ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.173 by root, Sun Dec 9 19:42:57 2007 UTC vs.
Revision 1.336 by root, Wed Mar 10 08:19:38 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL 1
225# else
226# define EV_USE_CLOCK_SYSCALL 0
139#endif 227# endif
140 228#endif
141/**/
142 229
143#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC 1
233# else
144# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
145#endif 236#endif
146 237
147#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP 1
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
149#endif 248#endif
150 249
151#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 251# define EV_USE_SELECT 1
153#endif 252#endif
159# define EV_USE_POLL 1 258# define EV_USE_POLL 1
160# endif 259# endif
161#endif 260#endif
162 261
163#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL 1
265# else
164# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
165#endif 268#endif
166 269
167#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
169#endif 272#endif
171#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 275# define EV_USE_PORT 0
173#endif 276#endif
174 277
175#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY 1
281# else
176# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
283# endif
177#endif 284#endif
178 285
179#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 287# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 288# define EV_PID_HASHSIZE 1
190# else 297# else
191# define EV_INOTIFY_HASHSIZE 16 298# define EV_INOTIFY_HASHSIZE 16
192# endif 299# endif
193#endif 300#endif
194 301
195/**/ 302#ifndef EV_USE_EVENTFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_EVENTFD 1
305# else
306# define EV_USE_EVENTFD 0
307# endif
308#endif
309
310#ifndef EV_USE_SIGNALFD
311# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312# define EV_USE_SIGNALFD 1
313# else
314# define EV_USE_SIGNALFD 0
315# endif
316#endif
317
318#if 0 /* debugging */
319# define EV_VERIFY 3
320# define EV_USE_4HEAP 1
321# define EV_HEAP_CACHE_AT 1
322#endif
323
324#ifndef EV_VERIFY
325# define EV_VERIFY !EV_MINIMAL
326#endif
327
328#ifndef EV_USE_4HEAP
329# define EV_USE_4HEAP !EV_MINIMAL
330#endif
331
332#ifndef EV_HEAP_CACHE_AT
333# define EV_HEAP_CACHE_AT !EV_MINIMAL
334#endif
335
336/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337/* which makes programs even slower. might work on other unices, too. */
338#if EV_USE_CLOCK_SYSCALL
339# include <syscall.h>
340# ifdef SYS_clock_gettime
341# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342# undef EV_USE_MONOTONIC
343# define EV_USE_MONOTONIC 1
344# else
345# undef EV_USE_CLOCK_SYSCALL
346# define EV_USE_CLOCK_SYSCALL 0
347# endif
348#endif
349
350/* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352#ifdef _AIX
353/* AIX has a completely broken poll.h header */
354# undef EV_USE_POLL
355# define EV_USE_POLL 0
356#endif
196 357
197#ifndef CLOCK_MONOTONIC 358#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 359# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 360# define EV_USE_MONOTONIC 0
200#endif 361#endif
202#ifndef CLOCK_REALTIME 363#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 364# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 365# define EV_USE_REALTIME 0
205#endif 366#endif
206 367
368#if !EV_STAT_ENABLE
369# undef EV_USE_INOTIFY
370# define EV_USE_INOTIFY 0
371#endif
372
373#if !EV_USE_NANOSLEEP
374# ifndef _WIN32
375# include <sys/select.h>
376# endif
377#endif
378
379#if EV_USE_INOTIFY
380# include <sys/utsname.h>
381# include <sys/statfs.h>
382# include <sys/inotify.h>
383/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384# ifndef IN_DONT_FOLLOW
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387# endif
388#endif
389
207#if EV_SELECT_IS_WINSOCKET 390#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 391# include <winsock.h>
209#endif 392#endif
210 393
211#if !EV_STAT_ENABLE 394#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 395/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
396# include <stdint.h>
397# ifndef EFD_NONBLOCK
398# define EFD_NONBLOCK O_NONBLOCK
213#endif 399# endif
214 400# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 401# ifdef O_CLOEXEC
216# include <sys/inotify.h> 402# define EFD_CLOEXEC O_CLOEXEC
403# else
404# define EFD_CLOEXEC 02000000
405# endif
217#endif 406# endif
407# ifdef __cplusplus
408extern "C" {
409# endif
410int (eventfd) (unsigned int initval, int flags);
411# ifdef __cplusplus
412}
413# endif
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429# ifdef __cplusplus
430extern "C" {
431# endif
432int signalfd (int fd, const sigset_t *mask, int flags);
433
434struct signalfd_siginfo
435{
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438};
439# ifdef __cplusplus
440}
441# endif
442#endif
443
218 444
219/**/ 445/**/
446
447#if EV_VERIFY >= 3
448# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449#else
450# define EV_FREQUENT_CHECK do { } while (0)
451#endif
452
453/*
454 * This is used to avoid floating point rounding problems.
455 * It is added to ev_rt_now when scheduling periodics
456 * to ensure progress, time-wise, even when rounding
457 * errors are against us.
458 * This value is good at least till the year 4000.
459 * Better solutions welcome.
460 */
461#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 462
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 465
225#if __GNUC__ >= 3 466#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 467# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 468# define noinline __attribute__ ((noinline))
228#else 469#else
229# define expect(expr,value) (expr) 470# define expect(expr,value) (expr)
230# define noinline 471# define noinline
231# if __STDC_VERSION__ < 199901L 472# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 473# define inline
233# endif 474# endif
234#endif 475#endif
235 476
236#define expect_false(expr) expect ((expr) != 0, 0) 477#define expect_false(expr) expect ((expr) != 0, 0)
241# define inline_speed static noinline 482# define inline_speed static noinline
242#else 483#else
243# define inline_speed static inline 484# define inline_speed static inline
244#endif 485#endif
245 486
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 487#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489#if EV_MINPRI == EV_MAXPRI
490# define ABSPRI(w) (((W)w), 0)
491#else
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 492# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493#endif
248 494
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 495#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 496#define EMPTY2(a,b) /* used to suppress some warnings */
251 497
252typedef ev_watcher *W; 498typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 499typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 500typedef ev_watcher_time *WT;
255 501
502#define ev_active(w) ((W)(w))->active
503#define ev_at(w) ((WT)(w))->at
504
505#if EV_USE_REALTIME
506/* sig_atomic_t is used to avoid per-thread variables or locking but still */
507/* giving it a reasonably high chance of working on typical architetcures */
508static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509#endif
510
511#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 512static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513#endif
514
515#ifndef EV_FD_TO_WIN32_HANDLE
516# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517#endif
518#ifndef EV_WIN32_HANDLE_TO_FD
519# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520#endif
521#ifndef EV_WIN32_CLOSE_FD
522# define EV_WIN32_CLOSE_FD(fd) close (fd)
523#endif
257 524
258#ifdef _WIN32 525#ifdef _WIN32
259# include "ev_win32.c" 526# include "ev_win32.c"
260#endif 527#endif
261 528
262/*****************************************************************************/ 529/*****************************************************************************/
263 530
531#if EV_AVOID_STDIO
532static void noinline
533ev_printerr (const char *msg)
534{
535 write (STDERR_FILENO, msg, strlen (msg));
536}
537#endif
538
264static void (*syserr_cb)(const char *msg); 539static void (*syserr_cb)(const char *msg);
265 540
266void 541void
267ev_set_syserr_cb (void (*cb)(const char *msg)) 542ev_set_syserr_cb (void (*cb)(const char *msg))
268{ 543{
269 syserr_cb = cb; 544 syserr_cb = cb;
270} 545}
271 546
272static void noinline 547static void noinline
273syserr (const char *msg) 548ev_syserr (const char *msg)
274{ 549{
275 if (!msg) 550 if (!msg)
276 msg = "(libev) system error"; 551 msg = "(libev) system error";
277 552
278 if (syserr_cb) 553 if (syserr_cb)
279 syserr_cb (msg); 554 syserr_cb (msg);
280 else 555 else
281 { 556 {
557#if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564#else
282 perror (msg); 565 perror (msg);
566#endif
283 abort (); 567 abort ();
284 } 568 }
285} 569}
286 570
571static void *
572ev_realloc_emul (void *ptr, long size)
573{
574#if __GLIBC__
575 return realloc (ptr, size);
576#else
577 /* some systems, notably openbsd and darwin, fail to properly
578 * implement realloc (x, 0) (as required by both ansi c-89 and
579 * the single unix specification, so work around them here.
580 */
581
582 if (size)
583 return realloc (ptr, size);
584
585 free (ptr);
586 return 0;
587#endif
588}
589
287static void *(*alloc)(void *ptr, long size); 590static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 591
289void 592void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 593ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 594{
292 alloc = cb; 595 alloc = cb;
293} 596}
294 597
295inline_speed void * 598inline_speed void *
296ev_realloc (void *ptr, long size) 599ev_realloc (void *ptr, long size)
297{ 600{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 601 ptr = alloc (ptr, size);
299 602
300 if (!ptr && size) 603 if (!ptr && size)
301 { 604 {
605#if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609#endif
303 abort (); 610 abort ();
304 } 611 }
305 612
306 return ptr; 613 return ptr;
307} 614}
309#define ev_malloc(size) ev_realloc (0, (size)) 616#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 617#define ev_free(ptr) ev_realloc ((ptr), 0)
311 618
312/*****************************************************************************/ 619/*****************************************************************************/
313 620
621/* set in reify when reification needed */
622#define EV_ANFD_REIFY 1
623
624/* file descriptor info structure */
314typedef struct 625typedef struct
315{ 626{
316 WL head; 627 WL head;
317 unsigned char events; 628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 631 unsigned char unused;
632#if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634#endif
319#if EV_SELECT_IS_WINSOCKET 635#if EV_SELECT_IS_WINSOCKET
320 SOCKET handle; 636 SOCKET handle;
321#endif 637#endif
322} ANFD; 638} ANFD;
323 639
640/* stores the pending event set for a given watcher */
324typedef struct 641typedef struct
325{ 642{
326 W w; 643 W w;
327 int events; 644 int events; /* the pending event set for the given watcher */
328} ANPENDING; 645} ANPENDING;
329 646
330#if EV_USE_INOTIFY 647#if EV_USE_INOTIFY
648/* hash table entry per inotify-id */
331typedef struct 649typedef struct
332{ 650{
333 WL head; 651 WL head;
334} ANFS; 652} ANFS;
653#endif
654
655/* Heap Entry */
656#if EV_HEAP_CACHE_AT
657 /* a heap element */
658 typedef struct {
659 ev_tstamp at;
660 WT w;
661 } ANHE;
662
663 #define ANHE_w(he) (he).w /* access watcher, read-write */
664 #define ANHE_at(he) (he).at /* access cached at, read-only */
665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666#else
667 /* a heap element */
668 typedef WT ANHE;
669
670 #define ANHE_w(he) (he)
671 #define ANHE_at(he) (he)->at
672 #define ANHE_at_cache(he)
335#endif 673#endif
336 674
337#if EV_MULTIPLICITY 675#if EV_MULTIPLICITY
338 676
339 struct ev_loop 677 struct ev_loop
358 696
359 static int ev_default_loop_ptr; 697 static int ev_default_loop_ptr;
360 698
361#endif 699#endif
362 700
701#if EV_MINIMAL < 2
702# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704# define EV_INVOKE_PENDING invoke_cb (EV_A)
705#else
706# define EV_RELEASE_CB (void)0
707# define EV_ACQUIRE_CB (void)0
708# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709#endif
710
711#define EVUNLOOP_RECURSE 0x80
712
363/*****************************************************************************/ 713/*****************************************************************************/
364 714
715#ifndef EV_HAVE_EV_TIME
365ev_tstamp 716ev_tstamp
366ev_time (void) 717ev_time (void)
367{ 718{
368#if EV_USE_REALTIME 719#if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
369 struct timespec ts; 722 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 723 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 724 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 725 }
726#endif
727
373 struct timeval tv; 728 struct timeval tv;
374 gettimeofday (&tv, 0); 729 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 730 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 731}
732#endif
378 733
379ev_tstamp inline_size 734inline_size ev_tstamp
380get_clock (void) 735get_clock (void)
381{ 736{
382#if EV_USE_MONOTONIC 737#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 738 if (expect_true (have_monotonic))
384 { 739 {
397{ 752{
398 return ev_rt_now; 753 return ev_rt_now;
399} 754}
400#endif 755#endif
401 756
402int inline_size 757void
758ev_sleep (ev_tstamp delay)
759{
760 if (delay > 0.)
761 {
762#if EV_USE_NANOSLEEP
763 struct timespec ts;
764
765 ts.tv_sec = (time_t)delay;
766 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
767
768 nanosleep (&ts, 0);
769#elif defined(_WIN32)
770 Sleep ((unsigned long)(delay * 1e3));
771#else
772 struct timeval tv;
773
774 tv.tv_sec = (time_t)delay;
775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
780 select (0, 0, 0, 0, &tv);
781#endif
782 }
783}
784
785/*****************************************************************************/
786
787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788
789/* find a suitable new size for the given array, */
790/* hopefully by rounding to a ncie-to-malloc size */
791inline_size int
403array_nextsize (int elem, int cur, int cnt) 792array_nextsize (int elem, int cur, int cnt)
404{ 793{
405 int ncur = cur + 1; 794 int ncur = cur + 1;
406 795
407 do 796 do
408 ncur <<= 1; 797 ncur <<= 1;
409 while (cnt > ncur); 798 while (cnt > ncur);
410 799
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 802 {
414 ncur *= elem; 803 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 805 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 806 ncur /= elem;
418 } 807 }
419 808
420 return ncur; 809 return ncur;
424array_realloc (int elem, void *base, int *cur, int cnt) 813array_realloc (int elem, void *base, int *cur, int cnt)
425{ 814{
426 *cur = array_nextsize (elem, *cur, cnt); 815 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 816 return ev_realloc (base, elem * *cur);
428} 817}
818
819#define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 821
430#define array_needsize(type,base,cur,cnt,init) \ 822#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 823 if (expect_false ((cnt) > (cur))) \
432 { \ 824 { \
433 int ocur_ = (cur); \ 825 int ocur_ = (cur); \
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 838 }
447#endif 839#endif
448 840
449#define array_free(stem, idx) \ 841#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 843
452/*****************************************************************************/ 844/*****************************************************************************/
845
846/* dummy callback for pending events */
847static void noinline
848pendingcb (EV_P_ ev_prepare *w, int revents)
849{
850}
453 851
454void noinline 852void noinline
455ev_feed_event (EV_P_ void *w, int revents) 853ev_feed_event (EV_P_ void *w, int revents)
456{ 854{
457 W w_ = (W)w; 855 W w_ = (W)w;
466 pendings [pri][w_->pending - 1].w = w_; 864 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 865 pendings [pri][w_->pending - 1].events = revents;
468 } 866 }
469} 867}
470 868
471void inline_size 869inline_speed void
870feed_reverse (EV_P_ W w)
871{
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874}
875
876inline_size void
877feed_reverse_done (EV_P_ int revents)
878{
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882}
883
884inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 885queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 886{
474 int i; 887 int i;
475 888
476 for (i = 0; i < eventcnt; ++i) 889 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 890 ev_feed_event (EV_A_ events [i], type);
478} 891}
479 892
480/*****************************************************************************/ 893/*****************************************************************************/
481 894
482void inline_size 895inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 896fd_event_nc (EV_P_ int fd, int revents)
497{ 897{
498 ANFD *anfd = anfds + fd; 898 ANFD *anfd = anfds + fd;
499 ev_io *w; 899 ev_io *w;
500 900
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 905 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 906 ev_feed_event (EV_A_ (W)w, ev);
507 } 907 }
508} 908}
509 909
910/* do not submit kernel events for fds that have reify set */
911/* because that means they changed while we were polling for new events */
912inline_speed void
913fd_event (EV_P_ int fd, int revents)
914{
915 ANFD *anfd = anfds + fd;
916
917 if (expect_true (!anfd->reify))
918 fd_event_nc (EV_A_ fd, revents);
919}
920
510void 921void
511ev_feed_fd_event (EV_P_ int fd, int revents) 922ev_feed_fd_event (EV_P_ int fd, int revents)
512{ 923{
513 if (fd >= 0 && fd < anfdmax) 924 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 925 fd_event_nc (EV_A_ fd, revents);
515} 926}
516 927
517void inline_size 928/* make sure the external fd watch events are in-sync */
929/* with the kernel/libev internal state */
930inline_size void
518fd_reify (EV_P) 931fd_reify (EV_P)
519{ 932{
520 int i; 933 int i;
521 934
522 for (i = 0; i < fdchangecnt; ++i) 935 for (i = 0; i < fdchangecnt; ++i)
523 { 936 {
524 int fd = fdchanges [i]; 937 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 938 ANFD *anfd = anfds + fd;
526 ev_io *w; 939 ev_io *w;
527 940
528 int events = 0; 941 unsigned char events = 0;
529 942
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 943 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 944 events |= (unsigned char)w->events;
532 945
533#if EV_SELECT_IS_WINSOCKET 946#if EV_SELECT_IS_WINSOCKET
534 if (events) 947 if (events)
535 { 948 {
536 unsigned long argp; 949 unsigned long arg;
537 anfd->handle = _get_osfhandle (fd); 950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
539 } 952 }
540#endif 953#endif
541 954
955 {
956 unsigned char o_events = anfd->events;
957 unsigned char o_reify = anfd->reify;
958
542 anfd->reify = 0; 959 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 960 anfd->events = events;
961
962 if (o_events != events || o_reify & EV__IOFDSET)
963 backend_modify (EV_A_ fd, o_events, events);
964 }
546 } 965 }
547 966
548 fdchangecnt = 0; 967 fdchangecnt = 0;
549} 968}
550 969
551void inline_size 970/* something about the given fd changed */
971inline_size void
552fd_change (EV_P_ int fd) 972fd_change (EV_P_ int fd, int flags)
553{ 973{
554 if (expect_false (anfds [fd].reify)) 974 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 975 anfds [fd].reify |= flags;
558 976
977 if (expect_true (!reify))
978 {
559 ++fdchangecnt; 979 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 981 fdchanges [fdchangecnt - 1] = fd;
982 }
562} 983}
563 984
564void inline_speed 985/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986inline_speed void
565fd_kill (EV_P_ int fd) 987fd_kill (EV_P_ int fd)
566{ 988{
567 ev_io *w; 989 ev_io *w;
568 990
569 while ((w = (ev_io *)anfds [fd].head)) 991 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 993 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 995 }
574} 996}
575 997
576int inline_size 998/* check whether the given fd is actually valid, for error recovery */
999inline_size int
577fd_valid (int fd) 1000fd_valid (int fd)
578{ 1001{
579#ifdef _WIN32 1002#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1004#else
582 return fcntl (fd, F_GETFD) != -1; 1005 return fcntl (fd, F_GETFD) != -1;
583#endif 1006#endif
584} 1007}
585 1008
589{ 1012{
590 int fd; 1013 int fd;
591 1014
592 for (fd = 0; fd < anfdmax; ++fd) 1015 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1016 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1017 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1018 fd_kill (EV_A_ fd);
596} 1019}
597 1020
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1021/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1022static void noinline
603 1026
604 for (fd = anfdmax; fd--; ) 1027 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1028 if (anfds [fd].events)
606 { 1029 {
607 fd_kill (EV_A_ fd); 1030 fd_kill (EV_A_ fd);
608 return; 1031 break;
609 } 1032 }
610} 1033}
611 1034
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1035/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1036static void noinline
617 1040
618 for (fd = 0; fd < anfdmax; ++fd) 1041 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1042 if (anfds [fd].events)
620 { 1043 {
621 anfds [fd].events = 0; 1044 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1045 anfds [fd].emask = 0;
1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1047 }
624} 1048}
625 1049
626/*****************************************************************************/ 1050/* used to prepare libev internal fd's */
627 1051/* this is not fork-safe */
628void inline_speed 1052inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_speed
755fd_intern (int fd) 1053fd_intern (int fd)
756{ 1054{
757#ifdef _WIN32 1055#ifdef _WIN32
758 int arg = 1; 1056 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1058#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1060 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1061#endif
764} 1062}
765 1063
1064/*****************************************************************************/
1065
1066/*
1067 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069 * the branching factor of the d-tree.
1070 */
1071
1072/*
1073 * at the moment we allow libev the luxury of two heaps,
1074 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075 * which is more cache-efficient.
1076 * the difference is about 5% with 50000+ watchers.
1077 */
1078#if EV_USE_4HEAP
1079
1080#define DHEAP 4
1081#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083#define UPHEAP_DONE(p,k) ((p) == (k))
1084
1085/* away from the root */
1086inline_speed void
1087downheap (ANHE *heap, int N, int k)
1088{
1089 ANHE he = heap [k];
1090 ANHE *E = heap + N + HEAP0;
1091
1092 for (;;)
1093 {
1094 ev_tstamp minat;
1095 ANHE *minpos;
1096 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097
1098 /* find minimum child */
1099 if (expect_true (pos + DHEAP - 1 < E))
1100 {
1101 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 }
1106 else if (pos < E)
1107 {
1108 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else
1114 break;
1115
1116 if (ANHE_at (he) <= minat)
1117 break;
1118
1119 heap [k] = *minpos;
1120 ev_active (ANHE_w (*minpos)) = k;
1121
1122 k = minpos - heap;
1123 }
1124
1125 heap [k] = he;
1126 ev_active (ANHE_w (he)) = k;
1127}
1128
1129#else /* 4HEAP */
1130
1131#define HEAP0 1
1132#define HPARENT(k) ((k) >> 1)
1133#define UPHEAP_DONE(p,k) (!(p))
1134
1135/* away from the root */
1136inline_speed void
1137downheap (ANHE *heap, int N, int k)
1138{
1139 ANHE he = heap [k];
1140
1141 for (;;)
1142 {
1143 int c = k << 1;
1144
1145 if (c >= N + HEAP0)
1146 break;
1147
1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149 ? 1 : 0;
1150
1151 if (ANHE_at (he) <= ANHE_at (heap [c]))
1152 break;
1153
1154 heap [k] = heap [c];
1155 ev_active (ANHE_w (heap [k])) = k;
1156
1157 k = c;
1158 }
1159
1160 heap [k] = he;
1161 ev_active (ANHE_w (he)) = k;
1162}
1163#endif
1164
1165/* towards the root */
1166inline_speed void
1167upheap (ANHE *heap, int k)
1168{
1169 ANHE he = heap [k];
1170
1171 for (;;)
1172 {
1173 int p = HPARENT (k);
1174
1175 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 break;
1177
1178 heap [k] = heap [p];
1179 ev_active (ANHE_w (heap [k])) = k;
1180 k = p;
1181 }
1182
1183 heap [k] = he;
1184 ev_active (ANHE_w (he)) = k;
1185}
1186
1187/* move an element suitably so it is in a correct place */
1188inline_size void
1189adjustheap (ANHE *heap, int N, int k)
1190{
1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 upheap (heap, k);
1193 else
1194 downheap (heap, N, k);
1195}
1196
1197/* rebuild the heap: this function is used only once and executed rarely */
1198inline_size void
1199reheap (ANHE *heap, int N)
1200{
1201 int i;
1202
1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205 for (i = 0; i < N; ++i)
1206 upheap (heap, i + HEAP0);
1207}
1208
1209/*****************************************************************************/
1210
1211/* associate signal watchers to a signal signal */
1212typedef struct
1213{
1214 EV_ATOMIC_T pending;
1215#if EV_MULTIPLICITY
1216 EV_P;
1217#endif
1218 WL head;
1219} ANSIG;
1220
1221static ANSIG signals [EV_NSIG - 1];
1222
1223/*****************************************************************************/
1224
1225#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226
766static void noinline 1227static void noinline
767siginit (EV_P) 1228evpipe_init (EV_P)
768{ 1229{
1230 if (!ev_is_active (&pipe_w))
1231 {
1232# if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
1238 {
1239 evpipe [0] = -1;
1240 fd_intern (evfd); /* doing it twice doesn't hurt */
1241 ev_io_set (&pipe_w, evfd, EV_READ);
1242 }
1243 else
1244# endif
1245 {
1246 while (pipe (evpipe))
1247 ev_syserr ("(libev) error creating signal/async pipe");
1248
769 fd_intern (sigpipe [0]); 1249 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1250 fd_intern (evpipe [1]);
1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1252 }
771 1253
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1254 ev_io_start (EV_A_ &pipe_w);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1255 ev_unref (EV_A); /* watcher should not keep loop alive */
1256 }
1257}
1258
1259inline_size void
1260evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1261{
1262 if (!*flag)
1263 {
1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
1266
1267 *flag = 1;
1268
1269#if EV_USE_EVENTFD
1270 if (evfd >= 0)
1271 {
1272 uint64_t counter = 1;
1273 write (evfd, &counter, sizeof (uint64_t));
1274 }
1275 else
1276#endif
1277 write (evpipe [1], &dummy, 1);
1278
1279 errno = old_errno;
1280 }
1281}
1282
1283/* called whenever the libev signal pipe */
1284/* got some events (signal, async) */
1285static void
1286pipecb (EV_P_ ev_io *iow, int revents)
1287{
1288 int i;
1289
1290#if EV_USE_EVENTFD
1291 if (evfd >= 0)
1292 {
1293 uint64_t counter;
1294 read (evfd, &counter, sizeof (uint64_t));
1295 }
1296 else
1297#endif
1298 {
1299 char dummy;
1300 read (evpipe [0], &dummy, 1);
1301 }
1302
1303 if (sig_pending)
1304 {
1305 sig_pending = 0;
1306
1307 for (i = EV_NSIG - 1; i--; )
1308 if (expect_false (signals [i].pending))
1309 ev_feed_signal_event (EV_A_ i + 1);
1310 }
1311
1312#if EV_ASYNC_ENABLE
1313 if (async_pending)
1314 {
1315 async_pending = 0;
1316
1317 for (i = asynccnt; i--; )
1318 if (asyncs [i]->sent)
1319 {
1320 asyncs [i]->sent = 0;
1321 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1322 }
1323 }
1324#endif
775} 1325}
776 1326
777/*****************************************************************************/ 1327/*****************************************************************************/
778 1328
779static ev_child *childs [EV_PID_HASHSIZE]; 1329static void
1330ev_sighandler (int signum)
1331{
1332#if EV_MULTIPLICITY
1333 EV_P = signals [signum - 1].loop;
1334#endif
780 1335
781#ifndef _WIN32 1336#ifdef _WIN32
1337 signal (signum, ev_sighandler);
1338#endif
1339
1340 signals [signum - 1].pending = 1;
1341 evpipe_write (EV_A_ &sig_pending);
1342}
1343
1344void noinline
1345ev_feed_signal_event (EV_P_ int signum)
1346{
1347 WL w;
1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
1354#if EV_MULTIPLICITY
1355 /* it is permissible to try to feed a signal to the wrong loop */
1356 /* or, likely more useful, feeding a signal nobody is waiting for */
1357
1358 if (expect_false (signals [signum].loop != EV_A))
1359 return;
1360#endif
1361
1362 signals [signum].pending = 0;
1363
1364 for (w = signals [signum].head; w; w = w->next)
1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1366}
1367
1368#if EV_USE_SIGNALFD
1369static void
1370sigfdcb (EV_P_ ev_io *iow, int revents)
1371{
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385}
1386#endif
1387
1388#endif
1389
1390/*****************************************************************************/
1391
1392#if EV_CHILD_ENABLE
1393static WL childs [EV_PID_HASHSIZE];
782 1394
783static ev_signal childev; 1395static ev_signal childev;
784 1396
785void inline_speed 1397#ifndef WIFCONTINUED
1398# define WIFCONTINUED(status) 0
1399#endif
1400
1401/* handle a single child status event */
1402inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1403child_reap (EV_P_ int chain, int pid, int status)
787{ 1404{
788 ev_child *w; 1405 ev_child *w;
1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1407
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1408 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1409 {
791 if (w->pid == pid || !w->pid) 1410 if ((w->pid == pid || !w->pid)
1411 && (!traced || (w->flags & 1)))
792 { 1412 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1413 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1414 w->rpid = pid;
795 w->rstatus = status; 1415 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1416 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1417 }
1418 }
798} 1419}
799 1420
800#ifndef WCONTINUED 1421#ifndef WCONTINUED
801# define WCONTINUED 0 1422# define WCONTINUED 0
802#endif 1423#endif
803 1424
1425/* called on sigchld etc., calls waitpid */
804static void 1426static void
805childcb (EV_P_ ev_signal *sw, int revents) 1427childcb (EV_P_ ev_signal *sw, int revents)
806{ 1428{
807 int pid, status; 1429 int pid, status;
808 1430
811 if (!WCONTINUED 1433 if (!WCONTINUED
812 || errno != EINVAL 1434 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1435 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1436 return;
815 1437
816 /* make sure we are called again until all childs have been reaped */ 1438 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1439 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1440 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1441
820 child_reap (EV_A_ sw, pid, pid, status); 1442 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1443 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1444 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1445}
824 1446
825#endif 1447#endif
826 1448
827/*****************************************************************************/ 1449/*****************************************************************************/
889 /* kqueue is borked on everything but netbsd apparently */ 1511 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 1512 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 1513 flags &= ~EVBACKEND_KQUEUE;
892#endif 1514#endif
893#ifdef __APPLE__ 1515#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 1516 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
896#endif 1519#endif
897 1520
898 return flags; 1521 return flags;
899} 1522}
900 1523
901unsigned int 1524unsigned int
902ev_embeddable_backends (void) 1525ev_embeddable_backends (void)
903{ 1526{
904 return EVBACKEND_EPOLL 1527 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1528
906 | EVBACKEND_PORT; 1529 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1530 /* please fix it and tell me how to detect the fix */
1531 flags &= ~EVBACKEND_EPOLL;
1532
1533 return flags;
907} 1534}
908 1535
909unsigned int 1536unsigned int
910ev_backend (EV_P) 1537ev_backend (EV_P)
911{ 1538{
912 return backend; 1539 return backend;
913} 1540}
914 1541
1542#if EV_MINIMAL < 2
915unsigned int 1543unsigned int
916ev_loop_count (EV_P) 1544ev_loop_count (EV_P)
917{ 1545{
918 return loop_count; 1546 return loop_count;
919} 1547}
920 1548
1549unsigned int
1550ev_loop_depth (EV_P)
1551{
1552 return loop_depth;
1553}
1554
1555void
1556ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1557{
1558 io_blocktime = interval;
1559}
1560
1561void
1562ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1563{
1564 timeout_blocktime = interval;
1565}
1566
1567void
1568ev_set_userdata (EV_P_ void *data)
1569{
1570 userdata = data;
1571}
1572
1573void *
1574ev_userdata (EV_P)
1575{
1576 return userdata;
1577}
1578
1579void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580{
1581 invoke_cb = invoke_pending_cb;
1582}
1583
1584void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585{
1586 release_cb = release;
1587 acquire_cb = acquire;
1588}
1589#endif
1590
1591/* initialise a loop structure, must be zero-initialised */
921static void noinline 1592static void noinline
922loop_init (EV_P_ unsigned int flags) 1593loop_init (EV_P_ unsigned int flags)
923{ 1594{
924 if (!backend) 1595 if (!backend)
925 { 1596 {
1597#if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605#endif
1606
926#if EV_USE_MONOTONIC 1607#if EV_USE_MONOTONIC
1608 if (!have_monotonic)
927 { 1609 {
928 struct timespec ts; 1610 struct timespec ts;
1611
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1613 have_monotonic = 1;
931 } 1614 }
932#endif 1615#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 1616
939 /* pid check not overridable via env */ 1617 /* pid check not overridable via env */
940#ifndef _WIN32 1618#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1619 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1620 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1623 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1624 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1625 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1626 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1627
1628 ev_rt_now = ev_time ();
1629 mn_now = get_clock ();
1630 now_floor = mn_now;
1631 rtmn_diff = ev_rt_now - mn_now;
1632#if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634#endif
1635
1636 io_blocktime = 0.;
1637 timeout_blocktime = 0.;
1638 backend = 0;
1639 backend_fd = -1;
1640 sig_pending = 0;
1641#if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643#endif
1644#if EV_USE_INOTIFY
1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1646#endif
1647#if EV_USE_SIGNALFD
1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1649#endif
1650
950 if (!(flags & 0x0000ffffUL)) 1651 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1652 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1653
959#if EV_USE_PORT 1654#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1655 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1656#endif
962#if EV_USE_KQUEUE 1657#if EV_USE_KQUEUE
970#endif 1665#endif
971#if EV_USE_SELECT 1666#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1668#endif
974 1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 1673 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675#endif
977 } 1676 }
978} 1677}
979 1678
1679/* free up a loop structure */
980static void noinline 1680static void noinline
981loop_destroy (EV_P) 1681loop_destroy (EV_P)
982{ 1682{
983 int i; 1683 int i;
1684
1685 if (ev_is_active (&pipe_w))
1686 {
1687 /*ev_ref (EV_A);*/
1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1689
1690#if EV_USE_EVENTFD
1691 if (evfd >= 0)
1692 close (evfd);
1693#endif
1694
1695 if (evpipe [0] >= 0)
1696 {
1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1699 }
1700 }
1701
1702#if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705#endif
984 1706
985#if EV_USE_INOTIFY 1707#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1708 if (fs_fd >= 0)
987 close (fs_fd); 1709 close (fs_fd);
988#endif 1710#endif
1012#if EV_IDLE_ENABLE 1734#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1735 array_free (idle, [i]);
1014#endif 1736#endif
1015 } 1737 }
1016 1738
1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1740
1017 /* have to use the microsoft-never-gets-it-right macro */ 1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 1743 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1744 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1745#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1746 array_free (periodic, EMPTY);
1022#endif 1747#endif
1748#if EV_FORK_ENABLE
1749 array_free (fork, EMPTY);
1750#endif
1023 array_free (prepare, EMPTY); 1751 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1752 array_free (check, EMPTY);
1753#if EV_ASYNC_ENABLE
1754 array_free (async, EMPTY);
1755#endif
1025 1756
1026 backend = 0; 1757 backend = 0;
1027} 1758}
1028 1759
1760#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1761inline_size void infy_fork (EV_P);
1762#endif
1030 1763
1031void inline_size 1764inline_size void
1032loop_fork (EV_P) 1765loop_fork (EV_P)
1033{ 1766{
1034#if EV_USE_PORT 1767#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 1769#endif
1042#endif 1775#endif
1043#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1777 infy_fork (EV_A);
1045#endif 1778#endif
1046 1779
1047 if (ev_is_active (&sigev)) 1780 if (ev_is_active (&pipe_w))
1048 { 1781 {
1049 /* default loop */ 1782 /* this "locks" the handlers against writing to the pipe */
1783 /* while we modify the fd vars */
1784 sig_pending = 1;
1785#if EV_ASYNC_ENABLE
1786 async_pending = 1;
1787#endif
1050 1788
1051 ev_ref (EV_A); 1789 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1790 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 1791
1056 while (pipe (sigpipe)) 1792#if EV_USE_EVENTFD
1057 syserr ("(libev) error creating pipe"); 1793 if (evfd >= 0)
1794 close (evfd);
1795#endif
1058 1796
1797 if (evpipe [0] >= 0)
1798 {
1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1801 }
1802
1059 siginit (EV_A); 1803 evpipe_init (EV_A);
1804 /* now iterate over everything, in case we missed something */
1805 pipecb (EV_A_ &pipe_w, EV_READ);
1060 } 1806 }
1061 1807
1062 postfork = 0; 1808 postfork = 0;
1063} 1809}
1064 1810
1065#if EV_MULTIPLICITY 1811#if EV_MULTIPLICITY
1812
1066struct ev_loop * 1813struct ev_loop *
1067ev_loop_new (unsigned int flags) 1814ev_loop_new (unsigned int flags)
1068{ 1815{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1817
1071 memset (loop, 0, sizeof (struct ev_loop)); 1818 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 1819 loop_init (EV_A_ flags);
1074 1820
1075 if (ev_backend (EV_A)) 1821 if (ev_backend (EV_A))
1076 return loop; 1822 return EV_A;
1077 1823
1078 return 0; 1824 return 0;
1079} 1825}
1080 1826
1081void 1827void
1086} 1832}
1087 1833
1088void 1834void
1089ev_loop_fork (EV_P) 1835ev_loop_fork (EV_P)
1090{ 1836{
1091 postfork = 1; 1837 postfork = 1; /* must be in line with ev_default_fork */
1092} 1838}
1839#endif /* multiplicity */
1093 1840
1841#if EV_VERIFY
1842static void noinline
1843verify_watcher (EV_P_ W w)
1844{
1845 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1846
1847 if (w->pending)
1848 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1849}
1850
1851static void noinline
1852verify_heap (EV_P_ ANHE *heap, int N)
1853{
1854 int i;
1855
1856 for (i = HEAP0; i < N + HEAP0; ++i)
1857 {
1858 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1859 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1860 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1861
1862 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1863 }
1864}
1865
1866static void noinline
1867array_verify (EV_P_ W *ws, int cnt)
1868{
1869 while (cnt--)
1870 {
1871 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1872 verify_watcher (EV_A_ ws [cnt]);
1873 }
1874}
1875#endif
1876
1877#if EV_MINIMAL < 2
1878void
1879ev_loop_verify (EV_P)
1880{
1881#if EV_VERIFY
1882 int i;
1883 WL w;
1884
1885 assert (activecnt >= -1);
1886
1887 assert (fdchangemax >= fdchangecnt);
1888 for (i = 0; i < fdchangecnt; ++i)
1889 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1890
1891 assert (anfdmax >= 0);
1892 for (i = 0; i < anfdmax; ++i)
1893 for (w = anfds [i].head; w; w = w->next)
1894 {
1895 verify_watcher (EV_A_ (W)w);
1896 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1897 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1898 }
1899
1900 assert (timermax >= timercnt);
1901 verify_heap (EV_A_ timers, timercnt);
1902
1903#if EV_PERIODIC_ENABLE
1904 assert (periodicmax >= periodiccnt);
1905 verify_heap (EV_A_ periodics, periodiccnt);
1906#endif
1907
1908 for (i = NUMPRI; i--; )
1909 {
1910 assert (pendingmax [i] >= pendingcnt [i]);
1911#if EV_IDLE_ENABLE
1912 assert (idleall >= 0);
1913 assert (idlemax [i] >= idlecnt [i]);
1914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1915#endif
1916 }
1917
1918#if EV_FORK_ENABLE
1919 assert (forkmax >= forkcnt);
1920 array_verify (EV_A_ (W *)forks, forkcnt);
1921#endif
1922
1923#if EV_ASYNC_ENABLE
1924 assert (asyncmax >= asynccnt);
1925 array_verify (EV_A_ (W *)asyncs, asynccnt);
1926#endif
1927
1928 assert (preparemax >= preparecnt);
1929 array_verify (EV_A_ (W *)prepares, preparecnt);
1930
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933
1934# if 0
1935#if EV_CHILD_ENABLE
1936 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1937 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1938#endif
1939# endif
1940#endif
1941}
1094#endif 1942#endif
1095 1943
1096#if EV_MULTIPLICITY 1944#if EV_MULTIPLICITY
1097struct ev_loop * 1945struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1946ev_default_loop_init (unsigned int flags)
1099#else 1947#else
1100int 1948int
1101ev_default_loop (unsigned int flags) 1949ev_default_loop (unsigned int flags)
1102#endif 1950#endif
1103{ 1951{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1952 if (!ev_default_loop_ptr)
1109 { 1953 {
1110#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1955 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 1956#else
1113 ev_default_loop_ptr = 1; 1957 ev_default_loop_ptr = 1;
1114#endif 1958#endif
1115 1959
1116 loop_init (EV_A_ flags); 1960 loop_init (EV_A_ flags);
1117 1961
1118 if (ev_backend (EV_A)) 1962 if (ev_backend (EV_A))
1119 { 1963 {
1120 siginit (EV_A); 1964#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1965 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1966 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1967 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1968 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 1969#endif
1135 1977
1136void 1978void
1137ev_default_destroy (void) 1979ev_default_destroy (void)
1138{ 1980{
1139#if EV_MULTIPLICITY 1981#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr; 1982 EV_P = ev_default_loop_ptr;
1141#endif 1983#endif
1142 1984
1143#ifndef _WIN32 1985 ev_default_loop_ptr = 0;
1986
1987#if EV_CHILD_ENABLE
1144 ev_ref (EV_A); /* child watcher */ 1988 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1989 ev_signal_stop (EV_A_ &childev);
1146#endif 1990#endif
1147 1991
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1992 loop_destroy (EV_A);
1155} 1993}
1156 1994
1157void 1995void
1158ev_default_fork (void) 1996ev_default_fork (void)
1159{ 1997{
1160#if EV_MULTIPLICITY 1998#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1999 EV_P = ev_default_loop_ptr;
1162#endif 2000#endif
1163 2001
1164 if (backend) 2002 postfork = 1; /* must be in line with ev_loop_fork */
1165 postfork = 1;
1166} 2003}
1167 2004
1168/*****************************************************************************/ 2005/*****************************************************************************/
1169 2006
1170void 2007void
1171ev_invoke (EV_P_ void *w, int revents) 2008ev_invoke (EV_P_ void *w, int revents)
1172{ 2009{
1173 EV_CB_INVOKE ((W)w, revents); 2010 EV_CB_INVOKE ((W)w, revents);
1174} 2011}
1175 2012
1176void inline_speed 2013unsigned int
1177call_pending (EV_P) 2014ev_pending_count (EV_P)
2015{
2016 int pri;
2017 unsigned int count = 0;
2018
2019 for (pri = NUMPRI; pri--; )
2020 count += pendingcnt [pri];
2021
2022 return count;
2023}
2024
2025void noinline
2026ev_invoke_pending (EV_P)
1178{ 2027{
1179 int pri; 2028 int pri;
1180 2029
1181 for (pri = NUMPRI; pri--; ) 2030 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 2031 while (pendingcnt [pri])
1183 { 2032 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2033 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 2034
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2035 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2036 /* ^ this is no longer true, as pending_w could be here */
1189 2037
1190 p->w->pending = 0; 2038 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 2039 EV_CB_INVOKE (p->w, p->events);
1192 } 2040 EV_FREQUENT_CHECK;
1193 } 2041 }
1194} 2042}
1195 2043
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at = w->offset + floor ((ev_rt_now - w->offset) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275#if EV_IDLE_ENABLE 2044#if EV_IDLE_ENABLE
1276void inline_size 2045/* make idle watchers pending. this handles the "call-idle */
2046/* only when higher priorities are idle" logic */
2047inline_size void
1277idle_reify (EV_P) 2048idle_reify (EV_P)
1278{ 2049{
1279 if (expect_false (idleall)) 2050 if (expect_false (idleall))
1280 { 2051 {
1281 int pri; 2052 int pri;
1293 } 2064 }
1294 } 2065 }
1295} 2066}
1296#endif 2067#endif
1297 2068
1298int inline_size 2069/* make timers pending */
1299time_update_monotonic (EV_P) 2070inline_size void
2071timers_reify (EV_P)
1300{ 2072{
2073 EV_FREQUENT_CHECK;
2074
2075 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2076 {
2077 do
2078 {
2079 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2080
2081 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2082
2083 /* first reschedule or stop timer */
2084 if (w->repeat)
2085 {
2086 ev_at (w) += w->repeat;
2087 if (ev_at (w) < mn_now)
2088 ev_at (w) = mn_now;
2089
2090 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2091
2092 ANHE_at_cache (timers [HEAP0]);
2093 downheap (timers, timercnt, HEAP0);
2094 }
2095 else
2096 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2097
2098 EV_FREQUENT_CHECK;
2099 feed_reverse (EV_A_ (W)w);
2100 }
2101 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2102
2103 feed_reverse_done (EV_A_ EV_TIMEOUT);
2104 }
2105}
2106
2107#if EV_PERIODIC_ENABLE
2108/* make periodics pending */
2109inline_size void
2110periodics_reify (EV_P)
2111{
2112 EV_FREQUENT_CHECK;
2113
2114 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2115 {
2116 int feed_count = 0;
2117
2118 do
2119 {
2120 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2121
2122 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2123
2124 /* first reschedule or stop timer */
2125 if (w->reschedule_cb)
2126 {
2127 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2128
2129 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2130
2131 ANHE_at_cache (periodics [HEAP0]);
2132 downheap (periodics, periodiccnt, HEAP0);
2133 }
2134 else if (w->interval)
2135 {
2136 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2137 /* if next trigger time is not sufficiently in the future, put it there */
2138 /* this might happen because of floating point inexactness */
2139 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2140 {
2141 ev_at (w) += w->interval;
2142
2143 /* if interval is unreasonably low we might still have a time in the past */
2144 /* so correct this. this will make the periodic very inexact, but the user */
2145 /* has effectively asked to get triggered more often than possible */
2146 if (ev_at (w) < ev_rt_now)
2147 ev_at (w) = ev_rt_now;
2148 }
2149
2150 ANHE_at_cache (periodics [HEAP0]);
2151 downheap (periodics, periodiccnt, HEAP0);
2152 }
2153 else
2154 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2155
2156 EV_FREQUENT_CHECK;
2157 feed_reverse (EV_A_ (W)w);
2158 }
2159 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2160
2161 feed_reverse_done (EV_A_ EV_PERIODIC);
2162 }
2163}
2164
2165/* simply recalculate all periodics */
2166/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2167static void noinline
2168periodics_reschedule (EV_P)
2169{
2170 int i;
2171
2172 /* adjust periodics after time jump */
2173 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2174 {
2175 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2176
2177 if (w->reschedule_cb)
2178 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2179 else if (w->interval)
2180 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2181
2182 ANHE_at_cache (periodics [i]);
2183 }
2184
2185 reheap (periodics, periodiccnt);
2186}
2187#endif
2188
2189/* adjust all timers by a given offset */
2190static void noinline
2191timers_reschedule (EV_P_ ev_tstamp adjust)
2192{
2193 int i;
2194
2195 for (i = 0; i < timercnt; ++i)
2196 {
2197 ANHE *he = timers + i + HEAP0;
2198 ANHE_w (*he)->at += adjust;
2199 ANHE_at_cache (*he);
2200 }
2201}
2202
2203/* fetch new monotonic and realtime times from the kernel */
2204/* also detect if there was a timejump, and act accordingly */
2205inline_speed void
2206time_update (EV_P_ ev_tstamp max_block)
2207{
2208#if EV_USE_MONOTONIC
2209 if (expect_true (have_monotonic))
2210 {
2211 int i;
2212 ev_tstamp odiff = rtmn_diff;
2213
1301 mn_now = get_clock (); 2214 mn_now = get_clock ();
1302 2215
2216 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2217 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2218 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 2219 {
1305 ev_rt_now = rtmn_diff + mn_now; 2220 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 2221 return;
1307 } 2222 }
1308 else 2223
1309 {
1310 now_floor = mn_now; 2224 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 2225 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 2226
1316void inline_size 2227 /* loop a few times, before making important decisions.
1317time_update (EV_P) 2228 * on the choice of "4": one iteration isn't enough,
1318{ 2229 * in case we get preempted during the calls to
1319 int i; 2230 * ev_time and get_clock. a second call is almost guaranteed
1320 2231 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 2232 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 2233 * in the unlikely event of having been preempted here.
1323 { 2234 */
1324 if (time_update_monotonic (EV_A)) 2235 for (i = 4; --i; )
1325 { 2236 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 2237 rtmn_diff = ev_rt_now - mn_now;
1339 2238
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2239 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 2240 return; /* all is well */
1342 2241
1343 ev_rt_now = ev_time (); 2242 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 2243 mn_now = get_clock ();
1345 now_floor = mn_now; 2244 now_floor = mn_now;
1346 } 2245 }
1347 2246
2247 /* no timer adjustment, as the monotonic clock doesn't jump */
2248 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 2249# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1350# endif 2251# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 2252 }
1355 else 2253 else
1356#endif 2254#endif
1357 { 2255 {
1358 ev_rt_now = ev_time (); 2256 ev_rt_now = ev_time ();
1359 2257
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2258 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 2259 {
2260 /* adjust timers. this is easy, as the offset is the same for all of them */
2261 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 2262#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 2263 periodics_reschedule (EV_A);
1364#endif 2264#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 2265 }
1370 2266
1371 mn_now = ev_rt_now; 2267 mn_now = ev_rt_now;
1372 } 2268 }
1373} 2269}
1374 2270
1375void 2271void
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 2272ev_loop (EV_P_ int flags)
1391{ 2273{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2274#if EV_MINIMAL < 2
1393 ? EVUNLOOP_ONE 2275 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 2276#endif
1395 2277
2278 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2279
2280 loop_done = EVUNLOOP_CANCEL;
2281
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2282 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 2283
1398 do 2284 do
1399 { 2285 {
2286#if EV_VERIFY >= 2
2287 ev_loop_verify (EV_A);
2288#endif
2289
1400#ifndef _WIN32 2290#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 2291 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 2292 if (expect_false (getpid () != curpid))
1403 { 2293 {
1404 curpid = getpid (); 2294 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 2300 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 2301 if (expect_false (postfork))
1412 if (forkcnt) 2302 if (forkcnt)
1413 { 2303 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2304 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 2305 EV_INVOKE_PENDING;
1416 } 2306 }
1417#endif 2307#endif
1418 2308
1419 /* queue prepare watchers (and execute them) */ 2309 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 2310 if (expect_false (preparecnt))
1421 { 2311 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2312 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 2313 EV_INVOKE_PENDING;
1424 } 2314 }
1425 2315
1426 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1427 break; 2317 break;
1428 2318
1429 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1431 loop_fork (EV_A); 2321 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 2323 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 2324 fd_reify (EV_A);
1435 2325
1436 /* calculate blocking time */ 2326 /* calculate blocking time */
1437 { 2327 {
1438 ev_tstamp block; 2328 ev_tstamp waittime = 0.;
2329 ev_tstamp sleeptime = 0.;
1439 2330
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1444 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 2337 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 2338
1455 block = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1456 2340
1457 if (timercnt) 2341 if (timercnt)
1458 { 2342 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 2344 if (waittime > to) waittime = to;
1461 } 2345 }
1462 2346
1463#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 2348 if (periodiccnt)
1465 { 2349 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 2351 if (waittime > to) waittime = to;
1468 } 2352 }
1469#endif 2353#endif
1470 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
2356 if (expect_false (waittime < timeout_blocktime))
2357 waittime = timeout_blocktime;
2358
2359 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 2360 if (expect_false (io_blocktime))
2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
2369 ev_sleep (sleeptime);
2370 waittime -= sleeptime;
2371 }
2372 }
1472 } 2373 }
1473 2374
2375#if EV_MINIMAL < 2
1474 ++loop_count; 2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2381
2382 /* update ev_rt_now, do magic */
2383 time_update (EV_A_ waittime + sleeptime);
1476 } 2384 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2385
1481 /* queue pending timers and reschedule them */ 2386 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2387 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2388#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2389 periodics_reify (EV_A); /* absolute timers called first */
1491 2396
1492 /* queue check watchers, to be executed first */ 2397 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2398 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2399 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 2400
1496 call_pending (EV_A); 2401 EV_INVOKE_PENDING;
1497
1498 } 2402 }
1499 while (expect_true (activecnt && !loop_done)); 2403 while (expect_true (
2404 activecnt
2405 && !loop_done
2406 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2407 ));
1500 2408
1501 if (loop_done == EVUNLOOP_ONE) 2409 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2410 loop_done = EVUNLOOP_CANCEL;
2411
2412#if EV_MINIMAL < 2
2413 --loop_depth;
2414#endif
1503} 2415}
1504 2416
1505void 2417void
1506ev_unloop (EV_P_ int how) 2418ev_unloop (EV_P_ int how)
1507{ 2419{
1508 loop_done = how; 2420 loop_done = how;
1509} 2421}
1510 2422
2423void
2424ev_ref (EV_P)
2425{
2426 ++activecnt;
2427}
2428
2429void
2430ev_unref (EV_P)
2431{
2432 --activecnt;
2433}
2434
2435void
2436ev_now_update (EV_P)
2437{
2438 time_update (EV_A_ 1e100);
2439}
2440
2441void
2442ev_suspend (EV_P)
2443{
2444 ev_now_update (EV_A);
2445}
2446
2447void
2448ev_resume (EV_P)
2449{
2450 ev_tstamp mn_prev = mn_now;
2451
2452 ev_now_update (EV_A);
2453 timers_reschedule (EV_A_ mn_now - mn_prev);
2454#if EV_PERIODIC_ENABLE
2455 /* TODO: really do this? */
2456 periodics_reschedule (EV_A);
2457#endif
2458}
2459
1511/*****************************************************************************/ 2460/*****************************************************************************/
2461/* singly-linked list management, used when the expected list length is short */
1512 2462
1513void inline_size 2463inline_size void
1514wlist_add (WL *head, WL elem) 2464wlist_add (WL *head, WL elem)
1515{ 2465{
1516 elem->next = *head; 2466 elem->next = *head;
1517 *head = elem; 2467 *head = elem;
1518} 2468}
1519 2469
1520void inline_size 2470inline_size void
1521wlist_del (WL *head, WL elem) 2471wlist_del (WL *head, WL elem)
1522{ 2472{
1523 while (*head) 2473 while (*head)
1524 { 2474 {
1525 if (*head == elem) 2475 if (expect_true (*head == elem))
1526 { 2476 {
1527 *head = elem->next; 2477 *head = elem->next;
1528 return; 2478 break;
1529 } 2479 }
1530 2480
1531 head = &(*head)->next; 2481 head = &(*head)->next;
1532 } 2482 }
1533} 2483}
1534 2484
1535void inline_speed 2485/* internal, faster, version of ev_clear_pending */
2486inline_speed void
1536clear_pending (EV_P_ W w) 2487clear_pending (EV_P_ W w)
1537{ 2488{
1538 if (w->pending) 2489 if (w->pending)
1539 { 2490 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2491 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 2492 w->pending = 0;
1542 } 2493 }
1543} 2494}
1544 2495
1545int 2496int
1549 int pending = w_->pending; 2500 int pending = w_->pending;
1550 2501
1551 if (expect_true (pending)) 2502 if (expect_true (pending))
1552 { 2503 {
1553 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2504 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2505 p->w = (W)&pending_w;
1554 w_->pending = 0; 2506 w_->pending = 0;
1555 p->w = 0;
1556 return p->events; 2507 return p->events;
1557 } 2508 }
1558 else 2509 else
1559 return 0; 2510 return 0;
1560} 2511}
1561 2512
1562void inline_size 2513inline_size void
1563pri_adjust (EV_P_ W w) 2514pri_adjust (EV_P_ W w)
1564{ 2515{
1565 int pri = w->priority; 2516 int pri = ev_priority (w);
1566 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2517 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1567 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2518 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1568 w->priority = pri; 2519 ev_set_priority (w, pri);
1569} 2520}
1570 2521
1571void inline_speed 2522inline_speed void
1572ev_start (EV_P_ W w, int active) 2523ev_start (EV_P_ W w, int active)
1573{ 2524{
1574 pri_adjust (EV_A_ w); 2525 pri_adjust (EV_A_ w);
1575 w->active = active; 2526 w->active = active;
1576 ev_ref (EV_A); 2527 ev_ref (EV_A);
1577} 2528}
1578 2529
1579void inline_size 2530inline_size void
1580ev_stop (EV_P_ W w) 2531ev_stop (EV_P_ W w)
1581{ 2532{
1582 ev_unref (EV_A); 2533 ev_unref (EV_A);
1583 w->active = 0; 2534 w->active = 0;
1584} 2535}
1591 int fd = w->fd; 2542 int fd = w->fd;
1592 2543
1593 if (expect_false (ev_is_active (w))) 2544 if (expect_false (ev_is_active (w)))
1594 return; 2545 return;
1595 2546
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 2547 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2548 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2549
2550 EV_FREQUENT_CHECK;
1597 2551
1598 ev_start (EV_A_ (W)w, 1); 2552 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2553 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2554 wlist_add (&anfds[fd].head, (WL)w);
1601 2555
1602 fd_change (EV_A_ fd); 2556 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2557 w->events &= ~EV__IOFDSET;
2558
2559 EV_FREQUENT_CHECK;
1603} 2560}
1604 2561
1605void noinline 2562void noinline
1606ev_io_stop (EV_P_ ev_io *w) 2563ev_io_stop (EV_P_ ev_io *w)
1607{ 2564{
1608 clear_pending (EV_A_ (W)w); 2565 clear_pending (EV_A_ (W)w);
1609 if (expect_false (!ev_is_active (w))) 2566 if (expect_false (!ev_is_active (w)))
1610 return; 2567 return;
1611 2568
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2569 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 2570
2571 EV_FREQUENT_CHECK;
2572
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2573 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 2574 ev_stop (EV_A_ (W)w);
1616 2575
1617 fd_change (EV_A_ w->fd); 2576 fd_change (EV_A_ w->fd, 1);
2577
2578 EV_FREQUENT_CHECK;
1618} 2579}
1619 2580
1620void noinline 2581void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 2582ev_timer_start (EV_P_ ev_timer *w)
1622{ 2583{
1623 if (expect_false (ev_is_active (w))) 2584 if (expect_false (ev_is_active (w)))
1624 return; 2585 return;
1625 2586
1626 ((WT)w)->at += mn_now; 2587 ev_at (w) += mn_now;
1627 2588
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2589 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 2590
2591 EV_FREQUENT_CHECK;
2592
2593 ++timercnt;
1630 ev_start (EV_A_ (W)w, ++timercnt); 2594 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2595 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 2596 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 2597 ANHE_at_cache (timers [ev_active (w)]);
2598 upheap (timers, ev_active (w));
1634 2599
2600 EV_FREQUENT_CHECK;
2601
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2602 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1636} 2603}
1637 2604
1638void noinline 2605void noinline
1639ev_timer_stop (EV_P_ ev_timer *w) 2606ev_timer_stop (EV_P_ ev_timer *w)
1640{ 2607{
1641 clear_pending (EV_A_ (W)w); 2608 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 2609 if (expect_false (!ev_is_active (w)))
1643 return; 2610 return;
1644 2611
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2612 EV_FREQUENT_CHECK;
1646 2613
1647 { 2614 {
1648 int active = ((W)w)->active; 2615 int active = ev_active (w);
1649 2616
2617 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2618
2619 --timercnt;
2620
1650 if (expect_true (--active < --timercnt)) 2621 if (expect_true (active < timercnt + HEAP0))
1651 { 2622 {
1652 timers [active] = timers [timercnt]; 2623 timers [active] = timers [timercnt + HEAP0];
1653 adjustheap ((WT *)timers, timercnt, active); 2624 adjustheap (timers, timercnt, active);
1654 } 2625 }
1655 } 2626 }
1656 2627
1657 ((WT)w)->at -= mn_now; 2628 ev_at (w) -= mn_now;
1658 2629
1659 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
2631
2632 EV_FREQUENT_CHECK;
1660} 2633}
1661 2634
1662void noinline 2635void noinline
1663ev_timer_again (EV_P_ ev_timer *w) 2636ev_timer_again (EV_P_ ev_timer *w)
1664{ 2637{
2638 EV_FREQUENT_CHECK;
2639
1665 if (ev_is_active (w)) 2640 if (ev_is_active (w))
1666 { 2641 {
1667 if (w->repeat) 2642 if (w->repeat)
1668 { 2643 {
1669 ((WT)w)->at = mn_now + w->repeat; 2644 ev_at (w) = mn_now + w->repeat;
2645 ANHE_at_cache (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2646 adjustheap (timers, timercnt, ev_active (w));
1671 } 2647 }
1672 else 2648 else
1673 ev_timer_stop (EV_A_ w); 2649 ev_timer_stop (EV_A_ w);
1674 } 2650 }
1675 else if (w->repeat) 2651 else if (w->repeat)
1676 { 2652 {
1677 w->at = w->repeat; 2653 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 2654 ev_timer_start (EV_A_ w);
1679 } 2655 }
2656
2657 EV_FREQUENT_CHECK;
2658}
2659
2660ev_tstamp
2661ev_timer_remaining (EV_P_ ev_timer *w)
2662{
2663 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1680} 2664}
1681 2665
1682#if EV_PERIODIC_ENABLE 2666#if EV_PERIODIC_ENABLE
1683void noinline 2667void noinline
1684ev_periodic_start (EV_P_ ev_periodic *w) 2668ev_periodic_start (EV_P_ ev_periodic *w)
1685{ 2669{
1686 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
1687 return; 2671 return;
1688 2672
1689 if (w->reschedule_cb) 2673 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2674 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 2675 else if (w->interval)
1692 { 2676 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2677 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 2678 /* this formula differs from the one in periodic_reify because we do not always round up */
1695 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2679 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 2680 }
1697 else 2681 else
1698 ((WT)w)->at = w->offset; 2682 ev_at (w) = w->offset;
1699 2683
2684 EV_FREQUENT_CHECK;
2685
2686 ++periodiccnt;
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 2687 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2688 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 2689 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 2690 ANHE_at_cache (periodics [ev_active (w)]);
2691 upheap (periodics, ev_active (w));
1704 2692
2693 EV_FREQUENT_CHECK;
2694
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2695 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1706} 2696}
1707 2697
1708void noinline 2698void noinline
1709ev_periodic_stop (EV_P_ ev_periodic *w) 2699ev_periodic_stop (EV_P_ ev_periodic *w)
1710{ 2700{
1711 clear_pending (EV_A_ (W)w); 2701 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2702 if (expect_false (!ev_is_active (w)))
1713 return; 2703 return;
1714 2704
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2705 EV_FREQUENT_CHECK;
1716 2706
1717 { 2707 {
1718 int active = ((W)w)->active; 2708 int active = ev_active (w);
1719 2709
2710 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2711
2712 --periodiccnt;
2713
1720 if (expect_true (--active < --periodiccnt)) 2714 if (expect_true (active < periodiccnt + HEAP0))
1721 { 2715 {
1722 periodics [active] = periodics [periodiccnt]; 2716 periodics [active] = periodics [periodiccnt + HEAP0];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 2717 adjustheap (periodics, periodiccnt, active);
1724 } 2718 }
1725 } 2719 }
1726 2720
1727 ev_stop (EV_A_ (W)w); 2721 ev_stop (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
1728} 2724}
1729 2725
1730void noinline 2726void noinline
1731ev_periodic_again (EV_P_ ev_periodic *w) 2727ev_periodic_again (EV_P_ ev_periodic *w)
1732{ 2728{
1738 2734
1739#ifndef SA_RESTART 2735#ifndef SA_RESTART
1740# define SA_RESTART 0 2736# define SA_RESTART 0
1741#endif 2737#endif
1742 2738
2739#if EV_SIGNAL_ENABLE
2740
1743void noinline 2741void noinline
1744ev_signal_start (EV_P_ ev_signal *w) 2742ev_signal_start (EV_P_ ev_signal *w)
1745{ 2743{
1746#if EV_MULTIPLICITY
1747 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1748#endif
1749 if (expect_false (ev_is_active (w))) 2744 if (expect_false (ev_is_active (w)))
1750 return; 2745 return;
1751 2746
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2747 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2748
2749#if EV_MULTIPLICITY
2750 assert (("libev: a signal must not be attached to two different loops",
2751 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2752
2753 signals [w->signum - 1].loop = EV_A;
2754#endif
2755
2756 EV_FREQUENT_CHECK;
2757
2758#if EV_USE_SIGNALFD
2759 if (sigfd == -2)
2760 {
2761 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2762 if (sigfd < 0 && errno == EINVAL)
2763 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2764
2765 if (sigfd >= 0)
2766 {
2767 fd_intern (sigfd); /* doing it twice will not hurt */
2768
2769 sigemptyset (&sigfd_set);
2770
2771 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2772 ev_set_priority (&sigfd_w, EV_MAXPRI);
2773 ev_io_start (EV_A_ &sigfd_w);
2774 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2775 }
2776 }
2777
2778 if (sigfd >= 0)
2779 {
2780 /* TODO: check .head */
2781 sigaddset (&sigfd_set, w->signum);
2782 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2783
2784 signalfd (sigfd, &sigfd_set, 0);
2785 }
2786#endif
1753 2787
1754 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2789 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 2790
1758 if (!((WL)w)->next) 2791 if (!((WL)w)->next)
2792# if EV_USE_SIGNALFD
2793 if (sigfd < 0) /*TODO*/
2794# endif
1759 { 2795 {
1760#if _WIN32 2796# ifdef _WIN32
2797 evpipe_init (EV_A);
2798
1761 signal (w->signum, sighandler); 2799 signal (w->signum, ev_sighandler);
1762#else 2800# else
1763 struct sigaction sa; 2801 struct sigaction sa;
2802
2803 evpipe_init (EV_A);
2804
1764 sa.sa_handler = sighandler; 2805 sa.sa_handler = ev_sighandler;
1765 sigfillset (&sa.sa_mask); 2806 sigfillset (&sa.sa_mask);
1766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2807 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1767 sigaction (w->signum, &sa, 0); 2808 sigaction (w->signum, &sa, 0);
2809
2810 sigemptyset (&sa.sa_mask);
2811 sigaddset (&sa.sa_mask, w->signum);
2812 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1768#endif 2813#endif
1769 } 2814 }
2815
2816 EV_FREQUENT_CHECK;
1770} 2817}
1771 2818
1772void noinline 2819void noinline
1773ev_signal_stop (EV_P_ ev_signal *w) 2820ev_signal_stop (EV_P_ ev_signal *w)
1774{ 2821{
1775 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
1777 return; 2824 return;
1778 2825
2826 EV_FREQUENT_CHECK;
2827
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2828 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 2829 ev_stop (EV_A_ (W)w);
1781 2830
1782 if (!signals [w->signum - 1].head) 2831 if (!signals [w->signum - 1].head)
2832 {
2833#if EV_MULTIPLICITY
2834 signals [w->signum - 1].loop = 0; /* unattach from signal */
2835#endif
2836#if EV_USE_SIGNALFD
2837 if (sigfd >= 0)
2838 {
2839 sigset_t ss;
2840
2841 sigemptyset (&ss);
2842 sigaddset (&ss, w->signum);
2843 sigdelset (&sigfd_set, w->signum);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 sigprocmask (SIG_UNBLOCK, &ss, 0);
2847 }
2848 else
2849#endif
1783 signal (w->signum, SIG_DFL); 2850 signal (w->signum, SIG_DFL);
2851 }
2852
2853 EV_FREQUENT_CHECK;
1784} 2854}
2855
2856#endif
2857
2858#if EV_CHILD_ENABLE
1785 2859
1786void 2860void
1787ev_child_start (EV_P_ ev_child *w) 2861ev_child_start (EV_P_ ev_child *w)
1788{ 2862{
1789#if EV_MULTIPLICITY 2863#if EV_MULTIPLICITY
1790 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2864 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1791#endif 2865#endif
1792 if (expect_false (ev_is_active (w))) 2866 if (expect_false (ev_is_active (w)))
1793 return; 2867 return;
1794 2868
2869 EV_FREQUENT_CHECK;
2870
1795 ev_start (EV_A_ (W)w, 1); 2871 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2872 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2873
2874 EV_FREQUENT_CHECK;
1797} 2875}
1798 2876
1799void 2877void
1800ev_child_stop (EV_P_ ev_child *w) 2878ev_child_stop (EV_P_ ev_child *w)
1801{ 2879{
1802 clear_pending (EV_A_ (W)w); 2880 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2881 if (expect_false (!ev_is_active (w)))
1804 return; 2882 return;
1805 2883
2884 EV_FREQUENT_CHECK;
2885
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2886 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
1808} 2890}
2891
2892#endif
1809 2893
1810#if EV_STAT_ENABLE 2894#if EV_STAT_ENABLE
1811 2895
1812# ifdef _WIN32 2896# ifdef _WIN32
1813# undef lstat 2897# undef lstat
1814# define lstat(a,b) _stati64 (a,b) 2898# define lstat(a,b) _stati64 (a,b)
1815# endif 2899# endif
1816 2900
1817#define DEF_STAT_INTERVAL 5.0074891 2901#define DEF_STAT_INTERVAL 5.0074891
2902#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1818#define MIN_STAT_INTERVAL 0.1074891 2903#define MIN_STAT_INTERVAL 0.1074891
1819 2904
1820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2905static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1821 2906
1822#if EV_USE_INOTIFY 2907#if EV_USE_INOTIFY
1823# define EV_INOTIFY_BUFSIZE 8192 2908
2909/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2910# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1824 2911
1825static void noinline 2912static void noinline
1826infy_add (EV_P_ ev_stat *w) 2913infy_add (EV_P_ ev_stat *w)
1827{ 2914{
1828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2915 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1829 2916
1830 if (w->wd < 0) 2917 if (w->wd >= 0)
2918 {
2919 struct statfs sfs;
2920
2921 /* now local changes will be tracked by inotify, but remote changes won't */
2922 /* unless the filesystem is known to be local, we therefore still poll */
2923 /* also do poll on <2.6.25, but with normal frequency */
2924
2925 if (!fs_2625)
2926 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2927 else if (!statfs (w->path, &sfs)
2928 && (sfs.f_type == 0x1373 /* devfs */
2929 || sfs.f_type == 0xEF53 /* ext2/3 */
2930 || sfs.f_type == 0x3153464a /* jfs */
2931 || sfs.f_type == 0x52654973 /* reiser3 */
2932 || sfs.f_type == 0x01021994 /* tempfs */
2933 || sfs.f_type == 0x58465342 /* xfs */))
2934 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2935 else
2936 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1831 { 2937 }
1832 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2938 else
2939 {
2940 /* can't use inotify, continue to stat */
2941 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1833 2942
1834 /* monitor some parent directory for speedup hints */ 2943 /* if path is not there, monitor some parent directory for speedup hints */
2944 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2945 /* but an efficiency issue only */
1835 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1836 { 2947 {
1837 char path [4096]; 2948 char path [4096];
1838 strcpy (path, w->path); 2949 strcpy (path, w->path);
1839 2950
1842 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1843 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1844 2955
1845 char *pend = strrchr (path, '/'); 2956 char *pend = strrchr (path, '/');
1846 2957
1847 if (!pend) 2958 if (!pend || pend == path)
1848 break; /* whoops, no '/', complain to your admin */ 2959 break;
1849 2960
1850 *pend = 0; 2961 *pend = 0;
1851 w->wd = inotify_add_watch (fs_fd, path, mask); 2962 w->wd = inotify_add_watch (fs_fd, path, mask);
1852 } 2963 }
1853 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1854 } 2965 }
1855 } 2966 }
1856 else
1857 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1858 2967
1859 if (w->wd >= 0) 2968 if (w->wd >= 0)
1860 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2969 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2970
2971 /* now re-arm timer, if required */
2972 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2973 ev_timer_again (EV_A_ &w->timer);
2974 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1861} 2975}
1862 2976
1863static void noinline 2977static void noinline
1864infy_del (EV_P_ ev_stat *w) 2978infy_del (EV_P_ ev_stat *w)
1865{ 2979{
1879 2993
1880static void noinline 2994static void noinline
1881infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2995infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1882{ 2996{
1883 if (slot < 0) 2997 if (slot < 0)
1884 /* overflow, need to check for all hahs slots */ 2998 /* overflow, need to check for all hash slots */
1885 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2999 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1886 infy_wd (EV_A_ slot, wd, ev); 3000 infy_wd (EV_A_ slot, wd, ev);
1887 else 3001 else
1888 { 3002 {
1889 WL w_; 3003 WL w_;
1895 3009
1896 if (w->wd == wd || wd == -1) 3010 if (w->wd == wd || wd == -1)
1897 { 3011 {
1898 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3012 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1899 { 3013 {
3014 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1900 w->wd = -1; 3015 w->wd = -1;
1901 infy_add (EV_A_ w); /* re-add, no matter what */ 3016 infy_add (EV_A_ w); /* re-add, no matter what */
1902 } 3017 }
1903 3018
1904 stat_timer_cb (EV_A_ &w->timer, 0); 3019 stat_timer_cb (EV_A_ &w->timer, 0);
1909 3024
1910static void 3025static void
1911infy_cb (EV_P_ ev_io *w, int revents) 3026infy_cb (EV_P_ ev_io *w, int revents)
1912{ 3027{
1913 char buf [EV_INOTIFY_BUFSIZE]; 3028 char buf [EV_INOTIFY_BUFSIZE];
1914 struct inotify_event *ev = (struct inotify_event *)buf;
1915 int ofs; 3029 int ofs;
1916 int len = read (fs_fd, buf, sizeof (buf)); 3030 int len = read (fs_fd, buf, sizeof (buf));
1917 3031
1918 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3032 for (ofs = 0; ofs < len; )
3033 {
3034 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1919 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3036 ofs += sizeof (struct inotify_event) + ev->len;
3037 }
1920} 3038}
1921 3039
1922void inline_size 3040inline_size unsigned int
3041ev_linux_version (void)
3042{
3043 struct utsname buf;
3044 unsigned int v;
3045 int i;
3046 char *p = buf.release;
3047
3048 if (uname (&buf))
3049 return 0;
3050
3051 for (i = 3+1; --i; )
3052 {
3053 unsigned int c = 0;
3054
3055 for (;;)
3056 {
3057 if (*p >= '0' && *p <= '9')
3058 c = c * 10 + *p++ - '0';
3059 else
3060 {
3061 p += *p == '.';
3062 break;
3063 }
3064 }
3065
3066 v = (v << 8) | c;
3067 }
3068
3069 return v;
3070}
3071
3072inline_size void
3073ev_check_2625 (EV_P)
3074{
3075 /* kernels < 2.6.25 are borked
3076 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3077 */
3078 if (ev_linux_version () < 0x020619)
3079 return;
3080
3081 fs_2625 = 1;
3082}
3083
3084inline_size int
3085infy_newfd (void)
3086{
3087#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3088 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3089 if (fd >= 0)
3090 return fd;
3091#endif
3092 return inotify_init ();
3093}
3094
3095inline_size void
1923infy_init (EV_P) 3096infy_init (EV_P)
1924{ 3097{
1925 if (fs_fd != -2) 3098 if (fs_fd != -2)
1926 return; 3099 return;
1927 3100
3101 fs_fd = -1;
3102
3103 ev_check_2625 (EV_A);
3104
1928 fs_fd = inotify_init (); 3105 fs_fd = infy_newfd ();
1929 3106
1930 if (fs_fd >= 0) 3107 if (fs_fd >= 0)
1931 { 3108 {
3109 fd_intern (fs_fd);
1932 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3110 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1933 ev_set_priority (&fs_w, EV_MAXPRI); 3111 ev_set_priority (&fs_w, EV_MAXPRI);
1934 ev_io_start (EV_A_ &fs_w); 3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
1935 } 3114 }
1936} 3115}
1937 3116
1938void inline_size 3117inline_size void
1939infy_fork (EV_P) 3118infy_fork (EV_P)
1940{ 3119{
1941 int slot; 3120 int slot;
1942 3121
1943 if (fs_fd < 0) 3122 if (fs_fd < 0)
1944 return; 3123 return;
1945 3124
3125 ev_ref (EV_A);
3126 ev_io_stop (EV_A_ &fs_w);
1946 close (fs_fd); 3127 close (fs_fd);
1947 fs_fd = inotify_init (); 3128 fs_fd = infy_newfd ();
3129
3130 if (fs_fd >= 0)
3131 {
3132 fd_intern (fs_fd);
3133 ev_io_set (&fs_w, fs_fd, EV_READ);
3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
3136 }
1948 3137
1949 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3138 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1950 { 3139 {
1951 WL w_ = fs_hash [slot].head; 3140 WL w_ = fs_hash [slot].head;
1952 fs_hash [slot].head = 0; 3141 fs_hash [slot].head = 0;
1959 w->wd = -1; 3148 w->wd = -1;
1960 3149
1961 if (fs_fd >= 0) 3150 if (fs_fd >= 0)
1962 infy_add (EV_A_ w); /* re-add, no matter what */ 3151 infy_add (EV_A_ w); /* re-add, no matter what */
1963 else 3152 else
3153 {
3154 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3155 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1964 ev_timer_start (EV_A_ &w->timer); 3156 ev_timer_again (EV_A_ &w->timer);
3157 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3158 }
1965 } 3159 }
1966
1967 } 3160 }
1968} 3161}
1969 3162
3163#endif
3164
3165#ifdef _WIN32
3166# define EV_LSTAT(p,b) _stati64 (p, b)
3167#else
3168# define EV_LSTAT(p,b) lstat (p, b)
1970#endif 3169#endif
1971 3170
1972void 3171void
1973ev_stat_stat (EV_P_ ev_stat *w) 3172ev_stat_stat (EV_P_ ev_stat *w)
1974{ 3173{
1981static void noinline 3180static void noinline
1982stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3181stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1983{ 3182{
1984 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3183 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1985 3184
1986 /* we copy this here each the time so that */ 3185 ev_statdata prev = w->attr;
1987 /* prev has the old value when the callback gets invoked */
1988 w->prev = w->attr;
1989 ev_stat_stat (EV_A_ w); 3186 ev_stat_stat (EV_A_ w);
1990 3187
1991 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3188 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1992 if ( 3189 if (
1993 w->prev.st_dev != w->attr.st_dev 3190 prev.st_dev != w->attr.st_dev
1994 || w->prev.st_ino != w->attr.st_ino 3191 || prev.st_ino != w->attr.st_ino
1995 || w->prev.st_mode != w->attr.st_mode 3192 || prev.st_mode != w->attr.st_mode
1996 || w->prev.st_nlink != w->attr.st_nlink 3193 || prev.st_nlink != w->attr.st_nlink
1997 || w->prev.st_uid != w->attr.st_uid 3194 || prev.st_uid != w->attr.st_uid
1998 || w->prev.st_gid != w->attr.st_gid 3195 || prev.st_gid != w->attr.st_gid
1999 || w->prev.st_rdev != w->attr.st_rdev 3196 || prev.st_rdev != w->attr.st_rdev
2000 || w->prev.st_size != w->attr.st_size 3197 || prev.st_size != w->attr.st_size
2001 || w->prev.st_atime != w->attr.st_atime 3198 || prev.st_atime != w->attr.st_atime
2002 || w->prev.st_mtime != w->attr.st_mtime 3199 || prev.st_mtime != w->attr.st_mtime
2003 || w->prev.st_ctime != w->attr.st_ctime 3200 || prev.st_ctime != w->attr.st_ctime
2004 ) { 3201 ) {
3202 /* we only update w->prev on actual differences */
3203 /* in case we test more often than invoke the callback, */
3204 /* to ensure that prev is always different to attr */
3205 w->prev = prev;
3206
2005 #if EV_USE_INOTIFY 3207 #if EV_USE_INOTIFY
3208 if (fs_fd >= 0)
3209 {
2006 infy_del (EV_A_ w); 3210 infy_del (EV_A_ w);
2007 infy_add (EV_A_ w); 3211 infy_add (EV_A_ w);
2008 ev_stat_stat (EV_A_ w); /* avoid race... */ 3212 ev_stat_stat (EV_A_ w); /* avoid race... */
3213 }
2009 #endif 3214 #endif
2010 3215
2011 ev_feed_event (EV_A_ w, EV_STAT); 3216 ev_feed_event (EV_A_ w, EV_STAT);
2012 } 3217 }
2013} 3218}
2016ev_stat_start (EV_P_ ev_stat *w) 3221ev_stat_start (EV_P_ ev_stat *w)
2017{ 3222{
2018 if (expect_false (ev_is_active (w))) 3223 if (expect_false (ev_is_active (w)))
2019 return; 3224 return;
2020 3225
2021 /* since we use memcmp, we need to clear any padding data etc. */
2022 memset (&w->prev, 0, sizeof (ev_statdata));
2023 memset (&w->attr, 0, sizeof (ev_statdata));
2024
2025 ev_stat_stat (EV_A_ w); 3226 ev_stat_stat (EV_A_ w);
2026 3227
3228 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2027 if (w->interval < MIN_STAT_INTERVAL) 3229 w->interval = MIN_STAT_INTERVAL;
2028 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2029 3230
2030 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3231 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2031 ev_set_priority (&w->timer, ev_priority (w)); 3232 ev_set_priority (&w->timer, ev_priority (w));
2032 3233
2033#if EV_USE_INOTIFY 3234#if EV_USE_INOTIFY
2034 infy_init (EV_A); 3235 infy_init (EV_A);
2035 3236
2036 if (fs_fd >= 0) 3237 if (fs_fd >= 0)
2037 infy_add (EV_A_ w); 3238 infy_add (EV_A_ w);
2038 else 3239 else
2039#endif 3240#endif
3241 {
2040 ev_timer_start (EV_A_ &w->timer); 3242 ev_timer_again (EV_A_ &w->timer);
3243 ev_unref (EV_A);
3244 }
2041 3245
2042 ev_start (EV_A_ (W)w, 1); 3246 ev_start (EV_A_ (W)w, 1);
3247
3248 EV_FREQUENT_CHECK;
2043} 3249}
2044 3250
2045void 3251void
2046ev_stat_stop (EV_P_ ev_stat *w) 3252ev_stat_stop (EV_P_ ev_stat *w)
2047{ 3253{
2048 clear_pending (EV_A_ (W)w); 3254 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 3255 if (expect_false (!ev_is_active (w)))
2050 return; 3256 return;
2051 3257
3258 EV_FREQUENT_CHECK;
3259
2052#if EV_USE_INOTIFY 3260#if EV_USE_INOTIFY
2053 infy_del (EV_A_ w); 3261 infy_del (EV_A_ w);
2054#endif 3262#endif
3263
3264 if (ev_is_active (&w->timer))
3265 {
3266 ev_ref (EV_A);
2055 ev_timer_stop (EV_A_ &w->timer); 3267 ev_timer_stop (EV_A_ &w->timer);
3268 }
2056 3269
2057 ev_stop (EV_A_ (W)w); 3270 ev_stop (EV_A_ (W)w);
3271
3272 EV_FREQUENT_CHECK;
2058} 3273}
2059#endif 3274#endif
2060 3275
2061#if EV_IDLE_ENABLE 3276#if EV_IDLE_ENABLE
2062void 3277void
2064{ 3279{
2065 if (expect_false (ev_is_active (w))) 3280 if (expect_false (ev_is_active (w)))
2066 return; 3281 return;
2067 3282
2068 pri_adjust (EV_A_ (W)w); 3283 pri_adjust (EV_A_ (W)w);
3284
3285 EV_FREQUENT_CHECK;
2069 3286
2070 { 3287 {
2071 int active = ++idlecnt [ABSPRI (w)]; 3288 int active = ++idlecnt [ABSPRI (w)];
2072 3289
2073 ++idleall; 3290 ++idleall;
2074 ev_start (EV_A_ (W)w, active); 3291 ev_start (EV_A_ (W)w, active);
2075 3292
2076 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3293 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2077 idles [ABSPRI (w)][active - 1] = w; 3294 idles [ABSPRI (w)][active - 1] = w;
2078 } 3295 }
3296
3297 EV_FREQUENT_CHECK;
2079} 3298}
2080 3299
2081void 3300void
2082ev_idle_stop (EV_P_ ev_idle *w) 3301ev_idle_stop (EV_P_ ev_idle *w)
2083{ 3302{
2084 clear_pending (EV_A_ (W)w); 3303 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 3304 if (expect_false (!ev_is_active (w)))
2086 return; 3305 return;
2087 3306
3307 EV_FREQUENT_CHECK;
3308
2088 { 3309 {
2089 int active = ((W)w)->active; 3310 int active = ev_active (w);
2090 3311
2091 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3312 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2092 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3313 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2093 3314
2094 ev_stop (EV_A_ (W)w); 3315 ev_stop (EV_A_ (W)w);
2095 --idleall; 3316 --idleall;
2096 } 3317 }
3318
3319 EV_FREQUENT_CHECK;
2097} 3320}
2098#endif 3321#endif
2099 3322
2100void 3323void
2101ev_prepare_start (EV_P_ ev_prepare *w) 3324ev_prepare_start (EV_P_ ev_prepare *w)
2102{ 3325{
2103 if (expect_false (ev_is_active (w))) 3326 if (expect_false (ev_is_active (w)))
2104 return; 3327 return;
3328
3329 EV_FREQUENT_CHECK;
2105 3330
2106 ev_start (EV_A_ (W)w, ++preparecnt); 3331 ev_start (EV_A_ (W)w, ++preparecnt);
2107 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3332 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2108 prepares [preparecnt - 1] = w; 3333 prepares [preparecnt - 1] = w;
3334
3335 EV_FREQUENT_CHECK;
2109} 3336}
2110 3337
2111void 3338void
2112ev_prepare_stop (EV_P_ ev_prepare *w) 3339ev_prepare_stop (EV_P_ ev_prepare *w)
2113{ 3340{
2114 clear_pending (EV_A_ (W)w); 3341 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 3342 if (expect_false (!ev_is_active (w)))
2116 return; 3343 return;
2117 3344
3345 EV_FREQUENT_CHECK;
3346
2118 { 3347 {
2119 int active = ((W)w)->active; 3348 int active = ev_active (w);
3349
2120 prepares [active - 1] = prepares [--preparecnt]; 3350 prepares [active - 1] = prepares [--preparecnt];
2121 ((W)prepares [active - 1])->active = active; 3351 ev_active (prepares [active - 1]) = active;
2122 } 3352 }
2123 3353
2124 ev_stop (EV_A_ (W)w); 3354 ev_stop (EV_A_ (W)w);
3355
3356 EV_FREQUENT_CHECK;
2125} 3357}
2126 3358
2127void 3359void
2128ev_check_start (EV_P_ ev_check *w) 3360ev_check_start (EV_P_ ev_check *w)
2129{ 3361{
2130 if (expect_false (ev_is_active (w))) 3362 if (expect_false (ev_is_active (w)))
2131 return; 3363 return;
3364
3365 EV_FREQUENT_CHECK;
2132 3366
2133 ev_start (EV_A_ (W)w, ++checkcnt); 3367 ev_start (EV_A_ (W)w, ++checkcnt);
2134 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3368 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2135 checks [checkcnt - 1] = w; 3369 checks [checkcnt - 1] = w;
3370
3371 EV_FREQUENT_CHECK;
2136} 3372}
2137 3373
2138void 3374void
2139ev_check_stop (EV_P_ ev_check *w) 3375ev_check_stop (EV_P_ ev_check *w)
2140{ 3376{
2141 clear_pending (EV_A_ (W)w); 3377 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 3378 if (expect_false (!ev_is_active (w)))
2143 return; 3379 return;
2144 3380
3381 EV_FREQUENT_CHECK;
3382
2145 { 3383 {
2146 int active = ((W)w)->active; 3384 int active = ev_active (w);
3385
2147 checks [active - 1] = checks [--checkcnt]; 3386 checks [active - 1] = checks [--checkcnt];
2148 ((W)checks [active - 1])->active = active; 3387 ev_active (checks [active - 1]) = active;
2149 } 3388 }
2150 3389
2151 ev_stop (EV_A_ (W)w); 3390 ev_stop (EV_A_ (W)w);
3391
3392 EV_FREQUENT_CHECK;
2152} 3393}
2153 3394
2154#if EV_EMBED_ENABLE 3395#if EV_EMBED_ENABLE
2155void noinline 3396void noinline
2156ev_embed_sweep (EV_P_ ev_embed *w) 3397ev_embed_sweep (EV_P_ ev_embed *w)
2157{ 3398{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 3399 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 3400}
2160 3401
2161static void 3402static void
2162embed_cb (EV_P_ ev_io *io, int revents) 3403embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 3404{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3405 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 3406
2166 if (ev_cb (w)) 3407 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3408 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 3409 else
2169 ev_embed_sweep (loop, w); 3410 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 3411}
3412
3413static void
3414embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3415{
3416 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3417
3418 {
3419 EV_P = w->other;
3420
3421 while (fdchangecnt)
3422 {
3423 fd_reify (EV_A);
3424 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3425 }
3426 }
3427}
3428
3429static void
3430embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3431{
3432 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3433
3434 ev_embed_stop (EV_A_ w);
3435
3436 {
3437 EV_P = w->other;
3438
3439 ev_loop_fork (EV_A);
3440 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3441 }
3442
3443 ev_embed_start (EV_A_ w);
3444}
3445
3446#if 0
3447static void
3448embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3449{
3450 ev_idle_stop (EV_A_ idle);
3451}
3452#endif
2171 3453
2172void 3454void
2173ev_embed_start (EV_P_ ev_embed *w) 3455ev_embed_start (EV_P_ ev_embed *w)
2174{ 3456{
2175 if (expect_false (ev_is_active (w))) 3457 if (expect_false (ev_is_active (w)))
2176 return; 3458 return;
2177 3459
2178 { 3460 {
2179 struct ev_loop *loop = w->loop; 3461 EV_P = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3462 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3463 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 3464 }
3465
3466 EV_FREQUENT_CHECK;
2183 3467
2184 ev_set_priority (&w->io, ev_priority (w)); 3468 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 3469 ev_io_start (EV_A_ &w->io);
2186 3470
3471 ev_prepare_init (&w->prepare, embed_prepare_cb);
3472 ev_set_priority (&w->prepare, EV_MINPRI);
3473 ev_prepare_start (EV_A_ &w->prepare);
3474
3475 ev_fork_init (&w->fork, embed_fork_cb);
3476 ev_fork_start (EV_A_ &w->fork);
3477
3478 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3479
2187 ev_start (EV_A_ (W)w, 1); 3480 ev_start (EV_A_ (W)w, 1);
3481
3482 EV_FREQUENT_CHECK;
2188} 3483}
2189 3484
2190void 3485void
2191ev_embed_stop (EV_P_ ev_embed *w) 3486ev_embed_stop (EV_P_ ev_embed *w)
2192{ 3487{
2193 clear_pending (EV_A_ (W)w); 3488 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 3489 if (expect_false (!ev_is_active (w)))
2195 return; 3490 return;
2196 3491
3492 EV_FREQUENT_CHECK;
3493
2197 ev_io_stop (EV_A_ &w->io); 3494 ev_io_stop (EV_A_ &w->io);
3495 ev_prepare_stop (EV_A_ &w->prepare);
3496 ev_fork_stop (EV_A_ &w->fork);
2198 3497
2199 ev_stop (EV_A_ (W)w); 3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
2200} 3501}
2201#endif 3502#endif
2202 3503
2203#if EV_FORK_ENABLE 3504#if EV_FORK_ENABLE
2204void 3505void
2205ev_fork_start (EV_P_ ev_fork *w) 3506ev_fork_start (EV_P_ ev_fork *w)
2206{ 3507{
2207 if (expect_false (ev_is_active (w))) 3508 if (expect_false (ev_is_active (w)))
2208 return; 3509 return;
3510
3511 EV_FREQUENT_CHECK;
2209 3512
2210 ev_start (EV_A_ (W)w, ++forkcnt); 3513 ev_start (EV_A_ (W)w, ++forkcnt);
2211 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2212 forks [forkcnt - 1] = w; 3515 forks [forkcnt - 1] = w;
3516
3517 EV_FREQUENT_CHECK;
2213} 3518}
2214 3519
2215void 3520void
2216ev_fork_stop (EV_P_ ev_fork *w) 3521ev_fork_stop (EV_P_ ev_fork *w)
2217{ 3522{
2218 clear_pending (EV_A_ (W)w); 3523 clear_pending (EV_A_ (W)w);
2219 if (expect_false (!ev_is_active (w))) 3524 if (expect_false (!ev_is_active (w)))
2220 return; 3525 return;
2221 3526
3527 EV_FREQUENT_CHECK;
3528
2222 { 3529 {
2223 int active = ((W)w)->active; 3530 int active = ev_active (w);
3531
2224 forks [active - 1] = forks [--forkcnt]; 3532 forks [active - 1] = forks [--forkcnt];
2225 ((W)forks [active - 1])->active = active; 3533 ev_active (forks [active - 1]) = active;
2226 } 3534 }
2227 3535
2228 ev_stop (EV_A_ (W)w); 3536 ev_stop (EV_A_ (W)w);
3537
3538 EV_FREQUENT_CHECK;
3539}
3540#endif
3541
3542#if EV_ASYNC_ENABLE
3543void
3544ev_async_start (EV_P_ ev_async *w)
3545{
3546 if (expect_false (ev_is_active (w)))
3547 return;
3548
3549 evpipe_init (EV_A);
3550
3551 EV_FREQUENT_CHECK;
3552
3553 ev_start (EV_A_ (W)w, ++asynccnt);
3554 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3555 asyncs [asynccnt - 1] = w;
3556
3557 EV_FREQUENT_CHECK;
3558}
3559
3560void
3561ev_async_stop (EV_P_ ev_async *w)
3562{
3563 clear_pending (EV_A_ (W)w);
3564 if (expect_false (!ev_is_active (w)))
3565 return;
3566
3567 EV_FREQUENT_CHECK;
3568
3569 {
3570 int active = ev_active (w);
3571
3572 asyncs [active - 1] = asyncs [--asynccnt];
3573 ev_active (asyncs [active - 1]) = active;
3574 }
3575
3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
3579}
3580
3581void
3582ev_async_send (EV_P_ ev_async *w)
3583{
3584 w->sent = 1;
3585 evpipe_write (EV_A_ &async_pending);
2229} 3586}
2230#endif 3587#endif
2231 3588
2232/*****************************************************************************/ 3589/*****************************************************************************/
2233 3590
2243once_cb (EV_P_ struct ev_once *once, int revents) 3600once_cb (EV_P_ struct ev_once *once, int revents)
2244{ 3601{
2245 void (*cb)(int revents, void *arg) = once->cb; 3602 void (*cb)(int revents, void *arg) = once->cb;
2246 void *arg = once->arg; 3603 void *arg = once->arg;
2247 3604
2248 ev_io_stop (EV_A_ &once->io); 3605 ev_io_stop (EV_A_ &once->io);
2249 ev_timer_stop (EV_A_ &once->to); 3606 ev_timer_stop (EV_A_ &once->to);
2250 ev_free (once); 3607 ev_free (once);
2251 3608
2252 cb (revents, arg); 3609 cb (revents, arg);
2253} 3610}
2254 3611
2255static void 3612static void
2256once_cb_io (EV_P_ ev_io *w, int revents) 3613once_cb_io (EV_P_ ev_io *w, int revents)
2257{ 3614{
2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3615 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3616
3617 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2259} 3618}
2260 3619
2261static void 3620static void
2262once_cb_to (EV_P_ ev_timer *w, int revents) 3621once_cb_to (EV_P_ ev_timer *w, int revents)
2263{ 3622{
2264 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3623 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3624
3625 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2265} 3626}
2266 3627
2267void 3628void
2268ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3629ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2269{ 3630{
2291 ev_timer_set (&once->to, timeout, 0.); 3652 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 3653 ev_timer_start (EV_A_ &once->to);
2293 } 3654 }
2294} 3655}
2295 3656
3657/*****************************************************************************/
3658
3659#if EV_WALK_ENABLE
3660void
3661ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3662{
3663 int i, j;
3664 ev_watcher_list *wl, *wn;
3665
3666 if (types & (EV_IO | EV_EMBED))
3667 for (i = 0; i < anfdmax; ++i)
3668 for (wl = anfds [i].head; wl; )
3669 {
3670 wn = wl->next;
3671
3672#if EV_EMBED_ENABLE
3673 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3674 {
3675 if (types & EV_EMBED)
3676 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3677 }
3678 else
3679#endif
3680#if EV_USE_INOTIFY
3681 if (ev_cb ((ev_io *)wl) == infy_cb)
3682 ;
3683 else
3684#endif
3685 if ((ev_io *)wl != &pipe_w)
3686 if (types & EV_IO)
3687 cb (EV_A_ EV_IO, wl);
3688
3689 wl = wn;
3690 }
3691
3692 if (types & (EV_TIMER | EV_STAT))
3693 for (i = timercnt + HEAP0; i-- > HEAP0; )
3694#if EV_STAT_ENABLE
3695 /*TODO: timer is not always active*/
3696 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3697 {
3698 if (types & EV_STAT)
3699 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3700 }
3701 else
3702#endif
3703 if (types & EV_TIMER)
3704 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3705
3706#if EV_PERIODIC_ENABLE
3707 if (types & EV_PERIODIC)
3708 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3709 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3710#endif
3711
3712#if EV_IDLE_ENABLE
3713 if (types & EV_IDLE)
3714 for (j = NUMPRI; i--; )
3715 for (i = idlecnt [j]; i--; )
3716 cb (EV_A_ EV_IDLE, idles [j][i]);
3717#endif
3718
3719#if EV_FORK_ENABLE
3720 if (types & EV_FORK)
3721 for (i = forkcnt; i--; )
3722 if (ev_cb (forks [i]) != embed_fork_cb)
3723 cb (EV_A_ EV_FORK, forks [i]);
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727 if (types & EV_ASYNC)
3728 for (i = asynccnt; i--; )
3729 cb (EV_A_ EV_ASYNC, asyncs [i]);
3730#endif
3731
3732 if (types & EV_PREPARE)
3733 for (i = preparecnt; i--; )
3734#if EV_EMBED_ENABLE
3735 if (ev_cb (prepares [i]) != embed_prepare_cb)
3736#endif
3737 cb (EV_A_ EV_PREPARE, prepares [i]);
3738
3739 if (types & EV_CHECK)
3740 for (i = checkcnt; i--; )
3741 cb (EV_A_ EV_CHECK, checks [i]);
3742
3743 if (types & EV_SIGNAL)
3744 for (i = 0; i < EV_NSIG - 1; ++i)
3745 for (wl = signals [i].head; wl; )
3746 {
3747 wn = wl->next;
3748 cb (EV_A_ EV_SIGNAL, wl);
3749 wl = wn;
3750 }
3751
3752 if (types & EV_CHILD)
3753 for (i = EV_PID_HASHSIZE; i--; )
3754 for (wl = childs [i]; wl; )
3755 {
3756 wn = wl->next;
3757 cb (EV_A_ EV_CHILD, wl);
3758 wl = wn;
3759 }
3760/* EV_STAT 0x00001000 /* stat data changed */
3761/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3762}
3763#endif
3764
3765#if EV_MULTIPLICITY
3766 #include "ev_wrap.h"
3767#endif
3768
2296#ifdef __cplusplus 3769#ifdef __cplusplus
2297} 3770}
2298#endif 3771#endif
2299 3772

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines