ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.336 by root, Wed Mar 10 08:19:38 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL 1
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
168#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC 1
233# else
169# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
170#endif 236#endif
171 237
172#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 240#endif
175 241
176#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP 1
245# else
177# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
178#endif 248#endif
179 249
180#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 251# define EV_USE_SELECT 1
182#endif 252#endif
235# else 305# else
236# define EV_USE_EVENTFD 0 306# define EV_USE_EVENTFD 0
237# endif 307# endif
238#endif 308#endif
239 309
310#ifndef EV_USE_SIGNALFD
311# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312# define EV_USE_SIGNALFD 1
313# else
314# define EV_USE_SIGNALFD 0
315# endif
316#endif
317
318#if 0 /* debugging */
319# define EV_VERIFY 3
320# define EV_USE_4HEAP 1
321# define EV_HEAP_CACHE_AT 1
322#endif
323
324#ifndef EV_VERIFY
325# define EV_VERIFY !EV_MINIMAL
326#endif
327
328#ifndef EV_USE_4HEAP
329# define EV_USE_4HEAP !EV_MINIMAL
330#endif
331
332#ifndef EV_HEAP_CACHE_AT
333# define EV_HEAP_CACHE_AT !EV_MINIMAL
334#endif
335
336/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337/* which makes programs even slower. might work on other unices, too. */
338#if EV_USE_CLOCK_SYSCALL
339# include <syscall.h>
340# ifdef SYS_clock_gettime
341# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342# undef EV_USE_MONOTONIC
343# define EV_USE_MONOTONIC 1
344# else
345# undef EV_USE_CLOCK_SYSCALL
346# define EV_USE_CLOCK_SYSCALL 0
347# endif
348#endif
349
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 350/* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352#ifdef _AIX
353/* AIX has a completely broken poll.h header */
354# undef EV_USE_POLL
355# define EV_USE_POLL 0
356#endif
241 357
242#ifndef CLOCK_MONOTONIC 358#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 359# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 360# define EV_USE_MONOTONIC 0
245#endif 361#endif
259# include <sys/select.h> 375# include <sys/select.h>
260# endif 376# endif
261#endif 377#endif
262 378
263#if EV_USE_INOTIFY 379#if EV_USE_INOTIFY
380# include <sys/utsname.h>
381# include <sys/statfs.h>
264# include <sys/inotify.h> 382# include <sys/inotify.h>
383/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384# ifndef IN_DONT_FOLLOW
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387# endif
265#endif 388#endif
266 389
267#if EV_SELECT_IS_WINSOCKET 390#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 391# include <winsock.h>
269#endif 392#endif
270 393
271#if EV_USE_EVENTFD 394#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 395/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
396# include <stdint.h>
397# ifndef EFD_NONBLOCK
398# define EFD_NONBLOCK O_NONBLOCK
399# endif
400# ifndef EFD_CLOEXEC
401# ifdef O_CLOEXEC
402# define EFD_CLOEXEC O_CLOEXEC
403# else
404# define EFD_CLOEXEC 02000000
405# endif
406# endif
407# ifdef __cplusplus
408extern "C" {
409# endif
273int eventfd (unsigned int initval, int flags); 410int (eventfd) (unsigned int initval, int flags);
411# ifdef __cplusplus
412}
274#endif 413# endif
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429# ifdef __cplusplus
430extern "C" {
431# endif
432int signalfd (int fd, const sigset_t *mask, int flags);
433
434struct signalfd_siginfo
435{
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438};
439# ifdef __cplusplus
440}
441# endif
442#endif
443
275 444
276/**/ 445/**/
446
447#if EV_VERIFY >= 3
448# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449#else
450# define EV_FREQUENT_CHECK do { } while (0)
451#endif
277 452
278/* 453/*
279 * This is used to avoid floating point rounding problems. 454 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 455 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 456 * to ensure progress, time-wise, even when rounding
285 */ 460 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 461#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
287 462
288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
291 465
292#if __GNUC__ >= 4 466#if __GNUC__ >= 4
293# define expect(expr,value) __builtin_expect ((expr),(value)) 467# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 468# define noinline __attribute__ ((noinline))
295#else 469#else
296# define expect(expr,value) (expr) 470# define expect(expr,value) (expr)
297# define noinline 471# define noinline
298# if __STDC_VERSION__ < 199901L 472# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 473# define inline
300# endif 474# endif
301#endif 475#endif
302 476
303#define expect_false(expr) expect ((expr) != 0, 0) 477#define expect_false(expr) expect ((expr) != 0, 0)
308# define inline_speed static noinline 482# define inline_speed static noinline
309#else 483#else
310# define inline_speed static inline 484# define inline_speed static inline
311#endif 485#endif
312 486
313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 487#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489#if EV_MINPRI == EV_MAXPRI
490# define ABSPRI(w) (((W)w), 0)
491#else
314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 492# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493#endif
315 494
316#define EMPTY /* required for microsofts broken pseudo-c compiler */ 495#define EMPTY /* required for microsofts broken pseudo-c compiler */
317#define EMPTY2(a,b) /* used to suppress some warnings */ 496#define EMPTY2(a,b) /* used to suppress some warnings */
318 497
319typedef ev_watcher *W; 498typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 499typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 500typedef ev_watcher_time *WT;
322 501
323#if EV_USE_MONOTONIC 502#define ev_active(w) ((W)(w))->active
503#define ev_at(w) ((WT)(w))->at
504
505#if EV_USE_REALTIME
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 506/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 507/* giving it a reasonably high chance of working on typical architetcures */
508static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509#endif
510
511#if EV_USE_MONOTONIC
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 512static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513#endif
514
515#ifndef EV_FD_TO_WIN32_HANDLE
516# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517#endif
518#ifndef EV_WIN32_HANDLE_TO_FD
519# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520#endif
521#ifndef EV_WIN32_CLOSE_FD
522# define EV_WIN32_CLOSE_FD(fd) close (fd)
327#endif 523#endif
328 524
329#ifdef _WIN32 525#ifdef _WIN32
330# include "ev_win32.c" 526# include "ev_win32.c"
331#endif 527#endif
332 528
333/*****************************************************************************/ 529/*****************************************************************************/
334 530
531#if EV_AVOID_STDIO
532static void noinline
533ev_printerr (const char *msg)
534{
535 write (STDERR_FILENO, msg, strlen (msg));
536}
537#endif
538
335static void (*syserr_cb)(const char *msg); 539static void (*syserr_cb)(const char *msg);
336 540
337void 541void
338ev_set_syserr_cb (void (*cb)(const char *msg)) 542ev_set_syserr_cb (void (*cb)(const char *msg))
339{ 543{
340 syserr_cb = cb; 544 syserr_cb = cb;
341} 545}
342 546
343static void noinline 547static void noinline
344syserr (const char *msg) 548ev_syserr (const char *msg)
345{ 549{
346 if (!msg) 550 if (!msg)
347 msg = "(libev) system error"; 551 msg = "(libev) system error";
348 552
349 if (syserr_cb) 553 if (syserr_cb)
350 syserr_cb (msg); 554 syserr_cb (msg);
351 else 555 else
352 { 556 {
557#if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564#else
353 perror (msg); 565 perror (msg);
566#endif
354 abort (); 567 abort ();
355 } 568 }
356} 569}
357 570
571static void *
572ev_realloc_emul (void *ptr, long size)
573{
574#if __GLIBC__
575 return realloc (ptr, size);
576#else
577 /* some systems, notably openbsd and darwin, fail to properly
578 * implement realloc (x, 0) (as required by both ansi c-89 and
579 * the single unix specification, so work around them here.
580 */
581
582 if (size)
583 return realloc (ptr, size);
584
585 free (ptr);
586 return 0;
587#endif
588}
589
358static void *(*alloc)(void *ptr, long size); 590static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 591
360void 592void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 593ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 594{
363 alloc = cb; 595 alloc = cb;
364} 596}
365 597
366inline_speed void * 598inline_speed void *
367ev_realloc (void *ptr, long size) 599ev_realloc (void *ptr, long size)
368{ 600{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 601 ptr = alloc (ptr, size);
370 602
371 if (!ptr && size) 603 if (!ptr && size)
372 { 604 {
605#if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607#else
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609#endif
374 abort (); 610 abort ();
375 } 611 }
376 612
377 return ptr; 613 return ptr;
378} 614}
380#define ev_malloc(size) ev_realloc (0, (size)) 616#define ev_malloc(size) ev_realloc (0, (size))
381#define ev_free(ptr) ev_realloc ((ptr), 0) 617#define ev_free(ptr) ev_realloc ((ptr), 0)
382 618
383/*****************************************************************************/ 619/*****************************************************************************/
384 620
621/* set in reify when reification needed */
622#define EV_ANFD_REIFY 1
623
624/* file descriptor info structure */
385typedef struct 625typedef struct
386{ 626{
387 WL head; 627 WL head;
388 unsigned char events; 628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
389 unsigned char reify; 631 unsigned char unused;
632#if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634#endif
390#if EV_SELECT_IS_WINSOCKET 635#if EV_SELECT_IS_WINSOCKET
391 SOCKET handle; 636 SOCKET handle;
392#endif 637#endif
393} ANFD; 638} ANFD;
394 639
640/* stores the pending event set for a given watcher */
395typedef struct 641typedef struct
396{ 642{
397 W w; 643 W w;
398 int events; 644 int events; /* the pending event set for the given watcher */
399} ANPENDING; 645} ANPENDING;
400 646
401#if EV_USE_INOTIFY 647#if EV_USE_INOTIFY
648/* hash table entry per inotify-id */
402typedef struct 649typedef struct
403{ 650{
404 WL head; 651 WL head;
405} ANFS; 652} ANFS;
653#endif
654
655/* Heap Entry */
656#if EV_HEAP_CACHE_AT
657 /* a heap element */
658 typedef struct {
659 ev_tstamp at;
660 WT w;
661 } ANHE;
662
663 #define ANHE_w(he) (he).w /* access watcher, read-write */
664 #define ANHE_at(he) (he).at /* access cached at, read-only */
665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666#else
667 /* a heap element */
668 typedef WT ANHE;
669
670 #define ANHE_w(he) (he)
671 #define ANHE_at(he) (he)->at
672 #define ANHE_at_cache(he)
406#endif 673#endif
407 674
408#if EV_MULTIPLICITY 675#if EV_MULTIPLICITY
409 676
410 struct ev_loop 677 struct ev_loop
429 696
430 static int ev_default_loop_ptr; 697 static int ev_default_loop_ptr;
431 698
432#endif 699#endif
433 700
701#if EV_MINIMAL < 2
702# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704# define EV_INVOKE_PENDING invoke_cb (EV_A)
705#else
706# define EV_RELEASE_CB (void)0
707# define EV_ACQUIRE_CB (void)0
708# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709#endif
710
711#define EVUNLOOP_RECURSE 0x80
712
434/*****************************************************************************/ 713/*****************************************************************************/
435 714
715#ifndef EV_HAVE_EV_TIME
436ev_tstamp 716ev_tstamp
437ev_time (void) 717ev_time (void)
438{ 718{
439#if EV_USE_REALTIME 719#if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
440 struct timespec ts; 722 struct timespec ts;
441 clock_gettime (CLOCK_REALTIME, &ts); 723 clock_gettime (CLOCK_REALTIME, &ts);
442 return ts.tv_sec + ts.tv_nsec * 1e-9; 724 return ts.tv_sec + ts.tv_nsec * 1e-9;
443#else 725 }
726#endif
727
444 struct timeval tv; 728 struct timeval tv;
445 gettimeofday (&tv, 0); 729 gettimeofday (&tv, 0);
446 return tv.tv_sec + tv.tv_usec * 1e-6; 730 return tv.tv_sec + tv.tv_usec * 1e-6;
447#endif
448} 731}
732#endif
449 733
450ev_tstamp inline_size 734inline_size ev_tstamp
451get_clock (void) 735get_clock (void)
452{ 736{
453#if EV_USE_MONOTONIC 737#if EV_USE_MONOTONIC
454 if (expect_true (have_monotonic)) 738 if (expect_true (have_monotonic))
455 { 739 {
488 struct timeval tv; 772 struct timeval tv;
489 773
490 tv.tv_sec = (time_t)delay; 774 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492 776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
493 select (0, 0, 0, 0, &tv); 780 select (0, 0, 0, 0, &tv);
494#endif 781#endif
495 } 782 }
496} 783}
497 784
498/*****************************************************************************/ 785/*****************************************************************************/
499 786
500int inline_size 787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788
789/* find a suitable new size for the given array, */
790/* hopefully by rounding to a ncie-to-malloc size */
791inline_size int
501array_nextsize (int elem, int cur, int cnt) 792array_nextsize (int elem, int cur, int cnt)
502{ 793{
503 int ncur = cur + 1; 794 int ncur = cur + 1;
504 795
505 do 796 do
506 ncur <<= 1; 797 ncur <<= 1;
507 while (cnt > ncur); 798 while (cnt > ncur);
508 799
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 802 {
512 ncur *= elem; 803 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 805 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 806 ncur /= elem;
516 } 807 }
517 808
518 return ncur; 809 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 813array_realloc (int elem, void *base, int *cur, int cnt)
523{ 814{
524 *cur = array_nextsize (elem, *cur, cnt); 815 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 816 return ev_realloc (base, elem * *cur);
526} 817}
818
819#define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 821
528#define array_needsize(type,base,cur,cnt,init) \ 822#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 823 if (expect_false ((cnt) > (cur))) \
530 { \ 824 { \
531 int ocur_ = (cur); \ 825 int ocur_ = (cur); \
543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
544 } 838 }
545#endif 839#endif
546 840
547#define array_free(stem, idx) \ 841#define array_free(stem, idx) \
548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
549 843
550/*****************************************************************************/ 844/*****************************************************************************/
845
846/* dummy callback for pending events */
847static void noinline
848pendingcb (EV_P_ ev_prepare *w, int revents)
849{
850}
551 851
552void noinline 852void noinline
553ev_feed_event (EV_P_ void *w, int revents) 853ev_feed_event (EV_P_ void *w, int revents)
554{ 854{
555 W w_ = (W)w; 855 W w_ = (W)w;
564 pendings [pri][w_->pending - 1].w = w_; 864 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents; 865 pendings [pri][w_->pending - 1].events = revents;
566 } 866 }
567} 867}
568 868
569void inline_speed 869inline_speed void
870feed_reverse (EV_P_ W w)
871{
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874}
875
876inline_size void
877feed_reverse_done (EV_P_ int revents)
878{
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882}
883
884inline_speed void
570queue_events (EV_P_ W *events, int eventcnt, int type) 885queue_events (EV_P_ W *events, int eventcnt, int type)
571{ 886{
572 int i; 887 int i;
573 888
574 for (i = 0; i < eventcnt; ++i) 889 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type); 890 ev_feed_event (EV_A_ events [i], type);
576} 891}
577 892
578/*****************************************************************************/ 893/*****************************************************************************/
579 894
580void inline_size 895inline_speed void
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed
594fd_event (EV_P_ int fd, int revents) 896fd_event_nc (EV_P_ int fd, int revents)
595{ 897{
596 ANFD *anfd = anfds + fd; 898 ANFD *anfd = anfds + fd;
597 ev_io *w; 899 ev_io *w;
598 900
599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
603 if (ev) 905 if (ev)
604 ev_feed_event (EV_A_ (W)w, ev); 906 ev_feed_event (EV_A_ (W)w, ev);
605 } 907 }
606} 908}
607 909
910/* do not submit kernel events for fds that have reify set */
911/* because that means they changed while we were polling for new events */
912inline_speed void
913fd_event (EV_P_ int fd, int revents)
914{
915 ANFD *anfd = anfds + fd;
916
917 if (expect_true (!anfd->reify))
918 fd_event_nc (EV_A_ fd, revents);
919}
920
608void 921void
609ev_feed_fd_event (EV_P_ int fd, int revents) 922ev_feed_fd_event (EV_P_ int fd, int revents)
610{ 923{
611 if (fd >= 0 && fd < anfdmax) 924 if (fd >= 0 && fd < anfdmax)
612 fd_event (EV_A_ fd, revents); 925 fd_event_nc (EV_A_ fd, revents);
613} 926}
614 927
615void inline_size 928/* make sure the external fd watch events are in-sync */
929/* with the kernel/libev internal state */
930inline_size void
616fd_reify (EV_P) 931fd_reify (EV_P)
617{ 932{
618 int i; 933 int i;
619 934
620 for (i = 0; i < fdchangecnt; ++i) 935 for (i = 0; i < fdchangecnt; ++i)
629 events |= (unsigned char)w->events; 944 events |= (unsigned char)w->events;
630 945
631#if EV_SELECT_IS_WINSOCKET 946#if EV_SELECT_IS_WINSOCKET
632 if (events) 947 if (events)
633 { 948 {
634 unsigned long argp; 949 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else
638 anfd->handle = _get_osfhandle (fd);
639 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
641 } 952 }
642#endif 953#endif
643 954
644 { 955 {
645 unsigned char o_events = anfd->events; 956 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify; 957 unsigned char o_reify = anfd->reify;
647 958
648 anfd->reify = 0; 959 anfd->reify = 0;
649 anfd->events = events; 960 anfd->events = events;
650 961
651 if (o_events != events || o_reify & EV_IOFDSET) 962 if (o_events != events || o_reify & EV__IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events); 963 backend_modify (EV_A_ fd, o_events, events);
653 } 964 }
654 } 965 }
655 966
656 fdchangecnt = 0; 967 fdchangecnt = 0;
657} 968}
658 969
659void inline_size 970/* something about the given fd changed */
971inline_size void
660fd_change (EV_P_ int fd, int flags) 972fd_change (EV_P_ int fd, int flags)
661{ 973{
662 unsigned char reify = anfds [fd].reify; 974 unsigned char reify = anfds [fd].reify;
663 anfds [fd].reify |= flags; 975 anfds [fd].reify |= flags;
664 976
668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
669 fdchanges [fdchangecnt - 1] = fd; 981 fdchanges [fdchangecnt - 1] = fd;
670 } 982 }
671} 983}
672 984
673void inline_speed 985/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986inline_speed void
674fd_kill (EV_P_ int fd) 987fd_kill (EV_P_ int fd)
675{ 988{
676 ev_io *w; 989 ev_io *w;
677 990
678 while ((w = (ev_io *)anfds [fd].head)) 991 while ((w = (ev_io *)anfds [fd].head))
680 ev_io_stop (EV_A_ w); 993 ev_io_stop (EV_A_ w);
681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
682 } 995 }
683} 996}
684 997
685int inline_size 998/* check whether the given fd is actually valid, for error recovery */
999inline_size int
686fd_valid (int fd) 1000fd_valid (int fd)
687{ 1001{
688#ifdef _WIN32 1002#ifdef _WIN32
689 return _get_osfhandle (fd) != -1; 1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
690#else 1004#else
691 return fcntl (fd, F_GETFD) != -1; 1005 return fcntl (fd, F_GETFD) != -1;
692#endif 1006#endif
693} 1007}
694 1008
698{ 1012{
699 int fd; 1013 int fd;
700 1014
701 for (fd = 0; fd < anfdmax; ++fd) 1015 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 1016 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 1017 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 1018 fd_kill (EV_A_ fd);
705} 1019}
706 1020
707/* called on ENOMEM in select/poll to kill some fds and retry */ 1021/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 1022static void noinline
712 1026
713 for (fd = anfdmax; fd--; ) 1027 for (fd = anfdmax; fd--; )
714 if (anfds [fd].events) 1028 if (anfds [fd].events)
715 { 1029 {
716 fd_kill (EV_A_ fd); 1030 fd_kill (EV_A_ fd);
717 return; 1031 break;
718 } 1032 }
719} 1033}
720 1034
721/* usually called after fork if backend needs to re-arm all fds from scratch */ 1035/* usually called after fork if backend needs to re-arm all fds from scratch */
722static void noinline 1036static void noinline
726 1040
727 for (fd = 0; fd < anfdmax; ++fd) 1041 for (fd = 0; fd < anfdmax; ++fd)
728 if (anfds [fd].events) 1042 if (anfds [fd].events)
729 { 1043 {
730 anfds [fd].events = 0; 1044 anfds [fd].events = 0;
1045 anfds [fd].emask = 0;
731 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
732 } 1047 }
733} 1048}
734 1049
735/*****************************************************************************/ 1050/* used to prepare libev internal fd's */
736 1051/* this is not fork-safe */
737void inline_speed 1052inline_speed void
738upheap (WT *heap, int k)
739{
740 WT w = heap [k];
741
742 while (k)
743 {
744 int p = (k - 1) >> 1;
745
746 if (heap [p]->at <= w->at)
747 break;
748
749 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1;
751 k = p;
752 }
753
754 heap [k] = w;
755 ((W)heap [k])->active = k + 1;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784}
785
786void inline_size
787adjustheap (WT *heap, int N, int k)
788{
789 upheap (heap, k);
790 downheap (heap, N, k);
791}
792
793/*****************************************************************************/
794
795typedef struct
796{
797 WL head;
798 EV_ATOMIC_T gotsig;
799} ANSIG;
800
801static ANSIG *signals;
802static int signalmax;
803
804static EV_ATOMIC_T gotsig;
805
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817
818/*****************************************************************************/
819
820void inline_speed
821fd_intern (int fd) 1053fd_intern (int fd)
822{ 1054{
823#ifdef _WIN32 1055#ifdef _WIN32
824 int arg = 1; 1056 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
826#else 1058#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 1060 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 1061#endif
830} 1062}
831 1063
1064/*****************************************************************************/
1065
1066/*
1067 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069 * the branching factor of the d-tree.
1070 */
1071
1072/*
1073 * at the moment we allow libev the luxury of two heaps,
1074 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075 * which is more cache-efficient.
1076 * the difference is about 5% with 50000+ watchers.
1077 */
1078#if EV_USE_4HEAP
1079
1080#define DHEAP 4
1081#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083#define UPHEAP_DONE(p,k) ((p) == (k))
1084
1085/* away from the root */
1086inline_speed void
1087downheap (ANHE *heap, int N, int k)
1088{
1089 ANHE he = heap [k];
1090 ANHE *E = heap + N + HEAP0;
1091
1092 for (;;)
1093 {
1094 ev_tstamp minat;
1095 ANHE *minpos;
1096 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097
1098 /* find minimum child */
1099 if (expect_true (pos + DHEAP - 1 < E))
1100 {
1101 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 }
1106 else if (pos < E)
1107 {
1108 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else
1114 break;
1115
1116 if (ANHE_at (he) <= minat)
1117 break;
1118
1119 heap [k] = *minpos;
1120 ev_active (ANHE_w (*minpos)) = k;
1121
1122 k = minpos - heap;
1123 }
1124
1125 heap [k] = he;
1126 ev_active (ANHE_w (he)) = k;
1127}
1128
1129#else /* 4HEAP */
1130
1131#define HEAP0 1
1132#define HPARENT(k) ((k) >> 1)
1133#define UPHEAP_DONE(p,k) (!(p))
1134
1135/* away from the root */
1136inline_speed void
1137downheap (ANHE *heap, int N, int k)
1138{
1139 ANHE he = heap [k];
1140
1141 for (;;)
1142 {
1143 int c = k << 1;
1144
1145 if (c >= N + HEAP0)
1146 break;
1147
1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149 ? 1 : 0;
1150
1151 if (ANHE_at (he) <= ANHE_at (heap [c]))
1152 break;
1153
1154 heap [k] = heap [c];
1155 ev_active (ANHE_w (heap [k])) = k;
1156
1157 k = c;
1158 }
1159
1160 heap [k] = he;
1161 ev_active (ANHE_w (he)) = k;
1162}
1163#endif
1164
1165/* towards the root */
1166inline_speed void
1167upheap (ANHE *heap, int k)
1168{
1169 ANHE he = heap [k];
1170
1171 for (;;)
1172 {
1173 int p = HPARENT (k);
1174
1175 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 break;
1177
1178 heap [k] = heap [p];
1179 ev_active (ANHE_w (heap [k])) = k;
1180 k = p;
1181 }
1182
1183 heap [k] = he;
1184 ev_active (ANHE_w (he)) = k;
1185}
1186
1187/* move an element suitably so it is in a correct place */
1188inline_size void
1189adjustheap (ANHE *heap, int N, int k)
1190{
1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 upheap (heap, k);
1193 else
1194 downheap (heap, N, k);
1195}
1196
1197/* rebuild the heap: this function is used only once and executed rarely */
1198inline_size void
1199reheap (ANHE *heap, int N)
1200{
1201 int i;
1202
1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205 for (i = 0; i < N; ++i)
1206 upheap (heap, i + HEAP0);
1207}
1208
1209/*****************************************************************************/
1210
1211/* associate signal watchers to a signal signal */
1212typedef struct
1213{
1214 EV_ATOMIC_T pending;
1215#if EV_MULTIPLICITY
1216 EV_P;
1217#endif
1218 WL head;
1219} ANSIG;
1220
1221static ANSIG signals [EV_NSIG - 1];
1222
1223/*****************************************************************************/
1224
1225#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226
832static void noinline 1227static void noinline
833evpipe_init (EV_P) 1228evpipe_init (EV_P)
834{ 1229{
835 if (!ev_is_active (&pipeev)) 1230 if (!ev_is_active (&pipe_w))
836 { 1231 {
837#if EV_USE_EVENTFD 1232# if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
838 if ((evfd = eventfd (0, 0)) >= 0) 1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
839 { 1238 {
840 evpipe [0] = -1; 1239 evpipe [0] = -1;
841 fd_intern (evfd); 1240 fd_intern (evfd); /* doing it twice doesn't hurt */
842 ev_io_set (&pipeev, evfd, EV_READ); 1241 ev_io_set (&pipe_w, evfd, EV_READ);
843 } 1242 }
844 else 1243 else
845#endif 1244# endif
846 { 1245 {
847 while (pipe (evpipe)) 1246 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe"); 1247 ev_syserr ("(libev) error creating signal/async pipe");
849 1248
850 fd_intern (evpipe [0]); 1249 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]); 1250 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ); 1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
853 } 1252 }
854 1253
855 ev_io_start (EV_A_ &pipeev); 1254 ev_io_start (EV_A_ &pipe_w);
856 ev_unref (EV_A); /* watcher should not keep loop alive */ 1255 ev_unref (EV_A); /* watcher should not keep loop alive */
857 } 1256 }
858} 1257}
859 1258
860void inline_size 1259inline_size void
861evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1260evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{ 1261{
863 if (!*flag) 1262 if (!*flag)
864 { 1263 {
865 int old_errno = errno; /* save errno because write might clobber it */ 1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
866 1266
867 *flag = 1; 1267 *flag = 1;
868 1268
869#if EV_USE_EVENTFD 1269#if EV_USE_EVENTFD
870 if (evfd >= 0) 1270 if (evfd >= 0)
872 uint64_t counter = 1; 1272 uint64_t counter = 1;
873 write (evfd, &counter, sizeof (uint64_t)); 1273 write (evfd, &counter, sizeof (uint64_t));
874 } 1274 }
875 else 1275 else
876#endif 1276#endif
877 write (evpipe [1], &old_errno, 1); 1277 write (evpipe [1], &dummy, 1);
878 1278
879 errno = old_errno; 1279 errno = old_errno;
880 } 1280 }
881} 1281}
882 1282
1283/* called whenever the libev signal pipe */
1284/* got some events (signal, async) */
883static void 1285static void
884pipecb (EV_P_ ev_io *iow, int revents) 1286pipecb (EV_P_ ev_io *iow, int revents)
885{ 1287{
1288 int i;
1289
886#if EV_USE_EVENTFD 1290#if EV_USE_EVENTFD
887 if (evfd >= 0) 1291 if (evfd >= 0)
888 { 1292 {
889 uint64_t counter = 1; 1293 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1294 read (evfd, &counter, sizeof (uint64_t));
891 } 1295 }
892 else 1296 else
893#endif 1297#endif
894 { 1298 {
895 char dummy; 1299 char dummy;
896 read (evpipe [0], &dummy, 1); 1300 read (evpipe [0], &dummy, 1);
897 } 1301 }
898 1302
899 if (gotsig && ev_is_default_loop (EV_A)) 1303 if (sig_pending)
900 { 1304 {
901 int signum; 1305 sig_pending = 0;
902 gotsig = 0;
903 1306
904 for (signum = signalmax; signum--; ) 1307 for (i = EV_NSIG - 1; i--; )
905 if (signals [signum].gotsig) 1308 if (expect_false (signals [i].pending))
906 ev_feed_signal_event (EV_A_ signum + 1); 1309 ev_feed_signal_event (EV_A_ i + 1);
907 } 1310 }
908 1311
909#if EV_ASYNC_ENABLE 1312#if EV_ASYNC_ENABLE
910 if (gotasync) 1313 if (async_pending)
911 { 1314 {
912 int i; 1315 async_pending = 0;
913 gotasync = 0;
914 1316
915 for (i = asynccnt; i--; ) 1317 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent) 1318 if (asyncs [i]->sent)
917 { 1319 {
918 asyncs [i]->sent = 0; 1320 asyncs [i]->sent = 0;
926 1328
927static void 1329static void
928ev_sighandler (int signum) 1330ev_sighandler (int signum)
929{ 1331{
930#if EV_MULTIPLICITY 1332#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct; 1333 EV_P = signals [signum - 1].loop;
932#endif 1334#endif
933 1335
934#if _WIN32 1336#ifdef _WIN32
935 signal (signum, ev_sighandler); 1337 signal (signum, ev_sighandler);
936#endif 1338#endif
937 1339
938 signals [signum - 1].gotsig = 1; 1340 signals [signum - 1].pending = 1;
939 evpipe_write (EV_A_ &gotsig); 1341 evpipe_write (EV_A_ &sig_pending);
940} 1342}
941 1343
942void noinline 1344void noinline
943ev_feed_signal_event (EV_P_ int signum) 1345ev_feed_signal_event (EV_P_ int signum)
944{ 1346{
945 WL w; 1347 WL w;
946 1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
947#if EV_MULTIPLICITY 1354#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1355 /* it is permissible to try to feed a signal to the wrong loop */
949#endif 1356 /* or, likely more useful, feeding a signal nobody is waiting for */
950 1357
951 --signum; 1358 if (expect_false (signals [signum].loop != EV_A))
952
953 if (signum < 0 || signum >= signalmax)
954 return; 1359 return;
1360#endif
955 1361
956 signals [signum].gotsig = 0; 1362 signals [signum].pending = 0;
957 1363
958 for (w = signals [signum].head; w; w = w->next) 1364 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960} 1366}
961 1367
1368#if EV_USE_SIGNALFD
1369static void
1370sigfdcb (EV_P_ ev_io *iow, int revents)
1371{
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385}
1386#endif
1387
1388#endif
1389
962/*****************************************************************************/ 1390/*****************************************************************************/
963 1391
1392#if EV_CHILD_ENABLE
964static WL childs [EV_PID_HASHSIZE]; 1393static WL childs [EV_PID_HASHSIZE];
965
966#ifndef _WIN32
967 1394
968static ev_signal childev; 1395static ev_signal childev;
969 1396
970#ifndef WIFCONTINUED 1397#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0 1398# define WIFCONTINUED(status) 0
972#endif 1399#endif
973 1400
974void inline_speed 1401/* handle a single child status event */
1402inline_speed void
975child_reap (EV_P_ int chain, int pid, int status) 1403child_reap (EV_P_ int chain, int pid, int status)
976{ 1404{
977 ev_child *w; 1405 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979 1407
992 1420
993#ifndef WCONTINUED 1421#ifndef WCONTINUED
994# define WCONTINUED 0 1422# define WCONTINUED 0
995#endif 1423#endif
996 1424
1425/* called on sigchld etc., calls waitpid */
997static void 1426static void
998childcb (EV_P_ ev_signal *sw, int revents) 1427childcb (EV_P_ ev_signal *sw, int revents)
999{ 1428{
1000 int pid, status; 1429 int pid, status;
1001 1430
1082 /* kqueue is borked on everything but netbsd apparently */ 1511 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */ 1512 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE; 1513 flags &= ~EVBACKEND_KQUEUE;
1085#endif 1514#endif
1086#ifdef __APPLE__ 1515#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation 1516 /* only select works correctly on that "unix-certified" platform */
1088 flags &= ~EVBACKEND_POLL; 1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1089#endif 1519#endif
1090 1520
1091 return flags; 1521 return flags;
1092} 1522}
1093 1523
1107ev_backend (EV_P) 1537ev_backend (EV_P)
1108{ 1538{
1109 return backend; 1539 return backend;
1110} 1540}
1111 1541
1542#if EV_MINIMAL < 2
1112unsigned int 1543unsigned int
1113ev_loop_count (EV_P) 1544ev_loop_count (EV_P)
1114{ 1545{
1115 return loop_count; 1546 return loop_count;
1116} 1547}
1117 1548
1549unsigned int
1550ev_loop_depth (EV_P)
1551{
1552 return loop_depth;
1553}
1554
1118void 1555void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1556ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{ 1557{
1121 io_blocktime = interval; 1558 io_blocktime = interval;
1122} 1559}
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1562ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{ 1563{
1127 timeout_blocktime = interval; 1564 timeout_blocktime = interval;
1128} 1565}
1129 1566
1567void
1568ev_set_userdata (EV_P_ void *data)
1569{
1570 userdata = data;
1571}
1572
1573void *
1574ev_userdata (EV_P)
1575{
1576 return userdata;
1577}
1578
1579void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580{
1581 invoke_cb = invoke_pending_cb;
1582}
1583
1584void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585{
1586 release_cb = release;
1587 acquire_cb = acquire;
1588}
1589#endif
1590
1591/* initialise a loop structure, must be zero-initialised */
1130static void noinline 1592static void noinline
1131loop_init (EV_P_ unsigned int flags) 1593loop_init (EV_P_ unsigned int flags)
1132{ 1594{
1133 if (!backend) 1595 if (!backend)
1134 { 1596 {
1597#if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605#endif
1606
1135#if EV_USE_MONOTONIC 1607#if EV_USE_MONOTONIC
1608 if (!have_monotonic)
1136 { 1609 {
1137 struct timespec ts; 1610 struct timespec ts;
1611
1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1139 have_monotonic = 1; 1613 have_monotonic = 1;
1140 } 1614 }
1141#endif 1615#endif
1616
1617 /* pid check not overridable via env */
1618#ifndef _WIN32
1619 if (flags & EVFLAG_FORKCHECK)
1620 curpid = getpid ();
1621#endif
1622
1623 if (!(flags & EVFLAG_NOENV)
1624 && !enable_secure ()
1625 && getenv ("LIBEV_FLAGS"))
1626 flags = atoi (getenv ("LIBEV_FLAGS"));
1142 1627
1143 ev_rt_now = ev_time (); 1628 ev_rt_now = ev_time ();
1144 mn_now = get_clock (); 1629 mn_now = get_clock ();
1145 now_floor = mn_now; 1630 now_floor = mn_now;
1146 rtmn_diff = ev_rt_now - mn_now; 1631 rtmn_diff = ev_rt_now - mn_now;
1632#if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634#endif
1147 1635
1148 io_blocktime = 0.; 1636 io_blocktime = 0.;
1149 timeout_blocktime = 0.; 1637 timeout_blocktime = 0.;
1150 backend = 0; 1638 backend = 0;
1151 backend_fd = -1; 1639 backend_fd = -1;
1152 gotasync = 0; 1640 sig_pending = 0;
1641#if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643#endif
1153#if EV_USE_INOTIFY 1644#if EV_USE_INOTIFY
1154 fs_fd = -2; 1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1155#endif 1646#endif
1156 1647#if EV_USE_SIGNALFD
1157 /* pid check not overridable via env */ 1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1158#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid ();
1161#endif 1649#endif
1162 1650
1163 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS"));
1167
1168 if (!(flags & 0x0000ffffUL)) 1651 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1652 flags |= ev_recommended_backends ();
1170 1653
1171#if EV_USE_PORT 1654#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1655 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1656#endif
1182#endif 1665#endif
1183#if EV_USE_SELECT 1666#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif 1668#endif
1186 1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1187 ev_init (&pipeev, pipecb); 1673 ev_init (&pipe_w, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI); 1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675#endif
1189 } 1676 }
1190} 1677}
1191 1678
1679/* free up a loop structure */
1192static void noinline 1680static void noinline
1193loop_destroy (EV_P) 1681loop_destroy (EV_P)
1194{ 1682{
1195 int i; 1683 int i;
1196 1684
1197 if (ev_is_active (&pipeev)) 1685 if (ev_is_active (&pipe_w))
1198 { 1686 {
1199 ev_ref (EV_A); /* signal watcher */ 1687 /*ev_ref (EV_A);*/
1200 ev_io_stop (EV_A_ &pipeev); 1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1201 1689
1202#if EV_USE_EVENTFD 1690#if EV_USE_EVENTFD
1203 if (evfd >= 0) 1691 if (evfd >= 0)
1204 close (evfd); 1692 close (evfd);
1205#endif 1693#endif
1206 1694
1207 if (evpipe [0] >= 0) 1695 if (evpipe [0] >= 0)
1208 { 1696 {
1209 close (evpipe [0]); 1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1210 close (evpipe [1]); 1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1211 } 1699 }
1212 } 1700 }
1701
1702#if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705#endif
1213 1706
1214#if EV_USE_INOTIFY 1707#if EV_USE_INOTIFY
1215 if (fs_fd >= 0) 1708 if (fs_fd >= 0)
1216 close (fs_fd); 1709 close (fs_fd);
1217#endif 1710#endif
1241#if EV_IDLE_ENABLE 1734#if EV_IDLE_ENABLE
1242 array_free (idle, [i]); 1735 array_free (idle, [i]);
1243#endif 1736#endif
1244 } 1737 }
1245 1738
1246 ev_free (anfds); anfdmax = 0; 1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1247 1740
1248 /* have to use the microsoft-never-gets-it-right macro */ 1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1249 array_free (fdchange, EMPTY); 1743 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY); 1744 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE 1745#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY); 1746 array_free (periodic, EMPTY);
1253#endif 1747#endif
1261#endif 1755#endif
1262 1756
1263 backend = 0; 1757 backend = 0;
1264} 1758}
1265 1759
1760#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1761inline_size void infy_fork (EV_P);
1762#endif
1267 1763
1268void inline_size 1764inline_size void
1269loop_fork (EV_P) 1765loop_fork (EV_P)
1270{ 1766{
1271#if EV_USE_PORT 1767#if EV_USE_PORT
1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1273#endif 1769#endif
1279#endif 1775#endif
1280#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1281 infy_fork (EV_A); 1777 infy_fork (EV_A);
1282#endif 1778#endif
1283 1779
1284 if (ev_is_active (&pipeev)) 1780 if (ev_is_active (&pipe_w))
1285 { 1781 {
1286 /* this "locks" the handlers against writing to the pipe */ 1782 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */ 1783 /* while we modify the fd vars */
1288 gotsig = 1; 1784 sig_pending = 1;
1289#if EV_ASYNC_ENABLE 1785#if EV_ASYNC_ENABLE
1290 gotasync = 1; 1786 async_pending = 1;
1291#endif 1787#endif
1292 1788
1293 ev_ref (EV_A); 1789 ev_ref (EV_A);
1294 ev_io_stop (EV_A_ &pipeev); 1790 ev_io_stop (EV_A_ &pipe_w);
1295 1791
1296#if EV_USE_EVENTFD 1792#if EV_USE_EVENTFD
1297 if (evfd >= 0) 1793 if (evfd >= 0)
1298 close (evfd); 1794 close (evfd);
1299#endif 1795#endif
1300 1796
1301 if (evpipe [0] >= 0) 1797 if (evpipe [0] >= 0)
1302 { 1798 {
1303 close (evpipe [0]); 1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1304 close (evpipe [1]); 1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1305 } 1801 }
1306 1802
1307 evpipe_init (EV_A); 1803 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */ 1804 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ); 1805 pipecb (EV_A_ &pipe_w, EV_READ);
1310 } 1806 }
1311 1807
1312 postfork = 0; 1808 postfork = 0;
1313} 1809}
1314 1810
1315#if EV_MULTIPLICITY 1811#if EV_MULTIPLICITY
1812
1316struct ev_loop * 1813struct ev_loop *
1317ev_loop_new (unsigned int flags) 1814ev_loop_new (unsigned int flags)
1318{ 1815{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1817
1321 memset (loop, 0, sizeof (struct ev_loop)); 1818 memset (EV_A, 0, sizeof (struct ev_loop));
1322
1323 loop_init (EV_A_ flags); 1819 loop_init (EV_A_ flags);
1324 1820
1325 if (ev_backend (EV_A)) 1821 if (ev_backend (EV_A))
1326 return loop; 1822 return EV_A;
1327 1823
1328 return 0; 1824 return 0;
1329} 1825}
1330 1826
1331void 1827void
1338void 1834void
1339ev_loop_fork (EV_P) 1835ev_loop_fork (EV_P)
1340{ 1836{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1837 postfork = 1; /* must be in line with ev_default_fork */
1342} 1838}
1839#endif /* multiplicity */
1343 1840
1841#if EV_VERIFY
1842static void noinline
1843verify_watcher (EV_P_ W w)
1844{
1845 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1846
1847 if (w->pending)
1848 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1849}
1850
1851static void noinline
1852verify_heap (EV_P_ ANHE *heap, int N)
1853{
1854 int i;
1855
1856 for (i = HEAP0; i < N + HEAP0; ++i)
1857 {
1858 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1859 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1860 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1861
1862 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1863 }
1864}
1865
1866static void noinline
1867array_verify (EV_P_ W *ws, int cnt)
1868{
1869 while (cnt--)
1870 {
1871 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1872 verify_watcher (EV_A_ ws [cnt]);
1873 }
1874}
1875#endif
1876
1877#if EV_MINIMAL < 2
1878void
1879ev_loop_verify (EV_P)
1880{
1881#if EV_VERIFY
1882 int i;
1883 WL w;
1884
1885 assert (activecnt >= -1);
1886
1887 assert (fdchangemax >= fdchangecnt);
1888 for (i = 0; i < fdchangecnt; ++i)
1889 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1890
1891 assert (anfdmax >= 0);
1892 for (i = 0; i < anfdmax; ++i)
1893 for (w = anfds [i].head; w; w = w->next)
1894 {
1895 verify_watcher (EV_A_ (W)w);
1896 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1897 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1898 }
1899
1900 assert (timermax >= timercnt);
1901 verify_heap (EV_A_ timers, timercnt);
1902
1903#if EV_PERIODIC_ENABLE
1904 assert (periodicmax >= periodiccnt);
1905 verify_heap (EV_A_ periodics, periodiccnt);
1906#endif
1907
1908 for (i = NUMPRI; i--; )
1909 {
1910 assert (pendingmax [i] >= pendingcnt [i]);
1911#if EV_IDLE_ENABLE
1912 assert (idleall >= 0);
1913 assert (idlemax [i] >= idlecnt [i]);
1914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1915#endif
1916 }
1917
1918#if EV_FORK_ENABLE
1919 assert (forkmax >= forkcnt);
1920 array_verify (EV_A_ (W *)forks, forkcnt);
1921#endif
1922
1923#if EV_ASYNC_ENABLE
1924 assert (asyncmax >= asynccnt);
1925 array_verify (EV_A_ (W *)asyncs, asynccnt);
1926#endif
1927
1928 assert (preparemax >= preparecnt);
1929 array_verify (EV_A_ (W *)prepares, preparecnt);
1930
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933
1934# if 0
1935#if EV_CHILD_ENABLE
1936 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1937 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1938#endif
1939# endif
1940#endif
1941}
1344#endif 1942#endif
1345 1943
1346#if EV_MULTIPLICITY 1944#if EV_MULTIPLICITY
1347struct ev_loop * 1945struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1946ev_default_loop_init (unsigned int flags)
1352#endif 1950#endif
1353{ 1951{
1354 if (!ev_default_loop_ptr) 1952 if (!ev_default_loop_ptr)
1355 { 1953 {
1356#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1955 EV_P = ev_default_loop_ptr = &default_loop_struct;
1358#else 1956#else
1359 ev_default_loop_ptr = 1; 1957 ev_default_loop_ptr = 1;
1360#endif 1958#endif
1361 1959
1362 loop_init (EV_A_ flags); 1960 loop_init (EV_A_ flags);
1363 1961
1364 if (ev_backend (EV_A)) 1962 if (ev_backend (EV_A))
1365 { 1963 {
1366#ifndef _WIN32 1964#if EV_CHILD_ENABLE
1367 ev_signal_init (&childev, childcb, SIGCHLD); 1965 ev_signal_init (&childev, childcb, SIGCHLD);
1368 ev_set_priority (&childev, EV_MAXPRI); 1966 ev_set_priority (&childev, EV_MAXPRI);
1369 ev_signal_start (EV_A_ &childev); 1967 ev_signal_start (EV_A_ &childev);
1370 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1968 ev_unref (EV_A); /* child watcher should not keep loop alive */
1371#endif 1969#endif
1379 1977
1380void 1978void
1381ev_default_destroy (void) 1979ev_default_destroy (void)
1382{ 1980{
1383#if EV_MULTIPLICITY 1981#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr; 1982 EV_P = ev_default_loop_ptr;
1385#endif 1983#endif
1386 1984
1387#ifndef _WIN32 1985 ev_default_loop_ptr = 0;
1986
1987#if EV_CHILD_ENABLE
1388 ev_ref (EV_A); /* child watcher */ 1988 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev); 1989 ev_signal_stop (EV_A_ &childev);
1390#endif 1990#endif
1391 1991
1392 loop_destroy (EV_A); 1992 loop_destroy (EV_A);
1394 1994
1395void 1995void
1396ev_default_fork (void) 1996ev_default_fork (void)
1397{ 1997{
1398#if EV_MULTIPLICITY 1998#if EV_MULTIPLICITY
1399 struct ev_loop *loop = ev_default_loop_ptr; 1999 EV_P = ev_default_loop_ptr;
1400#endif 2000#endif
1401 2001
1402 if (backend)
1403 postfork = 1; /* must be in line with ev_loop_fork */ 2002 postfork = 1; /* must be in line with ev_loop_fork */
1404} 2003}
1405 2004
1406/*****************************************************************************/ 2005/*****************************************************************************/
1407 2006
1408void 2007void
1409ev_invoke (EV_P_ void *w, int revents) 2008ev_invoke (EV_P_ void *w, int revents)
1410{ 2009{
1411 EV_CB_INVOKE ((W)w, revents); 2010 EV_CB_INVOKE ((W)w, revents);
1412} 2011}
1413 2012
1414void inline_speed 2013unsigned int
1415call_pending (EV_P) 2014ev_pending_count (EV_P)
2015{
2016 int pri;
2017 unsigned int count = 0;
2018
2019 for (pri = NUMPRI; pri--; )
2020 count += pendingcnt [pri];
2021
2022 return count;
2023}
2024
2025void noinline
2026ev_invoke_pending (EV_P)
1416{ 2027{
1417 int pri; 2028 int pri;
1418 2029
1419 for (pri = NUMPRI; pri--; ) 2030 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 2031 while (pendingcnt [pri])
1421 { 2032 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2033 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 2034
1424 if (expect_true (p->w))
1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2035 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2036 /* ^ this is no longer true, as pending_w could be here */
1427 2037
1428 p->w->pending = 0; 2038 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 2039 EV_CB_INVOKE (p->w, p->events);
1430 } 2040 EV_FREQUENT_CHECK;
1431 } 2041 }
1432} 2042}
1433 2043
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 2044#if EV_IDLE_ENABLE
1515void inline_size 2045/* make idle watchers pending. this handles the "call-idle */
2046/* only when higher priorities are idle" logic */
2047inline_size void
1516idle_reify (EV_P) 2048idle_reify (EV_P)
1517{ 2049{
1518 if (expect_false (idleall)) 2050 if (expect_false (idleall))
1519 { 2051 {
1520 int pri; 2052 int pri;
1532 } 2064 }
1533 } 2065 }
1534} 2066}
1535#endif 2067#endif
1536 2068
1537void inline_speed 2069/* make timers pending */
2070inline_size void
2071timers_reify (EV_P)
2072{
2073 EV_FREQUENT_CHECK;
2074
2075 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2076 {
2077 do
2078 {
2079 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2080
2081 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2082
2083 /* first reschedule or stop timer */
2084 if (w->repeat)
2085 {
2086 ev_at (w) += w->repeat;
2087 if (ev_at (w) < mn_now)
2088 ev_at (w) = mn_now;
2089
2090 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2091
2092 ANHE_at_cache (timers [HEAP0]);
2093 downheap (timers, timercnt, HEAP0);
2094 }
2095 else
2096 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2097
2098 EV_FREQUENT_CHECK;
2099 feed_reverse (EV_A_ (W)w);
2100 }
2101 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2102
2103 feed_reverse_done (EV_A_ EV_TIMEOUT);
2104 }
2105}
2106
2107#if EV_PERIODIC_ENABLE
2108/* make periodics pending */
2109inline_size void
2110periodics_reify (EV_P)
2111{
2112 EV_FREQUENT_CHECK;
2113
2114 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2115 {
2116 int feed_count = 0;
2117
2118 do
2119 {
2120 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2121
2122 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2123
2124 /* first reschedule or stop timer */
2125 if (w->reschedule_cb)
2126 {
2127 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2128
2129 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2130
2131 ANHE_at_cache (periodics [HEAP0]);
2132 downheap (periodics, periodiccnt, HEAP0);
2133 }
2134 else if (w->interval)
2135 {
2136 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2137 /* if next trigger time is not sufficiently in the future, put it there */
2138 /* this might happen because of floating point inexactness */
2139 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2140 {
2141 ev_at (w) += w->interval;
2142
2143 /* if interval is unreasonably low we might still have a time in the past */
2144 /* so correct this. this will make the periodic very inexact, but the user */
2145 /* has effectively asked to get triggered more often than possible */
2146 if (ev_at (w) < ev_rt_now)
2147 ev_at (w) = ev_rt_now;
2148 }
2149
2150 ANHE_at_cache (periodics [HEAP0]);
2151 downheap (periodics, periodiccnt, HEAP0);
2152 }
2153 else
2154 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2155
2156 EV_FREQUENT_CHECK;
2157 feed_reverse (EV_A_ (W)w);
2158 }
2159 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2160
2161 feed_reverse_done (EV_A_ EV_PERIODIC);
2162 }
2163}
2164
2165/* simply recalculate all periodics */
2166/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2167static void noinline
2168periodics_reschedule (EV_P)
2169{
2170 int i;
2171
2172 /* adjust periodics after time jump */
2173 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2174 {
2175 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2176
2177 if (w->reschedule_cb)
2178 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2179 else if (w->interval)
2180 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2181
2182 ANHE_at_cache (periodics [i]);
2183 }
2184
2185 reheap (periodics, periodiccnt);
2186}
2187#endif
2188
2189/* adjust all timers by a given offset */
2190static void noinline
2191timers_reschedule (EV_P_ ev_tstamp adjust)
2192{
2193 int i;
2194
2195 for (i = 0; i < timercnt; ++i)
2196 {
2197 ANHE *he = timers + i + HEAP0;
2198 ANHE_w (*he)->at += adjust;
2199 ANHE_at_cache (*he);
2200 }
2201}
2202
2203/* fetch new monotonic and realtime times from the kernel */
2204/* also detect if there was a timejump, and act accordingly */
2205inline_speed void
1538time_update (EV_P_ ev_tstamp max_block) 2206time_update (EV_P_ ev_tstamp max_block)
1539{ 2207{
1540 int i;
1541
1542#if EV_USE_MONOTONIC 2208#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic)) 2209 if (expect_true (have_monotonic))
1544 { 2210 {
2211 int i;
1545 ev_tstamp odiff = rtmn_diff; 2212 ev_tstamp odiff = rtmn_diff;
1546 2213
1547 mn_now = get_clock (); 2214 mn_now = get_clock ();
1548 2215
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2216 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1567 */ 2234 */
1568 for (i = 4; --i; ) 2235 for (i = 4; --i; )
1569 { 2236 {
1570 rtmn_diff = ev_rt_now - mn_now; 2237 rtmn_diff = ev_rt_now - mn_now;
1571 2238
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2239 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 2240 return; /* all is well */
1574 2241
1575 ev_rt_now = ev_time (); 2242 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 2243 mn_now = get_clock ();
1577 now_floor = mn_now; 2244 now_floor = mn_now;
1578 } 2245 }
1579 2246
2247 /* no timer adjustment, as the monotonic clock doesn't jump */
2248 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1580# if EV_PERIODIC_ENABLE 2249# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1582# endif 2251# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 } 2252 }
1586 else 2253 else
1587#endif 2254#endif
1588 { 2255 {
1589 ev_rt_now = ev_time (); 2256 ev_rt_now = ev_time ();
1590 2257
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2258 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 { 2259 {
2260 /* adjust timers. this is easy, as the offset is the same for all of them */
2261 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1593#if EV_PERIODIC_ENABLE 2262#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 2263 periodics_reschedule (EV_A);
1595#endif 2264#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i)
1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1599 } 2265 }
1600 2266
1601 mn_now = ev_rt_now; 2267 mn_now = ev_rt_now;
1602 } 2268 }
1603} 2269}
1604 2270
1605void 2271void
1606ev_ref (EV_P)
1607{
1608 ++activecnt;
1609}
1610
1611void
1612ev_unref (EV_P)
1613{
1614 --activecnt;
1615}
1616
1617static int loop_done;
1618
1619void
1620ev_loop (EV_P_ int flags) 2272ev_loop (EV_P_ int flags)
1621{ 2273{
2274#if EV_MINIMAL < 2
2275 ++loop_depth;
2276#endif
2277
2278 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2279
1622 loop_done = EVUNLOOP_CANCEL; 2280 loop_done = EVUNLOOP_CANCEL;
1623 2281
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2282 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1625 2283
1626 do 2284 do
1627 { 2285 {
2286#if EV_VERIFY >= 2
2287 ev_loop_verify (EV_A);
2288#endif
2289
1628#ifndef _WIN32 2290#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 2291 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 2292 if (expect_false (getpid () != curpid))
1631 { 2293 {
1632 curpid = getpid (); 2294 curpid = getpid ();
1638 /* we might have forked, so queue fork handlers */ 2300 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork)) 2301 if (expect_false (postfork))
1640 if (forkcnt) 2302 if (forkcnt)
1641 { 2303 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2304 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A); 2305 EV_INVOKE_PENDING;
1644 } 2306 }
1645#endif 2307#endif
1646 2308
1647 /* queue prepare watchers (and execute them) */ 2309 /* queue prepare watchers (and execute them) */
1648 if (expect_false (preparecnt)) 2310 if (expect_false (preparecnt))
1649 { 2311 {
1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2312 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1651 call_pending (EV_A); 2313 EV_INVOKE_PENDING;
1652 } 2314 }
1653 2315
1654 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1655 break; 2317 break;
1656 2318
1657 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1658 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1659 loop_fork (EV_A); 2321 loop_fork (EV_A);
1666 ev_tstamp waittime = 0.; 2328 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.; 2329 ev_tstamp sleeptime = 0.;
1668 2330
1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1670 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1671 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1672 time_update (EV_A_ 1e100); 2337 time_update (EV_A_ 1e100);
1673 2338
1674 waittime = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1675 2340
1676 if (timercnt) 2341 if (timercnt)
1677 { 2342 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 2344 if (waittime > to) waittime = to;
1680 } 2345 }
1681 2346
1682#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 2348 if (periodiccnt)
1684 { 2349 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 2351 if (waittime > to) waittime = to;
1687 } 2352 }
1688#endif 2353#endif
1689 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
1690 if (expect_false (waittime < timeout_blocktime)) 2356 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime; 2357 waittime = timeout_blocktime;
1692 2358
1693 sleeptime = waittime - backend_fudge; 2359 /* extra check because io_blocktime is commonly 0 */
1694
1695 if (expect_true (sleeptime > io_blocktime)) 2360 if (expect_false (io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 { 2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
1700 ev_sleep (sleeptime); 2369 ev_sleep (sleeptime);
1701 waittime -= sleeptime; 2370 waittime -= sleeptime;
2371 }
1702 } 2372 }
1703 } 2373 }
1704 2374
2375#if EV_MINIMAL < 2
1705 ++loop_count; 2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1706 backend_poll (EV_A_ waittime); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1707 2381
1708 /* update ev_rt_now, do magic */ 2382 /* update ev_rt_now, do magic */
1709 time_update (EV_A_ waittime + sleeptime); 2383 time_update (EV_A_ waittime + sleeptime);
1710 } 2384 }
1711 2385
1722 2396
1723 /* queue check watchers, to be executed first */ 2397 /* queue check watchers, to be executed first */
1724 if (expect_false (checkcnt)) 2398 if (expect_false (checkcnt))
1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2399 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1726 2400
1727 call_pending (EV_A); 2401 EV_INVOKE_PENDING;
1728 } 2402 }
1729 while (expect_true ( 2403 while (expect_true (
1730 activecnt 2404 activecnt
1731 && !loop_done 2405 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2406 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1733 )); 2407 ));
1734 2408
1735 if (loop_done == EVUNLOOP_ONE) 2409 if (loop_done == EVUNLOOP_ONE)
1736 loop_done = EVUNLOOP_CANCEL; 2410 loop_done = EVUNLOOP_CANCEL;
2411
2412#if EV_MINIMAL < 2
2413 --loop_depth;
2414#endif
1737} 2415}
1738 2416
1739void 2417void
1740ev_unloop (EV_P_ int how) 2418ev_unloop (EV_P_ int how)
1741{ 2419{
1742 loop_done = how; 2420 loop_done = how;
1743} 2421}
1744 2422
2423void
2424ev_ref (EV_P)
2425{
2426 ++activecnt;
2427}
2428
2429void
2430ev_unref (EV_P)
2431{
2432 --activecnt;
2433}
2434
2435void
2436ev_now_update (EV_P)
2437{
2438 time_update (EV_A_ 1e100);
2439}
2440
2441void
2442ev_suspend (EV_P)
2443{
2444 ev_now_update (EV_A);
2445}
2446
2447void
2448ev_resume (EV_P)
2449{
2450 ev_tstamp mn_prev = mn_now;
2451
2452 ev_now_update (EV_A);
2453 timers_reschedule (EV_A_ mn_now - mn_prev);
2454#if EV_PERIODIC_ENABLE
2455 /* TODO: really do this? */
2456 periodics_reschedule (EV_A);
2457#endif
2458}
2459
1745/*****************************************************************************/ 2460/*****************************************************************************/
2461/* singly-linked list management, used when the expected list length is short */
1746 2462
1747void inline_size 2463inline_size void
1748wlist_add (WL *head, WL elem) 2464wlist_add (WL *head, WL elem)
1749{ 2465{
1750 elem->next = *head; 2466 elem->next = *head;
1751 *head = elem; 2467 *head = elem;
1752} 2468}
1753 2469
1754void inline_size 2470inline_size void
1755wlist_del (WL *head, WL elem) 2471wlist_del (WL *head, WL elem)
1756{ 2472{
1757 while (*head) 2473 while (*head)
1758 { 2474 {
1759 if (*head == elem) 2475 if (expect_true (*head == elem))
1760 { 2476 {
1761 *head = elem->next; 2477 *head = elem->next;
1762 return; 2478 break;
1763 } 2479 }
1764 2480
1765 head = &(*head)->next; 2481 head = &(*head)->next;
1766 } 2482 }
1767} 2483}
1768 2484
1769void inline_speed 2485/* internal, faster, version of ev_clear_pending */
2486inline_speed void
1770clear_pending (EV_P_ W w) 2487clear_pending (EV_P_ W w)
1771{ 2488{
1772 if (w->pending) 2489 if (w->pending)
1773 { 2490 {
1774 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2491 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1775 w->pending = 0; 2492 w->pending = 0;
1776 } 2493 }
1777} 2494}
1778 2495
1779int 2496int
1783 int pending = w_->pending; 2500 int pending = w_->pending;
1784 2501
1785 if (expect_true (pending)) 2502 if (expect_true (pending))
1786 { 2503 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2504 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2505 p->w = (W)&pending_w;
1788 w_->pending = 0; 2506 w_->pending = 0;
1789 p->w = 0;
1790 return p->events; 2507 return p->events;
1791 } 2508 }
1792 else 2509 else
1793 return 0; 2510 return 0;
1794} 2511}
1795 2512
1796void inline_size 2513inline_size void
1797pri_adjust (EV_P_ W w) 2514pri_adjust (EV_P_ W w)
1798{ 2515{
1799 int pri = w->priority; 2516 int pri = ev_priority (w);
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2517 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2518 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri; 2519 ev_set_priority (w, pri);
1803} 2520}
1804 2521
1805void inline_speed 2522inline_speed void
1806ev_start (EV_P_ W w, int active) 2523ev_start (EV_P_ W w, int active)
1807{ 2524{
1808 pri_adjust (EV_A_ w); 2525 pri_adjust (EV_A_ w);
1809 w->active = active; 2526 w->active = active;
1810 ev_ref (EV_A); 2527 ev_ref (EV_A);
1811} 2528}
1812 2529
1813void inline_size 2530inline_size void
1814ev_stop (EV_P_ W w) 2531ev_stop (EV_P_ W w)
1815{ 2532{
1816 ev_unref (EV_A); 2533 ev_unref (EV_A);
1817 w->active = 0; 2534 w->active = 0;
1818} 2535}
1825 int fd = w->fd; 2542 int fd = w->fd;
1826 2543
1827 if (expect_false (ev_is_active (w))) 2544 if (expect_false (ev_is_active (w)))
1828 return; 2545 return;
1829 2546
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2547 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2548 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2549
2550 EV_FREQUENT_CHECK;
1831 2551
1832 ev_start (EV_A_ (W)w, 1); 2552 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2553 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2554 wlist_add (&anfds[fd].head, (WL)w);
1835 2555
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2556 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1837 w->events &= ~EV_IOFDSET; 2557 w->events &= ~EV__IOFDSET;
2558
2559 EV_FREQUENT_CHECK;
1838} 2560}
1839 2561
1840void noinline 2562void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2563ev_io_stop (EV_P_ ev_io *w)
1842{ 2564{
1843 clear_pending (EV_A_ (W)w); 2565 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2566 if (expect_false (!ev_is_active (w)))
1845 return; 2567 return;
1846 2568
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2569 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2570
2571 EV_FREQUENT_CHECK;
1848 2572
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2573 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2574 ev_stop (EV_A_ (W)w);
1851 2575
1852 fd_change (EV_A_ w->fd, 1); 2576 fd_change (EV_A_ w->fd, 1);
2577
2578 EV_FREQUENT_CHECK;
1853} 2579}
1854 2580
1855void noinline 2581void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2582ev_timer_start (EV_P_ ev_timer *w)
1857{ 2583{
1858 if (expect_false (ev_is_active (w))) 2584 if (expect_false (ev_is_active (w)))
1859 return; 2585 return;
1860 2586
1861 ((WT)w)->at += mn_now; 2587 ev_at (w) += mn_now;
1862 2588
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2589 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2590
2591 EV_FREQUENT_CHECK;
2592
2593 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2594 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2595 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2596 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2597 ANHE_at_cache (timers [ev_active (w)]);
2598 upheap (timers, ev_active (w));
1869 2599
2600 EV_FREQUENT_CHECK;
2601
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2602 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2603}
1872 2604
1873void noinline 2605void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2606ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2607{
1876 clear_pending (EV_A_ (W)w); 2608 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2609 if (expect_false (!ev_is_active (w)))
1878 return; 2610 return;
1879 2611
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2612 EV_FREQUENT_CHECK;
1881 2613
1882 { 2614 {
1883 int active = ((W)w)->active; 2615 int active = ev_active (w);
1884 2616
2617 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2618
2619 --timercnt;
2620
1885 if (expect_true (--active < --timercnt)) 2621 if (expect_true (active < timercnt + HEAP0))
1886 { 2622 {
1887 timers [active] = timers [timercnt]; 2623 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2624 adjustheap (timers, timercnt, active);
1889 } 2625 }
1890 } 2626 }
1891 2627
1892 ((WT)w)->at -= mn_now; 2628 ev_at (w) -= mn_now;
1893 2629
1894 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
2631
2632 EV_FREQUENT_CHECK;
1895} 2633}
1896 2634
1897void noinline 2635void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2636ev_timer_again (EV_P_ ev_timer *w)
1899{ 2637{
2638 EV_FREQUENT_CHECK;
2639
1900 if (ev_is_active (w)) 2640 if (ev_is_active (w))
1901 { 2641 {
1902 if (w->repeat) 2642 if (w->repeat)
1903 { 2643 {
1904 ((WT)w)->at = mn_now + w->repeat; 2644 ev_at (w) = mn_now + w->repeat;
2645 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2646 adjustheap (timers, timercnt, ev_active (w));
1906 } 2647 }
1907 else 2648 else
1908 ev_timer_stop (EV_A_ w); 2649 ev_timer_stop (EV_A_ w);
1909 } 2650 }
1910 else if (w->repeat) 2651 else if (w->repeat)
1911 { 2652 {
1912 w->at = w->repeat; 2653 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2654 ev_timer_start (EV_A_ w);
1914 } 2655 }
2656
2657 EV_FREQUENT_CHECK;
2658}
2659
2660ev_tstamp
2661ev_timer_remaining (EV_P_ ev_timer *w)
2662{
2663 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1915} 2664}
1916 2665
1917#if EV_PERIODIC_ENABLE 2666#if EV_PERIODIC_ENABLE
1918void noinline 2667void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2668ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2669{
1921 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
1922 return; 2671 return;
1923 2672
1924 if (w->reschedule_cb) 2673 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2674 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2675 else if (w->interval)
1927 { 2676 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2677 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2678 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2679 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2680 }
1932 else 2681 else
1933 ((WT)w)->at = w->offset; 2682 ev_at (w) = w->offset;
1934 2683
2684 EV_FREQUENT_CHECK;
2685
2686 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2687 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2688 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2689 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2690 ANHE_at_cache (periodics [ev_active (w)]);
2691 upheap (periodics, ev_active (w));
1939 2692
2693 EV_FREQUENT_CHECK;
2694
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2695 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2696}
1942 2697
1943void noinline 2698void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2699ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2700{
1946 clear_pending (EV_A_ (W)w); 2701 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2702 if (expect_false (!ev_is_active (w)))
1948 return; 2703 return;
1949 2704
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2705 EV_FREQUENT_CHECK;
1951 2706
1952 { 2707 {
1953 int active = ((W)w)->active; 2708 int active = ev_active (w);
1954 2709
2710 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2711
2712 --periodiccnt;
2713
1955 if (expect_true (--active < --periodiccnt)) 2714 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2715 {
1957 periodics [active] = periodics [periodiccnt]; 2716 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2717 adjustheap (periodics, periodiccnt, active);
1959 } 2718 }
1960 } 2719 }
1961 2720
1962 ev_stop (EV_A_ (W)w); 2721 ev_stop (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
1963} 2724}
1964 2725
1965void noinline 2726void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2727ev_periodic_again (EV_P_ ev_periodic *w)
1967{ 2728{
1973 2734
1974#ifndef SA_RESTART 2735#ifndef SA_RESTART
1975# define SA_RESTART 0 2736# define SA_RESTART 0
1976#endif 2737#endif
1977 2738
2739#if EV_SIGNAL_ENABLE
2740
1978void noinline 2741void noinline
1979ev_signal_start (EV_P_ ev_signal *w) 2742ev_signal_start (EV_P_ ev_signal *w)
1980{ 2743{
1981#if EV_MULTIPLICITY
1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1983#endif
1984 if (expect_false (ev_is_active (w))) 2744 if (expect_false (ev_is_active (w)))
1985 return; 2745 return;
1986 2746
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2747 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1988 2748
1989 evpipe_init (EV_A); 2749#if EV_MULTIPLICITY
2750 assert (("libev: a signal must not be attached to two different loops",
2751 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1990 2752
2753 signals [w->signum - 1].loop = EV_A;
2754#endif
2755
2756 EV_FREQUENT_CHECK;
2757
2758#if EV_USE_SIGNALFD
2759 if (sigfd == -2)
1991 { 2760 {
1992#ifndef _WIN32 2761 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1993 sigset_t full, prev; 2762 if (sigfd < 0 && errno == EINVAL)
1994 sigfillset (&full); 2763 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997 2764
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2765 if (sigfd >= 0)
2766 {
2767 fd_intern (sigfd); /* doing it twice will not hurt */
1999 2768
2000#ifndef _WIN32 2769 sigemptyset (&sigfd_set);
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2770
2002#endif 2771 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2772 ev_set_priority (&sigfd_w, EV_MAXPRI);
2773 ev_io_start (EV_A_ &sigfd_w);
2774 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2775 }
2003 } 2776 }
2777
2778 if (sigfd >= 0)
2779 {
2780 /* TODO: check .head */
2781 sigaddset (&sigfd_set, w->signum);
2782 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2783
2784 signalfd (sigfd, &sigfd_set, 0);
2785 }
2786#endif
2004 2787
2005 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
2006 wlist_add (&signals [w->signum - 1].head, (WL)w); 2789 wlist_add (&signals [w->signum - 1].head, (WL)w);
2007 2790
2008 if (!((WL)w)->next) 2791 if (!((WL)w)->next)
2792# if EV_USE_SIGNALFD
2793 if (sigfd < 0) /*TODO*/
2794# endif
2009 { 2795 {
2010#if _WIN32 2796# ifdef _WIN32
2797 evpipe_init (EV_A);
2798
2011 signal (w->signum, ev_sighandler); 2799 signal (w->signum, ev_sighandler);
2012#else 2800# else
2013 struct sigaction sa; 2801 struct sigaction sa;
2802
2803 evpipe_init (EV_A);
2804
2014 sa.sa_handler = ev_sighandler; 2805 sa.sa_handler = ev_sighandler;
2015 sigfillset (&sa.sa_mask); 2806 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2807 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2808 sigaction (w->signum, &sa, 0);
2809
2810 sigemptyset (&sa.sa_mask);
2811 sigaddset (&sa.sa_mask, w->signum);
2812 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2018#endif 2813#endif
2019 } 2814 }
2815
2816 EV_FREQUENT_CHECK;
2020} 2817}
2021 2818
2022void noinline 2819void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2820ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2821{
2025 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2027 return; 2824 return;
2028 2825
2826 EV_FREQUENT_CHECK;
2827
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2828 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2829 ev_stop (EV_A_ (W)w);
2031 2830
2032 if (!signals [w->signum - 1].head) 2831 if (!signals [w->signum - 1].head)
2832 {
2833#if EV_MULTIPLICITY
2834 signals [w->signum - 1].loop = 0; /* unattach from signal */
2835#endif
2836#if EV_USE_SIGNALFD
2837 if (sigfd >= 0)
2838 {
2839 sigset_t ss;
2840
2841 sigemptyset (&ss);
2842 sigaddset (&ss, w->signum);
2843 sigdelset (&sigfd_set, w->signum);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 sigprocmask (SIG_UNBLOCK, &ss, 0);
2847 }
2848 else
2849#endif
2033 signal (w->signum, SIG_DFL); 2850 signal (w->signum, SIG_DFL);
2851 }
2852
2853 EV_FREQUENT_CHECK;
2034} 2854}
2855
2856#endif
2857
2858#if EV_CHILD_ENABLE
2035 2859
2036void 2860void
2037ev_child_start (EV_P_ ev_child *w) 2861ev_child_start (EV_P_ ev_child *w)
2038{ 2862{
2039#if EV_MULTIPLICITY 2863#if EV_MULTIPLICITY
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2864 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2865#endif
2042 if (expect_false (ev_is_active (w))) 2866 if (expect_false (ev_is_active (w)))
2043 return; 2867 return;
2044 2868
2869 EV_FREQUENT_CHECK;
2870
2045 ev_start (EV_A_ (W)w, 1); 2871 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2872 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2873
2874 EV_FREQUENT_CHECK;
2047} 2875}
2048 2876
2049void 2877void
2050ev_child_stop (EV_P_ ev_child *w) 2878ev_child_stop (EV_P_ ev_child *w)
2051{ 2879{
2052 clear_pending (EV_A_ (W)w); 2880 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2881 if (expect_false (!ev_is_active (w)))
2054 return; 2882 return;
2055 2883
2884 EV_FREQUENT_CHECK;
2885
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2886 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2058} 2890}
2891
2892#endif
2059 2893
2060#if EV_STAT_ENABLE 2894#if EV_STAT_ENABLE
2061 2895
2062# ifdef _WIN32 2896# ifdef _WIN32
2063# undef lstat 2897# undef lstat
2064# define lstat(a,b) _stati64 (a,b) 2898# define lstat(a,b) _stati64 (a,b)
2065# endif 2899# endif
2066 2900
2067#define DEF_STAT_INTERVAL 5.0074891 2901#define DEF_STAT_INTERVAL 5.0074891
2902#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2068#define MIN_STAT_INTERVAL 0.1074891 2903#define MIN_STAT_INTERVAL 0.1074891
2069 2904
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2905static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071 2906
2072#if EV_USE_INOTIFY 2907#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192 2908
2909/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2910# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2074 2911
2075static void noinline 2912static void noinline
2076infy_add (EV_P_ ev_stat *w) 2913infy_add (EV_P_ ev_stat *w)
2077{ 2914{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2915 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079 2916
2080 if (w->wd < 0) 2917 if (w->wd >= 0)
2918 {
2919 struct statfs sfs;
2920
2921 /* now local changes will be tracked by inotify, but remote changes won't */
2922 /* unless the filesystem is known to be local, we therefore still poll */
2923 /* also do poll on <2.6.25, but with normal frequency */
2924
2925 if (!fs_2625)
2926 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2927 else if (!statfs (w->path, &sfs)
2928 && (sfs.f_type == 0x1373 /* devfs */
2929 || sfs.f_type == 0xEF53 /* ext2/3 */
2930 || sfs.f_type == 0x3153464a /* jfs */
2931 || sfs.f_type == 0x52654973 /* reiser3 */
2932 || sfs.f_type == 0x01021994 /* tempfs */
2933 || sfs.f_type == 0x58465342 /* xfs */))
2934 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2935 else
2936 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2081 { 2937 }
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2938 else
2939 {
2940 /* can't use inotify, continue to stat */
2941 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2083 2942
2084 /* monitor some parent directory for speedup hints */ 2943 /* if path is not there, monitor some parent directory for speedup hints */
2944 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2945 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2947 {
2087 char path [4096]; 2948 char path [4096];
2088 strcpy (path, w->path); 2949 strcpy (path, w->path);
2089 2950
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094 2955
2095 char *pend = strrchr (path, '/'); 2956 char *pend = strrchr (path, '/');
2096 2957
2097 if (!pend) 2958 if (!pend || pend == path)
2098 break; /* whoops, no '/', complain to your admin */ 2959 break;
2099 2960
2100 *pend = 0; 2961 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask); 2962 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 } 2963 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 } 2965 }
2105 } 2966 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108 2967
2109 if (w->wd >= 0) 2968 if (w->wd >= 0)
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2969 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2970
2971 /* now re-arm timer, if required */
2972 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2973 ev_timer_again (EV_A_ &w->timer);
2974 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2111} 2975}
2112 2976
2113static void noinline 2977static void noinline
2114infy_del (EV_P_ ev_stat *w) 2978infy_del (EV_P_ ev_stat *w)
2115{ 2979{
2129 2993
2130static void noinline 2994static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2995infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 2996{
2133 if (slot < 0) 2997 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 2998 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2999 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 3000 infy_wd (EV_A_ slot, wd, ev);
2137 else 3001 else
2138 { 3002 {
2139 WL w_; 3003 WL w_;
2145 3009
2146 if (w->wd == wd || wd == -1) 3010 if (w->wd == wd || wd == -1)
2147 { 3011 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3012 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 { 3013 {
3014 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2150 w->wd = -1; 3015 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */ 3016 infy_add (EV_A_ w); /* re-add, no matter what */
2152 } 3017 }
2153 3018
2154 stat_timer_cb (EV_A_ &w->timer, 0); 3019 stat_timer_cb (EV_A_ &w->timer, 0);
2159 3024
2160static void 3025static void
2161infy_cb (EV_P_ ev_io *w, int revents) 3026infy_cb (EV_P_ ev_io *w, int revents)
2162{ 3027{
2163 char buf [EV_INOTIFY_BUFSIZE]; 3028 char buf [EV_INOTIFY_BUFSIZE];
2164 struct inotify_event *ev = (struct inotify_event *)buf;
2165 int ofs; 3029 int ofs;
2166 int len = read (fs_fd, buf, sizeof (buf)); 3030 int len = read (fs_fd, buf, sizeof (buf));
2167 3031
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3032 for (ofs = 0; ofs < len; )
3033 {
3034 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3036 ofs += sizeof (struct inotify_event) + ev->len;
3037 }
2170} 3038}
2171 3039
2172void inline_size 3040inline_size unsigned int
3041ev_linux_version (void)
3042{
3043 struct utsname buf;
3044 unsigned int v;
3045 int i;
3046 char *p = buf.release;
3047
3048 if (uname (&buf))
3049 return 0;
3050
3051 for (i = 3+1; --i; )
3052 {
3053 unsigned int c = 0;
3054
3055 for (;;)
3056 {
3057 if (*p >= '0' && *p <= '9')
3058 c = c * 10 + *p++ - '0';
3059 else
3060 {
3061 p += *p == '.';
3062 break;
3063 }
3064 }
3065
3066 v = (v << 8) | c;
3067 }
3068
3069 return v;
3070}
3071
3072inline_size void
3073ev_check_2625 (EV_P)
3074{
3075 /* kernels < 2.6.25 are borked
3076 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3077 */
3078 if (ev_linux_version () < 0x020619)
3079 return;
3080
3081 fs_2625 = 1;
3082}
3083
3084inline_size int
3085infy_newfd (void)
3086{
3087#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3088 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3089 if (fd >= 0)
3090 return fd;
3091#endif
3092 return inotify_init ();
3093}
3094
3095inline_size void
2173infy_init (EV_P) 3096infy_init (EV_P)
2174{ 3097{
2175 if (fs_fd != -2) 3098 if (fs_fd != -2)
2176 return; 3099 return;
2177 3100
3101 fs_fd = -1;
3102
3103 ev_check_2625 (EV_A);
3104
2178 fs_fd = inotify_init (); 3105 fs_fd = infy_newfd ();
2179 3106
2180 if (fs_fd >= 0) 3107 if (fs_fd >= 0)
2181 { 3108 {
3109 fd_intern (fs_fd);
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3110 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2183 ev_set_priority (&fs_w, EV_MAXPRI); 3111 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w); 3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
2185 } 3114 }
2186} 3115}
2187 3116
2188void inline_size 3117inline_size void
2189infy_fork (EV_P) 3118infy_fork (EV_P)
2190{ 3119{
2191 int slot; 3120 int slot;
2192 3121
2193 if (fs_fd < 0) 3122 if (fs_fd < 0)
2194 return; 3123 return;
2195 3124
3125 ev_ref (EV_A);
3126 ev_io_stop (EV_A_ &fs_w);
2196 close (fs_fd); 3127 close (fs_fd);
2197 fs_fd = inotify_init (); 3128 fs_fd = infy_newfd ();
3129
3130 if (fs_fd >= 0)
3131 {
3132 fd_intern (fs_fd);
3133 ev_io_set (&fs_w, fs_fd, EV_READ);
3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
3136 }
2198 3137
2199 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3138 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2200 { 3139 {
2201 WL w_ = fs_hash [slot].head; 3140 WL w_ = fs_hash [slot].head;
2202 fs_hash [slot].head = 0; 3141 fs_hash [slot].head = 0;
2209 w->wd = -1; 3148 w->wd = -1;
2210 3149
2211 if (fs_fd >= 0) 3150 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 3151 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 3152 else
3153 {
3154 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3155 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2214 ev_timer_start (EV_A_ &w->timer); 3156 ev_timer_again (EV_A_ &w->timer);
3157 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3158 }
2215 } 3159 }
2216
2217 } 3160 }
2218} 3161}
2219 3162
3163#endif
3164
3165#ifdef _WIN32
3166# define EV_LSTAT(p,b) _stati64 (p, b)
3167#else
3168# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 3169#endif
2221 3170
2222void 3171void
2223ev_stat_stat (EV_P_ ev_stat *w) 3172ev_stat_stat (EV_P_ ev_stat *w)
2224{ 3173{
2231static void noinline 3180static void noinline
2232stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3181stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2233{ 3182{
2234 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3183 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2235 3184
2236 /* we copy this here each the time so that */ 3185 ev_statdata prev = w->attr;
2237 /* prev has the old value when the callback gets invoked */
2238 w->prev = w->attr;
2239 ev_stat_stat (EV_A_ w); 3186 ev_stat_stat (EV_A_ w);
2240 3187
2241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3188 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2242 if ( 3189 if (
2243 w->prev.st_dev != w->attr.st_dev 3190 prev.st_dev != w->attr.st_dev
2244 || w->prev.st_ino != w->attr.st_ino 3191 || prev.st_ino != w->attr.st_ino
2245 || w->prev.st_mode != w->attr.st_mode 3192 || prev.st_mode != w->attr.st_mode
2246 || w->prev.st_nlink != w->attr.st_nlink 3193 || prev.st_nlink != w->attr.st_nlink
2247 || w->prev.st_uid != w->attr.st_uid 3194 || prev.st_uid != w->attr.st_uid
2248 || w->prev.st_gid != w->attr.st_gid 3195 || prev.st_gid != w->attr.st_gid
2249 || w->prev.st_rdev != w->attr.st_rdev 3196 || prev.st_rdev != w->attr.st_rdev
2250 || w->prev.st_size != w->attr.st_size 3197 || prev.st_size != w->attr.st_size
2251 || w->prev.st_atime != w->attr.st_atime 3198 || prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 3199 || prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 3200 || prev.st_ctime != w->attr.st_ctime
2254 ) { 3201 ) {
3202 /* we only update w->prev on actual differences */
3203 /* in case we test more often than invoke the callback, */
3204 /* to ensure that prev is always different to attr */
3205 w->prev = prev;
3206
2255 #if EV_USE_INOTIFY 3207 #if EV_USE_INOTIFY
3208 if (fs_fd >= 0)
3209 {
2256 infy_del (EV_A_ w); 3210 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 3211 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 3212 ev_stat_stat (EV_A_ w); /* avoid race... */
3213 }
2259 #endif 3214 #endif
2260 3215
2261 ev_feed_event (EV_A_ w, EV_STAT); 3216 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 3217 }
2263} 3218}
2266ev_stat_start (EV_P_ ev_stat *w) 3221ev_stat_start (EV_P_ ev_stat *w)
2267{ 3222{
2268 if (expect_false (ev_is_active (w))) 3223 if (expect_false (ev_is_active (w)))
2269 return; 3224 return;
2270 3225
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w); 3226 ev_stat_stat (EV_A_ w);
2276 3227
3228 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2277 if (w->interval < MIN_STAT_INTERVAL) 3229 w->interval = MIN_STAT_INTERVAL;
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279 3230
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3231 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2281 ev_set_priority (&w->timer, ev_priority (w)); 3232 ev_set_priority (&w->timer, ev_priority (w));
2282 3233
2283#if EV_USE_INOTIFY 3234#if EV_USE_INOTIFY
2284 infy_init (EV_A); 3235 infy_init (EV_A);
2285 3236
2286 if (fs_fd >= 0) 3237 if (fs_fd >= 0)
2287 infy_add (EV_A_ w); 3238 infy_add (EV_A_ w);
2288 else 3239 else
2289#endif 3240#endif
3241 {
2290 ev_timer_start (EV_A_ &w->timer); 3242 ev_timer_again (EV_A_ &w->timer);
3243 ev_unref (EV_A);
3244 }
2291 3245
2292 ev_start (EV_A_ (W)w, 1); 3246 ev_start (EV_A_ (W)w, 1);
3247
3248 EV_FREQUENT_CHECK;
2293} 3249}
2294 3250
2295void 3251void
2296ev_stat_stop (EV_P_ ev_stat *w) 3252ev_stat_stop (EV_P_ ev_stat *w)
2297{ 3253{
2298 clear_pending (EV_A_ (W)w); 3254 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 3255 if (expect_false (!ev_is_active (w)))
2300 return; 3256 return;
2301 3257
3258 EV_FREQUENT_CHECK;
3259
2302#if EV_USE_INOTIFY 3260#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 3261 infy_del (EV_A_ w);
2304#endif 3262#endif
3263
3264 if (ev_is_active (&w->timer))
3265 {
3266 ev_ref (EV_A);
2305 ev_timer_stop (EV_A_ &w->timer); 3267 ev_timer_stop (EV_A_ &w->timer);
3268 }
2306 3269
2307 ev_stop (EV_A_ (W)w); 3270 ev_stop (EV_A_ (W)w);
3271
3272 EV_FREQUENT_CHECK;
2308} 3273}
2309#endif 3274#endif
2310 3275
2311#if EV_IDLE_ENABLE 3276#if EV_IDLE_ENABLE
2312void 3277void
2314{ 3279{
2315 if (expect_false (ev_is_active (w))) 3280 if (expect_false (ev_is_active (w)))
2316 return; 3281 return;
2317 3282
2318 pri_adjust (EV_A_ (W)w); 3283 pri_adjust (EV_A_ (W)w);
3284
3285 EV_FREQUENT_CHECK;
2319 3286
2320 { 3287 {
2321 int active = ++idlecnt [ABSPRI (w)]; 3288 int active = ++idlecnt [ABSPRI (w)];
2322 3289
2323 ++idleall; 3290 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 3291 ev_start (EV_A_ (W)w, active);
2325 3292
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3293 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 3294 idles [ABSPRI (w)][active - 1] = w;
2328 } 3295 }
3296
3297 EV_FREQUENT_CHECK;
2329} 3298}
2330 3299
2331void 3300void
2332ev_idle_stop (EV_P_ ev_idle *w) 3301ev_idle_stop (EV_P_ ev_idle *w)
2333{ 3302{
2334 clear_pending (EV_A_ (W)w); 3303 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3304 if (expect_false (!ev_is_active (w)))
2336 return; 3305 return;
2337 3306
3307 EV_FREQUENT_CHECK;
3308
2338 { 3309 {
2339 int active = ((W)w)->active; 3310 int active = ev_active (w);
2340 3311
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3312 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3313 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 3314
2344 ev_stop (EV_A_ (W)w); 3315 ev_stop (EV_A_ (W)w);
2345 --idleall; 3316 --idleall;
2346 } 3317 }
3318
3319 EV_FREQUENT_CHECK;
2347} 3320}
2348#endif 3321#endif
2349 3322
2350void 3323void
2351ev_prepare_start (EV_P_ ev_prepare *w) 3324ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 3325{
2353 if (expect_false (ev_is_active (w))) 3326 if (expect_false (ev_is_active (w)))
2354 return; 3327 return;
3328
3329 EV_FREQUENT_CHECK;
2355 3330
2356 ev_start (EV_A_ (W)w, ++preparecnt); 3331 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3332 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 3333 prepares [preparecnt - 1] = w;
3334
3335 EV_FREQUENT_CHECK;
2359} 3336}
2360 3337
2361void 3338void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 3339ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 3340{
2364 clear_pending (EV_A_ (W)w); 3341 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3342 if (expect_false (!ev_is_active (w)))
2366 return; 3343 return;
2367 3344
3345 EV_FREQUENT_CHECK;
3346
2368 { 3347 {
2369 int active = ((W)w)->active; 3348 int active = ev_active (w);
3349
2370 prepares [active - 1] = prepares [--preparecnt]; 3350 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 3351 ev_active (prepares [active - 1]) = active;
2372 } 3352 }
2373 3353
2374 ev_stop (EV_A_ (W)w); 3354 ev_stop (EV_A_ (W)w);
3355
3356 EV_FREQUENT_CHECK;
2375} 3357}
2376 3358
2377void 3359void
2378ev_check_start (EV_P_ ev_check *w) 3360ev_check_start (EV_P_ ev_check *w)
2379{ 3361{
2380 if (expect_false (ev_is_active (w))) 3362 if (expect_false (ev_is_active (w)))
2381 return; 3363 return;
3364
3365 EV_FREQUENT_CHECK;
2382 3366
2383 ev_start (EV_A_ (W)w, ++checkcnt); 3367 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3368 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 3369 checks [checkcnt - 1] = w;
3370
3371 EV_FREQUENT_CHECK;
2386} 3372}
2387 3373
2388void 3374void
2389ev_check_stop (EV_P_ ev_check *w) 3375ev_check_stop (EV_P_ ev_check *w)
2390{ 3376{
2391 clear_pending (EV_A_ (W)w); 3377 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 3378 if (expect_false (!ev_is_active (w)))
2393 return; 3379 return;
2394 3380
3381 EV_FREQUENT_CHECK;
3382
2395 { 3383 {
2396 int active = ((W)w)->active; 3384 int active = ev_active (w);
3385
2397 checks [active - 1] = checks [--checkcnt]; 3386 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 3387 ev_active (checks [active - 1]) = active;
2399 } 3388 }
2400 3389
2401 ev_stop (EV_A_ (W)w); 3390 ev_stop (EV_A_ (W)w);
3391
3392 EV_FREQUENT_CHECK;
2402} 3393}
2403 3394
2404#if EV_EMBED_ENABLE 3395#if EV_EMBED_ENABLE
2405void noinline 3396void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 3397ev_embed_sweep (EV_P_ ev_embed *w)
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3414embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{ 3415{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3416 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426 3417
2427 { 3418 {
2428 struct ev_loop *loop = w->other; 3419 EV_P = w->other;
2429 3420
2430 while (fdchangecnt) 3421 while (fdchangecnt)
2431 { 3422 {
2432 fd_reify (EV_A); 3423 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3424 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 } 3425 }
2435 } 3426 }
2436} 3427}
2437 3428
3429static void
3430embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3431{
3432 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3433
3434 ev_embed_stop (EV_A_ w);
3435
3436 {
3437 EV_P = w->other;
3438
3439 ev_loop_fork (EV_A);
3440 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3441 }
3442
3443 ev_embed_start (EV_A_ w);
3444}
3445
2438#if 0 3446#if 0
2439static void 3447static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3448embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{ 3449{
2442 ev_idle_stop (EV_A_ idle); 3450 ev_idle_stop (EV_A_ idle);
2448{ 3456{
2449 if (expect_false (ev_is_active (w))) 3457 if (expect_false (ev_is_active (w)))
2450 return; 3458 return;
2451 3459
2452 { 3460 {
2453 struct ev_loop *loop = w->other; 3461 EV_P = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3462 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3463 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 3464 }
3465
3466 EV_FREQUENT_CHECK;
2457 3467
2458 ev_set_priority (&w->io, ev_priority (w)); 3468 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 3469 ev_io_start (EV_A_ &w->io);
2460 3470
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 3471 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 3472 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 3473 ev_prepare_start (EV_A_ &w->prepare);
2464 3474
3475 ev_fork_init (&w->fork, embed_fork_cb);
3476 ev_fork_start (EV_A_ &w->fork);
3477
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3478 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 3479
2467 ev_start (EV_A_ (W)w, 1); 3480 ev_start (EV_A_ (W)w, 1);
3481
3482 EV_FREQUENT_CHECK;
2468} 3483}
2469 3484
2470void 3485void
2471ev_embed_stop (EV_P_ ev_embed *w) 3486ev_embed_stop (EV_P_ ev_embed *w)
2472{ 3487{
2473 clear_pending (EV_A_ (W)w); 3488 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 3489 if (expect_false (!ev_is_active (w)))
2475 return; 3490 return;
2476 3491
3492 EV_FREQUENT_CHECK;
3493
2477 ev_io_stop (EV_A_ &w->io); 3494 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 3495 ev_prepare_stop (EV_A_ &w->prepare);
3496 ev_fork_stop (EV_A_ &w->fork);
2479 3497
2480 ev_stop (EV_A_ (W)w); 3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
2481} 3501}
2482#endif 3502#endif
2483 3503
2484#if EV_FORK_ENABLE 3504#if EV_FORK_ENABLE
2485void 3505void
2486ev_fork_start (EV_P_ ev_fork *w) 3506ev_fork_start (EV_P_ ev_fork *w)
2487{ 3507{
2488 if (expect_false (ev_is_active (w))) 3508 if (expect_false (ev_is_active (w)))
2489 return; 3509 return;
3510
3511 EV_FREQUENT_CHECK;
2490 3512
2491 ev_start (EV_A_ (W)w, ++forkcnt); 3513 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 3515 forks [forkcnt - 1] = w;
3516
3517 EV_FREQUENT_CHECK;
2494} 3518}
2495 3519
2496void 3520void
2497ev_fork_stop (EV_P_ ev_fork *w) 3521ev_fork_stop (EV_P_ ev_fork *w)
2498{ 3522{
2499 clear_pending (EV_A_ (W)w); 3523 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3524 if (expect_false (!ev_is_active (w)))
2501 return; 3525 return;
2502 3526
3527 EV_FREQUENT_CHECK;
3528
2503 { 3529 {
2504 int active = ((W)w)->active; 3530 int active = ev_active (w);
3531
2505 forks [active - 1] = forks [--forkcnt]; 3532 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 3533 ev_active (forks [active - 1]) = active;
2507 } 3534 }
2508 3535
2509 ev_stop (EV_A_ (W)w); 3536 ev_stop (EV_A_ (W)w);
3537
3538 EV_FREQUENT_CHECK;
2510} 3539}
2511#endif 3540#endif
2512 3541
2513#if EV_ASYNC_ENABLE 3542#if EV_ASYNC_ENABLE
2514void 3543void
2516{ 3545{
2517 if (expect_false (ev_is_active (w))) 3546 if (expect_false (ev_is_active (w)))
2518 return; 3547 return;
2519 3548
2520 evpipe_init (EV_A); 3549 evpipe_init (EV_A);
3550
3551 EV_FREQUENT_CHECK;
2521 3552
2522 ev_start (EV_A_ (W)w, ++asynccnt); 3553 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3554 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 3555 asyncs [asynccnt - 1] = w;
3556
3557 EV_FREQUENT_CHECK;
2525} 3558}
2526 3559
2527void 3560void
2528ev_async_stop (EV_P_ ev_async *w) 3561ev_async_stop (EV_P_ ev_async *w)
2529{ 3562{
2530 clear_pending (EV_A_ (W)w); 3563 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 3564 if (expect_false (!ev_is_active (w)))
2532 return; 3565 return;
2533 3566
3567 EV_FREQUENT_CHECK;
3568
2534 { 3569 {
2535 int active = ((W)w)->active; 3570 int active = ev_active (w);
3571
2536 asyncs [active - 1] = asyncs [--asynccnt]; 3572 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 3573 ev_active (asyncs [active - 1]) = active;
2538 } 3574 }
2539 3575
2540 ev_stop (EV_A_ (W)w); 3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
2541} 3579}
2542 3580
2543void 3581void
2544ev_async_send (EV_P_ ev_async *w) 3582ev_async_send (EV_P_ ev_async *w)
2545{ 3583{
2546 w->sent = 1; 3584 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync); 3585 evpipe_write (EV_A_ &async_pending);
2548} 3586}
2549#endif 3587#endif
2550 3588
2551/*****************************************************************************/ 3589/*****************************************************************************/
2552 3590
2562once_cb (EV_P_ struct ev_once *once, int revents) 3600once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3601{
2564 void (*cb)(int revents, void *arg) = once->cb; 3602 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3603 void *arg = once->arg;
2566 3604
2567 ev_io_stop (EV_A_ &once->io); 3605 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3606 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3607 ev_free (once);
2570 3608
2571 cb (revents, arg); 3609 cb (revents, arg);
2572} 3610}
2573 3611
2574static void 3612static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3613once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3614{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3615 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3616
3617 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3618}
2579 3619
2580static void 3620static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3621once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3622{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3623 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3624
3625 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3626}
2585 3627
2586void 3628void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3629ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3630{
2610 ev_timer_set (&once->to, timeout, 0.); 3652 ev_timer_set (&once->to, timeout, 0.);
2611 ev_timer_start (EV_A_ &once->to); 3653 ev_timer_start (EV_A_ &once->to);
2612 } 3654 }
2613} 3655}
2614 3656
3657/*****************************************************************************/
3658
3659#if EV_WALK_ENABLE
3660void
3661ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3662{
3663 int i, j;
3664 ev_watcher_list *wl, *wn;
3665
3666 if (types & (EV_IO | EV_EMBED))
3667 for (i = 0; i < anfdmax; ++i)
3668 for (wl = anfds [i].head; wl; )
3669 {
3670 wn = wl->next;
3671
3672#if EV_EMBED_ENABLE
3673 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3674 {
3675 if (types & EV_EMBED)
3676 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3677 }
3678 else
3679#endif
3680#if EV_USE_INOTIFY
3681 if (ev_cb ((ev_io *)wl) == infy_cb)
3682 ;
3683 else
3684#endif
3685 if ((ev_io *)wl != &pipe_w)
3686 if (types & EV_IO)
3687 cb (EV_A_ EV_IO, wl);
3688
3689 wl = wn;
3690 }
3691
3692 if (types & (EV_TIMER | EV_STAT))
3693 for (i = timercnt + HEAP0; i-- > HEAP0; )
3694#if EV_STAT_ENABLE
3695 /*TODO: timer is not always active*/
3696 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3697 {
3698 if (types & EV_STAT)
3699 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3700 }
3701 else
3702#endif
3703 if (types & EV_TIMER)
3704 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3705
3706#if EV_PERIODIC_ENABLE
3707 if (types & EV_PERIODIC)
3708 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3709 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3710#endif
3711
3712#if EV_IDLE_ENABLE
3713 if (types & EV_IDLE)
3714 for (j = NUMPRI; i--; )
3715 for (i = idlecnt [j]; i--; )
3716 cb (EV_A_ EV_IDLE, idles [j][i]);
3717#endif
3718
3719#if EV_FORK_ENABLE
3720 if (types & EV_FORK)
3721 for (i = forkcnt; i--; )
3722 if (ev_cb (forks [i]) != embed_fork_cb)
3723 cb (EV_A_ EV_FORK, forks [i]);
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727 if (types & EV_ASYNC)
3728 for (i = asynccnt; i--; )
3729 cb (EV_A_ EV_ASYNC, asyncs [i]);
3730#endif
3731
3732 if (types & EV_PREPARE)
3733 for (i = preparecnt; i--; )
3734#if EV_EMBED_ENABLE
3735 if (ev_cb (prepares [i]) != embed_prepare_cb)
3736#endif
3737 cb (EV_A_ EV_PREPARE, prepares [i]);
3738
3739 if (types & EV_CHECK)
3740 for (i = checkcnt; i--; )
3741 cb (EV_A_ EV_CHECK, checks [i]);
3742
3743 if (types & EV_SIGNAL)
3744 for (i = 0; i < EV_NSIG - 1; ++i)
3745 for (wl = signals [i].head; wl; )
3746 {
3747 wn = wl->next;
3748 cb (EV_A_ EV_SIGNAL, wl);
3749 wl = wn;
3750 }
3751
3752 if (types & EV_CHILD)
3753 for (i = EV_PID_HASHSIZE; i--; )
3754 for (wl = childs [i]; wl; )
3755 {
3756 wn = wl->next;
3757 cb (EV_A_ EV_CHILD, wl);
3758 wl = wn;
3759 }
3760/* EV_STAT 0x00001000 /* stat data changed */
3761/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3762}
3763#endif
3764
2615#if EV_MULTIPLICITY 3765#if EV_MULTIPLICITY
2616 #include "ev_wrap.h" 3766 #include "ev_wrap.h"
2617#endif 3767#endif
2618 3768
2619#ifdef __cplusplus 3769#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines