ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.165 by root, Fri Dec 7 18:09:38 2007 UTC vs.
Revision 1.334 by root, Tue Mar 9 09:00:59 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
139#endif 226# endif
140 227#endif
141/**/
142 228
143#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
144# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
145#endif 235#endif
146 236
147#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
239#endif
240
241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
245# define EV_USE_NANOSLEEP 0
246# endif
149#endif 247#endif
150 248
151#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
153#endif 251#endif
159# define EV_USE_POLL 1 257# define EV_USE_POLL 1
160# endif 258# endif
161#endif 259#endif
162 260
163#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
164# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
165#endif 267#endif
166 268
167#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
169#endif 271#endif
171#ifndef EV_USE_PORT 273#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 274# define EV_USE_PORT 0
173#endif 275#endif
174 276
175#ifndef EV_USE_INOTIFY 277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_INOTIFY 1
280# else
176# define EV_USE_INOTIFY 0 281# define EV_USE_INOTIFY 0
282# endif
177#endif 283#endif
178 284
179#ifndef EV_PID_HASHSIZE 285#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 286# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 287# define EV_PID_HASHSIZE 1
190# else 296# else
191# define EV_INOTIFY_HASHSIZE 16 297# define EV_INOTIFY_HASHSIZE 16
192# endif 298# endif
193#endif 299#endif
194 300
195/**/ 301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
196 356
197#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
200#endif 360#endif
202#ifndef CLOCK_REALTIME 362#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 363# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 364# define EV_USE_REALTIME 0
205#endif 365#endif
206 366
367#if !EV_STAT_ENABLE
368# undef EV_USE_INOTIFY
369# define EV_USE_INOTIFY 0
370#endif
371
372#if !EV_USE_NANOSLEEP
373# ifndef _WIN32
374# include <sys/select.h>
375# endif
376#endif
377
378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
387#endif
388
207#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 390# include <winsock.h>
209#endif 391#endif
210 392
211#if !EV_STAT_ENABLE 393#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
213#endif 398# endif
214 399# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 400# ifdef O_CLOEXEC
216# include <sys/inotify.h> 401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
217#endif 405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
218 443
219/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
451
452/*
453 * This is used to avoid floating point rounding problems.
454 * It is added to ev_rt_now when scheduling periodics
455 * to ensure progress, time-wise, even when rounding
456 * errors are against us.
457 * This value is good at least till the year 4000.
458 * Better solutions welcome.
459 */
460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 461
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 464
225#if __GNUC__ >= 3 465#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 468#else
236# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 470# define noinline
471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
472# define inline
473# endif
240#endif 474#endif
241 475
242#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 477#define expect_true(expr) expect ((expr) != 0, 1)
478#define inline_size static inline
244 479
480#if EV_MINIMAL
481# define inline_speed static noinline
482#else
483# define inline_speed static inline
484#endif
485
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
247 493
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
250 496
251typedef ev_watcher *W; 497typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
254 500
501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
522#endif
256 523
257#ifdef _WIN32 524#ifdef _WIN32
258# include "ev_win32.c" 525# include "ev_win32.c"
259#endif 526#endif
260 527
261/*****************************************************************************/ 528/*****************************************************************************/
262 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
263static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
264 539
265void 540void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 542{
268 syserr_cb = cb; 543 syserr_cb = cb;
269} 544}
270 545
271static void noinline 546static void noinline
272syserr (const char *msg) 547ev_syserr (const char *msg)
273{ 548{
274 if (!msg) 549 if (!msg)
275 msg = "(libev) system error"; 550 msg = "(libev) system error";
276 551
277 if (syserr_cb) 552 if (syserr_cb)
278 syserr_cb (msg); 553 syserr_cb (msg);
279 else 554 else
280 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
281 perror (msg); 564 perror (msg);
565#endif
282 abort (); 566 abort ();
283 } 567 }
284} 568}
285 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573#if __GLIBC__
574 return realloc (ptr, size);
575#else
576 /* some systems, notably openbsd and darwin, fail to properly
577 * implement realloc (x, 0) (as required by both ansi c-98 and
578 * the single unix specification, so work around them here.
579 */
580
581 if (size)
582 return realloc (ptr, size);
583
584 free (ptr);
585 return 0;
586#endif
587}
588
286static void *(*alloc)(void *ptr, long size); 589static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 590
288void 591void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 592ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 593{
291 alloc = cb; 594 alloc = cb;
292} 595}
293 596
294inline_speed void * 597inline_speed void *
295ev_realloc (void *ptr, long size) 598ev_realloc (void *ptr, long size)
296{ 599{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 600 ptr = alloc (ptr, size);
298 601
299 if (!ptr && size) 602 if (!ptr && size)
300 { 603 {
604#if EV_AVOID_STDIO
605 ev_printerr ("libev: memory allocation failed, aborting.\n");
606#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 607 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
608#endif
302 abort (); 609 abort ();
303 } 610 }
304 611
305 return ptr; 612 return ptr;
306} 613}
308#define ev_malloc(size) ev_realloc (0, (size)) 615#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 616#define ev_free(ptr) ev_realloc ((ptr), 0)
310 617
311/*****************************************************************************/ 618/*****************************************************************************/
312 619
620/* set in reify when reification needed */
621#define EV_ANFD_REIFY 1
622
623/* file descriptor info structure */
313typedef struct 624typedef struct
314{ 625{
315 WL head; 626 WL head;
316 unsigned char events; 627 unsigned char events; /* the events watched for */
628 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
629 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 630 unsigned char unused;
631#if EV_USE_EPOLL
632 unsigned int egen; /* generation counter to counter epoll bugs */
633#endif
318#if EV_SELECT_IS_WINSOCKET 634#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 635 SOCKET handle;
320#endif 636#endif
321} ANFD; 637} ANFD;
322 638
639/* stores the pending event set for a given watcher */
323typedef struct 640typedef struct
324{ 641{
325 W w; 642 W w;
326 int events; 643 int events; /* the pending event set for the given watcher */
327} ANPENDING; 644} ANPENDING;
328 645
329#if EV_USE_INOTIFY 646#if EV_USE_INOTIFY
647/* hash table entry per inotify-id */
330typedef struct 648typedef struct
331{ 649{
332 WL head; 650 WL head;
333} ANFS; 651} ANFS;
652#endif
653
654/* Heap Entry */
655#if EV_HEAP_CACHE_AT
656 /* a heap element */
657 typedef struct {
658 ev_tstamp at;
659 WT w;
660 } ANHE;
661
662 #define ANHE_w(he) (he).w /* access watcher, read-write */
663 #define ANHE_at(he) (he).at /* access cached at, read-only */
664 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
665#else
666 /* a heap element */
667 typedef WT ANHE;
668
669 #define ANHE_w(he) (he)
670 #define ANHE_at(he) (he)->at
671 #define ANHE_at_cache(he)
334#endif 672#endif
335 673
336#if EV_MULTIPLICITY 674#if EV_MULTIPLICITY
337 675
338 struct ev_loop 676 struct ev_loop
357 695
358 static int ev_default_loop_ptr; 696 static int ev_default_loop_ptr;
359 697
360#endif 698#endif
361 699
700#if EV_MINIMAL < 2
701# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
702# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
703# define EV_INVOKE_PENDING invoke_cb (EV_A)
704#else
705# define EV_RELEASE_CB (void)0
706# define EV_ACQUIRE_CB (void)0
707# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
708#endif
709
710#define EVUNLOOP_RECURSE 0x80
711
362/*****************************************************************************/ 712/*****************************************************************************/
363 713
714#ifndef EV_HAVE_EV_TIME
364ev_tstamp 715ev_tstamp
365ev_time (void) 716ev_time (void)
366{ 717{
367#if EV_USE_REALTIME 718#if EV_USE_REALTIME
719 if (expect_true (have_realtime))
720 {
368 struct timespec ts; 721 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 722 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 723 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 724 }
725#endif
726
372 struct timeval tv; 727 struct timeval tv;
373 gettimeofday (&tv, 0); 728 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 729 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 730}
731#endif
377 732
378ev_tstamp inline_size 733inline_size ev_tstamp
379get_clock (void) 734get_clock (void)
380{ 735{
381#if EV_USE_MONOTONIC 736#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 737 if (expect_true (have_monotonic))
383 { 738 {
396{ 751{
397 return ev_rt_now; 752 return ev_rt_now;
398} 753}
399#endif 754#endif
400 755
401int inline_size 756void
757ev_sleep (ev_tstamp delay)
758{
759 if (delay > 0.)
760 {
761#if EV_USE_NANOSLEEP
762 struct timespec ts;
763
764 ts.tv_sec = (time_t)delay;
765 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
766
767 nanosleep (&ts, 0);
768#elif defined(_WIN32)
769 Sleep ((unsigned long)(delay * 1e3));
770#else
771 struct timeval tv;
772
773 tv.tv_sec = (time_t)delay;
774 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
775
776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
777 /* something not guaranteed by newer posix versions, but guaranteed */
778 /* by older ones */
779 select (0, 0, 0, 0, &tv);
780#endif
781 }
782}
783
784/*****************************************************************************/
785
786#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
787
788/* find a suitable new size for the given array, */
789/* hopefully by rounding to a ncie-to-malloc size */
790inline_size int
402array_nextsize (int elem, int cur, int cnt) 791array_nextsize (int elem, int cur, int cnt)
403{ 792{
404 int ncur = cur + 1; 793 int ncur = cur + 1;
405 794
406 do 795 do
407 ncur <<= 1; 796 ncur <<= 1;
408 while (cnt > ncur); 797 while (cnt > ncur);
409 798
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 799 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 800 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 801 {
413 ncur *= elem; 802 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 803 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 804 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 805 ncur /= elem;
417 } 806 }
418 807
419 return ncur; 808 return ncur;
420} 809}
421 810
422inline_speed void * 811static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 812array_realloc (int elem, void *base, int *cur, int cnt)
424{ 813{
425 *cur = array_nextsize (elem, *cur, cnt); 814 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 815 return ev_realloc (base, elem * *cur);
427} 816}
817
818#define array_init_zero(base,count) \
819 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 820
429#define array_needsize(type,base,cur,cnt,init) \ 821#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 822 if (expect_false ((cnt) > (cur))) \
431 { \ 823 { \
432 int ocur_ = (cur); \ 824 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 836 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 837 }
446#endif 838#endif
447 839
448#define array_free(stem, idx) \ 840#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 841 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 842
451/*****************************************************************************/ 843/*****************************************************************************/
844
845/* dummy callback for pending events */
846static void noinline
847pendingcb (EV_P_ ev_prepare *w, int revents)
848{
849}
452 850
453void noinline 851void noinline
454ev_feed_event (EV_P_ void *w, int revents) 852ev_feed_event (EV_P_ void *w, int revents)
455{ 853{
456 W w_ = (W)w; 854 W w_ = (W)w;
855 int pri = ABSPRI (w_);
457 856
458 if (expect_false (w_->pending)) 857 if (expect_false (w_->pending))
858 pendings [pri][w_->pending - 1].events |= revents;
859 else
459 { 860 {
861 w_->pending = ++pendingcnt [pri];
862 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
863 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 864 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 865 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 866}
469 867
470void inline_size 868inline_speed void
869feed_reverse (EV_P_ W w)
870{
871 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
872 rfeeds [rfeedcnt++] = w;
873}
874
875inline_size void
876feed_reverse_done (EV_P_ int revents)
877{
878 do
879 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
880 while (rfeedcnt);
881}
882
883inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 884queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 885{
473 int i; 886 int i;
474 887
475 for (i = 0; i < eventcnt; ++i) 888 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 889 ev_feed_event (EV_A_ events [i], type);
477} 890}
478 891
479/*****************************************************************************/ 892/*****************************************************************************/
480 893
481void inline_size 894inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 895fd_event_nc (EV_P_ int fd, int revents)
496{ 896{
497 ANFD *anfd = anfds + fd; 897 ANFD *anfd = anfds + fd;
498 ev_io *w; 898 ev_io *w;
499 899
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 900 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 904 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 905 ev_feed_event (EV_A_ (W)w, ev);
506 } 906 }
507} 907}
508 908
909/* do not submit kernel events for fds that have reify set */
910/* because that means they changed while we were polling for new events */
911inline_speed void
912fd_event (EV_P_ int fd, int revents)
913{
914 ANFD *anfd = anfds + fd;
915
916 if (expect_true (!anfd->reify))
917 fd_event_nc (EV_A_ fd, revents);
918}
919
509void 920void
510ev_feed_fd_event (EV_P_ int fd, int revents) 921ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 922{
923 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 924 fd_event_nc (EV_A_ fd, revents);
513} 925}
514 926
515void inline_size 927/* make sure the external fd watch events are in-sync */
928/* with the kernel/libev internal state */
929inline_size void
516fd_reify (EV_P) 930fd_reify (EV_P)
517{ 931{
518 int i; 932 int i;
519 933
520 for (i = 0; i < fdchangecnt; ++i) 934 for (i = 0; i < fdchangecnt; ++i)
521 { 935 {
522 int fd = fdchanges [i]; 936 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 937 ANFD *anfd = anfds + fd;
524 ev_io *w; 938 ev_io *w;
525 939
526 int events = 0; 940 unsigned char events = 0;
527 941
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 942 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 943 events |= (unsigned char)w->events;
530 944
531#if EV_SELECT_IS_WINSOCKET 945#if EV_SELECT_IS_WINSOCKET
532 if (events) 946 if (events)
533 { 947 {
534 unsigned long argp; 948 unsigned long arg;
535 anfd->handle = _get_osfhandle (fd); 949 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 950 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 951 }
538#endif 952#endif
539 953
954 {
955 unsigned char o_events = anfd->events;
956 unsigned char o_reify = anfd->reify;
957
540 anfd->reify = 0; 958 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 959 anfd->events = events;
960
961 if (o_events != events || o_reify & EV__IOFDSET)
962 backend_modify (EV_A_ fd, o_events, events);
963 }
544 } 964 }
545 965
546 fdchangecnt = 0; 966 fdchangecnt = 0;
547} 967}
548 968
549void inline_size 969/* something about the given fd changed */
970inline_size void
550fd_change (EV_P_ int fd) 971fd_change (EV_P_ int fd, int flags)
551{ 972{
552 if (expect_false (anfds [fd].reify)) 973 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 974 anfds [fd].reify |= flags;
556 975
976 if (expect_true (!reify))
977 {
557 ++fdchangecnt; 978 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 979 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 980 fdchanges [fdchangecnt - 1] = fd;
981 }
560} 982}
561 983
562void inline_speed 984/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
985inline_speed void
563fd_kill (EV_P_ int fd) 986fd_kill (EV_P_ int fd)
564{ 987{
565 ev_io *w; 988 ev_io *w;
566 989
567 while ((w = (ev_io *)anfds [fd].head)) 990 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 992 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 993 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 994 }
572} 995}
573 996
574int inline_size 997/* check whether the given fd is atcually valid, for error recovery */
998inline_size int
575fd_valid (int fd) 999fd_valid (int fd)
576{ 1000{
577#ifdef _WIN32 1001#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 1002 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
579#else 1003#else
580 return fcntl (fd, F_GETFD) != -1; 1004 return fcntl (fd, F_GETFD) != -1;
581#endif 1005#endif
582} 1006}
583 1007
587{ 1011{
588 int fd; 1012 int fd;
589 1013
590 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 1015 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 1016 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 1017 fd_kill (EV_A_ fd);
594} 1018}
595 1019
596/* called on ENOMEM in select/poll to kill some fds and retry */ 1020/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 1021static void noinline
601 1025
602 for (fd = anfdmax; fd--; ) 1026 for (fd = anfdmax; fd--; )
603 if (anfds [fd].events) 1027 if (anfds [fd].events)
604 { 1028 {
605 fd_kill (EV_A_ fd); 1029 fd_kill (EV_A_ fd);
606 return; 1030 break;
607 } 1031 }
608} 1032}
609 1033
610/* usually called after fork if backend needs to re-arm all fds from scratch */ 1034/* usually called after fork if backend needs to re-arm all fds from scratch */
611static void noinline 1035static void noinline
615 1039
616 for (fd = 0; fd < anfdmax; ++fd) 1040 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 1041 if (anfds [fd].events)
618 { 1042 {
619 anfds [fd].events = 0; 1043 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 1044 anfds [fd].emask = 0;
1045 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 1046 }
622} 1047}
623 1048
624/*****************************************************************************/ 1049/*****************************************************************************/
625 1050
626void inline_speed 1051/*
627upheap (WT *heap, int k) 1052 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 1053 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 1054 * the branching factor of the d-tree.
1055 */
630 1056
631 while (k && heap [k >> 1]->at > w->at) 1057/*
632 { 1058 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 1059 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 1060 * which is more cache-efficient.
635 k >>= 1; 1061 * the difference is about 5% with 50000+ watchers.
636 } 1062 */
1063#if EV_USE_4HEAP
637 1064
638 heap [k] = w; 1065#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 1066#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1067#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1068#define UPHEAP_DONE(p,k) ((p) == (k))
640 1069
641} 1070/* away from the root */
642 1071inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 1072downheap (ANHE *heap, int N, int k)
645{ 1073{
646 WT w = heap [k]; 1074 ANHE he = heap [k];
1075 ANHE *E = heap + N + HEAP0;
647 1076
648 while (k < (N >> 1)) 1077 for (;;)
649 { 1078 {
650 int j = k << 1; 1079 ev_tstamp minat;
1080 ANHE *minpos;
1081 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 1082
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1083 /* find minimum child */
1084 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 1085 {
654 1086 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 1087 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1088 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1089 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1090 }
1091 else if (pos < E)
1092 {
1093 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else
656 break; 1099 break;
657 1100
1101 if (ANHE_at (he) <= minat)
1102 break;
1103
1104 heap [k] = *minpos;
1105 ev_active (ANHE_w (*minpos)) = k;
1106
1107 k = minpos - heap;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114#else /* 4HEAP */
1115
1116#define HEAP0 1
1117#define HPARENT(k) ((k) >> 1)
1118#define UPHEAP_DONE(p,k) (!(p))
1119
1120/* away from the root */
1121inline_speed void
1122downheap (ANHE *heap, int N, int k)
1123{
1124 ANHE he = heap [k];
1125
1126 for (;;)
1127 {
1128 int c = k << 1;
1129
1130 if (c >= N + HEAP0)
1131 break;
1132
1133 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1134 ? 1 : 0;
1135
1136 if (ANHE_at (he) <= ANHE_at (heap [c]))
1137 break;
1138
658 heap [k] = heap [j]; 1139 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 1140 ev_active (ANHE_w (heap [k])) = k;
1141
660 k = j; 1142 k = c;
661 } 1143 }
662 1144
663 heap [k] = w; 1145 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1146 ev_active (ANHE_w (he)) = k;
665} 1147}
1148#endif
666 1149
667void inline_size 1150/* towards the root */
1151inline_speed void
1152upheap (ANHE *heap, int k)
1153{
1154 ANHE he = heap [k];
1155
1156 for (;;)
1157 {
1158 int p = HPARENT (k);
1159
1160 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1161 break;
1162
1163 heap [k] = heap [p];
1164 ev_active (ANHE_w (heap [k])) = k;
1165 k = p;
1166 }
1167
1168 heap [k] = he;
1169 ev_active (ANHE_w (he)) = k;
1170}
1171
1172/* move an element suitably so it is in a correct place */
1173inline_size void
668adjustheap (WT *heap, int N, int k) 1174adjustheap (ANHE *heap, int N, int k)
669{ 1175{
1176 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
670 upheap (heap, k); 1177 upheap (heap, k);
1178 else
671 downheap (heap, N, k); 1179 downheap (heap, N, k);
1180}
1181
1182/* rebuild the heap: this function is used only once and executed rarely */
1183inline_size void
1184reheap (ANHE *heap, int N)
1185{
1186 int i;
1187
1188 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1189 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1190 for (i = 0; i < N; ++i)
1191 upheap (heap, i + HEAP0);
672} 1192}
673 1193
674/*****************************************************************************/ 1194/*****************************************************************************/
675 1195
1196/* associate signal watchers to a signal signal */
676typedef struct 1197typedef struct
677{ 1198{
1199 EV_ATOMIC_T pending;
1200#if EV_MULTIPLICITY
1201 EV_P;
1202#endif
678 WL head; 1203 WL head;
679 sig_atomic_t volatile gotsig;
680} ANSIG; 1204} ANSIG;
681 1205
682static ANSIG *signals; 1206static ANSIG signals [EV_NSIG - 1];
683static int signalmax;
684 1207
685static int sigpipe [2]; 1208/*****************************************************************************/
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1209
689void inline_size 1210/* used to prepare libev internal fd's */
690signals_init (ANSIG *base, int count) 1211/* this is not fork-safe */
691{ 1212inline_speed void
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1213fd_intern (int fd)
754{ 1214{
755#ifdef _WIN32 1215#ifdef _WIN32
756 int arg = 1; 1216 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1217 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
758#else 1218#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1219 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1220 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1221#endif
762} 1222}
763 1223
764static void noinline 1224static void noinline
765siginit (EV_P) 1225evpipe_init (EV_P)
766{ 1226{
1227 if (!ev_is_active (&pipe_w))
1228 {
1229#if EV_USE_EVENTFD
1230 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1231 if (evfd < 0 && errno == EINVAL)
1232 evfd = eventfd (0, 0);
1233
1234 if (evfd >= 0)
1235 {
1236 evpipe [0] = -1;
1237 fd_intern (evfd); /* doing it twice doesn't hurt */
1238 ev_io_set (&pipe_w, evfd, EV_READ);
1239 }
1240 else
1241#endif
1242 {
1243 while (pipe (evpipe))
1244 ev_syserr ("(libev) error creating signal/async pipe");
1245
767 fd_intern (sigpipe [0]); 1246 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1247 fd_intern (evpipe [1]);
1248 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1249 }
769 1250
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1251 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1252 ev_unref (EV_A); /* watcher should not keep loop alive */
1253 }
1254}
1255
1256inline_size void
1257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1258{
1259 if (!*flag)
1260 {
1261 int old_errno = errno; /* save errno because write might clobber it */
1262
1263 *flag = 1;
1264
1265#if EV_USE_EVENTFD
1266 if (evfd >= 0)
1267 {
1268 uint64_t counter = 1;
1269 write (evfd, &counter, sizeof (uint64_t));
1270 }
1271 else
1272#endif
1273 write (evpipe [1], &old_errno, 1);
1274
1275 errno = old_errno;
1276 }
1277}
1278
1279/* called whenever the libev signal pipe */
1280/* got some events (signal, async) */
1281static void
1282pipecb (EV_P_ ev_io *iow, int revents)
1283{
1284 int i;
1285
1286#if EV_USE_EVENTFD
1287 if (evfd >= 0)
1288 {
1289 uint64_t counter;
1290 read (evfd, &counter, sizeof (uint64_t));
1291 }
1292 else
1293#endif
1294 {
1295 char dummy;
1296 read (evpipe [0], &dummy, 1);
1297 }
1298
1299 if (sig_pending)
1300 {
1301 sig_pending = 0;
1302
1303 for (i = EV_NSIG - 1; i--; )
1304 if (expect_false (signals [i].pending))
1305 ev_feed_signal_event (EV_A_ i + 1);
1306 }
1307
1308#if EV_ASYNC_ENABLE
1309 if (async_pending)
1310 {
1311 async_pending = 0;
1312
1313 for (i = asynccnt; i--; )
1314 if (asyncs [i]->sent)
1315 {
1316 asyncs [i]->sent = 0;
1317 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1318 }
1319 }
1320#endif
773} 1321}
774 1322
775/*****************************************************************************/ 1323/*****************************************************************************/
776 1324
1325static void
1326ev_sighandler (int signum)
1327{
1328#if EV_MULTIPLICITY
1329 EV_P = signals [signum - 1].loop;
1330#endif
1331
1332#ifdef _WIN32
1333 signal (signum, ev_sighandler);
1334#endif
1335
1336 signals [signum - 1].pending = 1;
1337 evpipe_write (EV_A_ &sig_pending);
1338}
1339
1340void noinline
1341ev_feed_signal_event (EV_P_ int signum)
1342{
1343 WL w;
1344
1345 if (expect_false (signum <= 0 || signum > EV_NSIG))
1346 return;
1347
1348 --signum;
1349
1350#if EV_MULTIPLICITY
1351 /* it is permissible to try to feed a signal to the wrong loop */
1352 /* or, likely more useful, feeding a signal nobody is waiting for */
1353
1354 if (expect_false (signals [signum].loop != EV_A))
1355 return;
1356#endif
1357
1358 signals [signum].pending = 0;
1359
1360 for (w = signals [signum].head; w; w = w->next)
1361 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1362}
1363
1364#if EV_USE_SIGNALFD
1365static void
1366sigfdcb (EV_P_ ev_io *iow, int revents)
1367{
1368 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1369
1370 for (;;)
1371 {
1372 ssize_t res = read (sigfd, si, sizeof (si));
1373
1374 /* not ISO-C, as res might be -1, but works with SuS */
1375 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1376 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1377
1378 if (res < (ssize_t)sizeof (si))
1379 break;
1380 }
1381}
1382#endif
1383
1384/*****************************************************************************/
1385
777static ev_child *childs [EV_PID_HASHSIZE]; 1386static WL childs [EV_PID_HASHSIZE];
778 1387
779#ifndef _WIN32 1388#ifndef _WIN32
780 1389
781static ev_signal childev; 1390static ev_signal childev;
782 1391
783void inline_speed 1392#ifndef WIFCONTINUED
1393# define WIFCONTINUED(status) 0
1394#endif
1395
1396/* handle a single child status event */
1397inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1398child_reap (EV_P_ int chain, int pid, int status)
785{ 1399{
786 ev_child *w; 1400 ev_child *w;
1401 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1402
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1403 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1404 {
789 if (w->pid == pid || !w->pid) 1405 if ((w->pid == pid || !w->pid)
1406 && (!traced || (w->flags & 1)))
790 { 1407 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1408 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1409 w->rpid = pid;
793 w->rstatus = status; 1410 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1411 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1412 }
1413 }
796} 1414}
797 1415
798#ifndef WCONTINUED 1416#ifndef WCONTINUED
799# define WCONTINUED 0 1417# define WCONTINUED 0
800#endif 1418#endif
801 1419
1420/* called on sigchld etc., calls waitpid */
802static void 1421static void
803childcb (EV_P_ ev_signal *sw, int revents) 1422childcb (EV_P_ ev_signal *sw, int revents)
804{ 1423{
805 int pid, status; 1424 int pid, status;
806 1425
809 if (!WCONTINUED 1428 if (!WCONTINUED
810 || errno != EINVAL 1429 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1430 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1431 return;
813 1432
814 /* make sure we are called again until all childs have been reaped */ 1433 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1434 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1435 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1436
818 child_reap (EV_A_ sw, pid, pid, status); 1437 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1438 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1439 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1440}
822 1441
823#endif 1442#endif
824 1443
825/*****************************************************************************/ 1444/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1506 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1507 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1508 flags &= ~EVBACKEND_KQUEUE;
890#endif 1509#endif
891#ifdef __APPLE__ 1510#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1511 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1512 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1513 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1514#endif
895 1515
896 return flags; 1516 return flags;
897} 1517}
898 1518
899unsigned int 1519unsigned int
900ev_embeddable_backends (void) 1520ev_embeddable_backends (void)
901{ 1521{
902 return EVBACKEND_EPOLL 1522 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1523
904 | EVBACKEND_PORT; 1524 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1525 /* please fix it and tell me how to detect the fix */
1526 flags &= ~EVBACKEND_EPOLL;
1527
1528 return flags;
905} 1529}
906 1530
907unsigned int 1531unsigned int
908ev_backend (EV_P) 1532ev_backend (EV_P)
909{ 1533{
910 return backend; 1534 return backend;
911} 1535}
912 1536
1537#if EV_MINIMAL < 2
913unsigned int 1538unsigned int
914ev_loop_count (EV_P) 1539ev_loop_count (EV_P)
915{ 1540{
916 return loop_count; 1541 return loop_count;
917} 1542}
918 1543
1544unsigned int
1545ev_loop_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1550void
1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1552{
1553 io_blocktime = interval;
1554}
1555
1556void
1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1558{
1559 timeout_blocktime = interval;
1560}
1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
919static void noinline 1587static void noinline
920loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
921{ 1589{
922 if (!backend) 1590 if (!backend)
923 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
924#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
925 { 1604 {
926 struct timespec ts; 1605 struct timespec ts;
1606
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1608 have_monotonic = 1;
929 } 1609 }
930#endif 1610#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 1611
937 /* pid check not overridable via env */ 1612 /* pid check not overridable via env */
938#ifndef _WIN32 1613#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1614 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1615 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1618 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1619 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1620 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1621 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1622
1623 ev_rt_now = ev_time ();
1624 mn_now = get_clock ();
1625 now_floor = mn_now;
1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_MINIMAL < 2
1628 invoke_cb = ev_invoke_pending;
1629#endif
1630
1631 io_blocktime = 0.;
1632 timeout_blocktime = 0.;
1633 backend = 0;
1634 backend_fd = -1;
1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1639#if EV_USE_INOTIFY
1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1641#endif
1642#if EV_USE_SIGNALFD
1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1644#endif
1645
948 if (!(flags & 0x0000ffffUL)) 1646 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1648
957#if EV_USE_PORT 1649#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1650 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1651#endif
960#if EV_USE_KQUEUE 1652#if EV_USE_KQUEUE
968#endif 1660#endif
969#if EV_USE_SELECT 1661#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1663#endif
972 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
973 ev_init (&sigev, sigcb); 1667 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1668 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1669 }
976} 1670}
977 1671
1672/* free up a loop structure */
978static void noinline 1673static void noinline
979loop_destroy (EV_P) 1674loop_destroy (EV_P)
980{ 1675{
981 int i; 1676 int i;
1677
1678 if (ev_is_active (&pipe_w))
1679 {
1680 /*ev_ref (EV_A);*/
1681 /*ev_io_stop (EV_A_ &pipe_w);*/
1682
1683#if EV_USE_EVENTFD
1684 if (evfd >= 0)
1685 close (evfd);
1686#endif
1687
1688 if (evpipe [0] >= 0)
1689 {
1690 EV_WIN32_CLOSE_FD (evpipe [0]);
1691 EV_WIN32_CLOSE_FD (evpipe [1]);
1692 }
1693 }
1694
1695#if EV_USE_SIGNALFD
1696 if (ev_is_active (&sigfd_w))
1697 close (sigfd);
1698#endif
982 1699
983#if EV_USE_INOTIFY 1700#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1701 if (fs_fd >= 0)
985 close (fs_fd); 1702 close (fs_fd);
986#endif 1703#endif
1010#if EV_IDLE_ENABLE 1727#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1728 array_free (idle, [i]);
1012#endif 1729#endif
1013 } 1730 }
1014 1731
1732 ev_free (anfds); anfds = 0; anfdmax = 0;
1733
1015 /* have to use the microsoft-never-gets-it-right macro */ 1734 /* have to use the microsoft-never-gets-it-right macro */
1735 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1736 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1737 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1739 array_free (periodic, EMPTY);
1020#endif 1740#endif
1741#if EV_FORK_ENABLE
1742 array_free (fork, EMPTY);
1743#endif
1021 array_free (prepare, EMPTY); 1744 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1745 array_free (check, EMPTY);
1746#if EV_ASYNC_ENABLE
1747 array_free (async, EMPTY);
1748#endif
1023 1749
1024 backend = 0; 1750 backend = 0;
1025} 1751}
1026 1752
1753#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1754inline_size void infy_fork (EV_P);
1755#endif
1028 1756
1029void inline_size 1757inline_size void
1030loop_fork (EV_P) 1758loop_fork (EV_P)
1031{ 1759{
1032#if EV_USE_PORT 1760#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1761 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1762#endif
1040#endif 1768#endif
1041#if EV_USE_INOTIFY 1769#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1770 infy_fork (EV_A);
1043#endif 1771#endif
1044 1772
1045 if (ev_is_active (&sigev)) 1773 if (ev_is_active (&pipe_w))
1046 { 1774 {
1047 /* default loop */ 1775 /* this "locks" the handlers against writing to the pipe */
1776 /* while we modify the fd vars */
1777 sig_pending = 1;
1778#if EV_ASYNC_ENABLE
1779 async_pending = 1;
1780#endif
1048 1781
1049 ev_ref (EV_A); 1782 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1783 ev_io_stop (EV_A_ &pipe_w);
1051 close (sigpipe [0]);
1052 close (sigpipe [1]);
1053 1784
1054 while (pipe (sigpipe)) 1785#if EV_USE_EVENTFD
1055 syserr ("(libev) error creating pipe"); 1786 if (evfd >= 0)
1787 close (evfd);
1788#endif
1056 1789
1790 if (evpipe [0] >= 0)
1791 {
1792 EV_WIN32_CLOSE_FD (evpipe [0]);
1793 EV_WIN32_CLOSE_FD (evpipe [1]);
1794 }
1795
1057 siginit (EV_A); 1796 evpipe_init (EV_A);
1797 /* now iterate over everything, in case we missed something */
1798 pipecb (EV_A_ &pipe_w, EV_READ);
1058 } 1799 }
1059 1800
1060 postfork = 0; 1801 postfork = 0;
1061} 1802}
1062 1803
1063#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1805
1064struct ev_loop * 1806struct ev_loop *
1065ev_loop_new (unsigned int flags) 1807ev_loop_new (unsigned int flags)
1066{ 1808{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1809 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1810
1069 memset (loop, 0, sizeof (struct ev_loop)); 1811 memset (EV_A, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags); 1812 loop_init (EV_A_ flags);
1072 1813
1073 if (ev_backend (EV_A)) 1814 if (ev_backend (EV_A))
1074 return loop; 1815 return EV_A;
1075 1816
1076 return 0; 1817 return 0;
1077} 1818}
1078 1819
1079void 1820void
1084} 1825}
1085 1826
1086void 1827void
1087ev_loop_fork (EV_P) 1828ev_loop_fork (EV_P)
1088{ 1829{
1089 postfork = 1; 1830 postfork = 1; /* must be in line with ev_default_fork */
1090} 1831}
1832#endif /* multiplicity */
1091 1833
1834#if EV_VERIFY
1835static void noinline
1836verify_watcher (EV_P_ W w)
1837{
1838 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1839
1840 if (w->pending)
1841 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1842}
1843
1844static void noinline
1845verify_heap (EV_P_ ANHE *heap, int N)
1846{
1847 int i;
1848
1849 for (i = HEAP0; i < N + HEAP0; ++i)
1850 {
1851 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1852 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1853 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1854
1855 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1856 }
1857}
1858
1859static void noinline
1860array_verify (EV_P_ W *ws, int cnt)
1861{
1862 while (cnt--)
1863 {
1864 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1865 verify_watcher (EV_A_ ws [cnt]);
1866 }
1867}
1868#endif
1869
1870#if EV_MINIMAL < 2
1871void
1872ev_loop_verify (EV_P)
1873{
1874#if EV_VERIFY
1875 int i;
1876 WL w;
1877
1878 assert (activecnt >= -1);
1879
1880 assert (fdchangemax >= fdchangecnt);
1881 for (i = 0; i < fdchangecnt; ++i)
1882 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1883
1884 assert (anfdmax >= 0);
1885 for (i = 0; i < anfdmax; ++i)
1886 for (w = anfds [i].head; w; w = w->next)
1887 {
1888 verify_watcher (EV_A_ (W)w);
1889 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1890 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1891 }
1892
1893 assert (timermax >= timercnt);
1894 verify_heap (EV_A_ timers, timercnt);
1895
1896#if EV_PERIODIC_ENABLE
1897 assert (periodicmax >= periodiccnt);
1898 verify_heap (EV_A_ periodics, periodiccnt);
1899#endif
1900
1901 for (i = NUMPRI; i--; )
1902 {
1903 assert (pendingmax [i] >= pendingcnt [i]);
1904#if EV_IDLE_ENABLE
1905 assert (idleall >= 0);
1906 assert (idlemax [i] >= idlecnt [i]);
1907 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1908#endif
1909 }
1910
1911#if EV_FORK_ENABLE
1912 assert (forkmax >= forkcnt);
1913 array_verify (EV_A_ (W *)forks, forkcnt);
1914#endif
1915
1916#if EV_ASYNC_ENABLE
1917 assert (asyncmax >= asynccnt);
1918 array_verify (EV_A_ (W *)asyncs, asynccnt);
1919#endif
1920
1921 assert (preparemax >= preparecnt);
1922 array_verify (EV_A_ (W *)prepares, preparecnt);
1923
1924 assert (checkmax >= checkcnt);
1925 array_verify (EV_A_ (W *)checks, checkcnt);
1926
1927# if 0
1928 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1929 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1930# endif
1931#endif
1932}
1092#endif 1933#endif
1093 1934
1094#if EV_MULTIPLICITY 1935#if EV_MULTIPLICITY
1095struct ev_loop * 1936struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1937ev_default_loop_init (unsigned int flags)
1097#else 1938#else
1098int 1939int
1099ev_default_loop (unsigned int flags) 1940ev_default_loop (unsigned int flags)
1100#endif 1941#endif
1101{ 1942{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1943 if (!ev_default_loop_ptr)
1107 { 1944 {
1108#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1946 EV_P = ev_default_loop_ptr = &default_loop_struct;
1110#else 1947#else
1111 ev_default_loop_ptr = 1; 1948 ev_default_loop_ptr = 1;
1112#endif 1949#endif
1113 1950
1114 loop_init (EV_A_ flags); 1951 loop_init (EV_A_ flags);
1115 1952
1116 if (ev_backend (EV_A)) 1953 if (ev_backend (EV_A))
1117 { 1954 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1955#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1956 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1957 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1958 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1959 ev_unref (EV_A); /* child watcher should not keep loop alive */
1133 1968
1134void 1969void
1135ev_default_destroy (void) 1970ev_default_destroy (void)
1136{ 1971{
1137#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1138 struct ev_loop *loop = ev_default_loop_ptr; 1973 EV_P = ev_default_loop_ptr;
1139#endif 1974#endif
1975
1976 ev_default_loop_ptr = 0;
1140 1977
1141#ifndef _WIN32 1978#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1979 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1980 ev_signal_stop (EV_A_ &childev);
1144#endif 1981#endif
1145 1982
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1983 loop_destroy (EV_A);
1153} 1984}
1154 1985
1155void 1986void
1156ev_default_fork (void) 1987ev_default_fork (void)
1157{ 1988{
1158#if EV_MULTIPLICITY 1989#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1990 EV_P = ev_default_loop_ptr;
1160#endif 1991#endif
1161 1992
1162 if (backend) 1993 postfork = 1; /* must be in line with ev_loop_fork */
1163 postfork = 1;
1164} 1994}
1165 1995
1166/*****************************************************************************/ 1996/*****************************************************************************/
1167 1997
1168void inline_speed 1998void
1169call_pending (EV_P) 1999ev_invoke (EV_P_ void *w, int revents)
2000{
2001 EV_CB_INVOKE ((W)w, revents);
2002}
2003
2004unsigned int
2005ev_pending_count (EV_P)
2006{
2007 int pri;
2008 unsigned int count = 0;
2009
2010 for (pri = NUMPRI; pri--; )
2011 count += pendingcnt [pri];
2012
2013 return count;
2014}
2015
2016void noinline
2017ev_invoke_pending (EV_P)
1170{ 2018{
1171 int pri; 2019 int pri;
1172 2020
1173 for (pri = NUMPRI; pri--; ) 2021 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 2022 while (pendingcnt [pri])
1175 { 2023 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 2025
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2026 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2027 /* ^ this is no longer true, as pending_w could be here */
1181 2028
1182 p->w->pending = 0; 2029 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 2030 EV_CB_INVOKE (p->w, p->events);
1184 } 2031 EV_FREQUENT_CHECK;
1185 } 2032 }
1186} 2033}
1187 2034
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 2035#if EV_IDLE_ENABLE
1268void inline_size 2036/* make idle watchers pending. this handles the "call-idle */
2037/* only when higher priorities are idle" logic */
2038inline_size void
1269idle_reify (EV_P) 2039idle_reify (EV_P)
1270{ 2040{
1271 if (expect_false (idleall)) 2041 if (expect_false (idleall))
1272 { 2042 {
1273 int pri; 2043 int pri;
1285 } 2055 }
1286 } 2056 }
1287} 2057}
1288#endif 2058#endif
1289 2059
1290int inline_size 2060/* make timers pending */
1291time_update_monotonic (EV_P) 2061inline_size void
2062timers_reify (EV_P)
1292{ 2063{
2064 EV_FREQUENT_CHECK;
2065
2066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2067 {
2068 do
2069 {
2070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2071
2072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2073
2074 /* first reschedule or stop timer */
2075 if (w->repeat)
2076 {
2077 ev_at (w) += w->repeat;
2078 if (ev_at (w) < mn_now)
2079 ev_at (w) = mn_now;
2080
2081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2082
2083 ANHE_at_cache (timers [HEAP0]);
2084 downheap (timers, timercnt, HEAP0);
2085 }
2086 else
2087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2088
2089 EV_FREQUENT_CHECK;
2090 feed_reverse (EV_A_ (W)w);
2091 }
2092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2093
2094 feed_reverse_done (EV_A_ EV_TIMEOUT);
2095 }
2096}
2097
2098#if EV_PERIODIC_ENABLE
2099/* make periodics pending */
2100inline_size void
2101periodics_reify (EV_P)
2102{
2103 EV_FREQUENT_CHECK;
2104
2105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2106 {
2107 int feed_count = 0;
2108
2109 do
2110 {
2111 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2112
2113 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2114
2115 /* first reschedule or stop timer */
2116 if (w->reschedule_cb)
2117 {
2118 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2119
2120 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2121
2122 ANHE_at_cache (periodics [HEAP0]);
2123 downheap (periodics, periodiccnt, HEAP0);
2124 }
2125 else if (w->interval)
2126 {
2127 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2128 /* if next trigger time is not sufficiently in the future, put it there */
2129 /* this might happen because of floating point inexactness */
2130 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2131 {
2132 ev_at (w) += w->interval;
2133
2134 /* if interval is unreasonably low we might still have a time in the past */
2135 /* so correct this. this will make the periodic very inexact, but the user */
2136 /* has effectively asked to get triggered more often than possible */
2137 if (ev_at (w) < ev_rt_now)
2138 ev_at (w) = ev_rt_now;
2139 }
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else
2145 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
2149 }
2150 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2151
2152 feed_reverse_done (EV_A_ EV_PERIODIC);
2153 }
2154}
2155
2156/* simply recalculate all periodics */
2157/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2158static void noinline
2159periodics_reschedule (EV_P)
2160{
2161 int i;
2162
2163 /* adjust periodics after time jump */
2164 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2165 {
2166 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2167
2168 if (w->reschedule_cb)
2169 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2170 else if (w->interval)
2171 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2172
2173 ANHE_at_cache (periodics [i]);
2174 }
2175
2176 reheap (periodics, periodiccnt);
2177}
2178#endif
2179
2180/* adjust all timers by a given offset */
2181static void noinline
2182timers_reschedule (EV_P_ ev_tstamp adjust)
2183{
2184 int i;
2185
2186 for (i = 0; i < timercnt; ++i)
2187 {
2188 ANHE *he = timers + i + HEAP0;
2189 ANHE_w (*he)->at += adjust;
2190 ANHE_at_cache (*he);
2191 }
2192}
2193
2194/* fetch new monotonic and realtime times from the kernel */
2195/* also detect if there was a timejump, and act accordingly */
2196inline_speed void
2197time_update (EV_P_ ev_tstamp max_block)
2198{
2199#if EV_USE_MONOTONIC
2200 if (expect_true (have_monotonic))
2201 {
2202 int i;
2203 ev_tstamp odiff = rtmn_diff;
2204
1293 mn_now = get_clock (); 2205 mn_now = get_clock ();
1294 2206
2207 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2208 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2209 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2210 {
1297 ev_rt_now = rtmn_diff + mn_now; 2211 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2212 return;
1299 } 2213 }
1300 else 2214
1301 {
1302 now_floor = mn_now; 2215 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2216 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2217
1308void inline_size 2218 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2219 * on the choice of "4": one iteration isn't enough,
1310{ 2220 * in case we get preempted during the calls to
1311 int i; 2221 * ev_time and get_clock. a second call is almost guaranteed
1312 2222 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2223 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2224 * in the unlikely event of having been preempted here.
1315 { 2225 */
1316 if (time_update_monotonic (EV_A)) 2226 for (i = 4; --i; )
1317 { 2227 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2228 rtmn_diff = ev_rt_now - mn_now;
1331 2229
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2230 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2231 return; /* all is well */
1334 2232
1335 ev_rt_now = ev_time (); 2233 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2234 mn_now = get_clock ();
1337 now_floor = mn_now; 2235 now_floor = mn_now;
1338 } 2236 }
1339 2237
2238 /* no timer adjustment, as the monotonic clock doesn't jump */
2239 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2240# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1342# endif 2242# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2243 }
1347 else 2244 else
1348#endif 2245#endif
1349 { 2246 {
1350 ev_rt_now = ev_time (); 2247 ev_rt_now = ev_time ();
1351 2248
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2249 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2250 {
2251 /* adjust timers. this is easy, as the offset is the same for all of them */
2252 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2253#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2254 periodics_reschedule (EV_A);
1356#endif 2255#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2256 }
1362 2257
1363 mn_now = ev_rt_now; 2258 mn_now = ev_rt_now;
1364 } 2259 }
1365} 2260}
1366 2261
1367void 2262void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2263ev_loop (EV_P_ int flags)
1383{ 2264{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2265#if EV_MINIMAL < 2
1385 ? EVUNLOOP_ONE 2266 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2267#endif
1387 2268
2269 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2270
2271 loop_done = EVUNLOOP_CANCEL;
2272
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2273 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2274
1390 do 2275 do
1391 { 2276 {
2277#if EV_VERIFY >= 2
2278 ev_loop_verify (EV_A);
2279#endif
2280
1392#ifndef _WIN32 2281#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2282 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2283 if (expect_false (getpid () != curpid))
1395 { 2284 {
1396 curpid = getpid (); 2285 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2291 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2292 if (expect_false (postfork))
1404 if (forkcnt) 2293 if (forkcnt)
1405 { 2294 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2295 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2296 EV_INVOKE_PENDING;
1408 } 2297 }
1409#endif 2298#endif
1410 2299
1411 /* queue check watchers (and execute them) */ 2300 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2301 if (expect_false (preparecnt))
1413 { 2302 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2303 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2304 EV_INVOKE_PENDING;
1416 } 2305 }
1417 2306
1418 if (expect_false (!activecnt)) 2307 if (expect_false (loop_done))
1419 break; 2308 break;
1420 2309
1421 /* we might have forked, so reify kernel state if necessary */ 2310 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1423 loop_fork (EV_A); 2312 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2314 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2315 fd_reify (EV_A);
1427 2316
1428 /* calculate blocking time */ 2317 /* calculate blocking time */
1429 { 2318 {
1430 ev_tstamp block; 2319 ev_tstamp waittime = 0.;
2320 ev_tstamp sleeptime = 0.;
1431 2321
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2322 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2323 {
2324 /* remember old timestamp for io_blocktime calculation */
2325 ev_tstamp prev_mn_now = mn_now;
2326
1436 /* update time to cancel out callback processing overhead */ 2327 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 2328 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 2329
1447 block = MAX_BLOCKTIME; 2330 waittime = MAX_BLOCKTIME;
1448 2331
1449 if (timercnt) 2332 if (timercnt)
1450 { 2333 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2334 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2335 if (waittime > to) waittime = to;
1453 } 2336 }
1454 2337
1455#if EV_PERIODIC_ENABLE 2338#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2339 if (periodiccnt)
1457 { 2340 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2341 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2342 if (waittime > to) waittime = to;
1460 } 2343 }
1461#endif 2344#endif
1462 2345
2346 /* don't let timeouts decrease the waittime below timeout_blocktime */
2347 if (expect_false (waittime < timeout_blocktime))
2348 waittime = timeout_blocktime;
2349
2350 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2351 if (expect_false (io_blocktime))
2352 {
2353 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2354
2355 if (sleeptime > waittime - backend_fudge)
2356 sleeptime = waittime - backend_fudge;
2357
2358 if (expect_true (sleeptime > 0.))
2359 {
2360 ev_sleep (sleeptime);
2361 waittime -= sleeptime;
2362 }
2363 }
1464 } 2364 }
1465 2365
2366#if EV_MINIMAL < 2
1466 ++loop_count; 2367 ++loop_count;
2368#endif
2369 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2370 backend_poll (EV_A_ waittime);
2371 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2372
2373 /* update ev_rt_now, do magic */
2374 time_update (EV_A_ waittime + sleeptime);
1468 } 2375 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2376
1473 /* queue pending timers and reschedule them */ 2377 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2378 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2379#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2380 periodics_reify (EV_A); /* absolute timers called first */
1483 2387
1484 /* queue check watchers, to be executed first */ 2388 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2389 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2390 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2391
1488 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
1489
1490 } 2393 }
1491 while (expect_true (activecnt && !loop_done)); 2394 while (expect_true (
2395 activecnt
2396 && !loop_done
2397 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2398 ));
1492 2399
1493 if (loop_done == EVUNLOOP_ONE) 2400 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2401 loop_done = EVUNLOOP_CANCEL;
2402
2403#if EV_MINIMAL < 2
2404 --loop_depth;
2405#endif
1495} 2406}
1496 2407
1497void 2408void
1498ev_unloop (EV_P_ int how) 2409ev_unloop (EV_P_ int how)
1499{ 2410{
1500 loop_done = how; 2411 loop_done = how;
1501} 2412}
1502 2413
2414void
2415ev_ref (EV_P)
2416{
2417 ++activecnt;
2418}
2419
2420void
2421ev_unref (EV_P)
2422{
2423 --activecnt;
2424}
2425
2426void
2427ev_now_update (EV_P)
2428{
2429 time_update (EV_A_ 1e100);
2430}
2431
2432void
2433ev_suspend (EV_P)
2434{
2435 ev_now_update (EV_A);
2436}
2437
2438void
2439ev_resume (EV_P)
2440{
2441 ev_tstamp mn_prev = mn_now;
2442
2443 ev_now_update (EV_A);
2444 timers_reschedule (EV_A_ mn_now - mn_prev);
2445#if EV_PERIODIC_ENABLE
2446 /* TODO: really do this? */
2447 periodics_reschedule (EV_A);
2448#endif
2449}
2450
1503/*****************************************************************************/ 2451/*****************************************************************************/
2452/* singly-linked list management, used when the expected list length is short */
1504 2453
1505void inline_size 2454inline_size void
1506wlist_add (WL *head, WL elem) 2455wlist_add (WL *head, WL elem)
1507{ 2456{
1508 elem->next = *head; 2457 elem->next = *head;
1509 *head = elem; 2458 *head = elem;
1510} 2459}
1511 2460
1512void inline_size 2461inline_size void
1513wlist_del (WL *head, WL elem) 2462wlist_del (WL *head, WL elem)
1514{ 2463{
1515 while (*head) 2464 while (*head)
1516 { 2465 {
1517 if (*head == elem) 2466 if (expect_true (*head == elem))
1518 { 2467 {
1519 *head = elem->next; 2468 *head = elem->next;
1520 return; 2469 break;
1521 } 2470 }
1522 2471
1523 head = &(*head)->next; 2472 head = &(*head)->next;
1524 } 2473 }
1525} 2474}
1526 2475
1527void inline_speed 2476/* internal, faster, version of ev_clear_pending */
2477inline_speed void
1528ev_clear_pending (EV_P_ W w) 2478clear_pending (EV_P_ W w)
1529{ 2479{
1530 if (w->pending) 2480 if (w->pending)
1531 { 2481 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2482 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2483 w->pending = 0;
1534 } 2484 }
1535} 2485}
1536 2486
1537void inline_size 2487int
2488ev_clear_pending (EV_P_ void *w)
2489{
2490 W w_ = (W)w;
2491 int pending = w_->pending;
2492
2493 if (expect_true (pending))
2494 {
2495 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2496 p->w = (W)&pending_w;
2497 w_->pending = 0;
2498 return p->events;
2499 }
2500 else
2501 return 0;
2502}
2503
2504inline_size void
1538pri_adjust (EV_P_ W w) 2505pri_adjust (EV_P_ W w)
1539{ 2506{
1540 int pri = w->priority; 2507 int pri = ev_priority (w);
1541 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2508 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1542 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2509 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1543 w->priority = pri; 2510 ev_set_priority (w, pri);
1544} 2511}
1545 2512
1546void inline_speed 2513inline_speed void
1547ev_start (EV_P_ W w, int active) 2514ev_start (EV_P_ W w, int active)
1548{ 2515{
1549 pri_adjust (EV_A_ w); 2516 pri_adjust (EV_A_ w);
1550 w->active = active; 2517 w->active = active;
1551 ev_ref (EV_A); 2518 ev_ref (EV_A);
1552} 2519}
1553 2520
1554void inline_size 2521inline_size void
1555ev_stop (EV_P_ W w) 2522ev_stop (EV_P_ W w)
1556{ 2523{
1557 ev_unref (EV_A); 2524 ev_unref (EV_A);
1558 w->active = 0; 2525 w->active = 0;
1559} 2526}
1560 2527
1561/*****************************************************************************/ 2528/*****************************************************************************/
1562 2529
1563void 2530void noinline
1564ev_io_start (EV_P_ ev_io *w) 2531ev_io_start (EV_P_ ev_io *w)
1565{ 2532{
1566 int fd = w->fd; 2533 int fd = w->fd;
1567 2534
1568 if (expect_false (ev_is_active (w))) 2535 if (expect_false (ev_is_active (w)))
1569 return; 2536 return;
1570 2537
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2538 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2539 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2540
2541 EV_FREQUENT_CHECK;
1572 2542
1573 ev_start (EV_A_ (W)w, 1); 2543 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2544 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2545 wlist_add (&anfds[fd].head, (WL)w);
1576 2546
1577 fd_change (EV_A_ fd); 2547 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1578} 2548 w->events &= ~EV__IOFDSET;
1579 2549
1580void 2550 EV_FREQUENT_CHECK;
2551}
2552
2553void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2554ev_io_stop (EV_P_ ev_io *w)
1582{ 2555{
1583 ev_clear_pending (EV_A_ (W)w); 2556 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2557 if (expect_false (!ev_is_active (w)))
1585 return; 2558 return;
1586 2559
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2560 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2561
2562 EV_FREQUENT_CHECK;
2563
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2564 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
1591 2566
1592 fd_change (EV_A_ w->fd); 2567 fd_change (EV_A_ w->fd, 1);
1593}
1594 2568
1595void 2569 EV_FREQUENT_CHECK;
2570}
2571
2572void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2573ev_timer_start (EV_P_ ev_timer *w)
1597{ 2574{
1598 if (expect_false (ev_is_active (w))) 2575 if (expect_false (ev_is_active (w)))
1599 return; 2576 return;
1600 2577
1601 ((WT)w)->at += mn_now; 2578 ev_at (w) += mn_now;
1602 2579
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2580 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2581
2582 EV_FREQUENT_CHECK;
2583
2584 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2585 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2586 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2587 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2588 ANHE_at_cache (timers [ev_active (w)]);
2589 upheap (timers, ev_active (w));
1609 2590
2591 EV_FREQUENT_CHECK;
2592
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2593 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2594}
1612 2595
1613void 2596void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2597ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2598{
1616 ev_clear_pending (EV_A_ (W)w); 2599 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2600 if (expect_false (!ev_is_active (w)))
1618 return; 2601 return;
1619 2602
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2603 EV_FREQUENT_CHECK;
1621 2604
1622 { 2605 {
1623 int active = ((W)w)->active; 2606 int active = ev_active (w);
1624 2607
2608 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2609
2610 --timercnt;
2611
1625 if (expect_true (--active < --timercnt)) 2612 if (expect_true (active < timercnt + HEAP0))
1626 { 2613 {
1627 timers [active] = timers [timercnt]; 2614 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2615 adjustheap (timers, timercnt, active);
1629 } 2616 }
1630 } 2617 }
1631 2618
1632 ((WT)w)->at -= mn_now; 2619 ev_at (w) -= mn_now;
1633 2620
1634 ev_stop (EV_A_ (W)w); 2621 ev_stop (EV_A_ (W)w);
1635}
1636 2622
1637void 2623 EV_FREQUENT_CHECK;
2624}
2625
2626void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2627ev_timer_again (EV_P_ ev_timer *w)
1639{ 2628{
2629 EV_FREQUENT_CHECK;
2630
1640 if (ev_is_active (w)) 2631 if (ev_is_active (w))
1641 { 2632 {
1642 if (w->repeat) 2633 if (w->repeat)
1643 { 2634 {
1644 ((WT)w)->at = mn_now + w->repeat; 2635 ev_at (w) = mn_now + w->repeat;
2636 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2637 adjustheap (timers, timercnt, ev_active (w));
1646 } 2638 }
1647 else 2639 else
1648 ev_timer_stop (EV_A_ w); 2640 ev_timer_stop (EV_A_ w);
1649 } 2641 }
1650 else if (w->repeat) 2642 else if (w->repeat)
1651 { 2643 {
1652 w->at = w->repeat; 2644 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2645 ev_timer_start (EV_A_ w);
1654 } 2646 }
2647
2648 EV_FREQUENT_CHECK;
2649}
2650
2651ev_tstamp
2652ev_timer_remaining (EV_P_ ev_timer *w)
2653{
2654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1655} 2655}
1656 2656
1657#if EV_PERIODIC_ENABLE 2657#if EV_PERIODIC_ENABLE
1658void 2658void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2659ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2660{
1661 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
1662 return; 2662 return;
1663 2663
1664 if (w->reschedule_cb) 2664 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2666 else if (w->interval)
1667 { 2667 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2669 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2670 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 2671 }
2672 else
2673 ev_at (w) = w->offset;
1672 2674
2675 EV_FREQUENT_CHECK;
2676
2677 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2678 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2679 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2680 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2681 ANHE_at_cache (periodics [ev_active (w)]);
2682 upheap (periodics, ev_active (w));
1677 2683
2684 EV_FREQUENT_CHECK;
2685
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2686 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2687}
1680 2688
1681void 2689void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2690ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2691{
1684 ev_clear_pending (EV_A_ (W)w); 2692 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2693 if (expect_false (!ev_is_active (w)))
1686 return; 2694 return;
1687 2695
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2696 EV_FREQUENT_CHECK;
1689 2697
1690 { 2698 {
1691 int active = ((W)w)->active; 2699 int active = ev_active (w);
1692 2700
2701 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2702
2703 --periodiccnt;
2704
1693 if (expect_true (--active < --periodiccnt)) 2705 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2706 {
1695 periodics [active] = periodics [periodiccnt]; 2707 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2708 adjustheap (periodics, periodiccnt, active);
1697 } 2709 }
1698 } 2710 }
1699 2711
1700 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
1701}
1702 2713
1703void 2714 EV_FREQUENT_CHECK;
2715}
2716
2717void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2718ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2719{
1706 /* TODO: use adjustheap and recalculation */ 2720 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2721 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2722 ev_periodic_start (EV_A_ w);
1711 2725
1712#ifndef SA_RESTART 2726#ifndef SA_RESTART
1713# define SA_RESTART 0 2727# define SA_RESTART 0
1714#endif 2728#endif
1715 2729
1716void 2730void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2731ev_signal_start (EV_P_ ev_signal *w)
1718{ 2732{
1719#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif
1722 if (expect_false (ev_is_active (w))) 2733 if (expect_false (ev_is_active (w)))
1723 return; 2734 return;
1724 2735
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2737
2738#if EV_MULTIPLICITY
2739 assert (("libev: a signal must not be attached to two different loops",
2740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2741
2742 signals [w->signum - 1].loop = EV_A;
2743#endif
2744
2745 EV_FREQUENT_CHECK;
2746
2747#if EV_USE_SIGNALFD
2748 if (sigfd == -2)
2749 {
2750 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2751 if (sigfd < 0 && errno == EINVAL)
2752 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2753
2754 if (sigfd >= 0)
2755 {
2756 fd_intern (sigfd); /* doing it twice will not hurt */
2757
2758 sigemptyset (&sigfd_set);
2759
2760 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2761 ev_set_priority (&sigfd_w, EV_MAXPRI);
2762 ev_io_start (EV_A_ &sigfd_w);
2763 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2764 }
2765 }
2766
2767 if (sigfd >= 0)
2768 {
2769 /* TODO: check .head */
2770 sigaddset (&sigfd_set, w->signum);
2771 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2772
2773 signalfd (sigfd, &sigfd_set, 0);
2774 }
2775#endif
1726 2776
1727 ev_start (EV_A_ (W)w, 1); 2777 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2778 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2779
1731 if (!((WL)w)->next) 2780 if (!((WL)w)->next)
2781# if EV_USE_SIGNALFD
2782 if (sigfd < 0) /*TODO*/
2783# endif
1732 { 2784 {
1733#if _WIN32 2785# ifdef _WIN32
2786 evpipe_init (EV_A);
2787
1734 signal (w->signum, sighandler); 2788 signal (w->signum, ev_sighandler);
1735#else 2789# else
1736 struct sigaction sa; 2790 struct sigaction sa;
2791
2792 evpipe_init (EV_A);
2793
1737 sa.sa_handler = sighandler; 2794 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2795 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2796 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2797 sigaction (w->signum, &sa, 0);
2798
2799 sigemptyset (&sa.sa_mask);
2800 sigaddset (&sa.sa_mask, w->signum);
2801 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1741#endif 2802#endif
1742 } 2803 }
1743}
1744 2804
1745void 2805 EV_FREQUENT_CHECK;
2806}
2807
2808void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2809ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2810{
1748 ev_clear_pending (EV_A_ (W)w); 2811 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2812 if (expect_false (!ev_is_active (w)))
1750 return; 2813 return;
1751 2814
2815 EV_FREQUENT_CHECK;
2816
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2817 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2818 ev_stop (EV_A_ (W)w);
1754 2819
1755 if (!signals [w->signum - 1].head) 2820 if (!signals [w->signum - 1].head)
2821 {
2822#if EV_MULTIPLICITY
2823 signals [w->signum - 1].loop = 0; /* unattach from signal */
2824#endif
2825#if EV_USE_SIGNALFD
2826 if (sigfd >= 0)
2827 {
2828 sigset_t ss;
2829
2830 sigemptyset (&ss);
2831 sigaddset (&ss, w->signum);
2832 sigdelset (&sigfd_set, w->signum);
2833
2834 signalfd (sigfd, &sigfd_set, 0);
2835 sigprocmask (SIG_UNBLOCK, &ss, 0);
2836 }
2837 else
2838#endif
1756 signal (w->signum, SIG_DFL); 2839 signal (w->signum, SIG_DFL);
2840 }
2841
2842 EV_FREQUENT_CHECK;
1757} 2843}
1758 2844
1759void 2845void
1760ev_child_start (EV_P_ ev_child *w) 2846ev_child_start (EV_P_ ev_child *w)
1761{ 2847{
1762#if EV_MULTIPLICITY 2848#if EV_MULTIPLICITY
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2849 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2850#endif
1765 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
1766 return; 2852 return;
1767 2853
2854 EV_FREQUENT_CHECK;
2855
1768 ev_start (EV_A_ (W)w, 1); 2856 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2857 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2858
2859 EV_FREQUENT_CHECK;
1770} 2860}
1771 2861
1772void 2862void
1773ev_child_stop (EV_P_ ev_child *w) 2863ev_child_stop (EV_P_ ev_child *w)
1774{ 2864{
1775 ev_clear_pending (EV_A_ (W)w); 2865 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2866 if (expect_false (!ev_is_active (w)))
1777 return; 2867 return;
1778 2868
2869 EV_FREQUENT_CHECK;
2870
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2871 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2872 ev_stop (EV_A_ (W)w);
2873
2874 EV_FREQUENT_CHECK;
1781} 2875}
1782 2876
1783#if EV_STAT_ENABLE 2877#if EV_STAT_ENABLE
1784 2878
1785# ifdef _WIN32 2879# ifdef _WIN32
1786# undef lstat 2880# undef lstat
1787# define lstat(a,b) _stati64 (a,b) 2881# define lstat(a,b) _stati64 (a,b)
1788# endif 2882# endif
1789 2883
1790#define DEF_STAT_INTERVAL 5.0074891 2884#define DEF_STAT_INTERVAL 5.0074891
2885#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1791#define MIN_STAT_INTERVAL 0.1074891 2886#define MIN_STAT_INTERVAL 0.1074891
1792 2887
1793static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1794 2889
1795#if EV_USE_INOTIFY 2890#if EV_USE_INOTIFY
1796# define EV_INOTIFY_BUFSIZE 8192 2891
2892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1797 2894
1798static void noinline 2895static void noinline
1799infy_add (EV_P_ ev_stat *w) 2896infy_add (EV_P_ ev_stat *w)
1800{ 2897{
1801 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1802 2899
1803 if (w->wd < 0) 2900 if (w->wd >= 0)
2901 {
2902 struct statfs sfs;
2903
2904 /* now local changes will be tracked by inotify, but remote changes won't */
2905 /* unless the filesystem is known to be local, we therefore still poll */
2906 /* also do poll on <2.6.25, but with normal frequency */
2907
2908 if (!fs_2625)
2909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2910 else if (!statfs (w->path, &sfs)
2911 && (sfs.f_type == 0x1373 /* devfs */
2912 || sfs.f_type == 0xEF53 /* ext2/3 */
2913 || sfs.f_type == 0x3153464a /* jfs */
2914 || sfs.f_type == 0x52654973 /* reiser3 */
2915 || sfs.f_type == 0x01021994 /* tempfs */
2916 || sfs.f_type == 0x58465342 /* xfs */))
2917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2918 else
2919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1804 { 2920 }
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2921 else
2922 {
2923 /* can't use inotify, continue to stat */
2924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1806 2925
1807 /* monitor some parent directory for speedup hints */ 2926 /* if path is not there, monitor some parent directory for speedup hints */
2927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2928 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 2930 {
1810 char path [4096]; 2931 char path [4096];
1811 strcpy (path, w->path); 2932 strcpy (path, w->path);
1812 2933
1815 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2936 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1816 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2937 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1817 2938
1818 char *pend = strrchr (path, '/'); 2939 char *pend = strrchr (path, '/');
1819 2940
1820 if (!pend) 2941 if (!pend || pend == path)
1821 break; /* whoops, no '/', complain to your admin */ 2942 break;
1822 2943
1823 *pend = 0; 2944 *pend = 0;
1824 w->wd = inotify_add_watch (fs_fd, path, mask); 2945 w->wd = inotify_add_watch (fs_fd, path, mask);
1825 } 2946 }
1826 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1827 } 2948 }
1828 } 2949 }
1829 else
1830 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1831 2950
1832 if (w->wd >= 0) 2951 if (w->wd >= 0)
1833 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2952 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2953
2954 /* now re-arm timer, if required */
2955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2956 ev_timer_again (EV_A_ &w->timer);
2957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1834} 2958}
1835 2959
1836static void noinline 2960static void noinline
1837infy_del (EV_P_ ev_stat *w) 2961infy_del (EV_P_ ev_stat *w)
1838{ 2962{
1852 2976
1853static void noinline 2977static void noinline
1854infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2978infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1855{ 2979{
1856 if (slot < 0) 2980 if (slot < 0)
1857 /* overflow, need to check for all hahs slots */ 2981 /* overflow, need to check for all hash slots */
1858 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2982 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1859 infy_wd (EV_A_ slot, wd, ev); 2983 infy_wd (EV_A_ slot, wd, ev);
1860 else 2984 else
1861 { 2985 {
1862 WL w_; 2986 WL w_;
1868 2992
1869 if (w->wd == wd || wd == -1) 2993 if (w->wd == wd || wd == -1)
1870 { 2994 {
1871 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2995 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1872 { 2996 {
2997 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1873 w->wd = -1; 2998 w->wd = -1;
1874 infy_add (EV_A_ w); /* re-add, no matter what */ 2999 infy_add (EV_A_ w); /* re-add, no matter what */
1875 } 3000 }
1876 3001
1877 stat_timer_cb (EV_A_ &w->timer, 0); 3002 stat_timer_cb (EV_A_ &w->timer, 0);
1882 3007
1883static void 3008static void
1884infy_cb (EV_P_ ev_io *w, int revents) 3009infy_cb (EV_P_ ev_io *w, int revents)
1885{ 3010{
1886 char buf [EV_INOTIFY_BUFSIZE]; 3011 char buf [EV_INOTIFY_BUFSIZE];
1887 struct inotify_event *ev = (struct inotify_event *)buf;
1888 int ofs; 3012 int ofs;
1889 int len = read (fs_fd, buf, sizeof (buf)); 3013 int len = read (fs_fd, buf, sizeof (buf));
1890 3014
1891 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3015 for (ofs = 0; ofs < len; )
3016 {
3017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1892 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3019 ofs += sizeof (struct inotify_event) + ev->len;
3020 }
1893} 3021}
1894 3022
1895void inline_size 3023inline_size unsigned int
3024ev_linux_version (void)
3025{
3026 struct utsname buf;
3027 unsigned int v;
3028 int i;
3029 char *p = buf.release;
3030
3031 if (uname (&buf))
3032 return 0;
3033
3034 for (i = 3+1; --i; )
3035 {
3036 unsigned int c = 0;
3037
3038 for (;;)
3039 {
3040 if (*p >= '0' && *p <= '9')
3041 c = c * 10 + *p++ - '0';
3042 else
3043 {
3044 p += *p == '.';
3045 break;
3046 }
3047 }
3048
3049 v = (v << 8) | c;
3050 }
3051
3052 return v;
3053}
3054
3055inline_size void
3056ev_check_2625 (EV_P)
3057{
3058 /* kernels < 2.6.25 are borked
3059 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3060 */
3061 if (ev_linux_version () < 0x020619)
3062 return;
3063
3064 fs_2625 = 1;
3065}
3066
3067inline_size int
3068infy_newfd (void)
3069{
3070#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3071 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3072 if (fd >= 0)
3073 return fd;
3074#endif
3075 return inotify_init ();
3076}
3077
3078inline_size void
1896infy_init (EV_P) 3079infy_init (EV_P)
1897{ 3080{
1898 if (fs_fd != -2) 3081 if (fs_fd != -2)
1899 return; 3082 return;
1900 3083
3084 fs_fd = -1;
3085
3086 ev_check_2625 (EV_A);
3087
1901 fs_fd = inotify_init (); 3088 fs_fd = infy_newfd ();
1902 3089
1903 if (fs_fd >= 0) 3090 if (fs_fd >= 0)
1904 { 3091 {
3092 fd_intern (fs_fd);
1905 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3093 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1906 ev_set_priority (&fs_w, EV_MAXPRI); 3094 ev_set_priority (&fs_w, EV_MAXPRI);
1907 ev_io_start (EV_A_ &fs_w); 3095 ev_io_start (EV_A_ &fs_w);
3096 ev_unref (EV_A);
1908 } 3097 }
1909} 3098}
1910 3099
1911void inline_size 3100inline_size void
1912infy_fork (EV_P) 3101infy_fork (EV_P)
1913{ 3102{
1914 int slot; 3103 int slot;
1915 3104
1916 if (fs_fd < 0) 3105 if (fs_fd < 0)
1917 return; 3106 return;
1918 3107
3108 ev_ref (EV_A);
3109 ev_io_stop (EV_A_ &fs_w);
1919 close (fs_fd); 3110 close (fs_fd);
1920 fs_fd = inotify_init (); 3111 fs_fd = infy_newfd ();
3112
3113 if (fs_fd >= 0)
3114 {
3115 fd_intern (fs_fd);
3116 ev_io_set (&fs_w, fs_fd, EV_READ);
3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
3119 }
1921 3120
1922 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1923 { 3122 {
1924 WL w_ = fs_hash [slot].head; 3123 WL w_ = fs_hash [slot].head;
1925 fs_hash [slot].head = 0; 3124 fs_hash [slot].head = 0;
1932 w->wd = -1; 3131 w->wd = -1;
1933 3132
1934 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
1935 infy_add (EV_A_ w); /* re-add, no matter what */ 3134 infy_add (EV_A_ w); /* re-add, no matter what */
1936 else 3135 else
3136 {
3137 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3138 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1937 ev_timer_start (EV_A_ &w->timer); 3139 ev_timer_again (EV_A_ &w->timer);
3140 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3141 }
1938 } 3142 }
1939
1940 } 3143 }
1941} 3144}
1942 3145
3146#endif
3147
3148#ifdef _WIN32
3149# define EV_LSTAT(p,b) _stati64 (p, b)
3150#else
3151# define EV_LSTAT(p,b) lstat (p, b)
1943#endif 3152#endif
1944 3153
1945void 3154void
1946ev_stat_stat (EV_P_ ev_stat *w) 3155ev_stat_stat (EV_P_ ev_stat *w)
1947{ 3156{
1954static void noinline 3163static void noinline
1955stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3164stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1956{ 3165{
1957 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3166 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1958 3167
1959 /* we copy this here each the time so that */ 3168 ev_statdata prev = w->attr;
1960 /* prev has the old value when the callback gets invoked */
1961 w->prev = w->attr;
1962 ev_stat_stat (EV_A_ w); 3169 ev_stat_stat (EV_A_ w);
1963 3170
1964 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3171 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1965 if ( 3172 if (
1966 w->prev.st_dev != w->attr.st_dev 3173 prev.st_dev != w->attr.st_dev
1967 || w->prev.st_ino != w->attr.st_ino 3174 || prev.st_ino != w->attr.st_ino
1968 || w->prev.st_mode != w->attr.st_mode 3175 || prev.st_mode != w->attr.st_mode
1969 || w->prev.st_nlink != w->attr.st_nlink 3176 || prev.st_nlink != w->attr.st_nlink
1970 || w->prev.st_uid != w->attr.st_uid 3177 || prev.st_uid != w->attr.st_uid
1971 || w->prev.st_gid != w->attr.st_gid 3178 || prev.st_gid != w->attr.st_gid
1972 || w->prev.st_rdev != w->attr.st_rdev 3179 || prev.st_rdev != w->attr.st_rdev
1973 || w->prev.st_size != w->attr.st_size 3180 || prev.st_size != w->attr.st_size
1974 || w->prev.st_atime != w->attr.st_atime 3181 || prev.st_atime != w->attr.st_atime
1975 || w->prev.st_mtime != w->attr.st_mtime 3182 || prev.st_mtime != w->attr.st_mtime
1976 || w->prev.st_ctime != w->attr.st_ctime 3183 || prev.st_ctime != w->attr.st_ctime
1977 ) { 3184 ) {
3185 /* we only update w->prev on actual differences */
3186 /* in case we test more often than invoke the callback, */
3187 /* to ensure that prev is always different to attr */
3188 w->prev = prev;
3189
1978 #if EV_USE_INOTIFY 3190 #if EV_USE_INOTIFY
3191 if (fs_fd >= 0)
3192 {
1979 infy_del (EV_A_ w); 3193 infy_del (EV_A_ w);
1980 infy_add (EV_A_ w); 3194 infy_add (EV_A_ w);
1981 ev_stat_stat (EV_A_ w); /* avoid race... */ 3195 ev_stat_stat (EV_A_ w); /* avoid race... */
3196 }
1982 #endif 3197 #endif
1983 3198
1984 ev_feed_event (EV_A_ w, EV_STAT); 3199 ev_feed_event (EV_A_ w, EV_STAT);
1985 } 3200 }
1986} 3201}
1989ev_stat_start (EV_P_ ev_stat *w) 3204ev_stat_start (EV_P_ ev_stat *w)
1990{ 3205{
1991 if (expect_false (ev_is_active (w))) 3206 if (expect_false (ev_is_active (w)))
1992 return; 3207 return;
1993 3208
1994 /* since we use memcmp, we need to clear any padding data etc. */
1995 memset (&w->prev, 0, sizeof (ev_statdata));
1996 memset (&w->attr, 0, sizeof (ev_statdata));
1997
1998 ev_stat_stat (EV_A_ w); 3209 ev_stat_stat (EV_A_ w);
1999 3210
3211 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2000 if (w->interval < MIN_STAT_INTERVAL) 3212 w->interval = MIN_STAT_INTERVAL;
2001 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2002 3213
2003 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3214 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2004 ev_set_priority (&w->timer, ev_priority (w)); 3215 ev_set_priority (&w->timer, ev_priority (w));
2005 3216
2006#if EV_USE_INOTIFY 3217#if EV_USE_INOTIFY
2007 infy_init (EV_A); 3218 infy_init (EV_A);
2008 3219
2009 if (fs_fd >= 0) 3220 if (fs_fd >= 0)
2010 infy_add (EV_A_ w); 3221 infy_add (EV_A_ w);
2011 else 3222 else
2012#endif 3223#endif
3224 {
2013 ev_timer_start (EV_A_ &w->timer); 3225 ev_timer_again (EV_A_ &w->timer);
3226 ev_unref (EV_A);
3227 }
2014 3228
2015 ev_start (EV_A_ (W)w, 1); 3229 ev_start (EV_A_ (W)w, 1);
3230
3231 EV_FREQUENT_CHECK;
2016} 3232}
2017 3233
2018void 3234void
2019ev_stat_stop (EV_P_ ev_stat *w) 3235ev_stat_stop (EV_P_ ev_stat *w)
2020{ 3236{
2021 ev_clear_pending (EV_A_ (W)w); 3237 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 3238 if (expect_false (!ev_is_active (w)))
2023 return; 3239 return;
2024 3240
3241 EV_FREQUENT_CHECK;
3242
2025#if EV_USE_INOTIFY 3243#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 3244 infy_del (EV_A_ w);
2027#endif 3245#endif
3246
3247 if (ev_is_active (&w->timer))
3248 {
3249 ev_ref (EV_A);
2028 ev_timer_stop (EV_A_ &w->timer); 3250 ev_timer_stop (EV_A_ &w->timer);
3251 }
2029 3252
2030 ev_stop (EV_A_ (W)w); 3253 ev_stop (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
2031} 3256}
2032#endif 3257#endif
2033 3258
2034#if EV_IDLE_ENABLE 3259#if EV_IDLE_ENABLE
2035void 3260void
2037{ 3262{
2038 if (expect_false (ev_is_active (w))) 3263 if (expect_false (ev_is_active (w)))
2039 return; 3264 return;
2040 3265
2041 pri_adjust (EV_A_ (W)w); 3266 pri_adjust (EV_A_ (W)w);
3267
3268 EV_FREQUENT_CHECK;
2042 3269
2043 { 3270 {
2044 int active = ++idlecnt [ABSPRI (w)]; 3271 int active = ++idlecnt [ABSPRI (w)];
2045 3272
2046 ++idleall; 3273 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 3274 ev_start (EV_A_ (W)w, active);
2048 3275
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3276 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 3277 idles [ABSPRI (w)][active - 1] = w;
2051 } 3278 }
3279
3280 EV_FREQUENT_CHECK;
2052} 3281}
2053 3282
2054void 3283void
2055ev_idle_stop (EV_P_ ev_idle *w) 3284ev_idle_stop (EV_P_ ev_idle *w)
2056{ 3285{
2057 ev_clear_pending (EV_A_ (W)w); 3286 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 3287 if (expect_false (!ev_is_active (w)))
2059 return; 3288 return;
2060 3289
3290 EV_FREQUENT_CHECK;
3291
2061 { 3292 {
2062 int active = ((W)w)->active; 3293 int active = ev_active (w);
2063 3294
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3295 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3296 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 3297
2067 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
2068 --idleall; 3299 --idleall;
2069 } 3300 }
3301
3302 EV_FREQUENT_CHECK;
2070} 3303}
2071#endif 3304#endif
2072 3305
2073void 3306void
2074ev_prepare_start (EV_P_ ev_prepare *w) 3307ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 3308{
2076 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2077 return; 3310 return;
3311
3312 EV_FREQUENT_CHECK;
2078 3313
2079 ev_start (EV_A_ (W)w, ++preparecnt); 3314 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3315 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 3316 prepares [preparecnt - 1] = w;
3317
3318 EV_FREQUENT_CHECK;
2082} 3319}
2083 3320
2084void 3321void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 3322ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 3323{
2087 ev_clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2089 return; 3326 return;
2090 3327
3328 EV_FREQUENT_CHECK;
3329
2091 { 3330 {
2092 int active = ((W)w)->active; 3331 int active = ev_active (w);
3332
2093 prepares [active - 1] = prepares [--preparecnt]; 3333 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 3334 ev_active (prepares [active - 1]) = active;
2095 } 3335 }
2096 3336
2097 ev_stop (EV_A_ (W)w); 3337 ev_stop (EV_A_ (W)w);
3338
3339 EV_FREQUENT_CHECK;
2098} 3340}
2099 3341
2100void 3342void
2101ev_check_start (EV_P_ ev_check *w) 3343ev_check_start (EV_P_ ev_check *w)
2102{ 3344{
2103 if (expect_false (ev_is_active (w))) 3345 if (expect_false (ev_is_active (w)))
2104 return; 3346 return;
3347
3348 EV_FREQUENT_CHECK;
2105 3349
2106 ev_start (EV_A_ (W)w, ++checkcnt); 3350 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3351 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 3352 checks [checkcnt - 1] = w;
3353
3354 EV_FREQUENT_CHECK;
2109} 3355}
2110 3356
2111void 3357void
2112ev_check_stop (EV_P_ ev_check *w) 3358ev_check_stop (EV_P_ ev_check *w)
2113{ 3359{
2114 ev_clear_pending (EV_A_ (W)w); 3360 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 3361 if (expect_false (!ev_is_active (w)))
2116 return; 3362 return;
2117 3363
3364 EV_FREQUENT_CHECK;
3365
2118 { 3366 {
2119 int active = ((W)w)->active; 3367 int active = ev_active (w);
3368
2120 checks [active - 1] = checks [--checkcnt]; 3369 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 3370 ev_active (checks [active - 1]) = active;
2122 } 3371 }
2123 3372
2124 ev_stop (EV_A_ (W)w); 3373 ev_stop (EV_A_ (W)w);
3374
3375 EV_FREQUENT_CHECK;
2125} 3376}
2126 3377
2127#if EV_EMBED_ENABLE 3378#if EV_EMBED_ENABLE
2128void noinline 3379void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 3380ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 3381{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 3382 ev_loop (w->other, EVLOOP_NONBLOCK);
2132} 3383}
2133 3384
2134static void 3385static void
2135embed_cb (EV_P_ ev_io *io, int revents) 3386embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 3387{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3388 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 3389
2139 if (ev_cb (w)) 3390 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3391 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 3392 else
2142 ev_embed_sweep (loop, w); 3393 ev_loop (w->other, EVLOOP_NONBLOCK);
2143} 3394}
3395
3396static void
3397embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3398{
3399 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3400
3401 {
3402 EV_P = w->other;
3403
3404 while (fdchangecnt)
3405 {
3406 fd_reify (EV_A);
3407 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3408 }
3409 }
3410}
3411
3412static void
3413embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3414{
3415 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3416
3417 ev_embed_stop (EV_A_ w);
3418
3419 {
3420 EV_P = w->other;
3421
3422 ev_loop_fork (EV_A);
3423 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3424 }
3425
3426 ev_embed_start (EV_A_ w);
3427}
3428
3429#if 0
3430static void
3431embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3432{
3433 ev_idle_stop (EV_A_ idle);
3434}
3435#endif
2144 3436
2145void 3437void
2146ev_embed_start (EV_P_ ev_embed *w) 3438ev_embed_start (EV_P_ ev_embed *w)
2147{ 3439{
2148 if (expect_false (ev_is_active (w))) 3440 if (expect_false (ev_is_active (w)))
2149 return; 3441 return;
2150 3442
2151 { 3443 {
2152 struct ev_loop *loop = w->loop; 3444 EV_P = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3445 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3446 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 3447 }
3448
3449 EV_FREQUENT_CHECK;
2156 3450
2157 ev_set_priority (&w->io, ev_priority (w)); 3451 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 3452 ev_io_start (EV_A_ &w->io);
2159 3453
3454 ev_prepare_init (&w->prepare, embed_prepare_cb);
3455 ev_set_priority (&w->prepare, EV_MINPRI);
3456 ev_prepare_start (EV_A_ &w->prepare);
3457
3458 ev_fork_init (&w->fork, embed_fork_cb);
3459 ev_fork_start (EV_A_ &w->fork);
3460
3461 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3462
2160 ev_start (EV_A_ (W)w, 1); 3463 ev_start (EV_A_ (W)w, 1);
3464
3465 EV_FREQUENT_CHECK;
2161} 3466}
2162 3467
2163void 3468void
2164ev_embed_stop (EV_P_ ev_embed *w) 3469ev_embed_stop (EV_P_ ev_embed *w)
2165{ 3470{
2166 ev_clear_pending (EV_A_ (W)w); 3471 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 3472 if (expect_false (!ev_is_active (w)))
2168 return; 3473 return;
2169 3474
3475 EV_FREQUENT_CHECK;
3476
2170 ev_io_stop (EV_A_ &w->io); 3477 ev_io_stop (EV_A_ &w->io);
3478 ev_prepare_stop (EV_A_ &w->prepare);
3479 ev_fork_stop (EV_A_ &w->fork);
2171 3480
2172 ev_stop (EV_A_ (W)w); 3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
2173} 3484}
2174#endif 3485#endif
2175 3486
2176#if EV_FORK_ENABLE 3487#if EV_FORK_ENABLE
2177void 3488void
2178ev_fork_start (EV_P_ ev_fork *w) 3489ev_fork_start (EV_P_ ev_fork *w)
2179{ 3490{
2180 if (expect_false (ev_is_active (w))) 3491 if (expect_false (ev_is_active (w)))
2181 return; 3492 return;
3493
3494 EV_FREQUENT_CHECK;
2182 3495
2183 ev_start (EV_A_ (W)w, ++forkcnt); 3496 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3497 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 3498 forks [forkcnt - 1] = w;
3499
3500 EV_FREQUENT_CHECK;
2186} 3501}
2187 3502
2188void 3503void
2189ev_fork_stop (EV_P_ ev_fork *w) 3504ev_fork_stop (EV_P_ ev_fork *w)
2190{ 3505{
2191 ev_clear_pending (EV_A_ (W)w); 3506 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3507 if (expect_false (!ev_is_active (w)))
2193 return; 3508 return;
2194 3509
3510 EV_FREQUENT_CHECK;
3511
2195 { 3512 {
2196 int active = ((W)w)->active; 3513 int active = ev_active (w);
3514
2197 forks [active - 1] = forks [--forkcnt]; 3515 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 3516 ev_active (forks [active - 1]) = active;
2199 } 3517 }
2200 3518
2201 ev_stop (EV_A_ (W)w); 3519 ev_stop (EV_A_ (W)w);
3520
3521 EV_FREQUENT_CHECK;
3522}
3523#endif
3524
3525#if EV_ASYNC_ENABLE
3526void
3527ev_async_start (EV_P_ ev_async *w)
3528{
3529 if (expect_false (ev_is_active (w)))
3530 return;
3531
3532 evpipe_init (EV_A);
3533
3534 EV_FREQUENT_CHECK;
3535
3536 ev_start (EV_A_ (W)w, ++asynccnt);
3537 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3538 asyncs [asynccnt - 1] = w;
3539
3540 EV_FREQUENT_CHECK;
3541}
3542
3543void
3544ev_async_stop (EV_P_ ev_async *w)
3545{
3546 clear_pending (EV_A_ (W)w);
3547 if (expect_false (!ev_is_active (w)))
3548 return;
3549
3550 EV_FREQUENT_CHECK;
3551
3552 {
3553 int active = ev_active (w);
3554
3555 asyncs [active - 1] = asyncs [--asynccnt];
3556 ev_active (asyncs [active - 1]) = active;
3557 }
3558
3559 ev_stop (EV_A_ (W)w);
3560
3561 EV_FREQUENT_CHECK;
3562}
3563
3564void
3565ev_async_send (EV_P_ ev_async *w)
3566{
3567 w->sent = 1;
3568 evpipe_write (EV_A_ &async_pending);
2202} 3569}
2203#endif 3570#endif
2204 3571
2205/*****************************************************************************/ 3572/*****************************************************************************/
2206 3573
2216once_cb (EV_P_ struct ev_once *once, int revents) 3583once_cb (EV_P_ struct ev_once *once, int revents)
2217{ 3584{
2218 void (*cb)(int revents, void *arg) = once->cb; 3585 void (*cb)(int revents, void *arg) = once->cb;
2219 void *arg = once->arg; 3586 void *arg = once->arg;
2220 3587
2221 ev_io_stop (EV_A_ &once->io); 3588 ev_io_stop (EV_A_ &once->io);
2222 ev_timer_stop (EV_A_ &once->to); 3589 ev_timer_stop (EV_A_ &once->to);
2223 ev_free (once); 3590 ev_free (once);
2224 3591
2225 cb (revents, arg); 3592 cb (revents, arg);
2226} 3593}
2227 3594
2228static void 3595static void
2229once_cb_io (EV_P_ ev_io *w, int revents) 3596once_cb_io (EV_P_ ev_io *w, int revents)
2230{ 3597{
2231 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3598 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3599
3600 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2232} 3601}
2233 3602
2234static void 3603static void
2235once_cb_to (EV_P_ ev_timer *w, int revents) 3604once_cb_to (EV_P_ ev_timer *w, int revents)
2236{ 3605{
2237 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3606 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3607
3608 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2238} 3609}
2239 3610
2240void 3611void
2241ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3612ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2242{ 3613{
2264 ev_timer_set (&once->to, timeout, 0.); 3635 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 3636 ev_timer_start (EV_A_ &once->to);
2266 } 3637 }
2267} 3638}
2268 3639
3640/*****************************************************************************/
3641
3642#if EV_WALK_ENABLE
3643void
3644ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3645{
3646 int i, j;
3647 ev_watcher_list *wl, *wn;
3648
3649 if (types & (EV_IO | EV_EMBED))
3650 for (i = 0; i < anfdmax; ++i)
3651 for (wl = anfds [i].head; wl; )
3652 {
3653 wn = wl->next;
3654
3655#if EV_EMBED_ENABLE
3656 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3657 {
3658 if (types & EV_EMBED)
3659 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3660 }
3661 else
3662#endif
3663#if EV_USE_INOTIFY
3664 if (ev_cb ((ev_io *)wl) == infy_cb)
3665 ;
3666 else
3667#endif
3668 if ((ev_io *)wl != &pipe_w)
3669 if (types & EV_IO)
3670 cb (EV_A_ EV_IO, wl);
3671
3672 wl = wn;
3673 }
3674
3675 if (types & (EV_TIMER | EV_STAT))
3676 for (i = timercnt + HEAP0; i-- > HEAP0; )
3677#if EV_STAT_ENABLE
3678 /*TODO: timer is not always active*/
3679 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3680 {
3681 if (types & EV_STAT)
3682 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3683 }
3684 else
3685#endif
3686 if (types & EV_TIMER)
3687 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3688
3689#if EV_PERIODIC_ENABLE
3690 if (types & EV_PERIODIC)
3691 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3692 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3693#endif
3694
3695#if EV_IDLE_ENABLE
3696 if (types & EV_IDLE)
3697 for (j = NUMPRI; i--; )
3698 for (i = idlecnt [j]; i--; )
3699 cb (EV_A_ EV_IDLE, idles [j][i]);
3700#endif
3701
3702#if EV_FORK_ENABLE
3703 if (types & EV_FORK)
3704 for (i = forkcnt; i--; )
3705 if (ev_cb (forks [i]) != embed_fork_cb)
3706 cb (EV_A_ EV_FORK, forks [i]);
3707#endif
3708
3709#if EV_ASYNC_ENABLE
3710 if (types & EV_ASYNC)
3711 for (i = asynccnt; i--; )
3712 cb (EV_A_ EV_ASYNC, asyncs [i]);
3713#endif
3714
3715 if (types & EV_PREPARE)
3716 for (i = preparecnt; i--; )
3717#if EV_EMBED_ENABLE
3718 if (ev_cb (prepares [i]) != embed_prepare_cb)
3719#endif
3720 cb (EV_A_ EV_PREPARE, prepares [i]);
3721
3722 if (types & EV_CHECK)
3723 for (i = checkcnt; i--; )
3724 cb (EV_A_ EV_CHECK, checks [i]);
3725
3726 if (types & EV_SIGNAL)
3727 for (i = 0; i < EV_NSIG - 1; ++i)
3728 for (wl = signals [i].head; wl; )
3729 {
3730 wn = wl->next;
3731 cb (EV_A_ EV_SIGNAL, wl);
3732 wl = wn;
3733 }
3734
3735 if (types & EV_CHILD)
3736 for (i = EV_PID_HASHSIZE; i--; )
3737 for (wl = childs [i]; wl; )
3738 {
3739 wn = wl->next;
3740 cb (EV_A_ EV_CHILD, wl);
3741 wl = wn;
3742 }
3743/* EV_STAT 0x00001000 /* stat data changed */
3744/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3745}
3746#endif
3747
3748#if EV_MULTIPLICITY
3749 #include "ev_wrap.h"
3750#endif
3751
2269#ifdef __cplusplus 3752#ifdef __cplusplus
2270} 3753}
2271#endif 3754#endif
2272 3755

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines