ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC vs.
Revision 1.334 by root, Tue Mar 9 09:00:59 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
226# endif
227#endif
228
168#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
169# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
170#endif 235#endif
171 236
172#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 239#endif
175 240
176#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
177# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
178#endif 247#endif
179 248
180#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
182#endif 251#endif
235# else 304# else
236# define EV_USE_EVENTFD 0 305# define EV_USE_EVENTFD 0
237# endif 306# endif
238#endif 307#endif
239 308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
241 356
242#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
245#endif 360#endif
259# include <sys/select.h> 374# include <sys/select.h>
260# endif 375# endif
261#endif 376#endif
262 377
263#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
264# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
265#endif 387#endif
266 388
267#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 390# include <winsock.h>
269#endif 391#endif
270 392
271#if EV_USE_EVENTFD 393#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
274# ifdef __cplusplus 406# ifdef __cplusplus
275extern "C" { 407extern "C" {
276# endif 408# endif
277int eventfd (unsigned int initval, int flags); 409int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 410# ifdef __cplusplus
279} 411}
280# endif 412# endif
281#endif 413#endif
282 414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
283/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
284 451
285/* 452/*
286 * This is used to avoid floating point rounding problems. 453 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 454 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 455 * to ensure progress, time-wise, even when rounding
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 461
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 464
299#if __GNUC__ >= 4 465#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
302#else 468#else
315# define inline_speed static noinline 481# define inline_speed static noinline
316#else 482#else
317# define inline_speed static inline 483# define inline_speed static inline
318#endif 484#endif
319 485
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
322 493
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
325 496
326typedef ev_watcher *W; 497typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
329 500
330#define ev_active(w) ((W)(w))->active 501#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 502#define ev_at(w) ((WT)(w))->at
332 503
333#if EV_USE_MONOTONIC 504#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 522#endif
338 523
339#ifdef _WIN32 524#ifdef _WIN32
340# include "ev_win32.c" 525# include "ev_win32.c"
341#endif 526#endif
342 527
343/*****************************************************************************/ 528/*****************************************************************************/
344 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
345static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
346 539
347void 540void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 542{
350 syserr_cb = cb; 543 syserr_cb = cb;
351} 544}
352 545
353static void noinline 546static void noinline
354syserr (const char *msg) 547ev_syserr (const char *msg)
355{ 548{
356 if (!msg) 549 if (!msg)
357 msg = "(libev) system error"; 550 msg = "(libev) system error";
358 551
359 if (syserr_cb) 552 if (syserr_cb)
360 syserr_cb (msg); 553 syserr_cb (msg);
361 else 554 else
362 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
363 perror (msg); 564 perror (msg);
565#endif
364 abort (); 566 abort ();
365 } 567 }
366} 568}
367 569
368static void * 570static void *
369ev_realloc_emul (void *ptr, long size) 571ev_realloc_emul (void *ptr, long size)
370{ 572{
573#if __GLIBC__
574 return realloc (ptr, size);
575#else
371 /* some systems, notably openbsd and darwin, fail to properly 576 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 577 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here. 578 * the single unix specification, so work around them here.
374 */ 579 */
375 580
376 if (size) 581 if (size)
377 return realloc (ptr, size); 582 return realloc (ptr, size);
378 583
379 free (ptr); 584 free (ptr);
380 return 0; 585 return 0;
586#endif
381} 587}
382 588
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 589static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 590
385void 591void
393{ 599{
394 ptr = alloc (ptr, size); 600 ptr = alloc (ptr, size);
395 601
396 if (!ptr && size) 602 if (!ptr && size)
397 { 603 {
604#if EV_AVOID_STDIO
605 ev_printerr ("libev: memory allocation failed, aborting.\n");
606#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 607 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
608#endif
399 abort (); 609 abort ();
400 } 610 }
401 611
402 return ptr; 612 return ptr;
403} 613}
405#define ev_malloc(size) ev_realloc (0, (size)) 615#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 616#define ev_free(ptr) ev_realloc ((ptr), 0)
407 617
408/*****************************************************************************/ 618/*****************************************************************************/
409 619
620/* set in reify when reification needed */
621#define EV_ANFD_REIFY 1
622
623/* file descriptor info structure */
410typedef struct 624typedef struct
411{ 625{
412 WL head; 626 WL head;
413 unsigned char events; 627 unsigned char events; /* the events watched for */
628 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
629 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 630 unsigned char unused;
631#if EV_USE_EPOLL
632 unsigned int egen; /* generation counter to counter epoll bugs */
633#endif
415#if EV_SELECT_IS_WINSOCKET 634#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 635 SOCKET handle;
417#endif 636#endif
418} ANFD; 637} ANFD;
419 638
639/* stores the pending event set for a given watcher */
420typedef struct 640typedef struct
421{ 641{
422 W w; 642 W w;
423 int events; 643 int events; /* the pending event set for the given watcher */
424} ANPENDING; 644} ANPENDING;
425 645
426#if EV_USE_INOTIFY 646#if EV_USE_INOTIFY
647/* hash table entry per inotify-id */
427typedef struct 648typedef struct
428{ 649{
429 WL head; 650 WL head;
430} ANFS; 651} ANFS;
652#endif
653
654/* Heap Entry */
655#if EV_HEAP_CACHE_AT
656 /* a heap element */
657 typedef struct {
658 ev_tstamp at;
659 WT w;
660 } ANHE;
661
662 #define ANHE_w(he) (he).w /* access watcher, read-write */
663 #define ANHE_at(he) (he).at /* access cached at, read-only */
664 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
665#else
666 /* a heap element */
667 typedef WT ANHE;
668
669 #define ANHE_w(he) (he)
670 #define ANHE_at(he) (he)->at
671 #define ANHE_at_cache(he)
431#endif 672#endif
432 673
433#if EV_MULTIPLICITY 674#if EV_MULTIPLICITY
434 675
435 struct ev_loop 676 struct ev_loop
454 695
455 static int ev_default_loop_ptr; 696 static int ev_default_loop_ptr;
456 697
457#endif 698#endif
458 699
700#if EV_MINIMAL < 2
701# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
702# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
703# define EV_INVOKE_PENDING invoke_cb (EV_A)
704#else
705# define EV_RELEASE_CB (void)0
706# define EV_ACQUIRE_CB (void)0
707# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
708#endif
709
710#define EVUNLOOP_RECURSE 0x80
711
459/*****************************************************************************/ 712/*****************************************************************************/
460 713
714#ifndef EV_HAVE_EV_TIME
461ev_tstamp 715ev_tstamp
462ev_time (void) 716ev_time (void)
463{ 717{
464#if EV_USE_REALTIME 718#if EV_USE_REALTIME
719 if (expect_true (have_realtime))
720 {
465 struct timespec ts; 721 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 722 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 723 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 724 }
725#endif
726
469 struct timeval tv; 727 struct timeval tv;
470 gettimeofday (&tv, 0); 728 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 729 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 730}
731#endif
474 732
475ev_tstamp inline_size 733inline_size ev_tstamp
476get_clock (void) 734get_clock (void)
477{ 735{
478#if EV_USE_MONOTONIC 736#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 737 if (expect_true (have_monotonic))
480 { 738 {
513 struct timeval tv; 771 struct timeval tv;
514 772
515 tv.tv_sec = (time_t)delay; 773 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 774 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 775
776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
777 /* something not guaranteed by newer posix versions, but guaranteed */
778 /* by older ones */
518 select (0, 0, 0, 0, &tv); 779 select (0, 0, 0, 0, &tv);
519#endif 780#endif
520 } 781 }
521} 782}
522 783
523/*****************************************************************************/ 784/*****************************************************************************/
524 785
525int inline_size 786#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
787
788/* find a suitable new size for the given array, */
789/* hopefully by rounding to a ncie-to-malloc size */
790inline_size int
526array_nextsize (int elem, int cur, int cnt) 791array_nextsize (int elem, int cur, int cnt)
527{ 792{
528 int ncur = cur + 1; 793 int ncur = cur + 1;
529 794
530 do 795 do
531 ncur <<= 1; 796 ncur <<= 1;
532 while (cnt > ncur); 797 while (cnt > ncur);
533 798
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 799 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096) 800 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 801 {
537 ncur *= elem; 802 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 803 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 804 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 805 ncur /= elem;
541 } 806 }
542 807
543 return ncur; 808 return ncur;
547array_realloc (int elem, void *base, int *cur, int cnt) 812array_realloc (int elem, void *base, int *cur, int cnt)
548{ 813{
549 *cur = array_nextsize (elem, *cur, cnt); 814 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur); 815 return ev_realloc (base, elem * *cur);
551} 816}
817
818#define array_init_zero(base,count) \
819 memset ((void *)(base), 0, sizeof (*(base)) * (count))
552 820
553#define array_needsize(type,base,cur,cnt,init) \ 821#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \ 822 if (expect_false ((cnt) > (cur))) \
555 { \ 823 { \
556 int ocur_ = (cur); \ 824 int ocur_ = (cur); \
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 836 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 } 837 }
570#endif 838#endif
571 839
572#define array_free(stem, idx) \ 840#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 841 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
574 842
575/*****************************************************************************/ 843/*****************************************************************************/
844
845/* dummy callback for pending events */
846static void noinline
847pendingcb (EV_P_ ev_prepare *w, int revents)
848{
849}
576 850
577void noinline 851void noinline
578ev_feed_event (EV_P_ void *w, int revents) 852ev_feed_event (EV_P_ void *w, int revents)
579{ 853{
580 W w_ = (W)w; 854 W w_ = (W)w;
589 pendings [pri][w_->pending - 1].w = w_; 863 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents; 864 pendings [pri][w_->pending - 1].events = revents;
591 } 865 }
592} 866}
593 867
594void inline_speed 868inline_speed void
869feed_reverse (EV_P_ W w)
870{
871 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
872 rfeeds [rfeedcnt++] = w;
873}
874
875inline_size void
876feed_reverse_done (EV_P_ int revents)
877{
878 do
879 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
880 while (rfeedcnt);
881}
882
883inline_speed void
595queue_events (EV_P_ W *events, int eventcnt, int type) 884queue_events (EV_P_ W *events, int eventcnt, int type)
596{ 885{
597 int i; 886 int i;
598 887
599 for (i = 0; i < eventcnt; ++i) 888 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type); 889 ev_feed_event (EV_A_ events [i], type);
601} 890}
602 891
603/*****************************************************************************/ 892/*****************************************************************************/
604 893
605void inline_size 894inline_speed void
606anfds_init (ANFD *base, int count)
607{
608 while (count--)
609 {
610 base->head = 0;
611 base->events = EV_NONE;
612 base->reify = 0;
613
614 ++base;
615 }
616}
617
618void inline_speed
619fd_event (EV_P_ int fd, int revents) 895fd_event_nc (EV_P_ int fd, int revents)
620{ 896{
621 ANFD *anfd = anfds + fd; 897 ANFD *anfd = anfds + fd;
622 ev_io *w; 898 ev_io *w;
623 899
624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 900 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
628 if (ev) 904 if (ev)
629 ev_feed_event (EV_A_ (W)w, ev); 905 ev_feed_event (EV_A_ (W)w, ev);
630 } 906 }
631} 907}
632 908
909/* do not submit kernel events for fds that have reify set */
910/* because that means they changed while we were polling for new events */
911inline_speed void
912fd_event (EV_P_ int fd, int revents)
913{
914 ANFD *anfd = anfds + fd;
915
916 if (expect_true (!anfd->reify))
917 fd_event_nc (EV_A_ fd, revents);
918}
919
633void 920void
634ev_feed_fd_event (EV_P_ int fd, int revents) 921ev_feed_fd_event (EV_P_ int fd, int revents)
635{ 922{
636 if (fd >= 0 && fd < anfdmax) 923 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents); 924 fd_event_nc (EV_A_ fd, revents);
638} 925}
639 926
640void inline_size 927/* make sure the external fd watch events are in-sync */
928/* with the kernel/libev internal state */
929inline_size void
641fd_reify (EV_P) 930fd_reify (EV_P)
642{ 931{
643 int i; 932 int i;
644 933
645 for (i = 0; i < fdchangecnt; ++i) 934 for (i = 0; i < fdchangecnt; ++i)
654 events |= (unsigned char)w->events; 943 events |= (unsigned char)w->events;
655 944
656#if EV_SELECT_IS_WINSOCKET 945#if EV_SELECT_IS_WINSOCKET
657 if (events) 946 if (events)
658 { 947 {
659 unsigned long argp; 948 unsigned long arg;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 949 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
663 anfd->handle = _get_osfhandle (fd);
664 #endif
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 950 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
666 } 951 }
667#endif 952#endif
668 953
669 { 954 {
670 unsigned char o_events = anfd->events; 955 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify; 956 unsigned char o_reify = anfd->reify;
672 957
673 anfd->reify = 0; 958 anfd->reify = 0;
674 anfd->events = events; 959 anfd->events = events;
675 960
676 if (o_events != events || o_reify & EV_IOFDSET) 961 if (o_events != events || o_reify & EV__IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events); 962 backend_modify (EV_A_ fd, o_events, events);
678 } 963 }
679 } 964 }
680 965
681 fdchangecnt = 0; 966 fdchangecnt = 0;
682} 967}
683 968
684void inline_size 969/* something about the given fd changed */
970inline_size void
685fd_change (EV_P_ int fd, int flags) 971fd_change (EV_P_ int fd, int flags)
686{ 972{
687 unsigned char reify = anfds [fd].reify; 973 unsigned char reify = anfds [fd].reify;
688 anfds [fd].reify |= flags; 974 anfds [fd].reify |= flags;
689 975
693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 979 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
694 fdchanges [fdchangecnt - 1] = fd; 980 fdchanges [fdchangecnt - 1] = fd;
695 } 981 }
696} 982}
697 983
698void inline_speed 984/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
985inline_speed void
699fd_kill (EV_P_ int fd) 986fd_kill (EV_P_ int fd)
700{ 987{
701 ev_io *w; 988 ev_io *w;
702 989
703 while ((w = (ev_io *)anfds [fd].head)) 990 while ((w = (ev_io *)anfds [fd].head))
705 ev_io_stop (EV_A_ w); 992 ev_io_stop (EV_A_ w);
706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 993 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
707 } 994 }
708} 995}
709 996
710int inline_size 997/* check whether the given fd is atcually valid, for error recovery */
998inline_size int
711fd_valid (int fd) 999fd_valid (int fd)
712{ 1000{
713#ifdef _WIN32 1001#ifdef _WIN32
714 return _get_osfhandle (fd) != -1; 1002 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
715#else 1003#else
716 return fcntl (fd, F_GETFD) != -1; 1004 return fcntl (fd, F_GETFD) != -1;
717#endif 1005#endif
718} 1006}
719 1007
723{ 1011{
724 int fd; 1012 int fd;
725 1013
726 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
727 if (anfds [fd].events) 1015 if (anfds [fd].events)
728 if (!fd_valid (fd) == -1 && errno == EBADF) 1016 if (!fd_valid (fd) && errno == EBADF)
729 fd_kill (EV_A_ fd); 1017 fd_kill (EV_A_ fd);
730} 1018}
731 1019
732/* called on ENOMEM in select/poll to kill some fds and retry */ 1020/* called on ENOMEM in select/poll to kill some fds and retry */
733static void noinline 1021static void noinline
737 1025
738 for (fd = anfdmax; fd--; ) 1026 for (fd = anfdmax; fd--; )
739 if (anfds [fd].events) 1027 if (anfds [fd].events)
740 { 1028 {
741 fd_kill (EV_A_ fd); 1029 fd_kill (EV_A_ fd);
742 return; 1030 break;
743 } 1031 }
744} 1032}
745 1033
746/* usually called after fork if backend needs to re-arm all fds from scratch */ 1034/* usually called after fork if backend needs to re-arm all fds from scratch */
747static void noinline 1035static void noinline
751 1039
752 for (fd = 0; fd < anfdmax; ++fd) 1040 for (fd = 0; fd < anfdmax; ++fd)
753 if (anfds [fd].events) 1041 if (anfds [fd].events)
754 { 1042 {
755 anfds [fd].events = 0; 1043 anfds [fd].events = 0;
1044 anfds [fd].emask = 0;
756 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1045 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
757 } 1046 }
758} 1047}
759 1048
760/*****************************************************************************/ 1049/*****************************************************************************/
761 1050
1051/*
1052 * the heap functions want a real array index. array index 0 uis guaranteed to not
1053 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1054 * the branching factor of the d-tree.
1055 */
1056
1057/*
1058 * at the moment we allow libev the luxury of two heaps,
1059 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1060 * which is more cache-efficient.
1061 * the difference is about 5% with 50000+ watchers.
1062 */
1063#if EV_USE_4HEAP
1064
1065#define DHEAP 4
1066#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1067#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1068#define UPHEAP_DONE(p,k) ((p) == (k))
1069
1070/* away from the root */
1071inline_speed void
1072downheap (ANHE *heap, int N, int k)
1073{
1074 ANHE he = heap [k];
1075 ANHE *E = heap + N + HEAP0;
1076
1077 for (;;)
1078 {
1079 ev_tstamp minat;
1080 ANHE *minpos;
1081 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1082
1083 /* find minimum child */
1084 if (expect_true (pos + DHEAP - 1 < E))
1085 {
1086 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1087 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1088 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1089 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1090 }
1091 else if (pos < E)
1092 {
1093 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else
1099 break;
1100
1101 if (ANHE_at (he) <= minat)
1102 break;
1103
1104 heap [k] = *minpos;
1105 ev_active (ANHE_w (*minpos)) = k;
1106
1107 k = minpos - heap;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114#else /* 4HEAP */
1115
1116#define HEAP0 1
1117#define HPARENT(k) ((k) >> 1)
1118#define UPHEAP_DONE(p,k) (!(p))
1119
1120/* away from the root */
1121inline_speed void
1122downheap (ANHE *heap, int N, int k)
1123{
1124 ANHE he = heap [k];
1125
1126 for (;;)
1127 {
1128 int c = k << 1;
1129
1130 if (c >= N + HEAP0)
1131 break;
1132
1133 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1134 ? 1 : 0;
1135
1136 if (ANHE_at (he) <= ANHE_at (heap [c]))
1137 break;
1138
1139 heap [k] = heap [c];
1140 ev_active (ANHE_w (heap [k])) = k;
1141
1142 k = c;
1143 }
1144
1145 heap [k] = he;
1146 ev_active (ANHE_w (he)) = k;
1147}
1148#endif
1149
762/* towards the root */ 1150/* towards the root */
763void inline_speed 1151inline_speed void
764upheap (WT *heap, int k) 1152upheap (ANHE *heap, int k)
765{ 1153{
766 WT w = heap [k]; 1154 ANHE he = heap [k];
767 1155
768 for (;;) 1156 for (;;)
769 { 1157 {
770 int p = k >> 1; 1158 int p = HPARENT (k);
771 1159
772 /* maybe we could use a dummy element at heap [0]? */ 1160 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
773 if (!p || heap [p]->at <= w->at)
774 break; 1161 break;
775 1162
776 heap [k] = heap [p]; 1163 heap [k] = heap [p];
777 ev_active (heap [k]) = k; 1164 ev_active (ANHE_w (heap [k])) = k;
778 k = p; 1165 k = p;
779 } 1166 }
780 1167
781 heap [k] = w; 1168 heap [k] = he;
782 ev_active (heap [k]) = k; 1169 ev_active (ANHE_w (he)) = k;
783} 1170}
784 1171
785/* away from the root */ 1172/* move an element suitably so it is in a correct place */
786void inline_speed 1173inline_size void
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ev_active (heap [k]) = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ev_active (heap [k]) = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k) 1174adjustheap (ANHE *heap, int N, int k)
816{ 1175{
1176 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
817 upheap (heap, k); 1177 upheap (heap, k);
1178 else
818 downheap (heap, N, k); 1179 downheap (heap, N, k);
1180}
1181
1182/* rebuild the heap: this function is used only once and executed rarely */
1183inline_size void
1184reheap (ANHE *heap, int N)
1185{
1186 int i;
1187
1188 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1189 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1190 for (i = 0; i < N; ++i)
1191 upheap (heap, i + HEAP0);
819} 1192}
820 1193
821/*****************************************************************************/ 1194/*****************************************************************************/
822 1195
1196/* associate signal watchers to a signal signal */
823typedef struct 1197typedef struct
824{ 1198{
1199 EV_ATOMIC_T pending;
1200#if EV_MULTIPLICITY
1201 EV_P;
1202#endif
825 WL head; 1203 WL head;
826 EV_ATOMIC_T gotsig;
827} ANSIG; 1204} ANSIG;
828 1205
829static ANSIG *signals; 1206static ANSIG signals [EV_NSIG - 1];
830static int signalmax;
831
832static EV_ATOMIC_T gotsig;
833
834void inline_size
835signals_init (ANSIG *base, int count)
836{
837 while (count--)
838 {
839 base->head = 0;
840 base->gotsig = 0;
841
842 ++base;
843 }
844}
845 1207
846/*****************************************************************************/ 1208/*****************************************************************************/
847 1209
848void inline_speed 1210/* used to prepare libev internal fd's */
1211/* this is not fork-safe */
1212inline_speed void
849fd_intern (int fd) 1213fd_intern (int fd)
850{ 1214{
851#ifdef _WIN32 1215#ifdef _WIN32
852 int arg = 1; 1216 unsigned long arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1217 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
854#else 1218#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC); 1219 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK); 1220 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif 1221#endif
858} 1222}
859 1223
860static void noinline 1224static void noinline
861evpipe_init (EV_P) 1225evpipe_init (EV_P)
862{ 1226{
863 if (!ev_is_active (&pipeev)) 1227 if (!ev_is_active (&pipe_w))
864 { 1228 {
865#if EV_USE_EVENTFD 1229#if EV_USE_EVENTFD
1230 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1231 if (evfd < 0 && errno == EINVAL)
866 if ((evfd = eventfd (0, 0)) >= 0) 1232 evfd = eventfd (0, 0);
1233
1234 if (evfd >= 0)
867 { 1235 {
868 evpipe [0] = -1; 1236 evpipe [0] = -1;
869 fd_intern (evfd); 1237 fd_intern (evfd); /* doing it twice doesn't hurt */
870 ev_io_set (&pipeev, evfd, EV_READ); 1238 ev_io_set (&pipe_w, evfd, EV_READ);
871 } 1239 }
872 else 1240 else
873#endif 1241#endif
874 { 1242 {
875 while (pipe (evpipe)) 1243 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe"); 1244 ev_syserr ("(libev) error creating signal/async pipe");
877 1245
878 fd_intern (evpipe [0]); 1246 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]); 1247 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ); 1248 ev_io_set (&pipe_w, evpipe [0], EV_READ);
881 } 1249 }
882 1250
883 ev_io_start (EV_A_ &pipeev); 1251 ev_io_start (EV_A_ &pipe_w);
884 ev_unref (EV_A); /* watcher should not keep loop alive */ 1252 ev_unref (EV_A); /* watcher should not keep loop alive */
885 } 1253 }
886} 1254}
887 1255
888void inline_size 1256inline_size void
889evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{ 1258{
891 if (!*flag) 1259 if (!*flag)
892 { 1260 {
893 int old_errno = errno; /* save errno because write might clobber it */ 1261 int old_errno = errno; /* save errno because write might clobber it */
906 1274
907 errno = old_errno; 1275 errno = old_errno;
908 } 1276 }
909} 1277}
910 1278
1279/* called whenever the libev signal pipe */
1280/* got some events (signal, async) */
911static void 1281static void
912pipecb (EV_P_ ev_io *iow, int revents) 1282pipecb (EV_P_ ev_io *iow, int revents)
913{ 1283{
1284 int i;
1285
914#if EV_USE_EVENTFD 1286#if EV_USE_EVENTFD
915 if (evfd >= 0) 1287 if (evfd >= 0)
916 { 1288 {
917 uint64_t counter = 1; 1289 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1290 read (evfd, &counter, sizeof (uint64_t));
919 } 1291 }
920 else 1292 else
921#endif 1293#endif
922 { 1294 {
923 char dummy; 1295 char dummy;
924 read (evpipe [0], &dummy, 1); 1296 read (evpipe [0], &dummy, 1);
925 } 1297 }
926 1298
927 if (gotsig && ev_is_default_loop (EV_A)) 1299 if (sig_pending)
928 { 1300 {
929 int signum; 1301 sig_pending = 0;
930 gotsig = 0;
931 1302
932 for (signum = signalmax; signum--; ) 1303 for (i = EV_NSIG - 1; i--; )
933 if (signals [signum].gotsig) 1304 if (expect_false (signals [i].pending))
934 ev_feed_signal_event (EV_A_ signum + 1); 1305 ev_feed_signal_event (EV_A_ i + 1);
935 } 1306 }
936 1307
937#if EV_ASYNC_ENABLE 1308#if EV_ASYNC_ENABLE
938 if (gotasync) 1309 if (async_pending)
939 { 1310 {
940 int i; 1311 async_pending = 0;
941 gotasync = 0;
942 1312
943 for (i = asynccnt; i--; ) 1313 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent) 1314 if (asyncs [i]->sent)
945 { 1315 {
946 asyncs [i]->sent = 0; 1316 asyncs [i]->sent = 0;
954 1324
955static void 1325static void
956ev_sighandler (int signum) 1326ev_sighandler (int signum)
957{ 1327{
958#if EV_MULTIPLICITY 1328#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct; 1329 EV_P = signals [signum - 1].loop;
960#endif 1330#endif
961 1331
962#if _WIN32 1332#ifdef _WIN32
963 signal (signum, ev_sighandler); 1333 signal (signum, ev_sighandler);
964#endif 1334#endif
965 1335
966 signals [signum - 1].gotsig = 1; 1336 signals [signum - 1].pending = 1;
967 evpipe_write (EV_A_ &gotsig); 1337 evpipe_write (EV_A_ &sig_pending);
968} 1338}
969 1339
970void noinline 1340void noinline
971ev_feed_signal_event (EV_P_ int signum) 1341ev_feed_signal_event (EV_P_ int signum)
972{ 1342{
973 WL w; 1343 WL w;
974 1344
1345 if (expect_false (signum <= 0 || signum > EV_NSIG))
1346 return;
1347
1348 --signum;
1349
975#if EV_MULTIPLICITY 1350#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1351 /* it is permissible to try to feed a signal to the wrong loop */
977#endif 1352 /* or, likely more useful, feeding a signal nobody is waiting for */
978 1353
979 --signum; 1354 if (expect_false (signals [signum].loop != EV_A))
980
981 if (signum < 0 || signum >= signalmax)
982 return; 1355 return;
1356#endif
983 1357
984 signals [signum].gotsig = 0; 1358 signals [signum].pending = 0;
985 1359
986 for (w = signals [signum].head; w; w = w->next) 1360 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1361 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988} 1362}
989 1363
1364#if EV_USE_SIGNALFD
1365static void
1366sigfdcb (EV_P_ ev_io *iow, int revents)
1367{
1368 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1369
1370 for (;;)
1371 {
1372 ssize_t res = read (sigfd, si, sizeof (si));
1373
1374 /* not ISO-C, as res might be -1, but works with SuS */
1375 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1376 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1377
1378 if (res < (ssize_t)sizeof (si))
1379 break;
1380 }
1381}
1382#endif
1383
990/*****************************************************************************/ 1384/*****************************************************************************/
991 1385
992static WL childs [EV_PID_HASHSIZE]; 1386static WL childs [EV_PID_HASHSIZE];
993 1387
994#ifndef _WIN32 1388#ifndef _WIN32
997 1391
998#ifndef WIFCONTINUED 1392#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0 1393# define WIFCONTINUED(status) 0
1000#endif 1394#endif
1001 1395
1002void inline_speed 1396/* handle a single child status event */
1397inline_speed void
1003child_reap (EV_P_ int chain, int pid, int status) 1398child_reap (EV_P_ int chain, int pid, int status)
1004{ 1399{
1005 ev_child *w; 1400 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1401 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007 1402
1020 1415
1021#ifndef WCONTINUED 1416#ifndef WCONTINUED
1022# define WCONTINUED 0 1417# define WCONTINUED 0
1023#endif 1418#endif
1024 1419
1420/* called on sigchld etc., calls waitpid */
1025static void 1421static void
1026childcb (EV_P_ ev_signal *sw, int revents) 1422childcb (EV_P_ ev_signal *sw, int revents)
1027{ 1423{
1028 int pid, status; 1424 int pid, status;
1029 1425
1110 /* kqueue is borked on everything but netbsd apparently */ 1506 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */ 1507 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE; 1508 flags &= ~EVBACKEND_KQUEUE;
1113#endif 1509#endif
1114#ifdef __APPLE__ 1510#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation 1511 /* only select works correctly on that "unix-certified" platform */
1116 flags &= ~EVBACKEND_POLL; 1512 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1513 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1117#endif 1514#endif
1118 1515
1119 return flags; 1516 return flags;
1120} 1517}
1121 1518
1135ev_backend (EV_P) 1532ev_backend (EV_P)
1136{ 1533{
1137 return backend; 1534 return backend;
1138} 1535}
1139 1536
1537#if EV_MINIMAL < 2
1140unsigned int 1538unsigned int
1141ev_loop_count (EV_P) 1539ev_loop_count (EV_P)
1142{ 1540{
1143 return loop_count; 1541 return loop_count;
1144} 1542}
1145 1543
1544unsigned int
1545ev_loop_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1146void 1550void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1552{
1149 io_blocktime = interval; 1553 io_blocktime = interval;
1150} 1554}
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{ 1558{
1155 timeout_blocktime = interval; 1559 timeout_blocktime = interval;
1156} 1560}
1157 1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
1158static void noinline 1587static void noinline
1159loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
1160{ 1589{
1161 if (!backend) 1590 if (!backend)
1162 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
1163#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
1164 { 1604 {
1165 struct timespec ts; 1605 struct timespec ts;
1606
1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1167 have_monotonic = 1; 1608 have_monotonic = 1;
1168 } 1609 }
1169#endif 1610#endif
1611
1612 /* pid check not overridable via env */
1613#ifndef _WIN32
1614 if (flags & EVFLAG_FORKCHECK)
1615 curpid = getpid ();
1616#endif
1617
1618 if (!(flags & EVFLAG_NOENV)
1619 && !enable_secure ()
1620 && getenv ("LIBEV_FLAGS"))
1621 flags = atoi (getenv ("LIBEV_FLAGS"));
1170 1622
1171 ev_rt_now = ev_time (); 1623 ev_rt_now = ev_time ();
1172 mn_now = get_clock (); 1624 mn_now = get_clock ();
1173 now_floor = mn_now; 1625 now_floor = mn_now;
1174 rtmn_diff = ev_rt_now - mn_now; 1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_MINIMAL < 2
1628 invoke_cb = ev_invoke_pending;
1629#endif
1175 1630
1176 io_blocktime = 0.; 1631 io_blocktime = 0.;
1177 timeout_blocktime = 0.; 1632 timeout_blocktime = 0.;
1178 backend = 0; 1633 backend = 0;
1179 backend_fd = -1; 1634 backend_fd = -1;
1180 gotasync = 0; 1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1181#if EV_USE_INOTIFY 1639#if EV_USE_INOTIFY
1182 fs_fd = -2; 1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1183#endif 1641#endif
1184 1642#if EV_USE_SIGNALFD
1185 /* pid check not overridable via env */ 1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif 1644#endif
1190
1191 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS"))
1194 flags = atoi (getenv ("LIBEV_FLAGS"));
1195 1645
1196 if (!(flags & 0x0000ffffU)) 1646 if (!(flags & 0x0000ffffU))
1197 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
1198 1648
1199#if EV_USE_PORT 1649#if EV_USE_PORT
1210#endif 1660#endif
1211#if EV_USE_SELECT 1661#if EV_USE_SELECT
1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1213#endif 1663#endif
1214 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1215 ev_init (&pipeev, pipecb); 1667 ev_init (&pipe_w, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI); 1668 ev_set_priority (&pipe_w, EV_MAXPRI);
1217 } 1669 }
1218} 1670}
1219 1671
1672/* free up a loop structure */
1220static void noinline 1673static void noinline
1221loop_destroy (EV_P) 1674loop_destroy (EV_P)
1222{ 1675{
1223 int i; 1676 int i;
1224 1677
1225 if (ev_is_active (&pipeev)) 1678 if (ev_is_active (&pipe_w))
1226 { 1679 {
1227 ev_ref (EV_A); /* signal watcher */ 1680 /*ev_ref (EV_A);*/
1228 ev_io_stop (EV_A_ &pipeev); 1681 /*ev_io_stop (EV_A_ &pipe_w);*/
1229 1682
1230#if EV_USE_EVENTFD 1683#if EV_USE_EVENTFD
1231 if (evfd >= 0) 1684 if (evfd >= 0)
1232 close (evfd); 1685 close (evfd);
1233#endif 1686#endif
1234 1687
1235 if (evpipe [0] >= 0) 1688 if (evpipe [0] >= 0)
1236 { 1689 {
1237 close (evpipe [0]); 1690 EV_WIN32_CLOSE_FD (evpipe [0]);
1238 close (evpipe [1]); 1691 EV_WIN32_CLOSE_FD (evpipe [1]);
1239 } 1692 }
1240 } 1693 }
1694
1695#if EV_USE_SIGNALFD
1696 if (ev_is_active (&sigfd_w))
1697 close (sigfd);
1698#endif
1241 1699
1242#if EV_USE_INOTIFY 1700#if EV_USE_INOTIFY
1243 if (fs_fd >= 0) 1701 if (fs_fd >= 0)
1244 close (fs_fd); 1702 close (fs_fd);
1245#endif 1703#endif
1269#if EV_IDLE_ENABLE 1727#if EV_IDLE_ENABLE
1270 array_free (idle, [i]); 1728 array_free (idle, [i]);
1271#endif 1729#endif
1272 } 1730 }
1273 1731
1274 ev_free (anfds); anfdmax = 0; 1732 ev_free (anfds); anfds = 0; anfdmax = 0;
1275 1733
1276 /* have to use the microsoft-never-gets-it-right macro */ 1734 /* have to use the microsoft-never-gets-it-right macro */
1735 array_free (rfeed, EMPTY);
1277 array_free (fdchange, EMPTY); 1736 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY); 1737 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY); 1739 array_free (periodic, EMPTY);
1281#endif 1740#endif
1290 1749
1291 backend = 0; 1750 backend = 0;
1292} 1751}
1293 1752
1294#if EV_USE_INOTIFY 1753#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P); 1754inline_size void infy_fork (EV_P);
1296#endif 1755#endif
1297 1756
1298void inline_size 1757inline_size void
1299loop_fork (EV_P) 1758loop_fork (EV_P)
1300{ 1759{
1301#if EV_USE_PORT 1760#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1761 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif 1762#endif
1309#endif 1768#endif
1310#if EV_USE_INOTIFY 1769#if EV_USE_INOTIFY
1311 infy_fork (EV_A); 1770 infy_fork (EV_A);
1312#endif 1771#endif
1313 1772
1314 if (ev_is_active (&pipeev)) 1773 if (ev_is_active (&pipe_w))
1315 { 1774 {
1316 /* this "locks" the handlers against writing to the pipe */ 1775 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */ 1776 /* while we modify the fd vars */
1318 gotsig = 1; 1777 sig_pending = 1;
1319#if EV_ASYNC_ENABLE 1778#if EV_ASYNC_ENABLE
1320 gotasync = 1; 1779 async_pending = 1;
1321#endif 1780#endif
1322 1781
1323 ev_ref (EV_A); 1782 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev); 1783 ev_io_stop (EV_A_ &pipe_w);
1325 1784
1326#if EV_USE_EVENTFD 1785#if EV_USE_EVENTFD
1327 if (evfd >= 0) 1786 if (evfd >= 0)
1328 close (evfd); 1787 close (evfd);
1329#endif 1788#endif
1330 1789
1331 if (evpipe [0] >= 0) 1790 if (evpipe [0] >= 0)
1332 { 1791 {
1333 close (evpipe [0]); 1792 EV_WIN32_CLOSE_FD (evpipe [0]);
1334 close (evpipe [1]); 1793 EV_WIN32_CLOSE_FD (evpipe [1]);
1335 } 1794 }
1336 1795
1337 evpipe_init (EV_A); 1796 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */ 1797 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ); 1798 pipecb (EV_A_ &pipe_w, EV_READ);
1340 } 1799 }
1341 1800
1342 postfork = 0; 1801 postfork = 0;
1343} 1802}
1344 1803
1345#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1805
1346struct ev_loop * 1806struct ev_loop *
1347ev_loop_new (unsigned int flags) 1807ev_loop_new (unsigned int flags)
1348{ 1808{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1809 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350 1810
1351 memset (loop, 0, sizeof (struct ev_loop)); 1811 memset (EV_A, 0, sizeof (struct ev_loop));
1352
1353 loop_init (EV_A_ flags); 1812 loop_init (EV_A_ flags);
1354 1813
1355 if (ev_backend (EV_A)) 1814 if (ev_backend (EV_A))
1356 return loop; 1815 return EV_A;
1357 1816
1358 return 0; 1817 return 0;
1359} 1818}
1360 1819
1361void 1820void
1368void 1827void
1369ev_loop_fork (EV_P) 1828ev_loop_fork (EV_P)
1370{ 1829{
1371 postfork = 1; /* must be in line with ev_default_fork */ 1830 postfork = 1; /* must be in line with ev_default_fork */
1372} 1831}
1832#endif /* multiplicity */
1373 1833
1834#if EV_VERIFY
1835static void noinline
1836verify_watcher (EV_P_ W w)
1837{
1838 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1839
1840 if (w->pending)
1841 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1842}
1843
1844static void noinline
1845verify_heap (EV_P_ ANHE *heap, int N)
1846{
1847 int i;
1848
1849 for (i = HEAP0; i < N + HEAP0; ++i)
1850 {
1851 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1852 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1853 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1854
1855 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1856 }
1857}
1858
1859static void noinline
1860array_verify (EV_P_ W *ws, int cnt)
1861{
1862 while (cnt--)
1863 {
1864 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1865 verify_watcher (EV_A_ ws [cnt]);
1866 }
1867}
1868#endif
1869
1870#if EV_MINIMAL < 2
1871void
1872ev_loop_verify (EV_P)
1873{
1874#if EV_VERIFY
1875 int i;
1876 WL w;
1877
1878 assert (activecnt >= -1);
1879
1880 assert (fdchangemax >= fdchangecnt);
1881 for (i = 0; i < fdchangecnt; ++i)
1882 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1883
1884 assert (anfdmax >= 0);
1885 for (i = 0; i < anfdmax; ++i)
1886 for (w = anfds [i].head; w; w = w->next)
1887 {
1888 verify_watcher (EV_A_ (W)w);
1889 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1890 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1891 }
1892
1893 assert (timermax >= timercnt);
1894 verify_heap (EV_A_ timers, timercnt);
1895
1896#if EV_PERIODIC_ENABLE
1897 assert (periodicmax >= periodiccnt);
1898 verify_heap (EV_A_ periodics, periodiccnt);
1899#endif
1900
1901 for (i = NUMPRI; i--; )
1902 {
1903 assert (pendingmax [i] >= pendingcnt [i]);
1904#if EV_IDLE_ENABLE
1905 assert (idleall >= 0);
1906 assert (idlemax [i] >= idlecnt [i]);
1907 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1908#endif
1909 }
1910
1911#if EV_FORK_ENABLE
1912 assert (forkmax >= forkcnt);
1913 array_verify (EV_A_ (W *)forks, forkcnt);
1914#endif
1915
1916#if EV_ASYNC_ENABLE
1917 assert (asyncmax >= asynccnt);
1918 array_verify (EV_A_ (W *)asyncs, asynccnt);
1919#endif
1920
1921 assert (preparemax >= preparecnt);
1922 array_verify (EV_A_ (W *)prepares, preparecnt);
1923
1924 assert (checkmax >= checkcnt);
1925 array_verify (EV_A_ (W *)checks, checkcnt);
1926
1927# if 0
1928 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1929 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1930# endif
1931#endif
1932}
1374#endif 1933#endif
1375 1934
1376#if EV_MULTIPLICITY 1935#if EV_MULTIPLICITY
1377struct ev_loop * 1936struct ev_loop *
1378ev_default_loop_init (unsigned int flags) 1937ev_default_loop_init (unsigned int flags)
1382#endif 1941#endif
1383{ 1942{
1384 if (!ev_default_loop_ptr) 1943 if (!ev_default_loop_ptr)
1385 { 1944 {
1386#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1946 EV_P = ev_default_loop_ptr = &default_loop_struct;
1388#else 1947#else
1389 ev_default_loop_ptr = 1; 1948 ev_default_loop_ptr = 1;
1390#endif 1949#endif
1391 1950
1392 loop_init (EV_A_ flags); 1951 loop_init (EV_A_ flags);
1409 1968
1410void 1969void
1411ev_default_destroy (void) 1970ev_default_destroy (void)
1412{ 1971{
1413#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1414 struct ev_loop *loop = ev_default_loop_ptr; 1973 EV_P = ev_default_loop_ptr;
1415#endif 1974#endif
1975
1976 ev_default_loop_ptr = 0;
1416 1977
1417#ifndef _WIN32 1978#ifndef _WIN32
1418 ev_ref (EV_A); /* child watcher */ 1979 ev_ref (EV_A); /* child watcher */
1419 ev_signal_stop (EV_A_ &childev); 1980 ev_signal_stop (EV_A_ &childev);
1420#endif 1981#endif
1424 1985
1425void 1986void
1426ev_default_fork (void) 1987ev_default_fork (void)
1427{ 1988{
1428#if EV_MULTIPLICITY 1989#if EV_MULTIPLICITY
1429 struct ev_loop *loop = ev_default_loop_ptr; 1990 EV_P = ev_default_loop_ptr;
1430#endif 1991#endif
1431 1992
1432 if (backend)
1433 postfork = 1; /* must be in line with ev_loop_fork */ 1993 postfork = 1; /* must be in line with ev_loop_fork */
1434} 1994}
1435 1995
1436/*****************************************************************************/ 1996/*****************************************************************************/
1437 1997
1438void 1998void
1439ev_invoke (EV_P_ void *w, int revents) 1999ev_invoke (EV_P_ void *w, int revents)
1440{ 2000{
1441 EV_CB_INVOKE ((W)w, revents); 2001 EV_CB_INVOKE ((W)w, revents);
1442} 2002}
1443 2003
1444void inline_speed 2004unsigned int
1445call_pending (EV_P) 2005ev_pending_count (EV_P)
2006{
2007 int pri;
2008 unsigned int count = 0;
2009
2010 for (pri = NUMPRI; pri--; )
2011 count += pendingcnt [pri];
2012
2013 return count;
2014}
2015
2016void noinline
2017ev_invoke_pending (EV_P)
1446{ 2018{
1447 int pri; 2019 int pri;
1448 2020
1449 for (pri = NUMPRI; pri--; ) 2021 for (pri = NUMPRI; pri--; )
1450 while (pendingcnt [pri]) 2022 while (pendingcnt [pri])
1451 { 2023 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1453 2025
1454 if (expect_true (p->w))
1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2026 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2027 /* ^ this is no longer true, as pending_w could be here */
1457 2028
1458 p->w->pending = 0; 2029 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 2030 EV_CB_INVOKE (p->w, p->events);
1460 } 2031 EV_FREQUENT_CHECK;
1461 } 2032 }
1462} 2033}
1463 2034
1464void inline_size
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE 2035#if EV_IDLE_ENABLE
1545void inline_size 2036/* make idle watchers pending. this handles the "call-idle */
2037/* only when higher priorities are idle" logic */
2038inline_size void
1546idle_reify (EV_P) 2039idle_reify (EV_P)
1547{ 2040{
1548 if (expect_false (idleall)) 2041 if (expect_false (idleall))
1549 { 2042 {
1550 int pri; 2043 int pri;
1562 } 2055 }
1563 } 2056 }
1564} 2057}
1565#endif 2058#endif
1566 2059
1567void inline_speed 2060/* make timers pending */
2061inline_size void
2062timers_reify (EV_P)
2063{
2064 EV_FREQUENT_CHECK;
2065
2066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2067 {
2068 do
2069 {
2070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2071
2072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2073
2074 /* first reschedule or stop timer */
2075 if (w->repeat)
2076 {
2077 ev_at (w) += w->repeat;
2078 if (ev_at (w) < mn_now)
2079 ev_at (w) = mn_now;
2080
2081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2082
2083 ANHE_at_cache (timers [HEAP0]);
2084 downheap (timers, timercnt, HEAP0);
2085 }
2086 else
2087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2088
2089 EV_FREQUENT_CHECK;
2090 feed_reverse (EV_A_ (W)w);
2091 }
2092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2093
2094 feed_reverse_done (EV_A_ EV_TIMEOUT);
2095 }
2096}
2097
2098#if EV_PERIODIC_ENABLE
2099/* make periodics pending */
2100inline_size void
2101periodics_reify (EV_P)
2102{
2103 EV_FREQUENT_CHECK;
2104
2105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2106 {
2107 int feed_count = 0;
2108
2109 do
2110 {
2111 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2112
2113 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2114
2115 /* first reschedule or stop timer */
2116 if (w->reschedule_cb)
2117 {
2118 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2119
2120 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2121
2122 ANHE_at_cache (periodics [HEAP0]);
2123 downheap (periodics, periodiccnt, HEAP0);
2124 }
2125 else if (w->interval)
2126 {
2127 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2128 /* if next trigger time is not sufficiently in the future, put it there */
2129 /* this might happen because of floating point inexactness */
2130 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2131 {
2132 ev_at (w) += w->interval;
2133
2134 /* if interval is unreasonably low we might still have a time in the past */
2135 /* so correct this. this will make the periodic very inexact, but the user */
2136 /* has effectively asked to get triggered more often than possible */
2137 if (ev_at (w) < ev_rt_now)
2138 ev_at (w) = ev_rt_now;
2139 }
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else
2145 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
2149 }
2150 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2151
2152 feed_reverse_done (EV_A_ EV_PERIODIC);
2153 }
2154}
2155
2156/* simply recalculate all periodics */
2157/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2158static void noinline
2159periodics_reschedule (EV_P)
2160{
2161 int i;
2162
2163 /* adjust periodics after time jump */
2164 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2165 {
2166 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2167
2168 if (w->reschedule_cb)
2169 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2170 else if (w->interval)
2171 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2172
2173 ANHE_at_cache (periodics [i]);
2174 }
2175
2176 reheap (periodics, periodiccnt);
2177}
2178#endif
2179
2180/* adjust all timers by a given offset */
2181static void noinline
2182timers_reschedule (EV_P_ ev_tstamp adjust)
2183{
2184 int i;
2185
2186 for (i = 0; i < timercnt; ++i)
2187 {
2188 ANHE *he = timers + i + HEAP0;
2189 ANHE_w (*he)->at += adjust;
2190 ANHE_at_cache (*he);
2191 }
2192}
2193
2194/* fetch new monotonic and realtime times from the kernel */
2195/* also detect if there was a timejump, and act accordingly */
2196inline_speed void
1568time_update (EV_P_ ev_tstamp max_block) 2197time_update (EV_P_ ev_tstamp max_block)
1569{ 2198{
1570 int i;
1571
1572#if EV_USE_MONOTONIC 2199#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic)) 2200 if (expect_true (have_monotonic))
1574 { 2201 {
2202 int i;
1575 ev_tstamp odiff = rtmn_diff; 2203 ev_tstamp odiff = rtmn_diff;
1576 2204
1577 mn_now = get_clock (); 2205 mn_now = get_clock ();
1578 2206
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2207 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1597 */ 2225 */
1598 for (i = 4; --i; ) 2226 for (i = 4; --i; )
1599 { 2227 {
1600 rtmn_diff = ev_rt_now - mn_now; 2228 rtmn_diff = ev_rt_now - mn_now;
1601 2229
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2230 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 2231 return; /* all is well */
1604 2232
1605 ev_rt_now = ev_time (); 2233 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 2234 mn_now = get_clock ();
1607 now_floor = mn_now; 2235 now_floor = mn_now;
1608 } 2236 }
1609 2237
2238 /* no timer adjustment, as the monotonic clock doesn't jump */
2239 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1610# if EV_PERIODIC_ENABLE 2240# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1612# endif 2242# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 } 2243 }
1616 else 2244 else
1617#endif 2245#endif
1618 { 2246 {
1619 ev_rt_now = ev_time (); 2247 ev_rt_now = ev_time ();
1620 2248
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2249 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 { 2250 {
2251 /* adjust timers. this is easy, as the offset is the same for all of them */
2252 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1623#if EV_PERIODIC_ENABLE 2253#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 2254 periodics_reschedule (EV_A);
1625#endif 2255#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1629 } 2256 }
1630 2257
1631 mn_now = ev_rt_now; 2258 mn_now = ev_rt_now;
1632 } 2259 }
1633} 2260}
1634 2261
1635void 2262void
1636ev_ref (EV_P)
1637{
1638 ++activecnt;
1639}
1640
1641void
1642ev_unref (EV_P)
1643{
1644 --activecnt;
1645}
1646
1647static int loop_done;
1648
1649void
1650ev_loop (EV_P_ int flags) 2263ev_loop (EV_P_ int flags)
1651{ 2264{
2265#if EV_MINIMAL < 2
2266 ++loop_depth;
2267#endif
2268
2269 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2270
1652 loop_done = EVUNLOOP_CANCEL; 2271 loop_done = EVUNLOOP_CANCEL;
1653 2272
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2273 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1655 2274
1656 do 2275 do
1657 { 2276 {
2277#if EV_VERIFY >= 2
2278 ev_loop_verify (EV_A);
2279#endif
2280
1658#ifndef _WIN32 2281#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */ 2282 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid)) 2283 if (expect_false (getpid () != curpid))
1661 { 2284 {
1662 curpid = getpid (); 2285 curpid = getpid ();
1668 /* we might have forked, so queue fork handlers */ 2291 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork)) 2292 if (expect_false (postfork))
1670 if (forkcnt) 2293 if (forkcnt)
1671 { 2294 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2295 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A); 2296 EV_INVOKE_PENDING;
1674 } 2297 }
1675#endif 2298#endif
1676 2299
1677 /* queue prepare watchers (and execute them) */ 2300 /* queue prepare watchers (and execute them) */
1678 if (expect_false (preparecnt)) 2301 if (expect_false (preparecnt))
1679 { 2302 {
1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2303 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1681 call_pending (EV_A); 2304 EV_INVOKE_PENDING;
1682 } 2305 }
1683 2306
1684 if (expect_false (!activecnt)) 2307 if (expect_false (loop_done))
1685 break; 2308 break;
1686 2309
1687 /* we might have forked, so reify kernel state if necessary */ 2310 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1689 loop_fork (EV_A); 2312 loop_fork (EV_A);
1696 ev_tstamp waittime = 0.; 2319 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.; 2320 ev_tstamp sleeptime = 0.;
1698 2321
1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2322 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1700 { 2323 {
2324 /* remember old timestamp for io_blocktime calculation */
2325 ev_tstamp prev_mn_now = mn_now;
2326
1701 /* update time to cancel out callback processing overhead */ 2327 /* update time to cancel out callback processing overhead */
1702 time_update (EV_A_ 1e100); 2328 time_update (EV_A_ 1e100);
1703 2329
1704 waittime = MAX_BLOCKTIME; 2330 waittime = MAX_BLOCKTIME;
1705 2331
1706 if (timercnt) 2332 if (timercnt)
1707 { 2333 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2334 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1709 if (waittime > to) waittime = to; 2335 if (waittime > to) waittime = to;
1710 } 2336 }
1711 2337
1712#if EV_PERIODIC_ENABLE 2338#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 2339 if (periodiccnt)
1714 { 2340 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2341 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1716 if (waittime > to) waittime = to; 2342 if (waittime > to) waittime = to;
1717 } 2343 }
1718#endif 2344#endif
1719 2345
2346 /* don't let timeouts decrease the waittime below timeout_blocktime */
1720 if (expect_false (waittime < timeout_blocktime)) 2347 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime; 2348 waittime = timeout_blocktime;
1722 2349
1723 sleeptime = waittime - backend_fudge; 2350 /* extra check because io_blocktime is commonly 0 */
1724
1725 if (expect_true (sleeptime > io_blocktime)) 2351 if (expect_false (io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 { 2352 {
2353 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2354
2355 if (sleeptime > waittime - backend_fudge)
2356 sleeptime = waittime - backend_fudge;
2357
2358 if (expect_true (sleeptime > 0.))
2359 {
1730 ev_sleep (sleeptime); 2360 ev_sleep (sleeptime);
1731 waittime -= sleeptime; 2361 waittime -= sleeptime;
2362 }
1732 } 2363 }
1733 } 2364 }
1734 2365
2366#if EV_MINIMAL < 2
1735 ++loop_count; 2367 ++loop_count;
2368#endif
2369 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1736 backend_poll (EV_A_ waittime); 2370 backend_poll (EV_A_ waittime);
2371 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1737 2372
1738 /* update ev_rt_now, do magic */ 2373 /* update ev_rt_now, do magic */
1739 time_update (EV_A_ waittime + sleeptime); 2374 time_update (EV_A_ waittime + sleeptime);
1740 } 2375 }
1741 2376
1752 2387
1753 /* queue check watchers, to be executed first */ 2388 /* queue check watchers, to be executed first */
1754 if (expect_false (checkcnt)) 2389 if (expect_false (checkcnt))
1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2390 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1756 2391
1757 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
1758 } 2393 }
1759 while (expect_true ( 2394 while (expect_true (
1760 activecnt 2395 activecnt
1761 && !loop_done 2396 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2397 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 )); 2398 ));
1764 2399
1765 if (loop_done == EVUNLOOP_ONE) 2400 if (loop_done == EVUNLOOP_ONE)
1766 loop_done = EVUNLOOP_CANCEL; 2401 loop_done = EVUNLOOP_CANCEL;
2402
2403#if EV_MINIMAL < 2
2404 --loop_depth;
2405#endif
1767} 2406}
1768 2407
1769void 2408void
1770ev_unloop (EV_P_ int how) 2409ev_unloop (EV_P_ int how)
1771{ 2410{
1772 loop_done = how; 2411 loop_done = how;
1773} 2412}
1774 2413
2414void
2415ev_ref (EV_P)
2416{
2417 ++activecnt;
2418}
2419
2420void
2421ev_unref (EV_P)
2422{
2423 --activecnt;
2424}
2425
2426void
2427ev_now_update (EV_P)
2428{
2429 time_update (EV_A_ 1e100);
2430}
2431
2432void
2433ev_suspend (EV_P)
2434{
2435 ev_now_update (EV_A);
2436}
2437
2438void
2439ev_resume (EV_P)
2440{
2441 ev_tstamp mn_prev = mn_now;
2442
2443 ev_now_update (EV_A);
2444 timers_reschedule (EV_A_ mn_now - mn_prev);
2445#if EV_PERIODIC_ENABLE
2446 /* TODO: really do this? */
2447 periodics_reschedule (EV_A);
2448#endif
2449}
2450
1775/*****************************************************************************/ 2451/*****************************************************************************/
2452/* singly-linked list management, used when the expected list length is short */
1776 2453
1777void inline_size 2454inline_size void
1778wlist_add (WL *head, WL elem) 2455wlist_add (WL *head, WL elem)
1779{ 2456{
1780 elem->next = *head; 2457 elem->next = *head;
1781 *head = elem; 2458 *head = elem;
1782} 2459}
1783 2460
1784void inline_size 2461inline_size void
1785wlist_del (WL *head, WL elem) 2462wlist_del (WL *head, WL elem)
1786{ 2463{
1787 while (*head) 2464 while (*head)
1788 { 2465 {
1789 if (*head == elem) 2466 if (expect_true (*head == elem))
1790 { 2467 {
1791 *head = elem->next; 2468 *head = elem->next;
1792 return; 2469 break;
1793 } 2470 }
1794 2471
1795 head = &(*head)->next; 2472 head = &(*head)->next;
1796 } 2473 }
1797} 2474}
1798 2475
1799void inline_speed 2476/* internal, faster, version of ev_clear_pending */
2477inline_speed void
1800clear_pending (EV_P_ W w) 2478clear_pending (EV_P_ W w)
1801{ 2479{
1802 if (w->pending) 2480 if (w->pending)
1803 { 2481 {
1804 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2482 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1805 w->pending = 0; 2483 w->pending = 0;
1806 } 2484 }
1807} 2485}
1808 2486
1809int 2487int
1813 int pending = w_->pending; 2491 int pending = w_->pending;
1814 2492
1815 if (expect_true (pending)) 2493 if (expect_true (pending))
1816 { 2494 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2495 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2496 p->w = (W)&pending_w;
1818 w_->pending = 0; 2497 w_->pending = 0;
1819 p->w = 0;
1820 return p->events; 2498 return p->events;
1821 } 2499 }
1822 else 2500 else
1823 return 0; 2501 return 0;
1824} 2502}
1825 2503
1826void inline_size 2504inline_size void
1827pri_adjust (EV_P_ W w) 2505pri_adjust (EV_P_ W w)
1828{ 2506{
1829 int pri = w->priority; 2507 int pri = ev_priority (w);
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2508 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2509 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri; 2510 ev_set_priority (w, pri);
1833} 2511}
1834 2512
1835void inline_speed 2513inline_speed void
1836ev_start (EV_P_ W w, int active) 2514ev_start (EV_P_ W w, int active)
1837{ 2515{
1838 pri_adjust (EV_A_ w); 2516 pri_adjust (EV_A_ w);
1839 w->active = active; 2517 w->active = active;
1840 ev_ref (EV_A); 2518 ev_ref (EV_A);
1841} 2519}
1842 2520
1843void inline_size 2521inline_size void
1844ev_stop (EV_P_ W w) 2522ev_stop (EV_P_ W w)
1845{ 2523{
1846 ev_unref (EV_A); 2524 ev_unref (EV_A);
1847 w->active = 0; 2525 w->active = 0;
1848} 2526}
1855 int fd = w->fd; 2533 int fd = w->fd;
1856 2534
1857 if (expect_false (ev_is_active (w))) 2535 if (expect_false (ev_is_active (w)))
1858 return; 2536 return;
1859 2537
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 2538 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2539 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2540
2541 EV_FREQUENT_CHECK;
1861 2542
1862 ev_start (EV_A_ (W)w, 1); 2543 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2544 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1864 wlist_add (&anfds[fd].head, (WL)w); 2545 wlist_add (&anfds[fd].head, (WL)w);
1865 2546
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2547 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1867 w->events &= ~EV_IOFDSET; 2548 w->events &= ~EV__IOFDSET;
2549
2550 EV_FREQUENT_CHECK;
1868} 2551}
1869 2552
1870void noinline 2553void noinline
1871ev_io_stop (EV_P_ ev_io *w) 2554ev_io_stop (EV_P_ ev_io *w)
1872{ 2555{
1873 clear_pending (EV_A_ (W)w); 2556 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2557 if (expect_false (!ev_is_active (w)))
1875 return; 2558 return;
1876 2559
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2560 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2561
2562 EV_FREQUENT_CHECK;
1878 2563
1879 wlist_del (&anfds[w->fd].head, (WL)w); 2564 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
1881 2566
1882 fd_change (EV_A_ w->fd, 1); 2567 fd_change (EV_A_ w->fd, 1);
2568
2569 EV_FREQUENT_CHECK;
1883} 2570}
1884 2571
1885void noinline 2572void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 2573ev_timer_start (EV_P_ ev_timer *w)
1887{ 2574{
1888 if (expect_false (ev_is_active (w))) 2575 if (expect_false (ev_is_active (w)))
1889 return; 2576 return;
1890 2577
1891 ev_at (w) += mn_now; 2578 ev_at (w) += mn_now;
1892 2579
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2580 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 2581
2582 EV_FREQUENT_CHECK;
2583
2584 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 2585 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2586 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 2587 ANHE_w (timers [ev_active (w)]) = (WT)w;
2588 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 2589 upheap (timers, ev_active (w));
1899 2590
2591 EV_FREQUENT_CHECK;
2592
1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2593 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 2594}
1902 2595
1903void noinline 2596void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 2597ev_timer_stop (EV_P_ ev_timer *w)
1905{ 2598{
1906 clear_pending (EV_A_ (W)w); 2599 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 2600 if (expect_false (!ev_is_active (w)))
1908 return; 2601 return;
1909 2602
2603 EV_FREQUENT_CHECK;
2604
1910 { 2605 {
1911 int active = ev_active (w); 2606 int active = ev_active (w);
1912 2607
1913 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2608 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1914 2609
2610 --timercnt;
2611
1915 if (expect_true (active < timercnt)) 2612 if (expect_true (active < timercnt + HEAP0))
1916 { 2613 {
1917 timers [active] = timers [timercnt]; 2614 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 2615 adjustheap (timers, timercnt, active);
1919 } 2616 }
1920
1921 --timercnt;
1922 } 2617 }
1923 2618
1924 ev_at (w) -= mn_now; 2619 ev_at (w) -= mn_now;
1925 2620
1926 ev_stop (EV_A_ (W)w); 2621 ev_stop (EV_A_ (W)w);
2622
2623 EV_FREQUENT_CHECK;
1927} 2624}
1928 2625
1929void noinline 2626void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 2627ev_timer_again (EV_P_ ev_timer *w)
1931{ 2628{
2629 EV_FREQUENT_CHECK;
2630
1932 if (ev_is_active (w)) 2631 if (ev_is_active (w))
1933 { 2632 {
1934 if (w->repeat) 2633 if (w->repeat)
1935 { 2634 {
1936 ev_at (w) = mn_now + w->repeat; 2635 ev_at (w) = mn_now + w->repeat;
2636 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ev_active (w)); 2637 adjustheap (timers, timercnt, ev_active (w));
1938 } 2638 }
1939 else 2639 else
1940 ev_timer_stop (EV_A_ w); 2640 ev_timer_stop (EV_A_ w);
1941 } 2641 }
1942 else if (w->repeat) 2642 else if (w->repeat)
1943 { 2643 {
1944 ev_at (w) = w->repeat; 2644 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 2645 ev_timer_start (EV_A_ w);
1946 } 2646 }
2647
2648 EV_FREQUENT_CHECK;
2649}
2650
2651ev_tstamp
2652ev_timer_remaining (EV_P_ ev_timer *w)
2653{
2654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1947} 2655}
1948 2656
1949#if EV_PERIODIC_ENABLE 2657#if EV_PERIODIC_ENABLE
1950void noinline 2658void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 2659ev_periodic_start (EV_P_ ev_periodic *w)
1955 2663
1956 if (w->reschedule_cb) 2664 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval) 2666 else if (w->interval)
1959 { 2667 {
1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1961 /* this formula differs from the one in periodic_reify because we do not always round up */ 2669 /* this formula differs from the one in periodic_reify because we do not always round up */
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2670 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 2671 }
1964 else 2672 else
1965 ev_at (w) = w->offset; 2673 ev_at (w) = w->offset;
1966 2674
2675 EV_FREQUENT_CHECK;
2676
2677 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 2678 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2679 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 2680 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 2681 ANHE_at_cache (periodics [ev_active (w)]);
2682 upheap (periodics, ev_active (w));
1971 2683
2684 EV_FREQUENT_CHECK;
2685
1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2686 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 2687}
1974 2688
1975void noinline 2689void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 2690ev_periodic_stop (EV_P_ ev_periodic *w)
1977{ 2691{
1978 clear_pending (EV_A_ (W)w); 2692 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2693 if (expect_false (!ev_is_active (w)))
1980 return; 2694 return;
1981 2695
2696 EV_FREQUENT_CHECK;
2697
1982 { 2698 {
1983 int active = ev_active (w); 2699 int active = ev_active (w);
1984 2700
1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2701 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1986 2702
2703 --periodiccnt;
2704
1987 if (expect_true (active < periodiccnt)) 2705 if (expect_true (active < periodiccnt + HEAP0))
1988 { 2706 {
1989 periodics [active] = periodics [periodiccnt]; 2707 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 2708 adjustheap (periodics, periodiccnt, active);
1991 } 2709 }
1992
1993 --periodiccnt;
1994 } 2710 }
1995 2711
1996 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
2713
2714 EV_FREQUENT_CHECK;
1997} 2715}
1998 2716
1999void noinline 2717void noinline
2000ev_periodic_again (EV_P_ ev_periodic *w) 2718ev_periodic_again (EV_P_ ev_periodic *w)
2001{ 2719{
2010#endif 2728#endif
2011 2729
2012void noinline 2730void noinline
2013ev_signal_start (EV_P_ ev_signal *w) 2731ev_signal_start (EV_P_ ev_signal *w)
2014{ 2732{
2015#if EV_MULTIPLICITY
2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2017#endif
2018 if (expect_false (ev_is_active (w))) 2733 if (expect_false (ev_is_active (w)))
2019 return; 2734 return;
2020 2735
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2022 2737
2023 evpipe_init (EV_A); 2738#if EV_MULTIPLICITY
2739 assert (("libev: a signal must not be attached to two different loops",
2740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2024 2741
2742 signals [w->signum - 1].loop = EV_A;
2743#endif
2744
2745 EV_FREQUENT_CHECK;
2746
2747#if EV_USE_SIGNALFD
2748 if (sigfd == -2)
2025 { 2749 {
2026#ifndef _WIN32 2750 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2027 sigset_t full, prev; 2751 if (sigfd < 0 && errno == EINVAL)
2028 sigfillset (&full); 2752 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031 2753
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2754 if (sigfd >= 0)
2755 {
2756 fd_intern (sigfd); /* doing it twice will not hurt */
2033 2757
2034#ifndef _WIN32 2758 sigemptyset (&sigfd_set);
2035 sigprocmask (SIG_SETMASK, &prev, 0); 2759
2036#endif 2760 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2761 ev_set_priority (&sigfd_w, EV_MAXPRI);
2762 ev_io_start (EV_A_ &sigfd_w);
2763 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2764 }
2037 } 2765 }
2766
2767 if (sigfd >= 0)
2768 {
2769 /* TODO: check .head */
2770 sigaddset (&sigfd_set, w->signum);
2771 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2772
2773 signalfd (sigfd, &sigfd_set, 0);
2774 }
2775#endif
2038 2776
2039 ev_start (EV_A_ (W)w, 1); 2777 ev_start (EV_A_ (W)w, 1);
2040 wlist_add (&signals [w->signum - 1].head, (WL)w); 2778 wlist_add (&signals [w->signum - 1].head, (WL)w);
2041 2779
2042 if (!((WL)w)->next) 2780 if (!((WL)w)->next)
2781# if EV_USE_SIGNALFD
2782 if (sigfd < 0) /*TODO*/
2783# endif
2043 { 2784 {
2044#if _WIN32 2785# ifdef _WIN32
2786 evpipe_init (EV_A);
2787
2045 signal (w->signum, ev_sighandler); 2788 signal (w->signum, ev_sighandler);
2046#else 2789# else
2047 struct sigaction sa; 2790 struct sigaction sa;
2791
2792 evpipe_init (EV_A);
2793
2048 sa.sa_handler = ev_sighandler; 2794 sa.sa_handler = ev_sighandler;
2049 sigfillset (&sa.sa_mask); 2795 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2796 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 2797 sigaction (w->signum, &sa, 0);
2798
2799 sigemptyset (&sa.sa_mask);
2800 sigaddset (&sa.sa_mask, w->signum);
2801 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2052#endif 2802#endif
2053 } 2803 }
2804
2805 EV_FREQUENT_CHECK;
2054} 2806}
2055 2807
2056void noinline 2808void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 2809ev_signal_stop (EV_P_ ev_signal *w)
2058{ 2810{
2059 clear_pending (EV_A_ (W)w); 2811 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2812 if (expect_false (!ev_is_active (w)))
2061 return; 2813 return;
2062 2814
2815 EV_FREQUENT_CHECK;
2816
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 2817 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 2818 ev_stop (EV_A_ (W)w);
2065 2819
2066 if (!signals [w->signum - 1].head) 2820 if (!signals [w->signum - 1].head)
2821 {
2822#if EV_MULTIPLICITY
2823 signals [w->signum - 1].loop = 0; /* unattach from signal */
2824#endif
2825#if EV_USE_SIGNALFD
2826 if (sigfd >= 0)
2827 {
2828 sigset_t ss;
2829
2830 sigemptyset (&ss);
2831 sigaddset (&ss, w->signum);
2832 sigdelset (&sigfd_set, w->signum);
2833
2834 signalfd (sigfd, &sigfd_set, 0);
2835 sigprocmask (SIG_UNBLOCK, &ss, 0);
2836 }
2837 else
2838#endif
2067 signal (w->signum, SIG_DFL); 2839 signal (w->signum, SIG_DFL);
2840 }
2841
2842 EV_FREQUENT_CHECK;
2068} 2843}
2069 2844
2070void 2845void
2071ev_child_start (EV_P_ ev_child *w) 2846ev_child_start (EV_P_ ev_child *w)
2072{ 2847{
2073#if EV_MULTIPLICITY 2848#if EV_MULTIPLICITY
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2849 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 2850#endif
2076 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
2077 return; 2852 return;
2078 2853
2854 EV_FREQUENT_CHECK;
2855
2079 ev_start (EV_A_ (W)w, 1); 2856 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2857 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2858
2859 EV_FREQUENT_CHECK;
2081} 2860}
2082 2861
2083void 2862void
2084ev_child_stop (EV_P_ ev_child *w) 2863ev_child_stop (EV_P_ ev_child *w)
2085{ 2864{
2086 clear_pending (EV_A_ (W)w); 2865 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2866 if (expect_false (!ev_is_active (w)))
2088 return; 2867 return;
2089 2868
2869 EV_FREQUENT_CHECK;
2870
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2871 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 2872 ev_stop (EV_A_ (W)w);
2873
2874 EV_FREQUENT_CHECK;
2092} 2875}
2093 2876
2094#if EV_STAT_ENABLE 2877#if EV_STAT_ENABLE
2095 2878
2096# ifdef _WIN32 2879# ifdef _WIN32
2097# undef lstat 2880# undef lstat
2098# define lstat(a,b) _stati64 (a,b) 2881# define lstat(a,b) _stati64 (a,b)
2099# endif 2882# endif
2100 2883
2101#define DEF_STAT_INTERVAL 5.0074891 2884#define DEF_STAT_INTERVAL 5.0074891
2885#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2102#define MIN_STAT_INTERVAL 0.1074891 2886#define MIN_STAT_INTERVAL 0.1074891
2103 2887
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105 2889
2106#if EV_USE_INOTIFY 2890#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192 2891
2892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2108 2894
2109static void noinline 2895static void noinline
2110infy_add (EV_P_ ev_stat *w) 2896infy_add (EV_P_ ev_stat *w)
2111{ 2897{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113 2899
2114 if (w->wd < 0) 2900 if (w->wd >= 0)
2901 {
2902 struct statfs sfs;
2903
2904 /* now local changes will be tracked by inotify, but remote changes won't */
2905 /* unless the filesystem is known to be local, we therefore still poll */
2906 /* also do poll on <2.6.25, but with normal frequency */
2907
2908 if (!fs_2625)
2909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2910 else if (!statfs (w->path, &sfs)
2911 && (sfs.f_type == 0x1373 /* devfs */
2912 || sfs.f_type == 0xEF53 /* ext2/3 */
2913 || sfs.f_type == 0x3153464a /* jfs */
2914 || sfs.f_type == 0x52654973 /* reiser3 */
2915 || sfs.f_type == 0x01021994 /* tempfs */
2916 || sfs.f_type == 0x58465342 /* xfs */))
2917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2918 else
2919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2115 { 2920 }
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2921 else
2922 {
2923 /* can't use inotify, continue to stat */
2924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2117 2925
2118 /* monitor some parent directory for speedup hints */ 2926 /* if path is not there, monitor some parent directory for speedup hints */
2927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2928 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 2930 {
2121 char path [4096]; 2931 char path [4096];
2122 strcpy (path, w->path); 2932 strcpy (path, w->path);
2123 2933
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2936 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2937 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128 2938
2129 char *pend = strrchr (path, '/'); 2939 char *pend = strrchr (path, '/');
2130 2940
2131 if (!pend) 2941 if (!pend || pend == path)
2132 break; /* whoops, no '/', complain to your admin */ 2942 break;
2133 2943
2134 *pend = 0; 2944 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask); 2945 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 } 2946 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 } 2948 }
2139 } 2949 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142 2950
2143 if (w->wd >= 0) 2951 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2952 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2953
2954 /* now re-arm timer, if required */
2955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2956 ev_timer_again (EV_A_ &w->timer);
2957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2145} 2958}
2146 2959
2147static void noinline 2960static void noinline
2148infy_del (EV_P_ ev_stat *w) 2961infy_del (EV_P_ ev_stat *w)
2149{ 2962{
2163 2976
2164static void noinline 2977static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2978infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{ 2979{
2167 if (slot < 0) 2980 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */ 2981 /* overflow, need to check for all hash slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2982 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev); 2983 infy_wd (EV_A_ slot, wd, ev);
2171 else 2984 else
2172 { 2985 {
2173 WL w_; 2986 WL w_;
2179 2992
2180 if (w->wd == wd || wd == -1) 2993 if (w->wd == wd || wd == -1)
2181 { 2994 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2995 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 { 2996 {
2997 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2184 w->wd = -1; 2998 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */ 2999 infy_add (EV_A_ w); /* re-add, no matter what */
2186 } 3000 }
2187 3001
2188 stat_timer_cb (EV_A_ &w->timer, 0); 3002 stat_timer_cb (EV_A_ &w->timer, 0);
2193 3007
2194static void 3008static void
2195infy_cb (EV_P_ ev_io *w, int revents) 3009infy_cb (EV_P_ ev_io *w, int revents)
2196{ 3010{
2197 char buf [EV_INOTIFY_BUFSIZE]; 3011 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs; 3012 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf)); 3013 int len = read (fs_fd, buf, sizeof (buf));
2201 3014
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3015 for (ofs = 0; ofs < len; )
3016 {
3017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3019 ofs += sizeof (struct inotify_event) + ev->len;
3020 }
2204} 3021}
2205 3022
2206void inline_size 3023inline_size unsigned int
3024ev_linux_version (void)
3025{
3026 struct utsname buf;
3027 unsigned int v;
3028 int i;
3029 char *p = buf.release;
3030
3031 if (uname (&buf))
3032 return 0;
3033
3034 for (i = 3+1; --i; )
3035 {
3036 unsigned int c = 0;
3037
3038 for (;;)
3039 {
3040 if (*p >= '0' && *p <= '9')
3041 c = c * 10 + *p++ - '0';
3042 else
3043 {
3044 p += *p == '.';
3045 break;
3046 }
3047 }
3048
3049 v = (v << 8) | c;
3050 }
3051
3052 return v;
3053}
3054
3055inline_size void
3056ev_check_2625 (EV_P)
3057{
3058 /* kernels < 2.6.25 are borked
3059 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3060 */
3061 if (ev_linux_version () < 0x020619)
3062 return;
3063
3064 fs_2625 = 1;
3065}
3066
3067inline_size int
3068infy_newfd (void)
3069{
3070#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3071 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3072 if (fd >= 0)
3073 return fd;
3074#endif
3075 return inotify_init ();
3076}
3077
3078inline_size void
2207infy_init (EV_P) 3079infy_init (EV_P)
2208{ 3080{
2209 if (fs_fd != -2) 3081 if (fs_fd != -2)
2210 return; 3082 return;
2211 3083
3084 fs_fd = -1;
3085
3086 ev_check_2625 (EV_A);
3087
2212 fs_fd = inotify_init (); 3088 fs_fd = infy_newfd ();
2213 3089
2214 if (fs_fd >= 0) 3090 if (fs_fd >= 0)
2215 { 3091 {
3092 fd_intern (fs_fd);
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3093 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI); 3094 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w); 3095 ev_io_start (EV_A_ &fs_w);
3096 ev_unref (EV_A);
2219 } 3097 }
2220} 3098}
2221 3099
2222void inline_size 3100inline_size void
2223infy_fork (EV_P) 3101infy_fork (EV_P)
2224{ 3102{
2225 int slot; 3103 int slot;
2226 3104
2227 if (fs_fd < 0) 3105 if (fs_fd < 0)
2228 return; 3106 return;
2229 3107
3108 ev_ref (EV_A);
3109 ev_io_stop (EV_A_ &fs_w);
2230 close (fs_fd); 3110 close (fs_fd);
2231 fs_fd = inotify_init (); 3111 fs_fd = infy_newfd ();
3112
3113 if (fs_fd >= 0)
3114 {
3115 fd_intern (fs_fd);
3116 ev_io_set (&fs_w, fs_fd, EV_READ);
3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
3119 }
2232 3120
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2234 { 3122 {
2235 WL w_ = fs_hash [slot].head; 3123 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0; 3124 fs_hash [slot].head = 0;
2243 w->wd = -1; 3131 w->wd = -1;
2244 3132
2245 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */ 3134 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else 3135 else
3136 {
3137 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3138 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2248 ev_timer_start (EV_A_ &w->timer); 3139 ev_timer_again (EV_A_ &w->timer);
3140 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3141 }
2249 } 3142 }
2250
2251 } 3143 }
2252} 3144}
2253 3145
3146#endif
3147
3148#ifdef _WIN32
3149# define EV_LSTAT(p,b) _stati64 (p, b)
3150#else
3151# define EV_LSTAT(p,b) lstat (p, b)
2254#endif 3152#endif
2255 3153
2256void 3154void
2257ev_stat_stat (EV_P_ ev_stat *w) 3155ev_stat_stat (EV_P_ ev_stat *w)
2258{ 3156{
2265static void noinline 3163static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3164stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{ 3165{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3166 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269 3167
2270 /* we copy this here each the time so that */ 3168 ev_statdata prev = w->attr;
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w); 3169 ev_stat_stat (EV_A_ w);
2274 3170
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3171 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if ( 3172 if (
2277 w->prev.st_dev != w->attr.st_dev 3173 prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino 3174 || prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode 3175 || prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink 3176 || prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid 3177 || prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid 3178 || prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev 3179 || prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size 3180 || prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime 3181 || prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime 3182 || prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime 3183 || prev.st_ctime != w->attr.st_ctime
2288 ) { 3184 ) {
3185 /* we only update w->prev on actual differences */
3186 /* in case we test more often than invoke the callback, */
3187 /* to ensure that prev is always different to attr */
3188 w->prev = prev;
3189
2289 #if EV_USE_INOTIFY 3190 #if EV_USE_INOTIFY
3191 if (fs_fd >= 0)
3192 {
2290 infy_del (EV_A_ w); 3193 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w); 3194 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */ 3195 ev_stat_stat (EV_A_ w); /* avoid race... */
3196 }
2293 #endif 3197 #endif
2294 3198
2295 ev_feed_event (EV_A_ w, EV_STAT); 3199 ev_feed_event (EV_A_ w, EV_STAT);
2296 } 3200 }
2297} 3201}
2300ev_stat_start (EV_P_ ev_stat *w) 3204ev_stat_start (EV_P_ ev_stat *w)
2301{ 3205{
2302 if (expect_false (ev_is_active (w))) 3206 if (expect_false (ev_is_active (w)))
2303 return; 3207 return;
2304 3208
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w); 3209 ev_stat_stat (EV_A_ w);
2310 3210
3211 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2311 if (w->interval < MIN_STAT_INTERVAL) 3212 w->interval = MIN_STAT_INTERVAL;
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313 3213
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3214 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2315 ev_set_priority (&w->timer, ev_priority (w)); 3215 ev_set_priority (&w->timer, ev_priority (w));
2316 3216
2317#if EV_USE_INOTIFY 3217#if EV_USE_INOTIFY
2318 infy_init (EV_A); 3218 infy_init (EV_A);
2319 3219
2320 if (fs_fd >= 0) 3220 if (fs_fd >= 0)
2321 infy_add (EV_A_ w); 3221 infy_add (EV_A_ w);
2322 else 3222 else
2323#endif 3223#endif
3224 {
2324 ev_timer_start (EV_A_ &w->timer); 3225 ev_timer_again (EV_A_ &w->timer);
3226 ev_unref (EV_A);
3227 }
2325 3228
2326 ev_start (EV_A_ (W)w, 1); 3229 ev_start (EV_A_ (W)w, 1);
3230
3231 EV_FREQUENT_CHECK;
2327} 3232}
2328 3233
2329void 3234void
2330ev_stat_stop (EV_P_ ev_stat *w) 3235ev_stat_stop (EV_P_ ev_stat *w)
2331{ 3236{
2332 clear_pending (EV_A_ (W)w); 3237 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 3238 if (expect_false (!ev_is_active (w)))
2334 return; 3239 return;
2335 3240
3241 EV_FREQUENT_CHECK;
3242
2336#if EV_USE_INOTIFY 3243#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 3244 infy_del (EV_A_ w);
2338#endif 3245#endif
3246
3247 if (ev_is_active (&w->timer))
3248 {
3249 ev_ref (EV_A);
2339 ev_timer_stop (EV_A_ &w->timer); 3250 ev_timer_stop (EV_A_ &w->timer);
3251 }
2340 3252
2341 ev_stop (EV_A_ (W)w); 3253 ev_stop (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
2342} 3256}
2343#endif 3257#endif
2344 3258
2345#if EV_IDLE_ENABLE 3259#if EV_IDLE_ENABLE
2346void 3260void
2348{ 3262{
2349 if (expect_false (ev_is_active (w))) 3263 if (expect_false (ev_is_active (w)))
2350 return; 3264 return;
2351 3265
2352 pri_adjust (EV_A_ (W)w); 3266 pri_adjust (EV_A_ (W)w);
3267
3268 EV_FREQUENT_CHECK;
2353 3269
2354 { 3270 {
2355 int active = ++idlecnt [ABSPRI (w)]; 3271 int active = ++idlecnt [ABSPRI (w)];
2356 3272
2357 ++idleall; 3273 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 3274 ev_start (EV_A_ (W)w, active);
2359 3275
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3276 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 3277 idles [ABSPRI (w)][active - 1] = w;
2362 } 3278 }
3279
3280 EV_FREQUENT_CHECK;
2363} 3281}
2364 3282
2365void 3283void
2366ev_idle_stop (EV_P_ ev_idle *w) 3284ev_idle_stop (EV_P_ ev_idle *w)
2367{ 3285{
2368 clear_pending (EV_A_ (W)w); 3286 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 3287 if (expect_false (!ev_is_active (w)))
2370 return; 3288 return;
2371 3289
3290 EV_FREQUENT_CHECK;
3291
2372 { 3292 {
2373 int active = ev_active (w); 3293 int active = ev_active (w);
2374 3294
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3295 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3296 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 3297
2378 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
2379 --idleall; 3299 --idleall;
2380 } 3300 }
3301
3302 EV_FREQUENT_CHECK;
2381} 3303}
2382#endif 3304#endif
2383 3305
2384void 3306void
2385ev_prepare_start (EV_P_ ev_prepare *w) 3307ev_prepare_start (EV_P_ ev_prepare *w)
2386{ 3308{
2387 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2388 return; 3310 return;
3311
3312 EV_FREQUENT_CHECK;
2389 3313
2390 ev_start (EV_A_ (W)w, ++preparecnt); 3314 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3315 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 3316 prepares [preparecnt - 1] = w;
3317
3318 EV_FREQUENT_CHECK;
2393} 3319}
2394 3320
2395void 3321void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 3322ev_prepare_stop (EV_P_ ev_prepare *w)
2397{ 3323{
2398 clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2400 return; 3326 return;
2401 3327
3328 EV_FREQUENT_CHECK;
3329
2402 { 3330 {
2403 int active = ev_active (w); 3331 int active = ev_active (w);
2404 3332
2405 prepares [active - 1] = prepares [--preparecnt]; 3333 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active; 3334 ev_active (prepares [active - 1]) = active;
2407 } 3335 }
2408 3336
2409 ev_stop (EV_A_ (W)w); 3337 ev_stop (EV_A_ (W)w);
3338
3339 EV_FREQUENT_CHECK;
2410} 3340}
2411 3341
2412void 3342void
2413ev_check_start (EV_P_ ev_check *w) 3343ev_check_start (EV_P_ ev_check *w)
2414{ 3344{
2415 if (expect_false (ev_is_active (w))) 3345 if (expect_false (ev_is_active (w)))
2416 return; 3346 return;
3347
3348 EV_FREQUENT_CHECK;
2417 3349
2418 ev_start (EV_A_ (W)w, ++checkcnt); 3350 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3351 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w; 3352 checks [checkcnt - 1] = w;
3353
3354 EV_FREQUENT_CHECK;
2421} 3355}
2422 3356
2423void 3357void
2424ev_check_stop (EV_P_ ev_check *w) 3358ev_check_stop (EV_P_ ev_check *w)
2425{ 3359{
2426 clear_pending (EV_A_ (W)w); 3360 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w))) 3361 if (expect_false (!ev_is_active (w)))
2428 return; 3362 return;
2429 3363
3364 EV_FREQUENT_CHECK;
3365
2430 { 3366 {
2431 int active = ev_active (w); 3367 int active = ev_active (w);
2432 3368
2433 checks [active - 1] = checks [--checkcnt]; 3369 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active; 3370 ev_active (checks [active - 1]) = active;
2435 } 3371 }
2436 3372
2437 ev_stop (EV_A_ (W)w); 3373 ev_stop (EV_A_ (W)w);
3374
3375 EV_FREQUENT_CHECK;
2438} 3376}
2439 3377
2440#if EV_EMBED_ENABLE 3378#if EV_EMBED_ENABLE
2441void noinline 3379void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w) 3380ev_embed_sweep (EV_P_ ev_embed *w)
2459embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3397embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2460{ 3398{
2461 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3399 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2462 3400
2463 { 3401 {
2464 struct ev_loop *loop = w->other; 3402 EV_P = w->other;
2465 3403
2466 while (fdchangecnt) 3404 while (fdchangecnt)
2467 { 3405 {
2468 fd_reify (EV_A); 3406 fd_reify (EV_A);
2469 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3407 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2470 } 3408 }
2471 } 3409 }
2472} 3410}
2473 3411
3412static void
3413embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3414{
3415 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3416
3417 ev_embed_stop (EV_A_ w);
3418
3419 {
3420 EV_P = w->other;
3421
3422 ev_loop_fork (EV_A);
3423 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3424 }
3425
3426 ev_embed_start (EV_A_ w);
3427}
3428
2474#if 0 3429#if 0
2475static void 3430static void
2476embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3431embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2477{ 3432{
2478 ev_idle_stop (EV_A_ idle); 3433 ev_idle_stop (EV_A_ idle);
2484{ 3439{
2485 if (expect_false (ev_is_active (w))) 3440 if (expect_false (ev_is_active (w)))
2486 return; 3441 return;
2487 3442
2488 { 3443 {
2489 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3445 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3446 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 } 3447 }
3448
3449 EV_FREQUENT_CHECK;
2493 3450
2494 ev_set_priority (&w->io, ev_priority (w)); 3451 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io); 3452 ev_io_start (EV_A_ &w->io);
2496 3453
2497 ev_prepare_init (&w->prepare, embed_prepare_cb); 3454 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI); 3455 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare); 3456 ev_prepare_start (EV_A_ &w->prepare);
2500 3457
3458 ev_fork_init (&w->fork, embed_fork_cb);
3459 ev_fork_start (EV_A_ &w->fork);
3460
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3461 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502 3462
2503 ev_start (EV_A_ (W)w, 1); 3463 ev_start (EV_A_ (W)w, 1);
3464
3465 EV_FREQUENT_CHECK;
2504} 3466}
2505 3467
2506void 3468void
2507ev_embed_stop (EV_P_ ev_embed *w) 3469ev_embed_stop (EV_P_ ev_embed *w)
2508{ 3470{
2509 clear_pending (EV_A_ (W)w); 3471 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w))) 3472 if (expect_false (!ev_is_active (w)))
2511 return; 3473 return;
2512 3474
3475 EV_FREQUENT_CHECK;
3476
2513 ev_io_stop (EV_A_ &w->io); 3477 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare); 3478 ev_prepare_stop (EV_A_ &w->prepare);
3479 ev_fork_stop (EV_A_ &w->fork);
2515 3480
2516 ev_stop (EV_A_ (W)w); 3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
2517} 3484}
2518#endif 3485#endif
2519 3486
2520#if EV_FORK_ENABLE 3487#if EV_FORK_ENABLE
2521void 3488void
2522ev_fork_start (EV_P_ ev_fork *w) 3489ev_fork_start (EV_P_ ev_fork *w)
2523{ 3490{
2524 if (expect_false (ev_is_active (w))) 3491 if (expect_false (ev_is_active (w)))
2525 return; 3492 return;
3493
3494 EV_FREQUENT_CHECK;
2526 3495
2527 ev_start (EV_A_ (W)w, ++forkcnt); 3496 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3497 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w; 3498 forks [forkcnt - 1] = w;
3499
3500 EV_FREQUENT_CHECK;
2530} 3501}
2531 3502
2532void 3503void
2533ev_fork_stop (EV_P_ ev_fork *w) 3504ev_fork_stop (EV_P_ ev_fork *w)
2534{ 3505{
2535 clear_pending (EV_A_ (W)w); 3506 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w))) 3507 if (expect_false (!ev_is_active (w)))
2537 return; 3508 return;
2538 3509
3510 EV_FREQUENT_CHECK;
3511
2539 { 3512 {
2540 int active = ev_active (w); 3513 int active = ev_active (w);
2541 3514
2542 forks [active - 1] = forks [--forkcnt]; 3515 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active; 3516 ev_active (forks [active - 1]) = active;
2544 } 3517 }
2545 3518
2546 ev_stop (EV_A_ (W)w); 3519 ev_stop (EV_A_ (W)w);
3520
3521 EV_FREQUENT_CHECK;
2547} 3522}
2548#endif 3523#endif
2549 3524
2550#if EV_ASYNC_ENABLE 3525#if EV_ASYNC_ENABLE
2551void 3526void
2553{ 3528{
2554 if (expect_false (ev_is_active (w))) 3529 if (expect_false (ev_is_active (w)))
2555 return; 3530 return;
2556 3531
2557 evpipe_init (EV_A); 3532 evpipe_init (EV_A);
3533
3534 EV_FREQUENT_CHECK;
2558 3535
2559 ev_start (EV_A_ (W)w, ++asynccnt); 3536 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3537 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w; 3538 asyncs [asynccnt - 1] = w;
3539
3540 EV_FREQUENT_CHECK;
2562} 3541}
2563 3542
2564void 3543void
2565ev_async_stop (EV_P_ ev_async *w) 3544ev_async_stop (EV_P_ ev_async *w)
2566{ 3545{
2567 clear_pending (EV_A_ (W)w); 3546 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w))) 3547 if (expect_false (!ev_is_active (w)))
2569 return; 3548 return;
2570 3549
3550 EV_FREQUENT_CHECK;
3551
2571 { 3552 {
2572 int active = ev_active (w); 3553 int active = ev_active (w);
2573 3554
2574 asyncs [active - 1] = asyncs [--asynccnt]; 3555 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active; 3556 ev_active (asyncs [active - 1]) = active;
2576 } 3557 }
2577 3558
2578 ev_stop (EV_A_ (W)w); 3559 ev_stop (EV_A_ (W)w);
3560
3561 EV_FREQUENT_CHECK;
2579} 3562}
2580 3563
2581void 3564void
2582ev_async_send (EV_P_ ev_async *w) 3565ev_async_send (EV_P_ ev_async *w)
2583{ 3566{
2584 w->sent = 1; 3567 w->sent = 1;
2585 evpipe_write (EV_A_ &gotasync); 3568 evpipe_write (EV_A_ &async_pending);
2586} 3569}
2587#endif 3570#endif
2588 3571
2589/*****************************************************************************/ 3572/*****************************************************************************/
2590 3573
2600once_cb (EV_P_ struct ev_once *once, int revents) 3583once_cb (EV_P_ struct ev_once *once, int revents)
2601{ 3584{
2602 void (*cb)(int revents, void *arg) = once->cb; 3585 void (*cb)(int revents, void *arg) = once->cb;
2603 void *arg = once->arg; 3586 void *arg = once->arg;
2604 3587
2605 ev_io_stop (EV_A_ &once->io); 3588 ev_io_stop (EV_A_ &once->io);
2606 ev_timer_stop (EV_A_ &once->to); 3589 ev_timer_stop (EV_A_ &once->to);
2607 ev_free (once); 3590 ev_free (once);
2608 3591
2609 cb (revents, arg); 3592 cb (revents, arg);
2610} 3593}
2611 3594
2612static void 3595static void
2613once_cb_io (EV_P_ ev_io *w, int revents) 3596once_cb_io (EV_P_ ev_io *w, int revents)
2614{ 3597{
2615 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3598 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3599
3600 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2616} 3601}
2617 3602
2618static void 3603static void
2619once_cb_to (EV_P_ ev_timer *w, int revents) 3604once_cb_to (EV_P_ ev_timer *w, int revents)
2620{ 3605{
2621 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3606 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3607
3608 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2622} 3609}
2623 3610
2624void 3611void
2625ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3612ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2626{ 3613{
2648 ev_timer_set (&once->to, timeout, 0.); 3635 ev_timer_set (&once->to, timeout, 0.);
2649 ev_timer_start (EV_A_ &once->to); 3636 ev_timer_start (EV_A_ &once->to);
2650 } 3637 }
2651} 3638}
2652 3639
3640/*****************************************************************************/
3641
3642#if EV_WALK_ENABLE
3643void
3644ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3645{
3646 int i, j;
3647 ev_watcher_list *wl, *wn;
3648
3649 if (types & (EV_IO | EV_EMBED))
3650 for (i = 0; i < anfdmax; ++i)
3651 for (wl = anfds [i].head; wl; )
3652 {
3653 wn = wl->next;
3654
3655#if EV_EMBED_ENABLE
3656 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3657 {
3658 if (types & EV_EMBED)
3659 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3660 }
3661 else
3662#endif
3663#if EV_USE_INOTIFY
3664 if (ev_cb ((ev_io *)wl) == infy_cb)
3665 ;
3666 else
3667#endif
3668 if ((ev_io *)wl != &pipe_w)
3669 if (types & EV_IO)
3670 cb (EV_A_ EV_IO, wl);
3671
3672 wl = wn;
3673 }
3674
3675 if (types & (EV_TIMER | EV_STAT))
3676 for (i = timercnt + HEAP0; i-- > HEAP0; )
3677#if EV_STAT_ENABLE
3678 /*TODO: timer is not always active*/
3679 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3680 {
3681 if (types & EV_STAT)
3682 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3683 }
3684 else
3685#endif
3686 if (types & EV_TIMER)
3687 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3688
3689#if EV_PERIODIC_ENABLE
3690 if (types & EV_PERIODIC)
3691 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3692 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3693#endif
3694
3695#if EV_IDLE_ENABLE
3696 if (types & EV_IDLE)
3697 for (j = NUMPRI; i--; )
3698 for (i = idlecnt [j]; i--; )
3699 cb (EV_A_ EV_IDLE, idles [j][i]);
3700#endif
3701
3702#if EV_FORK_ENABLE
3703 if (types & EV_FORK)
3704 for (i = forkcnt; i--; )
3705 if (ev_cb (forks [i]) != embed_fork_cb)
3706 cb (EV_A_ EV_FORK, forks [i]);
3707#endif
3708
3709#if EV_ASYNC_ENABLE
3710 if (types & EV_ASYNC)
3711 for (i = asynccnt; i--; )
3712 cb (EV_A_ EV_ASYNC, asyncs [i]);
3713#endif
3714
3715 if (types & EV_PREPARE)
3716 for (i = preparecnt; i--; )
3717#if EV_EMBED_ENABLE
3718 if (ev_cb (prepares [i]) != embed_prepare_cb)
3719#endif
3720 cb (EV_A_ EV_PREPARE, prepares [i]);
3721
3722 if (types & EV_CHECK)
3723 for (i = checkcnt; i--; )
3724 cb (EV_A_ EV_CHECK, checks [i]);
3725
3726 if (types & EV_SIGNAL)
3727 for (i = 0; i < EV_NSIG - 1; ++i)
3728 for (wl = signals [i].head; wl; )
3729 {
3730 wn = wl->next;
3731 cb (EV_A_ EV_SIGNAL, wl);
3732 wl = wn;
3733 }
3734
3735 if (types & EV_CHILD)
3736 for (i = EV_PID_HASHSIZE; i--; )
3737 for (wl = childs [i]; wl; )
3738 {
3739 wn = wl->next;
3740 cb (EV_A_ EV_CHILD, wl);
3741 wl = wn;
3742 }
3743/* EV_STAT 0x00001000 /* stat data changed */
3744/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3745}
3746#endif
3747
2653#if EV_MULTIPLICITY 3748#if EV_MULTIPLICITY
2654 #include "ev_wrap.h" 3749 #include "ev_wrap.h"
2655#endif 3750#endif
2656 3751
2657#ifdef __cplusplus 3752#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines