ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.335 by root, Tue Mar 9 09:02:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
87# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
88# endif 111# endif
89# endif 112# endif
90 113
91# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
93# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
94# else 117# else
95# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
96# endif 119# endif
97# endif 120# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
119#include <fcntl.h> 159#include <fcntl.h>
120#include <stddef.h> 160#include <stddef.h>
121 161
122#include <stdio.h> 162#include <stdio.h>
123 163
124#include <assert.h> 164#include <assert.h>
125#include <errno.h> 165#include <errno.h>
126#include <sys/types.h> 166#include <sys/types.h>
127#include <time.h> 167#include <time.h>
168#include <limits.h>
128 169
129#include <signal.h> 170#include <signal.h>
130 171
131#ifdef EV_H 172#ifdef EV_H
132# include EV_H 173# include EV_H
137#ifndef _WIN32 178#ifndef _WIN32
138# include <sys/time.h> 179# include <sys/time.h>
139# include <sys/wait.h> 180# include <sys/wait.h>
140# include <unistd.h> 181# include <unistd.h>
141#else 182#else
183# include <io.h>
142# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 185# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
146# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
147#endif 226# endif
148 227#endif
149/**/
150 228
151#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
152# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
153#endif 235#endif
154 236
155#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 239#endif
158 240
159#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
160# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
161#endif 247#endif
162 248
163#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
165#endif 251#endif
171# define EV_USE_POLL 1 257# define EV_USE_POLL 1
172# endif 258# endif
173#endif 259#endif
174 260
175#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
176# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
177#endif 267#endif
178 268
179#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
181#endif 271#endif
183#ifndef EV_USE_PORT 273#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 274# define EV_USE_PORT 0
185#endif 275#endif
186 276
187#ifndef EV_USE_INOTIFY 277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_INOTIFY 1
280# else
188# define EV_USE_INOTIFY 0 281# define EV_USE_INOTIFY 0
282# endif
189#endif 283#endif
190 284
191#ifndef EV_PID_HASHSIZE 285#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 286# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 287# define EV_PID_HASHSIZE 1
202# else 296# else
203# define EV_INOTIFY_HASHSIZE 16 297# define EV_INOTIFY_HASHSIZE 16
204# endif 298# endif
205#endif 299#endif
206 300
207/**/ 301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
208 356
209#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
212#endif 360#endif
226# include <sys/select.h> 374# include <sys/select.h>
227# endif 375# endif
228#endif 376#endif
229 377
230#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
231# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
232#endif 387#endif
233 388
234#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 390# include <winsock.h>
236#endif 391#endif
237 392
393#if EV_USE_EVENTFD
394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
238/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
239 451
240/* 452/*
241 * This is used to avoid floating point rounding problems. 453 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 454 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 455 * to ensure progress, time-wise, even when rounding
247 */ 459 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 461
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 464
254#if __GNUC__ >= 4 465#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
257#else 468#else
258# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
259# define noinline 470# define noinline
260# if __STDC_VERSION__ < 199901L 471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 472# define inline
262# endif 473# endif
263#endif 474#endif
264 475
265#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 481# define inline_speed static noinline
271#else 482#else
272# define inline_speed static inline 483# define inline_speed static inline
273#endif 484#endif
274 485
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
277 493
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
280 496
281typedef ev_watcher *W; 497typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
284 500
501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
522#endif
288 523
289#ifdef _WIN32 524#ifdef _WIN32
290# include "ev_win32.c" 525# include "ev_win32.c"
291#endif 526#endif
292 527
293/*****************************************************************************/ 528/*****************************************************************************/
294 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
295static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
296 539
297void 540void
298ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
299{ 542{
300 syserr_cb = cb; 543 syserr_cb = cb;
301} 544}
302 545
303static void noinline 546static void noinline
304syserr (const char *msg) 547ev_syserr (const char *msg)
305{ 548{
306 if (!msg) 549 if (!msg)
307 msg = "(libev) system error"; 550 msg = "(libev) system error";
308 551
309 if (syserr_cb) 552 if (syserr_cb)
310 syserr_cb (msg); 553 syserr_cb (msg);
311 else 554 else
312 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
313 perror (msg); 564 perror (msg);
565#endif
314 abort (); 566 abort ();
315 } 567 }
316} 568}
317 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573#if __GLIBC__
574 return realloc (ptr, size);
575#else
576 /* some systems, notably openbsd and darwin, fail to properly
577 * implement realloc (x, 0) (as required by both ansi c-89 and
578 * the single unix specification, so work around them here.
579 */
580
581 if (size)
582 return realloc (ptr, size);
583
584 free (ptr);
585 return 0;
586#endif
587}
588
318static void *(*alloc)(void *ptr, long size); 589static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 590
320void 591void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 592ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 593{
323 alloc = cb; 594 alloc = cb;
324} 595}
325 596
326inline_speed void * 597inline_speed void *
327ev_realloc (void *ptr, long size) 598ev_realloc (void *ptr, long size)
328{ 599{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 600 ptr = alloc (ptr, size);
330 601
331 if (!ptr && size) 602 if (!ptr && size)
332 { 603 {
604#if EV_AVOID_STDIO
605 ev_printerr ("libev: memory allocation failed, aborting.\n");
606#else
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 607 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
608#endif
334 abort (); 609 abort ();
335 } 610 }
336 611
337 return ptr; 612 return ptr;
338} 613}
340#define ev_malloc(size) ev_realloc (0, (size)) 615#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 616#define ev_free(ptr) ev_realloc ((ptr), 0)
342 617
343/*****************************************************************************/ 618/*****************************************************************************/
344 619
620/* set in reify when reification needed */
621#define EV_ANFD_REIFY 1
622
623/* file descriptor info structure */
345typedef struct 624typedef struct
346{ 625{
347 WL head; 626 WL head;
348 unsigned char events; 627 unsigned char events; /* the events watched for */
628 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
629 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 630 unsigned char unused;
631#if EV_USE_EPOLL
632 unsigned int egen; /* generation counter to counter epoll bugs */
633#endif
350#if EV_SELECT_IS_WINSOCKET 634#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 635 SOCKET handle;
352#endif 636#endif
353} ANFD; 637} ANFD;
354 638
639/* stores the pending event set for a given watcher */
355typedef struct 640typedef struct
356{ 641{
357 W w; 642 W w;
358 int events; 643 int events; /* the pending event set for the given watcher */
359} ANPENDING; 644} ANPENDING;
360 645
361#if EV_USE_INOTIFY 646#if EV_USE_INOTIFY
647/* hash table entry per inotify-id */
362typedef struct 648typedef struct
363{ 649{
364 WL head; 650 WL head;
365} ANFS; 651} ANFS;
652#endif
653
654/* Heap Entry */
655#if EV_HEAP_CACHE_AT
656 /* a heap element */
657 typedef struct {
658 ev_tstamp at;
659 WT w;
660 } ANHE;
661
662 #define ANHE_w(he) (he).w /* access watcher, read-write */
663 #define ANHE_at(he) (he).at /* access cached at, read-only */
664 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
665#else
666 /* a heap element */
667 typedef WT ANHE;
668
669 #define ANHE_w(he) (he)
670 #define ANHE_at(he) (he)->at
671 #define ANHE_at_cache(he)
366#endif 672#endif
367 673
368#if EV_MULTIPLICITY 674#if EV_MULTIPLICITY
369 675
370 struct ev_loop 676 struct ev_loop
389 695
390 static int ev_default_loop_ptr; 696 static int ev_default_loop_ptr;
391 697
392#endif 698#endif
393 699
700#if EV_MINIMAL < 2
701# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
702# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
703# define EV_INVOKE_PENDING invoke_cb (EV_A)
704#else
705# define EV_RELEASE_CB (void)0
706# define EV_ACQUIRE_CB (void)0
707# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
708#endif
709
710#define EVUNLOOP_RECURSE 0x80
711
394/*****************************************************************************/ 712/*****************************************************************************/
395 713
714#ifndef EV_HAVE_EV_TIME
396ev_tstamp 715ev_tstamp
397ev_time (void) 716ev_time (void)
398{ 717{
399#if EV_USE_REALTIME 718#if EV_USE_REALTIME
719 if (expect_true (have_realtime))
720 {
400 struct timespec ts; 721 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 722 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 723 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 724 }
725#endif
726
404 struct timeval tv; 727 struct timeval tv;
405 gettimeofday (&tv, 0); 728 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 729 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 730}
731#endif
409 732
410ev_tstamp inline_size 733inline_size ev_tstamp
411get_clock (void) 734get_clock (void)
412{ 735{
413#if EV_USE_MONOTONIC 736#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 737 if (expect_true (have_monotonic))
415 { 738 {
441 ts.tv_sec = (time_t)delay; 764 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 765 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 766
444 nanosleep (&ts, 0); 767 nanosleep (&ts, 0);
445#elif defined(_WIN32) 768#elif defined(_WIN32)
446 Sleep (delay * 1e3); 769 Sleep ((unsigned long)(delay * 1e3));
447#else 770#else
448 struct timeval tv; 771 struct timeval tv;
449 772
450 tv.tv_sec = (time_t)delay; 773 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 774 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 775
776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
777 /* something not guaranteed by newer posix versions, but guaranteed */
778 /* by older ones */
453 select (0, 0, 0, 0, &tv); 779 select (0, 0, 0, 0, &tv);
454#endif 780#endif
455 } 781 }
456} 782}
457 783
458/*****************************************************************************/ 784/*****************************************************************************/
459 785
460int inline_size 786#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
787
788/* find a suitable new size for the given array, */
789/* hopefully by rounding to a ncie-to-malloc size */
790inline_size int
461array_nextsize (int elem, int cur, int cnt) 791array_nextsize (int elem, int cur, int cnt)
462{ 792{
463 int ncur = cur + 1; 793 int ncur = cur + 1;
464 794
465 do 795 do
466 ncur <<= 1; 796 ncur <<= 1;
467 while (cnt > ncur); 797 while (cnt > ncur);
468 798
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 799 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 800 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 801 {
472 ncur *= elem; 802 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 803 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 804 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 805 ncur /= elem;
476 } 806 }
477 807
478 return ncur; 808 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 812array_realloc (int elem, void *base, int *cur, int cnt)
483{ 813{
484 *cur = array_nextsize (elem, *cur, cnt); 814 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 815 return ev_realloc (base, elem * *cur);
486} 816}
817
818#define array_init_zero(base,count) \
819 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 820
488#define array_needsize(type,base,cur,cnt,init) \ 821#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 822 if (expect_false ((cnt) > (cur))) \
490 { \ 823 { \
491 int ocur_ = (cur); \ 824 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 836 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 837 }
505#endif 838#endif
506 839
507#define array_free(stem, idx) \ 840#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 841 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 842
510/*****************************************************************************/ 843/*****************************************************************************/
844
845/* dummy callback for pending events */
846static void noinline
847pendingcb (EV_P_ ev_prepare *w, int revents)
848{
849}
511 850
512void noinline 851void noinline
513ev_feed_event (EV_P_ void *w, int revents) 852ev_feed_event (EV_P_ void *w, int revents)
514{ 853{
515 W w_ = (W)w; 854 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 863 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 864 pendings [pri][w_->pending - 1].events = revents;
526 } 865 }
527} 866}
528 867
529void inline_speed 868inline_speed void
869feed_reverse (EV_P_ W w)
870{
871 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
872 rfeeds [rfeedcnt++] = w;
873}
874
875inline_size void
876feed_reverse_done (EV_P_ int revents)
877{
878 do
879 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
880 while (rfeedcnt);
881}
882
883inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 884queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 885{
532 int i; 886 int i;
533 887
534 for (i = 0; i < eventcnt; ++i) 888 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 889 ev_feed_event (EV_A_ events [i], type);
536} 890}
537 891
538/*****************************************************************************/ 892/*****************************************************************************/
539 893
540void inline_size 894inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 895fd_event_nc (EV_P_ int fd, int revents)
555{ 896{
556 ANFD *anfd = anfds + fd; 897 ANFD *anfd = anfds + fd;
557 ev_io *w; 898 ev_io *w;
558 899
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 900 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 904 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 905 ev_feed_event (EV_A_ (W)w, ev);
565 } 906 }
566} 907}
567 908
909/* do not submit kernel events for fds that have reify set */
910/* because that means they changed while we were polling for new events */
911inline_speed void
912fd_event (EV_P_ int fd, int revents)
913{
914 ANFD *anfd = anfds + fd;
915
916 if (expect_true (!anfd->reify))
917 fd_event_nc (EV_A_ fd, revents);
918}
919
568void 920void
569ev_feed_fd_event (EV_P_ int fd, int revents) 921ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 922{
571 if (fd >= 0 && fd < anfdmax) 923 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 924 fd_event_nc (EV_A_ fd, revents);
573} 925}
574 926
575void inline_size 927/* make sure the external fd watch events are in-sync */
928/* with the kernel/libev internal state */
929inline_size void
576fd_reify (EV_P) 930fd_reify (EV_P)
577{ 931{
578 int i; 932 int i;
579 933
580 for (i = 0; i < fdchangecnt; ++i) 934 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 943 events |= (unsigned char)w->events;
590 944
591#if EV_SELECT_IS_WINSOCKET 945#if EV_SELECT_IS_WINSOCKET
592 if (events) 946 if (events)
593 { 947 {
594 unsigned long argp; 948 unsigned long arg;
595 anfd->handle = _get_osfhandle (fd); 949 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 950 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 951 }
598#endif 952#endif
599 953
600 { 954 {
601 unsigned char o_events = anfd->events; 955 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 956 unsigned char o_reify = anfd->reify;
603 957
604 anfd->reify = 0; 958 anfd->reify = 0;
605 anfd->events = events; 959 anfd->events = events;
606 960
607 if (o_events != events || o_reify & EV_IOFDSET) 961 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 962 backend_modify (EV_A_ fd, o_events, events);
609 } 963 }
610 } 964 }
611 965
612 fdchangecnt = 0; 966 fdchangecnt = 0;
613} 967}
614 968
615void inline_size 969/* something about the given fd changed */
970inline_size void
616fd_change (EV_P_ int fd, int flags) 971fd_change (EV_P_ int fd, int flags)
617{ 972{
618 unsigned char reify = anfds [fd].reify; 973 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 974 anfds [fd].reify |= flags;
620 975
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 979 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 980 fdchanges [fdchangecnt - 1] = fd;
626 } 981 }
627} 982}
628 983
629void inline_speed 984/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
985inline_speed void
630fd_kill (EV_P_ int fd) 986fd_kill (EV_P_ int fd)
631{ 987{
632 ev_io *w; 988 ev_io *w;
633 989
634 while ((w = (ev_io *)anfds [fd].head)) 990 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 992 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 993 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 994 }
639} 995}
640 996
641int inline_size 997/* check whether the given fd is atcually valid, for error recovery */
998inline_size int
642fd_valid (int fd) 999fd_valid (int fd)
643{ 1000{
644#ifdef _WIN32 1001#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 1002 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 1003#else
647 return fcntl (fd, F_GETFD) != -1; 1004 return fcntl (fd, F_GETFD) != -1;
648#endif 1005#endif
649} 1006}
650 1007
654{ 1011{
655 int fd; 1012 int fd;
656 1013
657 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 1015 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 1016 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 1017 fd_kill (EV_A_ fd);
661} 1018}
662 1019
663/* called on ENOMEM in select/poll to kill some fds and retry */ 1020/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 1021static void noinline
668 1025
669 for (fd = anfdmax; fd--; ) 1026 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 1027 if (anfds [fd].events)
671 { 1028 {
672 fd_kill (EV_A_ fd); 1029 fd_kill (EV_A_ fd);
673 return; 1030 break;
674 } 1031 }
675} 1032}
676 1033
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1034/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1035static void noinline
682 1039
683 for (fd = 0; fd < anfdmax; ++fd) 1040 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1041 if (anfds [fd].events)
685 { 1042 {
686 anfds [fd].events = 0; 1043 anfds [fd].events = 0;
1044 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1045 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1046 }
689} 1047}
690 1048
691/*****************************************************************************/ 1049/*****************************************************************************/
692 1050
693void inline_speed 1051/*
694upheap (WT *heap, int k) 1052 * the heap functions want a real array index. array index 0 uis guaranteed to not
695{ 1053 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
696 WT w = heap [k]; 1054 * the branching factor of the d-tree.
1055 */
697 1056
698 while (k) 1057/*
699 { 1058 * at the moment we allow libev the luxury of two heaps,
700 int p = (k - 1) >> 1; 1059 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1060 * which is more cache-efficient.
1061 * the difference is about 5% with 50000+ watchers.
1062 */
1063#if EV_USE_4HEAP
701 1064
702 if (heap [p]->at <= w->at) 1065#define DHEAP 4
1066#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1067#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1068#define UPHEAP_DONE(p,k) ((p) == (k))
1069
1070/* away from the root */
1071inline_speed void
1072downheap (ANHE *heap, int N, int k)
1073{
1074 ANHE he = heap [k];
1075 ANHE *E = heap + N + HEAP0;
1076
1077 for (;;)
1078 {
1079 ev_tstamp minat;
1080 ANHE *minpos;
1081 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1082
1083 /* find minimum child */
1084 if (expect_true (pos + DHEAP - 1 < E))
1085 {
1086 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1087 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1088 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1089 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1090 }
1091 else if (pos < E)
1092 {
1093 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else
703 break; 1099 break;
704 1100
1101 if (ANHE_at (he) <= minat)
1102 break;
1103
1104 heap [k] = *minpos;
1105 ev_active (ANHE_w (*minpos)) = k;
1106
1107 k = minpos - heap;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114#else /* 4HEAP */
1115
1116#define HEAP0 1
1117#define HPARENT(k) ((k) >> 1)
1118#define UPHEAP_DONE(p,k) (!(p))
1119
1120/* away from the root */
1121inline_speed void
1122downheap (ANHE *heap, int N, int k)
1123{
1124 ANHE he = heap [k];
1125
1126 for (;;)
1127 {
1128 int c = k << 1;
1129
1130 if (c >= N + HEAP0)
1131 break;
1132
1133 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1134 ? 1 : 0;
1135
1136 if (ANHE_at (he) <= ANHE_at (heap [c]))
1137 break;
1138
1139 heap [k] = heap [c];
1140 ev_active (ANHE_w (heap [k])) = k;
1141
1142 k = c;
1143 }
1144
1145 heap [k] = he;
1146 ev_active (ANHE_w (he)) = k;
1147}
1148#endif
1149
1150/* towards the root */
1151inline_speed void
1152upheap (ANHE *heap, int k)
1153{
1154 ANHE he = heap [k];
1155
1156 for (;;)
1157 {
1158 int p = HPARENT (k);
1159
1160 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1161 break;
1162
705 heap [k] = heap [p]; 1163 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1; 1164 ev_active (ANHE_w (heap [k])) = k;
707 k = p; 1165 k = p;
708 } 1166 }
709 1167
710 heap [k] = w; 1168 heap [k] = he;
711 ((W)heap [k])->active = k + 1; 1169 ev_active (ANHE_w (he)) = k;
712} 1170}
713 1171
714void inline_speed 1172/* move an element suitably so it is in a correct place */
715downheap (WT *heap, int N, int k) 1173inline_size void
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k) 1174adjustheap (ANHE *heap, int N, int k)
744{ 1175{
1176 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
745 upheap (heap, k); 1177 upheap (heap, k);
1178 else
746 downheap (heap, N, k); 1179 downheap (heap, N, k);
1180}
1181
1182/* rebuild the heap: this function is used only once and executed rarely */
1183inline_size void
1184reheap (ANHE *heap, int N)
1185{
1186 int i;
1187
1188 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1189 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1190 for (i = 0; i < N; ++i)
1191 upheap (heap, i + HEAP0);
747} 1192}
748 1193
749/*****************************************************************************/ 1194/*****************************************************************************/
750 1195
1196/* associate signal watchers to a signal signal */
751typedef struct 1197typedef struct
752{ 1198{
1199 EV_ATOMIC_T pending;
1200#if EV_MULTIPLICITY
1201 EV_P;
1202#endif
753 WL head; 1203 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG; 1204} ANSIG;
756 1205
757static ANSIG *signals; 1206static ANSIG signals [EV_NSIG - 1];
758static int signalmax;
759 1207
760static int sigpipe [2]; 1208/*****************************************************************************/
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763 1209
764void inline_size 1210/* used to prepare libev internal fd's */
765signals_init (ANSIG *base, int count) 1211/* this is not fork-safe */
766{ 1212inline_speed void
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1213fd_intern (int fd)
829{ 1214{
830#ifdef _WIN32 1215#ifdef _WIN32
831 int arg = 1; 1216 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1217 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1218#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1219 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1220 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1221#endif
837} 1222}
838 1223
839static void noinline 1224static void noinline
840siginit (EV_P) 1225evpipe_init (EV_P)
841{ 1226{
1227 if (!ev_is_active (&pipe_w))
1228 {
1229#if EV_USE_EVENTFD
1230 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1231 if (evfd < 0 && errno == EINVAL)
1232 evfd = eventfd (0, 0);
1233
1234 if (evfd >= 0)
1235 {
1236 evpipe [0] = -1;
1237 fd_intern (evfd); /* doing it twice doesn't hurt */
1238 ev_io_set (&pipe_w, evfd, EV_READ);
1239 }
1240 else
1241#endif
1242 {
1243 while (pipe (evpipe))
1244 ev_syserr ("(libev) error creating signal/async pipe");
1245
842 fd_intern (sigpipe [0]); 1246 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1247 fd_intern (evpipe [1]);
1248 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1249 }
844 1250
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1251 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1252 ev_unref (EV_A); /* watcher should not keep loop alive */
1253 }
1254}
1255
1256inline_size void
1257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1258{
1259 if (!*flag)
1260 {
1261 int old_errno = errno; /* save errno because write might clobber it */
1262
1263 *flag = 1;
1264
1265#if EV_USE_EVENTFD
1266 if (evfd >= 0)
1267 {
1268 uint64_t counter = 1;
1269 write (evfd, &counter, sizeof (uint64_t));
1270 }
1271 else
1272#endif
1273 write (evpipe [1], &old_errno, 1);
1274
1275 errno = old_errno;
1276 }
1277}
1278
1279/* called whenever the libev signal pipe */
1280/* got some events (signal, async) */
1281static void
1282pipecb (EV_P_ ev_io *iow, int revents)
1283{
1284 int i;
1285
1286#if EV_USE_EVENTFD
1287 if (evfd >= 0)
1288 {
1289 uint64_t counter;
1290 read (evfd, &counter, sizeof (uint64_t));
1291 }
1292 else
1293#endif
1294 {
1295 char dummy;
1296 read (evpipe [0], &dummy, 1);
1297 }
1298
1299 if (sig_pending)
1300 {
1301 sig_pending = 0;
1302
1303 for (i = EV_NSIG - 1; i--; )
1304 if (expect_false (signals [i].pending))
1305 ev_feed_signal_event (EV_A_ i + 1);
1306 }
1307
1308#if EV_ASYNC_ENABLE
1309 if (async_pending)
1310 {
1311 async_pending = 0;
1312
1313 for (i = asynccnt; i--; )
1314 if (asyncs [i]->sent)
1315 {
1316 asyncs [i]->sent = 0;
1317 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1318 }
1319 }
1320#endif
848} 1321}
849 1322
850/*****************************************************************************/ 1323/*****************************************************************************/
851 1324
1325static void
1326ev_sighandler (int signum)
1327{
1328#if EV_MULTIPLICITY
1329 EV_P = signals [signum - 1].loop;
1330#endif
1331
1332#ifdef _WIN32
1333 signal (signum, ev_sighandler);
1334#endif
1335
1336 signals [signum - 1].pending = 1;
1337 evpipe_write (EV_A_ &sig_pending);
1338}
1339
1340void noinline
1341ev_feed_signal_event (EV_P_ int signum)
1342{
1343 WL w;
1344
1345 if (expect_false (signum <= 0 || signum > EV_NSIG))
1346 return;
1347
1348 --signum;
1349
1350#if EV_MULTIPLICITY
1351 /* it is permissible to try to feed a signal to the wrong loop */
1352 /* or, likely more useful, feeding a signal nobody is waiting for */
1353
1354 if (expect_false (signals [signum].loop != EV_A))
1355 return;
1356#endif
1357
1358 signals [signum].pending = 0;
1359
1360 for (w = signals [signum].head; w; w = w->next)
1361 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1362}
1363
1364#if EV_USE_SIGNALFD
1365static void
1366sigfdcb (EV_P_ ev_io *iow, int revents)
1367{
1368 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1369
1370 for (;;)
1371 {
1372 ssize_t res = read (sigfd, si, sizeof (si));
1373
1374 /* not ISO-C, as res might be -1, but works with SuS */
1375 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1376 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1377
1378 if (res < (ssize_t)sizeof (si))
1379 break;
1380 }
1381}
1382#endif
1383
1384/*****************************************************************************/
1385
852static WL childs [EV_PID_HASHSIZE]; 1386static WL childs [EV_PID_HASHSIZE];
853 1387
854#ifndef _WIN32 1388#ifndef _WIN32
855 1389
856static ev_signal childev; 1390static ev_signal childev;
857 1391
858void inline_speed 1392#ifndef WIFCONTINUED
1393# define WIFCONTINUED(status) 0
1394#endif
1395
1396/* handle a single child status event */
1397inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1398child_reap (EV_P_ int chain, int pid, int status)
860{ 1399{
861 ev_child *w; 1400 ev_child *w;
1401 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1402
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1403 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1404 {
864 if (w->pid == pid || !w->pid) 1405 if ((w->pid == pid || !w->pid)
1406 && (!traced || (w->flags & 1)))
865 { 1407 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1408 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1409 w->rpid = pid;
868 w->rstatus = status; 1410 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1411 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1412 }
1413 }
871} 1414}
872 1415
873#ifndef WCONTINUED 1416#ifndef WCONTINUED
874# define WCONTINUED 0 1417# define WCONTINUED 0
875#endif 1418#endif
876 1419
1420/* called on sigchld etc., calls waitpid */
877static void 1421static void
878childcb (EV_P_ ev_signal *sw, int revents) 1422childcb (EV_P_ ev_signal *sw, int revents)
879{ 1423{
880 int pid, status; 1424 int pid, status;
881 1425
884 if (!WCONTINUED 1428 if (!WCONTINUED
885 || errno != EINVAL 1429 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1430 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1431 return;
888 1432
889 /* make sure we are called again until all childs have been reaped */ 1433 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1434 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1435 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1436
893 child_reap (EV_A_ sw, pid, pid, status); 1437 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1438 if (EV_PID_HASHSIZE > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1439 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1440}
897 1441
898#endif 1442#endif
899 1443
900/*****************************************************************************/ 1444/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1506 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1507 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1508 flags &= ~EVBACKEND_KQUEUE;
965#endif 1509#endif
966#ifdef __APPLE__ 1510#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1511 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1512 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1513 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
969#endif 1514#endif
970 1515
971 return flags; 1516 return flags;
972} 1517}
973 1518
987ev_backend (EV_P) 1532ev_backend (EV_P)
988{ 1533{
989 return backend; 1534 return backend;
990} 1535}
991 1536
1537#if EV_MINIMAL < 2
992unsigned int 1538unsigned int
993ev_loop_count (EV_P) 1539ev_loop_count (EV_P)
994{ 1540{
995 return loop_count; 1541 return loop_count;
996} 1542}
997 1543
1544unsigned int
1545ev_loop_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
998void 1550void
999ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1552{
1001 io_blocktime = interval; 1553 io_blocktime = interval;
1002} 1554}
1005ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1006{ 1558{
1007 timeout_blocktime = interval; 1559 timeout_blocktime = interval;
1008} 1560}
1009 1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
1010static void noinline 1587static void noinline
1011loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
1012{ 1589{
1013 if (!backend) 1590 if (!backend)
1014 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
1015#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
1016 { 1604 {
1017 struct timespec ts; 1605 struct timespec ts;
1606
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1608 have_monotonic = 1;
1020 } 1609 }
1021#endif 1610#endif
1022
1023 ev_rt_now = ev_time ();
1024 mn_now = get_clock ();
1025 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now;
1027
1028 io_blocktime = 0.;
1029 timeout_blocktime = 0.;
1030 1611
1031 /* pid check not overridable via env */ 1612 /* pid check not overridable via env */
1032#ifndef _WIN32 1613#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1614 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1615 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1618 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1619 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1620 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1621 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1622
1623 ev_rt_now = ev_time ();
1624 mn_now = get_clock ();
1625 now_floor = mn_now;
1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_MINIMAL < 2
1628 invoke_cb = ev_invoke_pending;
1629#endif
1630
1631 io_blocktime = 0.;
1632 timeout_blocktime = 0.;
1633 backend = 0;
1634 backend_fd = -1;
1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1639#if EV_USE_INOTIFY
1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1641#endif
1642#if EV_USE_SIGNALFD
1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1644#endif
1645
1042 if (!(flags & 0x0000ffffUL)) 1646 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1648
1051#if EV_USE_PORT 1649#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1650 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1651#endif
1054#if EV_USE_KQUEUE 1652#if EV_USE_KQUEUE
1062#endif 1660#endif
1063#if EV_USE_SELECT 1661#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1663#endif
1066 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1067 ev_init (&sigev, sigcb); 1667 ev_init (&pipe_w, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1668 ev_set_priority (&pipe_w, EV_MAXPRI);
1069 } 1669 }
1070} 1670}
1071 1671
1672/* free up a loop structure */
1072static void noinline 1673static void noinline
1073loop_destroy (EV_P) 1674loop_destroy (EV_P)
1074{ 1675{
1075 int i; 1676 int i;
1677
1678 if (ev_is_active (&pipe_w))
1679 {
1680 /*ev_ref (EV_A);*/
1681 /*ev_io_stop (EV_A_ &pipe_w);*/
1682
1683#if EV_USE_EVENTFD
1684 if (evfd >= 0)
1685 close (evfd);
1686#endif
1687
1688 if (evpipe [0] >= 0)
1689 {
1690 EV_WIN32_CLOSE_FD (evpipe [0]);
1691 EV_WIN32_CLOSE_FD (evpipe [1]);
1692 }
1693 }
1694
1695#if EV_USE_SIGNALFD
1696 if (ev_is_active (&sigfd_w))
1697 close (sigfd);
1698#endif
1076 1699
1077#if EV_USE_INOTIFY 1700#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1701 if (fs_fd >= 0)
1079 close (fs_fd); 1702 close (fs_fd);
1080#endif 1703#endif
1104#if EV_IDLE_ENABLE 1727#if EV_IDLE_ENABLE
1105 array_free (idle, [i]); 1728 array_free (idle, [i]);
1106#endif 1729#endif
1107 } 1730 }
1108 1731
1109 ev_free (anfds); anfdmax = 0; 1732 ev_free (anfds); anfds = 0; anfdmax = 0;
1110 1733
1111 /* have to use the microsoft-never-gets-it-right macro */ 1734 /* have to use the microsoft-never-gets-it-right macro */
1735 array_free (rfeed, EMPTY);
1112 array_free (fdchange, EMPTY); 1736 array_free (fdchange, EMPTY);
1113 array_free (timer, EMPTY); 1737 array_free (timer, EMPTY);
1114#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1115 array_free (periodic, EMPTY); 1739 array_free (periodic, EMPTY);
1116#endif 1740#endif
1117#if EV_FORK_ENABLE 1741#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1742 array_free (fork, EMPTY);
1119#endif 1743#endif
1120 array_free (prepare, EMPTY); 1744 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1745 array_free (check, EMPTY);
1746#if EV_ASYNC_ENABLE
1747 array_free (async, EMPTY);
1748#endif
1122 1749
1123 backend = 0; 1750 backend = 0;
1124} 1751}
1125 1752
1753#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1754inline_size void infy_fork (EV_P);
1755#endif
1127 1756
1128void inline_size 1757inline_size void
1129loop_fork (EV_P) 1758loop_fork (EV_P)
1130{ 1759{
1131#if EV_USE_PORT 1760#if EV_USE_PORT
1132 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1761 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1133#endif 1762#endif
1139#endif 1768#endif
1140#if EV_USE_INOTIFY 1769#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1770 infy_fork (EV_A);
1142#endif 1771#endif
1143 1772
1144 if (ev_is_active (&sigev)) 1773 if (ev_is_active (&pipe_w))
1145 { 1774 {
1146 /* default loop */ 1775 /* this "locks" the handlers against writing to the pipe */
1776 /* while we modify the fd vars */
1777 sig_pending = 1;
1778#if EV_ASYNC_ENABLE
1779 async_pending = 1;
1780#endif
1147 1781
1148 ev_ref (EV_A); 1782 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1783 ev_io_stop (EV_A_ &pipe_w);
1150 close (sigpipe [0]);
1151 close (sigpipe [1]);
1152 1784
1153 while (pipe (sigpipe)) 1785#if EV_USE_EVENTFD
1154 syserr ("(libev) error creating pipe"); 1786 if (evfd >= 0)
1787 close (evfd);
1788#endif
1155 1789
1790 if (evpipe [0] >= 0)
1791 {
1792 EV_WIN32_CLOSE_FD (evpipe [0]);
1793 EV_WIN32_CLOSE_FD (evpipe [1]);
1794 }
1795
1156 siginit (EV_A); 1796 evpipe_init (EV_A);
1797 /* now iterate over everything, in case we missed something */
1798 pipecb (EV_A_ &pipe_w, EV_READ);
1157 } 1799 }
1158 1800
1159 postfork = 0; 1801 postfork = 0;
1160} 1802}
1161 1803
1162#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1805
1163struct ev_loop * 1806struct ev_loop *
1164ev_loop_new (unsigned int flags) 1807ev_loop_new (unsigned int flags)
1165{ 1808{
1166 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1809 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1167 1810
1168 memset (loop, 0, sizeof (struct ev_loop)); 1811 memset (EV_A, 0, sizeof (struct ev_loop));
1169
1170 loop_init (EV_A_ flags); 1812 loop_init (EV_A_ flags);
1171 1813
1172 if (ev_backend (EV_A)) 1814 if (ev_backend (EV_A))
1173 return loop; 1815 return EV_A;
1174 1816
1175 return 0; 1817 return 0;
1176} 1818}
1177 1819
1178void 1820void
1183} 1825}
1184 1826
1185void 1827void
1186ev_loop_fork (EV_P) 1828ev_loop_fork (EV_P)
1187{ 1829{
1188 postfork = 1; 1830 postfork = 1; /* must be in line with ev_default_fork */
1189} 1831}
1832#endif /* multiplicity */
1190 1833
1834#if EV_VERIFY
1835static void noinline
1836verify_watcher (EV_P_ W w)
1837{
1838 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1839
1840 if (w->pending)
1841 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1842}
1843
1844static void noinline
1845verify_heap (EV_P_ ANHE *heap, int N)
1846{
1847 int i;
1848
1849 for (i = HEAP0; i < N + HEAP0; ++i)
1850 {
1851 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1852 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1853 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1854
1855 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1856 }
1857}
1858
1859static void noinline
1860array_verify (EV_P_ W *ws, int cnt)
1861{
1862 while (cnt--)
1863 {
1864 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1865 verify_watcher (EV_A_ ws [cnt]);
1866 }
1867}
1868#endif
1869
1870#if EV_MINIMAL < 2
1871void
1872ev_loop_verify (EV_P)
1873{
1874#if EV_VERIFY
1875 int i;
1876 WL w;
1877
1878 assert (activecnt >= -1);
1879
1880 assert (fdchangemax >= fdchangecnt);
1881 for (i = 0; i < fdchangecnt; ++i)
1882 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1883
1884 assert (anfdmax >= 0);
1885 for (i = 0; i < anfdmax; ++i)
1886 for (w = anfds [i].head; w; w = w->next)
1887 {
1888 verify_watcher (EV_A_ (W)w);
1889 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1890 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1891 }
1892
1893 assert (timermax >= timercnt);
1894 verify_heap (EV_A_ timers, timercnt);
1895
1896#if EV_PERIODIC_ENABLE
1897 assert (periodicmax >= periodiccnt);
1898 verify_heap (EV_A_ periodics, periodiccnt);
1899#endif
1900
1901 for (i = NUMPRI; i--; )
1902 {
1903 assert (pendingmax [i] >= pendingcnt [i]);
1904#if EV_IDLE_ENABLE
1905 assert (idleall >= 0);
1906 assert (idlemax [i] >= idlecnt [i]);
1907 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1908#endif
1909 }
1910
1911#if EV_FORK_ENABLE
1912 assert (forkmax >= forkcnt);
1913 array_verify (EV_A_ (W *)forks, forkcnt);
1914#endif
1915
1916#if EV_ASYNC_ENABLE
1917 assert (asyncmax >= asynccnt);
1918 array_verify (EV_A_ (W *)asyncs, asynccnt);
1919#endif
1920
1921 assert (preparemax >= preparecnt);
1922 array_verify (EV_A_ (W *)prepares, preparecnt);
1923
1924 assert (checkmax >= checkcnt);
1925 array_verify (EV_A_ (W *)checks, checkcnt);
1926
1927# if 0
1928 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1929 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1930# endif
1931#endif
1932}
1191#endif 1933#endif
1192 1934
1193#if EV_MULTIPLICITY 1935#if EV_MULTIPLICITY
1194struct ev_loop * 1936struct ev_loop *
1195ev_default_loop_init (unsigned int flags) 1937ev_default_loop_init (unsigned int flags)
1196#else 1938#else
1197int 1939int
1198ev_default_loop (unsigned int flags) 1940ev_default_loop (unsigned int flags)
1199#endif 1941#endif
1200{ 1942{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 1943 if (!ev_default_loop_ptr)
1206 { 1944 {
1207#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1946 EV_P = ev_default_loop_ptr = &default_loop_struct;
1209#else 1947#else
1210 ev_default_loop_ptr = 1; 1948 ev_default_loop_ptr = 1;
1211#endif 1949#endif
1212 1950
1213 loop_init (EV_A_ flags); 1951 loop_init (EV_A_ flags);
1214 1952
1215 if (ev_backend (EV_A)) 1953 if (ev_backend (EV_A))
1216 { 1954 {
1217 siginit (EV_A);
1218
1219#ifndef _WIN32 1955#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 1956 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 1957 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 1958 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1959 ev_unref (EV_A); /* child watcher should not keep loop alive */
1232 1968
1233void 1969void
1234ev_default_destroy (void) 1970ev_default_destroy (void)
1235{ 1971{
1236#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1237 struct ev_loop *loop = ev_default_loop_ptr; 1973 EV_P = ev_default_loop_ptr;
1238#endif 1974#endif
1975
1976 ev_default_loop_ptr = 0;
1239 1977
1240#ifndef _WIN32 1978#ifndef _WIN32
1241 ev_ref (EV_A); /* child watcher */ 1979 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 1980 ev_signal_stop (EV_A_ &childev);
1243#endif 1981#endif
1244 1982
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 1983 loop_destroy (EV_A);
1252} 1984}
1253 1985
1254void 1986void
1255ev_default_fork (void) 1987ev_default_fork (void)
1256{ 1988{
1257#if EV_MULTIPLICITY 1989#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 1990 EV_P = ev_default_loop_ptr;
1259#endif 1991#endif
1260 1992
1261 if (backend) 1993 postfork = 1; /* must be in line with ev_loop_fork */
1262 postfork = 1;
1263} 1994}
1264 1995
1265/*****************************************************************************/ 1996/*****************************************************************************/
1266 1997
1267void 1998void
1268ev_invoke (EV_P_ void *w, int revents) 1999ev_invoke (EV_P_ void *w, int revents)
1269{ 2000{
1270 EV_CB_INVOKE ((W)w, revents); 2001 EV_CB_INVOKE ((W)w, revents);
1271} 2002}
1272 2003
1273void inline_speed 2004unsigned int
1274call_pending (EV_P) 2005ev_pending_count (EV_P)
2006{
2007 int pri;
2008 unsigned int count = 0;
2009
2010 for (pri = NUMPRI; pri--; )
2011 count += pendingcnt [pri];
2012
2013 return count;
2014}
2015
2016void noinline
2017ev_invoke_pending (EV_P)
1275{ 2018{
1276 int pri; 2019 int pri;
1277 2020
1278 for (pri = NUMPRI; pri--; ) 2021 for (pri = NUMPRI; pri--; )
1279 while (pendingcnt [pri]) 2022 while (pendingcnt [pri])
1280 { 2023 {
1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1282 2025
1283 if (expect_true (p->w))
1284 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2026 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2027 /* ^ this is no longer true, as pending_w could be here */
1286 2028
1287 p->w->pending = 0; 2029 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 2030 EV_CB_INVOKE (p->w, p->events);
1289 } 2031 EV_FREQUENT_CHECK;
1290 } 2032 }
1291} 2033}
1292 2034
1293void inline_size
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372
1373#if EV_IDLE_ENABLE 2035#if EV_IDLE_ENABLE
1374void inline_size 2036/* make idle watchers pending. this handles the "call-idle */
2037/* only when higher priorities are idle" logic */
2038inline_size void
1375idle_reify (EV_P) 2039idle_reify (EV_P)
1376{ 2040{
1377 if (expect_false (idleall)) 2041 if (expect_false (idleall))
1378 { 2042 {
1379 int pri; 2043 int pri;
1391 } 2055 }
1392 } 2056 }
1393} 2057}
1394#endif 2058#endif
1395 2059
1396void inline_speed 2060/* make timers pending */
2061inline_size void
2062timers_reify (EV_P)
2063{
2064 EV_FREQUENT_CHECK;
2065
2066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2067 {
2068 do
2069 {
2070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2071
2072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2073
2074 /* first reschedule or stop timer */
2075 if (w->repeat)
2076 {
2077 ev_at (w) += w->repeat;
2078 if (ev_at (w) < mn_now)
2079 ev_at (w) = mn_now;
2080
2081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2082
2083 ANHE_at_cache (timers [HEAP0]);
2084 downheap (timers, timercnt, HEAP0);
2085 }
2086 else
2087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2088
2089 EV_FREQUENT_CHECK;
2090 feed_reverse (EV_A_ (W)w);
2091 }
2092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2093
2094 feed_reverse_done (EV_A_ EV_TIMEOUT);
2095 }
2096}
2097
2098#if EV_PERIODIC_ENABLE
2099/* make periodics pending */
2100inline_size void
2101periodics_reify (EV_P)
2102{
2103 EV_FREQUENT_CHECK;
2104
2105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2106 {
2107 int feed_count = 0;
2108
2109 do
2110 {
2111 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2112
2113 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2114
2115 /* first reschedule or stop timer */
2116 if (w->reschedule_cb)
2117 {
2118 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2119
2120 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2121
2122 ANHE_at_cache (periodics [HEAP0]);
2123 downheap (periodics, periodiccnt, HEAP0);
2124 }
2125 else if (w->interval)
2126 {
2127 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2128 /* if next trigger time is not sufficiently in the future, put it there */
2129 /* this might happen because of floating point inexactness */
2130 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2131 {
2132 ev_at (w) += w->interval;
2133
2134 /* if interval is unreasonably low we might still have a time in the past */
2135 /* so correct this. this will make the periodic very inexact, but the user */
2136 /* has effectively asked to get triggered more often than possible */
2137 if (ev_at (w) < ev_rt_now)
2138 ev_at (w) = ev_rt_now;
2139 }
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else
2145 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
2149 }
2150 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2151
2152 feed_reverse_done (EV_A_ EV_PERIODIC);
2153 }
2154}
2155
2156/* simply recalculate all periodics */
2157/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2158static void noinline
2159periodics_reschedule (EV_P)
2160{
2161 int i;
2162
2163 /* adjust periodics after time jump */
2164 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2165 {
2166 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2167
2168 if (w->reschedule_cb)
2169 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2170 else if (w->interval)
2171 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2172
2173 ANHE_at_cache (periodics [i]);
2174 }
2175
2176 reheap (periodics, periodiccnt);
2177}
2178#endif
2179
2180/* adjust all timers by a given offset */
2181static void noinline
2182timers_reschedule (EV_P_ ev_tstamp adjust)
2183{
2184 int i;
2185
2186 for (i = 0; i < timercnt; ++i)
2187 {
2188 ANHE *he = timers + i + HEAP0;
2189 ANHE_w (*he)->at += adjust;
2190 ANHE_at_cache (*he);
2191 }
2192}
2193
2194/* fetch new monotonic and realtime times from the kernel */
2195/* also detect if there was a timejump, and act accordingly */
2196inline_speed void
1397time_update (EV_P_ ev_tstamp max_block) 2197time_update (EV_P_ ev_tstamp max_block)
1398{ 2198{
1399 int i;
1400
1401#if EV_USE_MONOTONIC 2199#if EV_USE_MONOTONIC
1402 if (expect_true (have_monotonic)) 2200 if (expect_true (have_monotonic))
1403 { 2201 {
2202 int i;
1404 ev_tstamp odiff = rtmn_diff; 2203 ev_tstamp odiff = rtmn_diff;
1405 2204
1406 mn_now = get_clock (); 2205 mn_now = get_clock ();
1407 2206
1408 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2207 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1426 */ 2225 */
1427 for (i = 4; --i; ) 2226 for (i = 4; --i; )
1428 { 2227 {
1429 rtmn_diff = ev_rt_now - mn_now; 2228 rtmn_diff = ev_rt_now - mn_now;
1430 2229
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2230 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 2231 return; /* all is well */
1433 2232
1434 ev_rt_now = ev_time (); 2233 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 2234 mn_now = get_clock ();
1436 now_floor = mn_now; 2235 now_floor = mn_now;
1437 } 2236 }
1438 2237
2238 /* no timer adjustment, as the monotonic clock doesn't jump */
2239 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1439# if EV_PERIODIC_ENABLE 2240# if EV_PERIODIC_ENABLE
1440 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1441# endif 2242# endif
1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444 } 2243 }
1445 else 2244 else
1446#endif 2245#endif
1447 { 2246 {
1448 ev_rt_now = ev_time (); 2247 ev_rt_now = ev_time ();
1449 2248
1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2249 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1451 { 2250 {
2251 /* adjust timers. this is easy, as the offset is the same for all of them */
2252 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1452#if EV_PERIODIC_ENABLE 2253#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 2254 periodics_reschedule (EV_A);
1454#endif 2255#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i)
1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1458 } 2256 }
1459 2257
1460 mn_now = ev_rt_now; 2258 mn_now = ev_rt_now;
1461 } 2259 }
1462} 2260}
1463 2261
1464void 2262void
1465ev_ref (EV_P)
1466{
1467 ++activecnt;
1468}
1469
1470void
1471ev_unref (EV_P)
1472{
1473 --activecnt;
1474}
1475
1476static int loop_done;
1477
1478void
1479ev_loop (EV_P_ int flags) 2263ev_loop (EV_P_ int flags)
1480{ 2264{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2265#if EV_MINIMAL < 2
1482 ? EVUNLOOP_ONE 2266 ++loop_depth;
1483 : EVUNLOOP_CANCEL; 2267#endif
1484 2268
2269 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2270
2271 loop_done = EVUNLOOP_CANCEL;
2272
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2273 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1486 2274
1487 do 2275 do
1488 { 2276 {
2277#if EV_VERIFY >= 2
2278 ev_loop_verify (EV_A);
2279#endif
2280
1489#ifndef _WIN32 2281#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */ 2282 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid)) 2283 if (expect_false (getpid () != curpid))
1492 { 2284 {
1493 curpid = getpid (); 2285 curpid = getpid ();
1499 /* we might have forked, so queue fork handlers */ 2291 /* we might have forked, so queue fork handlers */
1500 if (expect_false (postfork)) 2292 if (expect_false (postfork))
1501 if (forkcnt) 2293 if (forkcnt)
1502 { 2294 {
1503 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2295 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1504 call_pending (EV_A); 2296 EV_INVOKE_PENDING;
1505 } 2297 }
1506#endif 2298#endif
1507 2299
1508 /* queue prepare watchers (and execute them) */ 2300 /* queue prepare watchers (and execute them) */
1509 if (expect_false (preparecnt)) 2301 if (expect_false (preparecnt))
1510 { 2302 {
1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2303 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1512 call_pending (EV_A); 2304 EV_INVOKE_PENDING;
1513 } 2305 }
1514 2306
1515 if (expect_false (!activecnt)) 2307 if (expect_false (loop_done))
1516 break; 2308 break;
1517 2309
1518 /* we might have forked, so reify kernel state if necessary */ 2310 /* we might have forked, so reify kernel state if necessary */
1519 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1520 loop_fork (EV_A); 2312 loop_fork (EV_A);
1527 ev_tstamp waittime = 0.; 2319 ev_tstamp waittime = 0.;
1528 ev_tstamp sleeptime = 0.; 2320 ev_tstamp sleeptime = 0.;
1529 2321
1530 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2322 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1531 { 2323 {
2324 /* remember old timestamp for io_blocktime calculation */
2325 ev_tstamp prev_mn_now = mn_now;
2326
1532 /* update time to cancel out callback processing overhead */ 2327 /* update time to cancel out callback processing overhead */
1533 time_update (EV_A_ 1e100); 2328 time_update (EV_A_ 1e100);
1534 2329
1535 waittime = MAX_BLOCKTIME; 2330 waittime = MAX_BLOCKTIME;
1536 2331
1537 if (timercnt) 2332 if (timercnt)
1538 { 2333 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2334 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 2335 if (waittime > to) waittime = to;
1541 } 2336 }
1542 2337
1543#if EV_PERIODIC_ENABLE 2338#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 2339 if (periodiccnt)
1545 { 2340 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2341 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 2342 if (waittime > to) waittime = to;
1548 } 2343 }
1549#endif 2344#endif
1550 2345
2346 /* don't let timeouts decrease the waittime below timeout_blocktime */
1551 if (expect_false (waittime < timeout_blocktime)) 2347 if (expect_false (waittime < timeout_blocktime))
1552 waittime = timeout_blocktime; 2348 waittime = timeout_blocktime;
1553 2349
1554 sleeptime = waittime - backend_fudge; 2350 /* extra check because io_blocktime is commonly 0 */
1555
1556 if (expect_true (sleeptime > io_blocktime)) 2351 if (expect_false (io_blocktime))
1557 sleeptime = io_blocktime;
1558
1559 if (sleeptime)
1560 { 2352 {
2353 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2354
2355 if (sleeptime > waittime - backend_fudge)
2356 sleeptime = waittime - backend_fudge;
2357
2358 if (expect_true (sleeptime > 0.))
2359 {
1561 ev_sleep (sleeptime); 2360 ev_sleep (sleeptime);
1562 waittime -= sleeptime; 2361 waittime -= sleeptime;
2362 }
1563 } 2363 }
1564 } 2364 }
1565 2365
2366#if EV_MINIMAL < 2
1566 ++loop_count; 2367 ++loop_count;
2368#endif
2369 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1567 backend_poll (EV_A_ waittime); 2370 backend_poll (EV_A_ waittime);
2371 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1568 2372
1569 /* update ev_rt_now, do magic */ 2373 /* update ev_rt_now, do magic */
1570 time_update (EV_A_ waittime + sleeptime); 2374 time_update (EV_A_ waittime + sleeptime);
1571 } 2375 }
1572 2376
1583 2387
1584 /* queue check watchers, to be executed first */ 2388 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 2389 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2390 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1587 2391
1588 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
1589
1590 } 2393 }
1591 while (expect_true (activecnt && !loop_done)); 2394 while (expect_true (
2395 activecnt
2396 && !loop_done
2397 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2398 ));
1592 2399
1593 if (loop_done == EVUNLOOP_ONE) 2400 if (loop_done == EVUNLOOP_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 2401 loop_done = EVUNLOOP_CANCEL;
2402
2403#if EV_MINIMAL < 2
2404 --loop_depth;
2405#endif
1595} 2406}
1596 2407
1597void 2408void
1598ev_unloop (EV_P_ int how) 2409ev_unloop (EV_P_ int how)
1599{ 2410{
1600 loop_done = how; 2411 loop_done = how;
1601} 2412}
1602 2413
2414void
2415ev_ref (EV_P)
2416{
2417 ++activecnt;
2418}
2419
2420void
2421ev_unref (EV_P)
2422{
2423 --activecnt;
2424}
2425
2426void
2427ev_now_update (EV_P)
2428{
2429 time_update (EV_A_ 1e100);
2430}
2431
2432void
2433ev_suspend (EV_P)
2434{
2435 ev_now_update (EV_A);
2436}
2437
2438void
2439ev_resume (EV_P)
2440{
2441 ev_tstamp mn_prev = mn_now;
2442
2443 ev_now_update (EV_A);
2444 timers_reschedule (EV_A_ mn_now - mn_prev);
2445#if EV_PERIODIC_ENABLE
2446 /* TODO: really do this? */
2447 periodics_reschedule (EV_A);
2448#endif
2449}
2450
1603/*****************************************************************************/ 2451/*****************************************************************************/
2452/* singly-linked list management, used when the expected list length is short */
1604 2453
1605void inline_size 2454inline_size void
1606wlist_add (WL *head, WL elem) 2455wlist_add (WL *head, WL elem)
1607{ 2456{
1608 elem->next = *head; 2457 elem->next = *head;
1609 *head = elem; 2458 *head = elem;
1610} 2459}
1611 2460
1612void inline_size 2461inline_size void
1613wlist_del (WL *head, WL elem) 2462wlist_del (WL *head, WL elem)
1614{ 2463{
1615 while (*head) 2464 while (*head)
1616 { 2465 {
1617 if (*head == elem) 2466 if (expect_true (*head == elem))
1618 { 2467 {
1619 *head = elem->next; 2468 *head = elem->next;
1620 return; 2469 break;
1621 } 2470 }
1622 2471
1623 head = &(*head)->next; 2472 head = &(*head)->next;
1624 } 2473 }
1625} 2474}
1626 2475
1627void inline_speed 2476/* internal, faster, version of ev_clear_pending */
2477inline_speed void
1628clear_pending (EV_P_ W w) 2478clear_pending (EV_P_ W w)
1629{ 2479{
1630 if (w->pending) 2480 if (w->pending)
1631 { 2481 {
1632 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2482 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1633 w->pending = 0; 2483 w->pending = 0;
1634 } 2484 }
1635} 2485}
1636 2486
1637int 2487int
1641 int pending = w_->pending; 2491 int pending = w_->pending;
1642 2492
1643 if (expect_true (pending)) 2493 if (expect_true (pending))
1644 { 2494 {
1645 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2495 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2496 p->w = (W)&pending_w;
1646 w_->pending = 0; 2497 w_->pending = 0;
1647 p->w = 0;
1648 return p->events; 2498 return p->events;
1649 } 2499 }
1650 else 2500 else
1651 return 0; 2501 return 0;
1652} 2502}
1653 2503
1654void inline_size 2504inline_size void
1655pri_adjust (EV_P_ W w) 2505pri_adjust (EV_P_ W w)
1656{ 2506{
1657 int pri = w->priority; 2507 int pri = ev_priority (w);
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2508 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2509 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri; 2510 ev_set_priority (w, pri);
1661} 2511}
1662 2512
1663void inline_speed 2513inline_speed void
1664ev_start (EV_P_ W w, int active) 2514ev_start (EV_P_ W w, int active)
1665{ 2515{
1666 pri_adjust (EV_A_ w); 2516 pri_adjust (EV_A_ w);
1667 w->active = active; 2517 w->active = active;
1668 ev_ref (EV_A); 2518 ev_ref (EV_A);
1669} 2519}
1670 2520
1671void inline_size 2521inline_size void
1672ev_stop (EV_P_ W w) 2522ev_stop (EV_P_ W w)
1673{ 2523{
1674 ev_unref (EV_A); 2524 ev_unref (EV_A);
1675 w->active = 0; 2525 w->active = 0;
1676} 2526}
1683 int fd = w->fd; 2533 int fd = w->fd;
1684 2534
1685 if (expect_false (ev_is_active (w))) 2535 if (expect_false (ev_is_active (w)))
1686 return; 2536 return;
1687 2537
1688 assert (("ev_io_start called with negative fd", fd >= 0)); 2538 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2539 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2540
2541 EV_FREQUENT_CHECK;
1689 2542
1690 ev_start (EV_A_ (W)w, 1); 2543 ev_start (EV_A_ (W)w, 1);
1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2544 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1692 wlist_add (&anfds[fd].head, (WL)w); 2545 wlist_add (&anfds[fd].head, (WL)w);
1693 2546
1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2547 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1695 w->events &= ~EV_IOFDSET; 2548 w->events &= ~EV__IOFDSET;
2549
2550 EV_FREQUENT_CHECK;
1696} 2551}
1697 2552
1698void noinline 2553void noinline
1699ev_io_stop (EV_P_ ev_io *w) 2554ev_io_stop (EV_P_ ev_io *w)
1700{ 2555{
1701 clear_pending (EV_A_ (W)w); 2556 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2557 if (expect_false (!ev_is_active (w)))
1703 return; 2558 return;
1704 2559
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2560 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2561
2562 EV_FREQUENT_CHECK;
1706 2563
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2564 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
1709 2566
1710 fd_change (EV_A_ w->fd, 1); 2567 fd_change (EV_A_ w->fd, 1);
2568
2569 EV_FREQUENT_CHECK;
1711} 2570}
1712 2571
1713void noinline 2572void noinline
1714ev_timer_start (EV_P_ ev_timer *w) 2573ev_timer_start (EV_P_ ev_timer *w)
1715{ 2574{
1716 if (expect_false (ev_is_active (w))) 2575 if (expect_false (ev_is_active (w)))
1717 return; 2576 return;
1718 2577
1719 ((WT)w)->at += mn_now; 2578 ev_at (w) += mn_now;
1720 2579
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2580 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2581
2582 EV_FREQUENT_CHECK;
2583
2584 ++timercnt;
1723 ev_start (EV_A_ (W)w, ++timercnt); 2585 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2586 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2587 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2588 ANHE_at_cache (timers [ev_active (w)]);
2589 upheap (timers, ev_active (w));
1727 2590
2591 EV_FREQUENT_CHECK;
2592
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2593 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2594}
1730 2595
1731void noinline 2596void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2597ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2598{
1734 clear_pending (EV_A_ (W)w); 2599 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2600 if (expect_false (!ev_is_active (w)))
1736 return; 2601 return;
1737 2602
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2603 EV_FREQUENT_CHECK;
1739 2604
1740 { 2605 {
1741 int active = ((W)w)->active; 2606 int active = ev_active (w);
1742 2607
2608 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2609
2610 --timercnt;
2611
1743 if (expect_true (--active < --timercnt)) 2612 if (expect_true (active < timercnt + HEAP0))
1744 { 2613 {
1745 timers [active] = timers [timercnt]; 2614 timers [active] = timers [timercnt + HEAP0];
1746 adjustheap (timers, timercnt, active); 2615 adjustheap (timers, timercnt, active);
1747 } 2616 }
1748 } 2617 }
1749 2618
1750 ((WT)w)->at -= mn_now; 2619 ev_at (w) -= mn_now;
1751 2620
1752 ev_stop (EV_A_ (W)w); 2621 ev_stop (EV_A_ (W)w);
2622
2623 EV_FREQUENT_CHECK;
1753} 2624}
1754 2625
1755void noinline 2626void noinline
1756ev_timer_again (EV_P_ ev_timer *w) 2627ev_timer_again (EV_P_ ev_timer *w)
1757{ 2628{
2629 EV_FREQUENT_CHECK;
2630
1758 if (ev_is_active (w)) 2631 if (ev_is_active (w))
1759 { 2632 {
1760 if (w->repeat) 2633 if (w->repeat)
1761 { 2634 {
1762 ((WT)w)->at = mn_now + w->repeat; 2635 ev_at (w) = mn_now + w->repeat;
2636 ANHE_at_cache (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2637 adjustheap (timers, timercnt, ev_active (w));
1764 } 2638 }
1765 else 2639 else
1766 ev_timer_stop (EV_A_ w); 2640 ev_timer_stop (EV_A_ w);
1767 } 2641 }
1768 else if (w->repeat) 2642 else if (w->repeat)
1769 { 2643 {
1770 w->at = w->repeat; 2644 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2645 ev_timer_start (EV_A_ w);
1772 } 2646 }
2647
2648 EV_FREQUENT_CHECK;
2649}
2650
2651ev_tstamp
2652ev_timer_remaining (EV_P_ ev_timer *w)
2653{
2654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1773} 2655}
1774 2656
1775#if EV_PERIODIC_ENABLE 2657#if EV_PERIODIC_ENABLE
1776void noinline 2658void noinline
1777ev_periodic_start (EV_P_ ev_periodic *w) 2659ev_periodic_start (EV_P_ ev_periodic *w)
1778{ 2660{
1779 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
1780 return; 2662 return;
1781 2663
1782 if (w->reschedule_cb) 2664 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2666 else if (w->interval)
1785 { 2667 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2669 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2670 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2671 }
1790 else 2672 else
1791 ((WT)w)->at = w->offset; 2673 ev_at (w) = w->offset;
1792 2674
2675 EV_FREQUENT_CHECK;
2676
2677 ++periodiccnt;
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2678 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2679 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2680 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2681 ANHE_at_cache (periodics [ev_active (w)]);
2682 upheap (periodics, ev_active (w));
1797 2683
2684 EV_FREQUENT_CHECK;
2685
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2686 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2687}
1800 2688
1801void noinline 2689void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2690ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2691{
1804 clear_pending (EV_A_ (W)w); 2692 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2693 if (expect_false (!ev_is_active (w)))
1806 return; 2694 return;
1807 2695
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2696 EV_FREQUENT_CHECK;
1809 2697
1810 { 2698 {
1811 int active = ((W)w)->active; 2699 int active = ev_active (w);
1812 2700
2701 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2702
2703 --periodiccnt;
2704
1813 if (expect_true (--active < --periodiccnt)) 2705 if (expect_true (active < periodiccnt + HEAP0))
1814 { 2706 {
1815 periodics [active] = periodics [periodiccnt]; 2707 periodics [active] = periodics [periodiccnt + HEAP0];
1816 adjustheap (periodics, periodiccnt, active); 2708 adjustheap (periodics, periodiccnt, active);
1817 } 2709 }
1818 } 2710 }
1819 2711
1820 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
2713
2714 EV_FREQUENT_CHECK;
1821} 2715}
1822 2716
1823void noinline 2717void noinline
1824ev_periodic_again (EV_P_ ev_periodic *w) 2718ev_periodic_again (EV_P_ ev_periodic *w)
1825{ 2719{
1834#endif 2728#endif
1835 2729
1836void noinline 2730void noinline
1837ev_signal_start (EV_P_ ev_signal *w) 2731ev_signal_start (EV_P_ ev_signal *w)
1838{ 2732{
1839#if EV_MULTIPLICITY
1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1841#endif
1842 if (expect_false (ev_is_active (w))) 2733 if (expect_false (ev_is_active (w)))
1843 return; 2734 return;
1844 2735
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1846 2737
2738#if EV_MULTIPLICITY
2739 assert (("libev: a signal must not be attached to two different loops",
2740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2741
2742 signals [w->signum - 1].loop = EV_A;
2743#endif
2744
2745 EV_FREQUENT_CHECK;
2746
2747#if EV_USE_SIGNALFD
2748 if (sigfd == -2)
1847 { 2749 {
1848#ifndef _WIN32 2750 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1849 sigset_t full, prev; 2751 if (sigfd < 0 && errno == EINVAL)
1850 sigfillset (&full); 2752 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1851 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif
1853 2753
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2754 if (sigfd >= 0)
2755 {
2756 fd_intern (sigfd); /* doing it twice will not hurt */
1855 2757
1856#ifndef _WIN32 2758 sigemptyset (&sigfd_set);
1857 sigprocmask (SIG_SETMASK, &prev, 0); 2759
1858#endif 2760 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2761 ev_set_priority (&sigfd_w, EV_MAXPRI);
2762 ev_io_start (EV_A_ &sigfd_w);
2763 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2764 }
1859 } 2765 }
2766
2767 if (sigfd >= 0)
2768 {
2769 /* TODO: check .head */
2770 sigaddset (&sigfd_set, w->signum);
2771 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2772
2773 signalfd (sigfd, &sigfd_set, 0);
2774 }
2775#endif
1860 2776
1861 ev_start (EV_A_ (W)w, 1); 2777 ev_start (EV_A_ (W)w, 1);
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2778 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2779
1864 if (!((WL)w)->next) 2780 if (!((WL)w)->next)
2781# if EV_USE_SIGNALFD
2782 if (sigfd < 0) /*TODO*/
2783# endif
1865 { 2784 {
1866#if _WIN32 2785# ifdef _WIN32
2786 evpipe_init (EV_A);
2787
1867 signal (w->signum, sighandler); 2788 signal (w->signum, ev_sighandler);
1868#else 2789# else
1869 struct sigaction sa; 2790 struct sigaction sa;
2791
2792 evpipe_init (EV_A);
2793
1870 sa.sa_handler = sighandler; 2794 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2795 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2796 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2797 sigaction (w->signum, &sa, 0);
2798
2799 sigemptyset (&sa.sa_mask);
2800 sigaddset (&sa.sa_mask, w->signum);
2801 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1874#endif 2802#endif
1875 } 2803 }
2804
2805 EV_FREQUENT_CHECK;
1876} 2806}
1877 2807
1878void noinline 2808void noinline
1879ev_signal_stop (EV_P_ ev_signal *w) 2809ev_signal_stop (EV_P_ ev_signal *w)
1880{ 2810{
1881 clear_pending (EV_A_ (W)w); 2811 clear_pending (EV_A_ (W)w);
1882 if (expect_false (!ev_is_active (w))) 2812 if (expect_false (!ev_is_active (w)))
1883 return; 2813 return;
1884 2814
2815 EV_FREQUENT_CHECK;
2816
1885 wlist_del (&signals [w->signum - 1].head, (WL)w); 2817 wlist_del (&signals [w->signum - 1].head, (WL)w);
1886 ev_stop (EV_A_ (W)w); 2818 ev_stop (EV_A_ (W)w);
1887 2819
1888 if (!signals [w->signum - 1].head) 2820 if (!signals [w->signum - 1].head)
2821 {
2822#if EV_MULTIPLICITY
2823 signals [w->signum - 1].loop = 0; /* unattach from signal */
2824#endif
2825#if EV_USE_SIGNALFD
2826 if (sigfd >= 0)
2827 {
2828 sigset_t ss;
2829
2830 sigemptyset (&ss);
2831 sigaddset (&ss, w->signum);
2832 sigdelset (&sigfd_set, w->signum);
2833
2834 signalfd (sigfd, &sigfd_set, 0);
2835 sigprocmask (SIG_UNBLOCK, &ss, 0);
2836 }
2837 else
2838#endif
1889 signal (w->signum, SIG_DFL); 2839 signal (w->signum, SIG_DFL);
2840 }
2841
2842 EV_FREQUENT_CHECK;
1890} 2843}
1891 2844
1892void 2845void
1893ev_child_start (EV_P_ ev_child *w) 2846ev_child_start (EV_P_ ev_child *w)
1894{ 2847{
1895#if EV_MULTIPLICITY 2848#if EV_MULTIPLICITY
1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2849 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1897#endif 2850#endif
1898 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
1899 return; 2852 return;
1900 2853
2854 EV_FREQUENT_CHECK;
2855
1901 ev_start (EV_A_ (W)w, 1); 2856 ev_start (EV_A_ (W)w, 1);
1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2857 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2858
2859 EV_FREQUENT_CHECK;
1903} 2860}
1904 2861
1905void 2862void
1906ev_child_stop (EV_P_ ev_child *w) 2863ev_child_stop (EV_P_ ev_child *w)
1907{ 2864{
1908 clear_pending (EV_A_ (W)w); 2865 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2866 if (expect_false (!ev_is_active (w)))
1910 return; 2867 return;
1911 2868
2869 EV_FREQUENT_CHECK;
2870
1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2871 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1913 ev_stop (EV_A_ (W)w); 2872 ev_stop (EV_A_ (W)w);
2873
2874 EV_FREQUENT_CHECK;
1914} 2875}
1915 2876
1916#if EV_STAT_ENABLE 2877#if EV_STAT_ENABLE
1917 2878
1918# ifdef _WIN32 2879# ifdef _WIN32
1919# undef lstat 2880# undef lstat
1920# define lstat(a,b) _stati64 (a,b) 2881# define lstat(a,b) _stati64 (a,b)
1921# endif 2882# endif
1922 2883
1923#define DEF_STAT_INTERVAL 5.0074891 2884#define DEF_STAT_INTERVAL 5.0074891
2885#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1924#define MIN_STAT_INTERVAL 0.1074891 2886#define MIN_STAT_INTERVAL 0.1074891
1925 2887
1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1927 2889
1928#if EV_USE_INOTIFY 2890#if EV_USE_INOTIFY
1929# define EV_INOTIFY_BUFSIZE 8192 2891
2892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1930 2894
1931static void noinline 2895static void noinline
1932infy_add (EV_P_ ev_stat *w) 2896infy_add (EV_P_ ev_stat *w)
1933{ 2897{
1934 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1935 2899
1936 if (w->wd < 0) 2900 if (w->wd >= 0)
2901 {
2902 struct statfs sfs;
2903
2904 /* now local changes will be tracked by inotify, but remote changes won't */
2905 /* unless the filesystem is known to be local, we therefore still poll */
2906 /* also do poll on <2.6.25, but with normal frequency */
2907
2908 if (!fs_2625)
2909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2910 else if (!statfs (w->path, &sfs)
2911 && (sfs.f_type == 0x1373 /* devfs */
2912 || sfs.f_type == 0xEF53 /* ext2/3 */
2913 || sfs.f_type == 0x3153464a /* jfs */
2914 || sfs.f_type == 0x52654973 /* reiser3 */
2915 || sfs.f_type == 0x01021994 /* tempfs */
2916 || sfs.f_type == 0x58465342 /* xfs */))
2917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2918 else
2919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1937 { 2920 }
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2921 else
2922 {
2923 /* can't use inotify, continue to stat */
2924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1939 2925
1940 /* monitor some parent directory for speedup hints */ 2926 /* if path is not there, monitor some parent directory for speedup hints */
2927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2928 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 2930 {
1943 char path [4096]; 2931 char path [4096];
1944 strcpy (path, w->path); 2932 strcpy (path, w->path);
1945 2933
1948 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2936 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1949 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2937 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1950 2938
1951 char *pend = strrchr (path, '/'); 2939 char *pend = strrchr (path, '/');
1952 2940
1953 if (!pend) 2941 if (!pend || pend == path)
1954 break; /* whoops, no '/', complain to your admin */ 2942 break;
1955 2943
1956 *pend = 0; 2944 *pend = 0;
1957 w->wd = inotify_add_watch (fs_fd, path, mask); 2945 w->wd = inotify_add_watch (fs_fd, path, mask);
1958 } 2946 }
1959 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1960 } 2948 }
1961 } 2949 }
1962 else
1963 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1964 2950
1965 if (w->wd >= 0) 2951 if (w->wd >= 0)
1966 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2952 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2953
2954 /* now re-arm timer, if required */
2955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2956 ev_timer_again (EV_A_ &w->timer);
2957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1967} 2958}
1968 2959
1969static void noinline 2960static void noinline
1970infy_del (EV_P_ ev_stat *w) 2961infy_del (EV_P_ ev_stat *w)
1971{ 2962{
1985 2976
1986static void noinline 2977static void noinline
1987infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2978infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1988{ 2979{
1989 if (slot < 0) 2980 if (slot < 0)
1990 /* overflow, need to check for all hahs slots */ 2981 /* overflow, need to check for all hash slots */
1991 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2982 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1992 infy_wd (EV_A_ slot, wd, ev); 2983 infy_wd (EV_A_ slot, wd, ev);
1993 else 2984 else
1994 { 2985 {
1995 WL w_; 2986 WL w_;
2001 2992
2002 if (w->wd == wd || wd == -1) 2993 if (w->wd == wd || wd == -1)
2003 { 2994 {
2004 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2995 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2005 { 2996 {
2997 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2006 w->wd = -1; 2998 w->wd = -1;
2007 infy_add (EV_A_ w); /* re-add, no matter what */ 2999 infy_add (EV_A_ w); /* re-add, no matter what */
2008 } 3000 }
2009 3001
2010 stat_timer_cb (EV_A_ &w->timer, 0); 3002 stat_timer_cb (EV_A_ &w->timer, 0);
2015 3007
2016static void 3008static void
2017infy_cb (EV_P_ ev_io *w, int revents) 3009infy_cb (EV_P_ ev_io *w, int revents)
2018{ 3010{
2019 char buf [EV_INOTIFY_BUFSIZE]; 3011 char buf [EV_INOTIFY_BUFSIZE];
2020 struct inotify_event *ev = (struct inotify_event *)buf;
2021 int ofs; 3012 int ofs;
2022 int len = read (fs_fd, buf, sizeof (buf)); 3013 int len = read (fs_fd, buf, sizeof (buf));
2023 3014
2024 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3015 for (ofs = 0; ofs < len; )
3016 {
3017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2025 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3019 ofs += sizeof (struct inotify_event) + ev->len;
3020 }
2026} 3021}
2027 3022
2028void inline_size 3023inline_size unsigned int
3024ev_linux_version (void)
3025{
3026 struct utsname buf;
3027 unsigned int v;
3028 int i;
3029 char *p = buf.release;
3030
3031 if (uname (&buf))
3032 return 0;
3033
3034 for (i = 3+1; --i; )
3035 {
3036 unsigned int c = 0;
3037
3038 for (;;)
3039 {
3040 if (*p >= '0' && *p <= '9')
3041 c = c * 10 + *p++ - '0';
3042 else
3043 {
3044 p += *p == '.';
3045 break;
3046 }
3047 }
3048
3049 v = (v << 8) | c;
3050 }
3051
3052 return v;
3053}
3054
3055inline_size void
3056ev_check_2625 (EV_P)
3057{
3058 /* kernels < 2.6.25 are borked
3059 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3060 */
3061 if (ev_linux_version () < 0x020619)
3062 return;
3063
3064 fs_2625 = 1;
3065}
3066
3067inline_size int
3068infy_newfd (void)
3069{
3070#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3071 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3072 if (fd >= 0)
3073 return fd;
3074#endif
3075 return inotify_init ();
3076}
3077
3078inline_size void
2029infy_init (EV_P) 3079infy_init (EV_P)
2030{ 3080{
2031 if (fs_fd != -2) 3081 if (fs_fd != -2)
2032 return; 3082 return;
2033 3083
3084 fs_fd = -1;
3085
3086 ev_check_2625 (EV_A);
3087
2034 fs_fd = inotify_init (); 3088 fs_fd = infy_newfd ();
2035 3089
2036 if (fs_fd >= 0) 3090 if (fs_fd >= 0)
2037 { 3091 {
3092 fd_intern (fs_fd);
2038 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3093 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2039 ev_set_priority (&fs_w, EV_MAXPRI); 3094 ev_set_priority (&fs_w, EV_MAXPRI);
2040 ev_io_start (EV_A_ &fs_w); 3095 ev_io_start (EV_A_ &fs_w);
3096 ev_unref (EV_A);
2041 } 3097 }
2042} 3098}
2043 3099
2044void inline_size 3100inline_size void
2045infy_fork (EV_P) 3101infy_fork (EV_P)
2046{ 3102{
2047 int slot; 3103 int slot;
2048 3104
2049 if (fs_fd < 0) 3105 if (fs_fd < 0)
2050 return; 3106 return;
2051 3107
3108 ev_ref (EV_A);
3109 ev_io_stop (EV_A_ &fs_w);
2052 close (fs_fd); 3110 close (fs_fd);
2053 fs_fd = inotify_init (); 3111 fs_fd = infy_newfd ();
3112
3113 if (fs_fd >= 0)
3114 {
3115 fd_intern (fs_fd);
3116 ev_io_set (&fs_w, fs_fd, EV_READ);
3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
3119 }
2054 3120
2055 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2056 { 3122 {
2057 WL w_ = fs_hash [slot].head; 3123 WL w_ = fs_hash [slot].head;
2058 fs_hash [slot].head = 0; 3124 fs_hash [slot].head = 0;
2065 w->wd = -1; 3131 w->wd = -1;
2066 3132
2067 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2068 infy_add (EV_A_ w); /* re-add, no matter what */ 3134 infy_add (EV_A_ w); /* re-add, no matter what */
2069 else 3135 else
3136 {
3137 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3138 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2070 ev_timer_start (EV_A_ &w->timer); 3139 ev_timer_again (EV_A_ &w->timer);
3140 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3141 }
2071 } 3142 }
2072
2073 } 3143 }
2074} 3144}
2075 3145
3146#endif
3147
3148#ifdef _WIN32
3149# define EV_LSTAT(p,b) _stati64 (p, b)
3150#else
3151# define EV_LSTAT(p,b) lstat (p, b)
2076#endif 3152#endif
2077 3153
2078void 3154void
2079ev_stat_stat (EV_P_ ev_stat *w) 3155ev_stat_stat (EV_P_ ev_stat *w)
2080{ 3156{
2087static void noinline 3163static void noinline
2088stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3164stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2089{ 3165{
2090 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3166 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2091 3167
2092 /* we copy this here each the time so that */ 3168 ev_statdata prev = w->attr;
2093 /* prev has the old value when the callback gets invoked */
2094 w->prev = w->attr;
2095 ev_stat_stat (EV_A_ w); 3169 ev_stat_stat (EV_A_ w);
2096 3170
2097 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3171 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2098 if ( 3172 if (
2099 w->prev.st_dev != w->attr.st_dev 3173 prev.st_dev != w->attr.st_dev
2100 || w->prev.st_ino != w->attr.st_ino 3174 || prev.st_ino != w->attr.st_ino
2101 || w->prev.st_mode != w->attr.st_mode 3175 || prev.st_mode != w->attr.st_mode
2102 || w->prev.st_nlink != w->attr.st_nlink 3176 || prev.st_nlink != w->attr.st_nlink
2103 || w->prev.st_uid != w->attr.st_uid 3177 || prev.st_uid != w->attr.st_uid
2104 || w->prev.st_gid != w->attr.st_gid 3178 || prev.st_gid != w->attr.st_gid
2105 || w->prev.st_rdev != w->attr.st_rdev 3179 || prev.st_rdev != w->attr.st_rdev
2106 || w->prev.st_size != w->attr.st_size 3180 || prev.st_size != w->attr.st_size
2107 || w->prev.st_atime != w->attr.st_atime 3181 || prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime 3182 || prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime 3183 || prev.st_ctime != w->attr.st_ctime
2110 ) { 3184 ) {
3185 /* we only update w->prev on actual differences */
3186 /* in case we test more often than invoke the callback, */
3187 /* to ensure that prev is always different to attr */
3188 w->prev = prev;
3189
2111 #if EV_USE_INOTIFY 3190 #if EV_USE_INOTIFY
3191 if (fs_fd >= 0)
3192 {
2112 infy_del (EV_A_ w); 3193 infy_del (EV_A_ w);
2113 infy_add (EV_A_ w); 3194 infy_add (EV_A_ w);
2114 ev_stat_stat (EV_A_ w); /* avoid race... */ 3195 ev_stat_stat (EV_A_ w); /* avoid race... */
3196 }
2115 #endif 3197 #endif
2116 3198
2117 ev_feed_event (EV_A_ w, EV_STAT); 3199 ev_feed_event (EV_A_ w, EV_STAT);
2118 } 3200 }
2119} 3201}
2122ev_stat_start (EV_P_ ev_stat *w) 3204ev_stat_start (EV_P_ ev_stat *w)
2123{ 3205{
2124 if (expect_false (ev_is_active (w))) 3206 if (expect_false (ev_is_active (w)))
2125 return; 3207 return;
2126 3208
2127 /* since we use memcmp, we need to clear any padding data etc. */
2128 memset (&w->prev, 0, sizeof (ev_statdata));
2129 memset (&w->attr, 0, sizeof (ev_statdata));
2130
2131 ev_stat_stat (EV_A_ w); 3209 ev_stat_stat (EV_A_ w);
2132 3210
3211 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2133 if (w->interval < MIN_STAT_INTERVAL) 3212 w->interval = MIN_STAT_INTERVAL;
2134 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2135 3213
2136 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3214 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2137 ev_set_priority (&w->timer, ev_priority (w)); 3215 ev_set_priority (&w->timer, ev_priority (w));
2138 3216
2139#if EV_USE_INOTIFY 3217#if EV_USE_INOTIFY
2140 infy_init (EV_A); 3218 infy_init (EV_A);
2141 3219
2142 if (fs_fd >= 0) 3220 if (fs_fd >= 0)
2143 infy_add (EV_A_ w); 3221 infy_add (EV_A_ w);
2144 else 3222 else
2145#endif 3223#endif
3224 {
2146 ev_timer_start (EV_A_ &w->timer); 3225 ev_timer_again (EV_A_ &w->timer);
3226 ev_unref (EV_A);
3227 }
2147 3228
2148 ev_start (EV_A_ (W)w, 1); 3229 ev_start (EV_A_ (W)w, 1);
3230
3231 EV_FREQUENT_CHECK;
2149} 3232}
2150 3233
2151void 3234void
2152ev_stat_stop (EV_P_ ev_stat *w) 3235ev_stat_stop (EV_P_ ev_stat *w)
2153{ 3236{
2154 clear_pending (EV_A_ (W)w); 3237 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 3238 if (expect_false (!ev_is_active (w)))
2156 return; 3239 return;
2157 3240
3241 EV_FREQUENT_CHECK;
3242
2158#if EV_USE_INOTIFY 3243#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w); 3244 infy_del (EV_A_ w);
2160#endif 3245#endif
3246
3247 if (ev_is_active (&w->timer))
3248 {
3249 ev_ref (EV_A);
2161 ev_timer_stop (EV_A_ &w->timer); 3250 ev_timer_stop (EV_A_ &w->timer);
3251 }
2162 3252
2163 ev_stop (EV_A_ (W)w); 3253 ev_stop (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
2164} 3256}
2165#endif 3257#endif
2166 3258
2167#if EV_IDLE_ENABLE 3259#if EV_IDLE_ENABLE
2168void 3260void
2170{ 3262{
2171 if (expect_false (ev_is_active (w))) 3263 if (expect_false (ev_is_active (w)))
2172 return; 3264 return;
2173 3265
2174 pri_adjust (EV_A_ (W)w); 3266 pri_adjust (EV_A_ (W)w);
3267
3268 EV_FREQUENT_CHECK;
2175 3269
2176 { 3270 {
2177 int active = ++idlecnt [ABSPRI (w)]; 3271 int active = ++idlecnt [ABSPRI (w)];
2178 3272
2179 ++idleall; 3273 ++idleall;
2180 ev_start (EV_A_ (W)w, active); 3274 ev_start (EV_A_ (W)w, active);
2181 3275
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3276 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w; 3277 idles [ABSPRI (w)][active - 1] = w;
2184 } 3278 }
3279
3280 EV_FREQUENT_CHECK;
2185} 3281}
2186 3282
2187void 3283void
2188ev_idle_stop (EV_P_ ev_idle *w) 3284ev_idle_stop (EV_P_ ev_idle *w)
2189{ 3285{
2190 clear_pending (EV_A_ (W)w); 3286 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3287 if (expect_false (!ev_is_active (w)))
2192 return; 3288 return;
2193 3289
3290 EV_FREQUENT_CHECK;
3291
2194 { 3292 {
2195 int active = ((W)w)->active; 3293 int active = ev_active (w);
2196 3294
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3295 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3296 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 3297
2200 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
2201 --idleall; 3299 --idleall;
2202 } 3300 }
3301
3302 EV_FREQUENT_CHECK;
2203} 3303}
2204#endif 3304#endif
2205 3305
2206void 3306void
2207ev_prepare_start (EV_P_ ev_prepare *w) 3307ev_prepare_start (EV_P_ ev_prepare *w)
2208{ 3308{
2209 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2210 return; 3310 return;
3311
3312 EV_FREQUENT_CHECK;
2211 3313
2212 ev_start (EV_A_ (W)w, ++preparecnt); 3314 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3315 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w; 3316 prepares [preparecnt - 1] = w;
3317
3318 EV_FREQUENT_CHECK;
2215} 3319}
2216 3320
2217void 3321void
2218ev_prepare_stop (EV_P_ ev_prepare *w) 3322ev_prepare_stop (EV_P_ ev_prepare *w)
2219{ 3323{
2220 clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2222 return; 3326 return;
2223 3327
3328 EV_FREQUENT_CHECK;
3329
2224 { 3330 {
2225 int active = ((W)w)->active; 3331 int active = ev_active (w);
3332
2226 prepares [active - 1] = prepares [--preparecnt]; 3333 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 3334 ev_active (prepares [active - 1]) = active;
2228 } 3335 }
2229 3336
2230 ev_stop (EV_A_ (W)w); 3337 ev_stop (EV_A_ (W)w);
3338
3339 EV_FREQUENT_CHECK;
2231} 3340}
2232 3341
2233void 3342void
2234ev_check_start (EV_P_ ev_check *w) 3343ev_check_start (EV_P_ ev_check *w)
2235{ 3344{
2236 if (expect_false (ev_is_active (w))) 3345 if (expect_false (ev_is_active (w)))
2237 return; 3346 return;
3347
3348 EV_FREQUENT_CHECK;
2238 3349
2239 ev_start (EV_A_ (W)w, ++checkcnt); 3350 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3351 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w; 3352 checks [checkcnt - 1] = w;
3353
3354 EV_FREQUENT_CHECK;
2242} 3355}
2243 3356
2244void 3357void
2245ev_check_stop (EV_P_ ev_check *w) 3358ev_check_stop (EV_P_ ev_check *w)
2246{ 3359{
2247 clear_pending (EV_A_ (W)w); 3360 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 3361 if (expect_false (!ev_is_active (w)))
2249 return; 3362 return;
2250 3363
3364 EV_FREQUENT_CHECK;
3365
2251 { 3366 {
2252 int active = ((W)w)->active; 3367 int active = ev_active (w);
3368
2253 checks [active - 1] = checks [--checkcnt]; 3369 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 3370 ev_active (checks [active - 1]) = active;
2255 } 3371 }
2256 3372
2257 ev_stop (EV_A_ (W)w); 3373 ev_stop (EV_A_ (W)w);
3374
3375 EV_FREQUENT_CHECK;
2258} 3376}
2259 3377
2260#if EV_EMBED_ENABLE 3378#if EV_EMBED_ENABLE
2261void noinline 3379void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w) 3380ev_embed_sweep (EV_P_ ev_embed *w)
2279embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3397embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2280{ 3398{
2281 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3399 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2282 3400
2283 { 3401 {
2284 struct ev_loop *loop = w->other; 3402 EV_P = w->other;
2285 3403
2286 while (fdchangecnt) 3404 while (fdchangecnt)
2287 { 3405 {
2288 fd_reify (EV_A); 3406 fd_reify (EV_A);
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3407 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2290 } 3408 }
2291 } 3409 }
2292} 3410}
2293 3411
3412static void
3413embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3414{
3415 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3416
3417 ev_embed_stop (EV_A_ w);
3418
3419 {
3420 EV_P = w->other;
3421
3422 ev_loop_fork (EV_A);
3423 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3424 }
3425
3426 ev_embed_start (EV_A_ w);
3427}
3428
2294#if 0 3429#if 0
2295static void 3430static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3431embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2297{ 3432{
2298 ev_idle_stop (EV_A_ idle); 3433 ev_idle_stop (EV_A_ idle);
2304{ 3439{
2305 if (expect_false (ev_is_active (w))) 3440 if (expect_false (ev_is_active (w)))
2306 return; 3441 return;
2307 3442
2308 { 3443 {
2309 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3445 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3446 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 } 3447 }
3448
3449 EV_FREQUENT_CHECK;
2313 3450
2314 ev_set_priority (&w->io, ev_priority (w)); 3451 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io); 3452 ev_io_start (EV_A_ &w->io);
2316 3453
2317 ev_prepare_init (&w->prepare, embed_prepare_cb); 3454 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI); 3455 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare); 3456 ev_prepare_start (EV_A_ &w->prepare);
2320 3457
3458 ev_fork_init (&w->fork, embed_fork_cb);
3459 ev_fork_start (EV_A_ &w->fork);
3460
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3461 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322 3462
2323 ev_start (EV_A_ (W)w, 1); 3463 ev_start (EV_A_ (W)w, 1);
3464
3465 EV_FREQUENT_CHECK;
2324} 3466}
2325 3467
2326void 3468void
2327ev_embed_stop (EV_P_ ev_embed *w) 3469ev_embed_stop (EV_P_ ev_embed *w)
2328{ 3470{
2329 clear_pending (EV_A_ (W)w); 3471 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w))) 3472 if (expect_false (!ev_is_active (w)))
2331 return; 3473 return;
2332 3474
3475 EV_FREQUENT_CHECK;
3476
2333 ev_io_stop (EV_A_ &w->io); 3477 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare); 3478 ev_prepare_stop (EV_A_ &w->prepare);
3479 ev_fork_stop (EV_A_ &w->fork);
2335 3480
2336 ev_stop (EV_A_ (W)w); 3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
2337} 3484}
2338#endif 3485#endif
2339 3486
2340#if EV_FORK_ENABLE 3487#if EV_FORK_ENABLE
2341void 3488void
2342ev_fork_start (EV_P_ ev_fork *w) 3489ev_fork_start (EV_P_ ev_fork *w)
2343{ 3490{
2344 if (expect_false (ev_is_active (w))) 3491 if (expect_false (ev_is_active (w)))
2345 return; 3492 return;
3493
3494 EV_FREQUENT_CHECK;
2346 3495
2347 ev_start (EV_A_ (W)w, ++forkcnt); 3496 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3497 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w; 3498 forks [forkcnt - 1] = w;
3499
3500 EV_FREQUENT_CHECK;
2350} 3501}
2351 3502
2352void 3503void
2353ev_fork_stop (EV_P_ ev_fork *w) 3504ev_fork_stop (EV_P_ ev_fork *w)
2354{ 3505{
2355 clear_pending (EV_A_ (W)w); 3506 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 3507 if (expect_false (!ev_is_active (w)))
2357 return; 3508 return;
2358 3509
3510 EV_FREQUENT_CHECK;
3511
2359 { 3512 {
2360 int active = ((W)w)->active; 3513 int active = ev_active (w);
3514
2361 forks [active - 1] = forks [--forkcnt]; 3515 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 3516 ev_active (forks [active - 1]) = active;
2363 } 3517 }
2364 3518
2365 ev_stop (EV_A_ (W)w); 3519 ev_stop (EV_A_ (W)w);
3520
3521 EV_FREQUENT_CHECK;
3522}
3523#endif
3524
3525#if EV_ASYNC_ENABLE
3526void
3527ev_async_start (EV_P_ ev_async *w)
3528{
3529 if (expect_false (ev_is_active (w)))
3530 return;
3531
3532 evpipe_init (EV_A);
3533
3534 EV_FREQUENT_CHECK;
3535
3536 ev_start (EV_A_ (W)w, ++asynccnt);
3537 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3538 asyncs [asynccnt - 1] = w;
3539
3540 EV_FREQUENT_CHECK;
3541}
3542
3543void
3544ev_async_stop (EV_P_ ev_async *w)
3545{
3546 clear_pending (EV_A_ (W)w);
3547 if (expect_false (!ev_is_active (w)))
3548 return;
3549
3550 EV_FREQUENT_CHECK;
3551
3552 {
3553 int active = ev_active (w);
3554
3555 asyncs [active - 1] = asyncs [--asynccnt];
3556 ev_active (asyncs [active - 1]) = active;
3557 }
3558
3559 ev_stop (EV_A_ (W)w);
3560
3561 EV_FREQUENT_CHECK;
3562}
3563
3564void
3565ev_async_send (EV_P_ ev_async *w)
3566{
3567 w->sent = 1;
3568 evpipe_write (EV_A_ &async_pending);
2366} 3569}
2367#endif 3570#endif
2368 3571
2369/*****************************************************************************/ 3572/*****************************************************************************/
2370 3573
2380once_cb (EV_P_ struct ev_once *once, int revents) 3583once_cb (EV_P_ struct ev_once *once, int revents)
2381{ 3584{
2382 void (*cb)(int revents, void *arg) = once->cb; 3585 void (*cb)(int revents, void *arg) = once->cb;
2383 void *arg = once->arg; 3586 void *arg = once->arg;
2384 3587
2385 ev_io_stop (EV_A_ &once->io); 3588 ev_io_stop (EV_A_ &once->io);
2386 ev_timer_stop (EV_A_ &once->to); 3589 ev_timer_stop (EV_A_ &once->to);
2387 ev_free (once); 3590 ev_free (once);
2388 3591
2389 cb (revents, arg); 3592 cb (revents, arg);
2390} 3593}
2391 3594
2392static void 3595static void
2393once_cb_io (EV_P_ ev_io *w, int revents) 3596once_cb_io (EV_P_ ev_io *w, int revents)
2394{ 3597{
2395 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3598 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3599
3600 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2396} 3601}
2397 3602
2398static void 3603static void
2399once_cb_to (EV_P_ ev_timer *w, int revents) 3604once_cb_to (EV_P_ ev_timer *w, int revents)
2400{ 3605{
2401 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3606 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3607
3608 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2402} 3609}
2403 3610
2404void 3611void
2405ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3612ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2406{ 3613{
2428 ev_timer_set (&once->to, timeout, 0.); 3635 ev_timer_set (&once->to, timeout, 0.);
2429 ev_timer_start (EV_A_ &once->to); 3636 ev_timer_start (EV_A_ &once->to);
2430 } 3637 }
2431} 3638}
2432 3639
3640/*****************************************************************************/
3641
3642#if EV_WALK_ENABLE
3643void
3644ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3645{
3646 int i, j;
3647 ev_watcher_list *wl, *wn;
3648
3649 if (types & (EV_IO | EV_EMBED))
3650 for (i = 0; i < anfdmax; ++i)
3651 for (wl = anfds [i].head; wl; )
3652 {
3653 wn = wl->next;
3654
3655#if EV_EMBED_ENABLE
3656 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3657 {
3658 if (types & EV_EMBED)
3659 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3660 }
3661 else
3662#endif
3663#if EV_USE_INOTIFY
3664 if (ev_cb ((ev_io *)wl) == infy_cb)
3665 ;
3666 else
3667#endif
3668 if ((ev_io *)wl != &pipe_w)
3669 if (types & EV_IO)
3670 cb (EV_A_ EV_IO, wl);
3671
3672 wl = wn;
3673 }
3674
3675 if (types & (EV_TIMER | EV_STAT))
3676 for (i = timercnt + HEAP0; i-- > HEAP0; )
3677#if EV_STAT_ENABLE
3678 /*TODO: timer is not always active*/
3679 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3680 {
3681 if (types & EV_STAT)
3682 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3683 }
3684 else
3685#endif
3686 if (types & EV_TIMER)
3687 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3688
3689#if EV_PERIODIC_ENABLE
3690 if (types & EV_PERIODIC)
3691 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3692 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3693#endif
3694
3695#if EV_IDLE_ENABLE
3696 if (types & EV_IDLE)
3697 for (j = NUMPRI; i--; )
3698 for (i = idlecnt [j]; i--; )
3699 cb (EV_A_ EV_IDLE, idles [j][i]);
3700#endif
3701
3702#if EV_FORK_ENABLE
3703 if (types & EV_FORK)
3704 for (i = forkcnt; i--; )
3705 if (ev_cb (forks [i]) != embed_fork_cb)
3706 cb (EV_A_ EV_FORK, forks [i]);
3707#endif
3708
3709#if EV_ASYNC_ENABLE
3710 if (types & EV_ASYNC)
3711 for (i = asynccnt; i--; )
3712 cb (EV_A_ EV_ASYNC, asyncs [i]);
3713#endif
3714
3715 if (types & EV_PREPARE)
3716 for (i = preparecnt; i--; )
3717#if EV_EMBED_ENABLE
3718 if (ev_cb (prepares [i]) != embed_prepare_cb)
3719#endif
3720 cb (EV_A_ EV_PREPARE, prepares [i]);
3721
3722 if (types & EV_CHECK)
3723 for (i = checkcnt; i--; )
3724 cb (EV_A_ EV_CHECK, checks [i]);
3725
3726 if (types & EV_SIGNAL)
3727 for (i = 0; i < EV_NSIG - 1; ++i)
3728 for (wl = signals [i].head; wl; )
3729 {
3730 wn = wl->next;
3731 cb (EV_A_ EV_SIGNAL, wl);
3732 wl = wn;
3733 }
3734
3735 if (types & EV_CHILD)
3736 for (i = EV_PID_HASHSIZE; i--; )
3737 for (wl = childs [i]; wl; )
3738 {
3739 wn = wl->next;
3740 cb (EV_A_ EV_CHILD, wl);
3741 wl = wn;
3742 }
3743/* EV_STAT 0x00001000 /* stat data changed */
3744/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3745}
3746#endif
3747
2433#if EV_MULTIPLICITY 3748#if EV_MULTIPLICITY
2434 #include "ev_wrap.h" 3749 #include "ev_wrap.h"
2435#endif 3750#endif
2436 3751
2437#ifdef __cplusplus 3752#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines