ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.335 by root, Tue Mar 9 09:02:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
226# endif
227#endif
228
168#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
169# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
170#endif 235#endif
171 236
172#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 239#endif
175 240
176#ifndef EV_USE_NANOSLEEP 241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
177# define EV_USE_NANOSLEEP 0 245# define EV_USE_NANOSLEEP 0
246# endif
178#endif 247#endif
179 248
180#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
182#endif 251#endif
235# else 304# else
236# define EV_USE_EVENTFD 0 305# define EV_USE_EVENTFD 0
237# endif 306# endif
238#endif 307#endif
239 308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
240#ifndef EV_USE_4HEAP 327#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 328# define EV_USE_4HEAP !EV_MINIMAL
242#endif 329#endif
243 330
244#ifndef EV_HEAP_CACHE_AT 331#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 332# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif 333#endif
247 334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
249 356
250#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
253#endif 360#endif
267# include <sys/select.h> 374# include <sys/select.h>
268# endif 375# endif
269#endif 376#endif
270 377
271#if EV_USE_INOTIFY 378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
272# include <sys/inotify.h> 381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
273#endif 387#endif
274 388
275#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 390# include <winsock.h>
277#endif 391#endif
278 392
279#if EV_USE_EVENTFD 393#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
398# endif
399# ifndef EFD_CLOEXEC
400# ifdef O_CLOEXEC
401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
405# endif
282# ifdef __cplusplus 406# ifdef __cplusplus
283extern "C" { 407extern "C" {
284# endif 408# endif
285int eventfd (unsigned int initval, int flags); 409int (eventfd) (unsigned int initval, int flags);
286# ifdef __cplusplus 410# ifdef __cplusplus
287} 411}
288# endif 412# endif
289#endif 413#endif
290 414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
443
291/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
292 451
293/* 452/*
294 * This is used to avoid floating point rounding problems. 453 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 454 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 455 * to ensure progress, time-wise, even when rounding
300 */ 459 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 461
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 464
307#if __GNUC__ >= 4 465#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
310#else 468#else
323# define inline_speed static noinline 481# define inline_speed static noinline
324#else 482#else
325# define inline_speed static inline 483# define inline_speed static inline
326#endif 484#endif
327 485
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
330 493
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
333 496
334typedef ev_watcher *W; 497typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
337 500
338#define ev_active(w) ((W)(w))->active 501#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 502#define ev_at(w) ((WT)(w))->at
340 503
341#if EV_USE_MONOTONIC 504#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 522#endif
346 523
347#ifdef _WIN32 524#ifdef _WIN32
348# include "ev_win32.c" 525# include "ev_win32.c"
349#endif 526#endif
350 527
351/*****************************************************************************/ 528/*****************************************************************************/
352 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
353static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
354 539
355void 540void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 542{
358 syserr_cb = cb; 543 syserr_cb = cb;
359} 544}
360 545
361static void noinline 546static void noinline
362syserr (const char *msg) 547ev_syserr (const char *msg)
363{ 548{
364 if (!msg) 549 if (!msg)
365 msg = "(libev) system error"; 550 msg = "(libev) system error";
366 551
367 if (syserr_cb) 552 if (syserr_cb)
368 syserr_cb (msg); 553 syserr_cb (msg);
369 else 554 else
370 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
371 perror (msg); 564 perror (msg);
565#endif
372 abort (); 566 abort ();
373 } 567 }
374} 568}
375 569
376static void * 570static void *
377ev_realloc_emul (void *ptr, long size) 571ev_realloc_emul (void *ptr, long size)
378{ 572{
573#if __GLIBC__
574 return realloc (ptr, size);
575#else
379 /* some systems, notably openbsd and darwin, fail to properly 576 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 577 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 578 * the single unix specification, so work around them here.
382 */ 579 */
383 580
384 if (size) 581 if (size)
385 return realloc (ptr, size); 582 return realloc (ptr, size);
386 583
387 free (ptr); 584 free (ptr);
388 return 0; 585 return 0;
586#endif
389} 587}
390 588
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 589static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 590
393void 591void
401{ 599{
402 ptr = alloc (ptr, size); 600 ptr = alloc (ptr, size);
403 601
404 if (!ptr && size) 602 if (!ptr && size)
405 { 603 {
604#if EV_AVOID_STDIO
605 ev_printerr ("libev: memory allocation failed, aborting.\n");
606#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 607 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
608#endif
407 abort (); 609 abort ();
408 } 610 }
409 611
410 return ptr; 612 return ptr;
411} 613}
413#define ev_malloc(size) ev_realloc (0, (size)) 615#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 616#define ev_free(ptr) ev_realloc ((ptr), 0)
415 617
416/*****************************************************************************/ 618/*****************************************************************************/
417 619
620/* set in reify when reification needed */
621#define EV_ANFD_REIFY 1
622
623/* file descriptor info structure */
418typedef struct 624typedef struct
419{ 625{
420 WL head; 626 WL head;
421 unsigned char events; 627 unsigned char events; /* the events watched for */
628 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
629 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 630 unsigned char unused;
631#if EV_USE_EPOLL
632 unsigned int egen; /* generation counter to counter epoll bugs */
633#endif
423#if EV_SELECT_IS_WINSOCKET 634#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 635 SOCKET handle;
425#endif 636#endif
426} ANFD; 637} ANFD;
427 638
639/* stores the pending event set for a given watcher */
428typedef struct 640typedef struct
429{ 641{
430 W w; 642 W w;
431 int events; 643 int events; /* the pending event set for the given watcher */
432} ANPENDING; 644} ANPENDING;
433 645
434#if EV_USE_INOTIFY 646#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 647/* hash table entry per inotify-id */
436typedef struct 648typedef struct
439} ANFS; 651} ANFS;
440#endif 652#endif
441 653
442/* Heap Entry */ 654/* Heap Entry */
443#if EV_HEAP_CACHE_AT 655#if EV_HEAP_CACHE_AT
656 /* a heap element */
444 typedef struct { 657 typedef struct {
445 ev_tstamp at; 658 ev_tstamp at;
446 WT w; 659 WT w;
447 } ANHE; 660 } ANHE;
448 661
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 662 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 663 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 664 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 665#else
666 /* a heap element */
453 typedef WT ANHE; 667 typedef WT ANHE;
454 668
455 #define ANHE_w(he) (he) 669 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 670 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 671 #define ANHE_at_cache(he)
458#endif 672#endif
459 673
460#if EV_MULTIPLICITY 674#if EV_MULTIPLICITY
461 675
462 struct ev_loop 676 struct ev_loop
481 695
482 static int ev_default_loop_ptr; 696 static int ev_default_loop_ptr;
483 697
484#endif 698#endif
485 699
700#if EV_MINIMAL < 2
701# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
702# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
703# define EV_INVOKE_PENDING invoke_cb (EV_A)
704#else
705# define EV_RELEASE_CB (void)0
706# define EV_ACQUIRE_CB (void)0
707# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
708#endif
709
710#define EVUNLOOP_RECURSE 0x80
711
486/*****************************************************************************/ 712/*****************************************************************************/
487 713
714#ifndef EV_HAVE_EV_TIME
488ev_tstamp 715ev_tstamp
489ev_time (void) 716ev_time (void)
490{ 717{
491#if EV_USE_REALTIME 718#if EV_USE_REALTIME
719 if (expect_true (have_realtime))
720 {
492 struct timespec ts; 721 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 722 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 723 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 724 }
725#endif
726
496 struct timeval tv; 727 struct timeval tv;
497 gettimeofday (&tv, 0); 728 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 729 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 730}
731#endif
501 732
502ev_tstamp inline_size 733inline_size ev_tstamp
503get_clock (void) 734get_clock (void)
504{ 735{
505#if EV_USE_MONOTONIC 736#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 737 if (expect_true (have_monotonic))
507 { 738 {
540 struct timeval tv; 771 struct timeval tv;
541 772
542 tv.tv_sec = (time_t)delay; 773 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 774 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 775
776 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
777 /* something not guaranteed by newer posix versions, but guaranteed */
778 /* by older ones */
545 select (0, 0, 0, 0, &tv); 779 select (0, 0, 0, 0, &tv);
546#endif 780#endif
547 } 781 }
548} 782}
549 783
550/*****************************************************************************/ 784/*****************************************************************************/
551 785
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 786#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 787
554int inline_size 788/* find a suitable new size for the given array, */
789/* hopefully by rounding to a ncie-to-malloc size */
790inline_size int
555array_nextsize (int elem, int cur, int cnt) 791array_nextsize (int elem, int cur, int cnt)
556{ 792{
557 int ncur = cur + 1; 793 int ncur = cur + 1;
558 794
559 do 795 do
576array_realloc (int elem, void *base, int *cur, int cnt) 812array_realloc (int elem, void *base, int *cur, int cnt)
577{ 813{
578 *cur = array_nextsize (elem, *cur, cnt); 814 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 815 return ev_realloc (base, elem * *cur);
580} 816}
817
818#define array_init_zero(base,count) \
819 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 820
582#define array_needsize(type,base,cur,cnt,init) \ 821#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 822 if (expect_false ((cnt) > (cur))) \
584 { \ 823 { \
585 int ocur_ = (cur); \ 824 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 836 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 837 }
599#endif 838#endif
600 839
601#define array_free(stem, idx) \ 840#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 841 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 842
604/*****************************************************************************/ 843/*****************************************************************************/
844
845/* dummy callback for pending events */
846static void noinline
847pendingcb (EV_P_ ev_prepare *w, int revents)
848{
849}
605 850
606void noinline 851void noinline
607ev_feed_event (EV_P_ void *w, int revents) 852ev_feed_event (EV_P_ void *w, int revents)
608{ 853{
609 W w_ = (W)w; 854 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 863 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 864 pendings [pri][w_->pending - 1].events = revents;
620 } 865 }
621} 866}
622 867
623void inline_speed 868inline_speed void
869feed_reverse (EV_P_ W w)
870{
871 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
872 rfeeds [rfeedcnt++] = w;
873}
874
875inline_size void
876feed_reverse_done (EV_P_ int revents)
877{
878 do
879 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
880 while (rfeedcnt);
881}
882
883inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 884queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 885{
626 int i; 886 int i;
627 887
628 for (i = 0; i < eventcnt; ++i) 888 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 889 ev_feed_event (EV_A_ events [i], type);
630} 890}
631 891
632/*****************************************************************************/ 892/*****************************************************************************/
633 893
634void inline_size 894inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 895fd_event_nc (EV_P_ int fd, int revents)
649{ 896{
650 ANFD *anfd = anfds + fd; 897 ANFD *anfd = anfds + fd;
651 ev_io *w; 898 ev_io *w;
652 899
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 900 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 904 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 905 ev_feed_event (EV_A_ (W)w, ev);
659 } 906 }
660} 907}
661 908
909/* do not submit kernel events for fds that have reify set */
910/* because that means they changed while we were polling for new events */
911inline_speed void
912fd_event (EV_P_ int fd, int revents)
913{
914 ANFD *anfd = anfds + fd;
915
916 if (expect_true (!anfd->reify))
917 fd_event_nc (EV_A_ fd, revents);
918}
919
662void 920void
663ev_feed_fd_event (EV_P_ int fd, int revents) 921ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 922{
665 if (fd >= 0 && fd < anfdmax) 923 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 924 fd_event_nc (EV_A_ fd, revents);
667} 925}
668 926
669void inline_size 927/* make sure the external fd watch events are in-sync */
928/* with the kernel/libev internal state */
929inline_size void
670fd_reify (EV_P) 930fd_reify (EV_P)
671{ 931{
672 int i; 932 int i;
673 933
674 for (i = 0; i < fdchangecnt; ++i) 934 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 943 events |= (unsigned char)w->events;
684 944
685#if EV_SELECT_IS_WINSOCKET 945#if EV_SELECT_IS_WINSOCKET
686 if (events) 946 if (events)
687 { 947 {
688 unsigned long argp; 948 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 949 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 950 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 951 }
696#endif 952#endif
697 953
698 { 954 {
699 unsigned char o_events = anfd->events; 955 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 956 unsigned char o_reify = anfd->reify;
701 957
702 anfd->reify = 0; 958 anfd->reify = 0;
703 anfd->events = events; 959 anfd->events = events;
704 960
705 if (o_events != events || o_reify & EV_IOFDSET) 961 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 962 backend_modify (EV_A_ fd, o_events, events);
707 } 963 }
708 } 964 }
709 965
710 fdchangecnt = 0; 966 fdchangecnt = 0;
711} 967}
712 968
713void inline_size 969/* something about the given fd changed */
970inline_size void
714fd_change (EV_P_ int fd, int flags) 971fd_change (EV_P_ int fd, int flags)
715{ 972{
716 unsigned char reify = anfds [fd].reify; 973 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 974 anfds [fd].reify |= flags;
718 975
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 979 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 980 fdchanges [fdchangecnt - 1] = fd;
724 } 981 }
725} 982}
726 983
727void inline_speed 984/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
985inline_speed void
728fd_kill (EV_P_ int fd) 986fd_kill (EV_P_ int fd)
729{ 987{
730 ev_io *w; 988 ev_io *w;
731 989
732 while ((w = (ev_io *)anfds [fd].head)) 990 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 992 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 993 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 994 }
737} 995}
738 996
739int inline_size 997/* check whether the given fd is atcually valid, for error recovery */
998inline_size int
740fd_valid (int fd) 999fd_valid (int fd)
741{ 1000{
742#ifdef _WIN32 1001#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1002 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1003#else
745 return fcntl (fd, F_GETFD) != -1; 1004 return fcntl (fd, F_GETFD) != -1;
746#endif 1005#endif
747} 1006}
748 1007
752{ 1011{
753 int fd; 1012 int fd;
754 1013
755 for (fd = 0; fd < anfdmax; ++fd) 1014 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1015 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1016 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1017 fd_kill (EV_A_ fd);
759} 1018}
760 1019
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1020/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1021static void noinline
766 1025
767 for (fd = anfdmax; fd--; ) 1026 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1027 if (anfds [fd].events)
769 { 1028 {
770 fd_kill (EV_A_ fd); 1029 fd_kill (EV_A_ fd);
771 return; 1030 break;
772 } 1031 }
773} 1032}
774 1033
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1034/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1035static void noinline
780 1039
781 for (fd = 0; fd < anfdmax; ++fd) 1040 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1041 if (anfds [fd].events)
783 { 1042 {
784 anfds [fd].events = 0; 1043 anfds [fd].events = 0;
1044 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1045 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1046 }
787} 1047}
788 1048
789/*****************************************************************************/ 1049/*****************************************************************************/
790 1050
803#if EV_USE_4HEAP 1063#if EV_USE_4HEAP
804 1064
805#define DHEAP 4 1065#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1066#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1067#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1068#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1069
831/* away from the root */ 1070/* away from the root */
832void inline_speed 1071inline_speed void
833downheap (ANHE *heap, int N, int k) 1072downheap (ANHE *heap, int N, int k)
834{ 1073{
835 ANHE he = heap [k]; 1074 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1075 ANHE *E = heap + N + HEAP0;
837 1076
838 for (;;) 1077 for (;;)
839 { 1078 {
840 ev_tstamp minat; 1079 ev_tstamp minat;
841 ANHE *minpos; 1080 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1081 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1082
844 // find minimum child 1083 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1084 if (expect_true (pos + DHEAP - 1 < E))
846 { 1085 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1086 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1087 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1088 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1109
871 heap [k] = he; 1110 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1111 ev_active (ANHE_w (he)) = k;
873} 1112}
874 1113
875#else // 4HEAP 1114#else /* 4HEAP */
876 1115
877#define HEAP0 1 1116#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1117#define HPARENT(k) ((k) >> 1)
1118#define UPHEAP_DONE(p,k) (!(p))
879 1119
880/* towards the root */ 1120/* away from the root */
881void inline_speed 1121inline_speed void
882upheap (ANHE *heap, int k) 1122downheap (ANHE *heap, int N, int k)
883{ 1123{
884 ANHE he = heap [k]; 1124 ANHE he = heap [k];
885 1125
886 for (;;) 1126 for (;;)
887 { 1127 {
888 int p = HPARENT (k); 1128 int c = k << 1;
889 1129
890 /* maybe we could use a dummy element at heap [0]? */ 1130 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1131 break;
893 1132
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1133 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1134 ? 1 : 0;
918 1135
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1136 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1137 break;
921 1138
928 heap [k] = he; 1145 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1146 ev_active (ANHE_w (he)) = k;
930} 1147}
931#endif 1148#endif
932 1149
933void inline_size 1150/* towards the root */
1151inline_speed void
1152upheap (ANHE *heap, int k)
1153{
1154 ANHE he = heap [k];
1155
1156 for (;;)
1157 {
1158 int p = HPARENT (k);
1159
1160 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1161 break;
1162
1163 heap [k] = heap [p];
1164 ev_active (ANHE_w (heap [k])) = k;
1165 k = p;
1166 }
1167
1168 heap [k] = he;
1169 ev_active (ANHE_w (he)) = k;
1170}
1171
1172/* move an element suitably so it is in a correct place */
1173inline_size void
934adjustheap (ANHE *heap, int N, int k) 1174adjustheap (ANHE *heap, int N, int k)
935{ 1175{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1176 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1177 upheap (heap, k);
938 else 1178 else
939 downheap (heap, N, k); 1179 downheap (heap, N, k);
940} 1180}
941 1181
1182/* rebuild the heap: this function is used only once and executed rarely */
1183inline_size void
1184reheap (ANHE *heap, int N)
1185{
1186 int i;
1187
1188 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1189 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1190 for (i = 0; i < N; ++i)
1191 upheap (heap, i + HEAP0);
1192}
1193
942/*****************************************************************************/ 1194/*****************************************************************************/
943 1195
1196/* associate signal watchers to a signal signal */
944typedef struct 1197typedef struct
945{ 1198{
1199 EV_ATOMIC_T pending;
1200#if EV_MULTIPLICITY
1201 EV_P;
1202#endif
946 WL head; 1203 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1204} ANSIG;
949 1205
950static ANSIG *signals; 1206static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1207
967/*****************************************************************************/ 1208/*****************************************************************************/
968 1209
969void inline_speed 1210/* used to prepare libev internal fd's */
1211/* this is not fork-safe */
1212inline_speed void
970fd_intern (int fd) 1213fd_intern (int fd)
971{ 1214{
972#ifdef _WIN32 1215#ifdef _WIN32
973 int arg = 1; 1216 unsigned long arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1217 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
975#else 1218#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC); 1219 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK); 1220 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif 1221#endif
979} 1222}
980 1223
981static void noinline 1224static void noinline
982evpipe_init (EV_P) 1225evpipe_init (EV_P)
983{ 1226{
984 if (!ev_is_active (&pipeev)) 1227 if (!ev_is_active (&pipe_w))
985 { 1228 {
986#if EV_USE_EVENTFD 1229#if EV_USE_EVENTFD
1230 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1231 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1232 evfd = eventfd (0, 0);
1233
1234 if (evfd >= 0)
988 { 1235 {
989 evpipe [0] = -1; 1236 evpipe [0] = -1;
990 fd_intern (evfd); 1237 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1238 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1239 }
993 else 1240 else
994#endif 1241#endif
995 { 1242 {
996 while (pipe (evpipe)) 1243 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1244 ev_syserr ("(libev) error creating signal/async pipe");
998 1245
999 fd_intern (evpipe [0]); 1246 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1247 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1248 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1249 }
1003 1250
1004 ev_io_start (EV_A_ &pipeev); 1251 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1252 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1253 }
1007} 1254}
1008 1255
1009void inline_size 1256inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1257evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1258{
1012 if (!*flag) 1259 if (!*flag)
1013 { 1260 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1261 int old_errno = errno; /* save errno because write might clobber it */
1027 1274
1028 errno = old_errno; 1275 errno = old_errno;
1029 } 1276 }
1030} 1277}
1031 1278
1279/* called whenever the libev signal pipe */
1280/* got some events (signal, async) */
1032static void 1281static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1282pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1283{
1284 int i;
1285
1035#if EV_USE_EVENTFD 1286#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1287 if (evfd >= 0)
1037 { 1288 {
1038 uint64_t counter; 1289 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1290 read (evfd, &counter, sizeof (uint64_t));
1043 { 1294 {
1044 char dummy; 1295 char dummy;
1045 read (evpipe [0], &dummy, 1); 1296 read (evpipe [0], &dummy, 1);
1046 } 1297 }
1047 1298
1048 if (gotsig && ev_is_default_loop (EV_A)) 1299 if (sig_pending)
1049 { 1300 {
1050 int signum; 1301 sig_pending = 0;
1051 gotsig = 0;
1052 1302
1053 for (signum = signalmax; signum--; ) 1303 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 1304 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 1305 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1306 }
1057 1307
1058#if EV_ASYNC_ENABLE 1308#if EV_ASYNC_ENABLE
1059 if (gotasync) 1309 if (async_pending)
1060 { 1310 {
1061 int i; 1311 async_pending = 0;
1062 gotasync = 0;
1063 1312
1064 for (i = asynccnt; i--; ) 1313 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1314 if (asyncs [i]->sent)
1066 { 1315 {
1067 asyncs [i]->sent = 0; 1316 asyncs [i]->sent = 0;
1075 1324
1076static void 1325static void
1077ev_sighandler (int signum) 1326ev_sighandler (int signum)
1078{ 1327{
1079#if EV_MULTIPLICITY 1328#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 1329 EV_P = signals [signum - 1].loop;
1081#endif 1330#endif
1082 1331
1083#if _WIN32 1332#ifdef _WIN32
1084 signal (signum, ev_sighandler); 1333 signal (signum, ev_sighandler);
1085#endif 1334#endif
1086 1335
1087 signals [signum - 1].gotsig = 1; 1336 signals [signum - 1].pending = 1;
1088 evpipe_write (EV_A_ &gotsig); 1337 evpipe_write (EV_A_ &sig_pending);
1089} 1338}
1090 1339
1091void noinline 1340void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1341ev_feed_signal_event (EV_P_ int signum)
1093{ 1342{
1094 WL w; 1343 WL w;
1095 1344
1345 if (expect_false (signum <= 0 || signum > EV_NSIG))
1346 return;
1347
1348 --signum;
1349
1096#if EV_MULTIPLICITY 1350#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1351 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1352 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1353
1100 --signum; 1354 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1355 return;
1356#endif
1104 1357
1105 signals [signum].gotsig = 0; 1358 signals [signum].pending = 0;
1106 1359
1107 for (w = signals [signum].head; w; w = w->next) 1360 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1361 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1362}
1110 1363
1364#if EV_USE_SIGNALFD
1365static void
1366sigfdcb (EV_P_ ev_io *iow, int revents)
1367{
1368 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1369
1370 for (;;)
1371 {
1372 ssize_t res = read (sigfd, si, sizeof (si));
1373
1374 /* not ISO-C, as res might be -1, but works with SuS */
1375 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1376 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1377
1378 if (res < (ssize_t)sizeof (si))
1379 break;
1380 }
1381}
1382#endif
1383
1111/*****************************************************************************/ 1384/*****************************************************************************/
1112 1385
1113static WL childs [EV_PID_HASHSIZE]; 1386static WL childs [EV_PID_HASHSIZE];
1114 1387
1115#ifndef _WIN32 1388#ifndef _WIN32
1118 1391
1119#ifndef WIFCONTINUED 1392#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1393# define WIFCONTINUED(status) 0
1121#endif 1394#endif
1122 1395
1123void inline_speed 1396/* handle a single child status event */
1397inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1398child_reap (EV_P_ int chain, int pid, int status)
1125{ 1399{
1126 ev_child *w; 1400 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1401 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1402
1141 1415
1142#ifndef WCONTINUED 1416#ifndef WCONTINUED
1143# define WCONTINUED 0 1417# define WCONTINUED 0
1144#endif 1418#endif
1145 1419
1420/* called on sigchld etc., calls waitpid */
1146static void 1421static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1422childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1423{
1149 int pid, status; 1424 int pid, status;
1150 1425
1231 /* kqueue is borked on everything but netbsd apparently */ 1506 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1507 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1508 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1509#endif
1235#ifdef __APPLE__ 1510#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1511 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1512 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1513 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1238#endif 1514#endif
1239 1515
1240 return flags; 1516 return flags;
1241} 1517}
1242 1518
1256ev_backend (EV_P) 1532ev_backend (EV_P)
1257{ 1533{
1258 return backend; 1534 return backend;
1259} 1535}
1260 1536
1537#if EV_MINIMAL < 2
1261unsigned int 1538unsigned int
1262ev_loop_count (EV_P) 1539ev_loop_count (EV_P)
1263{ 1540{
1264 return loop_count; 1541 return loop_count;
1265} 1542}
1266 1543
1544unsigned int
1545ev_loop_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1267void 1550void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1552{
1270 io_blocktime = interval; 1553 io_blocktime = interval;
1271} 1554}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1558{
1276 timeout_blocktime = interval; 1559 timeout_blocktime = interval;
1277} 1560}
1278 1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1587static void noinline
1280loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
1281{ 1589{
1282 if (!backend) 1590 if (!backend)
1283 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
1284#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
1285 { 1604 {
1286 struct timespec ts; 1605 struct timespec ts;
1606
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1608 have_monotonic = 1;
1289 } 1609 }
1290#endif 1610#endif
1611
1612 /* pid check not overridable via env */
1613#ifndef _WIN32
1614 if (flags & EVFLAG_FORKCHECK)
1615 curpid = getpid ();
1616#endif
1617
1618 if (!(flags & EVFLAG_NOENV)
1619 && !enable_secure ()
1620 && getenv ("LIBEV_FLAGS"))
1621 flags = atoi (getenv ("LIBEV_FLAGS"));
1291 1622
1292 ev_rt_now = ev_time (); 1623 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1624 mn_now = get_clock ();
1294 now_floor = mn_now; 1625 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_MINIMAL < 2
1628 invoke_cb = ev_invoke_pending;
1629#endif
1296 1630
1297 io_blocktime = 0.; 1631 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1632 timeout_blocktime = 0.;
1299 backend = 0; 1633 backend = 0;
1300 backend_fd = -1; 1634 backend_fd = -1;
1301 gotasync = 0; 1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1302#if EV_USE_INOTIFY 1639#if EV_USE_INOTIFY
1303 fs_fd = -2; 1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1304#endif 1641#endif
1305 1642#if EV_USE_SIGNALFD
1306 /* pid check not overridable via env */ 1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif 1644#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1645
1317 if (!(flags & 0x0000ffffU)) 1646 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
1319 1648
1320#if EV_USE_PORT 1649#if EV_USE_PORT
1331#endif 1660#endif
1332#if EV_USE_SELECT 1661#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1663#endif
1335 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1336 ev_init (&pipeev, pipecb); 1667 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1668 ev_set_priority (&pipe_w, EV_MAXPRI);
1338 } 1669 }
1339} 1670}
1340 1671
1672/* free up a loop structure */
1341static void noinline 1673static void noinline
1342loop_destroy (EV_P) 1674loop_destroy (EV_P)
1343{ 1675{
1344 int i; 1676 int i;
1345 1677
1346 if (ev_is_active (&pipeev)) 1678 if (ev_is_active (&pipe_w))
1347 { 1679 {
1348 ev_ref (EV_A); /* signal watcher */ 1680 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1681 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1682
1351#if EV_USE_EVENTFD 1683#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1684 if (evfd >= 0)
1353 close (evfd); 1685 close (evfd);
1354#endif 1686#endif
1355 1687
1356 if (evpipe [0] >= 0) 1688 if (evpipe [0] >= 0)
1357 { 1689 {
1358 close (evpipe [0]); 1690 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1691 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1692 }
1361 } 1693 }
1694
1695#if EV_USE_SIGNALFD
1696 if (ev_is_active (&sigfd_w))
1697 close (sigfd);
1698#endif
1362 1699
1363#if EV_USE_INOTIFY 1700#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1701 if (fs_fd >= 0)
1365 close (fs_fd); 1702 close (fs_fd);
1366#endif 1703#endif
1390#if EV_IDLE_ENABLE 1727#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 1728 array_free (idle, [i]);
1392#endif 1729#endif
1393 } 1730 }
1394 1731
1395 ev_free (anfds); anfdmax = 0; 1732 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 1733
1397 /* have to use the microsoft-never-gets-it-right macro */ 1734 /* have to use the microsoft-never-gets-it-right macro */
1735 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1736 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1737 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1739 array_free (periodic, EMPTY);
1402#endif 1740#endif
1411 1749
1412 backend = 0; 1750 backend = 0;
1413} 1751}
1414 1752
1415#if EV_USE_INOTIFY 1753#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1754inline_size void infy_fork (EV_P);
1417#endif 1755#endif
1418 1756
1419void inline_size 1757inline_size void
1420loop_fork (EV_P) 1758loop_fork (EV_P)
1421{ 1759{
1422#if EV_USE_PORT 1760#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1761 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1762#endif
1430#endif 1768#endif
1431#if EV_USE_INOTIFY 1769#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1770 infy_fork (EV_A);
1433#endif 1771#endif
1434 1772
1435 if (ev_is_active (&pipeev)) 1773 if (ev_is_active (&pipe_w))
1436 { 1774 {
1437 /* this "locks" the handlers against writing to the pipe */ 1775 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1776 /* while we modify the fd vars */
1439 gotsig = 1; 1777 sig_pending = 1;
1440#if EV_ASYNC_ENABLE 1778#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1779 async_pending = 1;
1442#endif 1780#endif
1443 1781
1444 ev_ref (EV_A); 1782 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1783 ev_io_stop (EV_A_ &pipe_w);
1446 1784
1447#if EV_USE_EVENTFD 1785#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1786 if (evfd >= 0)
1449 close (evfd); 1787 close (evfd);
1450#endif 1788#endif
1451 1789
1452 if (evpipe [0] >= 0) 1790 if (evpipe [0] >= 0)
1453 { 1791 {
1454 close (evpipe [0]); 1792 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 1793 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 1794 }
1457 1795
1458 evpipe_init (EV_A); 1796 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1797 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1798 pipecb (EV_A_ &pipe_w, EV_READ);
1461 } 1799 }
1462 1800
1463 postfork = 0; 1801 postfork = 0;
1464} 1802}
1465 1803
1466#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1805
1467struct ev_loop * 1806struct ev_loop *
1468ev_loop_new (unsigned int flags) 1807ev_loop_new (unsigned int flags)
1469{ 1808{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1809 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1810
1472 memset (loop, 0, sizeof (struct ev_loop)); 1811 memset (EV_A, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags); 1812 loop_init (EV_A_ flags);
1475 1813
1476 if (ev_backend (EV_A)) 1814 if (ev_backend (EV_A))
1477 return loop; 1815 return EV_A;
1478 1816
1479 return 0; 1817 return 0;
1480} 1818}
1481 1819
1482void 1820void
1488 1826
1489void 1827void
1490ev_loop_fork (EV_P) 1828ev_loop_fork (EV_P)
1491{ 1829{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1830 postfork = 1; /* must be in line with ev_default_fork */
1831}
1832#endif /* multiplicity */
1833
1834#if EV_VERIFY
1835static void noinline
1836verify_watcher (EV_P_ W w)
1837{
1838 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1839
1840 if (w->pending)
1841 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1842}
1843
1844static void noinline
1845verify_heap (EV_P_ ANHE *heap, int N)
1846{
1847 int i;
1848
1849 for (i = HEAP0; i < N + HEAP0; ++i)
1850 {
1851 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1852 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1853 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1854
1855 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1856 }
1857}
1858
1859static void noinline
1860array_verify (EV_P_ W *ws, int cnt)
1861{
1862 while (cnt--)
1863 {
1864 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1865 verify_watcher (EV_A_ ws [cnt]);
1866 }
1867}
1868#endif
1869
1870#if EV_MINIMAL < 2
1871void
1872ev_loop_verify (EV_P)
1873{
1874#if EV_VERIFY
1875 int i;
1876 WL w;
1877
1878 assert (activecnt >= -1);
1879
1880 assert (fdchangemax >= fdchangecnt);
1881 for (i = 0; i < fdchangecnt; ++i)
1882 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1883
1884 assert (anfdmax >= 0);
1885 for (i = 0; i < anfdmax; ++i)
1886 for (w = anfds [i].head; w; w = w->next)
1887 {
1888 verify_watcher (EV_A_ (W)w);
1889 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1890 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1891 }
1892
1893 assert (timermax >= timercnt);
1894 verify_heap (EV_A_ timers, timercnt);
1895
1896#if EV_PERIODIC_ENABLE
1897 assert (periodicmax >= periodiccnt);
1898 verify_heap (EV_A_ periodics, periodiccnt);
1899#endif
1900
1901 for (i = NUMPRI; i--; )
1902 {
1903 assert (pendingmax [i] >= pendingcnt [i]);
1904#if EV_IDLE_ENABLE
1905 assert (idleall >= 0);
1906 assert (idlemax [i] >= idlecnt [i]);
1907 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1908#endif
1909 }
1910
1911#if EV_FORK_ENABLE
1912 assert (forkmax >= forkcnt);
1913 array_verify (EV_A_ (W *)forks, forkcnt);
1914#endif
1915
1916#if EV_ASYNC_ENABLE
1917 assert (asyncmax >= asynccnt);
1918 array_verify (EV_A_ (W *)asyncs, asynccnt);
1919#endif
1920
1921 assert (preparemax >= preparecnt);
1922 array_verify (EV_A_ (W *)prepares, preparecnt);
1923
1924 assert (checkmax >= checkcnt);
1925 array_verify (EV_A_ (W *)checks, checkcnt);
1926
1927# if 0
1928 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1929 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1930# endif
1931#endif
1493} 1932}
1494#endif 1933#endif
1495 1934
1496#if EV_MULTIPLICITY 1935#if EV_MULTIPLICITY
1497struct ev_loop * 1936struct ev_loop *
1502#endif 1941#endif
1503{ 1942{
1504 if (!ev_default_loop_ptr) 1943 if (!ev_default_loop_ptr)
1505 { 1944 {
1506#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1946 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 1947#else
1509 ev_default_loop_ptr = 1; 1948 ev_default_loop_ptr = 1;
1510#endif 1949#endif
1511 1950
1512 loop_init (EV_A_ flags); 1951 loop_init (EV_A_ flags);
1529 1968
1530void 1969void
1531ev_default_destroy (void) 1970ev_default_destroy (void)
1532{ 1971{
1533#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 1973 EV_P = ev_default_loop_ptr;
1535#endif 1974#endif
1975
1976 ev_default_loop_ptr = 0;
1536 1977
1537#ifndef _WIN32 1978#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */ 1979 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 1980 ev_signal_stop (EV_A_ &childev);
1540#endif 1981#endif
1544 1985
1545void 1986void
1546ev_default_fork (void) 1987ev_default_fork (void)
1547{ 1988{
1548#if EV_MULTIPLICITY 1989#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 1990 EV_P = ev_default_loop_ptr;
1550#endif 1991#endif
1551 1992
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 1993 postfork = 1; /* must be in line with ev_loop_fork */
1554} 1994}
1555 1995
1556/*****************************************************************************/ 1996/*****************************************************************************/
1557 1997
1558void 1998void
1559ev_invoke (EV_P_ void *w, int revents) 1999ev_invoke (EV_P_ void *w, int revents)
1560{ 2000{
1561 EV_CB_INVOKE ((W)w, revents); 2001 EV_CB_INVOKE ((W)w, revents);
1562} 2002}
1563 2003
1564void inline_speed 2004unsigned int
1565call_pending (EV_P) 2005ev_pending_count (EV_P)
2006{
2007 int pri;
2008 unsigned int count = 0;
2009
2010 for (pri = NUMPRI; pri--; )
2011 count += pendingcnt [pri];
2012
2013 return count;
2014}
2015
2016void noinline
2017ev_invoke_pending (EV_P)
1566{ 2018{
1567 int pri; 2019 int pri;
1568 2020
1569 for (pri = NUMPRI; pri--; ) 2021 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 2022 while (pendingcnt [pri])
1571 { 2023 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 2025
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2026 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2027 /* ^ this is no longer true, as pending_w could be here */
1577 2028
1578 p->w->pending = 0; 2029 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 2030 EV_CB_INVOKE (p->w, p->events);
1580 } 2031 EV_FREQUENT_CHECK;
1581 } 2032 }
1582} 2033}
1583 2034
1584#if EV_IDLE_ENABLE 2035#if EV_IDLE_ENABLE
1585void inline_size 2036/* make idle watchers pending. this handles the "call-idle */
2037/* only when higher priorities are idle" logic */
2038inline_size void
1586idle_reify (EV_P) 2039idle_reify (EV_P)
1587{ 2040{
1588 if (expect_false (idleall)) 2041 if (expect_false (idleall))
1589 { 2042 {
1590 int pri; 2043 int pri;
1602 } 2055 }
1603 } 2056 }
1604} 2057}
1605#endif 2058#endif
1606 2059
1607void inline_size 2060/* make timers pending */
2061inline_size void
1608timers_reify (EV_P) 2062timers_reify (EV_P)
1609{ 2063{
2064 EV_FREQUENT_CHECK;
2065
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2066 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2067 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2068 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2069 {
2070 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2071
2072 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2073
2074 /* first reschedule or stop timer */
2075 if (w->repeat)
2076 {
1619 ev_at (w) += w->repeat; 2077 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2078 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2079 ev_at (w) = mn_now;
1622 2080
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2081 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2082
1625 ANHE_at_set (timers [HEAP0]); 2083 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2084 downheap (timers, timercnt, HEAP0);
2085 }
2086 else
2087 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2088
2089 EV_FREQUENT_CHECK;
2090 feed_reverse (EV_A_ (W)w);
1627 } 2091 }
1628 else 2092 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2093
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2094 feed_reverse_done (EV_A_ EV_TIMEOUT);
1632 } 2095 }
1633} 2096}
1634 2097
1635#if EV_PERIODIC_ENABLE 2098#if EV_PERIODIC_ENABLE
1636void inline_size 2099/* make periodics pending */
2100inline_size void
1637periodics_reify (EV_P) 2101periodics_reify (EV_P)
1638{ 2102{
2103 EV_FREQUENT_CHECK;
2104
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2105 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2106 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2107 int feed_count = 0;
1642 2108
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2109 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2110 {
2111 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2112
2113 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2114
2115 /* first reschedule or stop timer */
2116 if (w->reschedule_cb)
2117 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2118 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2119
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2120 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2121
1652 ANHE_at_set (periodics [HEAP0]); 2122 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2123 downheap (periodics, periodiccnt, HEAP0);
2124 }
2125 else if (w->interval)
2126 {
2127 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2128 /* if next trigger time is not sufficiently in the future, put it there */
2129 /* this might happen because of floating point inexactness */
2130 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2131 {
2132 ev_at (w) += w->interval;
2133
2134 /* if interval is unreasonably low we might still have a time in the past */
2135 /* so correct this. this will make the periodic very inexact, but the user */
2136 /* has effectively asked to get triggered more often than possible */
2137 if (ev_at (w) < ev_rt_now)
2138 ev_at (w) = ev_rt_now;
2139 }
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else
2145 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
1654 } 2149 }
1655 else if (w->interval) 2150 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2151
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2152 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2153 }
1679} 2154}
1680 2155
2156/* simply recalculate all periodics */
2157/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1681static void noinline 2158static void noinline
1682periodics_reschedule (EV_P) 2159periodics_reschedule (EV_P)
1683{ 2160{
1684 int i; 2161 int i;
1685 2162
1691 if (w->reschedule_cb) 2168 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2169 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2170 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2171 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2172
1696 ANHE_at_set (periodics [i]); 2173 ANHE_at_cache (periodics [i]);
1697 } 2174 }
1698 2175
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2176 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2177}
2178#endif
2179
2180/* adjust all timers by a given offset */
2181static void noinline
2182timers_reschedule (EV_P_ ev_tstamp adjust)
2183{
2184 int i;
2185
1701 for (i = 0; i < periodiccnt; ++i) 2186 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2187 {
2188 ANHE *he = timers + i + HEAP0;
2189 ANHE_w (*he)->at += adjust;
2190 ANHE_at_cache (*he);
2191 }
1703} 2192}
1704#endif
1705 2193
1706void inline_speed 2194/* fetch new monotonic and realtime times from the kernel */
2195/* also detect if there was a timejump, and act accordingly */
2196inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2197time_update (EV_P_ ev_tstamp max_block)
1708{ 2198{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2199#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2200 if (expect_true (have_monotonic))
1713 { 2201 {
2202 int i;
1714 ev_tstamp odiff = rtmn_diff; 2203 ev_tstamp odiff = rtmn_diff;
1715 2204
1716 mn_now = get_clock (); 2205 mn_now = get_clock ();
1717 2206
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2207 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2233 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2234 mn_now = get_clock ();
1746 now_floor = mn_now; 2235 now_floor = mn_now;
1747 } 2236 }
1748 2237
2238 /* no timer adjustment, as the monotonic clock doesn't jump */
2239 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2240# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2241 periodics_reschedule (EV_A);
1751# endif 2242# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2243 }
1755 else 2244 else
1756#endif 2245#endif
1757 { 2246 {
1758 ev_rt_now = ev_time (); 2247 ev_rt_now = ev_time ();
1759 2248
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2249 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2250 {
2251 /* adjust timers. this is easy, as the offset is the same for all of them */
2252 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2253#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2254 periodics_reschedule (EV_A);
1764#endif 2255#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2256 }
1773 2257
1774 mn_now = ev_rt_now; 2258 mn_now = ev_rt_now;
1775 } 2259 }
1776} 2260}
1777 2261
1778void 2262void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2263ev_loop (EV_P_ int flags)
1794{ 2264{
2265#if EV_MINIMAL < 2
2266 ++loop_depth;
2267#endif
2268
2269 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2270
1795 loop_done = EVUNLOOP_CANCEL; 2271 loop_done = EVUNLOOP_CANCEL;
1796 2272
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2273 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2274
1799 do 2275 do
1800 { 2276 {
2277#if EV_VERIFY >= 2
2278 ev_loop_verify (EV_A);
2279#endif
2280
1801#ifndef _WIN32 2281#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2282 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2283 if (expect_false (getpid () != curpid))
1804 { 2284 {
1805 curpid = getpid (); 2285 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2291 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2292 if (expect_false (postfork))
1813 if (forkcnt) 2293 if (forkcnt)
1814 { 2294 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2295 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2296 EV_INVOKE_PENDING;
1817 } 2297 }
1818#endif 2298#endif
1819 2299
1820 /* queue prepare watchers (and execute them) */ 2300 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2301 if (expect_false (preparecnt))
1822 { 2302 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2303 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2304 EV_INVOKE_PENDING;
1825 } 2305 }
1826 2306
1827 if (expect_false (!activecnt)) 2307 if (expect_false (loop_done))
1828 break; 2308 break;
1829 2309
1830 /* we might have forked, so reify kernel state if necessary */ 2310 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1832 loop_fork (EV_A); 2312 loop_fork (EV_A);
1839 ev_tstamp waittime = 0.; 2319 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2320 ev_tstamp sleeptime = 0.;
1841 2321
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2322 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2323 {
2324 /* remember old timestamp for io_blocktime calculation */
2325 ev_tstamp prev_mn_now = mn_now;
2326
1844 /* update time to cancel out callback processing overhead */ 2327 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2328 time_update (EV_A_ 1e100);
1846 2329
1847 waittime = MAX_BLOCKTIME; 2330 waittime = MAX_BLOCKTIME;
1848 2331
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2341 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2342 if (waittime > to) waittime = to;
1860 } 2343 }
1861#endif 2344#endif
1862 2345
2346 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2347 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2348 waittime = timeout_blocktime;
1865 2349
1866 sleeptime = waittime - backend_fudge; 2350 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2351 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2352 {
2353 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2354
2355 if (sleeptime > waittime - backend_fudge)
2356 sleeptime = waittime - backend_fudge;
2357
2358 if (expect_true (sleeptime > 0.))
2359 {
1873 ev_sleep (sleeptime); 2360 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2361 waittime -= sleeptime;
2362 }
1875 } 2363 }
1876 } 2364 }
1877 2365
2366#if EV_MINIMAL < 2
1878 ++loop_count; 2367 ++loop_count;
2368#endif
2369 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2370 backend_poll (EV_A_ waittime);
2371 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1880 2372
1881 /* update ev_rt_now, do magic */ 2373 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2374 time_update (EV_A_ waittime + sleeptime);
1883 } 2375 }
1884 2376
1895 2387
1896 /* queue check watchers, to be executed first */ 2388 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2389 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2390 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1899 2391
1900 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
1901 } 2393 }
1902 while (expect_true ( 2394 while (expect_true (
1903 activecnt 2395 activecnt
1904 && !loop_done 2396 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2397 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2398 ));
1907 2399
1908 if (loop_done == EVUNLOOP_ONE) 2400 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2401 loop_done = EVUNLOOP_CANCEL;
2402
2403#if EV_MINIMAL < 2
2404 --loop_depth;
2405#endif
1910} 2406}
1911 2407
1912void 2408void
1913ev_unloop (EV_P_ int how) 2409ev_unloop (EV_P_ int how)
1914{ 2410{
1915 loop_done = how; 2411 loop_done = how;
1916} 2412}
1917 2413
2414void
2415ev_ref (EV_P)
2416{
2417 ++activecnt;
2418}
2419
2420void
2421ev_unref (EV_P)
2422{
2423 --activecnt;
2424}
2425
2426void
2427ev_now_update (EV_P)
2428{
2429 time_update (EV_A_ 1e100);
2430}
2431
2432void
2433ev_suspend (EV_P)
2434{
2435 ev_now_update (EV_A);
2436}
2437
2438void
2439ev_resume (EV_P)
2440{
2441 ev_tstamp mn_prev = mn_now;
2442
2443 ev_now_update (EV_A);
2444 timers_reschedule (EV_A_ mn_now - mn_prev);
2445#if EV_PERIODIC_ENABLE
2446 /* TODO: really do this? */
2447 periodics_reschedule (EV_A);
2448#endif
2449}
2450
1918/*****************************************************************************/ 2451/*****************************************************************************/
2452/* singly-linked list management, used when the expected list length is short */
1919 2453
1920void inline_size 2454inline_size void
1921wlist_add (WL *head, WL elem) 2455wlist_add (WL *head, WL elem)
1922{ 2456{
1923 elem->next = *head; 2457 elem->next = *head;
1924 *head = elem; 2458 *head = elem;
1925} 2459}
1926 2460
1927void inline_size 2461inline_size void
1928wlist_del (WL *head, WL elem) 2462wlist_del (WL *head, WL elem)
1929{ 2463{
1930 while (*head) 2464 while (*head)
1931 { 2465 {
1932 if (*head == elem) 2466 if (expect_true (*head == elem))
1933 { 2467 {
1934 *head = elem->next; 2468 *head = elem->next;
1935 return; 2469 break;
1936 } 2470 }
1937 2471
1938 head = &(*head)->next; 2472 head = &(*head)->next;
1939 } 2473 }
1940} 2474}
1941 2475
1942void inline_speed 2476/* internal, faster, version of ev_clear_pending */
2477inline_speed void
1943clear_pending (EV_P_ W w) 2478clear_pending (EV_P_ W w)
1944{ 2479{
1945 if (w->pending) 2480 if (w->pending)
1946 { 2481 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2482 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2483 w->pending = 0;
1949 } 2484 }
1950} 2485}
1951 2486
1952int 2487int
1956 int pending = w_->pending; 2491 int pending = w_->pending;
1957 2492
1958 if (expect_true (pending)) 2493 if (expect_true (pending))
1959 { 2494 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2495 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2496 p->w = (W)&pending_w;
1961 w_->pending = 0; 2497 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2498 return p->events;
1964 } 2499 }
1965 else 2500 else
1966 return 0; 2501 return 0;
1967} 2502}
1968 2503
1969void inline_size 2504inline_size void
1970pri_adjust (EV_P_ W w) 2505pri_adjust (EV_P_ W w)
1971{ 2506{
1972 int pri = w->priority; 2507 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2508 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2509 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2510 ev_set_priority (w, pri);
1976} 2511}
1977 2512
1978void inline_speed 2513inline_speed void
1979ev_start (EV_P_ W w, int active) 2514ev_start (EV_P_ W w, int active)
1980{ 2515{
1981 pri_adjust (EV_A_ w); 2516 pri_adjust (EV_A_ w);
1982 w->active = active; 2517 w->active = active;
1983 ev_ref (EV_A); 2518 ev_ref (EV_A);
1984} 2519}
1985 2520
1986void inline_size 2521inline_size void
1987ev_stop (EV_P_ W w) 2522ev_stop (EV_P_ W w)
1988{ 2523{
1989 ev_unref (EV_A); 2524 ev_unref (EV_A);
1990 w->active = 0; 2525 w->active = 0;
1991} 2526}
1998 int fd = w->fd; 2533 int fd = w->fd;
1999 2534
2000 if (expect_false (ev_is_active (w))) 2535 if (expect_false (ev_is_active (w)))
2001 return; 2536 return;
2002 2537
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2538 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2539 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2540
2541 EV_FREQUENT_CHECK;
2004 2542
2005 ev_start (EV_A_ (W)w, 1); 2543 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2544 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2545 wlist_add (&anfds[fd].head, (WL)w);
2008 2546
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2547 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2548 w->events &= ~EV__IOFDSET;
2549
2550 EV_FREQUENT_CHECK;
2011} 2551}
2012 2552
2013void noinline 2553void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2554ev_io_stop (EV_P_ ev_io *w)
2015{ 2555{
2016 clear_pending (EV_A_ (W)w); 2556 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2557 if (expect_false (!ev_is_active (w)))
2018 return; 2558 return;
2019 2559
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2560 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2561
2562 EV_FREQUENT_CHECK;
2021 2563
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2564 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2565 ev_stop (EV_A_ (W)w);
2024 2566
2025 fd_change (EV_A_ w->fd, 1); 2567 fd_change (EV_A_ w->fd, 1);
2568
2569 EV_FREQUENT_CHECK;
2026} 2570}
2027 2571
2028void noinline 2572void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2573ev_timer_start (EV_P_ ev_timer *w)
2030{ 2574{
2031 if (expect_false (ev_is_active (w))) 2575 if (expect_false (ev_is_active (w)))
2032 return; 2576 return;
2033 2577
2034 ev_at (w) += mn_now; 2578 ev_at (w) += mn_now;
2035 2579
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2580 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2581
2582 EV_FREQUENT_CHECK;
2583
2584 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2585 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2586 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2587 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2588 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2589 upheap (timers, ev_active (w));
2043 2590
2591 EV_FREQUENT_CHECK;
2592
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2593 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2594}
2046 2595
2047void noinline 2596void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2597ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2598{
2050 clear_pending (EV_A_ (W)w); 2599 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2600 if (expect_false (!ev_is_active (w)))
2052 return; 2601 return;
2053 2602
2603 EV_FREQUENT_CHECK;
2604
2054 { 2605 {
2055 int active = ev_active (w); 2606 int active = ev_active (w);
2056 2607
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2608 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2609
2610 --timercnt;
2611
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2612 if (expect_true (active < timercnt + HEAP0))
2060 { 2613 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2614 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2615 adjustheap (timers, timercnt, active);
2063 } 2616 }
2064
2065 --timercnt;
2066 } 2617 }
2067 2618
2068 ev_at (w) -= mn_now; 2619 ev_at (w) -= mn_now;
2069 2620
2070 ev_stop (EV_A_ (W)w); 2621 ev_stop (EV_A_ (W)w);
2622
2623 EV_FREQUENT_CHECK;
2071} 2624}
2072 2625
2073void noinline 2626void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2627ev_timer_again (EV_P_ ev_timer *w)
2075{ 2628{
2629 EV_FREQUENT_CHECK;
2630
2076 if (ev_is_active (w)) 2631 if (ev_is_active (w))
2077 { 2632 {
2078 if (w->repeat) 2633 if (w->repeat)
2079 { 2634 {
2080 ev_at (w) = mn_now + w->repeat; 2635 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2636 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2637 adjustheap (timers, timercnt, ev_active (w));
2083 } 2638 }
2084 else 2639 else
2085 ev_timer_stop (EV_A_ w); 2640 ev_timer_stop (EV_A_ w);
2086 } 2641 }
2087 else if (w->repeat) 2642 else if (w->repeat)
2088 { 2643 {
2089 ev_at (w) = w->repeat; 2644 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2645 ev_timer_start (EV_A_ w);
2091 } 2646 }
2647
2648 EV_FREQUENT_CHECK;
2649}
2650
2651ev_tstamp
2652ev_timer_remaining (EV_P_ ev_timer *w)
2653{
2654 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2655}
2093 2656
2094#if EV_PERIODIC_ENABLE 2657#if EV_PERIODIC_ENABLE
2095void noinline 2658void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2659ev_periodic_start (EV_P_ ev_periodic *w)
2100 2663
2101 if (w->reschedule_cb) 2664 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2666 else if (w->interval)
2104 { 2667 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2668 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2669 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2670 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2671 }
2109 else 2672 else
2110 ev_at (w) = w->offset; 2673 ev_at (w) = w->offset;
2111 2674
2675 EV_FREQUENT_CHECK;
2676
2677 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2678 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2679 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2680 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2681 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2682 upheap (periodics, ev_active (w));
2117 2683
2684 EV_FREQUENT_CHECK;
2685
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2686 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2687}
2120 2688
2121void noinline 2689void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2690ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2691{
2124 clear_pending (EV_A_ (W)w); 2692 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2693 if (expect_false (!ev_is_active (w)))
2126 return; 2694 return;
2127 2695
2696 EV_FREQUENT_CHECK;
2697
2128 { 2698 {
2129 int active = ev_active (w); 2699 int active = ev_active (w);
2130 2700
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2701 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2702
2703 --periodiccnt;
2704
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2705 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2706 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2707 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2708 adjustheap (periodics, periodiccnt, active);
2137 } 2709 }
2138
2139 --periodiccnt;
2140 } 2710 }
2141 2711
2142 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
2713
2714 EV_FREQUENT_CHECK;
2143} 2715}
2144 2716
2145void noinline 2717void noinline
2146ev_periodic_again (EV_P_ ev_periodic *w) 2718ev_periodic_again (EV_P_ ev_periodic *w)
2147{ 2719{
2156#endif 2728#endif
2157 2729
2158void noinline 2730void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2731ev_signal_start (EV_P_ ev_signal *w)
2160{ 2732{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 2733 if (expect_false (ev_is_active (w)))
2165 return; 2734 return;
2166 2735
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 2737
2169 evpipe_init (EV_A); 2738#if EV_MULTIPLICITY
2739 assert (("libev: a signal must not be attached to two different loops",
2740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 2741
2742 signals [w->signum - 1].loop = EV_A;
2743#endif
2744
2745 EV_FREQUENT_CHECK;
2746
2747#if EV_USE_SIGNALFD
2748 if (sigfd == -2)
2171 { 2749 {
2172#ifndef _WIN32 2750 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 2751 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 2752 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 2753
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2754 if (sigfd >= 0)
2755 {
2756 fd_intern (sigfd); /* doing it twice will not hurt */
2179 2757
2180#ifndef _WIN32 2758 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2759
2182#endif 2760 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2761 ev_set_priority (&sigfd_w, EV_MAXPRI);
2762 ev_io_start (EV_A_ &sigfd_w);
2763 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2764 }
2183 } 2765 }
2766
2767 if (sigfd >= 0)
2768 {
2769 /* TODO: check .head */
2770 sigaddset (&sigfd_set, w->signum);
2771 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2772
2773 signalfd (sigfd, &sigfd_set, 0);
2774 }
2775#endif
2184 2776
2185 ev_start (EV_A_ (W)w, 1); 2777 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 2778 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 2779
2188 if (!((WL)w)->next) 2780 if (!((WL)w)->next)
2781# if EV_USE_SIGNALFD
2782 if (sigfd < 0) /*TODO*/
2783# endif
2189 { 2784 {
2190#if _WIN32 2785# ifdef _WIN32
2786 evpipe_init (EV_A);
2787
2191 signal (w->signum, ev_sighandler); 2788 signal (w->signum, ev_sighandler);
2192#else 2789# else
2193 struct sigaction sa; 2790 struct sigaction sa;
2791
2792 evpipe_init (EV_A);
2793
2194 sa.sa_handler = ev_sighandler; 2794 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2795 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2796 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2797 sigaction (w->signum, &sa, 0);
2798
2799 sigemptyset (&sa.sa_mask);
2800 sigaddset (&sa.sa_mask, w->signum);
2801 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2198#endif 2802#endif
2199 } 2803 }
2804
2805 EV_FREQUENT_CHECK;
2200} 2806}
2201 2807
2202void noinline 2808void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2809ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2810{
2205 clear_pending (EV_A_ (W)w); 2811 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2812 if (expect_false (!ev_is_active (w)))
2207 return; 2813 return;
2208 2814
2815 EV_FREQUENT_CHECK;
2816
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2817 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2818 ev_stop (EV_A_ (W)w);
2211 2819
2212 if (!signals [w->signum - 1].head) 2820 if (!signals [w->signum - 1].head)
2821 {
2822#if EV_MULTIPLICITY
2823 signals [w->signum - 1].loop = 0; /* unattach from signal */
2824#endif
2825#if EV_USE_SIGNALFD
2826 if (sigfd >= 0)
2827 {
2828 sigset_t ss;
2829
2830 sigemptyset (&ss);
2831 sigaddset (&ss, w->signum);
2832 sigdelset (&sigfd_set, w->signum);
2833
2834 signalfd (sigfd, &sigfd_set, 0);
2835 sigprocmask (SIG_UNBLOCK, &ss, 0);
2836 }
2837 else
2838#endif
2213 signal (w->signum, SIG_DFL); 2839 signal (w->signum, SIG_DFL);
2840 }
2841
2842 EV_FREQUENT_CHECK;
2214} 2843}
2215 2844
2216void 2845void
2217ev_child_start (EV_P_ ev_child *w) 2846ev_child_start (EV_P_ ev_child *w)
2218{ 2847{
2219#if EV_MULTIPLICITY 2848#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2849 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2850#endif
2222 if (expect_false (ev_is_active (w))) 2851 if (expect_false (ev_is_active (w)))
2223 return; 2852 return;
2224 2853
2854 EV_FREQUENT_CHECK;
2855
2225 ev_start (EV_A_ (W)w, 1); 2856 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2857 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2858
2859 EV_FREQUENT_CHECK;
2227} 2860}
2228 2861
2229void 2862void
2230ev_child_stop (EV_P_ ev_child *w) 2863ev_child_stop (EV_P_ ev_child *w)
2231{ 2864{
2232 clear_pending (EV_A_ (W)w); 2865 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2866 if (expect_false (!ev_is_active (w)))
2234 return; 2867 return;
2235 2868
2869 EV_FREQUENT_CHECK;
2870
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2871 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2872 ev_stop (EV_A_ (W)w);
2873
2874 EV_FREQUENT_CHECK;
2238} 2875}
2239 2876
2240#if EV_STAT_ENABLE 2877#if EV_STAT_ENABLE
2241 2878
2242# ifdef _WIN32 2879# ifdef _WIN32
2243# undef lstat 2880# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2881# define lstat(a,b) _stati64 (a,b)
2245# endif 2882# endif
2246 2883
2247#define DEF_STAT_INTERVAL 5.0074891 2884#define DEF_STAT_INTERVAL 5.0074891
2885#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2886#define MIN_STAT_INTERVAL 0.1074891
2249 2887
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2888static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2889
2252#if EV_USE_INOTIFY 2890#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2891
2892/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2893# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2254 2894
2255static void noinline 2895static void noinline
2256infy_add (EV_P_ ev_stat *w) 2896infy_add (EV_P_ ev_stat *w)
2257{ 2897{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2898 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2899
2260 if (w->wd < 0) 2900 if (w->wd >= 0)
2901 {
2902 struct statfs sfs;
2903
2904 /* now local changes will be tracked by inotify, but remote changes won't */
2905 /* unless the filesystem is known to be local, we therefore still poll */
2906 /* also do poll on <2.6.25, but with normal frequency */
2907
2908 if (!fs_2625)
2909 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2910 else if (!statfs (w->path, &sfs)
2911 && (sfs.f_type == 0x1373 /* devfs */
2912 || sfs.f_type == 0xEF53 /* ext2/3 */
2913 || sfs.f_type == 0x3153464a /* jfs */
2914 || sfs.f_type == 0x52654973 /* reiser3 */
2915 || sfs.f_type == 0x01021994 /* tempfs */
2916 || sfs.f_type == 0x58465342 /* xfs */))
2917 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2918 else
2919 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 2920 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2921 else
2922 {
2923 /* can't use inotify, continue to stat */
2924 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 2925
2264 /* monitor some parent directory for speedup hints */ 2926 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2927 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2928 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2929 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2930 {
2269 char path [4096]; 2931 char path [4096];
2270 strcpy (path, w->path); 2932 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2936 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2937 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2938
2277 char *pend = strrchr (path, '/'); 2939 char *pend = strrchr (path, '/');
2278 2940
2279 if (!pend) 2941 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2942 break;
2281 2943
2282 *pend = 0; 2944 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2945 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2946 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2947 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2948 }
2287 } 2949 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2950
2291 if (w->wd >= 0) 2951 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2952 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2953
2954 /* now re-arm timer, if required */
2955 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2956 ev_timer_again (EV_A_ &w->timer);
2957 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 2958}
2294 2959
2295static void noinline 2960static void noinline
2296infy_del (EV_P_ ev_stat *w) 2961infy_del (EV_P_ ev_stat *w)
2297{ 2962{
2311 2976
2312static void noinline 2977static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2978infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 2979{
2315 if (slot < 0) 2980 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 2981 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2982 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 2983 infy_wd (EV_A_ slot, wd, ev);
2319 else 2984 else
2320 { 2985 {
2321 WL w_; 2986 WL w_;
2327 2992
2328 if (w->wd == wd || wd == -1) 2993 if (w->wd == wd || wd == -1)
2329 { 2994 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2995 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 2996 {
2997 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2332 w->wd = -1; 2998 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2999 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 3000 }
2335 3001
2336 stat_timer_cb (EV_A_ &w->timer, 0); 3002 stat_timer_cb (EV_A_ &w->timer, 0);
2341 3007
2342static void 3008static void
2343infy_cb (EV_P_ ev_io *w, int revents) 3009infy_cb (EV_P_ ev_io *w, int revents)
2344{ 3010{
2345 char buf [EV_INOTIFY_BUFSIZE]; 3011 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 3012 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 3013 int len = read (fs_fd, buf, sizeof (buf));
2349 3014
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3015 for (ofs = 0; ofs < len; )
3016 {
3017 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3018 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3019 ofs += sizeof (struct inotify_event) + ev->len;
3020 }
2352} 3021}
2353 3022
2354void inline_size 3023inline_size unsigned int
3024ev_linux_version (void)
3025{
3026 struct utsname buf;
3027 unsigned int v;
3028 int i;
3029 char *p = buf.release;
3030
3031 if (uname (&buf))
3032 return 0;
3033
3034 for (i = 3+1; --i; )
3035 {
3036 unsigned int c = 0;
3037
3038 for (;;)
3039 {
3040 if (*p >= '0' && *p <= '9')
3041 c = c * 10 + *p++ - '0';
3042 else
3043 {
3044 p += *p == '.';
3045 break;
3046 }
3047 }
3048
3049 v = (v << 8) | c;
3050 }
3051
3052 return v;
3053}
3054
3055inline_size void
3056ev_check_2625 (EV_P)
3057{
3058 /* kernels < 2.6.25 are borked
3059 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3060 */
3061 if (ev_linux_version () < 0x020619)
3062 return;
3063
3064 fs_2625 = 1;
3065}
3066
3067inline_size int
3068infy_newfd (void)
3069{
3070#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3071 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3072 if (fd >= 0)
3073 return fd;
3074#endif
3075 return inotify_init ();
3076}
3077
3078inline_size void
2355infy_init (EV_P) 3079infy_init (EV_P)
2356{ 3080{
2357 if (fs_fd != -2) 3081 if (fs_fd != -2)
2358 return; 3082 return;
2359 3083
3084 fs_fd = -1;
3085
3086 ev_check_2625 (EV_A);
3087
2360 fs_fd = inotify_init (); 3088 fs_fd = infy_newfd ();
2361 3089
2362 if (fs_fd >= 0) 3090 if (fs_fd >= 0)
2363 { 3091 {
3092 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3093 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3094 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3095 ev_io_start (EV_A_ &fs_w);
3096 ev_unref (EV_A);
2367 } 3097 }
2368} 3098}
2369 3099
2370void inline_size 3100inline_size void
2371infy_fork (EV_P) 3101infy_fork (EV_P)
2372{ 3102{
2373 int slot; 3103 int slot;
2374 3104
2375 if (fs_fd < 0) 3105 if (fs_fd < 0)
2376 return; 3106 return;
2377 3107
3108 ev_ref (EV_A);
3109 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3110 close (fs_fd);
2379 fs_fd = inotify_init (); 3111 fs_fd = infy_newfd ();
3112
3113 if (fs_fd >= 0)
3114 {
3115 fd_intern (fs_fd);
3116 ev_io_set (&fs_w, fs_fd, EV_READ);
3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
3119 }
2380 3120
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3121 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2382 { 3122 {
2383 WL w_ = fs_hash [slot].head; 3123 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3124 fs_hash [slot].head = 0;
2391 w->wd = -1; 3131 w->wd = -1;
2392 3132
2393 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3134 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3135 else
3136 {
3137 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3138 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 3139 ev_timer_again (EV_A_ &w->timer);
3140 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3141 }
2397 } 3142 }
2398
2399 } 3143 }
2400} 3144}
2401 3145
3146#endif
3147
3148#ifdef _WIN32
3149# define EV_LSTAT(p,b) _stati64 (p, b)
3150#else
3151# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3152#endif
2403 3153
2404void 3154void
2405ev_stat_stat (EV_P_ ev_stat *w) 3155ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3156{
2413static void noinline 3163static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3164stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 3165{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3166 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 3167
2418 /* we copy this here each the time so that */ 3168 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 3169 ev_stat_stat (EV_A_ w);
2422 3170
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3171 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 3172 if (
2425 w->prev.st_dev != w->attr.st_dev 3173 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 3174 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 3175 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 3176 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 3177 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 3178 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 3179 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 3180 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 3181 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3182 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3183 || prev.st_ctime != w->attr.st_ctime
2436 ) { 3184 ) {
3185 /* we only update w->prev on actual differences */
3186 /* in case we test more often than invoke the callback, */
3187 /* to ensure that prev is always different to attr */
3188 w->prev = prev;
3189
2437 #if EV_USE_INOTIFY 3190 #if EV_USE_INOTIFY
3191 if (fs_fd >= 0)
3192 {
2438 infy_del (EV_A_ w); 3193 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3194 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3195 ev_stat_stat (EV_A_ w); /* avoid race... */
3196 }
2441 #endif 3197 #endif
2442 3198
2443 ev_feed_event (EV_A_ w, EV_STAT); 3199 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3200 }
2445} 3201}
2448ev_stat_start (EV_P_ ev_stat *w) 3204ev_stat_start (EV_P_ ev_stat *w)
2449{ 3205{
2450 if (expect_false (ev_is_active (w))) 3206 if (expect_false (ev_is_active (w)))
2451 return; 3207 return;
2452 3208
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3209 ev_stat_stat (EV_A_ w);
2458 3210
3211 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3212 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3213
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3214 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3215 ev_set_priority (&w->timer, ev_priority (w));
2464 3216
2465#if EV_USE_INOTIFY 3217#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3218 infy_init (EV_A);
2467 3219
2468 if (fs_fd >= 0) 3220 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3221 infy_add (EV_A_ w);
2470 else 3222 else
2471#endif 3223#endif
3224 {
2472 ev_timer_start (EV_A_ &w->timer); 3225 ev_timer_again (EV_A_ &w->timer);
3226 ev_unref (EV_A);
3227 }
2473 3228
2474 ev_start (EV_A_ (W)w, 1); 3229 ev_start (EV_A_ (W)w, 1);
3230
3231 EV_FREQUENT_CHECK;
2475} 3232}
2476 3233
2477void 3234void
2478ev_stat_stop (EV_P_ ev_stat *w) 3235ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3236{
2480 clear_pending (EV_A_ (W)w); 3237 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3238 if (expect_false (!ev_is_active (w)))
2482 return; 3239 return;
2483 3240
3241 EV_FREQUENT_CHECK;
3242
2484#if EV_USE_INOTIFY 3243#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3244 infy_del (EV_A_ w);
2486#endif 3245#endif
3246
3247 if (ev_is_active (&w->timer))
3248 {
3249 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 3250 ev_timer_stop (EV_A_ &w->timer);
3251 }
2488 3252
2489 ev_stop (EV_A_ (W)w); 3253 ev_stop (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
2490} 3256}
2491#endif 3257#endif
2492 3258
2493#if EV_IDLE_ENABLE 3259#if EV_IDLE_ENABLE
2494void 3260void
2496{ 3262{
2497 if (expect_false (ev_is_active (w))) 3263 if (expect_false (ev_is_active (w)))
2498 return; 3264 return;
2499 3265
2500 pri_adjust (EV_A_ (W)w); 3266 pri_adjust (EV_A_ (W)w);
3267
3268 EV_FREQUENT_CHECK;
2501 3269
2502 { 3270 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3271 int active = ++idlecnt [ABSPRI (w)];
2504 3272
2505 ++idleall; 3273 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3274 ev_start (EV_A_ (W)w, active);
2507 3275
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3276 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3277 idles [ABSPRI (w)][active - 1] = w;
2510 } 3278 }
3279
3280 EV_FREQUENT_CHECK;
2511} 3281}
2512 3282
2513void 3283void
2514ev_idle_stop (EV_P_ ev_idle *w) 3284ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3285{
2516 clear_pending (EV_A_ (W)w); 3286 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3287 if (expect_false (!ev_is_active (w)))
2518 return; 3288 return;
2519 3289
3290 EV_FREQUENT_CHECK;
3291
2520 { 3292 {
2521 int active = ev_active (w); 3293 int active = ev_active (w);
2522 3294
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3295 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3296 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3297
2526 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
2527 --idleall; 3299 --idleall;
2528 } 3300 }
3301
3302 EV_FREQUENT_CHECK;
2529} 3303}
2530#endif 3304#endif
2531 3305
2532void 3306void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3307ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3308{
2535 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2536 return; 3310 return;
3311
3312 EV_FREQUENT_CHECK;
2537 3313
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3314 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3315 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3316 prepares [preparecnt - 1] = w;
3317
3318 EV_FREQUENT_CHECK;
2541} 3319}
2542 3320
2543void 3321void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3322ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3323{
2546 clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2548 return; 3326 return;
2549 3327
3328 EV_FREQUENT_CHECK;
3329
2550 { 3330 {
2551 int active = ev_active (w); 3331 int active = ev_active (w);
2552 3332
2553 prepares [active - 1] = prepares [--preparecnt]; 3333 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3334 ev_active (prepares [active - 1]) = active;
2555 } 3335 }
2556 3336
2557 ev_stop (EV_A_ (W)w); 3337 ev_stop (EV_A_ (W)w);
3338
3339 EV_FREQUENT_CHECK;
2558} 3340}
2559 3341
2560void 3342void
2561ev_check_start (EV_P_ ev_check *w) 3343ev_check_start (EV_P_ ev_check *w)
2562{ 3344{
2563 if (expect_false (ev_is_active (w))) 3345 if (expect_false (ev_is_active (w)))
2564 return; 3346 return;
3347
3348 EV_FREQUENT_CHECK;
2565 3349
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3350 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3351 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3352 checks [checkcnt - 1] = w;
3353
3354 EV_FREQUENT_CHECK;
2569} 3355}
2570 3356
2571void 3357void
2572ev_check_stop (EV_P_ ev_check *w) 3358ev_check_stop (EV_P_ ev_check *w)
2573{ 3359{
2574 clear_pending (EV_A_ (W)w); 3360 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3361 if (expect_false (!ev_is_active (w)))
2576 return; 3362 return;
2577 3363
3364 EV_FREQUENT_CHECK;
3365
2578 { 3366 {
2579 int active = ev_active (w); 3367 int active = ev_active (w);
2580 3368
2581 checks [active - 1] = checks [--checkcnt]; 3369 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3370 ev_active (checks [active - 1]) = active;
2583 } 3371 }
2584 3372
2585 ev_stop (EV_A_ (W)w); 3373 ev_stop (EV_A_ (W)w);
3374
3375 EV_FREQUENT_CHECK;
2586} 3376}
2587 3377
2588#if EV_EMBED_ENABLE 3378#if EV_EMBED_ENABLE
2589void noinline 3379void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3380ev_embed_sweep (EV_P_ ev_embed *w)
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3397embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3398{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3399 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3400
2611 { 3401 {
2612 struct ev_loop *loop = w->other; 3402 EV_P = w->other;
2613 3403
2614 while (fdchangecnt) 3404 while (fdchangecnt)
2615 { 3405 {
2616 fd_reify (EV_A); 3406 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3407 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3408 }
2619 } 3409 }
2620} 3410}
2621 3411
3412static void
3413embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3414{
3415 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3416
3417 ev_embed_stop (EV_A_ w);
3418
3419 {
3420 EV_P = w->other;
3421
3422 ev_loop_fork (EV_A);
3423 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3424 }
3425
3426 ev_embed_start (EV_A_ w);
3427}
3428
2622#if 0 3429#if 0
2623static void 3430static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3431embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3432{
2626 ev_idle_stop (EV_A_ idle); 3433 ev_idle_stop (EV_A_ idle);
2632{ 3439{
2633 if (expect_false (ev_is_active (w))) 3440 if (expect_false (ev_is_active (w)))
2634 return; 3441 return;
2635 3442
2636 { 3443 {
2637 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3445 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3446 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3447 }
3448
3449 EV_FREQUENT_CHECK;
2641 3450
2642 ev_set_priority (&w->io, ev_priority (w)); 3451 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3452 ev_io_start (EV_A_ &w->io);
2644 3453
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3454 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3455 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3456 ev_prepare_start (EV_A_ &w->prepare);
2648 3457
3458 ev_fork_init (&w->fork, embed_fork_cb);
3459 ev_fork_start (EV_A_ &w->fork);
3460
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3461 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3462
2651 ev_start (EV_A_ (W)w, 1); 3463 ev_start (EV_A_ (W)w, 1);
3464
3465 EV_FREQUENT_CHECK;
2652} 3466}
2653 3467
2654void 3468void
2655ev_embed_stop (EV_P_ ev_embed *w) 3469ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3470{
2657 clear_pending (EV_A_ (W)w); 3471 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3472 if (expect_false (!ev_is_active (w)))
2659 return; 3473 return;
2660 3474
3475 EV_FREQUENT_CHECK;
3476
2661 ev_io_stop (EV_A_ &w->io); 3477 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3478 ev_prepare_stop (EV_A_ &w->prepare);
3479 ev_fork_stop (EV_A_ &w->fork);
2663 3480
2664 ev_stop (EV_A_ (W)w); 3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
2665} 3484}
2666#endif 3485#endif
2667 3486
2668#if EV_FORK_ENABLE 3487#if EV_FORK_ENABLE
2669void 3488void
2670ev_fork_start (EV_P_ ev_fork *w) 3489ev_fork_start (EV_P_ ev_fork *w)
2671{ 3490{
2672 if (expect_false (ev_is_active (w))) 3491 if (expect_false (ev_is_active (w)))
2673 return; 3492 return;
3493
3494 EV_FREQUENT_CHECK;
2674 3495
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3496 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3497 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3498 forks [forkcnt - 1] = w;
3499
3500 EV_FREQUENT_CHECK;
2678} 3501}
2679 3502
2680void 3503void
2681ev_fork_stop (EV_P_ ev_fork *w) 3504ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3505{
2683 clear_pending (EV_A_ (W)w); 3506 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3507 if (expect_false (!ev_is_active (w)))
2685 return; 3508 return;
2686 3509
3510 EV_FREQUENT_CHECK;
3511
2687 { 3512 {
2688 int active = ev_active (w); 3513 int active = ev_active (w);
2689 3514
2690 forks [active - 1] = forks [--forkcnt]; 3515 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3516 ev_active (forks [active - 1]) = active;
2692 } 3517 }
2693 3518
2694 ev_stop (EV_A_ (W)w); 3519 ev_stop (EV_A_ (W)w);
3520
3521 EV_FREQUENT_CHECK;
2695} 3522}
2696#endif 3523#endif
2697 3524
2698#if EV_ASYNC_ENABLE 3525#if EV_ASYNC_ENABLE
2699void 3526void
2701{ 3528{
2702 if (expect_false (ev_is_active (w))) 3529 if (expect_false (ev_is_active (w)))
2703 return; 3530 return;
2704 3531
2705 evpipe_init (EV_A); 3532 evpipe_init (EV_A);
3533
3534 EV_FREQUENT_CHECK;
2706 3535
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3536 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3537 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3538 asyncs [asynccnt - 1] = w;
3539
3540 EV_FREQUENT_CHECK;
2710} 3541}
2711 3542
2712void 3543void
2713ev_async_stop (EV_P_ ev_async *w) 3544ev_async_stop (EV_P_ ev_async *w)
2714{ 3545{
2715 clear_pending (EV_A_ (W)w); 3546 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3547 if (expect_false (!ev_is_active (w)))
2717 return; 3548 return;
2718 3549
3550 EV_FREQUENT_CHECK;
3551
2719 { 3552 {
2720 int active = ev_active (w); 3553 int active = ev_active (w);
2721 3554
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3555 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3556 ev_active (asyncs [active - 1]) = active;
2724 } 3557 }
2725 3558
2726 ev_stop (EV_A_ (W)w); 3559 ev_stop (EV_A_ (W)w);
3560
3561 EV_FREQUENT_CHECK;
2727} 3562}
2728 3563
2729void 3564void
2730ev_async_send (EV_P_ ev_async *w) 3565ev_async_send (EV_P_ ev_async *w)
2731{ 3566{
2732 w->sent = 1; 3567 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3568 evpipe_write (EV_A_ &async_pending);
2734} 3569}
2735#endif 3570#endif
2736 3571
2737/*****************************************************************************/ 3572/*****************************************************************************/
2738 3573
2748once_cb (EV_P_ struct ev_once *once, int revents) 3583once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3584{
2750 void (*cb)(int revents, void *arg) = once->cb; 3585 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3586 void *arg = once->arg;
2752 3587
2753 ev_io_stop (EV_A_ &once->io); 3588 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3589 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3590 ev_free (once);
2756 3591
2757 cb (revents, arg); 3592 cb (revents, arg);
2758} 3593}
2759 3594
2760static void 3595static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3596once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3597{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3598 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3599
3600 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3601}
2765 3602
2766static void 3603static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3604once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3605{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3606 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3607
3608 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3609}
2771 3610
2772void 3611void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3612ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3613{
2796 ev_timer_set (&once->to, timeout, 0.); 3635 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3636 ev_timer_start (EV_A_ &once->to);
2798 } 3637 }
2799} 3638}
2800 3639
3640/*****************************************************************************/
3641
3642#if EV_WALK_ENABLE
3643void
3644ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3645{
3646 int i, j;
3647 ev_watcher_list *wl, *wn;
3648
3649 if (types & (EV_IO | EV_EMBED))
3650 for (i = 0; i < anfdmax; ++i)
3651 for (wl = anfds [i].head; wl; )
3652 {
3653 wn = wl->next;
3654
3655#if EV_EMBED_ENABLE
3656 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3657 {
3658 if (types & EV_EMBED)
3659 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3660 }
3661 else
3662#endif
3663#if EV_USE_INOTIFY
3664 if (ev_cb ((ev_io *)wl) == infy_cb)
3665 ;
3666 else
3667#endif
3668 if ((ev_io *)wl != &pipe_w)
3669 if (types & EV_IO)
3670 cb (EV_A_ EV_IO, wl);
3671
3672 wl = wn;
3673 }
3674
3675 if (types & (EV_TIMER | EV_STAT))
3676 for (i = timercnt + HEAP0; i-- > HEAP0; )
3677#if EV_STAT_ENABLE
3678 /*TODO: timer is not always active*/
3679 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3680 {
3681 if (types & EV_STAT)
3682 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3683 }
3684 else
3685#endif
3686 if (types & EV_TIMER)
3687 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3688
3689#if EV_PERIODIC_ENABLE
3690 if (types & EV_PERIODIC)
3691 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3692 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3693#endif
3694
3695#if EV_IDLE_ENABLE
3696 if (types & EV_IDLE)
3697 for (j = NUMPRI; i--; )
3698 for (i = idlecnt [j]; i--; )
3699 cb (EV_A_ EV_IDLE, idles [j][i]);
3700#endif
3701
3702#if EV_FORK_ENABLE
3703 if (types & EV_FORK)
3704 for (i = forkcnt; i--; )
3705 if (ev_cb (forks [i]) != embed_fork_cb)
3706 cb (EV_A_ EV_FORK, forks [i]);
3707#endif
3708
3709#if EV_ASYNC_ENABLE
3710 if (types & EV_ASYNC)
3711 for (i = asynccnt; i--; )
3712 cb (EV_A_ EV_ASYNC, asyncs [i]);
3713#endif
3714
3715 if (types & EV_PREPARE)
3716 for (i = preparecnt; i--; )
3717#if EV_EMBED_ENABLE
3718 if (ev_cb (prepares [i]) != embed_prepare_cb)
3719#endif
3720 cb (EV_A_ EV_PREPARE, prepares [i]);
3721
3722 if (types & EV_CHECK)
3723 for (i = checkcnt; i--; )
3724 cb (EV_A_ EV_CHECK, checks [i]);
3725
3726 if (types & EV_SIGNAL)
3727 for (i = 0; i < EV_NSIG - 1; ++i)
3728 for (wl = signals [i].head; wl; )
3729 {
3730 wn = wl->next;
3731 cb (EV_A_ EV_SIGNAL, wl);
3732 wl = wn;
3733 }
3734
3735 if (types & EV_CHILD)
3736 for (i = EV_PID_HASHSIZE; i--; )
3737 for (wl = childs [i]; wl; )
3738 {
3739 wn = wl->next;
3740 cb (EV_A_ EV_CHILD, wl);
3741 wl = wn;
3742 }
3743/* EV_STAT 0x00001000 /* stat data changed */
3744/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3745}
3746#endif
3747
2801#if EV_MULTIPLICITY 3748#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3749 #include "ev_wrap.h"
2803#endif 3750#endif
2804 3751
2805#ifdef __cplusplus 3752#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines