v = (v << 8) | c;
3046 }
3047
3048 return v;
3049}
3050
3051inline_size void
3052ev_check_2625 (EV_P)
3053{
3054 /* kernels < 2.6.25 are borked
3055 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3056 */
3057 if (ev_linux_version () < 0x020619)
3058 return;
3059
3060 fs_2625 = 1;
3061}
3062
3063inline_size int
3064infy_newfd (void)
3065{
3066#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3067 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3068 if (fd >= 0)
3069 return fd;
3070#endif
3071 return inotify_init ();
3072}
3073
3074inline_size void
2293infy_init (EV_P) 3075infy_init (EV_P)
2294{ 3076{
2295 if (fs_fd != -2) 3077 if (fs_fd != -2)
2296 return; 3078 return;
2297 3079
3080 fs_fd = -1;
3081
3082 ev_check_2625 (EV_A);
3083
2298 fs_fd = inotify_init (); 3084 fs_fd = infy_newfd ();
2299 3085
2300 if (fs_fd >= 0) 3086 if (fs_fd >= 0)
2301 { 3087 {
3088 fd_intern (fs_fd);
2302 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3089 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2303 ev_set_priority (&fs_w, EV_MAXPRI); 3090 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 3091 ev_io_start (EV_A_ &fs_w);
3092 ev_unref (EV_A);
2305 } 3093 }
2306} 3094}
2307 3095
2308void inline_size 3096inline_size void
2309infy_fork (EV_P) 3097infy_fork (EV_P)
2310{ 3098{
2311 int slot; 3099 int slot;
2312 3100
2313 if (fs_fd < 0) 3101 if (fs_fd < 0)
2314 return; 3102 return;
2315 3103
3104 ev_ref (EV_A);
3105 ev_io_stop (EV_A_ &fs_w);
2316 close (fs_fd); 3106 close (fs_fd);
2317 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
3108
3109 if (fs_fd >= 0)
3110 {
3111 fd_intern (fs_fd);
3112 ev_io_set (&fs_w, fs_fd, EV_READ);
3113 ev_io_start (EV_A_ &fs_w);
3114 ev_unref (EV_A);
3115 }
2318 3116
2319 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3117 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2320 { 3118 {
2321 WL w_ = fs_hash [slot].head; 3119 WL w_ = fs_hash [slot].head;
2322 fs_hash [slot].head = 0; 3120 fs_hash [slot].head = 0;
2329 w->wd = -1; 3127 w->wd = -1;
2330 3128
2331 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 3130 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 3131 else
3132 {
3133 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3134 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2334 ev_timer_start (EV_A_ &w->timer); 3135 ev_timer_again (EV_A_ &w->timer);
3136 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3137 }
2335 } 3138 }
2336
2337 } 3139 }
2338} 3140}
2339 3141
3142#endif
3143
3144#ifdef _WIN32
3145# define EV_LSTAT(p,b) _stati64 (p, b)
3146#else
3147# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 3148#endif
2341 3149
2342void 3150void
2343ev_stat_stat (EV_P_ ev_stat *w) 3151ev_stat_stat (EV_P_ ev_stat *w)
2344{ 3152{
2351static void noinline 3159static void noinline
2352stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3160stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2353{ 3161{
2354 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3162 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2355 3163
2356 /* we copy this here each the time so that */ 3164 ev_statdata prev = w->attr;
2357 /* prev has the old value when the callback gets invoked */
2358 w->prev = w->attr;
2359 ev_stat_stat (EV_A_ w); 3165 ev_stat_stat (EV_A_ w);
2360 3166
2361 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3167 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2362 if ( 3168 if (
2363 w->prev.st_dev != w->attr.st_dev 3169 prev.st_dev != w->attr.st_dev
2364 || w->prev.st_ino != w->attr.st_ino 3170 || prev.st_ino != w->attr.st_ino
2365 || w->prev.st_mode != w->attr.st_mode 3171 || prev.st_mode != w->attr.st_mode
2366 || w->prev.st_nlink != w->attr.st_nlink 3172 || prev.st_nlink != w->attr.st_nlink
2367 || w->prev.st_uid != w->attr.st_uid 3173 || prev.st_uid != w->attr.st_uid
2368 || w->prev.st_gid != w->attr.st_gid 3174 || prev.st_gid != w->attr.st_gid
2369 || w->prev.st_rdev != w->attr.st_rdev 3175 || prev.st_rdev != w->attr.st_rdev
2370 || w->prev.st_size != w->attr.st_size 3176 || prev.st_size != w->attr.st_size
2371 || w->prev.st_atime != w->attr.st_atime 3177 || prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 3178 || prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 3179 || prev.st_ctime != w->attr.st_ctime
2374 ) { 3180 ) {
3181 /* we only update w->prev on actual differences */
3182 /* in case we test more often than invoke the callback, */
3183 /* to ensure that prev is always different to attr */
3184 w->prev = prev;
3185
2375 #if EV_USE_INOTIFY 3186 #if EV_USE_INOTIFY
3187 if (fs_fd >= 0)
3188 {
2376 infy_del (EV_A_ w); 3189 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 3190 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 3191 ev_stat_stat (EV_A_ w); /* avoid race... */
3192 }
2379 #endif 3193 #endif
2380 3194
2381 ev_feed_event (EV_A_ w, EV_STAT); 3195 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 3196 }
2383} 3197}
2386ev_stat_start (EV_P_ ev_stat *w) 3200ev_stat_start (EV_P_ ev_stat *w)
2387{ 3201{
2388 if (expect_false (ev_is_active (w))) 3202 if (expect_false (ev_is_active (w)))
2389 return; 3203 return;
2390 3204
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 3205 ev_stat_stat (EV_A_ w);
2396 3206
3207 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 3208 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 3209
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3210 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 3211 ev_set_priority (&w->timer, ev_priority (w));
2402 3212
2403#if EV_USE_INOTIFY 3213#if EV_USE_INOTIFY
2404 infy_init (EV_A); 3214 infy_init (EV_A);
2405 3215
2406 if (fs_fd >= 0) 3216 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 3217 infy_add (EV_A_ w);
2408 else 3218 else
2409#endif 3219#endif
3220 {
2410 ev_timer_start (EV_A_ &w->timer); 3221 ev_timer_again (EV_A_ &w->timer);
3222 ev_unref (EV_A);
3223 }
2411 3224
2412 ev_start (EV_A_ (W)w, 1); 3225 ev_start (EV_A_ (W)w, 1);
3226
3227 EV_FREQUENT_CHECK;
2413} 3228}
2414 3229
2415void 3230void
2416ev_stat_stop (EV_P_ ev_stat *w) 3231ev_stat_stop (EV_P_ ev_stat *w)
2417{ 3232{
2418 clear_pending (EV_A_ (W)w); 3233 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 3234 if (expect_false (!ev_is_active (w)))
2420 return; 3235 return;
2421 3236
3237 EV_FREQUENT_CHECK;
3238
2422#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 3240 infy_del (EV_A_ w);
2424#endif 3241#endif
3242
3243 if (ev_is_active (&w->timer))
3244 {
3245 ev_ref (EV_A);
2425 ev_timer_stop (EV_A_ &w->timer); 3246 ev_timer_stop (EV_A_ &w->timer);
3247 }
2426 3248
2427 ev_stop (EV_A_ (W)w); 3249 ev_stop (EV_A_ (W)w);
3250
3251 EV_FREQUENT_CHECK;
2428} 3252}
2429#endif 3253#endif
2430 3254
2431#if EV_IDLE_ENABLE 3255#if EV_IDLE_ENABLE
2432void 3256void
2434{ 3258{
2435 if (expect_false (ev_is_active (w))) 3259 if (expect_false (ev_is_active (w)))
2436 return; 3260 return;
2437 3261
2438 pri_adjust (EV_A_ (W)w); 3262 pri_adjust (EV_A_ (W)w);
3263
3264 EV_FREQUENT_CHECK;
2439 3265
2440 { 3266 {
2441 int active = ++idlecnt [ABSPRI (w)]; 3267 int active = ++idlecnt [ABSPRI (w)];
2442 3268
2443 ++idleall; 3269 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 3270 ev_start (EV_A_ (W)w, active);
2445 3271
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3272 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 3273 idles [ABSPRI (w)][active - 1] = w;
2448 } 3274 }
3275
3276 EV_FREQUENT_CHECK;
2449} 3277}
2450 3278
2451void 3279void
2452ev_idle_stop (EV_P_ ev_idle *w) 3280ev_idle_stop (EV_P_ ev_idle *w)
2453{ 3281{
2454 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2456 return; 3284 return;
2457 3285
3286 EV_FREQUENT_CHECK;
3287
2458 { 3288 {
2459 int active = ev_active (w); 3289 int active = ev_active (w);
2460 3290
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3291 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3292 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 3293
2464 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
2465 --idleall; 3295 --idleall;
2466 } 3296 }
3297
3298 EV_FREQUENT_CHECK;
2467} 3299}
2468#endif 3300#endif
2469 3301
2470void 3302void
2471ev_prepare_start (EV_P_ ev_prepare *w) 3303ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 3304{
2473 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
2474 return; 3306 return;
3307
3308 EV_FREQUENT_CHECK;
2475 3309
2476 ev_start (EV_A_ (W)w, ++preparecnt); 3310 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3311 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 3312 prepares [preparecnt - 1] = w;
3313
3314 EV_FREQUENT_CHECK;
2479} 3315}
2480 3316
2481void 3317void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 3318ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 3319{
2484 clear_pending (EV_A_ (W)w); 3320 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 3321 if (expect_false (!ev_is_active (w)))
2486 return; 3322 return;
2487 3323
3324 EV_FREQUENT_CHECK;
3325
2488 { 3326 {
2489 int active = ev_active (w); 3327 int active = ev_active (w);
2490 3328
2491 prepares [active - 1] = prepares [--preparecnt]; 3329 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 3330 ev_active (prepares [active - 1]) = active;
2493 } 3331 }
2494 3332
2495 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
3334
3335 EV_FREQUENT_CHECK;
2496} 3336}
2497 3337
2498void 3338void
2499ev_check_start (EV_P_ ev_check *w) 3339ev_check_start (EV_P_ ev_check *w)
2500{ 3340{
2501 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2502 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2503 3345
2504 ev_start (EV_A_ (W)w, ++checkcnt); 3346 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3347 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 3348 checks [checkcnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2507} 3351}
2508 3352
2509void 3353void
2510ev_check_stop (EV_P_ ev_check *w) 3354ev_check_stop (EV_P_ ev_check *w)
2511{ 3355{
2512 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2514 return; 3358 return;
2515 3359
3360 EV_FREQUENT_CHECK;
3361
2516 { 3362 {
2517 int active = ev_active (w); 3363 int active = ev_active (w);
2518 3364
2519 checks [active - 1] = checks [--checkcnt]; 3365 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 3366 ev_active (checks [active - 1]) = active;
2521 } 3367 }
2522 3368
2523 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
2524} 3372}
2525 3373
2526#if EV_EMBED_ENABLE 3374#if EV_EMBED_ENABLE
2527void noinline 3375void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 3376ev_embed_sweep (EV_P_ ev_embed *w)
2545embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3393embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2546{ 3394{
2547 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3395 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2548 3396
2549 { 3397 {
2550 struct ev_loop *loop = w->other; 3398 EV_P = w->other;
2551 3399
2552 while (fdchangecnt) 3400 while (fdchangecnt)
2553 { 3401 {
2554 fd_reify (EV_A); 3402 fd_reify (EV_A);
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3403 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 3404 }
2557 } 3405 }
2558} 3406}
2559 3407
3408static void
3409embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3410{
3411 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3412
3413 ev_embed_stop (EV_A_ w);
3414
3415 {
3416 EV_P = w->other;
3417
3418 ev_loop_fork (EV_A);
3419 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3420 }
3421
3422 ev_embed_start (EV_A_ w);
3423}
3424
2560#if 0 3425#if 0
2561static void 3426static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3427embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 3428{
2564 ev_idle_stop (EV_A_ idle); 3429 ev_idle_stop (EV_A_ idle);
2570{ 3435{
2571 if (expect_false (ev_is_active (w))) 3436 if (expect_false (ev_is_active (w)))
2572 return; 3437 return;
2573 3438
2574 { 3439 {
2575 struct ev_loop *loop = w->other; 3440 EV_P = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3441 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3442 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 3443 }
3444
3445 EV_FREQUENT_CHECK;
2579 3446
2580 ev_set_priority (&w->io, ev_priority (w)); 3447 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 3448 ev_io_start (EV_A_ &w->io);
2582 3449
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 3450 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 3451 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 3452 ev_prepare_start (EV_A_ &w->prepare);
2586 3453
3454 ev_fork_init (&w->fork, embed_fork_cb);
3455 ev_fork_start (EV_A_ &w->fork);
3456
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3457 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 3458
2589 ev_start (EV_A_ (W)w, 1); 3459 ev_start (EV_A_ (W)w, 1);
3460
3461 EV_FREQUENT_CHECK;
2590} 3462}
2591 3463
2592void 3464void
2593ev_embed_stop (EV_P_ ev_embed *w) 3465ev_embed_stop (EV_P_ ev_embed *w)
2594{ 3466{
2595 clear_pending (EV_A_ (W)w); 3467 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 3468 if (expect_false (!ev_is_active (w)))
2597 return; 3469 return;
2598 3470
3471 EV_FREQUENT_CHECK;
3472
2599 ev_io_stop (EV_A_ &w->io); 3473 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 3474 ev_prepare_stop (EV_A_ &w->prepare);
3475 ev_fork_stop (EV_A_ &w->fork);
2601 3476
2602 ev_stop (EV_A_ (W)w); 3477 ev_stop (EV_A_ (W)w);
3478
3479 EV_FREQUENT_CHECK;
2603} 3480}
2604#endif 3481#endif
2605 3482
2606#if EV_FORK_ENABLE 3483#if EV_FORK_ENABLE
2607void 3484void
2608ev_fork_start (EV_P_ ev_fork *w) 3485ev_fork_start (EV_P_ ev_fork *w)
2609{ 3486{
2610 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2611 return; 3488 return;
3489
3490 EV_FREQUENT_CHECK;
2612 3491
2613 ev_start (EV_A_ (W)w, ++forkcnt); 3492 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 3494 forks [forkcnt - 1] = w;
3495
3496 EV_FREQUENT_CHECK;
2616} 3497}
2617 3498
2618void 3499void
2619ev_fork_stop (EV_P_ ev_fork *w) 3500ev_fork_stop (EV_P_ ev_fork *w)
2620{ 3501{
2621 clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2623 return; 3504 return;
2624 3505
3506 EV_FREQUENT_CHECK;
3507
2625 { 3508 {
2626 int active = ev_active (w); 3509 int active = ev_active (w);
2627 3510
2628 forks [active - 1] = forks [--forkcnt]; 3511 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 3512 ev_active (forks [active - 1]) = active;
2630 } 3513 }
2631 3514
2632 ev_stop (EV_A_ (W)w); 3515 ev_stop (EV_A_ (W)w);
3516
3517 EV_FREQUENT_CHECK;
2633} 3518}
2634#endif 3519#endif
2635 3520
2636#if EV_ASYNC_ENABLE 3521#if EV_ASYNC_ENABLE
2637void 3522void
2639{ 3524{
2640 if (expect_false (ev_is_active (w))) 3525 if (expect_false (ev_is_active (w)))
2641 return; 3526 return;
2642 3527
2643 evpipe_init (EV_A); 3528 evpipe_init (EV_A);
3529
3530 EV_FREQUENT_CHECK;
2644 3531
2645 ev_start (EV_A_ (W)w, ++asynccnt); 3532 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3533 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 3534 asyncs [asynccnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
2648} 3537}
2649 3538
2650void 3539void
2651ev_async_stop (EV_P_ ev_async *w) 3540ev_async_stop (EV_P_ ev_async *w)
2652{ 3541{
2653 clear_pending (EV_A_ (W)w); 3542 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3543 if (expect_false (!ev_is_active (w)))
2655 return; 3544 return;
2656 3545
3546 EV_FREQUENT_CHECK;
3547
2657 { 3548 {
2658 int active = ev_active (w); 3549 int active = ev_active (w);
2659 3550
2660 asyncs [active - 1] = asyncs [--asynccnt]; 3551 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 3552 ev_active (asyncs [active - 1]) = active;
2662 } 3553 }
2663 3554
2664 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2665} 3558}
2666 3559
2667void 3560void
2668ev_async_send (EV_P_ ev_async *w) 3561ev_async_send (EV_P_ ev_async *w)
2669{ 3562{
2670 w->sent = 1; 3563 w->sent = 1;
2671 evpipe_write (EV_A_ &gotasync); 3564 evpipe_write (EV_A_ &async_pending);
2672} 3565}
2673#endif 3566#endif
2674 3567
2675/*****************************************************************************/ 3568/*****************************************************************************/
2676 3569
2686once_cb (EV_P_ struct ev_once *once, int revents) 3579once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3580{
2688 void (*cb)(int revents, void *arg) = once->cb; 3581 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3582 void *arg = once->arg;
2690 3583
2691 ev_io_stop (EV_A_ &once->io); 3584 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3585 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3586 ev_free (once);
2694 3587
2695 cb (revents, arg); 3588 cb (revents, arg);
2696} 3589}
2697 3590
2698static void 3591static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3592once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3593{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3594 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3595
3596 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3597}
2703 3598
2704static void 3599static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3600once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3601{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3602 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3603
3604 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3605}
2709 3606
2710void 3607void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3608ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3609{
2734 ev_timer_set (&once->to, timeout, 0.); 3631 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 3632 ev_timer_start (EV_A_ &once->to);
2736 } 3633 }
2737} 3634}
2738 3635
3636/*****************************************************************************/
3637
3638#if EV_WALK_ENABLE
3639void
3640ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3641{
3642 int i, j;
3643 ev_watcher_list *wl, *wn;
3644
3645 if (types & (EV_IO | EV_EMBED))
3646 for (i = 0; i < anfdmax; ++i)
3647 for (wl = anfds [i].head; wl; )
3648 {
3649 wn = wl->next;
3650
3651#if EV_EMBED_ENABLE
3652 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3653 {
3654 if (types & EV_EMBED)
3655 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3656 }
3657 else
3658#endif
3659#if EV_USE_INOTIFY
3660 if (ev_cb ((ev_io *)wl) == infy_cb)
3661 ;
3662 else
3663#endif
3664 if ((ev_io *)wl != &pipe_w)
3665 if (types & EV_IO)
3666 cb (EV_A_ EV_IO, wl);
3667
3668 wl = wn;
3669 }
3670
3671 if (types & (EV_TIMER | EV_STAT))
3672 for (i = timercnt + HEAP0; i-- > HEAP0; )
3673#if EV_STAT_ENABLE
3674 /*TODO: timer is not always active*/
3675 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3676 {
3677 if (types & EV_STAT)
3678 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3679 }
3680 else
3681#endif
3682 if (types & EV_TIMER)
3683 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3684
3685#if EV_PERIODIC_ENABLE
3686 if (types & EV_PERIODIC)
3687 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3688 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3689#endif
3690
3691#if EV_IDLE_ENABLE
3692 if (types & EV_IDLE)
3693 for (j = NUMPRI; i--; )
3694 for (i = idlecnt [j]; i--; )
3695 cb (EV_A_ EV_IDLE, idles [j][i]);
3696#endif
3697
3698#if EV_FORK_ENABLE
3699 if (types & EV_FORK)
3700 for (i = forkcnt; i--; )
3701 if (ev_cb (forks [i]) != embed_fork_cb)
3702 cb (EV_A_ EV_FORK, forks [i]);
3703#endif
3704
3705#if EV_ASYNC_ENABLE
3706 if (types & EV_ASYNC)
3707 for (i = asynccnt; i--; )
3708 cb (EV_A_ EV_ASYNC, asyncs [i]);
3709#endif
3710
3711 if (types & EV_PREPARE)
3712 for (i = preparecnt; i--; )
3713#if EV_EMBED_ENABLE
3714 if (ev_cb (prepares [i]) != embed_prepare_cb)
3715#endif
3716 cb (EV_A_ EV_PREPARE, prepares [i]);
3717
3718 if (types & EV_CHECK)
3719 for (i = checkcnt; i--; )
3720 cb (EV_A_ EV_CHECK, checks [i]);
3721
3722 if (types & EV_SIGNAL)
3723 for (i = 0; i < EV_NSIG - 1; ++i)
3724 for (wl = signals [i].head; wl; )
3725 {
3726 wn = wl->next;
3727 cb (EV_A_ EV_SIGNAL, wl);
3728 wl = wn;
3729 }
3730
3731 if (types & EV_CHILD)
3732 for (i = EV_PID_HASHSIZE; i--; )
3733 for (wl = childs [i]; wl; )
3734 {
3735 wn = wl->next;
3736 cb (EV_A_ EV_CHILD, wl);
3737 wl = wn;
3738 }
3739/* EV_STAT 0x00001000 /* stat data changed */
3740/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3741}
3742#endif
3743
2739#if EV_MULTIPLICITY 3744#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 3745 #include "ev_wrap.h"
2741#endif 3746#endif
2742 3747
2743#ifdef __cplusplus 3748#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines