ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.20 by root, Wed Oct 31 18:28:00 2007 UTC vs.
Revision 1.336 by root, Wed Mar 10 08:19:38 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
154#endif
29 155
30#include <math.h> 156#include <math.h>
31#include <stdlib.h> 157#include <stdlib.h>
32#include <unistd.h> 158#include <string.h>
33#include <fcntl.h> 159#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 160#include <stddef.h>
36 161
37#include <stdio.h> 162#include <stdio.h>
38 163
39#include <assert.h> 164#include <assert.h>
40#include <errno.h> 165#include <errno.h>
41#include <sys/time.h> 166#include <sys/types.h>
42#include <time.h> 167#include <time.h>
168#include <limits.h>
43 169
170#include <signal.h>
171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
178#ifndef _WIN32
179# include <sys/time.h>
180# include <sys/wait.h>
181# include <unistd.h>
182#else
183# include <io.h>
184# define WIN32_LEAN_AND_MEAN
185# include <windows.h>
186# ifndef EV_SELECT_IS_WINSOCKET
187# define EV_SELECT_IS_WINSOCKET 1
188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL 1
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
44#ifndef HAVE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC 1
233# else
234# define EV_USE_MONOTONIC 0
235# endif
236#endif
237
238#ifndef EV_USE_REALTIME
239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP 1
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
248#endif
249
250#ifndef EV_USE_SELECT
251# define EV_USE_SELECT 1
252#endif
253
254#ifndef EV_USE_POLL
255# ifdef _WIN32
256# define EV_USE_POLL 0
257# else
258# define EV_USE_POLL 1
259# endif
260#endif
261
262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL 1
265# else
266# define EV_USE_EPOLL 0
267# endif
268#endif
269
270#ifndef EV_USE_KQUEUE
271# define EV_USE_KQUEUE 0
272#endif
273
274#ifndef EV_USE_PORT
275# define EV_USE_PORT 0
276#endif
277
278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY 1
281# else
282# define EV_USE_INOTIFY 0
283# endif
284#endif
285
286#ifndef EV_PID_HASHSIZE
287# if EV_MINIMAL
288# define EV_PID_HASHSIZE 1
289# else
290# define EV_PID_HASHSIZE 16
291# endif
292#endif
293
294#ifndef EV_INOTIFY_HASHSIZE
295# if EV_MINIMAL
296# define EV_INOTIFY_HASHSIZE 1
297# else
298# define EV_INOTIFY_HASHSIZE 16
299# endif
300#endif
301
302#ifndef EV_USE_EVENTFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_EVENTFD 1
305# else
306# define EV_USE_EVENTFD 0
307# endif
308#endif
309
310#ifndef EV_USE_SIGNALFD
311# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312# define EV_USE_SIGNALFD 1
313# else
314# define EV_USE_SIGNALFD 0
315# endif
316#endif
317
318#if 0 /* debugging */
319# define EV_VERIFY 3
320# define EV_USE_4HEAP 1
321# define EV_HEAP_CACHE_AT 1
322#endif
323
324#ifndef EV_VERIFY
325# define EV_VERIFY !EV_MINIMAL
326#endif
327
328#ifndef EV_USE_4HEAP
329# define EV_USE_4HEAP !EV_MINIMAL
330#endif
331
332#ifndef EV_HEAP_CACHE_AT
333# define EV_HEAP_CACHE_AT !EV_MINIMAL
334#endif
335
336/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337/* which makes programs even slower. might work on other unices, too. */
338#if EV_USE_CLOCK_SYSCALL
339# include <syscall.h>
340# ifdef SYS_clock_gettime
341# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342# undef EV_USE_MONOTONIC
343# define EV_USE_MONOTONIC 1
344# else
345# undef EV_USE_CLOCK_SYSCALL
346# define EV_USE_CLOCK_SYSCALL 0
347# endif
348#endif
349
350/* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352#ifdef _AIX
353/* AIX has a completely broken poll.h header */
354# undef EV_USE_POLL
355# define EV_USE_POLL 0
356#endif
357
45# ifdef CLOCK_MONOTONIC 358#ifndef CLOCK_MONOTONIC
359# undef EV_USE_MONOTONIC
46# define HAVE_MONOTONIC 1 360# define EV_USE_MONOTONIC 0
361#endif
362
363#ifndef CLOCK_REALTIME
364# undef EV_USE_REALTIME
365# define EV_USE_REALTIME 0
366#endif
367
368#if !EV_STAT_ENABLE
369# undef EV_USE_INOTIFY
370# define EV_USE_INOTIFY 0
371#endif
372
373#if !EV_USE_NANOSLEEP
374# ifndef _WIN32
375# include <sys/select.h>
376# endif
377#endif
378
379#if EV_USE_INOTIFY
380# include <sys/utsname.h>
381# include <sys/statfs.h>
382# include <sys/inotify.h>
383/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384# ifndef IN_DONT_FOLLOW
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387# endif
388#endif
389
390#if EV_SELECT_IS_WINSOCKET
391# include <winsock.h>
392#endif
393
394#if EV_USE_EVENTFD
395/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
396# include <stdint.h>
397# ifndef EFD_NONBLOCK
398# define EFD_NONBLOCK O_NONBLOCK
399# endif
400# ifndef EFD_CLOEXEC
401# ifdef O_CLOEXEC
402# define EFD_CLOEXEC O_CLOEXEC
403# else
404# define EFD_CLOEXEC 02000000
47# endif 405# endif
48#endif 406# endif
49 407# ifdef __cplusplus
50#ifndef HAVE_SELECT 408extern "C" {
51# define HAVE_SELECT 1
52#endif 409# endif
53 410int (eventfd) (unsigned int initval, int flags);
54#ifndef HAVE_EPOLL 411# ifdef __cplusplus
55# define HAVE_EPOLL 0 412}
56#endif 413# endif
414#endif
57 415
58#ifndef HAVE_REALTIME 416#if EV_USE_SIGNALFD
59# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
60#endif 421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429# ifdef __cplusplus
430extern "C" {
431# endif
432int signalfd (int fd, const sigset_t *mask, int flags);
433
434struct signalfd_siginfo
435{
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438};
439# ifdef __cplusplus
440}
441# endif
442#endif
443
444
445/**/
446
447#if EV_VERIFY >= 3
448# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449#else
450# define EV_FREQUENT_CHECK do { } while (0)
451#endif
452
453/*
454 * This is used to avoid floating point rounding problems.
455 * It is added to ev_rt_now when scheduling periodics
456 * to ensure progress, time-wise, even when rounding
457 * errors are against us.
458 * This value is good at least till the year 4000.
459 * Better solutions welcome.
460 */
461#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
61 462
62#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
63#define MAX_BLOCKTIME 60. 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
64 465
65#include "ev.h" 466#if __GNUC__ >= 4
467# define expect(expr,value) __builtin_expect ((expr),(value))
468# define noinline __attribute__ ((noinline))
469#else
470# define expect(expr,value) (expr)
471# define noinline
472# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
473# define inline
474# endif
475#endif
66 476
477#define expect_false(expr) expect ((expr) != 0, 0)
478#define expect_true(expr) expect ((expr) != 0, 1)
479#define inline_size static inline
480
481#if EV_MINIMAL
482# define inline_speed static noinline
483#else
484# define inline_speed static inline
485#endif
486
487#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489#if EV_MINPRI == EV_MAXPRI
490# define ABSPRI(w) (((W)w), 0)
491#else
492# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493#endif
494
495#define EMPTY /* required for microsofts broken pseudo-c compiler */
496#define EMPTY2(a,b) /* used to suppress some warnings */
497
67typedef struct ev_watcher *W; 498typedef ev_watcher *W;
68typedef struct ev_watcher_list *WL; 499typedef ev_watcher_list *WL;
69typedef struct ev_watcher_time *WT; 500typedef ev_watcher_time *WT;
70 501
71static ev_tstamp now, diff; /* monotonic clock */ 502#define ev_active(w) ((W)(w))->active
72ev_tstamp ev_now; 503#define ev_at(w) ((WT)(w))->at
73int ev_method;
74 504
75static int have_monotonic; /* runtime */ 505#if EV_USE_REALTIME
506/* sig_atomic_t is used to avoid per-thread variables or locking but still */
507/* giving it a reasonably high chance of working on typical architetcures */
508static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509#endif
76 510
77static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 511#if EV_USE_MONOTONIC
78static void (*method_modify)(int fd, int oev, int nev); 512static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
79static void (*method_poll)(ev_tstamp timeout); 513#endif
514
515#ifndef EV_FD_TO_WIN32_HANDLE
516# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517#endif
518#ifndef EV_WIN32_HANDLE_TO_FD
519# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520#endif
521#ifndef EV_WIN32_CLOSE_FD
522# define EV_WIN32_CLOSE_FD(fd) close (fd)
523#endif
524
525#ifdef _WIN32
526# include "ev_win32.c"
527#endif
80 528
81/*****************************************************************************/ 529/*****************************************************************************/
82 530
531#if EV_AVOID_STDIO
532static void noinline
533ev_printerr (const char *msg)
534{
535 write (STDERR_FILENO, msg, strlen (msg));
536}
537#endif
538
539static void (*syserr_cb)(const char *msg);
540
541void
542ev_set_syserr_cb (void (*cb)(const char *msg))
543{
544 syserr_cb = cb;
545}
546
547static void noinline
548ev_syserr (const char *msg)
549{
550 if (!msg)
551 msg = "(libev) system error";
552
553 if (syserr_cb)
554 syserr_cb (msg);
555 else
556 {
557#if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564#else
565 perror (msg);
566#endif
567 abort ();
568 }
569}
570
571static void *
572ev_realloc_emul (void *ptr, long size)
573{
574#if __GLIBC__
575 return realloc (ptr, size);
576#else
577 /* some systems, notably openbsd and darwin, fail to properly
578 * implement realloc (x, 0) (as required by both ansi c-89 and
579 * the single unix specification, so work around them here.
580 */
581
582 if (size)
583 return realloc (ptr, size);
584
585 free (ptr);
586 return 0;
587#endif
588}
589
590static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
591
592void
593ev_set_allocator (void *(*cb)(void *ptr, long size))
594{
595 alloc = cb;
596}
597
598inline_speed void *
599ev_realloc (void *ptr, long size)
600{
601 ptr = alloc (ptr, size);
602
603 if (!ptr && size)
604 {
605#if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607#else
608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609#endif
610 abort ();
611 }
612
613 return ptr;
614}
615
616#define ev_malloc(size) ev_realloc (0, (size))
617#define ev_free(ptr) ev_realloc ((ptr), 0)
618
619/*****************************************************************************/
620
621/* set in reify when reification needed */
622#define EV_ANFD_REIFY 1
623
624/* file descriptor info structure */
625typedef struct
626{
627 WL head;
628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
631 unsigned char unused;
632#if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634#endif
635#if EV_SELECT_IS_WINSOCKET
636 SOCKET handle;
637#endif
638} ANFD;
639
640/* stores the pending event set for a given watcher */
641typedef struct
642{
643 W w;
644 int events; /* the pending event set for the given watcher */
645} ANPENDING;
646
647#if EV_USE_INOTIFY
648/* hash table entry per inotify-id */
649typedef struct
650{
651 WL head;
652} ANFS;
653#endif
654
655/* Heap Entry */
656#if EV_HEAP_CACHE_AT
657 /* a heap element */
658 typedef struct {
659 ev_tstamp at;
660 WT w;
661 } ANHE;
662
663 #define ANHE_w(he) (he).w /* access watcher, read-write */
664 #define ANHE_at(he) (he).at /* access cached at, read-only */
665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666#else
667 /* a heap element */
668 typedef WT ANHE;
669
670 #define ANHE_w(he) (he)
671 #define ANHE_at(he) (he)->at
672 #define ANHE_at_cache(he)
673#endif
674
675#if EV_MULTIPLICITY
676
677 struct ev_loop
678 {
679 ev_tstamp ev_rt_now;
680 #define ev_rt_now ((loop)->ev_rt_now)
681 #define VAR(name,decl) decl;
682 #include "ev_vars.h"
683 #undef VAR
684 };
685 #include "ev_wrap.h"
686
687 static struct ev_loop default_loop_struct;
688 struct ev_loop *ev_default_loop_ptr;
689
690#else
691
692 ev_tstamp ev_rt_now;
693 #define VAR(name,decl) static decl;
694 #include "ev_vars.h"
695 #undef VAR
696
697 static int ev_default_loop_ptr;
698
699#endif
700
701#if EV_MINIMAL < 2
702# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704# define EV_INVOKE_PENDING invoke_cb (EV_A)
705#else
706# define EV_RELEASE_CB (void)0
707# define EV_ACQUIRE_CB (void)0
708# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709#endif
710
711#define EVUNLOOP_RECURSE 0x80
712
713/*****************************************************************************/
714
715#ifndef EV_HAVE_EV_TIME
83ev_tstamp 716ev_tstamp
84ev_time (void) 717ev_time (void)
85{ 718{
86#if HAVE_REALTIME 719#if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
87 struct timespec ts; 722 struct timespec ts;
88 clock_gettime (CLOCK_REALTIME, &ts); 723 clock_gettime (CLOCK_REALTIME, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 724 return ts.tv_sec + ts.tv_nsec * 1e-9;
90#else 725 }
726#endif
727
91 struct timeval tv; 728 struct timeval tv;
92 gettimeofday (&tv, 0); 729 gettimeofday (&tv, 0);
93 return tv.tv_sec + tv.tv_usec * 1e-6; 730 return tv.tv_sec + tv.tv_usec * 1e-6;
94#endif
95} 731}
732#endif
96 733
97static ev_tstamp 734inline_size ev_tstamp
98get_clock (void) 735get_clock (void)
99{ 736{
100#if HAVE_MONOTONIC 737#if EV_USE_MONOTONIC
101 if (have_monotonic) 738 if (expect_true (have_monotonic))
102 { 739 {
103 struct timespec ts; 740 struct timespec ts;
104 clock_gettime (CLOCK_MONOTONIC, &ts); 741 clock_gettime (CLOCK_MONOTONIC, &ts);
105 return ts.tv_sec + ts.tv_nsec * 1e-9; 742 return ts.tv_sec + ts.tv_nsec * 1e-9;
106 } 743 }
107#endif 744#endif
108 745
109 return ev_time (); 746 return ev_time ();
110} 747}
111 748
112#define array_needsize(base,cur,cnt,init) \ 749#if EV_MULTIPLICITY
113 if ((cnt) > cur) \ 750ev_tstamp
114 { \ 751ev_now (EV_P)
115 int newcnt = cur ? cur << 1 : 16; \ 752{
116 base = realloc (base, sizeof (*base) * (newcnt)); \ 753 return ev_rt_now;
117 init (base + cur, newcnt - cur); \ 754}
118 cur = newcnt; \ 755#endif
756
757void
758ev_sleep (ev_tstamp delay)
759{
760 if (delay > 0.)
119 } 761 {
762#if EV_USE_NANOSLEEP
763 struct timespec ts;
764
765 ts.tv_sec = (time_t)delay;
766 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
767
768 nanosleep (&ts, 0);
769#elif defined(_WIN32)
770 Sleep ((unsigned long)(delay * 1e3));
771#else
772 struct timeval tv;
773
774 tv.tv_sec = (time_t)delay;
775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
780 select (0, 0, 0, 0, &tv);
781#endif
782 }
783}
120 784
121/*****************************************************************************/ 785/*****************************************************************************/
122 786
123typedef struct 787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
124{
125 struct ev_io *head;
126 unsigned char wev, rev; /* want, received event set */
127} ANFD;
128 788
129static ANFD *anfds; 789/* find a suitable new size for the given array, */
130static int anfdmax; 790/* hopefully by rounding to a ncie-to-malloc size */
131 791inline_size int
132static int *fdchanges; 792array_nextsize (int elem, int cur, int cnt)
133static int fdchangemax, fdchangecnt;
134
135static void
136anfds_init (ANFD *base, int count)
137{ 793{
138 while (count--) 794 int ncur = cur + 1;
139 { 795
140 base->head = 0; 796 do
141 base->wev = base->rev = EV_NONE; 797 ncur <<= 1;
142 ++base; 798 while (cnt > ncur);
799
800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
143 } 802 {
144} 803 ncur *= elem;
145 804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
146typedef struct 805 ncur = ncur - sizeof (void *) * 4;
147{ 806 ncur /= elem;
148 W w;
149 int events;
150} ANPENDING;
151
152static ANPENDING *pendings;
153static int pendingmax, pendingcnt;
154
155static void
156event (W w, int events)
157{
158 if (w->active)
159 { 807 }
808
809 return ncur;
810}
811
812static noinline void *
813array_realloc (int elem, void *base, int *cur, int cnt)
814{
815 *cur = array_nextsize (elem, *cur, cnt);
816 return ev_realloc (base, elem * *cur);
817}
818
819#define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
821
822#define array_needsize(type,base,cur,cnt,init) \
823 if (expect_false ((cnt) > (cur))) \
824 { \
825 int ocur_ = (cur); \
826 (base) = (type *)array_realloc \
827 (sizeof (type), (base), &(cur), (cnt)); \
828 init ((base) + (ocur_), (cur) - ocur_); \
829 }
830
831#if 0
832#define array_slim(type,stem) \
833 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
834 { \
835 stem ## max = array_roundsize (stem ## cnt >> 1); \
836 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
838 }
839#endif
840
841#define array_free(stem, idx) \
842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
843
844/*****************************************************************************/
845
846/* dummy callback for pending events */
847static void noinline
848pendingcb (EV_P_ ev_prepare *w, int revents)
849{
850}
851
852void noinline
853ev_feed_event (EV_P_ void *w, int revents)
854{
855 W w_ = (W)w;
856 int pri = ABSPRI (w_);
857
858 if (expect_false (w_->pending))
859 pendings [pri][w_->pending - 1].events |= revents;
860 else
861 {
160 w->pending = ++pendingcnt; 862 w_->pending = ++pendingcnt [pri];
161 array_needsize (pendings, pendingmax, pendingcnt, ); 863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
162 pendings [pendingcnt - 1].w = w; 864 pendings [pri][w_->pending - 1].w = w_;
163 pendings [pendingcnt - 1].events = events; 865 pendings [pri][w_->pending - 1].events = revents;
164 } 866 }
165} 867}
166 868
167static void 869inline_speed void
870feed_reverse (EV_P_ W w)
871{
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874}
875
876inline_size void
877feed_reverse_done (EV_P_ int revents)
878{
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882}
883
884inline_speed void
885queue_events (EV_P_ W *events, int eventcnt, int type)
886{
887 int i;
888
889 for (i = 0; i < eventcnt; ++i)
890 ev_feed_event (EV_A_ events [i], type);
891}
892
893/*****************************************************************************/
894
895inline_speed void
168fd_event (int fd, int events) 896fd_event_nc (EV_P_ int fd, int revents)
169{ 897{
170 ANFD *anfd = anfds + fd; 898 ANFD *anfd = anfds + fd;
171 struct ev_io *w; 899 ev_io *w;
172 900
173 for (w = anfd->head; w; w = w->next) 901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
174 { 902 {
175 int ev = w->events & events; 903 int ev = w->events & revents;
176 904
177 if (ev) 905 if (ev)
178 event ((W)w, ev); 906 ev_feed_event (EV_A_ (W)w, ev);
179 }
180}
181
182static void
183queue_events (W *events, int eventcnt, int type)
184{
185 int i;
186
187 for (i = 0; i < eventcnt; ++i)
188 event (events [i], type);
189}
190
191/* called on EBADF to verify fds */
192static void
193fd_recheck ()
194{
195 int fd;
196
197 for (fd = 0; fd < anfdmax; ++fd)
198 if (anfds [fd].wev)
199 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
200 while (anfds [fd].head)
201 evio_stop (anfds [fd].head);
202}
203
204/*****************************************************************************/
205
206static struct ev_timer **timers;
207static int timermax, timercnt;
208
209static struct ev_periodic **periodics;
210static int periodicmax, periodiccnt;
211
212static void
213upheap (WT *timers, int k)
214{
215 WT w = timers [k];
216
217 while (k && timers [k >> 1]->at > w->at)
218 {
219 timers [k] = timers [k >> 1];
220 timers [k]->active = k + 1;
221 k >>= 1;
222 }
223
224 timers [k] = w;
225 timers [k]->active = k + 1;
226
227}
228
229static void
230downheap (WT *timers, int N, int k)
231{
232 WT w = timers [k];
233
234 while (k < (N >> 1))
235 {
236 int j = k << 1;
237
238 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
239 ++j;
240
241 if (w->at <= timers [j]->at)
242 break;
243
244 timers [k] = timers [j];
245 timers [k]->active = k + 1;
246 k = j;
247 }
248
249 timers [k] = w;
250 timers [k]->active = k + 1;
251}
252
253/*****************************************************************************/
254
255typedef struct
256{
257 struct ev_signal *head;
258 sig_atomic_t gotsig;
259} ANSIG;
260
261static ANSIG *signals;
262static int signalmax;
263
264static int sigpipe [2];
265static sig_atomic_t gotsig;
266static struct ev_io sigev;
267
268static void
269signals_init (ANSIG *base, int count)
270{
271 while (count--)
272 {
273 base->head = 0;
274 base->gotsig = 0;
275 ++base;
276 }
277}
278
279static void
280sighandler (int signum)
281{
282 signals [signum - 1].gotsig = 1;
283
284 if (!gotsig)
285 {
286 gotsig = 1;
287 write (sigpipe [1], &gotsig, 1);
288 }
289}
290
291static void
292sigcb (struct ev_io *iow, int revents)
293{
294 struct ev_signal *w;
295 int sig;
296
297 gotsig = 0;
298 read (sigpipe [0], &revents, 1);
299
300 for (sig = signalmax; sig--; )
301 if (signals [sig].gotsig)
302 {
303 signals [sig].gotsig = 0;
304
305 for (w = signals [sig].head; w; w = w->next)
306 event ((W)w, EV_SIGNAL);
307 } 907 }
308} 908}
309 909
310static void 910/* do not submit kernel events for fds that have reify set */
311siginit (void) 911/* because that means they changed while we were polling for new events */
912inline_speed void
913fd_event (EV_P_ int fd, int revents)
312{ 914{
313 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 915 ANFD *anfd = anfds + fd;
314 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
315 916
316 /* rather than sort out wether we really need nb, set it */ 917 if (expect_true (!anfd->reify))
317 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 918 fd_event_nc (EV_A_ fd, revents);
318 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
319
320 evio_set (&sigev, sigpipe [0], EV_READ);
321 evio_start (&sigev);
322} 919}
323 920
324/*****************************************************************************/ 921void
325 922ev_feed_fd_event (EV_P_ int fd, int revents)
326static struct ev_idle **idles;
327static int idlemax, idlecnt;
328
329static struct ev_prepare **prepares;
330static int preparemax, preparecnt;
331
332static struct ev_check **checks;
333static int checkmax, checkcnt;
334
335/*****************************************************************************/
336
337#if HAVE_EPOLL
338# include "ev_epoll.c"
339#endif
340#if HAVE_SELECT
341# include "ev_select.c"
342#endif
343
344int ev_init (int flags)
345{ 923{
346#if HAVE_MONOTONIC 924 if (fd >= 0 && fd < anfdmax)
347 { 925 fd_event_nc (EV_A_ fd, revents);
348 struct timespec ts;
349 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
350 have_monotonic = 1;
351 }
352#endif
353
354 ev_now = ev_time ();
355 now = get_clock ();
356 diff = ev_now - now;
357
358 if (pipe (sigpipe))
359 return 0;
360
361 ev_method = EVMETHOD_NONE;
362#if HAVE_EPOLL
363 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
364#endif
365#if HAVE_SELECT
366 if (ev_method == EVMETHOD_NONE) select_init (flags);
367#endif
368
369 if (ev_method)
370 {
371 evw_init (&sigev, sigcb);
372 siginit ();
373 }
374
375 return ev_method;
376} 926}
377 927
378/*****************************************************************************/ 928/* make sure the external fd watch events are in-sync */
379 929/* with the kernel/libev internal state */
380void ev_prefork (void) 930inline_size void
381{ 931fd_reify (EV_P)
382 /* nop */
383}
384
385void ev_postfork_parent (void)
386{
387 /* nop */
388}
389
390void ev_postfork_child (void)
391{
392#if HAVE_EPOLL
393 if (ev_method == EVMETHOD_EPOLL)
394 epoll_postfork_child ();
395#endif
396
397 evio_stop (&sigev);
398 close (sigpipe [0]);
399 close (sigpipe [1]);
400 pipe (sigpipe);
401 siginit ();
402}
403
404/*****************************************************************************/
405
406static void
407fd_reify (void)
408{ 932{
409 int i; 933 int i;
410 934
411 for (i = 0; i < fdchangecnt; ++i) 935 for (i = 0; i < fdchangecnt; ++i)
412 { 936 {
413 int fd = fdchanges [i]; 937 int fd = fdchanges [i];
414 ANFD *anfd = anfds + fd; 938 ANFD *anfd = anfds + fd;
415 struct ev_io *w; 939 ev_io *w;
416 940
417 int wev = 0; 941 unsigned char events = 0;
418 942
419 for (w = anfd->head; w; w = w->next) 943 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 wev |= w->events; 944 events |= (unsigned char)w->events;
421 945
422 if (anfd->wev != wev) 946#if EV_SELECT_IS_WINSOCKET
947 if (events)
423 { 948 {
424 method_modify (fd, anfd->wev, wev); 949 unsigned long arg;
425 anfd->wev = wev; 950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
426 } 952 }
953#endif
954
955 {
956 unsigned char o_events = anfd->events;
957 unsigned char o_reify = anfd->reify;
958
959 anfd->reify = 0;
960 anfd->events = events;
961
962 if (o_events != events || o_reify & EV__IOFDSET)
963 backend_modify (EV_A_ fd, o_events, events);
964 }
427 } 965 }
428 966
429 fdchangecnt = 0; 967 fdchangecnt = 0;
430} 968}
431 969
970/* something about the given fd changed */
971inline_size void
972fd_change (EV_P_ int fd, int flags)
973{
974 unsigned char reify = anfds [fd].reify;
975 anfds [fd].reify |= flags;
976
977 if (expect_true (!reify))
978 {
979 ++fdchangecnt;
980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
981 fdchanges [fdchangecnt - 1] = fd;
982 }
983}
984
985/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986inline_speed void
987fd_kill (EV_P_ int fd)
988{
989 ev_io *w;
990
991 while ((w = (ev_io *)anfds [fd].head))
992 {
993 ev_io_stop (EV_A_ w);
994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
995 }
996}
997
998/* check whether the given fd is actually valid, for error recovery */
999inline_size int
1000fd_valid (int fd)
1001{
1002#ifdef _WIN32
1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1004#else
1005 return fcntl (fd, F_GETFD) != -1;
1006#endif
1007}
1008
1009/* called on EBADF to verify fds */
1010static void noinline
1011fd_ebadf (EV_P)
1012{
1013 int fd;
1014
1015 for (fd = 0; fd < anfdmax; ++fd)
1016 if (anfds [fd].events)
1017 if (!fd_valid (fd) && errno == EBADF)
1018 fd_kill (EV_A_ fd);
1019}
1020
1021/* called on ENOMEM in select/poll to kill some fds and retry */
1022static void noinline
1023fd_enomem (EV_P)
1024{
1025 int fd;
1026
1027 for (fd = anfdmax; fd--; )
1028 if (anfds [fd].events)
1029 {
1030 fd_kill (EV_A_ fd);
1031 break;
1032 }
1033}
1034
1035/* usually called after fork if backend needs to re-arm all fds from scratch */
1036static void noinline
1037fd_rearm_all (EV_P)
1038{
1039 int fd;
1040
1041 for (fd = 0; fd < anfdmax; ++fd)
1042 if (anfds [fd].events)
1043 {
1044 anfds [fd].events = 0;
1045 anfds [fd].emask = 0;
1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1047 }
1048}
1049
1050/* used to prepare libev internal fd's */
1051/* this is not fork-safe */
1052inline_speed void
1053fd_intern (int fd)
1054{
1055#ifdef _WIN32
1056 unsigned long arg = 1;
1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1058#else
1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
1060 fcntl (fd, F_SETFL, O_NONBLOCK);
1061#endif
1062}
1063
1064/*****************************************************************************/
1065
1066/*
1067 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069 * the branching factor of the d-tree.
1070 */
1071
1072/*
1073 * at the moment we allow libev the luxury of two heaps,
1074 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075 * which is more cache-efficient.
1076 * the difference is about 5% with 50000+ watchers.
1077 */
1078#if EV_USE_4HEAP
1079
1080#define DHEAP 4
1081#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083#define UPHEAP_DONE(p,k) ((p) == (k))
1084
1085/* away from the root */
1086inline_speed void
1087downheap (ANHE *heap, int N, int k)
1088{
1089 ANHE he = heap [k];
1090 ANHE *E = heap + N + HEAP0;
1091
1092 for (;;)
1093 {
1094 ev_tstamp minat;
1095 ANHE *minpos;
1096 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097
1098 /* find minimum child */
1099 if (expect_true (pos + DHEAP - 1 < E))
1100 {
1101 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 }
1106 else if (pos < E)
1107 {
1108 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else
1114 break;
1115
1116 if (ANHE_at (he) <= minat)
1117 break;
1118
1119 heap [k] = *minpos;
1120 ev_active (ANHE_w (*minpos)) = k;
1121
1122 k = minpos - heap;
1123 }
1124
1125 heap [k] = he;
1126 ev_active (ANHE_w (he)) = k;
1127}
1128
1129#else /* 4HEAP */
1130
1131#define HEAP0 1
1132#define HPARENT(k) ((k) >> 1)
1133#define UPHEAP_DONE(p,k) (!(p))
1134
1135/* away from the root */
1136inline_speed void
1137downheap (ANHE *heap, int N, int k)
1138{
1139 ANHE he = heap [k];
1140
1141 for (;;)
1142 {
1143 int c = k << 1;
1144
1145 if (c >= N + HEAP0)
1146 break;
1147
1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149 ? 1 : 0;
1150
1151 if (ANHE_at (he) <= ANHE_at (heap [c]))
1152 break;
1153
1154 heap [k] = heap [c];
1155 ev_active (ANHE_w (heap [k])) = k;
1156
1157 k = c;
1158 }
1159
1160 heap [k] = he;
1161 ev_active (ANHE_w (he)) = k;
1162}
1163#endif
1164
1165/* towards the root */
1166inline_speed void
1167upheap (ANHE *heap, int k)
1168{
1169 ANHE he = heap [k];
1170
1171 for (;;)
1172 {
1173 int p = HPARENT (k);
1174
1175 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 break;
1177
1178 heap [k] = heap [p];
1179 ev_active (ANHE_w (heap [k])) = k;
1180 k = p;
1181 }
1182
1183 heap [k] = he;
1184 ev_active (ANHE_w (he)) = k;
1185}
1186
1187/* move an element suitably so it is in a correct place */
1188inline_size void
1189adjustheap (ANHE *heap, int N, int k)
1190{
1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 upheap (heap, k);
1193 else
1194 downheap (heap, N, k);
1195}
1196
1197/* rebuild the heap: this function is used only once and executed rarely */
1198inline_size void
1199reheap (ANHE *heap, int N)
1200{
1201 int i;
1202
1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205 for (i = 0; i < N; ++i)
1206 upheap (heap, i + HEAP0);
1207}
1208
1209/*****************************************************************************/
1210
1211/* associate signal watchers to a signal signal */
1212typedef struct
1213{
1214 EV_ATOMIC_T pending;
1215#if EV_MULTIPLICITY
1216 EV_P;
1217#endif
1218 WL head;
1219} ANSIG;
1220
1221static ANSIG signals [EV_NSIG - 1];
1222
1223/*****************************************************************************/
1224
1225#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226
1227static void noinline
1228evpipe_init (EV_P)
1229{
1230 if (!ev_is_active (&pipe_w))
1231 {
1232# if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
1238 {
1239 evpipe [0] = -1;
1240 fd_intern (evfd); /* doing it twice doesn't hurt */
1241 ev_io_set (&pipe_w, evfd, EV_READ);
1242 }
1243 else
1244# endif
1245 {
1246 while (pipe (evpipe))
1247 ev_syserr ("(libev) error creating signal/async pipe");
1248
1249 fd_intern (evpipe [0]);
1250 fd_intern (evpipe [1]);
1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1252 }
1253
1254 ev_io_start (EV_A_ &pipe_w);
1255 ev_unref (EV_A); /* watcher should not keep loop alive */
1256 }
1257}
1258
1259inline_size void
1260evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1261{
1262 if (!*flag)
1263 {
1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
1266
1267 *flag = 1;
1268
1269#if EV_USE_EVENTFD
1270 if (evfd >= 0)
1271 {
1272 uint64_t counter = 1;
1273 write (evfd, &counter, sizeof (uint64_t));
1274 }
1275 else
1276#endif
1277 write (evpipe [1], &dummy, 1);
1278
1279 errno = old_errno;
1280 }
1281}
1282
1283/* called whenever the libev signal pipe */
1284/* got some events (signal, async) */
432static void 1285static void
433call_pending () 1286pipecb (EV_P_ ev_io *iow, int revents)
434{ 1287{
435 while (pendingcnt) 1288 int i;
1289
1290#if EV_USE_EVENTFD
1291 if (evfd >= 0)
1292 {
1293 uint64_t counter;
1294 read (evfd, &counter, sizeof (uint64_t));
436 { 1295 }
437 ANPENDING *p = pendings + --pendingcnt; 1296 else
1297#endif
1298 {
1299 char dummy;
1300 read (evpipe [0], &dummy, 1);
1301 }
438 1302
439 if (p->w) 1303 if (sig_pending)
1304 {
1305 sig_pending = 0;
1306
1307 for (i = EV_NSIG - 1; i--; )
1308 if (expect_false (signals [i].pending))
1309 ev_feed_signal_event (EV_A_ i + 1);
1310 }
1311
1312#if EV_ASYNC_ENABLE
1313 if (async_pending)
1314 {
1315 async_pending = 0;
1316
1317 for (i = asynccnt; i--; )
1318 if (asyncs [i]->sent)
1319 {
1320 asyncs [i]->sent = 0;
1321 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1322 }
1323 }
1324#endif
1325}
1326
1327/*****************************************************************************/
1328
1329static void
1330ev_sighandler (int signum)
1331{
1332#if EV_MULTIPLICITY
1333 EV_P = signals [signum - 1].loop;
1334#endif
1335
1336#ifdef _WIN32
1337 signal (signum, ev_sighandler);
1338#endif
1339
1340 signals [signum - 1].pending = 1;
1341 evpipe_write (EV_A_ &sig_pending);
1342}
1343
1344void noinline
1345ev_feed_signal_event (EV_P_ int signum)
1346{
1347 WL w;
1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
1354#if EV_MULTIPLICITY
1355 /* it is permissible to try to feed a signal to the wrong loop */
1356 /* or, likely more useful, feeding a signal nobody is waiting for */
1357
1358 if (expect_false (signals [signum].loop != EV_A))
1359 return;
1360#endif
1361
1362 signals [signum].pending = 0;
1363
1364 for (w = signals [signum].head; w; w = w->next)
1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1366}
1367
1368#if EV_USE_SIGNALFD
1369static void
1370sigfdcb (EV_P_ ev_io *iow, int revents)
1371{
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385}
1386#endif
1387
1388#endif
1389
1390/*****************************************************************************/
1391
1392#if EV_CHILD_ENABLE
1393static WL childs [EV_PID_HASHSIZE];
1394
1395static ev_signal childev;
1396
1397#ifndef WIFCONTINUED
1398# define WIFCONTINUED(status) 0
1399#endif
1400
1401/* handle a single child status event */
1402inline_speed void
1403child_reap (EV_P_ int chain, int pid, int status)
1404{
1405 ev_child *w;
1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1407
1408 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1409 {
1410 if ((w->pid == pid || !w->pid)
1411 && (!traced || (w->flags & 1)))
440 { 1412 {
441 p->w->pending = 0; 1413 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
442 p->w->cb (p->w, p->events); 1414 w->rpid = pid;
1415 w->rstatus = status;
1416 ev_feed_event (EV_A_ (W)w, EV_CHILD);
443 } 1417 }
444 } 1418 }
445} 1419}
446 1420
1421#ifndef WCONTINUED
1422# define WCONTINUED 0
1423#endif
1424
1425/* called on sigchld etc., calls waitpid */
447static void 1426static void
1427childcb (EV_P_ ev_signal *sw, int revents)
1428{
1429 int pid, status;
1430
1431 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1432 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1433 if (!WCONTINUED
1434 || errno != EINVAL
1435 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1436 return;
1437
1438 /* make sure we are called again until all children have been reaped */
1439 /* we need to do it this way so that the callback gets called before we continue */
1440 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1441
1442 child_reap (EV_A_ pid, pid, status);
1443 if (EV_PID_HASHSIZE > 1)
1444 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1445}
1446
1447#endif
1448
1449/*****************************************************************************/
1450
1451#if EV_USE_PORT
1452# include "ev_port.c"
1453#endif
1454#if EV_USE_KQUEUE
1455# include "ev_kqueue.c"
1456#endif
1457#if EV_USE_EPOLL
1458# include "ev_epoll.c"
1459#endif
1460#if EV_USE_POLL
1461# include "ev_poll.c"
1462#endif
1463#if EV_USE_SELECT
1464# include "ev_select.c"
1465#endif
1466
1467int
1468ev_version_major (void)
1469{
1470 return EV_VERSION_MAJOR;
1471}
1472
1473int
1474ev_version_minor (void)
1475{
1476 return EV_VERSION_MINOR;
1477}
1478
1479/* return true if we are running with elevated privileges and should ignore env variables */
1480int inline_size
1481enable_secure (void)
1482{
1483#ifdef _WIN32
1484 return 0;
1485#else
1486 return getuid () != geteuid ()
1487 || getgid () != getegid ();
1488#endif
1489}
1490
1491unsigned int
1492ev_supported_backends (void)
1493{
1494 unsigned int flags = 0;
1495
1496 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1497 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1498 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1499 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1500 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1501
1502 return flags;
1503}
1504
1505unsigned int
1506ev_recommended_backends (void)
1507{
1508 unsigned int flags = ev_supported_backends ();
1509
1510#ifndef __NetBSD__
1511 /* kqueue is borked on everything but netbsd apparently */
1512 /* it usually doesn't work correctly on anything but sockets and pipes */
1513 flags &= ~EVBACKEND_KQUEUE;
1514#endif
1515#ifdef __APPLE__
1516 /* only select works correctly on that "unix-certified" platform */
1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1519#endif
1520
1521 return flags;
1522}
1523
1524unsigned int
1525ev_embeddable_backends (void)
1526{
1527 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1528
1529 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1530 /* please fix it and tell me how to detect the fix */
1531 flags &= ~EVBACKEND_EPOLL;
1532
1533 return flags;
1534}
1535
1536unsigned int
1537ev_backend (EV_P)
1538{
1539 return backend;
1540}
1541
1542#if EV_MINIMAL < 2
1543unsigned int
1544ev_loop_count (EV_P)
1545{
1546 return loop_count;
1547}
1548
1549unsigned int
1550ev_loop_depth (EV_P)
1551{
1552 return loop_depth;
1553}
1554
1555void
1556ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1557{
1558 io_blocktime = interval;
1559}
1560
1561void
1562ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1563{
1564 timeout_blocktime = interval;
1565}
1566
1567void
1568ev_set_userdata (EV_P_ void *data)
1569{
1570 userdata = data;
1571}
1572
1573void *
1574ev_userdata (EV_P)
1575{
1576 return userdata;
1577}
1578
1579void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580{
1581 invoke_cb = invoke_pending_cb;
1582}
1583
1584void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585{
1586 release_cb = release;
1587 acquire_cb = acquire;
1588}
1589#endif
1590
1591/* initialise a loop structure, must be zero-initialised */
1592static void noinline
1593loop_init (EV_P_ unsigned int flags)
1594{
1595 if (!backend)
1596 {
1597#if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605#endif
1606
1607#if EV_USE_MONOTONIC
1608 if (!have_monotonic)
1609 {
1610 struct timespec ts;
1611
1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1613 have_monotonic = 1;
1614 }
1615#endif
1616
1617 /* pid check not overridable via env */
1618#ifndef _WIN32
1619 if (flags & EVFLAG_FORKCHECK)
1620 curpid = getpid ();
1621#endif
1622
1623 if (!(flags & EVFLAG_NOENV)
1624 && !enable_secure ()
1625 && getenv ("LIBEV_FLAGS"))
1626 flags = atoi (getenv ("LIBEV_FLAGS"));
1627
1628 ev_rt_now = ev_time ();
1629 mn_now = get_clock ();
1630 now_floor = mn_now;
1631 rtmn_diff = ev_rt_now - mn_now;
1632#if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634#endif
1635
1636 io_blocktime = 0.;
1637 timeout_blocktime = 0.;
1638 backend = 0;
1639 backend_fd = -1;
1640 sig_pending = 0;
1641#if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643#endif
1644#if EV_USE_INOTIFY
1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1646#endif
1647#if EV_USE_SIGNALFD
1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1649#endif
1650
1651 if (!(flags & 0x0000ffffU))
1652 flags |= ev_recommended_backends ();
1653
1654#if EV_USE_PORT
1655 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1656#endif
1657#if EV_USE_KQUEUE
1658 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1659#endif
1660#if EV_USE_EPOLL
1661 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1662#endif
1663#if EV_USE_POLL
1664 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1665#endif
1666#if EV_USE_SELECT
1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1668#endif
1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1673 ev_init (&pipe_w, pipecb);
1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675#endif
1676 }
1677}
1678
1679/* free up a loop structure */
1680static void noinline
1681loop_destroy (EV_P)
1682{
1683 int i;
1684
1685 if (ev_is_active (&pipe_w))
1686 {
1687 /*ev_ref (EV_A);*/
1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1689
1690#if EV_USE_EVENTFD
1691 if (evfd >= 0)
1692 close (evfd);
1693#endif
1694
1695 if (evpipe [0] >= 0)
1696 {
1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1699 }
1700 }
1701
1702#if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705#endif
1706
1707#if EV_USE_INOTIFY
1708 if (fs_fd >= 0)
1709 close (fs_fd);
1710#endif
1711
1712 if (backend_fd >= 0)
1713 close (backend_fd);
1714
1715#if EV_USE_PORT
1716 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1717#endif
1718#if EV_USE_KQUEUE
1719 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1720#endif
1721#if EV_USE_EPOLL
1722 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1723#endif
1724#if EV_USE_POLL
1725 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1726#endif
1727#if EV_USE_SELECT
1728 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1729#endif
1730
1731 for (i = NUMPRI; i--; )
1732 {
1733 array_free (pending, [i]);
1734#if EV_IDLE_ENABLE
1735 array_free (idle, [i]);
1736#endif
1737 }
1738
1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1740
1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1743 array_free (fdchange, EMPTY);
1744 array_free (timer, EMPTY);
1745#if EV_PERIODIC_ENABLE
1746 array_free (periodic, EMPTY);
1747#endif
1748#if EV_FORK_ENABLE
1749 array_free (fork, EMPTY);
1750#endif
1751 array_free (prepare, EMPTY);
1752 array_free (check, EMPTY);
1753#if EV_ASYNC_ENABLE
1754 array_free (async, EMPTY);
1755#endif
1756
1757 backend = 0;
1758}
1759
1760#if EV_USE_INOTIFY
1761inline_size void infy_fork (EV_P);
1762#endif
1763
1764inline_size void
1765loop_fork (EV_P)
1766{
1767#if EV_USE_PORT
1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1769#endif
1770#if EV_USE_KQUEUE
1771 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1772#endif
1773#if EV_USE_EPOLL
1774 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1775#endif
1776#if EV_USE_INOTIFY
1777 infy_fork (EV_A);
1778#endif
1779
1780 if (ev_is_active (&pipe_w))
1781 {
1782 /* this "locks" the handlers against writing to the pipe */
1783 /* while we modify the fd vars */
1784 sig_pending = 1;
1785#if EV_ASYNC_ENABLE
1786 async_pending = 1;
1787#endif
1788
1789 ev_ref (EV_A);
1790 ev_io_stop (EV_A_ &pipe_w);
1791
1792#if EV_USE_EVENTFD
1793 if (evfd >= 0)
1794 close (evfd);
1795#endif
1796
1797 if (evpipe [0] >= 0)
1798 {
1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1801 }
1802
1803 evpipe_init (EV_A);
1804 /* now iterate over everything, in case we missed something */
1805 pipecb (EV_A_ &pipe_w, EV_READ);
1806 }
1807
1808 postfork = 0;
1809}
1810
1811#if EV_MULTIPLICITY
1812
1813struct ev_loop *
1814ev_loop_new (unsigned int flags)
1815{
1816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1817
1818 memset (EV_A, 0, sizeof (struct ev_loop));
1819 loop_init (EV_A_ flags);
1820
1821 if (ev_backend (EV_A))
1822 return EV_A;
1823
1824 return 0;
1825}
1826
1827void
1828ev_loop_destroy (EV_P)
1829{
1830 loop_destroy (EV_A);
1831 ev_free (loop);
1832}
1833
1834void
1835ev_loop_fork (EV_P)
1836{
1837 postfork = 1; /* must be in line with ev_default_fork */
1838}
1839#endif /* multiplicity */
1840
1841#if EV_VERIFY
1842static void noinline
1843verify_watcher (EV_P_ W w)
1844{
1845 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1846
1847 if (w->pending)
1848 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1849}
1850
1851static void noinline
1852verify_heap (EV_P_ ANHE *heap, int N)
1853{
1854 int i;
1855
1856 for (i = HEAP0; i < N + HEAP0; ++i)
1857 {
1858 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1859 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1860 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1861
1862 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1863 }
1864}
1865
1866static void noinline
1867array_verify (EV_P_ W *ws, int cnt)
1868{
1869 while (cnt--)
1870 {
1871 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1872 verify_watcher (EV_A_ ws [cnt]);
1873 }
1874}
1875#endif
1876
1877#if EV_MINIMAL < 2
1878void
1879ev_loop_verify (EV_P)
1880{
1881#if EV_VERIFY
1882 int i;
1883 WL w;
1884
1885 assert (activecnt >= -1);
1886
1887 assert (fdchangemax >= fdchangecnt);
1888 for (i = 0; i < fdchangecnt; ++i)
1889 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1890
1891 assert (anfdmax >= 0);
1892 for (i = 0; i < anfdmax; ++i)
1893 for (w = anfds [i].head; w; w = w->next)
1894 {
1895 verify_watcher (EV_A_ (W)w);
1896 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1897 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1898 }
1899
1900 assert (timermax >= timercnt);
1901 verify_heap (EV_A_ timers, timercnt);
1902
1903#if EV_PERIODIC_ENABLE
1904 assert (periodicmax >= periodiccnt);
1905 verify_heap (EV_A_ periodics, periodiccnt);
1906#endif
1907
1908 for (i = NUMPRI; i--; )
1909 {
1910 assert (pendingmax [i] >= pendingcnt [i]);
1911#if EV_IDLE_ENABLE
1912 assert (idleall >= 0);
1913 assert (idlemax [i] >= idlecnt [i]);
1914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1915#endif
1916 }
1917
1918#if EV_FORK_ENABLE
1919 assert (forkmax >= forkcnt);
1920 array_verify (EV_A_ (W *)forks, forkcnt);
1921#endif
1922
1923#if EV_ASYNC_ENABLE
1924 assert (asyncmax >= asynccnt);
1925 array_verify (EV_A_ (W *)asyncs, asynccnt);
1926#endif
1927
1928 assert (preparemax >= preparecnt);
1929 array_verify (EV_A_ (W *)prepares, preparecnt);
1930
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933
1934# if 0
1935#if EV_CHILD_ENABLE
1936 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1937 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1938#endif
1939# endif
1940#endif
1941}
1942#endif
1943
1944#if EV_MULTIPLICITY
1945struct ev_loop *
1946ev_default_loop_init (unsigned int flags)
1947#else
1948int
1949ev_default_loop (unsigned int flags)
1950#endif
1951{
1952 if (!ev_default_loop_ptr)
1953 {
1954#if EV_MULTIPLICITY
1955 EV_P = ev_default_loop_ptr = &default_loop_struct;
1956#else
1957 ev_default_loop_ptr = 1;
1958#endif
1959
1960 loop_init (EV_A_ flags);
1961
1962 if (ev_backend (EV_A))
1963 {
1964#if EV_CHILD_ENABLE
1965 ev_signal_init (&childev, childcb, SIGCHLD);
1966 ev_set_priority (&childev, EV_MAXPRI);
1967 ev_signal_start (EV_A_ &childev);
1968 ev_unref (EV_A); /* child watcher should not keep loop alive */
1969#endif
1970 }
1971 else
1972 ev_default_loop_ptr = 0;
1973 }
1974
1975 return ev_default_loop_ptr;
1976}
1977
1978void
1979ev_default_destroy (void)
1980{
1981#if EV_MULTIPLICITY
1982 EV_P = ev_default_loop_ptr;
1983#endif
1984
1985 ev_default_loop_ptr = 0;
1986
1987#if EV_CHILD_ENABLE
1988 ev_ref (EV_A); /* child watcher */
1989 ev_signal_stop (EV_A_ &childev);
1990#endif
1991
1992 loop_destroy (EV_A);
1993}
1994
1995void
1996ev_default_fork (void)
1997{
1998#if EV_MULTIPLICITY
1999 EV_P = ev_default_loop_ptr;
2000#endif
2001
2002 postfork = 1; /* must be in line with ev_loop_fork */
2003}
2004
2005/*****************************************************************************/
2006
2007void
2008ev_invoke (EV_P_ void *w, int revents)
2009{
2010 EV_CB_INVOKE ((W)w, revents);
2011}
2012
2013unsigned int
2014ev_pending_count (EV_P)
2015{
2016 int pri;
2017 unsigned int count = 0;
2018
2019 for (pri = NUMPRI; pri--; )
2020 count += pendingcnt [pri];
2021
2022 return count;
2023}
2024
2025void noinline
2026ev_invoke_pending (EV_P)
2027{
2028 int pri;
2029
2030 for (pri = NUMPRI; pri--; )
2031 while (pendingcnt [pri])
2032 {
2033 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2034
2035 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2036 /* ^ this is no longer true, as pending_w could be here */
2037
2038 p->w->pending = 0;
2039 EV_CB_INVOKE (p->w, p->events);
2040 EV_FREQUENT_CHECK;
2041 }
2042}
2043
2044#if EV_IDLE_ENABLE
2045/* make idle watchers pending. this handles the "call-idle */
2046/* only when higher priorities are idle" logic */
2047inline_size void
2048idle_reify (EV_P)
2049{
2050 if (expect_false (idleall))
2051 {
2052 int pri;
2053
2054 for (pri = NUMPRI; pri--; )
2055 {
2056 if (pendingcnt [pri])
2057 break;
2058
2059 if (idlecnt [pri])
2060 {
2061 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2062 break;
2063 }
2064 }
2065 }
2066}
2067#endif
2068
2069/* make timers pending */
2070inline_size void
448timers_reify () 2071timers_reify (EV_P)
449{ 2072{
450 while (timercnt && timers [0]->at <= now) 2073 EV_FREQUENT_CHECK;
451 {
452 struct ev_timer *w = timers [0];
453 2074
454 event ((W)w, EV_TIMEOUT); 2075 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2076 {
2077 do
2078 {
2079 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
455 2080
2081 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2082
456 /* first reschedule or stop timer */ 2083 /* first reschedule or stop timer */
2084 if (w->repeat)
2085 {
2086 ev_at (w) += w->repeat;
2087 if (ev_at (w) < mn_now)
2088 ev_at (w) = mn_now;
2089
2090 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2091
2092 ANHE_at_cache (timers [HEAP0]);
2093 downheap (timers, timercnt, HEAP0);
2094 }
2095 else
2096 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2097
2098 EV_FREQUENT_CHECK;
2099 feed_reverse (EV_A_ (W)w);
2100 }
2101 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2102
2103 feed_reverse_done (EV_A_ EV_TIMEOUT);
2104 }
2105}
2106
2107#if EV_PERIODIC_ENABLE
2108/* make periodics pending */
2109inline_size void
2110periodics_reify (EV_P)
2111{
2112 EV_FREQUENT_CHECK;
2113
2114 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2115 {
2116 int feed_count = 0;
2117
2118 do
2119 {
2120 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2121
2122 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2123
2124 /* first reschedule or stop timer */
2125 if (w->reschedule_cb)
2126 {
2127 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2128
2129 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2130
2131 ANHE_at_cache (periodics [HEAP0]);
2132 downheap (periodics, periodiccnt, HEAP0);
2133 }
2134 else if (w->interval)
2135 {
2136 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2137 /* if next trigger time is not sufficiently in the future, put it there */
2138 /* this might happen because of floating point inexactness */
2139 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2140 {
2141 ev_at (w) += w->interval;
2142
2143 /* if interval is unreasonably low we might still have a time in the past */
2144 /* so correct this. this will make the periodic very inexact, but the user */
2145 /* has effectively asked to get triggered more often than possible */
2146 if (ev_at (w) < ev_rt_now)
2147 ev_at (w) = ev_rt_now;
2148 }
2149
2150 ANHE_at_cache (periodics [HEAP0]);
2151 downheap (periodics, periodiccnt, HEAP0);
2152 }
2153 else
2154 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2155
2156 EV_FREQUENT_CHECK;
2157 feed_reverse (EV_A_ (W)w);
2158 }
2159 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2160
2161 feed_reverse_done (EV_A_ EV_PERIODIC);
2162 }
2163}
2164
2165/* simply recalculate all periodics */
2166/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2167static void noinline
2168periodics_reschedule (EV_P)
2169{
2170 int i;
2171
2172 /* adjust periodics after time jump */
2173 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2174 {
2175 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2176
2177 if (w->reschedule_cb)
2178 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2179 else if (w->interval)
2180 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2181
2182 ANHE_at_cache (periodics [i]);
2183 }
2184
2185 reheap (periodics, periodiccnt);
2186}
2187#endif
2188
2189/* adjust all timers by a given offset */
2190static void noinline
2191timers_reschedule (EV_P_ ev_tstamp adjust)
2192{
2193 int i;
2194
2195 for (i = 0; i < timercnt; ++i)
2196 {
2197 ANHE *he = timers + i + HEAP0;
2198 ANHE_w (*he)->at += adjust;
2199 ANHE_at_cache (*he);
2200 }
2201}
2202
2203/* fetch new monotonic and realtime times from the kernel */
2204/* also detect if there was a timejump, and act accordingly */
2205inline_speed void
2206time_update (EV_P_ ev_tstamp max_block)
2207{
2208#if EV_USE_MONOTONIC
2209 if (expect_true (have_monotonic))
2210 {
2211 int i;
2212 ev_tstamp odiff = rtmn_diff;
2213
2214 mn_now = get_clock ();
2215
2216 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2217 /* interpolate in the meantime */
2218 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2219 {
2220 ev_rt_now = rtmn_diff + mn_now;
2221 return;
2222 }
2223
2224 now_floor = mn_now;
2225 ev_rt_now = ev_time ();
2226
2227 /* loop a few times, before making important decisions.
2228 * on the choice of "4": one iteration isn't enough,
2229 * in case we get preempted during the calls to
2230 * ev_time and get_clock. a second call is almost guaranteed
2231 * to succeed in that case, though. and looping a few more times
2232 * doesn't hurt either as we only do this on time-jumps or
2233 * in the unlikely event of having been preempted here.
2234 */
2235 for (i = 4; --i; )
2236 {
2237 rtmn_diff = ev_rt_now - mn_now;
2238
2239 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2240 return; /* all is well */
2241
2242 ev_rt_now = ev_time ();
2243 mn_now = get_clock ();
2244 now_floor = mn_now;
2245 }
2246
2247 /* no timer adjustment, as the monotonic clock doesn't jump */
2248 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2249# if EV_PERIODIC_ENABLE
2250 periodics_reschedule (EV_A);
2251# endif
2252 }
2253 else
2254#endif
2255 {
2256 ev_rt_now = ev_time ();
2257
2258 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2259 {
2260 /* adjust timers. this is easy, as the offset is the same for all of them */
2261 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2262#if EV_PERIODIC_ENABLE
2263 periodics_reschedule (EV_A);
2264#endif
2265 }
2266
2267 mn_now = ev_rt_now;
2268 }
2269}
2270
2271void
2272ev_loop (EV_P_ int flags)
2273{
2274#if EV_MINIMAL < 2
2275 ++loop_depth;
2276#endif
2277
2278 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2279
2280 loop_done = EVUNLOOP_CANCEL;
2281
2282 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2283
2284 do
2285 {
2286#if EV_VERIFY >= 2
2287 ev_loop_verify (EV_A);
2288#endif
2289
2290#ifndef _WIN32
2291 if (expect_false (curpid)) /* penalise the forking check even more */
2292 if (expect_false (getpid () != curpid))
2293 {
2294 curpid = getpid ();
2295 postfork = 1;
2296 }
2297#endif
2298
2299#if EV_FORK_ENABLE
2300 /* we might have forked, so queue fork handlers */
2301 if (expect_false (postfork))
2302 if (forkcnt)
2303 {
2304 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2305 EV_INVOKE_PENDING;
2306 }
2307#endif
2308
2309 /* queue prepare watchers (and execute them) */
2310 if (expect_false (preparecnt))
2311 {
2312 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2313 EV_INVOKE_PENDING;
2314 }
2315
2316 if (expect_false (loop_done))
2317 break;
2318
2319 /* we might have forked, so reify kernel state if necessary */
2320 if (expect_false (postfork))
2321 loop_fork (EV_A);
2322
2323 /* update fd-related kernel structures */
2324 fd_reify (EV_A);
2325
2326 /* calculate blocking time */
2327 {
2328 ev_tstamp waittime = 0.;
2329 ev_tstamp sleeptime = 0.;
2330
2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
2336 /* update time to cancel out callback processing overhead */
2337 time_update (EV_A_ 1e100);
2338
2339 waittime = MAX_BLOCKTIME;
2340
2341 if (timercnt)
2342 {
2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2344 if (waittime > to) waittime = to;
2345 }
2346
2347#if EV_PERIODIC_ENABLE
2348 if (periodiccnt)
2349 {
2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2351 if (waittime > to) waittime = to;
2352 }
2353#endif
2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
2356 if (expect_false (waittime < timeout_blocktime))
2357 waittime = timeout_blocktime;
2358
2359 /* extra check because io_blocktime is commonly 0 */
2360 if (expect_false (io_blocktime))
2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
2369 ev_sleep (sleeptime);
2370 waittime -= sleeptime;
2371 }
2372 }
2373 }
2374
2375#if EV_MINIMAL < 2
2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2381
2382 /* update ev_rt_now, do magic */
2383 time_update (EV_A_ waittime + sleeptime);
2384 }
2385
2386 /* queue pending timers and reschedule them */
2387 timers_reify (EV_A); /* relative timers called last */
2388#if EV_PERIODIC_ENABLE
2389 periodics_reify (EV_A); /* absolute timers called first */
2390#endif
2391
2392#if EV_IDLE_ENABLE
2393 /* queue idle watchers unless other events are pending */
2394 idle_reify (EV_A);
2395#endif
2396
2397 /* queue check watchers, to be executed first */
2398 if (expect_false (checkcnt))
2399 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2400
2401 EV_INVOKE_PENDING;
2402 }
2403 while (expect_true (
2404 activecnt
2405 && !loop_done
2406 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2407 ));
2408
2409 if (loop_done == EVUNLOOP_ONE)
2410 loop_done = EVUNLOOP_CANCEL;
2411
2412#if EV_MINIMAL < 2
2413 --loop_depth;
2414#endif
2415}
2416
2417void
2418ev_unloop (EV_P_ int how)
2419{
2420 loop_done = how;
2421}
2422
2423void
2424ev_ref (EV_P)
2425{
2426 ++activecnt;
2427}
2428
2429void
2430ev_unref (EV_P)
2431{
2432 --activecnt;
2433}
2434
2435void
2436ev_now_update (EV_P)
2437{
2438 time_update (EV_A_ 1e100);
2439}
2440
2441void
2442ev_suspend (EV_P)
2443{
2444 ev_now_update (EV_A);
2445}
2446
2447void
2448ev_resume (EV_P)
2449{
2450 ev_tstamp mn_prev = mn_now;
2451
2452 ev_now_update (EV_A);
2453 timers_reschedule (EV_A_ mn_now - mn_prev);
2454#if EV_PERIODIC_ENABLE
2455 /* TODO: really do this? */
2456 periodics_reschedule (EV_A);
2457#endif
2458}
2459
2460/*****************************************************************************/
2461/* singly-linked list management, used when the expected list length is short */
2462
2463inline_size void
2464wlist_add (WL *head, WL elem)
2465{
2466 elem->next = *head;
2467 *head = elem;
2468}
2469
2470inline_size void
2471wlist_del (WL *head, WL elem)
2472{
2473 while (*head)
2474 {
2475 if (expect_true (*head == elem))
2476 {
2477 *head = elem->next;
2478 break;
2479 }
2480
2481 head = &(*head)->next;
2482 }
2483}
2484
2485/* internal, faster, version of ev_clear_pending */
2486inline_speed void
2487clear_pending (EV_P_ W w)
2488{
2489 if (w->pending)
2490 {
2491 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2492 w->pending = 0;
2493 }
2494}
2495
2496int
2497ev_clear_pending (EV_P_ void *w)
2498{
2499 W w_ = (W)w;
2500 int pending = w_->pending;
2501
2502 if (expect_true (pending))
2503 {
2504 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2505 p->w = (W)&pending_w;
2506 w_->pending = 0;
2507 return p->events;
2508 }
2509 else
2510 return 0;
2511}
2512
2513inline_size void
2514pri_adjust (EV_P_ W w)
2515{
2516 int pri = ev_priority (w);
2517 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2518 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2519 ev_set_priority (w, pri);
2520}
2521
2522inline_speed void
2523ev_start (EV_P_ W w, int active)
2524{
2525 pri_adjust (EV_A_ w);
2526 w->active = active;
2527 ev_ref (EV_A);
2528}
2529
2530inline_size void
2531ev_stop (EV_P_ W w)
2532{
2533 ev_unref (EV_A);
2534 w->active = 0;
2535}
2536
2537/*****************************************************************************/
2538
2539void noinline
2540ev_io_start (EV_P_ ev_io *w)
2541{
2542 int fd = w->fd;
2543
2544 if (expect_false (ev_is_active (w)))
2545 return;
2546
2547 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2548 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2549
2550 EV_FREQUENT_CHECK;
2551
2552 ev_start (EV_A_ (W)w, 1);
2553 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2554 wlist_add (&anfds[fd].head, (WL)w);
2555
2556 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2557 w->events &= ~EV__IOFDSET;
2558
2559 EV_FREQUENT_CHECK;
2560}
2561
2562void noinline
2563ev_io_stop (EV_P_ ev_io *w)
2564{
2565 clear_pending (EV_A_ (W)w);
2566 if (expect_false (!ev_is_active (w)))
2567 return;
2568
2569 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2570
2571 EV_FREQUENT_CHECK;
2572
2573 wlist_del (&anfds[w->fd].head, (WL)w);
2574 ev_stop (EV_A_ (W)w);
2575
2576 fd_change (EV_A_ w->fd, 1);
2577
2578 EV_FREQUENT_CHECK;
2579}
2580
2581void noinline
2582ev_timer_start (EV_P_ ev_timer *w)
2583{
2584 if (expect_false (ev_is_active (w)))
2585 return;
2586
2587 ev_at (w) += mn_now;
2588
2589 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2590
2591 EV_FREQUENT_CHECK;
2592
2593 ++timercnt;
2594 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2595 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2596 ANHE_w (timers [ev_active (w)]) = (WT)w;
2597 ANHE_at_cache (timers [ev_active (w)]);
2598 upheap (timers, ev_active (w));
2599
2600 EV_FREQUENT_CHECK;
2601
2602 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2603}
2604
2605void noinline
2606ev_timer_stop (EV_P_ ev_timer *w)
2607{
2608 clear_pending (EV_A_ (W)w);
2609 if (expect_false (!ev_is_active (w)))
2610 return;
2611
2612 EV_FREQUENT_CHECK;
2613
2614 {
2615 int active = ev_active (w);
2616
2617 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2618
2619 --timercnt;
2620
2621 if (expect_true (active < timercnt + HEAP0))
2622 {
2623 timers [active] = timers [timercnt + HEAP0];
2624 adjustheap (timers, timercnt, active);
2625 }
2626 }
2627
2628 ev_at (w) -= mn_now;
2629
2630 ev_stop (EV_A_ (W)w);
2631
2632 EV_FREQUENT_CHECK;
2633}
2634
2635void noinline
2636ev_timer_again (EV_P_ ev_timer *w)
2637{
2638 EV_FREQUENT_CHECK;
2639
2640 if (ev_is_active (w))
2641 {
457 if (w->repeat) 2642 if (w->repeat)
458 { 2643 {
459 w->at = now + w->repeat; 2644 ev_at (w) = mn_now + w->repeat;
460 assert (("timer timeout in the past, negative repeat?", w->at > now)); 2645 ANHE_at_cache (timers [ev_active (w)]);
461 downheap ((WT *)timers, timercnt, 0); 2646 adjustheap (timers, timercnt, ev_active (w));
462 } 2647 }
463 else 2648 else
464 evtimer_stop (w); /* nonrepeating: stop timer */ 2649 ev_timer_stop (EV_A_ w);
465 }
466}
467
468static void
469periodics_reify ()
470{
471 while (periodiccnt && periodics [0]->at <= ev_now)
472 { 2650 }
473 struct ev_periodic *w = periodics [0]; 2651 else if (w->repeat)
2652 {
2653 ev_at (w) = w->repeat;
2654 ev_timer_start (EV_A_ w);
2655 }
474 2656
475 /* first reschedule or stop timer */ 2657 EV_FREQUENT_CHECK;
2658}
2659
2660ev_tstamp
2661ev_timer_remaining (EV_P_ ev_timer *w)
2662{
2663 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2664}
2665
2666#if EV_PERIODIC_ENABLE
2667void noinline
2668ev_periodic_start (EV_P_ ev_periodic *w)
2669{
2670 if (expect_false (ev_is_active (w)))
2671 return;
2672
2673 if (w->reschedule_cb)
2674 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
476 if (w->interval) 2675 else if (w->interval)
2676 {
2677 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2678 /* this formula differs from the one in periodic_reify because we do not always round up */
2679 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2680 }
2681 else
2682 ev_at (w) = w->offset;
2683
2684 EV_FREQUENT_CHECK;
2685
2686 ++periodiccnt;
2687 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2688 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2689 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2690 ANHE_at_cache (periodics [ev_active (w)]);
2691 upheap (periodics, ev_active (w));
2692
2693 EV_FREQUENT_CHECK;
2694
2695 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2696}
2697
2698void noinline
2699ev_periodic_stop (EV_P_ ev_periodic *w)
2700{
2701 clear_pending (EV_A_ (W)w);
2702 if (expect_false (!ev_is_active (w)))
2703 return;
2704
2705 EV_FREQUENT_CHECK;
2706
2707 {
2708 int active = ev_active (w);
2709
2710 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2711
2712 --periodiccnt;
2713
2714 if (expect_true (active < periodiccnt + HEAP0))
2715 {
2716 periodics [active] = periodics [periodiccnt + HEAP0];
2717 adjustheap (periodics, periodiccnt, active);
2718 }
2719 }
2720
2721 ev_stop (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2724}
2725
2726void noinline
2727ev_periodic_again (EV_P_ ev_periodic *w)
2728{
2729 /* TODO: use adjustheap and recalculation */
2730 ev_periodic_stop (EV_A_ w);
2731 ev_periodic_start (EV_A_ w);
2732}
2733#endif
2734
2735#ifndef SA_RESTART
2736# define SA_RESTART 0
2737#endif
2738
2739#if EV_SIGNAL_ENABLE
2740
2741void noinline
2742ev_signal_start (EV_P_ ev_signal *w)
2743{
2744 if (expect_false (ev_is_active (w)))
2745 return;
2746
2747 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2748
2749#if EV_MULTIPLICITY
2750 assert (("libev: a signal must not be attached to two different loops",
2751 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2752
2753 signals [w->signum - 1].loop = EV_A;
2754#endif
2755
2756 EV_FREQUENT_CHECK;
2757
2758#if EV_USE_SIGNALFD
2759 if (sigfd == -2)
2760 {
2761 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2762 if (sigfd < 0 && errno == EINVAL)
2763 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2764
2765 if (sigfd >= 0)
477 { 2766 {
478 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 2767 fd_intern (sigfd); /* doing it twice will not hurt */
479 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 2768
480 downheap ((WT *)periodics, periodiccnt, 0); 2769 sigemptyset (&sigfd_set);
2770
2771 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2772 ev_set_priority (&sigfd_w, EV_MAXPRI);
2773 ev_io_start (EV_A_ &sigfd_w);
2774 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2775 }
2776 }
2777
2778 if (sigfd >= 0)
2779 {
2780 /* TODO: check .head */
2781 sigaddset (&sigfd_set, w->signum);
2782 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2783
2784 signalfd (sigfd, &sigfd_set, 0);
2785 }
2786#endif
2787
2788 ev_start (EV_A_ (W)w, 1);
2789 wlist_add (&signals [w->signum - 1].head, (WL)w);
2790
2791 if (!((WL)w)->next)
2792# if EV_USE_SIGNALFD
2793 if (sigfd < 0) /*TODO*/
2794# endif
2795 {
2796# ifdef _WIN32
2797 evpipe_init (EV_A);
2798
2799 signal (w->signum, ev_sighandler);
2800# else
2801 struct sigaction sa;
2802
2803 evpipe_init (EV_A);
2804
2805 sa.sa_handler = ev_sighandler;
2806 sigfillset (&sa.sa_mask);
2807 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2808 sigaction (w->signum, &sa, 0);
2809
2810 sigemptyset (&sa.sa_mask);
2811 sigaddset (&sa.sa_mask, w->signum);
2812 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2813#endif
2814 }
2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819void noinline
2820ev_signal_stop (EV_P_ ev_signal *w)
2821{
2822 clear_pending (EV_A_ (W)w);
2823 if (expect_false (!ev_is_active (w)))
2824 return;
2825
2826 EV_FREQUENT_CHECK;
2827
2828 wlist_del (&signals [w->signum - 1].head, (WL)w);
2829 ev_stop (EV_A_ (W)w);
2830
2831 if (!signals [w->signum - 1].head)
2832 {
2833#if EV_MULTIPLICITY
2834 signals [w->signum - 1].loop = 0; /* unattach from signal */
2835#endif
2836#if EV_USE_SIGNALFD
2837 if (sigfd >= 0)
2838 {
2839 sigset_t ss;
2840
2841 sigemptyset (&ss);
2842 sigaddset (&ss, w->signum);
2843 sigdelset (&sigfd_set, w->signum);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 sigprocmask (SIG_UNBLOCK, &ss, 0);
481 } 2847 }
482 else 2848 else
483 evperiodic_stop (w); /* nonrepeating: stop timer */ 2849#endif
484 2850 signal (w->signum, SIG_DFL);
485 event ((W)w, EV_TIMEOUT);
486 }
487}
488
489static void
490periodics_reschedule (ev_tstamp diff)
491{
492 int i;
493
494 /* adjust periodics after time jump */
495 for (i = 0; i < periodiccnt; ++i)
496 { 2851 }
497 struct ev_periodic *w = periodics [i];
498 2852
499 if (w->interval) 2853 EV_FREQUENT_CHECK;
2854}
2855
2856#endif
2857
2858#if EV_CHILD_ENABLE
2859
2860void
2861ev_child_start (EV_P_ ev_child *w)
2862{
2863#if EV_MULTIPLICITY
2864 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2865#endif
2866 if (expect_false (ev_is_active (w)))
2867 return;
2868
2869 EV_FREQUENT_CHECK;
2870
2871 ev_start (EV_A_ (W)w, 1);
2872 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2873
2874 EV_FREQUENT_CHECK;
2875}
2876
2877void
2878ev_child_stop (EV_P_ ev_child *w)
2879{
2880 clear_pending (EV_A_ (W)w);
2881 if (expect_false (!ev_is_active (w)))
2882 return;
2883
2884 EV_FREQUENT_CHECK;
2885
2886 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892#endif
2893
2894#if EV_STAT_ENABLE
2895
2896# ifdef _WIN32
2897# undef lstat
2898# define lstat(a,b) _stati64 (a,b)
2899# endif
2900
2901#define DEF_STAT_INTERVAL 5.0074891
2902#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2903#define MIN_STAT_INTERVAL 0.1074891
2904
2905static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2906
2907#if EV_USE_INOTIFY
2908
2909/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2910# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2911
2912static void noinline
2913infy_add (EV_P_ ev_stat *w)
2914{
2915 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2916
2917 if (w->wd >= 0)
2918 {
2919 struct statfs sfs;
2920
2921 /* now local changes will be tracked by inotify, but remote changes won't */
2922 /* unless the filesystem is known to be local, we therefore still poll */
2923 /* also do poll on <2.6.25, but with normal frequency */
2924
2925 if (!fs_2625)
2926 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2927 else if (!statfs (w->path, &sfs)
2928 && (sfs.f_type == 0x1373 /* devfs */
2929 || sfs.f_type == 0xEF53 /* ext2/3 */
2930 || sfs.f_type == 0x3153464a /* jfs */
2931 || sfs.f_type == 0x52654973 /* reiser3 */
2932 || sfs.f_type == 0x01021994 /* tempfs */
2933 || sfs.f_type == 0x58465342 /* xfs */))
2934 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2935 else
2936 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2937 }
2938 else
2939 {
2940 /* can't use inotify, continue to stat */
2941 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2942
2943 /* if path is not there, monitor some parent directory for speedup hints */
2944 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2945 /* but an efficiency issue only */
2946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
500 { 2947 {
501 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 2948 char path [4096];
2949 strcpy (path, w->path);
502 2950
503 if (fabs (diff) >= 1e-4) 2951 do
504 { 2952 {
505 evperiodic_stop (w); 2953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
506 evperiodic_start (w); 2954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
507 2955
508 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 2956 char *pend = strrchr (path, '/');
2957
2958 if (!pend || pend == path)
2959 break;
2960
2961 *pend = 0;
2962 w->wd = inotify_add_watch (fs_fd, path, mask);
2963 }
2964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2965 }
2966 }
2967
2968 if (w->wd >= 0)
2969 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2970
2971 /* now re-arm timer, if required */
2972 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2973 ev_timer_again (EV_A_ &w->timer);
2974 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2975}
2976
2977static void noinline
2978infy_del (EV_P_ ev_stat *w)
2979{
2980 int slot;
2981 int wd = w->wd;
2982
2983 if (wd < 0)
2984 return;
2985
2986 w->wd = -2;
2987 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2988 wlist_del (&fs_hash [slot].head, (WL)w);
2989
2990 /* remove this watcher, if others are watching it, they will rearm */
2991 inotify_rm_watch (fs_fd, wd);
2992}
2993
2994static void noinline
2995infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2996{
2997 if (slot < 0)
2998 /* overflow, need to check for all hash slots */
2999 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3000 infy_wd (EV_A_ slot, wd, ev);
3001 else
3002 {
3003 WL w_;
3004
3005 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
3006 {
3007 ev_stat *w = (ev_stat *)w_;
3008 w_ = w_->next; /* lets us remove this watcher and all before it */
3009
3010 if (w->wd == wd || wd == -1)
3011 {
3012 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3013 {
3014 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
3015 w->wd = -1;
3016 infy_add (EV_A_ w); /* re-add, no matter what */
3017 }
3018
3019 stat_timer_cb (EV_A_ &w->timer, 0);
509 } 3020 }
510 } 3021 }
511 } 3022 }
512} 3023}
513 3024
514static void 3025static void
515time_update () 3026infy_cb (EV_P_ ev_io *w, int revents)
516{ 3027{
3028 char buf [EV_INOTIFY_BUFSIZE];
3029 int ofs;
3030 int len = read (fs_fd, buf, sizeof (buf));
3031
3032 for (ofs = 0; ofs < len; )
3033 {
3034 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3036 ofs += sizeof (struct inotify_event) + ev->len;
3037 }
3038}
3039
3040inline_size unsigned int
3041ev_linux_version (void)
3042{
3043 struct utsname buf;
3044 unsigned int v;
517 int i; 3045 int i;
3046 char *p = buf.release;
518 3047
519 ev_now = ev_time (); 3048 if (uname (&buf))
3049 return 0;
520 3050
521 if (have_monotonic) 3051 for (i = 3+1; --i; )
522 { 3052 {
523 ev_tstamp odiff = diff; 3053 unsigned int c = 0;
524 3054
525 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3055 for (;;)
526 { 3056 {
527 now = get_clock (); 3057 if (*p >= '0' && *p <= '9')
528 diff = ev_now - now; 3058 c = c * 10 + *p++ - '0';
529 3059 else
530 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3060 {
531 return; /* all is well */ 3061 p += *p == '.';
532 3062 break;
533 ev_now = ev_time (); 3063 }
534 } 3064 }
535 3065
536 periodics_reschedule (diff - odiff); 3066 v = (v << 8) | c;
537 /* no timer adjustment, as the monotonic clock doesn't jump */ 3067 }
3068
3069 return v;
3070}
3071
3072inline_size void
3073ev_check_2625 (EV_P)
3074{
3075 /* kernels < 2.6.25 are borked
3076 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3077 */
3078 if (ev_linux_version () < 0x020619)
3079 return;
3080
3081 fs_2625 = 1;
3082}
3083
3084inline_size int
3085infy_newfd (void)
3086{
3087#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3088 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3089 if (fd >= 0)
3090 return fd;
3091#endif
3092 return inotify_init ();
3093}
3094
3095inline_size void
3096infy_init (EV_P)
3097{
3098 if (fs_fd != -2)
3099 return;
3100
3101 fs_fd = -1;
3102
3103 ev_check_2625 (EV_A);
3104
3105 fs_fd = infy_newfd ();
3106
3107 if (fs_fd >= 0)
538 } 3108 {
3109 fd_intern (fs_fd);
3110 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3111 ev_set_priority (&fs_w, EV_MAXPRI);
3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
3114 }
3115}
3116
3117inline_size void
3118infy_fork (EV_P)
3119{
3120 int slot;
3121
3122 if (fs_fd < 0)
3123 return;
3124
3125 ev_ref (EV_A);
3126 ev_io_stop (EV_A_ &fs_w);
3127 close (fs_fd);
3128 fs_fd = infy_newfd ();
3129
3130 if (fs_fd >= 0)
3131 {
3132 fd_intern (fs_fd);
3133 ev_io_set (&fs_w, fs_fd, EV_READ);
3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
3136 }
3137
3138 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3139 {
3140 WL w_ = fs_hash [slot].head;
3141 fs_hash [slot].head = 0;
3142
3143 while (w_)
3144 {
3145 ev_stat *w = (ev_stat *)w_;
3146 w_ = w_->next; /* lets us add this watcher */
3147
3148 w->wd = -1;
3149
3150 if (fs_fd >= 0)
3151 infy_add (EV_A_ w); /* re-add, no matter what */
3152 else
3153 {
3154 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3155 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3156 ev_timer_again (EV_A_ &w->timer);
3157 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3158 }
3159 }
3160 }
3161}
3162
3163#endif
3164
3165#ifdef _WIN32
3166# define EV_LSTAT(p,b) _stati64 (p, b)
3167#else
3168# define EV_LSTAT(p,b) lstat (p, b)
3169#endif
3170
3171void
3172ev_stat_stat (EV_P_ ev_stat *w)
3173{
3174 if (lstat (w->path, &w->attr) < 0)
3175 w->attr.st_nlink = 0;
3176 else if (!w->attr.st_nlink)
3177 w->attr.st_nlink = 1;
3178}
3179
3180static void noinline
3181stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3182{
3183 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3184
3185 ev_statdata prev = w->attr;
3186 ev_stat_stat (EV_A_ w);
3187
3188 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3189 if (
3190 prev.st_dev != w->attr.st_dev
3191 || prev.st_ino != w->attr.st_ino
3192 || prev.st_mode != w->attr.st_mode
3193 || prev.st_nlink != w->attr.st_nlink
3194 || prev.st_uid != w->attr.st_uid
3195 || prev.st_gid != w->attr.st_gid
3196 || prev.st_rdev != w->attr.st_rdev
3197 || prev.st_size != w->attr.st_size
3198 || prev.st_atime != w->attr.st_atime
3199 || prev.st_mtime != w->attr.st_mtime
3200 || prev.st_ctime != w->attr.st_ctime
3201 ) {
3202 /* we only update w->prev on actual differences */
3203 /* in case we test more often than invoke the callback, */
3204 /* to ensure that prev is always different to attr */
3205 w->prev = prev;
3206
3207 #if EV_USE_INOTIFY
3208 if (fs_fd >= 0)
3209 {
3210 infy_del (EV_A_ w);
3211 infy_add (EV_A_ w);
3212 ev_stat_stat (EV_A_ w); /* avoid race... */
3213 }
3214 #endif
3215
3216 ev_feed_event (EV_A_ w, EV_STAT);
3217 }
3218}
3219
3220void
3221ev_stat_start (EV_P_ ev_stat *w)
3222{
3223 if (expect_false (ev_is_active (w)))
3224 return;
3225
3226 ev_stat_stat (EV_A_ w);
3227
3228 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3229 w->interval = MIN_STAT_INTERVAL;
3230
3231 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3232 ev_set_priority (&w->timer, ev_priority (w));
3233
3234#if EV_USE_INOTIFY
3235 infy_init (EV_A);
3236
3237 if (fs_fd >= 0)
3238 infy_add (EV_A_ w);
539 else 3239 else
3240#endif
3241 {
3242 ev_timer_again (EV_A_ &w->timer);
3243 ev_unref (EV_A);
540 { 3244 }
541 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 3245
3246 ev_start (EV_A_ (W)w, 1);
3247
3248 EV_FREQUENT_CHECK;
3249}
3250
3251void
3252ev_stat_stop (EV_P_ ev_stat *w)
3253{
3254 clear_pending (EV_A_ (W)w);
3255 if (expect_false (!ev_is_active (w)))
3256 return;
3257
3258 EV_FREQUENT_CHECK;
3259
3260#if EV_USE_INOTIFY
3261 infy_del (EV_A_ w);
3262#endif
3263
3264 if (ev_is_active (&w->timer))
3265 {
3266 ev_ref (EV_A);
3267 ev_timer_stop (EV_A_ &w->timer);
3268 }
3269
3270 ev_stop (EV_A_ (W)w);
3271
3272 EV_FREQUENT_CHECK;
3273}
3274#endif
3275
3276#if EV_IDLE_ENABLE
3277void
3278ev_idle_start (EV_P_ ev_idle *w)
3279{
3280 if (expect_false (ev_is_active (w)))
3281 return;
3282
3283 pri_adjust (EV_A_ (W)w);
3284
3285 EV_FREQUENT_CHECK;
3286
3287 {
3288 int active = ++idlecnt [ABSPRI (w)];
3289
3290 ++idleall;
3291 ev_start (EV_A_ (W)w, active);
3292
3293 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3294 idles [ABSPRI (w)][active - 1] = w;
3295 }
3296
3297 EV_FREQUENT_CHECK;
3298}
3299
3300void
3301ev_idle_stop (EV_P_ ev_idle *w)
3302{
3303 clear_pending (EV_A_ (W)w);
3304 if (expect_false (!ev_is_active (w)))
3305 return;
3306
3307 EV_FREQUENT_CHECK;
3308
3309 {
3310 int active = ev_active (w);
3311
3312 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3313 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3314
3315 ev_stop (EV_A_ (W)w);
3316 --idleall;
3317 }
3318
3319 EV_FREQUENT_CHECK;
3320}
3321#endif
3322
3323void
3324ev_prepare_start (EV_P_ ev_prepare *w)
3325{
3326 if (expect_false (ev_is_active (w)))
3327 return;
3328
3329 EV_FREQUENT_CHECK;
3330
3331 ev_start (EV_A_ (W)w, ++preparecnt);
3332 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3333 prepares [preparecnt - 1] = w;
3334
3335 EV_FREQUENT_CHECK;
3336}
3337
3338void
3339ev_prepare_stop (EV_P_ ev_prepare *w)
3340{
3341 clear_pending (EV_A_ (W)w);
3342 if (expect_false (!ev_is_active (w)))
3343 return;
3344
3345 EV_FREQUENT_CHECK;
3346
3347 {
3348 int active = ev_active (w);
3349
3350 prepares [active - 1] = prepares [--preparecnt];
3351 ev_active (prepares [active - 1]) = active;
3352 }
3353
3354 ev_stop (EV_A_ (W)w);
3355
3356 EV_FREQUENT_CHECK;
3357}
3358
3359void
3360ev_check_start (EV_P_ ev_check *w)
3361{
3362 if (expect_false (ev_is_active (w)))
3363 return;
3364
3365 EV_FREQUENT_CHECK;
3366
3367 ev_start (EV_A_ (W)w, ++checkcnt);
3368 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3369 checks [checkcnt - 1] = w;
3370
3371 EV_FREQUENT_CHECK;
3372}
3373
3374void
3375ev_check_stop (EV_P_ ev_check *w)
3376{
3377 clear_pending (EV_A_ (W)w);
3378 if (expect_false (!ev_is_active (w)))
3379 return;
3380
3381 EV_FREQUENT_CHECK;
3382
3383 {
3384 int active = ev_active (w);
3385
3386 checks [active - 1] = checks [--checkcnt];
3387 ev_active (checks [active - 1]) = active;
3388 }
3389
3390 ev_stop (EV_A_ (W)w);
3391
3392 EV_FREQUENT_CHECK;
3393}
3394
3395#if EV_EMBED_ENABLE
3396void noinline
3397ev_embed_sweep (EV_P_ ev_embed *w)
3398{
3399 ev_loop (w->other, EVLOOP_NONBLOCK);
3400}
3401
3402static void
3403embed_io_cb (EV_P_ ev_io *io, int revents)
3404{
3405 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3406
3407 if (ev_cb (w))
3408 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3409 else
3410 ev_loop (w->other, EVLOOP_NONBLOCK);
3411}
3412
3413static void
3414embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3415{
3416 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3417
3418 {
3419 EV_P = w->other;
3420
3421 while (fdchangecnt)
542 { 3422 {
543 periodics_reschedule (ev_now - now); 3423 fd_reify (EV_A);
544 3424 ev_loop (EV_A_ EVLOOP_NONBLOCK);
545 /* adjust timers. this is easy, as the offset is the same for all */
546 for (i = 0; i < timercnt; ++i)
547 timers [i]->at += diff;
548 } 3425 }
549
550 now = ev_now;
551 } 3426 }
552} 3427}
553 3428
554int ev_loop_done; 3429static void
555 3430embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
556void ev_loop (int flags)
557{ 3431{
558 double block; 3432 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
559 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
560 3433
561 do 3434 ev_embed_stop (EV_A_ w);
3435
562 { 3436 {
563 /* queue check watchers (and execute them) */ 3437 EV_P = w->other;
564 if (checkcnt)
565 {
566 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
567 call_pending ();
568 }
569 3438
570 /* update fd-related kernel structures */ 3439 ev_loop_fork (EV_A);
571 fd_reify (); 3440 ev_loop (EV_A_ EVLOOP_NONBLOCK);
572
573 /* calculate blocking time */
574
575 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */
576 ev_now = ev_time ();
577
578 if (flags & EVLOOP_NONBLOCK || idlecnt)
579 block = 0.;
580 else
581 {
582 block = MAX_BLOCKTIME;
583
584 if (timercnt)
585 {
586 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
587 if (block > to) block = to;
588 }
589
590 if (periodiccnt)
591 {
592 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
593 if (block > to) block = to;
594 }
595
596 if (block < 0.) block = 0.;
597 }
598
599 method_poll (block);
600
601 /* update ev_now, do magic */
602 time_update ();
603
604 /* queue pending timers and reschedule them */
605 timers_reify (); /* relative timers called last */
606 periodics_reify (); /* absolute timers called first */
607
608 /* queue idle watchers unless io or timers are pending */
609 if (!pendingcnt)
610 queue_events ((W *)idles, idlecnt, EV_IDLE);
611
612 /* queue check watchers, to be executed first */
613 if (checkcnt)
614 queue_events ((W *)checks, checkcnt, EV_CHECK);
615
616 call_pending ();
617 } 3441 }
618 while (!ev_loop_done);
619 3442
620 if (ev_loop_done != 2) 3443 ev_embed_start (EV_A_ w);
621 ev_loop_done = 0;
622} 3444}
3445
3446#if 0
3447static void
3448embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3449{
3450 ev_idle_stop (EV_A_ idle);
3451}
3452#endif
3453
3454void
3455ev_embed_start (EV_P_ ev_embed *w)
3456{
3457 if (expect_false (ev_is_active (w)))
3458 return;
3459
3460 {
3461 EV_P = w->other;
3462 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3463 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3464 }
3465
3466 EV_FREQUENT_CHECK;
3467
3468 ev_set_priority (&w->io, ev_priority (w));
3469 ev_io_start (EV_A_ &w->io);
3470
3471 ev_prepare_init (&w->prepare, embed_prepare_cb);
3472 ev_set_priority (&w->prepare, EV_MINPRI);
3473 ev_prepare_start (EV_A_ &w->prepare);
3474
3475 ev_fork_init (&w->fork, embed_fork_cb);
3476 ev_fork_start (EV_A_ &w->fork);
3477
3478 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3479
3480 ev_start (EV_A_ (W)w, 1);
3481
3482 EV_FREQUENT_CHECK;
3483}
3484
3485void
3486ev_embed_stop (EV_P_ ev_embed *w)
3487{
3488 clear_pending (EV_A_ (W)w);
3489 if (expect_false (!ev_is_active (w)))
3490 return;
3491
3492 EV_FREQUENT_CHECK;
3493
3494 ev_io_stop (EV_A_ &w->io);
3495 ev_prepare_stop (EV_A_ &w->prepare);
3496 ev_fork_stop (EV_A_ &w->fork);
3497
3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
3501}
3502#endif
3503
3504#if EV_FORK_ENABLE
3505void
3506ev_fork_start (EV_P_ ev_fork *w)
3507{
3508 if (expect_false (ev_is_active (w)))
3509 return;
3510
3511 EV_FREQUENT_CHECK;
3512
3513 ev_start (EV_A_ (W)w, ++forkcnt);
3514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3515 forks [forkcnt - 1] = w;
3516
3517 EV_FREQUENT_CHECK;
3518}
3519
3520void
3521ev_fork_stop (EV_P_ ev_fork *w)
3522{
3523 clear_pending (EV_A_ (W)w);
3524 if (expect_false (!ev_is_active (w)))
3525 return;
3526
3527 EV_FREQUENT_CHECK;
3528
3529 {
3530 int active = ev_active (w);
3531
3532 forks [active - 1] = forks [--forkcnt];
3533 ev_active (forks [active - 1]) = active;
3534 }
3535
3536 ev_stop (EV_A_ (W)w);
3537
3538 EV_FREQUENT_CHECK;
3539}
3540#endif
3541
3542#if EV_ASYNC_ENABLE
3543void
3544ev_async_start (EV_P_ ev_async *w)
3545{
3546 if (expect_false (ev_is_active (w)))
3547 return;
3548
3549 evpipe_init (EV_A);
3550
3551 EV_FREQUENT_CHECK;
3552
3553 ev_start (EV_A_ (W)w, ++asynccnt);
3554 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3555 asyncs [asynccnt - 1] = w;
3556
3557 EV_FREQUENT_CHECK;
3558}
3559
3560void
3561ev_async_stop (EV_P_ ev_async *w)
3562{
3563 clear_pending (EV_A_ (W)w);
3564 if (expect_false (!ev_is_active (w)))
3565 return;
3566
3567 EV_FREQUENT_CHECK;
3568
3569 {
3570 int active = ev_active (w);
3571
3572 asyncs [active - 1] = asyncs [--asynccnt];
3573 ev_active (asyncs [active - 1]) = active;
3574 }
3575
3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
3579}
3580
3581void
3582ev_async_send (EV_P_ ev_async *w)
3583{
3584 w->sent = 1;
3585 evpipe_write (EV_A_ &async_pending);
3586}
3587#endif
623 3588
624/*****************************************************************************/ 3589/*****************************************************************************/
625 3590
626static void
627wlist_add (WL *head, WL elem)
628{
629 elem->next = *head;
630 *head = elem;
631}
632
633static void
634wlist_del (WL *head, WL elem)
635{
636 while (*head)
637 {
638 if (*head == elem)
639 {
640 *head = elem->next;
641 return;
642 }
643
644 head = &(*head)->next;
645 }
646}
647
648static void
649ev_clear (W w)
650{
651 if (w->pending)
652 {
653 pendings [w->pending - 1].w = 0;
654 w->pending = 0;
655 }
656}
657
658static void
659ev_start (W w, int active)
660{
661 w->active = active;
662}
663
664static void
665ev_stop (W w)
666{
667 w->active = 0;
668}
669
670/*****************************************************************************/
671
672void
673evio_start (struct ev_io *w)
674{
675 if (ev_is_active (w))
676 return;
677
678 int fd = w->fd;
679
680 ev_start ((W)w, 1);
681 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
682 wlist_add ((WL *)&anfds[fd].head, (WL)w);
683
684 ++fdchangecnt;
685 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
686 fdchanges [fdchangecnt - 1] = fd;
687}
688
689void
690evio_stop (struct ev_io *w)
691{
692 ev_clear ((W)w);
693 if (!ev_is_active (w))
694 return;
695
696 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
697 ev_stop ((W)w);
698
699 ++fdchangecnt;
700 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
701 fdchanges [fdchangecnt - 1] = w->fd;
702}
703
704void
705evtimer_start (struct ev_timer *w)
706{
707 if (ev_is_active (w))
708 return;
709
710 w->at += now;
711
712 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.));
713
714 ev_start ((W)w, ++timercnt);
715 array_needsize (timers, timermax, timercnt, );
716 timers [timercnt - 1] = w;
717 upheap ((WT *)timers, timercnt - 1);
718}
719
720void
721evtimer_stop (struct ev_timer *w)
722{
723 ev_clear ((W)w);
724 if (!ev_is_active (w))
725 return;
726
727 if (w->active < timercnt--)
728 {
729 timers [w->active - 1] = timers [timercnt];
730 downheap ((WT *)timers, timercnt, w->active - 1);
731 }
732
733 w->at = w->repeat;
734
735 ev_stop ((W)w);
736}
737
738void
739evtimer_again (struct ev_timer *w)
740{
741 if (ev_is_active (w))
742 {
743 if (w->repeat)
744 {
745 w->at = now + w->repeat;
746 downheap ((WT *)timers, timercnt, w->active - 1);
747 }
748 else
749 evtimer_stop (w);
750 }
751 else if (w->repeat)
752 evtimer_start (w);
753}
754
755void
756evperiodic_start (struct ev_periodic *w)
757{
758 if (ev_is_active (w))
759 return;
760
761 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
762
763 /* this formula differs from the one in periodic_reify because we do not always round up */
764 if (w->interval)
765 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
766
767 ev_start ((W)w, ++periodiccnt);
768 array_needsize (periodics, periodicmax, periodiccnt, );
769 periodics [periodiccnt - 1] = w;
770 upheap ((WT *)periodics, periodiccnt - 1);
771}
772
773void
774evperiodic_stop (struct ev_periodic *w)
775{
776 ev_clear ((W)w);
777 if (!ev_is_active (w))
778 return;
779
780 if (w->active < periodiccnt--)
781 {
782 periodics [w->active - 1] = periodics [periodiccnt];
783 downheap ((WT *)periodics, periodiccnt, w->active - 1);
784 }
785
786 ev_stop ((W)w);
787}
788
789void
790evsignal_start (struct ev_signal *w)
791{
792 if (ev_is_active (w))
793 return;
794
795 ev_start ((W)w, 1);
796 array_needsize (signals, signalmax, w->signum, signals_init);
797 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
798
799 if (!w->next)
800 {
801 struct sigaction sa;
802 sa.sa_handler = sighandler;
803 sigfillset (&sa.sa_mask);
804 sa.sa_flags = 0;
805 sigaction (w->signum, &sa, 0);
806 }
807}
808
809void
810evsignal_stop (struct ev_signal *w)
811{
812 ev_clear ((W)w);
813 if (!ev_is_active (w))
814 return;
815
816 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
817 ev_stop ((W)w);
818
819 if (!signals [w->signum - 1].head)
820 signal (w->signum, SIG_DFL);
821}
822
823void evidle_start (struct ev_idle *w)
824{
825 if (ev_is_active (w))
826 return;
827
828 ev_start ((W)w, ++idlecnt);
829 array_needsize (idles, idlemax, idlecnt, );
830 idles [idlecnt - 1] = w;
831}
832
833void evidle_stop (struct ev_idle *w)
834{
835 ev_clear ((W)w);
836 if (ev_is_active (w))
837 return;
838
839 idles [w->active - 1] = idles [--idlecnt];
840 ev_stop ((W)w);
841}
842
843void evprepare_start (struct ev_prepare *w)
844{
845 if (ev_is_active (w))
846 return;
847
848 ev_start ((W)w, ++preparecnt);
849 array_needsize (prepares, preparemax, preparecnt, );
850 prepares [preparecnt - 1] = w;
851}
852
853void evprepare_stop (struct ev_prepare *w)
854{
855 ev_clear ((W)w);
856 if (ev_is_active (w))
857 return;
858
859 prepares [w->active - 1] = prepares [--preparecnt];
860 ev_stop ((W)w);
861}
862
863void evcheck_start (struct ev_check *w)
864{
865 if (ev_is_active (w))
866 return;
867
868 ev_start ((W)w, ++checkcnt);
869 array_needsize (checks, checkmax, checkcnt, );
870 checks [checkcnt - 1] = w;
871}
872
873void evcheck_stop (struct ev_check *w)
874{
875 ev_clear ((W)w);
876 if (ev_is_active (w))
877 return;
878
879 checks [w->active - 1] = checks [--checkcnt];
880 ev_stop ((W)w);
881}
882
883/*****************************************************************************/
884
885struct ev_once 3591struct ev_once
886{ 3592{
887 struct ev_io io; 3593 ev_io io;
888 struct ev_timer to; 3594 ev_timer to;
889 void (*cb)(int revents, void *arg); 3595 void (*cb)(int revents, void *arg);
890 void *arg; 3596 void *arg;
891}; 3597};
892 3598
893static void 3599static void
894once_cb (struct ev_once *once, int revents) 3600once_cb (EV_P_ struct ev_once *once, int revents)
895{ 3601{
896 void (*cb)(int revents, void *arg) = once->cb; 3602 void (*cb)(int revents, void *arg) = once->cb;
897 void *arg = once->arg; 3603 void *arg = once->arg;
898 3604
899 evio_stop (&once->io); 3605 ev_io_stop (EV_A_ &once->io);
900 evtimer_stop (&once->to); 3606 ev_timer_stop (EV_A_ &once->to);
901 free (once); 3607 ev_free (once);
902 3608
903 cb (revents, arg); 3609 cb (revents, arg);
904} 3610}
905 3611
906static void 3612static void
907once_cb_io (struct ev_io *w, int revents) 3613once_cb_io (EV_P_ ev_io *w, int revents)
908{ 3614{
909 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3615 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3616
3617 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
910} 3618}
911 3619
912static void 3620static void
913once_cb_to (struct ev_timer *w, int revents) 3621once_cb_to (EV_P_ ev_timer *w, int revents)
914{ 3622{
915 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3623 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
916}
917 3624
3625 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3626}
3627
918void 3628void
919ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3629ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
920{ 3630{
921 struct ev_once *once = malloc (sizeof (struct ev_once)); 3631 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
922 3632
923 if (!once) 3633 if (expect_false (!once))
924 cb (EV_ERROR, arg); 3634 {
925 else 3635 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3636 return;
926 { 3637 }
3638
927 once->cb = cb; 3639 once->cb = cb;
928 once->arg = arg; 3640 once->arg = arg;
929 3641
930 evw_init (&once->io, once_cb_io); 3642 ev_init (&once->io, once_cb_io);
931
932 if (fd >= 0) 3643 if (fd >= 0)
3644 {
3645 ev_io_set (&once->io, fd, events);
3646 ev_io_start (EV_A_ &once->io);
3647 }
3648
3649 ev_init (&once->to, once_cb_to);
3650 if (timeout >= 0.)
3651 {
3652 ev_timer_set (&once->to, timeout, 0.);
3653 ev_timer_start (EV_A_ &once->to);
3654 }
3655}
3656
3657/*****************************************************************************/
3658
3659#if EV_WALK_ENABLE
3660void
3661ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3662{
3663 int i, j;
3664 ev_watcher_list *wl, *wn;
3665
3666 if (types & (EV_IO | EV_EMBED))
3667 for (i = 0; i < anfdmax; ++i)
3668 for (wl = anfds [i].head; wl; )
933 { 3669 {
934 evio_set (&once->io, fd, events); 3670 wn = wl->next;
935 evio_start (&once->io); 3671
3672#if EV_EMBED_ENABLE
3673 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3674 {
3675 if (types & EV_EMBED)
3676 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3677 }
3678 else
3679#endif
3680#if EV_USE_INOTIFY
3681 if (ev_cb ((ev_io *)wl) == infy_cb)
3682 ;
3683 else
3684#endif
3685 if ((ev_io *)wl != &pipe_w)
3686 if (types & EV_IO)
3687 cb (EV_A_ EV_IO, wl);
3688
3689 wl = wn;
936 } 3690 }
937 3691
938 evw_init (&once->to, once_cb_to); 3692 if (types & (EV_TIMER | EV_STAT))
939 3693 for (i = timercnt + HEAP0; i-- > HEAP0; )
940 if (timeout >= 0.) 3694#if EV_STAT_ENABLE
3695 /*TODO: timer is not always active*/
3696 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
941 { 3697 {
942 evtimer_set (&once->to, timeout, 0.); 3698 if (types & EV_STAT)
943 evtimer_start (&once->to); 3699 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
944 } 3700 }
945 } 3701 else
946} 3702#endif
3703 if (types & EV_TIMER)
3704 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
947 3705
948/*****************************************************************************/ 3706#if EV_PERIODIC_ENABLE
3707 if (types & EV_PERIODIC)
3708 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3709 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3710#endif
949 3711
950#if 0 3712#if EV_IDLE_ENABLE
3713 if (types & EV_IDLE)
3714 for (j = NUMPRI; i--; )
3715 for (i = idlecnt [j]; i--; )
3716 cb (EV_A_ EV_IDLE, idles [j][i]);
3717#endif
951 3718
952struct ev_io wio; 3719#if EV_FORK_ENABLE
3720 if (types & EV_FORK)
3721 for (i = forkcnt; i--; )
3722 if (ev_cb (forks [i]) != embed_fork_cb)
3723 cb (EV_A_ EV_FORK, forks [i]);
3724#endif
953 3725
954static void 3726#if EV_ASYNC_ENABLE
955sin_cb (struct ev_io *w, int revents) 3727 if (types & EV_ASYNC)
956{ 3728 for (i = asynccnt; i--; )
957 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3729 cb (EV_A_ EV_ASYNC, asyncs [i]);
958} 3730#endif
959 3731
960static void 3732 if (types & EV_PREPARE)
961ocb (struct ev_timer *w, int revents) 3733 for (i = preparecnt; i--; )
962{ 3734#if EV_EMBED_ENABLE
963 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3735 if (ev_cb (prepares [i]) != embed_prepare_cb)
964 evtimer_stop (w); 3736#endif
965 evtimer_start (w); 3737 cb (EV_A_ EV_PREPARE, prepares [i]);
966}
967 3738
968static void 3739 if (types & EV_CHECK)
969scb (struct ev_signal *w, int revents) 3740 for (i = checkcnt; i--; )
970{ 3741 cb (EV_A_ EV_CHECK, checks [i]);
971 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
972 evio_stop (&wio);
973 evio_start (&wio);
974}
975 3742
976static void 3743 if (types & EV_SIGNAL)
977gcb (struct ev_signal *w, int revents)
978{
979 fprintf (stderr, "generic %x\n", revents);
980
981}
982
983int main (void)
984{
985 ev_init (0);
986
987 evio_init (&wio, sin_cb, 0, EV_READ);
988 evio_start (&wio);
989
990 struct ev_timer t[10000];
991
992#if 0
993 int i;
994 for (i = 0; i < 10000; ++i) 3744 for (i = 0; i < EV_NSIG - 1; ++i)
995 { 3745 for (wl = signals [i].head; wl; )
996 struct ev_timer *w = t + i; 3746 {
997 evw_init (w, ocb, i); 3747 wn = wl->next;
998 evtimer_init_abs (w, ocb, drand48 (), 0.99775533); 3748 cb (EV_A_ EV_SIGNAL, wl);
999 evtimer_start (w); 3749 wl = wn;
1000 if (drand48 () < 0.5) 3750 }
1001 evtimer_stop (w);
1002 }
1003#endif
1004 3751
1005 struct ev_timer t1; 3752 if (types & EV_CHILD)
1006 evtimer_init (&t1, ocb, 5, 10); 3753 for (i = EV_PID_HASHSIZE; i--; )
1007 evtimer_start (&t1); 3754 for (wl = childs [i]; wl; )
1008 3755 {
1009 struct ev_signal sig; 3756 wn = wl->next;
1010 evsignal_init (&sig, scb, SIGQUIT); 3757 cb (EV_A_ EV_CHILD, wl);
1011 evsignal_start (&sig); 3758 wl = wn;
1012 3759 }
1013 struct ev_check cw; 3760/* EV_STAT 0x00001000 /* stat data changed */
1014 evcheck_init (&cw, gcb); 3761/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1015 evcheck_start (&cw);
1016
1017 struct ev_idle iw;
1018 evidle_init (&iw, gcb);
1019 evidle_start (&iw);
1020
1021 ev_loop (0);
1022
1023 return 0;
1024} 3762}
1025
1026#endif 3763#endif
1027 3764
3765#if EV_MULTIPLICITY
3766 #include "ev_wrap.h"
3767#endif
1028 3768
3769#ifdef __cplusplus
3770}
3771#endif
1029 3772
1030

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines