ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.334 by root, Tue Mar 9 09:00:59 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
108# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
109# endif 111# endif
110# endif 112# endif
111 113
112# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
114# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
115# else 117# else
116# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
117# endif 119# endif
118# endif 120# endif
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
143 153
144#endif 154#endif
145 155
146#include <math.h> 156#include <math.h>
147#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
148#include <fcntl.h> 159#include <fcntl.h>
149#include <stddef.h> 160#include <stddef.h>
150 161
151#include <stdio.h> 162#include <stdio.h>
152 163
153#include <assert.h> 164#include <assert.h>
154#include <errno.h> 165#include <errno.h>
155#include <sys/types.h> 166#include <sys/types.h>
156#include <time.h> 167#include <time.h>
168#include <limits.h>
157 169
158#include <signal.h> 170#include <signal.h>
159 171
160#ifdef EV_H 172#ifdef EV_H
161# include EV_H 173# include EV_H
172# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 185# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
176# endif 188# endif
189# undef EV_AVOID_STDIO
177#endif 190#endif
178 191
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
180 220
181#ifndef EV_USE_CLOCK_SYSCALL 221#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 222# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 223# define EV_USE_CLOCK_SYSCALL 1
184# else 224# else
193# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
194# endif 234# endif
195#endif 235#endif
196 236
197#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 239#endif
200 240
201#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 242# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 243# define EV_USE_NANOSLEEP 1
264# else 304# else
265# define EV_USE_EVENTFD 0 305# define EV_USE_EVENTFD 0
266# endif 306# endif
267#endif 307#endif
268 308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
269#if 0 /* debugging */ 317#if 0 /* debugging */
270# define EV_VERIFY 3 318# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 319# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 320# define EV_HEAP_CACHE_AT 1
273#endif 321#endif
282 330
283#ifndef EV_HEAP_CACHE_AT 331#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 332# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif 333#endif
286 334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
288 356
289#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
292#endif 360#endif
320 388
321#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 390# include <winsock.h>
323#endif 391#endif
324 392
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 393#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
337# ifdef __cplusplus 406# ifdef __cplusplus
338extern "C" { 407extern "C" {
339# endif 408# endif
340int eventfd (unsigned int initval, int flags); 409int (eventfd) (unsigned int initval, int flags);
341# ifdef __cplusplus 410# ifdef __cplusplus
342} 411}
343# endif 412# endif
344#endif 413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
345 443
346/**/ 444/**/
347 445
348#if EV_VERIFY >= 3 446#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
361 */ 459 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 461
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367 464
368#if __GNUC__ >= 4 465#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
371#else 468#else
384# define inline_speed static noinline 481# define inline_speed static noinline
385#else 482#else
386# define inline_speed static inline 483# define inline_speed static inline
387#endif 484#endif
388 485
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
391 493
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
394 496
395typedef ev_watcher *W; 497typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
398 500
399#define ev_active(w) ((W)(w))->active 501#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 502#define ev_at(w) ((WT)(w))->at
401 503
402#if EV_USE_MONOTONIC 504#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
406#endif 522#endif
407 523
408#ifdef _WIN32 524#ifdef _WIN32
409# include "ev_win32.c" 525# include "ev_win32.c"
410#endif 526#endif
411 527
412/*****************************************************************************/ 528/*****************************************************************************/
529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
413 537
414static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
415 539
416void 540void
417ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
427 551
428 if (syserr_cb) 552 if (syserr_cb)
429 syserr_cb (msg); 553 syserr_cb (msg);
430 else 554 else
431 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
432 perror (msg); 564 perror (msg);
565#endif
433 abort (); 566 abort ();
434 } 567 }
435} 568}
436 569
437static void * 570static void *
438ev_realloc_emul (void *ptr, long size) 571ev_realloc_emul (void *ptr, long size)
439{ 572{
573#if __GLIBC__
574 return realloc (ptr, size);
575#else
440 /* some systems, notably openbsd and darwin, fail to properly 576 /* some systems, notably openbsd and darwin, fail to properly
441 * implement realloc (x, 0) (as required by both ansi c-98 and 577 * implement realloc (x, 0) (as required by both ansi c-98 and
442 * the single unix specification, so work around them here. 578 * the single unix specification, so work around them here.
443 */ 579 */
444 580
445 if (size) 581 if (size)
446 return realloc (ptr, size); 582 return realloc (ptr, size);
447 583
448 free (ptr); 584 free (ptr);
449 return 0; 585 return 0;
586#endif
450} 587}
451 588
452static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 589static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
453 590
454void 591void
462{ 599{
463 ptr = alloc (ptr, size); 600 ptr = alloc (ptr, size);
464 601
465 if (!ptr && size) 602 if (!ptr && size)
466 { 603 {
604#if EV_AVOID_STDIO
605 ev_printerr ("libev: memory allocation failed, aborting.\n");
606#else
467 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 607 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
608#endif
468 abort (); 609 abort ();
469 } 610 }
470 611
471 return ptr; 612 return ptr;
472} 613}
474#define ev_malloc(size) ev_realloc (0, (size)) 615#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 616#define ev_free(ptr) ev_realloc ((ptr), 0)
476 617
477/*****************************************************************************/ 618/*****************************************************************************/
478 619
620/* set in reify when reification needed */
621#define EV_ANFD_REIFY 1
622
623/* file descriptor info structure */
479typedef struct 624typedef struct
480{ 625{
481 WL head; 626 WL head;
482 unsigned char events; 627 unsigned char events; /* the events watched for */
483 unsigned char reify; 628 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 629 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 630 unsigned char unused;
486#if EV_USE_EPOLL 631#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 632 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 633#endif
489#if EV_SELECT_IS_WINSOCKET 634#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 635 SOCKET handle;
491#endif 636#endif
492} ANFD; 637} ANFD;
493 638
639/* stores the pending event set for a given watcher */
494typedef struct 640typedef struct
495{ 641{
496 W w; 642 W w;
497 int events; 643 int events; /* the pending event set for the given watcher */
498} ANPENDING; 644} ANPENDING;
499 645
500#if EV_USE_INOTIFY 646#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 647/* hash table entry per inotify-id */
502typedef struct 648typedef struct
505} ANFS; 651} ANFS;
506#endif 652#endif
507 653
508/* Heap Entry */ 654/* Heap Entry */
509#if EV_HEAP_CACHE_AT 655#if EV_HEAP_CACHE_AT
656 /* a heap element */
510 typedef struct { 657 typedef struct {
511 ev_tstamp at; 658 ev_tstamp at;
512 WT w; 659 WT w;
513 } ANHE; 660 } ANHE;
514 661
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 662 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 663 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 664 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 665#else
666 /* a heap element */
519 typedef WT ANHE; 667 typedef WT ANHE;
520 668
521 #define ANHE_w(he) (he) 669 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 670 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 671 #define ANHE_at_cache(he)
547 695
548 static int ev_default_loop_ptr; 696 static int ev_default_loop_ptr;
549 697
550#endif 698#endif
551 699
700#if EV_MINIMAL < 2
701# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
702# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
703# define EV_INVOKE_PENDING invoke_cb (EV_A)
704#else
705# define EV_RELEASE_CB (void)0
706# define EV_ACQUIRE_CB (void)0
707# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
708#endif
709
710#define EVUNLOOP_RECURSE 0x80
711
552/*****************************************************************************/ 712/*****************************************************************************/
553 713
714#ifndef EV_HAVE_EV_TIME
554ev_tstamp 715ev_tstamp
555ev_time (void) 716ev_time (void)
556{ 717{
557#if EV_USE_REALTIME 718#if EV_USE_REALTIME
719 if (expect_true (have_realtime))
720 {
558 struct timespec ts; 721 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 722 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 723 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 724 }
725#endif
726
562 struct timeval tv; 727 struct timeval tv;
563 gettimeofday (&tv, 0); 728 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 729 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 730}
731#endif
567 732
568ev_tstamp inline_size 733inline_size ev_tstamp
569get_clock (void) 734get_clock (void)
570{ 735{
571#if EV_USE_MONOTONIC 736#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 737 if (expect_true (have_monotonic))
573 { 738 {
607 772
608 tv.tv_sec = (time_t)delay; 773 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 774 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 775
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 777 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 778 /* by older ones */
614 select (0, 0, 0, 0, &tv); 779 select (0, 0, 0, 0, &tv);
615#endif 780#endif
616 } 781 }
617} 782}
618 783
619/*****************************************************************************/ 784/*****************************************************************************/
620 785
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 786#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 787
623int inline_size 788/* find a suitable new size for the given array, */
789/* hopefully by rounding to a ncie-to-malloc size */
790inline_size int
624array_nextsize (int elem, int cur, int cnt) 791array_nextsize (int elem, int cur, int cnt)
625{ 792{
626 int ncur = cur + 1; 793 int ncur = cur + 1;
627 794
628 do 795 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 836 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 837 }
671#endif 838#endif
672 839
673#define array_free(stem, idx) \ 840#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 841 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 842
676/*****************************************************************************/ 843/*****************************************************************************/
844
845/* dummy callback for pending events */
846static void noinline
847pendingcb (EV_P_ ev_prepare *w, int revents)
848{
849}
677 850
678void noinline 851void noinline
679ev_feed_event (EV_P_ void *w, int revents) 852ev_feed_event (EV_P_ void *w, int revents)
680{ 853{
681 W w_ = (W)w; 854 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 863 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 864 pendings [pri][w_->pending - 1].events = revents;
692 } 865 }
693} 866}
694 867
695void inline_speed 868inline_speed void
869feed_reverse (EV_P_ W w)
870{
871 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
872 rfeeds [rfeedcnt++] = w;
873}
874
875inline_size void
876feed_reverse_done (EV_P_ int revents)
877{
878 do
879 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
880 while (rfeedcnt);
881}
882
883inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 884queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 885{
698 int i; 886 int i;
699 887
700 for (i = 0; i < eventcnt; ++i) 888 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 889 ev_feed_event (EV_A_ events [i], type);
702} 890}
703 891
704/*****************************************************************************/ 892/*****************************************************************************/
705 893
706void inline_speed 894inline_speed void
707fd_event (EV_P_ int fd, int revents) 895fd_event_nc (EV_P_ int fd, int revents)
708{ 896{
709 ANFD *anfd = anfds + fd; 897 ANFD *anfd = anfds + fd;
710 ev_io *w; 898 ev_io *w;
711 899
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 900 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 904 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 905 ev_feed_event (EV_A_ (W)w, ev);
718 } 906 }
719} 907}
720 908
909/* do not submit kernel events for fds that have reify set */
910/* because that means they changed while we were polling for new events */
911inline_speed void
912fd_event (EV_P_ int fd, int revents)
913{
914 ANFD *anfd = anfds + fd;
915
916 if (expect_true (!anfd->reify))
917 fd_event_nc (EV_A_ fd, revents);
918}
919
721void 920void
722ev_feed_fd_event (EV_P_ int fd, int revents) 921ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 922{
724 if (fd >= 0 && fd < anfdmax) 923 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 924 fd_event_nc (EV_A_ fd, revents);
726} 925}
727 926
728void inline_size 927/* make sure the external fd watch events are in-sync */
928/* with the kernel/libev internal state */
929inline_size void
729fd_reify (EV_P) 930fd_reify (EV_P)
730{ 931{
731 int i; 932 int i;
732 933
733 for (i = 0; i < fdchangecnt; ++i) 934 for (i = 0; i < fdchangecnt; ++i)
743 944
744#if EV_SELECT_IS_WINSOCKET 945#if EV_SELECT_IS_WINSOCKET
745 if (events) 946 if (events)
746 { 947 {
747 unsigned long arg; 948 unsigned long arg;
748 #ifdef EV_FD_TO_WIN32_HANDLE
749 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 949 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
750 #else
751 anfd->handle = _get_osfhandle (fd);
752 #endif
753 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 950 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
754 } 951 }
755#endif 952#endif
756 953
757 { 954 {
759 unsigned char o_reify = anfd->reify; 956 unsigned char o_reify = anfd->reify;
760 957
761 anfd->reify = 0; 958 anfd->reify = 0;
762 anfd->events = events; 959 anfd->events = events;
763 960
764 if (o_events != events || o_reify & EV_IOFDSET) 961 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 962 backend_modify (EV_A_ fd, o_events, events);
766 } 963 }
767 } 964 }
768 965
769 fdchangecnt = 0; 966 fdchangecnt = 0;
770} 967}
771 968
772void inline_size 969/* something about the given fd changed */
970inline_size void
773fd_change (EV_P_ int fd, int flags) 971fd_change (EV_P_ int fd, int flags)
774{ 972{
775 unsigned char reify = anfds [fd].reify; 973 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 974 anfds [fd].reify |= flags;
777 975
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 979 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 980 fdchanges [fdchangecnt - 1] = fd;
783 } 981 }
784} 982}
785 983
786void inline_speed 984/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
985inline_speed void
787fd_kill (EV_P_ int fd) 986fd_kill (EV_P_ int fd)
788{ 987{
789 ev_io *w; 988 ev_io *w;
790 989
791 while ((w = (ev_io *)anfds [fd].head)) 990 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 992 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 993 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 994 }
796} 995}
797 996
798int inline_size 997/* check whether the given fd is atcually valid, for error recovery */
998inline_size int
799fd_valid (int fd) 999fd_valid (int fd)
800{ 1000{
801#ifdef _WIN32 1001#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 1002 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
803#else 1003#else
804 return fcntl (fd, F_GETFD) != -1; 1004 return fcntl (fd, F_GETFD) != -1;
805#endif 1005#endif
806} 1006}
807 1007
825 1025
826 for (fd = anfdmax; fd--; ) 1026 for (fd = anfdmax; fd--; )
827 if (anfds [fd].events) 1027 if (anfds [fd].events)
828 { 1028 {
829 fd_kill (EV_A_ fd); 1029 fd_kill (EV_A_ fd);
830 return; 1030 break;
831 } 1031 }
832} 1032}
833 1033
834/* usually called after fork if backend needs to re-arm all fds from scratch */ 1034/* usually called after fork if backend needs to re-arm all fds from scratch */
835static void noinline 1035static void noinline
840 for (fd = 0; fd < anfdmax; ++fd) 1040 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 1041 if (anfds [fd].events)
842 { 1042 {
843 anfds [fd].events = 0; 1043 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 1044 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1045 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 1046 }
847} 1047}
848 1048
849/*****************************************************************************/ 1049/*****************************************************************************/
850 1050
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1066#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1067#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 1068#define UPHEAP_DONE(p,k) ((p) == (k))
869 1069
870/* away from the root */ 1070/* away from the root */
871void inline_speed 1071inline_speed void
872downheap (ANHE *heap, int N, int k) 1072downheap (ANHE *heap, int N, int k)
873{ 1073{
874 ANHE he = heap [k]; 1074 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 1075 ANHE *E = heap + N + HEAP0;
876 1076
916#define HEAP0 1 1116#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 1117#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 1118#define UPHEAP_DONE(p,k) (!(p))
919 1119
920/* away from the root */ 1120/* away from the root */
921void inline_speed 1121inline_speed void
922downheap (ANHE *heap, int N, int k) 1122downheap (ANHE *heap, int N, int k)
923{ 1123{
924 ANHE he = heap [k]; 1124 ANHE he = heap [k];
925 1125
926 for (;;) 1126 for (;;)
927 { 1127 {
928 int c = k << 1; 1128 int c = k << 1;
929 1129
930 if (c > N + HEAP0 - 1) 1130 if (c >= N + HEAP0)
931 break; 1131 break;
932 1132
933 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1133 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
934 ? 1 : 0; 1134 ? 1 : 0;
935 1135
946 ev_active (ANHE_w (he)) = k; 1146 ev_active (ANHE_w (he)) = k;
947} 1147}
948#endif 1148#endif
949 1149
950/* towards the root */ 1150/* towards the root */
951void inline_speed 1151inline_speed void
952upheap (ANHE *heap, int k) 1152upheap (ANHE *heap, int k)
953{ 1153{
954 ANHE he = heap [k]; 1154 ANHE he = heap [k];
955 1155
956 for (;;) 1156 for (;;)
967 1167
968 heap [k] = he; 1168 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1169 ev_active (ANHE_w (he)) = k;
970} 1170}
971 1171
972void inline_size 1172/* move an element suitably so it is in a correct place */
1173inline_size void
973adjustheap (ANHE *heap, int N, int k) 1174adjustheap (ANHE *heap, int N, int k)
974{ 1175{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1176 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
976 upheap (heap, k); 1177 upheap (heap, k);
977 else 1178 else
978 downheap (heap, N, k); 1179 downheap (heap, N, k);
979} 1180}
980 1181
981/* rebuild the heap: this function is used only once and executed rarely */ 1182/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1183inline_size void
983reheap (ANHE *heap, int N) 1184reheap (ANHE *heap, int N)
984{ 1185{
985 int i; 1186 int i;
986 1187
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1188 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1191 upheap (heap, i + HEAP0);
991} 1192}
992 1193
993/*****************************************************************************/ 1194/*****************************************************************************/
994 1195
1196/* associate signal watchers to a signal signal */
995typedef struct 1197typedef struct
996{ 1198{
1199 EV_ATOMIC_T pending;
1200#if EV_MULTIPLICITY
1201 EV_P;
1202#endif
997 WL head; 1203 WL head;
998 EV_ATOMIC_T gotsig;
999} ANSIG; 1204} ANSIG;
1000 1205
1001static ANSIG *signals; 1206static ANSIG signals [EV_NSIG - 1];
1002static int signalmax;
1003
1004static EV_ATOMIC_T gotsig;
1005 1207
1006/*****************************************************************************/ 1208/*****************************************************************************/
1007 1209
1008void inline_speed 1210/* used to prepare libev internal fd's */
1211/* this is not fork-safe */
1212inline_speed void
1009fd_intern (int fd) 1213fd_intern (int fd)
1010{ 1214{
1011#ifdef _WIN32 1215#ifdef _WIN32
1012 unsigned long arg = 1; 1216 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1217 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1014#else 1218#else
1015 fcntl (fd, F_SETFD, FD_CLOEXEC); 1219 fcntl (fd, F_SETFD, FD_CLOEXEC);
1016 fcntl (fd, F_SETFL, O_NONBLOCK); 1220 fcntl (fd, F_SETFL, O_NONBLOCK);
1017#endif 1221#endif
1018} 1222}
1019 1223
1020static void noinline 1224static void noinline
1021evpipe_init (EV_P) 1225evpipe_init (EV_P)
1022{ 1226{
1023 if (!ev_is_active (&pipeev)) 1227 if (!ev_is_active (&pipe_w))
1024 { 1228 {
1025#if EV_USE_EVENTFD 1229#if EV_USE_EVENTFD
1230 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1231 if (evfd < 0 && errno == EINVAL)
1026 if ((evfd = eventfd (0, 0)) >= 0) 1232 evfd = eventfd (0, 0);
1233
1234 if (evfd >= 0)
1027 { 1235 {
1028 evpipe [0] = -1; 1236 evpipe [0] = -1;
1029 fd_intern (evfd); 1237 fd_intern (evfd); /* doing it twice doesn't hurt */
1030 ev_io_set (&pipeev, evfd, EV_READ); 1238 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1239 }
1032 else 1240 else
1033#endif 1241#endif
1034 { 1242 {
1035 while (pipe (evpipe)) 1243 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1244 ev_syserr ("(libev) error creating signal/async pipe");
1037 1245
1038 fd_intern (evpipe [0]); 1246 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1247 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1248 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1249 }
1042 1250
1043 ev_io_start (EV_A_ &pipeev); 1251 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1252 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1253 }
1046} 1254}
1047 1255
1048void inline_size 1256inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1258{
1051 if (!*flag) 1259 if (!*flag)
1052 { 1260 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1261 int old_errno = errno; /* save errno because write might clobber it */
1066 1274
1067 errno = old_errno; 1275 errno = old_errno;
1068 } 1276 }
1069} 1277}
1070 1278
1279/* called whenever the libev signal pipe */
1280/* got some events (signal, async) */
1071static void 1281static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1282pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1283{
1284 int i;
1285
1074#if EV_USE_EVENTFD 1286#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1287 if (evfd >= 0)
1076 { 1288 {
1077 uint64_t counter; 1289 uint64_t counter;
1078 read (evfd, &counter, sizeof (uint64_t)); 1290 read (evfd, &counter, sizeof (uint64_t));
1082 { 1294 {
1083 char dummy; 1295 char dummy;
1084 read (evpipe [0], &dummy, 1); 1296 read (evpipe [0], &dummy, 1);
1085 } 1297 }
1086 1298
1087 if (gotsig && ev_is_default_loop (EV_A)) 1299 if (sig_pending)
1088 { 1300 {
1089 int signum; 1301 sig_pending = 0;
1090 gotsig = 0;
1091 1302
1092 for (signum = signalmax; signum--; ) 1303 for (i = EV_NSIG - 1; i--; )
1093 if (signals [signum].gotsig) 1304 if (expect_false (signals [i].pending))
1094 ev_feed_signal_event (EV_A_ signum + 1); 1305 ev_feed_signal_event (EV_A_ i + 1);
1095 } 1306 }
1096 1307
1097#if EV_ASYNC_ENABLE 1308#if EV_ASYNC_ENABLE
1098 if (gotasync) 1309 if (async_pending)
1099 { 1310 {
1100 int i; 1311 async_pending = 0;
1101 gotasync = 0;
1102 1312
1103 for (i = asynccnt; i--; ) 1313 for (i = asynccnt; i--; )
1104 if (asyncs [i]->sent) 1314 if (asyncs [i]->sent)
1105 { 1315 {
1106 asyncs [i]->sent = 0; 1316 asyncs [i]->sent = 0;
1114 1324
1115static void 1325static void
1116ev_sighandler (int signum) 1326ev_sighandler (int signum)
1117{ 1327{
1118#if EV_MULTIPLICITY 1328#if EV_MULTIPLICITY
1119 struct ev_loop *loop = &default_loop_struct; 1329 EV_P = signals [signum - 1].loop;
1120#endif 1330#endif
1121 1331
1122#if _WIN32 1332#ifdef _WIN32
1123 signal (signum, ev_sighandler); 1333 signal (signum, ev_sighandler);
1124#endif 1334#endif
1125 1335
1126 signals [signum - 1].gotsig = 1; 1336 signals [signum - 1].pending = 1;
1127 evpipe_write (EV_A_ &gotsig); 1337 evpipe_write (EV_A_ &sig_pending);
1128} 1338}
1129 1339
1130void noinline 1340void noinline
1131ev_feed_signal_event (EV_P_ int signum) 1341ev_feed_signal_event (EV_P_ int signum)
1132{ 1342{
1133 WL w; 1343 WL w;
1134 1344
1345 if (expect_false (signum <= 0 || signum > EV_NSIG))
1346 return;
1347
1348 --signum;
1349
1135#if EV_MULTIPLICITY 1350#if EV_MULTIPLICITY
1136 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1351 /* it is permissible to try to feed a signal to the wrong loop */
1137#endif 1352 /* or, likely more useful, feeding a signal nobody is waiting for */
1138 1353
1139 --signum; 1354 if (expect_false (signals [signum].loop != EV_A))
1140
1141 if (signum < 0 || signum >= signalmax)
1142 return; 1355 return;
1356#endif
1143 1357
1144 signals [signum].gotsig = 0; 1358 signals [signum].pending = 0;
1145 1359
1146 for (w = signals [signum].head; w; w = w->next) 1360 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1361 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 1362}
1149 1363
1364#if EV_USE_SIGNALFD
1365static void
1366sigfdcb (EV_P_ ev_io *iow, int revents)
1367{
1368 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1369
1370 for (;;)
1371 {
1372 ssize_t res = read (sigfd, si, sizeof (si));
1373
1374 /* not ISO-C, as res might be -1, but works with SuS */
1375 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1376 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1377
1378 if (res < (ssize_t)sizeof (si))
1379 break;
1380 }
1381}
1382#endif
1383
1150/*****************************************************************************/ 1384/*****************************************************************************/
1151 1385
1152static WL childs [EV_PID_HASHSIZE]; 1386static WL childs [EV_PID_HASHSIZE];
1153 1387
1154#ifndef _WIN32 1388#ifndef _WIN32
1157 1391
1158#ifndef WIFCONTINUED 1392#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1393# define WIFCONTINUED(status) 0
1160#endif 1394#endif
1161 1395
1162void inline_speed 1396/* handle a single child status event */
1397inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1398child_reap (EV_P_ int chain, int pid, int status)
1164{ 1399{
1165 ev_child *w; 1400 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1401 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1402
1180 1415
1181#ifndef WCONTINUED 1416#ifndef WCONTINUED
1182# define WCONTINUED 0 1417# define WCONTINUED 0
1183#endif 1418#endif
1184 1419
1420/* called on sigchld etc., calls waitpid */
1185static void 1421static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1422childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1423{
1188 int pid, status; 1424 int pid, status;
1189 1425
1296ev_backend (EV_P) 1532ev_backend (EV_P)
1297{ 1533{
1298 return backend; 1534 return backend;
1299} 1535}
1300 1536
1537#if EV_MINIMAL < 2
1301unsigned int 1538unsigned int
1302ev_loop_count (EV_P) 1539ev_loop_count (EV_P)
1303{ 1540{
1304 return loop_count; 1541 return loop_count;
1305} 1542}
1306 1543
1544unsigned int
1545ev_loop_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1307void 1550void
1308ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1309{ 1552{
1310 io_blocktime = interval; 1553 io_blocktime = interval;
1311} 1554}
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1558{
1316 timeout_blocktime = interval; 1559 timeout_blocktime = interval;
1317} 1560}
1318 1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1587static void noinline
1320loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
1321{ 1589{
1322 if (!backend) 1590 if (!backend)
1323 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
1324#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
1325 { 1604 {
1326 struct timespec ts; 1605 struct timespec ts;
1606
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1608 have_monotonic = 1;
1329 } 1609 }
1330#endif 1610#endif
1611
1612 /* pid check not overridable via env */
1613#ifndef _WIN32
1614 if (flags & EVFLAG_FORKCHECK)
1615 curpid = getpid ();
1616#endif
1617
1618 if (!(flags & EVFLAG_NOENV)
1619 && !enable_secure ()
1620 && getenv ("LIBEV_FLAGS"))
1621 flags = atoi (getenv ("LIBEV_FLAGS"));
1331 1622
1332 ev_rt_now = ev_time (); 1623 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1624 mn_now = get_clock ();
1334 now_floor = mn_now; 1625 now_floor = mn_now;
1335 rtmn_diff = ev_rt_now - mn_now; 1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_MINIMAL < 2
1628 invoke_cb = ev_invoke_pending;
1629#endif
1336 1630
1337 io_blocktime = 0.; 1631 io_blocktime = 0.;
1338 timeout_blocktime = 0.; 1632 timeout_blocktime = 0.;
1339 backend = 0; 1633 backend = 0;
1340 backend_fd = -1; 1634 backend_fd = -1;
1341 gotasync = 0; 1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1342#if EV_USE_INOTIFY 1639#if EV_USE_INOTIFY
1343 fs_fd = -2; 1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1344#endif 1641#endif
1345 1642#if EV_USE_SIGNALFD
1346 /* pid check not overridable via env */ 1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1347#ifndef _WIN32
1348 if (flags & EVFLAG_FORKCHECK)
1349 curpid = getpid ();
1350#endif 1644#endif
1351
1352 if (!(flags & EVFLAG_NOENV)
1353 && !enable_secure ()
1354 && getenv ("LIBEV_FLAGS"))
1355 flags = atoi (getenv ("LIBEV_FLAGS"));
1356 1645
1357 if (!(flags & 0x0000ffffU)) 1646 if (!(flags & 0x0000ffffU))
1358 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
1359 1648
1360#if EV_USE_PORT 1649#if EV_USE_PORT
1371#endif 1660#endif
1372#if EV_USE_SELECT 1661#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1663#endif
1375 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1376 ev_init (&pipeev, pipecb); 1667 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1668 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1669 }
1379} 1670}
1380 1671
1672/* free up a loop structure */
1381static void noinline 1673static void noinline
1382loop_destroy (EV_P) 1674loop_destroy (EV_P)
1383{ 1675{
1384 int i; 1676 int i;
1385 1677
1386 if (ev_is_active (&pipeev)) 1678 if (ev_is_active (&pipe_w))
1387 { 1679 {
1388 ev_ref (EV_A); /* signal watcher */ 1680 /*ev_ref (EV_A);*/
1389 ev_io_stop (EV_A_ &pipeev); 1681 /*ev_io_stop (EV_A_ &pipe_w);*/
1390 1682
1391#if EV_USE_EVENTFD 1683#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1684 if (evfd >= 0)
1393 close (evfd); 1685 close (evfd);
1394#endif 1686#endif
1395 1687
1396 if (evpipe [0] >= 0) 1688 if (evpipe [0] >= 0)
1397 { 1689 {
1398 close (evpipe [0]); 1690 EV_WIN32_CLOSE_FD (evpipe [0]);
1399 close (evpipe [1]); 1691 EV_WIN32_CLOSE_FD (evpipe [1]);
1400 } 1692 }
1401 } 1693 }
1694
1695#if EV_USE_SIGNALFD
1696 if (ev_is_active (&sigfd_w))
1697 close (sigfd);
1698#endif
1402 1699
1403#if EV_USE_INOTIFY 1700#if EV_USE_INOTIFY
1404 if (fs_fd >= 0) 1701 if (fs_fd >= 0)
1405 close (fs_fd); 1702 close (fs_fd);
1406#endif 1703#endif
1430#if EV_IDLE_ENABLE 1727#if EV_IDLE_ENABLE
1431 array_free (idle, [i]); 1728 array_free (idle, [i]);
1432#endif 1729#endif
1433 } 1730 }
1434 1731
1435 ev_free (anfds); anfdmax = 0; 1732 ev_free (anfds); anfds = 0; anfdmax = 0;
1436 1733
1437 /* have to use the microsoft-never-gets-it-right macro */ 1734 /* have to use the microsoft-never-gets-it-right macro */
1735 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1736 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1737 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1739 array_free (periodic, EMPTY);
1442#endif 1740#endif
1451 1749
1452 backend = 0; 1750 backend = 0;
1453} 1751}
1454 1752
1455#if EV_USE_INOTIFY 1753#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1754inline_size void infy_fork (EV_P);
1457#endif 1755#endif
1458 1756
1459void inline_size 1757inline_size void
1460loop_fork (EV_P) 1758loop_fork (EV_P)
1461{ 1759{
1462#if EV_USE_PORT 1760#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1761 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1762#endif
1470#endif 1768#endif
1471#if EV_USE_INOTIFY 1769#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1770 infy_fork (EV_A);
1473#endif 1771#endif
1474 1772
1475 if (ev_is_active (&pipeev)) 1773 if (ev_is_active (&pipe_w))
1476 { 1774 {
1477 /* this "locks" the handlers against writing to the pipe */ 1775 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1776 /* while we modify the fd vars */
1479 gotsig = 1; 1777 sig_pending = 1;
1480#if EV_ASYNC_ENABLE 1778#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1779 async_pending = 1;
1482#endif 1780#endif
1483 1781
1484 ev_ref (EV_A); 1782 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1783 ev_io_stop (EV_A_ &pipe_w);
1486 1784
1487#if EV_USE_EVENTFD 1785#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1786 if (evfd >= 0)
1489 close (evfd); 1787 close (evfd);
1490#endif 1788#endif
1491 1789
1492 if (evpipe [0] >= 0) 1790 if (evpipe [0] >= 0)
1493 { 1791 {
1494 close (evpipe [0]); 1792 EV_WIN32_CLOSE_FD (evpipe [0]);
1495 close (evpipe [1]); 1793 EV_WIN32_CLOSE_FD (evpipe [1]);
1496 } 1794 }
1497 1795
1498 evpipe_init (EV_A); 1796 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1797 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1798 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1799 }
1502 1800
1503 postfork = 0; 1801 postfork = 0;
1504} 1802}
1505 1803
1506#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1507 1805
1508struct ev_loop * 1806struct ev_loop *
1509ev_loop_new (unsigned int flags) 1807ev_loop_new (unsigned int flags)
1510{ 1808{
1511 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1809 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1512 1810
1513 memset (loop, 0, sizeof (struct ev_loop)); 1811 memset (EV_A, 0, sizeof (struct ev_loop));
1514
1515 loop_init (EV_A_ flags); 1812 loop_init (EV_A_ flags);
1516 1813
1517 if (ev_backend (EV_A)) 1814 if (ev_backend (EV_A))
1518 return loop; 1815 return EV_A;
1519 1816
1520 return 0; 1817 return 0;
1521} 1818}
1522 1819
1523void 1820void
1530void 1827void
1531ev_loop_fork (EV_P) 1828ev_loop_fork (EV_P)
1532{ 1829{
1533 postfork = 1; /* must be in line with ev_default_fork */ 1830 postfork = 1; /* must be in line with ev_default_fork */
1534} 1831}
1832#endif /* multiplicity */
1535 1833
1536#if EV_VERIFY 1834#if EV_VERIFY
1537static void noinline 1835static void noinline
1538verify_watcher (EV_P_ W w) 1836verify_watcher (EV_P_ W w)
1539{ 1837{
1567 verify_watcher (EV_A_ ws [cnt]); 1865 verify_watcher (EV_A_ ws [cnt]);
1568 } 1866 }
1569} 1867}
1570#endif 1868#endif
1571 1869
1870#if EV_MINIMAL < 2
1572void 1871void
1573ev_loop_verify (EV_P) 1872ev_loop_verify (EV_P)
1574{ 1873{
1575#if EV_VERIFY 1874#if EV_VERIFY
1576 int i; 1875 int i;
1625 assert (checkmax >= checkcnt); 1924 assert (checkmax >= checkcnt);
1626 array_verify (EV_A_ (W *)checks, checkcnt); 1925 array_verify (EV_A_ (W *)checks, checkcnt);
1627 1926
1628# if 0 1927# if 0
1629 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1928 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1630 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1929 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1631# endif
1632#endif 1930# endif
1931#endif
1633} 1932}
1634 1933#endif
1635#endif /* multiplicity */
1636 1934
1637#if EV_MULTIPLICITY 1935#if EV_MULTIPLICITY
1638struct ev_loop * 1936struct ev_loop *
1639ev_default_loop_init (unsigned int flags) 1937ev_default_loop_init (unsigned int flags)
1640#else 1938#else
1643#endif 1941#endif
1644{ 1942{
1645 if (!ev_default_loop_ptr) 1943 if (!ev_default_loop_ptr)
1646 { 1944 {
1647#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1648 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1946 EV_P = ev_default_loop_ptr = &default_loop_struct;
1649#else 1947#else
1650 ev_default_loop_ptr = 1; 1948 ev_default_loop_ptr = 1;
1651#endif 1949#endif
1652 1950
1653 loop_init (EV_A_ flags); 1951 loop_init (EV_A_ flags);
1670 1968
1671void 1969void
1672ev_default_destroy (void) 1970ev_default_destroy (void)
1673{ 1971{
1674#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1675 struct ev_loop *loop = ev_default_loop_ptr; 1973 EV_P = ev_default_loop_ptr;
1676#endif 1974#endif
1677 1975
1678 ev_default_loop_ptr = 0; 1976 ev_default_loop_ptr = 0;
1679 1977
1680#ifndef _WIN32 1978#ifndef _WIN32
1687 1985
1688void 1986void
1689ev_default_fork (void) 1987ev_default_fork (void)
1690{ 1988{
1691#if EV_MULTIPLICITY 1989#if EV_MULTIPLICITY
1692 struct ev_loop *loop = ev_default_loop_ptr; 1990 EV_P = ev_default_loop_ptr;
1693#endif 1991#endif
1694 1992
1695 postfork = 1; /* must be in line with ev_loop_fork */ 1993 postfork = 1; /* must be in line with ev_loop_fork */
1696} 1994}
1697 1995
1701ev_invoke (EV_P_ void *w, int revents) 1999ev_invoke (EV_P_ void *w, int revents)
1702{ 2000{
1703 EV_CB_INVOKE ((W)w, revents); 2001 EV_CB_INVOKE ((W)w, revents);
1704} 2002}
1705 2003
1706void inline_speed 2004unsigned int
1707call_pending (EV_P) 2005ev_pending_count (EV_P)
2006{
2007 int pri;
2008 unsigned int count = 0;
2009
2010 for (pri = NUMPRI; pri--; )
2011 count += pendingcnt [pri];
2012
2013 return count;
2014}
2015
2016void noinline
2017ev_invoke_pending (EV_P)
1708{ 2018{
1709 int pri; 2019 int pri;
1710 2020
1711 for (pri = NUMPRI; pri--; ) 2021 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 2022 while (pendingcnt [pri])
1713 { 2023 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 2025
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2026 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2027 /* ^ this is no longer true, as pending_w could be here */
1719 2028
1720 p->w->pending = 0; 2029 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 2030 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 2031 EV_FREQUENT_CHECK;
1723 }
1724 } 2032 }
1725} 2033}
1726 2034
1727#if EV_IDLE_ENABLE 2035#if EV_IDLE_ENABLE
1728void inline_size 2036/* make idle watchers pending. this handles the "call-idle */
2037/* only when higher priorities are idle" logic */
2038inline_size void
1729idle_reify (EV_P) 2039idle_reify (EV_P)
1730{ 2040{
1731 if (expect_false (idleall)) 2041 if (expect_false (idleall))
1732 { 2042 {
1733 int pri; 2043 int pri;
1745 } 2055 }
1746 } 2056 }
1747} 2057}
1748#endif 2058#endif
1749 2059
1750void inline_size 2060/* make timers pending */
2061inline_size void
1751timers_reify (EV_P) 2062timers_reify (EV_P)
1752{ 2063{
1753 EV_FREQUENT_CHECK; 2064 EV_FREQUENT_CHECK;
1754 2065
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 2067 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2068 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 2069 {
2070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2071
2072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2073
2074 /* first reschedule or stop timer */
2075 if (w->repeat)
2076 {
1764 ev_at (w) += w->repeat; 2077 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 2078 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 2079 ev_at (w) = mn_now;
1767 2080
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 2082
1770 ANHE_at_cache (timers [HEAP0]); 2083 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 2084 downheap (timers, timercnt, HEAP0);
2085 }
2086 else
2087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2088
2089 EV_FREQUENT_CHECK;
2090 feed_reverse (EV_A_ (W)w);
1772 } 2091 }
1773 else 2092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 2093
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2094 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 2095 }
1779} 2096}
1780 2097
1781#if EV_PERIODIC_ENABLE 2098#if EV_PERIODIC_ENABLE
1782void inline_size 2099/* make periodics pending */
2100inline_size void
1783periodics_reify (EV_P) 2101periodics_reify (EV_P)
1784{ 2102{
1785 EV_FREQUENT_CHECK; 2103 EV_FREQUENT_CHECK;
1786 2104
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 2106 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2107 int feed_count = 0;
1790 2108
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2109 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 2110 {
2111 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2112
2113 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2114
2115 /* first reschedule or stop timer */
2116 if (w->reschedule_cb)
2117 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2118 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 2119
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2120 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 2121
1800 ANHE_at_cache (periodics [HEAP0]); 2122 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 2123 downheap (periodics, periodiccnt, HEAP0);
2124 }
2125 else if (w->interval)
2126 {
2127 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2128 /* if next trigger time is not sufficiently in the future, put it there */
2129 /* this might happen because of floating point inexactness */
2130 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2131 {
2132 ev_at (w) += w->interval;
2133
2134 /* if interval is unreasonably low we might still have a time in the past */
2135 /* so correct this. this will make the periodic very inexact, but the user */
2136 /* has effectively asked to get triggered more often than possible */
2137 if (ev_at (w) < ev_rt_now)
2138 ev_at (w) = ev_rt_now;
2139 }
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else
2145 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
1802 } 2149 }
1803 else if (w->interval) 2150 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 2151
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2152 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 2153 }
1828} 2154}
1829 2155
2156/* simply recalculate all periodics */
2157/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 2158static void noinline
1831periodics_reschedule (EV_P) 2159periodics_reschedule (EV_P)
1832{ 2160{
1833 int i; 2161 int i;
1834 2162
1847 2175
1848 reheap (periodics, periodiccnt); 2176 reheap (periodics, periodiccnt);
1849} 2177}
1850#endif 2178#endif
1851 2179
1852void inline_speed 2180/* adjust all timers by a given offset */
2181static void noinline
2182timers_reschedule (EV_P_ ev_tstamp adjust)
2183{
2184 int i;
2185
2186 for (i = 0; i < timercnt; ++i)
2187 {
2188 ANHE *he = timers + i + HEAP0;
2189 ANHE_w (*he)->at += adjust;
2190 ANHE_at_cache (*he);
2191 }
2192}
2193
2194/* fetch new monotonic and realtime times from the kernel */
2195/* also detect if there was a timejump, and act accordingly */
2196inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 2197time_update (EV_P_ ev_tstamp max_block)
1854{ 2198{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 2199#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 2200 if (expect_true (have_monotonic))
1859 { 2201 {
2202 int i;
1860 ev_tstamp odiff = rtmn_diff; 2203 ev_tstamp odiff = rtmn_diff;
1861 2204
1862 mn_now = get_clock (); 2205 mn_now = get_clock ();
1863 2206
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2207 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1890 ev_rt_now = ev_time (); 2233 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 2234 mn_now = get_clock ();
1892 now_floor = mn_now; 2235 now_floor = mn_now;
1893 } 2236 }
1894 2237
2238 /* no timer adjustment, as the monotonic clock doesn't jump */
2239 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 2240# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1897# endif 2242# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 2243 }
1901 else 2244 else
1902#endif 2245#endif
1903 { 2246 {
1904 ev_rt_now = ev_time (); 2247 ev_rt_now = ev_time ();
1905 2248
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2249 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2250 {
2251 /* adjust timers. this is easy, as the offset is the same for all of them */
2252 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2253#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2254 periodics_reschedule (EV_A);
1910#endif 2255#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2256 }
1919 2257
1920 mn_now = ev_rt_now; 2258 mn_now = ev_rt_now;
1921 } 2259 }
1922} 2260}
1923 2261
1924void 2262void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940}
1941
1942static int loop_done;
1943
1944void
1945ev_loop (EV_P_ int flags) 2263ev_loop (EV_P_ int flags)
1946{ 2264{
2265#if EV_MINIMAL < 2
2266 ++loop_depth;
2267#endif
2268
2269 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2270
1947 loop_done = EVUNLOOP_CANCEL; 2271 loop_done = EVUNLOOP_CANCEL;
1948 2272
1949 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2273 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1950 2274
1951 do 2275 do
1952 { 2276 {
1953#if EV_VERIFY >= 2 2277#if EV_VERIFY >= 2
1954 ev_loop_verify (EV_A); 2278 ev_loop_verify (EV_A);
1967 /* we might have forked, so queue fork handlers */ 2291 /* we might have forked, so queue fork handlers */
1968 if (expect_false (postfork)) 2292 if (expect_false (postfork))
1969 if (forkcnt) 2293 if (forkcnt)
1970 { 2294 {
1971 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2295 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1972 call_pending (EV_A); 2296 EV_INVOKE_PENDING;
1973 } 2297 }
1974#endif 2298#endif
1975 2299
1976 /* queue prepare watchers (and execute them) */ 2300 /* queue prepare watchers (and execute them) */
1977 if (expect_false (preparecnt)) 2301 if (expect_false (preparecnt))
1978 { 2302 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2303 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2304 EV_INVOKE_PENDING;
1981 } 2305 }
1982 2306
1983 if (expect_false (!activecnt)) 2307 if (expect_false (loop_done))
1984 break; 2308 break;
1985 2309
1986 /* we might have forked, so reify kernel state if necessary */ 2310 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1988 loop_fork (EV_A); 2312 loop_fork (EV_A);
1995 ev_tstamp waittime = 0.; 2319 ev_tstamp waittime = 0.;
1996 ev_tstamp sleeptime = 0.; 2320 ev_tstamp sleeptime = 0.;
1997 2321
1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2322 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1999 { 2323 {
2324 /* remember old timestamp for io_blocktime calculation */
2325 ev_tstamp prev_mn_now = mn_now;
2326
2000 /* update time to cancel out callback processing overhead */ 2327 /* update time to cancel out callback processing overhead */
2001 time_update (EV_A_ 1e100); 2328 time_update (EV_A_ 1e100);
2002 2329
2003 waittime = MAX_BLOCKTIME; 2330 waittime = MAX_BLOCKTIME;
2004 2331
2014 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2341 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2015 if (waittime > to) waittime = to; 2342 if (waittime > to) waittime = to;
2016 } 2343 }
2017#endif 2344#endif
2018 2345
2346 /* don't let timeouts decrease the waittime below timeout_blocktime */
2019 if (expect_false (waittime < timeout_blocktime)) 2347 if (expect_false (waittime < timeout_blocktime))
2020 waittime = timeout_blocktime; 2348 waittime = timeout_blocktime;
2021 2349
2022 sleeptime = waittime - backend_fudge; 2350 /* extra check because io_blocktime is commonly 0 */
2023
2024 if (expect_true (sleeptime > io_blocktime)) 2351 if (expect_false (io_blocktime))
2025 sleeptime = io_blocktime;
2026
2027 if (sleeptime)
2028 { 2352 {
2353 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2354
2355 if (sleeptime > waittime - backend_fudge)
2356 sleeptime = waittime - backend_fudge;
2357
2358 if (expect_true (sleeptime > 0.))
2359 {
2029 ev_sleep (sleeptime); 2360 ev_sleep (sleeptime);
2030 waittime -= sleeptime; 2361 waittime -= sleeptime;
2362 }
2031 } 2363 }
2032 } 2364 }
2033 2365
2366#if EV_MINIMAL < 2
2034 ++loop_count; 2367 ++loop_count;
2368#endif
2369 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2035 backend_poll (EV_A_ waittime); 2370 backend_poll (EV_A_ waittime);
2371 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2036 2372
2037 /* update ev_rt_now, do magic */ 2373 /* update ev_rt_now, do magic */
2038 time_update (EV_A_ waittime + sleeptime); 2374 time_update (EV_A_ waittime + sleeptime);
2039 } 2375 }
2040 2376
2051 2387
2052 /* queue check watchers, to be executed first */ 2388 /* queue check watchers, to be executed first */
2053 if (expect_false (checkcnt)) 2389 if (expect_false (checkcnt))
2054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2390 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2055 2391
2056 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
2057 } 2393 }
2058 while (expect_true ( 2394 while (expect_true (
2059 activecnt 2395 activecnt
2060 && !loop_done 2396 && !loop_done
2061 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2397 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2062 )); 2398 ));
2063 2399
2064 if (loop_done == EVUNLOOP_ONE) 2400 if (loop_done == EVUNLOOP_ONE)
2065 loop_done = EVUNLOOP_CANCEL; 2401 loop_done = EVUNLOOP_CANCEL;
2402
2403#if EV_MINIMAL < 2
2404 --loop_depth;
2405#endif
2066} 2406}
2067 2407
2068void 2408void
2069ev_unloop (EV_P_ int how) 2409ev_unloop (EV_P_ int how)
2070{ 2410{
2071 loop_done = how; 2411 loop_done = how;
2072} 2412}
2073 2413
2414void
2415ev_ref (EV_P)
2416{
2417 ++activecnt;
2418}
2419
2420void
2421ev_unref (EV_P)
2422{
2423 --activecnt;
2424}
2425
2426void
2427ev_now_update (EV_P)
2428{
2429 time_update (EV_A_ 1e100);
2430}
2431
2432void
2433ev_suspend (EV_P)
2434{
2435 ev_now_update (EV_A);
2436}
2437
2438void
2439ev_resume (EV_P)
2440{
2441 ev_tstamp mn_prev = mn_now;
2442
2443 ev_now_update (EV_A);
2444 timers_reschedule (EV_A_ mn_now - mn_prev);
2445#if EV_PERIODIC_ENABLE
2446 /* TODO: really do this? */
2447 periodics_reschedule (EV_A);
2448#endif
2449}
2450
2074/*****************************************************************************/ 2451/*****************************************************************************/
2452/* singly-linked list management, used when the expected list length is short */
2075 2453
2076void inline_size 2454inline_size void
2077wlist_add (WL *head, WL elem) 2455wlist_add (WL *head, WL elem)
2078{ 2456{
2079 elem->next = *head; 2457 elem->next = *head;
2080 *head = elem; 2458 *head = elem;
2081} 2459}
2082 2460
2083void inline_size 2461inline_size void
2084wlist_del (WL *head, WL elem) 2462wlist_del (WL *head, WL elem)
2085{ 2463{
2086 while (*head) 2464 while (*head)
2087 { 2465 {
2088 if (*head == elem) 2466 if (expect_true (*head == elem))
2089 { 2467 {
2090 *head = elem->next; 2468 *head = elem->next;
2091 return; 2469 break;
2092 } 2470 }
2093 2471
2094 head = &(*head)->next; 2472 head = &(*head)->next;
2095 } 2473 }
2096} 2474}
2097 2475
2098void inline_speed 2476/* internal, faster, version of ev_clear_pending */
2477inline_speed void
2099clear_pending (EV_P_ W w) 2478clear_pending (EV_P_ W w)
2100{ 2479{
2101 if (w->pending) 2480 if (w->pending)
2102 { 2481 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2482 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2483 w->pending = 0;
2105 } 2484 }
2106} 2485}
2107 2486
2108int 2487int
2112 int pending = w_->pending; 2491 int pending = w_->pending;
2113 2492
2114 if (expect_true (pending)) 2493 if (expect_true (pending))
2115 { 2494 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2495 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2496 p->w = (W)&pending_w;
2117 w_->pending = 0; 2497 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2498 return p->events;
2120 } 2499 }
2121 else 2500 else
2122 return 0; 2501 return 0;
2123} 2502}
2124 2503
2125void inline_size 2504inline_size void
2126pri_adjust (EV_P_ W w) 2505pri_adjust (EV_P_ W w)
2127{ 2506{
2128 int pri = w->priority; 2507 int pri = ev_priority (w);
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2508 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2509 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2510 ev_set_priority (w, pri);
2132} 2511}
2133 2512
2134void inline_speed 2513inline_speed void
2135ev_start (EV_P_ W w, int active) 2514ev_start (EV_P_ W w, int active)
2136{ 2515{
2137 pri_adjust (EV_A_ w); 2516 pri_adjust (EV_A_ w);
2138 w->active = active; 2517 w->active = active;
2139 ev_ref (EV_A); 2518 ev_ref (EV_A);
2140} 2519}
2141 2520
2142void inline_size 2521inline_size void
2143ev_stop (EV_P_ W w) 2522ev_stop (EV_P_ W w)
2144{ 2523{
2145 ev_unref (EV_A); 2524 ev_unref (EV_A);
2146 w->active = 0; 2525 w->active = 0;
2147} 2526}
2155 2534
2156 if (expect_false (ev_is_active (w))) 2535 if (expect_false (ev_is_active (w)))
2157 return; 2536 return;
2158 2537
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2538 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2539 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2540
2162 EV_FREQUENT_CHECK; 2541 EV_FREQUENT_CHECK;
2163 2542
2164 ev_start (EV_A_ (W)w, 1); 2543 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2544 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2545 wlist_add (&anfds[fd].head, (WL)w);
2167 2546
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2547 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2169 w->events &= ~EV_IOFDSET; 2548 w->events &= ~EV__IOFDSET;
2170 2549
2171 EV_FREQUENT_CHECK; 2550 EV_FREQUENT_CHECK;
2172} 2551}
2173 2552
2174void noinline 2553void noinline
2235 timers [active] = timers [timercnt + HEAP0]; 2614 timers [active] = timers [timercnt + HEAP0];
2236 adjustheap (timers, timercnt, active); 2615 adjustheap (timers, timercnt, active);
2237 } 2616 }
2238 } 2617 }
2239 2618
2240 EV_FREQUENT_CHECK;
2241
2242 ev_at (w) -= mn_now; 2619 ev_at (w) -= mn_now;
2243 2620
2244 ev_stop (EV_A_ (W)w); 2621 ev_stop (EV_A_ (W)w);
2622
2623 EV_FREQUENT_CHECK;
2245} 2624}
2246 2625
2247void noinline 2626void noinline
2248ev_timer_again (EV_P_ ev_timer *w) 2627ev_timer_again (EV_P_ ev_timer *w)
2249{ 2628{
2267 } 2646 }
2268 2647
2269 EV_FREQUENT_CHECK; 2648 EV_FREQUENT_CHECK;
2270} 2649}
2271 2650
2651ev_tstamp
2652ev_timer_remaining (EV_P_ ev_timer *w)
2653{
2654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2655}
2656
2272#if EV_PERIODIC_ENABLE 2657#if EV_PERIODIC_ENABLE
2273void noinline 2658void noinline
2274ev_periodic_start (EV_P_ ev_periodic *w) 2659ev_periodic_start (EV_P_ ev_periodic *w)
2275{ 2660{
2276 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2322 periodics [active] = periodics [periodiccnt + HEAP0]; 2707 periodics [active] = periodics [periodiccnt + HEAP0];
2323 adjustheap (periodics, periodiccnt, active); 2708 adjustheap (periodics, periodiccnt, active);
2324 } 2709 }
2325 } 2710 }
2326 2711
2327 EV_FREQUENT_CHECK;
2328
2329 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
2713
2714 EV_FREQUENT_CHECK;
2330} 2715}
2331 2716
2332void noinline 2717void noinline
2333ev_periodic_again (EV_P_ ev_periodic *w) 2718ev_periodic_again (EV_P_ ev_periodic *w)
2334{ 2719{
2343#endif 2728#endif
2344 2729
2345void noinline 2730void noinline
2346ev_signal_start (EV_P_ ev_signal *w) 2731ev_signal_start (EV_P_ ev_signal *w)
2347{ 2732{
2348#if EV_MULTIPLICITY
2349 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2350#endif
2351 if (expect_false (ev_is_active (w))) 2733 if (expect_false (ev_is_active (w)))
2352 return; 2734 return;
2353 2735
2354 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2355 2737
2356 evpipe_init (EV_A); 2738#if EV_MULTIPLICITY
2739 assert (("libev: a signal must not be attached to two different loops",
2740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2357 2741
2358 EV_FREQUENT_CHECK; 2742 signals [w->signum - 1].loop = EV_A;
2743#endif
2359 2744
2745 EV_FREQUENT_CHECK;
2746
2747#if EV_USE_SIGNALFD
2748 if (sigfd == -2)
2360 { 2749 {
2361#ifndef _WIN32 2750 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2362 sigset_t full, prev; 2751 if (sigfd < 0 && errno == EINVAL)
2363 sigfillset (&full); 2752 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2364 sigprocmask (SIG_SETMASK, &full, &prev);
2365#endif
2366 2753
2367 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2754 if (sigfd >= 0)
2755 {
2756 fd_intern (sigfd); /* doing it twice will not hurt */
2368 2757
2369#ifndef _WIN32 2758 sigemptyset (&sigfd_set);
2370 sigprocmask (SIG_SETMASK, &prev, 0); 2759
2371#endif 2760 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2761 ev_set_priority (&sigfd_w, EV_MAXPRI);
2762 ev_io_start (EV_A_ &sigfd_w);
2763 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2764 }
2372 } 2765 }
2766
2767 if (sigfd >= 0)
2768 {
2769 /* TODO: check .head */
2770 sigaddset (&sigfd_set, w->signum);
2771 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2772
2773 signalfd (sigfd, &sigfd_set, 0);
2774 }
2775#endif
2373 2776
2374 ev_start (EV_A_ (W)w, 1); 2777 ev_start (EV_A_ (W)w, 1);
2375 wlist_add (&signals [w->signum - 1].head, (WL)w); 2778 wlist_add (&signals [w->signum - 1].head, (WL)w);
2376 2779
2377 if (!((WL)w)->next) 2780 if (!((WL)w)->next)
2781# if EV_USE_SIGNALFD
2782 if (sigfd < 0) /*TODO*/
2783# endif
2378 { 2784 {
2379#if _WIN32 2785# ifdef _WIN32
2786 evpipe_init (EV_A);
2787
2380 signal (w->signum, ev_sighandler); 2788 signal (w->signum, ev_sighandler);
2381#else 2789# else
2382 struct sigaction sa; 2790 struct sigaction sa;
2791
2792 evpipe_init (EV_A);
2793
2383 sa.sa_handler = ev_sighandler; 2794 sa.sa_handler = ev_sighandler;
2384 sigfillset (&sa.sa_mask); 2795 sigfillset (&sa.sa_mask);
2385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2796 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2386 sigaction (w->signum, &sa, 0); 2797 sigaction (w->signum, &sa, 0);
2798
2799 sigemptyset (&sa.sa_mask);
2800 sigaddset (&sa.sa_mask, w->signum);
2801 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2387#endif 2802#endif
2388 } 2803 }
2389 2804
2390 EV_FREQUENT_CHECK; 2805 EV_FREQUENT_CHECK;
2391} 2806}
2392 2807
2393void noinline 2808void noinline
2401 2816
2402 wlist_del (&signals [w->signum - 1].head, (WL)w); 2817 wlist_del (&signals [w->signum - 1].head, (WL)w);
2403 ev_stop (EV_A_ (W)w); 2818 ev_stop (EV_A_ (W)w);
2404 2819
2405 if (!signals [w->signum - 1].head) 2820 if (!signals [w->signum - 1].head)
2821 {
2822#if EV_MULTIPLICITY
2823 signals [w->signum - 1].loop = 0; /* unattach from signal */
2824#endif
2825#if EV_USE_SIGNALFD
2826 if (sigfd >= 0)
2827 {
2828 sigset_t ss;
2829
2830 sigemptyset (&ss);
2831 sigaddset (&ss, w->signum);
2832 sigdelset (&sigfd_set, w->signum);
2833
2834 signalfd (sigfd, &sigfd_set, 0);
2835 sigprocmask (SIG_UNBLOCK, &ss, 0);
2836 }
2837 else
2838#endif
2406 signal (w->signum, SIG_DFL); 2839 signal (w->signum, SIG_DFL);
2840 }
2407 2841
2408 EV_FREQUENT_CHECK; 2842 EV_FREQUENT_CHECK;
2409} 2843}
2410 2844
2411void 2845void
2452#define MIN_STAT_INTERVAL 0.1074891 2886#define MIN_STAT_INTERVAL 0.1074891
2453 2887
2454static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2455 2889
2456#if EV_USE_INOTIFY 2890#if EV_USE_INOTIFY
2457# define EV_INOTIFY_BUFSIZE 8192 2891
2892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2458 2894
2459static void noinline 2895static void noinline
2460infy_add (EV_P_ ev_stat *w) 2896infy_add (EV_P_ ev_stat *w)
2461{ 2897{
2462 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2463 2899
2464 if (w->wd < 0) 2900 if (w->wd >= 0)
2901 {
2902 struct statfs sfs;
2903
2904 /* now local changes will be tracked by inotify, but remote changes won't */
2905 /* unless the filesystem is known to be local, we therefore still poll */
2906 /* also do poll on <2.6.25, but with normal frequency */
2907
2908 if (!fs_2625)
2909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2910 else if (!statfs (w->path, &sfs)
2911 && (sfs.f_type == 0x1373 /* devfs */
2912 || sfs.f_type == 0xEF53 /* ext2/3 */
2913 || sfs.f_type == 0x3153464a /* jfs */
2914 || sfs.f_type == 0x52654973 /* reiser3 */
2915 || sfs.f_type == 0x01021994 /* tempfs */
2916 || sfs.f_type == 0x58465342 /* xfs */))
2917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2918 else
2919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2465 { 2920 }
2921 else
2922 {
2923 /* can't use inotify, continue to stat */
2466 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 2924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2467 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2468 2925
2469 /* monitor some parent directory for speedup hints */ 2926 /* if path is not there, monitor some parent directory for speedup hints */
2470 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2471 /* but an efficiency issue only */ 2928 /* but an efficiency issue only */
2472 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2473 { 2930 {
2474 char path [4096]; 2931 char path [4096];
2490 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2491 } 2948 }
2492 } 2949 }
2493 2950
2494 if (w->wd >= 0) 2951 if (w->wd >= 0)
2495 {
2496 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2952 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2497 2953
2498 /* now local changes will be tracked by inotify, but remote changes won't */ 2954 /* now re-arm timer, if required */
2499 /* unless the filesystem it known to be local, we therefore still poll */ 2955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2500 /* also do poll on <2.6.25, but with normal frequency */
2501 struct statfs sfs;
2502
2503 if (fs_2625 && !statfs (w->path, &sfs))
2504 if (sfs.f_type == 0x1373 /* devfs */
2505 || sfs.f_type == 0xEF53 /* ext2/3 */
2506 || sfs.f_type == 0x3153464a /* jfs */
2507 || sfs.f_type == 0x52654973 /* reiser3 */
2508 || sfs.f_type == 0x01021994 /* tempfs */
2509 || sfs.f_type == 0x58465342 /* xfs */)
2510 return;
2511
2512 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2513 ev_timer_again (EV_A_ &w->timer); 2956 ev_timer_again (EV_A_ &w->timer);
2514 } 2957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2515} 2958}
2516 2959
2517static void noinline 2960static void noinline
2518infy_del (EV_P_ ev_stat *w) 2961infy_del (EV_P_ ev_stat *w)
2519{ 2962{
2564 3007
2565static void 3008static void
2566infy_cb (EV_P_ ev_io *w, int revents) 3009infy_cb (EV_P_ ev_io *w, int revents)
2567{ 3010{
2568 char buf [EV_INOTIFY_BUFSIZE]; 3011 char buf [EV_INOTIFY_BUFSIZE];
2569 struct inotify_event *ev = (struct inotify_event *)buf;
2570 int ofs; 3012 int ofs;
2571 int len = read (fs_fd, buf, sizeof (buf)); 3013 int len = read (fs_fd, buf, sizeof (buf));
2572 3014
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3015 for (ofs = 0; ofs < len; )
3016 {
3017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3019 ofs += sizeof (struct inotify_event) + ev->len;
3020 }
2575} 3021}
2576 3022
2577void inline_size 3023inline_size unsigned int
3024ev_linux_version (void)
3025{
3026 struct utsname buf;
3027 unsigned int v;
3028 int i;
3029 char *p = buf.release;
3030
3031 if (uname (&buf))
3032 return 0;
3033
3034 for (i = 3+1; --i; )
3035 {
3036 unsigned int c = 0;
3037
3038 for (;;)
3039 {
3040 if (*p >= '0' && *p <= '9')
3041 c = c * 10 + *p++ - '0';
3042 else
3043 {
3044 p += *p == '.';
3045 break;
3046 }
3047 }
3048
3049 v = (v << 8) | c;
3050 }
3051
3052 return v;
3053}
3054
3055inline_size void
2578check_2625 (EV_P) 3056ev_check_2625 (EV_P)
2579{ 3057{
2580 /* kernels < 2.6.25 are borked 3058 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3059 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 3060 */
2583 struct utsname buf; 3061 if (ev_linux_version () < 0x020619)
2584 int major, minor, micro;
2585
2586 if (uname (&buf))
2587 return; 3062 return;
2588 3063
2589 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2590 return;
2591
2592 if (major < 2
2593 || (major == 2 && minor < 6)
2594 || (major == 2 && minor == 6 && micro < 25))
2595 return;
2596
2597 fs_2625 = 1; 3064 fs_2625 = 1;
2598} 3065}
2599 3066
2600void inline_size 3067inline_size int
3068infy_newfd (void)
3069{
3070#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3071 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3072 if (fd >= 0)
3073 return fd;
3074#endif
3075 return inotify_init ();
3076}
3077
3078inline_size void
2601infy_init (EV_P) 3079infy_init (EV_P)
2602{ 3080{
2603 if (fs_fd != -2) 3081 if (fs_fd != -2)
2604 return; 3082 return;
2605 3083
2606 fs_fd = -1; 3084 fs_fd = -1;
2607 3085
2608 check_2625 (EV_A); 3086 ev_check_2625 (EV_A);
2609 3087
2610 fs_fd = inotify_init (); 3088 fs_fd = infy_newfd ();
2611 3089
2612 if (fs_fd >= 0) 3090 if (fs_fd >= 0)
2613 { 3091 {
3092 fd_intern (fs_fd);
2614 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3093 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2615 ev_set_priority (&fs_w, EV_MAXPRI); 3094 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 3095 ev_io_start (EV_A_ &fs_w);
3096 ev_unref (EV_A);
2617 } 3097 }
2618} 3098}
2619 3099
2620void inline_size 3100inline_size void
2621infy_fork (EV_P) 3101infy_fork (EV_P)
2622{ 3102{
2623 int slot; 3103 int slot;
2624 3104
2625 if (fs_fd < 0) 3105 if (fs_fd < 0)
2626 return; 3106 return;
2627 3107
3108 ev_ref (EV_A);
3109 ev_io_stop (EV_A_ &fs_w);
2628 close (fs_fd); 3110 close (fs_fd);
2629 fs_fd = inotify_init (); 3111 fs_fd = infy_newfd ();
3112
3113 if (fs_fd >= 0)
3114 {
3115 fd_intern (fs_fd);
3116 ev_io_set (&fs_w, fs_fd, EV_READ);
3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
3119 }
2630 3120
2631 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2632 { 3122 {
2633 WL w_ = fs_hash [slot].head; 3123 WL w_ = fs_hash [slot].head;
2634 fs_hash [slot].head = 0; 3124 fs_hash [slot].head = 0;
2641 w->wd = -1; 3131 w->wd = -1;
2642 3132
2643 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2644 infy_add (EV_A_ w); /* re-add, no matter what */ 3134 infy_add (EV_A_ w); /* re-add, no matter what */
2645 else 3135 else
3136 {
3137 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3138 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2646 ev_timer_again (EV_A_ &w->timer); 3139 ev_timer_again (EV_A_ &w->timer);
3140 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3141 }
2647 } 3142 }
2648 } 3143 }
2649} 3144}
2650 3145
2651#endif 3146#endif
2668static void noinline 3163static void noinline
2669stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3164stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2670{ 3165{
2671 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3166 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2672 3167
2673 /* we copy this here each the time so that */ 3168 ev_statdata prev = w->attr;
2674 /* prev has the old value when the callback gets invoked */
2675 w->prev = w->attr;
2676 ev_stat_stat (EV_A_ w); 3169 ev_stat_stat (EV_A_ w);
2677 3170
2678 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3171 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2679 if ( 3172 if (
2680 w->prev.st_dev != w->attr.st_dev 3173 prev.st_dev != w->attr.st_dev
2681 || w->prev.st_ino != w->attr.st_ino 3174 || prev.st_ino != w->attr.st_ino
2682 || w->prev.st_mode != w->attr.st_mode 3175 || prev.st_mode != w->attr.st_mode
2683 || w->prev.st_nlink != w->attr.st_nlink 3176 || prev.st_nlink != w->attr.st_nlink
2684 || w->prev.st_uid != w->attr.st_uid 3177 || prev.st_uid != w->attr.st_uid
2685 || w->prev.st_gid != w->attr.st_gid 3178 || prev.st_gid != w->attr.st_gid
2686 || w->prev.st_rdev != w->attr.st_rdev 3179 || prev.st_rdev != w->attr.st_rdev
2687 || w->prev.st_size != w->attr.st_size 3180 || prev.st_size != w->attr.st_size
2688 || w->prev.st_atime != w->attr.st_atime 3181 || prev.st_atime != w->attr.st_atime
2689 || w->prev.st_mtime != w->attr.st_mtime 3182 || prev.st_mtime != w->attr.st_mtime
2690 || w->prev.st_ctime != w->attr.st_ctime 3183 || prev.st_ctime != w->attr.st_ctime
2691 ) { 3184 ) {
3185 /* we only update w->prev on actual differences */
3186 /* in case we test more often than invoke the callback, */
3187 /* to ensure that prev is always different to attr */
3188 w->prev = prev;
3189
2692 #if EV_USE_INOTIFY 3190 #if EV_USE_INOTIFY
2693 if (fs_fd >= 0) 3191 if (fs_fd >= 0)
2694 { 3192 {
2695 infy_del (EV_A_ w); 3193 infy_del (EV_A_ w);
2696 infy_add (EV_A_ w); 3194 infy_add (EV_A_ w);
2721 3219
2722 if (fs_fd >= 0) 3220 if (fs_fd >= 0)
2723 infy_add (EV_A_ w); 3221 infy_add (EV_A_ w);
2724 else 3222 else
2725#endif 3223#endif
3224 {
2726 ev_timer_again (EV_A_ &w->timer); 3225 ev_timer_again (EV_A_ &w->timer);
3226 ev_unref (EV_A);
3227 }
2727 3228
2728 ev_start (EV_A_ (W)w, 1); 3229 ev_start (EV_A_ (W)w, 1);
2729 3230
2730 EV_FREQUENT_CHECK; 3231 EV_FREQUENT_CHECK;
2731} 3232}
2740 EV_FREQUENT_CHECK; 3241 EV_FREQUENT_CHECK;
2741 3242
2742#if EV_USE_INOTIFY 3243#if EV_USE_INOTIFY
2743 infy_del (EV_A_ w); 3244 infy_del (EV_A_ w);
2744#endif 3245#endif
3246
3247 if (ev_is_active (&w->timer))
3248 {
3249 ev_ref (EV_A);
2745 ev_timer_stop (EV_A_ &w->timer); 3250 ev_timer_stop (EV_A_ &w->timer);
3251 }
2746 3252
2747 ev_stop (EV_A_ (W)w); 3253 ev_stop (EV_A_ (W)w);
2748 3254
2749 EV_FREQUENT_CHECK; 3255 EV_FREQUENT_CHECK;
2750} 3256}
2891embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3397embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2892{ 3398{
2893 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3399 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2894 3400
2895 { 3401 {
2896 struct ev_loop *loop = w->other; 3402 EV_P = w->other;
2897 3403
2898 while (fdchangecnt) 3404 while (fdchangecnt)
2899 { 3405 {
2900 fd_reify (EV_A); 3406 fd_reify (EV_A);
2901 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3407 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2909 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3415 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2910 3416
2911 ev_embed_stop (EV_A_ w); 3417 ev_embed_stop (EV_A_ w);
2912 3418
2913 { 3419 {
2914 struct ev_loop *loop = w->other; 3420 EV_P = w->other;
2915 3421
2916 ev_loop_fork (EV_A); 3422 ev_loop_fork (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3423 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2918 } 3424 }
2919 3425
2933{ 3439{
2934 if (expect_false (ev_is_active (w))) 3440 if (expect_false (ev_is_active (w)))
2935 return; 3441 return;
2936 3442
2937 { 3443 {
2938 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2939 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3445 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2940 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3446 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2941 } 3447 }
2942 3448
2943 EV_FREQUENT_CHECK; 3449 EV_FREQUENT_CHECK;
2970 3476
2971 ev_io_stop (EV_A_ &w->io); 3477 ev_io_stop (EV_A_ &w->io);
2972 ev_prepare_stop (EV_A_ &w->prepare); 3478 ev_prepare_stop (EV_A_ &w->prepare);
2973 ev_fork_stop (EV_A_ &w->fork); 3479 ev_fork_stop (EV_A_ &w->fork);
2974 3480
3481 ev_stop (EV_A_ (W)w);
3482
2975 EV_FREQUENT_CHECK; 3483 EV_FREQUENT_CHECK;
2976} 3484}
2977#endif 3485#endif
2978 3486
2979#if EV_FORK_ENABLE 3487#if EV_FORK_ENABLE
3055 3563
3056void 3564void
3057ev_async_send (EV_P_ ev_async *w) 3565ev_async_send (EV_P_ ev_async *w)
3058{ 3566{
3059 w->sent = 1; 3567 w->sent = 1;
3060 evpipe_write (EV_A_ &gotasync); 3568 evpipe_write (EV_A_ &async_pending);
3061} 3569}
3062#endif 3570#endif
3063 3571
3064/*****************************************************************************/ 3572/*****************************************************************************/
3065 3573
3127 ev_timer_set (&once->to, timeout, 0.); 3635 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3636 ev_timer_start (EV_A_ &once->to);
3129 } 3637 }
3130} 3638}
3131 3639
3640/*****************************************************************************/
3641
3642#if EV_WALK_ENABLE
3643void
3644ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3645{
3646 int i, j;
3647 ev_watcher_list *wl, *wn;
3648
3649 if (types & (EV_IO | EV_EMBED))
3650 for (i = 0; i < anfdmax; ++i)
3651 for (wl = anfds [i].head; wl; )
3652 {
3653 wn = wl->next;
3654
3655#if EV_EMBED_ENABLE
3656 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3657 {
3658 if (types & EV_EMBED)
3659 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3660 }
3661 else
3662#endif
3663#if EV_USE_INOTIFY
3664 if (ev_cb ((ev_io *)wl) == infy_cb)
3665 ;
3666 else
3667#endif
3668 if ((ev_io *)wl != &pipe_w)
3669 if (types & EV_IO)
3670 cb (EV_A_ EV_IO, wl);
3671
3672 wl = wn;
3673 }
3674
3675 if (types & (EV_TIMER | EV_STAT))
3676 for (i = timercnt + HEAP0; i-- > HEAP0; )
3677#if EV_STAT_ENABLE
3678 /*TODO: timer is not always active*/
3679 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3680 {
3681 if (types & EV_STAT)
3682 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3683 }
3684 else
3685#endif
3686 if (types & EV_TIMER)
3687 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3688
3689#if EV_PERIODIC_ENABLE
3690 if (types & EV_PERIODIC)
3691 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3692 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3693#endif
3694
3695#if EV_IDLE_ENABLE
3696 if (types & EV_IDLE)
3697 for (j = NUMPRI; i--; )
3698 for (i = idlecnt [j]; i--; )
3699 cb (EV_A_ EV_IDLE, idles [j][i]);
3700#endif
3701
3702#if EV_FORK_ENABLE
3703 if (types & EV_FORK)
3704 for (i = forkcnt; i--; )
3705 if (ev_cb (forks [i]) != embed_fork_cb)
3706 cb (EV_A_ EV_FORK, forks [i]);
3707#endif
3708
3709#if EV_ASYNC_ENABLE
3710 if (types & EV_ASYNC)
3711 for (i = asynccnt; i--; )
3712 cb (EV_A_ EV_ASYNC, asyncs [i]);
3713#endif
3714
3715 if (types & EV_PREPARE)
3716 for (i = preparecnt; i--; )
3717#if EV_EMBED_ENABLE
3718 if (ev_cb (prepares [i]) != embed_prepare_cb)
3719#endif
3720 cb (EV_A_ EV_PREPARE, prepares [i]);
3721
3722 if (types & EV_CHECK)
3723 for (i = checkcnt; i--; )
3724 cb (EV_A_ EV_CHECK, checks [i]);
3725
3726 if (types & EV_SIGNAL)
3727 for (i = 0; i < EV_NSIG - 1; ++i)
3728 for (wl = signals [i].head; wl; )
3729 {
3730 wn = wl->next;
3731 cb (EV_A_ EV_SIGNAL, wl);
3732 wl = wn;
3733 }
3734
3735 if (types & EV_CHILD)
3736 for (i = EV_PID_HASHSIZE; i--; )
3737 for (wl = childs [i]; wl; )
3738 {
3739 wn = wl->next;
3740 cb (EV_A_ EV_CHILD, wl);
3741 wl = wn;
3742 }
3743/* EV_STAT 0x00001000 /* stat data changed */
3744/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3745}
3746#endif
3747
3132#if EV_MULTIPLICITY 3748#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3749 #include "ev_wrap.h"
3134#endif 3750#endif
3135 3751
3136#ifdef __cplusplus 3752#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines