ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC vs.
Revision 1.334 by root, Tue Mar 9 09:00:59 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
33#endif 154#endif
34 155
35#include <math.h> 156#include <math.h>
36#include <stdlib.h> 157#include <stdlib.h>
37#include <unistd.h> 158#include <string.h>
38#include <fcntl.h> 159#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 160#include <stddef.h>
41 161
42#include <stdio.h> 162#include <stdio.h>
43 163
44#include <assert.h> 164#include <assert.h>
45#include <errno.h> 165#include <errno.h>
46#include <sys/types.h> 166#include <sys/types.h>
167#include <time.h>
168#include <limits.h>
169
170#include <signal.h>
171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
47#ifndef WIN32 178#ifndef _WIN32
179# include <sys/time.h>
48# include <sys/wait.h> 180# include <sys/wait.h>
181# include <unistd.h>
182#else
183# include <io.h>
184# define WIN32_LEAN_AND_MEAN
185# include <windows.h>
186# ifndef EV_SELECT_IS_WINSOCKET
187# define EV_SELECT_IS_WINSOCKET 1
49#endif 188# endif
50#include <sys/time.h> 189# undef EV_AVOID_STDIO
51#include <time.h> 190#endif
52 191
53/**/ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
226# endif
227#endif
54 228
55#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 231# define EV_USE_MONOTONIC 1
232# else
233# define EV_USE_MONOTONIC 0
234# endif
235#endif
236
237#ifndef EV_USE_REALTIME
238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
239#endif
240
241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
245# define EV_USE_NANOSLEEP 0
246# endif
57#endif 247#endif
58 248
59#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
61#endif 251#endif
62 252
63#ifndef EV_USE_POLL 253#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 254# ifdef _WIN32
255# define EV_USE_POLL 0
256# else
257# define EV_USE_POLL 1
258# endif
65#endif 259#endif
66 260
67#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
68# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
69#endif 267#endif
70 268
71#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
73#endif 271#endif
74 272
75#ifndef EV_USE_REALTIME 273#ifndef EV_USE_PORT
274# define EV_USE_PORT 0
275#endif
276
277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 279# define EV_USE_INOTIFY 1
280# else
281# define EV_USE_INOTIFY 0
77#endif 282# endif
283#endif
78 284
79/**/ 285#ifndef EV_PID_HASHSIZE
286# if EV_MINIMAL
287# define EV_PID_HASHSIZE 1
288# else
289# define EV_PID_HASHSIZE 16
290# endif
291#endif
292
293#ifndef EV_INOTIFY_HASHSIZE
294# if EV_MINIMAL
295# define EV_INOTIFY_HASHSIZE 1
296# else
297# define EV_INOTIFY_HASHSIZE 16
298# endif
299#endif
300
301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
80 356
81#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
84#endif 360#endif
86#ifndef CLOCK_REALTIME 362#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 363# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 364# define EV_USE_REALTIME 0
89#endif 365#endif
90 366
367#if !EV_STAT_ENABLE
368# undef EV_USE_INOTIFY
369# define EV_USE_INOTIFY 0
370#endif
371
372#if !EV_USE_NANOSLEEP
373# ifndef _WIN32
374# include <sys/select.h>
375# endif
376#endif
377
378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
387#endif
388
389#if EV_SELECT_IS_WINSOCKET
390# include <winsock.h>
391#endif
392
393#if EV_USE_EVENTFD
394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
91/**/ 444/**/
92 445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
451
452/*
453 * This is used to avoid floating point rounding problems.
454 * It is added to ev_rt_now when scheduling periodics
455 * to ensure progress, time-wise, even when rounding
456 * errors are against us.
457 * This value is good at least till the year 4000.
458 * Better solutions welcome.
459 */
460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
461
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 464
98#include "ev.h"
99
100#if __GNUC__ >= 3 465#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 467# define noinline __attribute__ ((noinline))
103#else 468#else
104# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
105# define inline static 470# define noinline
471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
472# define inline
473# endif
106#endif 474#endif
107 475
108#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 477#define expect_true(expr) expect ((expr) != 0, 1)
478#define inline_size static inline
110 479
480#if EV_MINIMAL
481# define inline_speed static noinline
482#else
483# define inline_speed static inline
484#endif
485
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
113 493
494#define EMPTY /* required for microsofts broken pseudo-c compiler */
495#define EMPTY2(a,b) /* used to suppress some warnings */
496
114typedef struct ev_watcher *W; 497typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
117 500
501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
522#endif
523
524#ifdef _WIN32
525# include "ev_win32.c"
526#endif
119 527
120/*****************************************************************************/ 528/*****************************************************************************/
121 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
538static void (*syserr_cb)(const char *msg);
539
540void
541ev_set_syserr_cb (void (*cb)(const char *msg))
542{
543 syserr_cb = cb;
544}
545
546static void noinline
547ev_syserr (const char *msg)
548{
549 if (!msg)
550 msg = "(libev) system error";
551
552 if (syserr_cb)
553 syserr_cb (msg);
554 else
555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
564 perror (msg);
565#endif
566 abort ();
567 }
568}
569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573#if __GLIBC__
574 return realloc (ptr, size);
575#else
576 /* some systems, notably openbsd and darwin, fail to properly
577 * implement realloc (x, 0) (as required by both ansi c-98 and
578 * the single unix specification, so work around them here.
579 */
580
581 if (size)
582 return realloc (ptr, size);
583
584 free (ptr);
585 return 0;
586#endif
587}
588
589static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
590
591void
592ev_set_allocator (void *(*cb)(void *ptr, long size))
593{
594 alloc = cb;
595}
596
597inline_speed void *
598ev_realloc (void *ptr, long size)
599{
600 ptr = alloc (ptr, size);
601
602 if (!ptr && size)
603 {
604#if EV_AVOID_STDIO
605 ev_printerr ("libev: memory allocation failed, aborting.\n");
606#else
607 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
608#endif
609 abort ();
610 }
611
612 return ptr;
613}
614
615#define ev_malloc(size) ev_realloc (0, (size))
616#define ev_free(ptr) ev_realloc ((ptr), 0)
617
618/*****************************************************************************/
619
620/* set in reify when reification needed */
621#define EV_ANFD_REIFY 1
622
623/* file descriptor info structure */
122typedef struct 624typedef struct
123{ 625{
124 struct ev_watcher_list *head; 626 WL head;
125 unsigned char events; 627 unsigned char events; /* the events watched for */
628 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
629 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
126 unsigned char reify; 630 unsigned char unused;
631#if EV_USE_EPOLL
632 unsigned int egen; /* generation counter to counter epoll bugs */
633#endif
634#if EV_SELECT_IS_WINSOCKET
635 SOCKET handle;
636#endif
127} ANFD; 637} ANFD;
128 638
639/* stores the pending event set for a given watcher */
129typedef struct 640typedef struct
130{ 641{
131 W w; 642 W w;
132 int events; 643 int events; /* the pending event set for the given watcher */
133} ANPENDING; 644} ANPENDING;
134 645
646#if EV_USE_INOTIFY
647/* hash table entry per inotify-id */
648typedef struct
649{
650 WL head;
651} ANFS;
652#endif
653
654/* Heap Entry */
655#if EV_HEAP_CACHE_AT
656 /* a heap element */
657 typedef struct {
658 ev_tstamp at;
659 WT w;
660 } ANHE;
661
662 #define ANHE_w(he) (he).w /* access watcher, read-write */
663 #define ANHE_at(he) (he).at /* access cached at, read-only */
664 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
665#else
666 /* a heap element */
667 typedef WT ANHE;
668
669 #define ANHE_w(he) (he)
670 #define ANHE_at(he) (he)->at
671 #define ANHE_at_cache(he)
672#endif
673
135#if EV_MULTIPLICITY 674#if EV_MULTIPLICITY
136 675
137struct ev_loop 676 struct ev_loop
138{ 677 {
678 ev_tstamp ev_rt_now;
679 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 680 #define VAR(name,decl) decl;
140# include "ev_vars.h" 681 #include "ev_vars.h"
141};
142# undef VAR 682 #undef VAR
683 };
143# include "ev_wrap.h" 684 #include "ev_wrap.h"
685
686 static struct ev_loop default_loop_struct;
687 struct ev_loop *ev_default_loop_ptr;
144 688
145#else 689#else
146 690
691 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 692 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 693 #include "ev_vars.h"
149# undef VAR 694 #undef VAR
150 695
696 static int ev_default_loop_ptr;
697
151#endif 698#endif
699
700#if EV_MINIMAL < 2
701# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
702# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
703# define EV_INVOKE_PENDING invoke_cb (EV_A)
704#else
705# define EV_RELEASE_CB (void)0
706# define EV_ACQUIRE_CB (void)0
707# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
708#endif
709
710#define EVUNLOOP_RECURSE 0x80
152 711
153/*****************************************************************************/ 712/*****************************************************************************/
154 713
155inline ev_tstamp 714#ifndef EV_HAVE_EV_TIME
715ev_tstamp
156ev_time (void) 716ev_time (void)
157{ 717{
158#if EV_USE_REALTIME 718#if EV_USE_REALTIME
719 if (expect_true (have_realtime))
720 {
159 struct timespec ts; 721 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 722 clock_gettime (CLOCK_REALTIME, &ts);
161 return ts.tv_sec + ts.tv_nsec * 1e-9; 723 return ts.tv_sec + ts.tv_nsec * 1e-9;
162#else 724 }
725#endif
726
163 struct timeval tv; 727 struct timeval tv;
164 gettimeofday (&tv, 0); 728 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 729 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif
167} 730}
731#endif
168 732
169inline ev_tstamp 733inline_size ev_tstamp
170get_clock (void) 734get_clock (void)
171{ 735{
172#if EV_USE_MONOTONIC 736#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 737 if (expect_true (have_monotonic))
174 { 738 {
179#endif 743#endif
180 744
181 return ev_time (); 745 return ev_time ();
182} 746}
183 747
748#if EV_MULTIPLICITY
184ev_tstamp 749ev_tstamp
185ev_now (EV_P) 750ev_now (EV_P)
186{ 751{
187 return rt_now; 752 return ev_rt_now;
188} 753}
754#endif
189 755
190#define array_roundsize(base,n) ((n) | 4 & ~3) 756void
191 757ev_sleep (ev_tstamp delay)
192#define array_needsize(base,cur,cnt,init) \ 758{
193 if (expect_false ((cnt) > cur)) \ 759 if (delay > 0.)
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 } 760 {
761#if EV_USE_NANOSLEEP
762 struct timespec ts;
763
764 ts.tv_sec = (time_t)delay;
765 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
766
767 nanosleep (&ts, 0);
768#elif defined(_WIN32)
769 Sleep ((unsigned long)(delay * 1e3));
770#else
771 struct timeval tv;
772
773 tv.tv_sec = (time_t)delay;
774 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
775
776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
777 /* something not guaranteed by newer posix versions, but guaranteed */
778 /* by older ones */
779 select (0, 0, 0, 0, &tv);
780#endif
781 }
782}
206 783
207/*****************************************************************************/ 784/*****************************************************************************/
208 785
209static void 786#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
210anfds_init (ANFD *base, int count)
211{
212 while (count--)
213 {
214 base->head = 0;
215 base->events = EV_NONE;
216 base->reify = 0;
217 787
218 ++base; 788/* find a suitable new size for the given array, */
789/* hopefully by rounding to a ncie-to-malloc size */
790inline_size int
791array_nextsize (int elem, int cur, int cnt)
792{
793 int ncur = cur + 1;
794
795 do
796 ncur <<= 1;
797 while (cnt > ncur);
798
799 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
800 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
219 } 801 {
220} 802 ncur *= elem;
221 803 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
222static void 804 ncur = ncur - sizeof (void *) * 4;
223event (EV_P_ W w, int events) 805 ncur /= elem;
224{
225 if (w->pending)
226 { 806 }
807
808 return ncur;
809}
810
811static noinline void *
812array_realloc (int elem, void *base, int *cur, int cnt)
813{
814 *cur = array_nextsize (elem, *cur, cnt);
815 return ev_realloc (base, elem * *cur);
816}
817
818#define array_init_zero(base,count) \
819 memset ((void *)(base), 0, sizeof (*(base)) * (count))
820
821#define array_needsize(type,base,cur,cnt,init) \
822 if (expect_false ((cnt) > (cur))) \
823 { \
824 int ocur_ = (cur); \
825 (base) = (type *)array_realloc \
826 (sizeof (type), (base), &(cur), (cnt)); \
827 init ((base) + (ocur_), (cur) - ocur_); \
828 }
829
830#if 0
831#define array_slim(type,stem) \
832 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
833 { \
834 stem ## max = array_roundsize (stem ## cnt >> 1); \
835 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
836 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
837 }
838#endif
839
840#define array_free(stem, idx) \
841 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
842
843/*****************************************************************************/
844
845/* dummy callback for pending events */
846static void noinline
847pendingcb (EV_P_ ev_prepare *w, int revents)
848{
849}
850
851void noinline
852ev_feed_event (EV_P_ void *w, int revents)
853{
854 W w_ = (W)w;
855 int pri = ABSPRI (w_);
856
857 if (expect_false (w_->pending))
858 pendings [pri][w_->pending - 1].events |= revents;
859 else
860 {
861 w_->pending = ++pendingcnt [pri];
862 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
863 pendings [pri][w_->pending - 1].w = w_;
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 864 pendings [pri][w_->pending - 1].events = revents;
228 return;
229 } 865 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235} 866}
236 867
237static void 868inline_speed void
869feed_reverse (EV_P_ W w)
870{
871 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
872 rfeeds [rfeedcnt++] = w;
873}
874
875inline_size void
876feed_reverse_done (EV_P_ int revents)
877{
878 do
879 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
880 while (rfeedcnt);
881}
882
883inline_speed void
238queue_events (EV_P_ W *events, int eventcnt, int type) 884queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 885{
240 int i; 886 int i;
241 887
242 for (i = 0; i < eventcnt; ++i) 888 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 889 ev_feed_event (EV_A_ events [i], type);
244} 890}
245 891
246static void 892/*****************************************************************************/
893
894inline_speed void
247fd_event (EV_P_ int fd, int events) 895fd_event_nc (EV_P_ int fd, int revents)
248{ 896{
249 ANFD *anfd = anfds + fd; 897 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 898 ev_io *w;
251 899
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 900 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 901 {
254 int ev = w->events & events; 902 int ev = w->events & revents;
255 903
256 if (ev) 904 if (ev)
257 event (EV_A_ (W)w, ev); 905 ev_feed_event (EV_A_ (W)w, ev);
258 } 906 }
259} 907}
260 908
261/*****************************************************************************/ 909/* do not submit kernel events for fds that have reify set */
910/* because that means they changed while we were polling for new events */
911inline_speed void
912fd_event (EV_P_ int fd, int revents)
913{
914 ANFD *anfd = anfds + fd;
262 915
263static void 916 if (expect_true (!anfd->reify))
917 fd_event_nc (EV_A_ fd, revents);
918}
919
920void
921ev_feed_fd_event (EV_P_ int fd, int revents)
922{
923 if (fd >= 0 && fd < anfdmax)
924 fd_event_nc (EV_A_ fd, revents);
925}
926
927/* make sure the external fd watch events are in-sync */
928/* with the kernel/libev internal state */
929inline_size void
264fd_reify (EV_P) 930fd_reify (EV_P)
265{ 931{
266 int i; 932 int i;
267 933
268 for (i = 0; i < fdchangecnt; ++i) 934 for (i = 0; i < fdchangecnt; ++i)
269 { 935 {
270 int fd = fdchanges [i]; 936 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 937 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 938 ev_io *w;
273 939
274 int events = 0; 940 unsigned char events = 0;
275 941
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 942 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 943 events |= (unsigned char)w->events;
278 944
279 anfd->reify = 0; 945#if EV_SELECT_IS_WINSOCKET
280 946 if (events)
281 if (anfd->events != events)
282 { 947 {
283 method_modify (EV_A_ fd, anfd->events, events); 948 unsigned long arg;
284 anfd->events = events; 949 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
950 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
285 } 951 }
952#endif
953
954 {
955 unsigned char o_events = anfd->events;
956 unsigned char o_reify = anfd->reify;
957
958 anfd->reify = 0;
959 anfd->events = events;
960
961 if (o_events != events || o_reify & EV__IOFDSET)
962 backend_modify (EV_A_ fd, o_events, events);
963 }
286 } 964 }
287 965
288 fdchangecnt = 0; 966 fdchangecnt = 0;
289} 967}
290 968
291static void 969/* something about the given fd changed */
970inline_size void
292fd_change (EV_P_ int fd) 971fd_change (EV_P_ int fd, int flags)
293{ 972{
294 if (anfds [fd].reify || fdchangecnt < 0) 973 unsigned char reify = anfds [fd].reify;
295 return;
296
297 anfds [fd].reify = 1; 974 anfds [fd].reify |= flags;
298 975
976 if (expect_true (!reify))
977 {
299 ++fdchangecnt; 978 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 979 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 980 fdchanges [fdchangecnt - 1] = fd;
981 }
302} 982}
303 983
304static void 984/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
985inline_speed void
305fd_kill (EV_P_ int fd) 986fd_kill (EV_P_ int fd)
306{ 987{
307 struct ev_io *w; 988 ev_io *w;
308 989
309 while ((w = (struct ev_io *)anfds [fd].head)) 990 while ((w = (ev_io *)anfds [fd].head))
310 { 991 {
311 ev_io_stop (EV_A_ w); 992 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 993 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 994 }
995}
996
997/* check whether the given fd is atcually valid, for error recovery */
998inline_size int
999fd_valid (int fd)
1000{
1001#ifdef _WIN32
1002 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1003#else
1004 return fcntl (fd, F_GETFD) != -1;
1005#endif
314} 1006}
315 1007
316/* called on EBADF to verify fds */ 1008/* called on EBADF to verify fds */
317static void 1009static void noinline
318fd_ebadf (EV_P) 1010fd_ebadf (EV_P)
319{ 1011{
320 int fd; 1012 int fd;
321 1013
322 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 1015 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1016 if (!fd_valid (fd) && errno == EBADF)
325 fd_kill (EV_A_ fd); 1017 fd_kill (EV_A_ fd);
326} 1018}
327 1019
328/* called on ENOMEM in select/poll to kill some fds and retry */ 1020/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 1021static void noinline
330fd_enomem (EV_P) 1022fd_enomem (EV_P)
331{ 1023{
332 int fd = anfdmax; 1024 int fd;
333 1025
334 while (fd--) 1026 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 1027 if (anfds [fd].events)
336 { 1028 {
337 close (fd);
338 fd_kill (EV_A_ fd); 1029 fd_kill (EV_A_ fd);
339 return; 1030 break;
340 } 1031 }
341} 1032}
342 1033
343/* susually called after fork if method needs to re-arm all fds from scratch */ 1034/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 1035static void noinline
345fd_rearm_all (EV_P) 1036fd_rearm_all (EV_P)
346{ 1037{
347 int fd; 1038 int fd;
348 1039
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 1040 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 1041 if (anfds [fd].events)
352 { 1042 {
353 anfds [fd].events = 0; 1043 anfds [fd].events = 0;
354 fd_change (fd); 1044 anfds [fd].emask = 0;
1045 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
355 } 1046 }
356} 1047}
357 1048
358/*****************************************************************************/ 1049/*****************************************************************************/
359 1050
1051/*
1052 * the heap functions want a real array index. array index 0 uis guaranteed to not
1053 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1054 * the branching factor of the d-tree.
1055 */
1056
1057/*
1058 * at the moment we allow libev the luxury of two heaps,
1059 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1060 * which is more cache-efficient.
1061 * the difference is about 5% with 50000+ watchers.
1062 */
1063#if EV_USE_4HEAP
1064
1065#define DHEAP 4
1066#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1067#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1068#define UPHEAP_DONE(p,k) ((p) == (k))
1069
1070/* away from the root */
1071inline_speed void
1072downheap (ANHE *heap, int N, int k)
1073{
1074 ANHE he = heap [k];
1075 ANHE *E = heap + N + HEAP0;
1076
1077 for (;;)
1078 {
1079 ev_tstamp minat;
1080 ANHE *minpos;
1081 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1082
1083 /* find minimum child */
1084 if (expect_true (pos + DHEAP - 1 < E))
1085 {
1086 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1087 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1088 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1089 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1090 }
1091 else if (pos < E)
1092 {
1093 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else
1099 break;
1100
1101 if (ANHE_at (he) <= minat)
1102 break;
1103
1104 heap [k] = *minpos;
1105 ev_active (ANHE_w (*minpos)) = k;
1106
1107 k = minpos - heap;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114#else /* 4HEAP */
1115
1116#define HEAP0 1
1117#define HPARENT(k) ((k) >> 1)
1118#define UPHEAP_DONE(p,k) (!(p))
1119
1120/* away from the root */
1121inline_speed void
1122downheap (ANHE *heap, int N, int k)
1123{
1124 ANHE he = heap [k];
1125
1126 for (;;)
1127 {
1128 int c = k << 1;
1129
1130 if (c >= N + HEAP0)
1131 break;
1132
1133 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1134 ? 1 : 0;
1135
1136 if (ANHE_at (he) <= ANHE_at (heap [c]))
1137 break;
1138
1139 heap [k] = heap [c];
1140 ev_active (ANHE_w (heap [k])) = k;
1141
1142 k = c;
1143 }
1144
1145 heap [k] = he;
1146 ev_active (ANHE_w (he)) = k;
1147}
1148#endif
1149
1150/* towards the root */
1151inline_speed void
1152upheap (ANHE *heap, int k)
1153{
1154 ANHE he = heap [k];
1155
1156 for (;;)
1157 {
1158 int p = HPARENT (k);
1159
1160 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1161 break;
1162
1163 heap [k] = heap [p];
1164 ev_active (ANHE_w (heap [k])) = k;
1165 k = p;
1166 }
1167
1168 heap [k] = he;
1169 ev_active (ANHE_w (he)) = k;
1170}
1171
1172/* move an element suitably so it is in a correct place */
1173inline_size void
1174adjustheap (ANHE *heap, int N, int k)
1175{
1176 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1177 upheap (heap, k);
1178 else
1179 downheap (heap, N, k);
1180}
1181
1182/* rebuild the heap: this function is used only once and executed rarely */
1183inline_size void
1184reheap (ANHE *heap, int N)
1185{
1186 int i;
1187
1188 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1189 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1190 for (i = 0; i < N; ++i)
1191 upheap (heap, i + HEAP0);
1192}
1193
1194/*****************************************************************************/
1195
1196/* associate signal watchers to a signal signal */
1197typedef struct
1198{
1199 EV_ATOMIC_T pending;
1200#if EV_MULTIPLICITY
1201 EV_P;
1202#endif
1203 WL head;
1204} ANSIG;
1205
1206static ANSIG signals [EV_NSIG - 1];
1207
1208/*****************************************************************************/
1209
1210/* used to prepare libev internal fd's */
1211/* this is not fork-safe */
1212inline_speed void
1213fd_intern (int fd)
1214{
1215#ifdef _WIN32
1216 unsigned long arg = 1;
1217 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1218#else
1219 fcntl (fd, F_SETFD, FD_CLOEXEC);
1220 fcntl (fd, F_SETFL, O_NONBLOCK);
1221#endif
1222}
1223
1224static void noinline
1225evpipe_init (EV_P)
1226{
1227 if (!ev_is_active (&pipe_w))
1228 {
1229#if EV_USE_EVENTFD
1230 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1231 if (evfd < 0 && errno == EINVAL)
1232 evfd = eventfd (0, 0);
1233
1234 if (evfd >= 0)
1235 {
1236 evpipe [0] = -1;
1237 fd_intern (evfd); /* doing it twice doesn't hurt */
1238 ev_io_set (&pipe_w, evfd, EV_READ);
1239 }
1240 else
1241#endif
1242 {
1243 while (pipe (evpipe))
1244 ev_syserr ("(libev) error creating signal/async pipe");
1245
1246 fd_intern (evpipe [0]);
1247 fd_intern (evpipe [1]);
1248 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1249 }
1250
1251 ev_io_start (EV_A_ &pipe_w);
1252 ev_unref (EV_A); /* watcher should not keep loop alive */
1253 }
1254}
1255
1256inline_size void
1257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1258{
1259 if (!*flag)
1260 {
1261 int old_errno = errno; /* save errno because write might clobber it */
1262
1263 *flag = 1;
1264
1265#if EV_USE_EVENTFD
1266 if (evfd >= 0)
1267 {
1268 uint64_t counter = 1;
1269 write (evfd, &counter, sizeof (uint64_t));
1270 }
1271 else
1272#endif
1273 write (evpipe [1], &old_errno, 1);
1274
1275 errno = old_errno;
1276 }
1277}
1278
1279/* called whenever the libev signal pipe */
1280/* got some events (signal, async) */
360static void 1281static void
361upheap (WT *heap, int k) 1282pipecb (EV_P_ ev_io *iow, int revents)
362{ 1283{
363 WT w = heap [k]; 1284 int i;
364 1285
365 while (k && heap [k >> 1]->at > w->at) 1286#if EV_USE_EVENTFD
366 { 1287 if (evfd >= 0)
367 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1;
369 k >>= 1;
370 } 1288 {
1289 uint64_t counter;
1290 read (evfd, &counter, sizeof (uint64_t));
1291 }
1292 else
1293#endif
1294 {
1295 char dummy;
1296 read (evpipe [0], &dummy, 1);
1297 }
371 1298
372 heap [k] = w; 1299 if (sig_pending)
373 heap [k]->active = k + 1; 1300 {
1301 sig_pending = 0;
374 1302
1303 for (i = EV_NSIG - 1; i--; )
1304 if (expect_false (signals [i].pending))
1305 ev_feed_signal_event (EV_A_ i + 1);
1306 }
1307
1308#if EV_ASYNC_ENABLE
1309 if (async_pending)
1310 {
1311 async_pending = 0;
1312
1313 for (i = asynccnt; i--; )
1314 if (asyncs [i]->sent)
1315 {
1316 asyncs [i]->sent = 0;
1317 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1318 }
1319 }
1320#endif
375} 1321}
1322
1323/*****************************************************************************/
376 1324
377static void 1325static void
378downheap (WT *heap, int N, int k) 1326ev_sighandler (int signum)
379{ 1327{
380 WT w = heap [k]; 1328#if EV_MULTIPLICITY
1329 EV_P = signals [signum - 1].loop;
1330#endif
381 1331
382 while (k < (N >> 1)) 1332#ifdef _WIN32
383 { 1333 signal (signum, ev_sighandler);
384 int j = k << 1; 1334#endif
385 1335
386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1336 signals [signum - 1].pending = 1;
387 ++j; 1337 evpipe_write (EV_A_ &sig_pending);
1338}
388 1339
389 if (w->at <= heap [j]->at) 1340void noinline
1341ev_feed_signal_event (EV_P_ int signum)
1342{
1343 WL w;
1344
1345 if (expect_false (signum <= 0 || signum > EV_NSIG))
1346 return;
1347
1348 --signum;
1349
1350#if EV_MULTIPLICITY
1351 /* it is permissible to try to feed a signal to the wrong loop */
1352 /* or, likely more useful, feeding a signal nobody is waiting for */
1353
1354 if (expect_false (signals [signum].loop != EV_A))
1355 return;
1356#endif
1357
1358 signals [signum].pending = 0;
1359
1360 for (w = signals [signum].head; w; w = w->next)
1361 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1362}
1363
1364#if EV_USE_SIGNALFD
1365static void
1366sigfdcb (EV_P_ ev_io *iow, int revents)
1367{
1368 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1369
1370 for (;;)
1371 {
1372 ssize_t res = read (sigfd, si, sizeof (si));
1373
1374 /* not ISO-C, as res might be -1, but works with SuS */
1375 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1376 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1377
1378 if (res < (ssize_t)sizeof (si))
390 break; 1379 break;
391
392 heap [k] = heap [j];
393 heap [k]->active = k + 1;
394 k = j;
395 } 1380 }
396
397 heap [k] = w;
398 heap [k]->active = k + 1;
399} 1381}
1382#endif
400 1383
401/*****************************************************************************/ 1384/*****************************************************************************/
402 1385
403typedef struct 1386static WL childs [EV_PID_HASHSIZE];
404{
405 struct ev_watcher_list *head;
406 sig_atomic_t volatile gotsig;
407} ANSIG;
408 1387
409static ANSIG *signals;
410static int signalmax;
411
412static int sigpipe [2];
413static sig_atomic_t volatile gotsig;
414static struct ev_io sigev;
415
416static void
417signals_init (ANSIG *base, int count)
418{
419 while (count--)
420 {
421 base->head = 0;
422 base->gotsig = 0;
423
424 ++base;
425 }
426}
427
428static void
429sighandler (int signum)
430{
431 signals [signum - 1].gotsig = 1;
432
433 if (!gotsig)
434 {
435 int old_errno = errno;
436 gotsig = 1;
437 write (sigpipe [1], &signum, 1);
438 errno = old_errno;
439 }
440}
441
442static void
443sigcb (EV_P_ struct ev_io *iow, int revents)
444{
445 struct ev_watcher_list *w;
446 int signum;
447
448 read (sigpipe [0], &revents, 1);
449 gotsig = 0;
450
451 for (signum = signalmax; signum--; )
452 if (signals [signum].gotsig)
453 {
454 signals [signum].gotsig = 0;
455
456 for (w = signals [signum].head; w; w = w->next)
457 event (EV_A_ (W)w, EV_SIGNAL);
458 }
459}
460
461static void
462siginit (EV_P)
463{
464#ifndef WIN32 1388#ifndef _WIN32
465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
467 1389
468 /* rather than sort out wether we really need nb, set it */
469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
471#endif
472
473 ev_io_set (&sigev, sigpipe [0], EV_READ);
474 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */
476}
477
478/*****************************************************************************/
479
480#ifndef WIN32
481
482static struct ev_child *childs [PID_HASHSIZE];
483static struct ev_signal childev; 1390static ev_signal childev;
1391
1392#ifndef WIFCONTINUED
1393# define WIFCONTINUED(status) 0
1394#endif
1395
1396/* handle a single child status event */
1397inline_speed void
1398child_reap (EV_P_ int chain, int pid, int status)
1399{
1400 ev_child *w;
1401 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1402
1403 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1404 {
1405 if ((w->pid == pid || !w->pid)
1406 && (!traced || (w->flags & 1)))
1407 {
1408 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1409 w->rpid = pid;
1410 w->rstatus = status;
1411 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1412 }
1413 }
1414}
484 1415
485#ifndef WCONTINUED 1416#ifndef WCONTINUED
486# define WCONTINUED 0 1417# define WCONTINUED 0
487#endif 1418#endif
488 1419
1420/* called on sigchld etc., calls waitpid */
489static void 1421static void
490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
491{
492 struct ev_child *w;
493
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid)
496 {
497 w->priority = sw->priority; /* need to do it *now* */
498 w->rpid = pid;
499 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD);
501 }
502}
503
504static void
505childcb (EV_P_ struct ev_signal *sw, int revents) 1422childcb (EV_P_ ev_signal *sw, int revents)
506{ 1423{
507 int pid, status; 1424 int pid, status;
508 1425
1426 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1427 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510 { 1428 if (!WCONTINUED
1429 || errno != EINVAL
1430 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1431 return;
1432
511 /* make sure we are called again until all childs have been reaped */ 1433 /* make sure we are called again until all children have been reaped */
1434 /* we need to do it this way so that the callback gets called before we continue */
512 event (EV_A_ (W)sw, EV_SIGNAL); 1435 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
513 1436
514 child_reap (EV_A_ sw, pid, pid, status); 1437 child_reap (EV_A_ pid, pid, status);
1438 if (EV_PID_HASHSIZE > 1)
515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1439 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
516 }
517} 1440}
518 1441
519#endif 1442#endif
520 1443
521/*****************************************************************************/ 1444/*****************************************************************************/
522 1445
1446#if EV_USE_PORT
1447# include "ev_port.c"
1448#endif
523#if EV_USE_KQUEUE 1449#if EV_USE_KQUEUE
524# include "ev_kqueue.c" 1450# include "ev_kqueue.c"
525#endif 1451#endif
526#if EV_USE_EPOLL 1452#if EV_USE_EPOLL
527# include "ev_epoll.c" 1453# include "ev_epoll.c"
544{ 1470{
545 return EV_VERSION_MINOR; 1471 return EV_VERSION_MINOR;
546} 1472}
547 1473
548/* return true if we are running with elevated privileges and should ignore env variables */ 1474/* return true if we are running with elevated privileges and should ignore env variables */
549static int 1475int inline_size
550enable_secure (void) 1476enable_secure (void)
551{ 1477{
552#ifdef WIN32 1478#ifdef _WIN32
553 return 0; 1479 return 0;
554#else 1480#else
555 return getuid () != geteuid () 1481 return getuid () != geteuid ()
556 || getgid () != getegid (); 1482 || getgid () != getegid ();
557#endif 1483#endif
558} 1484}
559 1485
560int 1486unsigned int
561ev_method (EV_P) 1487ev_supported_backends (void)
562{ 1488{
563 return method; 1489 unsigned int flags = 0;
564}
565 1490
566static void 1491 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
567loop_init (EV_P_ int methods) 1492 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1493 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1494 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1495 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1496
1497 return flags;
1498}
1499
1500unsigned int
1501ev_recommended_backends (void)
568{ 1502{
569 if (!method) 1503 unsigned int flags = ev_supported_backends ();
1504
1505#ifndef __NetBSD__
1506 /* kqueue is borked on everything but netbsd apparently */
1507 /* it usually doesn't work correctly on anything but sockets and pipes */
1508 flags &= ~EVBACKEND_KQUEUE;
1509#endif
1510#ifdef __APPLE__
1511 /* only select works correctly on that "unix-certified" platform */
1512 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1513 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1514#endif
1515
1516 return flags;
1517}
1518
1519unsigned int
1520ev_embeddable_backends (void)
1521{
1522 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1523
1524 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1525 /* please fix it and tell me how to detect the fix */
1526 flags &= ~EVBACKEND_EPOLL;
1527
1528 return flags;
1529}
1530
1531unsigned int
1532ev_backend (EV_P)
1533{
1534 return backend;
1535}
1536
1537#if EV_MINIMAL < 2
1538unsigned int
1539ev_loop_count (EV_P)
1540{
1541 return loop_count;
1542}
1543
1544unsigned int
1545ev_loop_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1550void
1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1552{
1553 io_blocktime = interval;
1554}
1555
1556void
1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1558{
1559 timeout_blocktime = interval;
1560}
1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
1587static void noinline
1588loop_init (EV_P_ unsigned int flags)
1589{
1590 if (!backend)
570 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
571#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
1604 {
1605 struct timespec ts;
1606
1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1608 have_monotonic = 1;
1609 }
1610#endif
1611
1612 /* pid check not overridable via env */
1613#ifndef _WIN32
1614 if (flags & EVFLAG_FORKCHECK)
1615 curpid = getpid ();
1616#endif
1617
1618 if (!(flags & EVFLAG_NOENV)
1619 && !enable_secure ()
1620 && getenv ("LIBEV_FLAGS"))
1621 flags = atoi (getenv ("LIBEV_FLAGS"));
1622
1623 ev_rt_now = ev_time ();
1624 mn_now = get_clock ();
1625 now_floor = mn_now;
1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_MINIMAL < 2
1628 invoke_cb = ev_invoke_pending;
1629#endif
1630
1631 io_blocktime = 0.;
1632 timeout_blocktime = 0.;
1633 backend = 0;
1634 backend_fd = -1;
1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1639#if EV_USE_INOTIFY
1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1641#endif
1642#if EV_USE_SIGNALFD
1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1644#endif
1645
1646 if (!(flags & 0x0000ffffU))
1647 flags |= ev_recommended_backends ();
1648
1649#if EV_USE_PORT
1650 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1651#endif
1652#if EV_USE_KQUEUE
1653 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1654#endif
1655#if EV_USE_EPOLL
1656 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1657#endif
1658#if EV_USE_POLL
1659 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1660#endif
1661#if EV_USE_SELECT
1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1663#endif
1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1667 ev_init (&pipe_w, pipecb);
1668 ev_set_priority (&pipe_w, EV_MAXPRI);
1669 }
1670}
1671
1672/* free up a loop structure */
1673static void noinline
1674loop_destroy (EV_P)
1675{
1676 int i;
1677
1678 if (ev_is_active (&pipe_w))
1679 {
1680 /*ev_ref (EV_A);*/
1681 /*ev_io_stop (EV_A_ &pipe_w);*/
1682
1683#if EV_USE_EVENTFD
1684 if (evfd >= 0)
1685 close (evfd);
1686#endif
1687
1688 if (evpipe [0] >= 0)
1689 {
1690 EV_WIN32_CLOSE_FD (evpipe [0]);
1691 EV_WIN32_CLOSE_FD (evpipe [1]);
1692 }
1693 }
1694
1695#if EV_USE_SIGNALFD
1696 if (ev_is_active (&sigfd_w))
1697 close (sigfd);
1698#endif
1699
1700#if EV_USE_INOTIFY
1701 if (fs_fd >= 0)
1702 close (fs_fd);
1703#endif
1704
1705 if (backend_fd >= 0)
1706 close (backend_fd);
1707
1708#if EV_USE_PORT
1709 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1710#endif
1711#if EV_USE_KQUEUE
1712 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1713#endif
1714#if EV_USE_EPOLL
1715 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1716#endif
1717#if EV_USE_POLL
1718 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1719#endif
1720#if EV_USE_SELECT
1721 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1722#endif
1723
1724 for (i = NUMPRI; i--; )
1725 {
1726 array_free (pending, [i]);
1727#if EV_IDLE_ENABLE
1728 array_free (idle, [i]);
1729#endif
1730 }
1731
1732 ev_free (anfds); anfds = 0; anfdmax = 0;
1733
1734 /* have to use the microsoft-never-gets-it-right macro */
1735 array_free (rfeed, EMPTY);
1736 array_free (fdchange, EMPTY);
1737 array_free (timer, EMPTY);
1738#if EV_PERIODIC_ENABLE
1739 array_free (periodic, EMPTY);
1740#endif
1741#if EV_FORK_ENABLE
1742 array_free (fork, EMPTY);
1743#endif
1744 array_free (prepare, EMPTY);
1745 array_free (check, EMPTY);
1746#if EV_ASYNC_ENABLE
1747 array_free (async, EMPTY);
1748#endif
1749
1750 backend = 0;
1751}
1752
1753#if EV_USE_INOTIFY
1754inline_size void infy_fork (EV_P);
1755#endif
1756
1757inline_size void
1758loop_fork (EV_P)
1759{
1760#if EV_USE_PORT
1761 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1762#endif
1763#if EV_USE_KQUEUE
1764 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1765#endif
1766#if EV_USE_EPOLL
1767 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1768#endif
1769#if EV_USE_INOTIFY
1770 infy_fork (EV_A);
1771#endif
1772
1773 if (ev_is_active (&pipe_w))
1774 {
1775 /* this "locks" the handlers against writing to the pipe */
1776 /* while we modify the fd vars */
1777 sig_pending = 1;
1778#if EV_ASYNC_ENABLE
1779 async_pending = 1;
1780#endif
1781
1782 ev_ref (EV_A);
1783 ev_io_stop (EV_A_ &pipe_w);
1784
1785#if EV_USE_EVENTFD
1786 if (evfd >= 0)
1787 close (evfd);
1788#endif
1789
1790 if (evpipe [0] >= 0)
1791 {
1792 EV_WIN32_CLOSE_FD (evpipe [0]);
1793 EV_WIN32_CLOSE_FD (evpipe [1]);
1794 }
1795
1796 evpipe_init (EV_A);
1797 /* now iterate over everything, in case we missed something */
1798 pipecb (EV_A_ &pipe_w, EV_READ);
1799 }
1800
1801 postfork = 0;
1802}
1803
1804#if EV_MULTIPLICITY
1805
1806struct ev_loop *
1807ev_loop_new (unsigned int flags)
1808{
1809 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1810
1811 memset (EV_A, 0, sizeof (struct ev_loop));
1812 loop_init (EV_A_ flags);
1813
1814 if (ev_backend (EV_A))
1815 return EV_A;
1816
1817 return 0;
1818}
1819
1820void
1821ev_loop_destroy (EV_P)
1822{
1823 loop_destroy (EV_A);
1824 ev_free (loop);
1825}
1826
1827void
1828ev_loop_fork (EV_P)
1829{
1830 postfork = 1; /* must be in line with ev_default_fork */
1831}
1832#endif /* multiplicity */
1833
1834#if EV_VERIFY
1835static void noinline
1836verify_watcher (EV_P_ W w)
1837{
1838 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1839
1840 if (w->pending)
1841 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1842}
1843
1844static void noinline
1845verify_heap (EV_P_ ANHE *heap, int N)
1846{
1847 int i;
1848
1849 for (i = HEAP0; i < N + HEAP0; ++i)
1850 {
1851 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1852 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1853 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1854
1855 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1856 }
1857}
1858
1859static void noinline
1860array_verify (EV_P_ W *ws, int cnt)
1861{
1862 while (cnt--)
1863 {
1864 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1865 verify_watcher (EV_A_ ws [cnt]);
1866 }
1867}
1868#endif
1869
1870#if EV_MINIMAL < 2
1871void
1872ev_loop_verify (EV_P)
1873{
1874#if EV_VERIFY
1875 int i;
1876 WL w;
1877
1878 assert (activecnt >= -1);
1879
1880 assert (fdchangemax >= fdchangecnt);
1881 for (i = 0; i < fdchangecnt; ++i)
1882 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1883
1884 assert (anfdmax >= 0);
1885 for (i = 0; i < anfdmax; ++i)
1886 for (w = anfds [i].head; w; w = w->next)
572 { 1887 {
573 struct timespec ts; 1888 verify_watcher (EV_A_ (W)w);
574 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1889 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
575 have_monotonic = 1; 1890 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
576 } 1891 }
1892
1893 assert (timermax >= timercnt);
1894 verify_heap (EV_A_ timers, timercnt);
1895
1896#if EV_PERIODIC_ENABLE
1897 assert (periodicmax >= periodiccnt);
1898 verify_heap (EV_A_ periodics, periodiccnt);
1899#endif
1900
1901 for (i = NUMPRI; i--; )
1902 {
1903 assert (pendingmax [i] >= pendingcnt [i]);
1904#if EV_IDLE_ENABLE
1905 assert (idleall >= 0);
1906 assert (idlemax [i] >= idlecnt [i]);
1907 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1908#endif
1909 }
1910
1911#if EV_FORK_ENABLE
1912 assert (forkmax >= forkcnt);
1913 array_verify (EV_A_ (W *)forks, forkcnt);
1914#endif
1915
1916#if EV_ASYNC_ENABLE
1917 assert (asyncmax >= asynccnt);
1918 array_verify (EV_A_ (W *)asyncs, asynccnt);
1919#endif
1920
1921 assert (preparemax >= preparecnt);
1922 array_verify (EV_A_ (W *)prepares, preparecnt);
1923
1924 assert (checkmax >= checkcnt);
1925 array_verify (EV_A_ (W *)checks, checkcnt);
1926
1927# if 0
1928 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1929 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
577#endif 1930# endif
578
579 rt_now = ev_time ();
580 mn_now = get_clock ();
581 now_floor = mn_now;
582 rtmn_diff = rt_now - mn_now;
583
584 if (methods == EVMETHOD_AUTO)
585 if (!enable_secure () && getenv ("LIBEV_METHODS"))
586 methods = atoi (getenv ("LIBEV_METHODS"));
587 else
588 methods = EVMETHOD_ANY;
589
590 method = 0;
591#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif 1931#endif
594#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
596#endif
597#if EV_USE_POLL
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599#endif
600#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602#endif
603 }
604} 1932}
605
606void
607loop_destroy (EV_P)
608{
609#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif 1933#endif
612#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
614#endif
615#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
617#endif
618#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif
621
622 method = 0;
623 /*TODO*/
624}
625
626void
627loop_fork (EV_P)
628{
629 /*TODO*/
630#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif
633#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif
636}
637 1934
638#if EV_MULTIPLICITY 1935#if EV_MULTIPLICITY
639struct ev_loop * 1936struct ev_loop *
640ev_loop_new (int methods) 1937ev_default_loop_init (unsigned int flags)
641{ 1938#else
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1939int
643 1940ev_default_loop (unsigned int flags)
644 loop_init (EV_A_ methods);
645
646 if (ev_methods (EV_A))
647 return loop;
648
649 return 0;
650}
651
652void
653ev_loop_destroy (EV_P)
654{
655 loop_destroy (EV_A);
656 free (loop);
657}
658
659void
660ev_loop_fork (EV_P)
661{
662 loop_fork (EV_A);
663}
664
665#endif 1941#endif
666 1942{
1943 if (!ev_default_loop_ptr)
1944 {
667#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct; 1946 EV_P = ev_default_loop_ptr = &default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop *
672#else 1947#else
673static int default_loop;
674
675int
676#endif
677ev_default_loop (int methods)
678{
679 if (sigpipe [0] == sigpipe [1])
680 if (pipe (sigpipe))
681 return 0;
682
683 if (!default_loop)
684 {
685#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct;
687#else
688 default_loop = 1; 1948 ev_default_loop_ptr = 1;
689#endif 1949#endif
690 1950
691 loop_init (EV_A_ methods); 1951 loop_init (EV_A_ flags);
692 1952
693 if (ev_method (EV_A)) 1953 if (ev_backend (EV_A))
694 { 1954 {
695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
697 siginit (EV_A);
698
699#ifndef WIN32 1955#ifndef _WIN32
700 ev_signal_init (&childev, childcb, SIGCHLD); 1956 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI); 1957 ev_set_priority (&childev, EV_MAXPRI);
702 ev_signal_start (EV_A_ &childev); 1958 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1959 ev_unref (EV_A); /* child watcher should not keep loop alive */
704#endif 1960#endif
705 } 1961 }
706 else 1962 else
707 default_loop = 0; 1963 ev_default_loop_ptr = 0;
708 } 1964 }
709 1965
710 return default_loop; 1966 return ev_default_loop_ptr;
711} 1967}
712 1968
713void 1969void
714ev_default_destroy (void) 1970ev_default_destroy (void)
715{ 1971{
716#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
717 struct ev_loop *loop = default_loop; 1973 EV_P = ev_default_loop_ptr;
718#endif 1974#endif
719 1975
1976 ev_default_loop_ptr = 0;
1977
1978#ifndef _WIN32
720 ev_ref (EV_A); /* child watcher */ 1979 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev); 1980 ev_signal_stop (EV_A_ &childev);
722 1981#endif
723 ev_ref (EV_A); /* signal watcher */
724 ev_io_stop (EV_A_ &sigev);
725
726 close (sigpipe [0]); sigpipe [0] = 0;
727 close (sigpipe [1]); sigpipe [1] = 0;
728 1982
729 loop_destroy (EV_A); 1983 loop_destroy (EV_A);
730} 1984}
731 1985
732void 1986void
733ev_default_fork (EV_P) 1987ev_default_fork (void)
734{ 1988{
735 loop_fork (EV_A); 1989#if EV_MULTIPLICITY
1990 EV_P = ev_default_loop_ptr;
1991#endif
736 1992
737 ev_io_stop (EV_A_ &sigev); 1993 postfork = 1; /* must be in line with ev_loop_fork */
738 close (sigpipe [0]);
739 close (sigpipe [1]);
740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
743 siginit (EV_A);
744} 1994}
745 1995
746/*****************************************************************************/ 1996/*****************************************************************************/
747 1997
748static void 1998void
749call_pending (EV_P) 1999ev_invoke (EV_P_ void *w, int revents)
2000{
2001 EV_CB_INVOKE ((W)w, revents);
2002}
2003
2004unsigned int
2005ev_pending_count (EV_P)
2006{
2007 int pri;
2008 unsigned int count = 0;
2009
2010 for (pri = NUMPRI; pri--; )
2011 count += pendingcnt [pri];
2012
2013 return count;
2014}
2015
2016void noinline
2017ev_invoke_pending (EV_P)
750{ 2018{
751 int pri; 2019 int pri;
752 2020
753 for (pri = NUMPRI; pri--; ) 2021 for (pri = NUMPRI; pri--; )
754 while (pendingcnt [pri]) 2022 while (pendingcnt [pri])
755 { 2023 {
756 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
757 2025
758 if (p->w) 2026 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
759 { 2027 /* ^ this is no longer true, as pending_w could be here */
2028
760 p->w->pending = 0; 2029 p->w->pending = 0;
761 p->w->cb (EV_A_ p->w, p->events); 2030 EV_CB_INVOKE (p->w, p->events);
762 } 2031 EV_FREQUENT_CHECK;
763 } 2032 }
764} 2033}
765 2034
766static void 2035#if EV_IDLE_ENABLE
2036/* make idle watchers pending. this handles the "call-idle */
2037/* only when higher priorities are idle" logic */
2038inline_size void
767timers_reify (EV_P) 2039idle_reify (EV_P)
768{ 2040{
769 while (timercnt && timers [0]->at <= mn_now) 2041 if (expect_false (idleall))
770 { 2042 {
771 struct ev_timer *w = timers [0]; 2043 int pri;
772 2044
773 /* first reschedule or stop timer */ 2045 for (pri = NUMPRI; pri--; )
774 if (w->repeat)
775 { 2046 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2047 if (pendingcnt [pri])
777 w->at = mn_now + w->repeat; 2048 break;
778 downheap ((WT *)timers, timercnt, 0);
779 }
780 else
781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 2049
783 event (EV_A_ (W)w, EV_TIMEOUT); 2050 if (idlecnt [pri])
784 }
785}
786
787static void
788periodics_reify (EV_P)
789{
790 while (periodiccnt && periodics [0]->at <= rt_now)
791 {
792 struct ev_periodic *w = periodics [0];
793
794 /* first reschedule or stop timer */
795 if (w->interval)
796 {
797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
799 downheap ((WT *)periodics, periodiccnt, 0);
800 }
801 else
802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803
804 event (EV_A_ (W)w, EV_PERIODIC);
805 }
806}
807
808static void
809periodics_reschedule (EV_P)
810{
811 int i;
812
813 /* adjust periodics after time jump */
814 for (i = 0; i < periodiccnt; ++i)
815 {
816 struct ev_periodic *w = periodics [i];
817
818 if (w->interval)
819 {
820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
821
822 if (fabs (diff) >= 1e-4)
823 { 2051 {
824 ev_periodic_stop (EV_A_ w); 2052 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
825 ev_periodic_start (EV_A_ w); 2053 break;
826
827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
828 } 2054 }
829 } 2055 }
830 } 2056 }
831} 2057}
2058#endif
832 2059
833inline int 2060/* make timers pending */
834time_update_monotonic (EV_P) 2061inline_size void
2062timers_reify (EV_P)
835{ 2063{
836 mn_now = get_clock (); 2064 EV_FREQUENT_CHECK;
837 2065
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
839 {
840 rt_now = rtmn_diff + mn_now;
841 return 0;
842 } 2067 {
843 else 2068 do
2069 {
2070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2071
2072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2073
2074 /* first reschedule or stop timer */
2075 if (w->repeat)
2076 {
2077 ev_at (w) += w->repeat;
2078 if (ev_at (w) < mn_now)
2079 ev_at (w) = mn_now;
2080
2081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2082
2083 ANHE_at_cache (timers [HEAP0]);
2084 downheap (timers, timercnt, HEAP0);
2085 }
2086 else
2087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2088
2089 EV_FREQUENT_CHECK;
2090 feed_reverse (EV_A_ (W)w);
2091 }
2092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2093
2094 feed_reverse_done (EV_A_ EV_TIMEOUT);
844 { 2095 }
845 now_floor = mn_now; 2096}
846 rt_now = ev_time (); 2097
847 return 1; 2098#if EV_PERIODIC_ENABLE
2099/* make periodics pending */
2100inline_size void
2101periodics_reify (EV_P)
2102{
2103 EV_FREQUENT_CHECK;
2104
2105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
848 } 2106 {
849} 2107 int feed_count = 0;
850 2108
851static void 2109 do
852time_update (EV_P) 2110 {
2111 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2112
2113 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2114
2115 /* first reschedule or stop timer */
2116 if (w->reschedule_cb)
2117 {
2118 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2119
2120 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2121
2122 ANHE_at_cache (periodics [HEAP0]);
2123 downheap (periodics, periodiccnt, HEAP0);
2124 }
2125 else if (w->interval)
2126 {
2127 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2128 /* if next trigger time is not sufficiently in the future, put it there */
2129 /* this might happen because of floating point inexactness */
2130 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2131 {
2132 ev_at (w) += w->interval;
2133
2134 /* if interval is unreasonably low we might still have a time in the past */
2135 /* so correct this. this will make the periodic very inexact, but the user */
2136 /* has effectively asked to get triggered more often than possible */
2137 if (ev_at (w) < ev_rt_now)
2138 ev_at (w) = ev_rt_now;
2139 }
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else
2145 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
2149 }
2150 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2151
2152 feed_reverse_done (EV_A_ EV_PERIODIC);
2153 }
2154}
2155
2156/* simply recalculate all periodics */
2157/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2158static void noinline
2159periodics_reschedule (EV_P)
853{ 2160{
854 int i; 2161 int i;
855 2162
2163 /* adjust periodics after time jump */
2164 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2165 {
2166 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2167
2168 if (w->reschedule_cb)
2169 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2170 else if (w->interval)
2171 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2172
2173 ANHE_at_cache (periodics [i]);
2174 }
2175
2176 reheap (periodics, periodiccnt);
2177}
2178#endif
2179
2180/* adjust all timers by a given offset */
2181static void noinline
2182timers_reschedule (EV_P_ ev_tstamp adjust)
2183{
2184 int i;
2185
2186 for (i = 0; i < timercnt; ++i)
2187 {
2188 ANHE *he = timers + i + HEAP0;
2189 ANHE_w (*he)->at += adjust;
2190 ANHE_at_cache (*he);
2191 }
2192}
2193
2194/* fetch new monotonic and realtime times from the kernel */
2195/* also detect if there was a timejump, and act accordingly */
2196inline_speed void
2197time_update (EV_P_ ev_tstamp max_block)
2198{
856#if EV_USE_MONOTONIC 2199#if EV_USE_MONOTONIC
857 if (expect_true (have_monotonic)) 2200 if (expect_true (have_monotonic))
858 { 2201 {
859 if (time_update_monotonic (EV_A)) 2202 int i;
2203 ev_tstamp odiff = rtmn_diff;
2204
2205 mn_now = get_clock ();
2206
2207 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2208 /* interpolate in the meantime */
2209 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
860 { 2210 {
861 ev_tstamp odiff = rtmn_diff; 2211 ev_rt_now = rtmn_diff + mn_now;
2212 return;
2213 }
862 2214
2215 now_floor = mn_now;
2216 ev_rt_now = ev_time ();
2217
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2218 /* loop a few times, before making important decisions.
2219 * on the choice of "4": one iteration isn't enough,
2220 * in case we get preempted during the calls to
2221 * ev_time and get_clock. a second call is almost guaranteed
2222 * to succeed in that case, though. and looping a few more times
2223 * doesn't hurt either as we only do this on time-jumps or
2224 * in the unlikely event of having been preempted here.
2225 */
2226 for (i = 4; --i; )
864 { 2227 {
865 rtmn_diff = rt_now - mn_now; 2228 rtmn_diff = ev_rt_now - mn_now;
866 2229
867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2230 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
868 return; /* all is well */ 2231 return; /* all is well */
869 2232
870 rt_now = ev_time (); 2233 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 2234 mn_now = get_clock ();
872 now_floor = mn_now; 2235 now_floor = mn_now;
873 } 2236 }
874 2237
2238 /* no timer adjustment, as the monotonic clock doesn't jump */
2239 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2240# if EV_PERIODIC_ENABLE
2241 periodics_reschedule (EV_A);
2242# endif
2243 }
2244 else
2245#endif
2246 {
2247 ev_rt_now = ev_time ();
2248
2249 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2250 {
2251 /* adjust timers. this is easy, as the offset is the same for all of them */
2252 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2253#if EV_PERIODIC_ENABLE
875 periodics_reschedule (EV_A); 2254 periodics_reschedule (EV_A);
876 /* no timer adjustment, as the monotonic clock doesn't jump */ 2255#endif
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
878 } 2256 }
879 }
880 else
881#endif
882 {
883 rt_now = ev_time ();
884 2257
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
886 {
887 periodics_reschedule (EV_A);
888
889 /* adjust timers. this is easy, as the offset is the same for all */
890 for (i = 0; i < timercnt; ++i)
891 timers [i]->at += rt_now - mn_now;
892 }
893
894 mn_now = rt_now; 2258 mn_now = ev_rt_now;
895 } 2259 }
896} 2260}
897
898void
899ev_ref (EV_P)
900{
901 ++activecnt;
902}
903
904void
905ev_unref (EV_P)
906{
907 --activecnt;
908}
909
910static int loop_done;
911 2261
912void 2262void
913ev_loop (EV_P_ int flags) 2263ev_loop (EV_P_ int flags)
914{ 2264{
915 double block; 2265#if EV_MINIMAL < 2
916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2266 ++loop_depth;
2267#endif
2268
2269 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2270
2271 loop_done = EVUNLOOP_CANCEL;
2272
2273 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
917 2274
918 do 2275 do
919 { 2276 {
2277#if EV_VERIFY >= 2
2278 ev_loop_verify (EV_A);
2279#endif
2280
2281#ifndef _WIN32
2282 if (expect_false (curpid)) /* penalise the forking check even more */
2283 if (expect_false (getpid () != curpid))
2284 {
2285 curpid = getpid ();
2286 postfork = 1;
2287 }
2288#endif
2289
2290#if EV_FORK_ENABLE
2291 /* we might have forked, so queue fork handlers */
2292 if (expect_false (postfork))
2293 if (forkcnt)
2294 {
2295 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2296 EV_INVOKE_PENDING;
2297 }
2298#endif
2299
920 /* queue check watchers (and execute them) */ 2300 /* queue prepare watchers (and execute them) */
921 if (expect_false (preparecnt)) 2301 if (expect_false (preparecnt))
922 { 2302 {
923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2303 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924 call_pending (EV_A); 2304 EV_INVOKE_PENDING;
925 } 2305 }
2306
2307 if (expect_false (loop_done))
2308 break;
2309
2310 /* we might have forked, so reify kernel state if necessary */
2311 if (expect_false (postfork))
2312 loop_fork (EV_A);
926 2313
927 /* update fd-related kernel structures */ 2314 /* update fd-related kernel structures */
928 fd_reify (EV_A); 2315 fd_reify (EV_A);
929 2316
930 /* calculate blocking time */ 2317 /* calculate blocking time */
2318 {
2319 ev_tstamp waittime = 0.;
2320 ev_tstamp sleeptime = 0.;
931 2321
932 /* we only need this for !monotonic clockor timers, but as we basically 2322 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
933 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A);
937 else
938#endif
939 { 2323 {
940 rt_now = ev_time (); 2324 /* remember old timestamp for io_blocktime calculation */
941 mn_now = rt_now; 2325 ev_tstamp prev_mn_now = mn_now;
942 }
943 2326
944 if (flags & EVLOOP_NONBLOCK || idlecnt) 2327 /* update time to cancel out callback processing overhead */
945 block = 0.; 2328 time_update (EV_A_ 1e100);
946 else 2329
947 {
948 block = MAX_BLOCKTIME; 2330 waittime = MAX_BLOCKTIME;
949 2331
950 if (timercnt) 2332 if (timercnt)
951 { 2333 {
952 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2334 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
953 if (block > to) block = to; 2335 if (waittime > to) waittime = to;
954 } 2336 }
955 2337
2338#if EV_PERIODIC_ENABLE
956 if (periodiccnt) 2339 if (periodiccnt)
957 { 2340 {
958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2341 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
959 if (block > to) block = to; 2342 if (waittime > to) waittime = to;
960 } 2343 }
2344#endif
961 2345
962 if (block < 0.) block = 0.; 2346 /* don't let timeouts decrease the waittime below timeout_blocktime */
2347 if (expect_false (waittime < timeout_blocktime))
2348 waittime = timeout_blocktime;
2349
2350 /* extra check because io_blocktime is commonly 0 */
2351 if (expect_false (io_blocktime))
2352 {
2353 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2354
2355 if (sleeptime > waittime - backend_fudge)
2356 sleeptime = waittime - backend_fudge;
2357
2358 if (expect_true (sleeptime > 0.))
2359 {
2360 ev_sleep (sleeptime);
2361 waittime -= sleeptime;
2362 }
2363 }
963 } 2364 }
964 2365
965 method_poll (EV_A_ block); 2366#if EV_MINIMAL < 2
2367 ++loop_count;
2368#endif
2369 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2370 backend_poll (EV_A_ waittime);
2371 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
966 2372
967 /* update rt_now, do magic */ 2373 /* update ev_rt_now, do magic */
968 time_update (EV_A); 2374 time_update (EV_A_ waittime + sleeptime);
2375 }
969 2376
970 /* queue pending timers and reschedule them */ 2377 /* queue pending timers and reschedule them */
971 timers_reify (EV_A); /* relative timers called last */ 2378 timers_reify (EV_A); /* relative timers called last */
2379#if EV_PERIODIC_ENABLE
972 periodics_reify (EV_A); /* absolute timers called first */ 2380 periodics_reify (EV_A); /* absolute timers called first */
2381#endif
973 2382
2383#if EV_IDLE_ENABLE
974 /* queue idle watchers unless io or timers are pending */ 2384 /* queue idle watchers unless other events are pending */
975 if (!pendingcnt) 2385 idle_reify (EV_A);
976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2386#endif
977 2387
978 /* queue check watchers, to be executed first */ 2388 /* queue check watchers, to be executed first */
979 if (checkcnt) 2389 if (expect_false (checkcnt))
980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2390 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
981 2391
982 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
983 } 2393 }
984 while (activecnt && !loop_done); 2394 while (expect_true (
2395 activecnt
2396 && !loop_done
2397 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2398 ));
985 2399
986 if (loop_done != 2) 2400 if (loop_done == EVUNLOOP_ONE)
987 loop_done = 0; 2401 loop_done = EVUNLOOP_CANCEL;
2402
2403#if EV_MINIMAL < 2
2404 --loop_depth;
2405#endif
988} 2406}
989 2407
990void 2408void
991ev_unloop (EV_P_ int how) 2409ev_unloop (EV_P_ int how)
992{ 2410{
993 loop_done = how; 2411 loop_done = how;
994} 2412}
995 2413
2414void
2415ev_ref (EV_P)
2416{
2417 ++activecnt;
2418}
2419
2420void
2421ev_unref (EV_P)
2422{
2423 --activecnt;
2424}
2425
2426void
2427ev_now_update (EV_P)
2428{
2429 time_update (EV_A_ 1e100);
2430}
2431
2432void
2433ev_suspend (EV_P)
2434{
2435 ev_now_update (EV_A);
2436}
2437
2438void
2439ev_resume (EV_P)
2440{
2441 ev_tstamp mn_prev = mn_now;
2442
2443 ev_now_update (EV_A);
2444 timers_reschedule (EV_A_ mn_now - mn_prev);
2445#if EV_PERIODIC_ENABLE
2446 /* TODO: really do this? */
2447 periodics_reschedule (EV_A);
2448#endif
2449}
2450
996/*****************************************************************************/ 2451/*****************************************************************************/
2452/* singly-linked list management, used when the expected list length is short */
997 2453
998inline void 2454inline_size void
999wlist_add (WL *head, WL elem) 2455wlist_add (WL *head, WL elem)
1000{ 2456{
1001 elem->next = *head; 2457 elem->next = *head;
1002 *head = elem; 2458 *head = elem;
1003} 2459}
1004 2460
1005inline void 2461inline_size void
1006wlist_del (WL *head, WL elem) 2462wlist_del (WL *head, WL elem)
1007{ 2463{
1008 while (*head) 2464 while (*head)
1009 { 2465 {
1010 if (*head == elem) 2466 if (expect_true (*head == elem))
1011 { 2467 {
1012 *head = elem->next; 2468 *head = elem->next;
1013 return; 2469 break;
1014 } 2470 }
1015 2471
1016 head = &(*head)->next; 2472 head = &(*head)->next;
1017 } 2473 }
1018} 2474}
1019 2475
2476/* internal, faster, version of ev_clear_pending */
1020inline void 2477inline_speed void
1021ev_clear_pending (EV_P_ W w) 2478clear_pending (EV_P_ W w)
1022{ 2479{
1023 if (w->pending) 2480 if (w->pending)
1024 { 2481 {
1025 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2482 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1026 w->pending = 0; 2483 w->pending = 0;
1027 } 2484 }
1028} 2485}
1029 2486
2487int
2488ev_clear_pending (EV_P_ void *w)
2489{
2490 W w_ = (W)w;
2491 int pending = w_->pending;
2492
2493 if (expect_true (pending))
2494 {
2495 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2496 p->w = (W)&pending_w;
2497 w_->pending = 0;
2498 return p->events;
2499 }
2500 else
2501 return 0;
2502}
2503
1030inline void 2504inline_size void
2505pri_adjust (EV_P_ W w)
2506{
2507 int pri = ev_priority (w);
2508 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2509 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2510 ev_set_priority (w, pri);
2511}
2512
2513inline_speed void
1031ev_start (EV_P_ W w, int active) 2514ev_start (EV_P_ W w, int active)
1032{ 2515{
1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2516 pri_adjust (EV_A_ w);
1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1035
1036 w->active = active; 2517 w->active = active;
1037 ev_ref (EV_A); 2518 ev_ref (EV_A);
1038} 2519}
1039 2520
1040inline void 2521inline_size void
1041ev_stop (EV_P_ W w) 2522ev_stop (EV_P_ W w)
1042{ 2523{
1043 ev_unref (EV_A); 2524 ev_unref (EV_A);
1044 w->active = 0; 2525 w->active = 0;
1045} 2526}
1046 2527
1047/*****************************************************************************/ 2528/*****************************************************************************/
1048 2529
1049void 2530void noinline
1050ev_io_start (EV_P_ struct ev_io *w) 2531ev_io_start (EV_P_ ev_io *w)
1051{ 2532{
1052 int fd = w->fd; 2533 int fd = w->fd;
1053 2534
1054 if (ev_is_active (w)) 2535 if (expect_false (ev_is_active (w)))
1055 return; 2536 return;
1056 2537
1057 assert (("ev_io_start called with negative fd", fd >= 0)); 2538 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2539 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2540
2541 EV_FREQUENT_CHECK;
1058 2542
1059 ev_start (EV_A_ (W)w, 1); 2543 ev_start (EV_A_ (W)w, 1);
1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2544 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1061 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2545 wlist_add (&anfds[fd].head, (WL)w);
1062 2546
1063 fd_change (EV_A_ fd); 2547 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1064} 2548 w->events &= ~EV__IOFDSET;
1065 2549
1066void 2550 EV_FREQUENT_CHECK;
2551}
2552
2553void noinline
1067ev_io_stop (EV_P_ struct ev_io *w) 2554ev_io_stop (EV_P_ ev_io *w)
1068{ 2555{
1069 ev_clear_pending (EV_A_ (W)w); 2556 clear_pending (EV_A_ (W)w);
1070 if (!ev_is_active (w)) 2557 if (expect_false (!ev_is_active (w)))
1071 return; 2558 return;
1072 2559
2560 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2561
2562 EV_FREQUENT_CHECK;
2563
1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2564 wlist_del (&anfds[w->fd].head, (WL)w);
1074 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
1075 2566
1076 fd_change (EV_A_ w->fd); 2567 fd_change (EV_A_ w->fd, 1);
1077}
1078 2568
1079void 2569 EV_FREQUENT_CHECK;
2570}
2571
2572void noinline
1080ev_timer_start (EV_P_ struct ev_timer *w) 2573ev_timer_start (EV_P_ ev_timer *w)
1081{ 2574{
1082 if (ev_is_active (w)) 2575 if (expect_false (ev_is_active (w)))
1083 return; 2576 return;
1084 2577
1085 w->at += mn_now; 2578 ev_at (w) += mn_now;
1086 2579
1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2580 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 2581
2582 EV_FREQUENT_CHECK;
2583
2584 ++timercnt;
1089 ev_start (EV_A_ (W)w, ++timercnt); 2585 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1090 array_needsize (timers, timermax, timercnt, ); 2586 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1091 timers [timercnt - 1] = w; 2587 ANHE_w (timers [ev_active (w)]) = (WT)w;
1092 upheap ((WT *)timers, timercnt - 1); 2588 ANHE_at_cache (timers [ev_active (w)]);
1093} 2589 upheap (timers, ev_active (w));
1094 2590
1095void 2591 EV_FREQUENT_CHECK;
2592
2593 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2594}
2595
2596void noinline
1096ev_timer_stop (EV_P_ struct ev_timer *w) 2597ev_timer_stop (EV_P_ ev_timer *w)
1097{ 2598{
1098 ev_clear_pending (EV_A_ (W)w); 2599 clear_pending (EV_A_ (W)w);
1099 if (!ev_is_active (w)) 2600 if (expect_false (!ev_is_active (w)))
1100 return; 2601 return;
1101 2602
1102 if (w->active < timercnt--) 2603 EV_FREQUENT_CHECK;
2604
2605 {
2606 int active = ev_active (w);
2607
2608 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2609
2610 --timercnt;
2611
2612 if (expect_true (active < timercnt + HEAP0))
1103 { 2613 {
1104 timers [w->active - 1] = timers [timercnt]; 2614 timers [active] = timers [timercnt + HEAP0];
1105 downheap ((WT *)timers, timercnt, w->active - 1); 2615 adjustheap (timers, timercnt, active);
1106 } 2616 }
2617 }
1107 2618
1108 w->at = w->repeat; 2619 ev_at (w) -= mn_now;
1109 2620
1110 ev_stop (EV_A_ (W)w); 2621 ev_stop (EV_A_ (W)w);
1111}
1112 2622
1113void 2623 EV_FREQUENT_CHECK;
2624}
2625
2626void noinline
1114ev_timer_again (EV_P_ struct ev_timer *w) 2627ev_timer_again (EV_P_ ev_timer *w)
1115{ 2628{
2629 EV_FREQUENT_CHECK;
2630
1116 if (ev_is_active (w)) 2631 if (ev_is_active (w))
1117 { 2632 {
1118 if (w->repeat) 2633 if (w->repeat)
1119 { 2634 {
1120 w->at = mn_now + w->repeat; 2635 ev_at (w) = mn_now + w->repeat;
2636 ANHE_at_cache (timers [ev_active (w)]);
1121 downheap ((WT *)timers, timercnt, w->active - 1); 2637 adjustheap (timers, timercnt, ev_active (w));
1122 } 2638 }
1123 else 2639 else
1124 ev_timer_stop (EV_A_ w); 2640 ev_timer_stop (EV_A_ w);
1125 } 2641 }
1126 else if (w->repeat) 2642 else if (w->repeat)
2643 {
2644 ev_at (w) = w->repeat;
1127 ev_timer_start (EV_A_ w); 2645 ev_timer_start (EV_A_ w);
1128} 2646 }
1129 2647
1130void 2648 EV_FREQUENT_CHECK;
2649}
2650
2651ev_tstamp
2652ev_timer_remaining (EV_P_ ev_timer *w)
2653{
2654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2655}
2656
2657#if EV_PERIODIC_ENABLE
2658void noinline
1131ev_periodic_start (EV_P_ struct ev_periodic *w) 2659ev_periodic_start (EV_P_ ev_periodic *w)
1132{ 2660{
1133 if (ev_is_active (w)) 2661 if (expect_false (ev_is_active (w)))
1134 return; 2662 return;
1135 2663
2664 if (w->reschedule_cb)
2665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2666 else if (w->interval)
2667 {
1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1137
1138 /* this formula differs from the one in periodic_reify because we do not always round up */ 2669 /* this formula differs from the one in periodic_reify because we do not always round up */
1139 if (w->interval)
1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2670 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2671 }
2672 else
2673 ev_at (w) = w->offset;
1141 2674
2675 EV_FREQUENT_CHECK;
2676
2677 ++periodiccnt;
1142 ev_start (EV_A_ (W)w, ++periodiccnt); 2678 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1143 array_needsize (periodics, periodicmax, periodiccnt, ); 2679 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1144 periodics [periodiccnt - 1] = w; 2680 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1145 upheap ((WT *)periodics, periodiccnt - 1); 2681 ANHE_at_cache (periodics [ev_active (w)]);
1146} 2682 upheap (periodics, ev_active (w));
1147 2683
1148void 2684 EV_FREQUENT_CHECK;
2685
2686 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2687}
2688
2689void noinline
1149ev_periodic_stop (EV_P_ struct ev_periodic *w) 2690ev_periodic_stop (EV_P_ ev_periodic *w)
1150{ 2691{
1151 ev_clear_pending (EV_A_ (W)w); 2692 clear_pending (EV_A_ (W)w);
1152 if (!ev_is_active (w)) 2693 if (expect_false (!ev_is_active (w)))
1153 return; 2694 return;
1154 2695
1155 if (w->active < periodiccnt--) 2696 EV_FREQUENT_CHECK;
2697
2698 {
2699 int active = ev_active (w);
2700
2701 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2702
2703 --periodiccnt;
2704
2705 if (expect_true (active < periodiccnt + HEAP0))
1156 { 2706 {
1157 periodics [w->active - 1] = periodics [periodiccnt]; 2707 periodics [active] = periodics [periodiccnt + HEAP0];
1158 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2708 adjustheap (periodics, periodiccnt, active);
1159 } 2709 }
2710 }
1160 2711
1161 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
1162}
1163 2713
1164void 2714 EV_FREQUENT_CHECK;
1165ev_idle_start (EV_P_ struct ev_idle *w)
1166{
1167 if (ev_is_active (w))
1168 return;
1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173} 2715}
1174 2716
1175void 2717void noinline
1176ev_idle_stop (EV_P_ struct ev_idle *w) 2718ev_periodic_again (EV_P_ ev_periodic *w)
1177{ 2719{
1178 ev_clear_pending (EV_A_ (W)w); 2720 /* TODO: use adjustheap and recalculation */
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w); 2721 ev_periodic_stop (EV_A_ w);
2722 ev_periodic_start (EV_A_ w);
1184} 2723}
1185 2724#endif
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1228}
1229 2725
1230#ifndef SA_RESTART 2726#ifndef SA_RESTART
1231# define SA_RESTART 0 2727# define SA_RESTART 0
1232#endif 2728#endif
1233 2729
1234void 2730void noinline
1235ev_signal_start (EV_P_ struct ev_signal *w) 2731ev_signal_start (EV_P_ ev_signal *w)
1236{ 2732{
2733 if (expect_false (ev_is_active (w)))
2734 return;
2735
2736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2737
1237#if EV_MULTIPLICITY 2738#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2739 assert (("libev: a signal must not be attached to two different loops",
2740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2741
2742 signals [w->signum - 1].loop = EV_A;
2743#endif
2744
2745 EV_FREQUENT_CHECK;
2746
2747#if EV_USE_SIGNALFD
2748 if (sigfd == -2)
2749 {
2750 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2751 if (sigfd < 0 && errno == EINVAL)
2752 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2753
2754 if (sigfd >= 0)
2755 {
2756 fd_intern (sigfd); /* doing it twice will not hurt */
2757
2758 sigemptyset (&sigfd_set);
2759
2760 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2761 ev_set_priority (&sigfd_w, EV_MAXPRI);
2762 ev_io_start (EV_A_ &sigfd_w);
2763 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2764 }
2765 }
2766
2767 if (sigfd >= 0)
2768 {
2769 /* TODO: check .head */
2770 sigaddset (&sigfd_set, w->signum);
2771 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2772
2773 signalfd (sigfd, &sigfd_set, 0);
2774 }
2775#endif
2776
2777 ev_start (EV_A_ (W)w, 1);
2778 wlist_add (&signals [w->signum - 1].head, (WL)w);
2779
2780 if (!((WL)w)->next)
2781# if EV_USE_SIGNALFD
2782 if (sigfd < 0) /*TODO*/
1239#endif 2783# endif
1240 if (ev_is_active (w)) 2784 {
2785# ifdef _WIN32
2786 evpipe_init (EV_A);
2787
2788 signal (w->signum, ev_sighandler);
2789# else
2790 struct sigaction sa;
2791
2792 evpipe_init (EV_A);
2793
2794 sa.sa_handler = ev_sighandler;
2795 sigfillset (&sa.sa_mask);
2796 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2797 sigaction (w->signum, &sa, 0);
2798
2799 sigemptyset (&sa.sa_mask);
2800 sigaddset (&sa.sa_mask, w->signum);
2801 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2802#endif
2803 }
2804
2805 EV_FREQUENT_CHECK;
2806}
2807
2808void noinline
2809ev_signal_stop (EV_P_ ev_signal *w)
2810{
2811 clear_pending (EV_A_ (W)w);
2812 if (expect_false (!ev_is_active (w)))
1241 return; 2813 return;
1242 2814
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2815 EV_FREQUENT_CHECK;
2816
2817 wlist_del (&signals [w->signum - 1].head, (WL)w);
2818 ev_stop (EV_A_ (W)w);
2819
2820 if (!signals [w->signum - 1].head)
2821 {
2822#if EV_MULTIPLICITY
2823 signals [w->signum - 1].loop = 0; /* unattach from signal */
2824#endif
2825#if EV_USE_SIGNALFD
2826 if (sigfd >= 0)
2827 {
2828 sigset_t ss;
2829
2830 sigemptyset (&ss);
2831 sigaddset (&ss, w->signum);
2832 sigdelset (&sigfd_set, w->signum);
2833
2834 signalfd (sigfd, &sigfd_set, 0);
2835 sigprocmask (SIG_UNBLOCK, &ss, 0);
2836 }
2837 else
2838#endif
2839 signal (w->signum, SIG_DFL);
2840 }
2841
2842 EV_FREQUENT_CHECK;
2843}
2844
2845void
2846ev_child_start (EV_P_ ev_child *w)
2847{
2848#if EV_MULTIPLICITY
2849 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2850#endif
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 EV_FREQUENT_CHECK;
1244 2855
1245 ev_start (EV_A_ (W)w, 1); 2856 ev_start (EV_A_ (W)w, 1);
1246 array_needsize (signals, signalmax, w->signum, signals_init); 2857 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1248 2858
1249 if (!w->next) 2859 EV_FREQUENT_CHECK;
1250 {
1251 struct sigaction sa;
1252 sa.sa_handler = sighandler;
1253 sigfillset (&sa.sa_mask);
1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255 sigaction (w->signum, &sa, 0);
1256 }
1257} 2860}
1258 2861
1259void 2862void
1260ev_signal_stop (EV_P_ struct ev_signal *w) 2863ev_child_stop (EV_P_ ev_child *w)
1261{ 2864{
1262 ev_clear_pending (EV_A_ (W)w); 2865 clear_pending (EV_A_ (W)w);
1263 if (!ev_is_active (w)) 2866 if (expect_false (!ev_is_active (w)))
1264 return; 2867 return;
1265 2868
1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2869 EV_FREQUENT_CHECK;
2870
2871 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1267 ev_stop (EV_A_ (W)w); 2872 ev_stop (EV_A_ (W)w);
1268 2873
1269 if (!signals [w->signum - 1].head) 2874 EV_FREQUENT_CHECK;
1270 signal (w->signum, SIG_DFL);
1271} 2875}
1272 2876
1273void 2877#if EV_STAT_ENABLE
1274ev_child_start (EV_P_ struct ev_child *w) 2878
1275{ 2879# ifdef _WIN32
1276#if EV_MULTIPLICITY 2880# undef lstat
1277 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2881# define lstat(a,b) _stati64 (a,b)
1278#endif 2882# endif
1279 if (ev_is_active (w)) 2883
2884#define DEF_STAT_INTERVAL 5.0074891
2885#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2886#define MIN_STAT_INTERVAL 0.1074891
2887
2888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2889
2890#if EV_USE_INOTIFY
2891
2892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2894
2895static void noinline
2896infy_add (EV_P_ ev_stat *w)
2897{
2898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2899
2900 if (w->wd >= 0)
2901 {
2902 struct statfs sfs;
2903
2904 /* now local changes will be tracked by inotify, but remote changes won't */
2905 /* unless the filesystem is known to be local, we therefore still poll */
2906 /* also do poll on <2.6.25, but with normal frequency */
2907
2908 if (!fs_2625)
2909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2910 else if (!statfs (w->path, &sfs)
2911 && (sfs.f_type == 0x1373 /* devfs */
2912 || sfs.f_type == 0xEF53 /* ext2/3 */
2913 || sfs.f_type == 0x3153464a /* jfs */
2914 || sfs.f_type == 0x52654973 /* reiser3 */
2915 || sfs.f_type == 0x01021994 /* tempfs */
2916 || sfs.f_type == 0x58465342 /* xfs */))
2917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2918 else
2919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2920 }
2921 else
2922 {
2923 /* can't use inotify, continue to stat */
2924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2925
2926 /* if path is not there, monitor some parent directory for speedup hints */
2927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2928 /* but an efficiency issue only */
2929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2930 {
2931 char path [4096];
2932 strcpy (path, w->path);
2933
2934 do
2935 {
2936 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2937 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2938
2939 char *pend = strrchr (path, '/');
2940
2941 if (!pend || pend == path)
2942 break;
2943
2944 *pend = 0;
2945 w->wd = inotify_add_watch (fs_fd, path, mask);
2946 }
2947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2948 }
2949 }
2950
2951 if (w->wd >= 0)
2952 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2953
2954 /* now re-arm timer, if required */
2955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2956 ev_timer_again (EV_A_ &w->timer);
2957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2958}
2959
2960static void noinline
2961infy_del (EV_P_ ev_stat *w)
2962{
2963 int slot;
2964 int wd = w->wd;
2965
2966 if (wd < 0)
1280 return; 2967 return;
1281 2968
2969 w->wd = -2;
2970 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2971 wlist_del (&fs_hash [slot].head, (WL)w);
2972
2973 /* remove this watcher, if others are watching it, they will rearm */
2974 inotify_rm_watch (fs_fd, wd);
2975}
2976
2977static void noinline
2978infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2979{
2980 if (slot < 0)
2981 /* overflow, need to check for all hash slots */
2982 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2983 infy_wd (EV_A_ slot, wd, ev);
2984 else
2985 {
2986 WL w_;
2987
2988 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2989 {
2990 ev_stat *w = (ev_stat *)w_;
2991 w_ = w_->next; /* lets us remove this watcher and all before it */
2992
2993 if (w->wd == wd || wd == -1)
2994 {
2995 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2996 {
2997 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2998 w->wd = -1;
2999 infy_add (EV_A_ w); /* re-add, no matter what */
3000 }
3001
3002 stat_timer_cb (EV_A_ &w->timer, 0);
3003 }
3004 }
3005 }
3006}
3007
3008static void
3009infy_cb (EV_P_ ev_io *w, int revents)
3010{
3011 char buf [EV_INOTIFY_BUFSIZE];
3012 int ofs;
3013 int len = read (fs_fd, buf, sizeof (buf));
3014
3015 for (ofs = 0; ofs < len; )
3016 {
3017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3019 ofs += sizeof (struct inotify_event) + ev->len;
3020 }
3021}
3022
3023inline_size unsigned int
3024ev_linux_version (void)
3025{
3026 struct utsname buf;
3027 unsigned int v;
3028 int i;
3029 char *p = buf.release;
3030
3031 if (uname (&buf))
3032 return 0;
3033
3034 for (i = 3+1; --i; )
3035 {
3036 unsigned int c = 0;
3037
3038 for (;;)
3039 {
3040 if (*p >= '0' && *p <= '9')
3041 c = c * 10 + *p++ - '0';
3042 else
3043 {
3044 p += *p == '.';
3045 break;
3046 }
3047 }
3048
3049 v = (v << 8) | c;
3050 }
3051
3052 return v;
3053}
3054
3055inline_size void
3056ev_check_2625 (EV_P)
3057{
3058 /* kernels < 2.6.25 are borked
3059 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3060 */
3061 if (ev_linux_version () < 0x020619)
3062 return;
3063
3064 fs_2625 = 1;
3065}
3066
3067inline_size int
3068infy_newfd (void)
3069{
3070#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3071 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3072 if (fd >= 0)
3073 return fd;
3074#endif
3075 return inotify_init ();
3076}
3077
3078inline_size void
3079infy_init (EV_P)
3080{
3081 if (fs_fd != -2)
3082 return;
3083
3084 fs_fd = -1;
3085
3086 ev_check_2625 (EV_A);
3087
3088 fs_fd = infy_newfd ();
3089
3090 if (fs_fd >= 0)
3091 {
3092 fd_intern (fs_fd);
3093 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3094 ev_set_priority (&fs_w, EV_MAXPRI);
3095 ev_io_start (EV_A_ &fs_w);
3096 ev_unref (EV_A);
3097 }
3098}
3099
3100inline_size void
3101infy_fork (EV_P)
3102{
3103 int slot;
3104
3105 if (fs_fd < 0)
3106 return;
3107
3108 ev_ref (EV_A);
3109 ev_io_stop (EV_A_ &fs_w);
3110 close (fs_fd);
3111 fs_fd = infy_newfd ();
3112
3113 if (fs_fd >= 0)
3114 {
3115 fd_intern (fs_fd);
3116 ev_io_set (&fs_w, fs_fd, EV_READ);
3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
3119 }
3120
3121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3122 {
3123 WL w_ = fs_hash [slot].head;
3124 fs_hash [slot].head = 0;
3125
3126 while (w_)
3127 {
3128 ev_stat *w = (ev_stat *)w_;
3129 w_ = w_->next; /* lets us add this watcher */
3130
3131 w->wd = -1;
3132
3133 if (fs_fd >= 0)
3134 infy_add (EV_A_ w); /* re-add, no matter what */
3135 else
3136 {
3137 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3138 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3139 ev_timer_again (EV_A_ &w->timer);
3140 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3141 }
3142 }
3143 }
3144}
3145
3146#endif
3147
3148#ifdef _WIN32
3149# define EV_LSTAT(p,b) _stati64 (p, b)
3150#else
3151# define EV_LSTAT(p,b) lstat (p, b)
3152#endif
3153
3154void
3155ev_stat_stat (EV_P_ ev_stat *w)
3156{
3157 if (lstat (w->path, &w->attr) < 0)
3158 w->attr.st_nlink = 0;
3159 else if (!w->attr.st_nlink)
3160 w->attr.st_nlink = 1;
3161}
3162
3163static void noinline
3164stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3165{
3166 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3167
3168 ev_statdata prev = w->attr;
3169 ev_stat_stat (EV_A_ w);
3170
3171 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3172 if (
3173 prev.st_dev != w->attr.st_dev
3174 || prev.st_ino != w->attr.st_ino
3175 || prev.st_mode != w->attr.st_mode
3176 || prev.st_nlink != w->attr.st_nlink
3177 || prev.st_uid != w->attr.st_uid
3178 || prev.st_gid != w->attr.st_gid
3179 || prev.st_rdev != w->attr.st_rdev
3180 || prev.st_size != w->attr.st_size
3181 || prev.st_atime != w->attr.st_atime
3182 || prev.st_mtime != w->attr.st_mtime
3183 || prev.st_ctime != w->attr.st_ctime
3184 ) {
3185 /* we only update w->prev on actual differences */
3186 /* in case we test more often than invoke the callback, */
3187 /* to ensure that prev is always different to attr */
3188 w->prev = prev;
3189
3190 #if EV_USE_INOTIFY
3191 if (fs_fd >= 0)
3192 {
3193 infy_del (EV_A_ w);
3194 infy_add (EV_A_ w);
3195 ev_stat_stat (EV_A_ w); /* avoid race... */
3196 }
3197 #endif
3198
3199 ev_feed_event (EV_A_ w, EV_STAT);
3200 }
3201}
3202
3203void
3204ev_stat_start (EV_P_ ev_stat *w)
3205{
3206 if (expect_false (ev_is_active (w)))
3207 return;
3208
3209 ev_stat_stat (EV_A_ w);
3210
3211 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3212 w->interval = MIN_STAT_INTERVAL;
3213
3214 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3215 ev_set_priority (&w->timer, ev_priority (w));
3216
3217#if EV_USE_INOTIFY
3218 infy_init (EV_A);
3219
3220 if (fs_fd >= 0)
3221 infy_add (EV_A_ w);
3222 else
3223#endif
3224 {
3225 ev_timer_again (EV_A_ &w->timer);
3226 ev_unref (EV_A);
3227 }
3228
1282 ev_start (EV_A_ (W)w, 1); 3229 ev_start (EV_A_ (W)w, 1);
1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1284}
1285 3230
3231 EV_FREQUENT_CHECK;
3232}
3233
1286void 3234void
1287ev_child_stop (EV_P_ struct ev_child *w) 3235ev_stat_stop (EV_P_ ev_stat *w)
1288{ 3236{
1289 ev_clear_pending (EV_A_ (W)w); 3237 clear_pending (EV_A_ (W)w);
1290 if (ev_is_active (w)) 3238 if (expect_false (!ev_is_active (w)))
1291 return; 3239 return;
1292 3240
1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3241 EV_FREQUENT_CHECK;
3242
3243#if EV_USE_INOTIFY
3244 infy_del (EV_A_ w);
3245#endif
3246
3247 if (ev_is_active (&w->timer))
3248 {
3249 ev_ref (EV_A);
3250 ev_timer_stop (EV_A_ &w->timer);
3251 }
3252
1294 ev_stop (EV_A_ (W)w); 3253 ev_stop (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
1295} 3256}
3257#endif
3258
3259#if EV_IDLE_ENABLE
3260void
3261ev_idle_start (EV_P_ ev_idle *w)
3262{
3263 if (expect_false (ev_is_active (w)))
3264 return;
3265
3266 pri_adjust (EV_A_ (W)w);
3267
3268 EV_FREQUENT_CHECK;
3269
3270 {
3271 int active = ++idlecnt [ABSPRI (w)];
3272
3273 ++idleall;
3274 ev_start (EV_A_ (W)w, active);
3275
3276 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3277 idles [ABSPRI (w)][active - 1] = w;
3278 }
3279
3280 EV_FREQUENT_CHECK;
3281}
3282
3283void
3284ev_idle_stop (EV_P_ ev_idle *w)
3285{
3286 clear_pending (EV_A_ (W)w);
3287 if (expect_false (!ev_is_active (w)))
3288 return;
3289
3290 EV_FREQUENT_CHECK;
3291
3292 {
3293 int active = ev_active (w);
3294
3295 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3296 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3297
3298 ev_stop (EV_A_ (W)w);
3299 --idleall;
3300 }
3301
3302 EV_FREQUENT_CHECK;
3303}
3304#endif
3305
3306void
3307ev_prepare_start (EV_P_ ev_prepare *w)
3308{
3309 if (expect_false (ev_is_active (w)))
3310 return;
3311
3312 EV_FREQUENT_CHECK;
3313
3314 ev_start (EV_A_ (W)w, ++preparecnt);
3315 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3316 prepares [preparecnt - 1] = w;
3317
3318 EV_FREQUENT_CHECK;
3319}
3320
3321void
3322ev_prepare_stop (EV_P_ ev_prepare *w)
3323{
3324 clear_pending (EV_A_ (W)w);
3325 if (expect_false (!ev_is_active (w)))
3326 return;
3327
3328 EV_FREQUENT_CHECK;
3329
3330 {
3331 int active = ev_active (w);
3332
3333 prepares [active - 1] = prepares [--preparecnt];
3334 ev_active (prepares [active - 1]) = active;
3335 }
3336
3337 ev_stop (EV_A_ (W)w);
3338
3339 EV_FREQUENT_CHECK;
3340}
3341
3342void
3343ev_check_start (EV_P_ ev_check *w)
3344{
3345 if (expect_false (ev_is_active (w)))
3346 return;
3347
3348 EV_FREQUENT_CHECK;
3349
3350 ev_start (EV_A_ (W)w, ++checkcnt);
3351 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3352 checks [checkcnt - 1] = w;
3353
3354 EV_FREQUENT_CHECK;
3355}
3356
3357void
3358ev_check_stop (EV_P_ ev_check *w)
3359{
3360 clear_pending (EV_A_ (W)w);
3361 if (expect_false (!ev_is_active (w)))
3362 return;
3363
3364 EV_FREQUENT_CHECK;
3365
3366 {
3367 int active = ev_active (w);
3368
3369 checks [active - 1] = checks [--checkcnt];
3370 ev_active (checks [active - 1]) = active;
3371 }
3372
3373 ev_stop (EV_A_ (W)w);
3374
3375 EV_FREQUENT_CHECK;
3376}
3377
3378#if EV_EMBED_ENABLE
3379void noinline
3380ev_embed_sweep (EV_P_ ev_embed *w)
3381{
3382 ev_loop (w->other, EVLOOP_NONBLOCK);
3383}
3384
3385static void
3386embed_io_cb (EV_P_ ev_io *io, int revents)
3387{
3388 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3389
3390 if (ev_cb (w))
3391 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3392 else
3393 ev_loop (w->other, EVLOOP_NONBLOCK);
3394}
3395
3396static void
3397embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3398{
3399 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3400
3401 {
3402 EV_P = w->other;
3403
3404 while (fdchangecnt)
3405 {
3406 fd_reify (EV_A);
3407 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3408 }
3409 }
3410}
3411
3412static void
3413embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3414{
3415 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3416
3417 ev_embed_stop (EV_A_ w);
3418
3419 {
3420 EV_P = w->other;
3421
3422 ev_loop_fork (EV_A);
3423 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3424 }
3425
3426 ev_embed_start (EV_A_ w);
3427}
3428
3429#if 0
3430static void
3431embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3432{
3433 ev_idle_stop (EV_A_ idle);
3434}
3435#endif
3436
3437void
3438ev_embed_start (EV_P_ ev_embed *w)
3439{
3440 if (expect_false (ev_is_active (w)))
3441 return;
3442
3443 {
3444 EV_P = w->other;
3445 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3446 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3447 }
3448
3449 EV_FREQUENT_CHECK;
3450
3451 ev_set_priority (&w->io, ev_priority (w));
3452 ev_io_start (EV_A_ &w->io);
3453
3454 ev_prepare_init (&w->prepare, embed_prepare_cb);
3455 ev_set_priority (&w->prepare, EV_MINPRI);
3456 ev_prepare_start (EV_A_ &w->prepare);
3457
3458 ev_fork_init (&w->fork, embed_fork_cb);
3459 ev_fork_start (EV_A_ &w->fork);
3460
3461 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3462
3463 ev_start (EV_A_ (W)w, 1);
3464
3465 EV_FREQUENT_CHECK;
3466}
3467
3468void
3469ev_embed_stop (EV_P_ ev_embed *w)
3470{
3471 clear_pending (EV_A_ (W)w);
3472 if (expect_false (!ev_is_active (w)))
3473 return;
3474
3475 EV_FREQUENT_CHECK;
3476
3477 ev_io_stop (EV_A_ &w->io);
3478 ev_prepare_stop (EV_A_ &w->prepare);
3479 ev_fork_stop (EV_A_ &w->fork);
3480
3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
3484}
3485#endif
3486
3487#if EV_FORK_ENABLE
3488void
3489ev_fork_start (EV_P_ ev_fork *w)
3490{
3491 if (expect_false (ev_is_active (w)))
3492 return;
3493
3494 EV_FREQUENT_CHECK;
3495
3496 ev_start (EV_A_ (W)w, ++forkcnt);
3497 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3498 forks [forkcnt - 1] = w;
3499
3500 EV_FREQUENT_CHECK;
3501}
3502
3503void
3504ev_fork_stop (EV_P_ ev_fork *w)
3505{
3506 clear_pending (EV_A_ (W)w);
3507 if (expect_false (!ev_is_active (w)))
3508 return;
3509
3510 EV_FREQUENT_CHECK;
3511
3512 {
3513 int active = ev_active (w);
3514
3515 forks [active - 1] = forks [--forkcnt];
3516 ev_active (forks [active - 1]) = active;
3517 }
3518
3519 ev_stop (EV_A_ (W)w);
3520
3521 EV_FREQUENT_CHECK;
3522}
3523#endif
3524
3525#if EV_ASYNC_ENABLE
3526void
3527ev_async_start (EV_P_ ev_async *w)
3528{
3529 if (expect_false (ev_is_active (w)))
3530 return;
3531
3532 evpipe_init (EV_A);
3533
3534 EV_FREQUENT_CHECK;
3535
3536 ev_start (EV_A_ (W)w, ++asynccnt);
3537 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3538 asyncs [asynccnt - 1] = w;
3539
3540 EV_FREQUENT_CHECK;
3541}
3542
3543void
3544ev_async_stop (EV_P_ ev_async *w)
3545{
3546 clear_pending (EV_A_ (W)w);
3547 if (expect_false (!ev_is_active (w)))
3548 return;
3549
3550 EV_FREQUENT_CHECK;
3551
3552 {
3553 int active = ev_active (w);
3554
3555 asyncs [active - 1] = asyncs [--asynccnt];
3556 ev_active (asyncs [active - 1]) = active;
3557 }
3558
3559 ev_stop (EV_A_ (W)w);
3560
3561 EV_FREQUENT_CHECK;
3562}
3563
3564void
3565ev_async_send (EV_P_ ev_async *w)
3566{
3567 w->sent = 1;
3568 evpipe_write (EV_A_ &async_pending);
3569}
3570#endif
1296 3571
1297/*****************************************************************************/ 3572/*****************************************************************************/
1298 3573
1299struct ev_once 3574struct ev_once
1300{ 3575{
1301 struct ev_io io; 3576 ev_io io;
1302 struct ev_timer to; 3577 ev_timer to;
1303 void (*cb)(int revents, void *arg); 3578 void (*cb)(int revents, void *arg);
1304 void *arg; 3579 void *arg;
1305}; 3580};
1306 3581
1307static void 3582static void
1308once_cb (EV_P_ struct ev_once *once, int revents) 3583once_cb (EV_P_ struct ev_once *once, int revents)
1309{ 3584{
1310 void (*cb)(int revents, void *arg) = once->cb; 3585 void (*cb)(int revents, void *arg) = once->cb;
1311 void *arg = once->arg; 3586 void *arg = once->arg;
1312 3587
1313 ev_io_stop (EV_A_ &once->io); 3588 ev_io_stop (EV_A_ &once->io);
1314 ev_timer_stop (EV_A_ &once->to); 3589 ev_timer_stop (EV_A_ &once->to);
1315 free (once); 3590 ev_free (once);
1316 3591
1317 cb (revents, arg); 3592 cb (revents, arg);
1318} 3593}
1319 3594
1320static void 3595static void
1321once_cb_io (EV_P_ struct ev_io *w, int revents) 3596once_cb_io (EV_P_ ev_io *w, int revents)
1322{ 3597{
1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3598 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3599
3600 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1324} 3601}
1325 3602
1326static void 3603static void
1327once_cb_to (EV_P_ struct ev_timer *w, int revents) 3604once_cb_to (EV_P_ ev_timer *w, int revents)
1328{ 3605{
1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3606 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3607
3608 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1330} 3609}
1331 3610
1332void 3611void
1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3612ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1334{ 3613{
1335 struct ev_once *once = malloc (sizeof (struct ev_once)); 3614 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1336 3615
1337 if (!once) 3616 if (expect_false (!once))
3617 {
1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3618 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1339 else 3619 return;
1340 { 3620 }
3621
1341 once->cb = cb; 3622 once->cb = cb;
1342 once->arg = arg; 3623 once->arg = arg;
1343 3624
1344 ev_watcher_init (&once->io, once_cb_io); 3625 ev_init (&once->io, once_cb_io);
1345 if (fd >= 0) 3626 if (fd >= 0)
3627 {
3628 ev_io_set (&once->io, fd, events);
3629 ev_io_start (EV_A_ &once->io);
3630 }
3631
3632 ev_init (&once->to, once_cb_to);
3633 if (timeout >= 0.)
3634 {
3635 ev_timer_set (&once->to, timeout, 0.);
3636 ev_timer_start (EV_A_ &once->to);
3637 }
3638}
3639
3640/*****************************************************************************/
3641
3642#if EV_WALK_ENABLE
3643void
3644ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3645{
3646 int i, j;
3647 ev_watcher_list *wl, *wn;
3648
3649 if (types & (EV_IO | EV_EMBED))
3650 for (i = 0; i < anfdmax; ++i)
3651 for (wl = anfds [i].head; wl; )
1346 { 3652 {
1347 ev_io_set (&once->io, fd, events); 3653 wn = wl->next;
1348 ev_io_start (EV_A_ &once->io); 3654
3655#if EV_EMBED_ENABLE
3656 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3657 {
3658 if (types & EV_EMBED)
3659 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3660 }
3661 else
3662#endif
3663#if EV_USE_INOTIFY
3664 if (ev_cb ((ev_io *)wl) == infy_cb)
3665 ;
3666 else
3667#endif
3668 if ((ev_io *)wl != &pipe_w)
3669 if (types & EV_IO)
3670 cb (EV_A_ EV_IO, wl);
3671
3672 wl = wn;
1349 } 3673 }
1350 3674
1351 ev_watcher_init (&once->to, once_cb_to); 3675 if (types & (EV_TIMER | EV_STAT))
1352 if (timeout >= 0.) 3676 for (i = timercnt + HEAP0; i-- > HEAP0; )
3677#if EV_STAT_ENABLE
3678 /*TODO: timer is not always active*/
3679 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1353 { 3680 {
1354 ev_timer_set (&once->to, timeout, 0.); 3681 if (types & EV_STAT)
1355 ev_timer_start (EV_A_ &once->to); 3682 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1356 } 3683 }
1357 } 3684 else
1358} 3685#endif
3686 if (types & EV_TIMER)
3687 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1359 3688
3689#if EV_PERIODIC_ENABLE
3690 if (types & EV_PERIODIC)
3691 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3692 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3693#endif
3694
3695#if EV_IDLE_ENABLE
3696 if (types & EV_IDLE)
3697 for (j = NUMPRI; i--; )
3698 for (i = idlecnt [j]; i--; )
3699 cb (EV_A_ EV_IDLE, idles [j][i]);
3700#endif
3701
3702#if EV_FORK_ENABLE
3703 if (types & EV_FORK)
3704 for (i = forkcnt; i--; )
3705 if (ev_cb (forks [i]) != embed_fork_cb)
3706 cb (EV_A_ EV_FORK, forks [i]);
3707#endif
3708
3709#if EV_ASYNC_ENABLE
3710 if (types & EV_ASYNC)
3711 for (i = asynccnt; i--; )
3712 cb (EV_A_ EV_ASYNC, asyncs [i]);
3713#endif
3714
3715 if (types & EV_PREPARE)
3716 for (i = preparecnt; i--; )
3717#if EV_EMBED_ENABLE
3718 if (ev_cb (prepares [i]) != embed_prepare_cb)
3719#endif
3720 cb (EV_A_ EV_PREPARE, prepares [i]);
3721
3722 if (types & EV_CHECK)
3723 for (i = checkcnt; i--; )
3724 cb (EV_A_ EV_CHECK, checks [i]);
3725
3726 if (types & EV_SIGNAL)
3727 for (i = 0; i < EV_NSIG - 1; ++i)
3728 for (wl = signals [i].head; wl; )
3729 {
3730 wn = wl->next;
3731 cb (EV_A_ EV_SIGNAL, wl);
3732 wl = wn;
3733 }
3734
3735 if (types & EV_CHILD)
3736 for (i = EV_PID_HASHSIZE; i--; )
3737 for (wl = childs [i]; wl; )
3738 {
3739 wn = wl->next;
3740 cb (EV_A_ EV_CHILD, wl);
3741 wl = wn;
3742 }
3743/* EV_STAT 0x00001000 /* stat data changed */
3744/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3745}
3746#endif
3747
3748#if EV_MULTIPLICITY
3749 #include "ev_wrap.h"
3750#endif
3751
3752#ifdef __cplusplus
3753}
3754#endif
3755

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines