ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.124 by root, Sat Nov 17 02:26:24 2007 UTC vs.
Revision 1.337 by root, Wed Mar 10 09:18:24 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
46# endif 76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
50# endif 95# endif
96# endif
51 97
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
54# endif 103# endif
55 104# endif
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
58# endif 111# endif
59 112# endif
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
61# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
62# endif 119# endif
63 120# endif
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
65# define EV_USE_PORT 1 124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
66# endif 127# endif
128# endif
67 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
68#endif 154#endif
69 155
70#include <math.h> 156#include <math.h>
71#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
72#include <fcntl.h> 159#include <fcntl.h>
73#include <stddef.h> 160#include <stddef.h>
74 161
75#include <stdio.h> 162#include <stdio.h>
76 163
77#include <assert.h> 164#include <assert.h>
78#include <errno.h> 165#include <errno.h>
79#include <sys/types.h> 166#include <sys/types.h>
80#include <time.h> 167#include <time.h>
168#include <limits.h>
81 169
82#include <signal.h> 170#include <signal.h>
83 171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
84#ifndef _WIN32 178#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 179# include <sys/time.h>
87# include <sys/wait.h> 180# include <sys/wait.h>
181# include <unistd.h>
88#else 182#else
183# include <io.h>
89# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 185# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
93# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL 1
225# else
226# define EV_USE_CLOCK_SYSCALL 0
94#endif 227# endif
95 228#endif
96/**/
97 229
98#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC 1
233# else
99# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
100#endif 236#endif
101 237
102#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP 1
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
104#endif 248#endif
105 249
106#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 251# define EV_USE_SELECT 1
108#endif 252#endif
114# define EV_USE_POLL 1 258# define EV_USE_POLL 1
115# endif 259# endif
116#endif 260#endif
117 261
118#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL 1
265# else
119# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
120#endif 268#endif
121 269
122#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
123# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
124#endif 272#endif
125 273
126#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 275# define EV_USE_PORT 0
128#endif 276#endif
129 277
130/**/ 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY 1
281# else
282# define EV_USE_INOTIFY 0
283# endif
284#endif
131 285
132/* darwin simply cannot be helped */ 286#ifndef EV_PID_HASHSIZE
133#ifdef __APPLE__ 287# if EV_MINIMAL
288# define EV_PID_HASHSIZE 1
289# else
290# define EV_PID_HASHSIZE 16
291# endif
292#endif
293
294#ifndef EV_INOTIFY_HASHSIZE
295# if EV_MINIMAL
296# define EV_INOTIFY_HASHSIZE 1
297# else
298# define EV_INOTIFY_HASHSIZE 16
299# endif
300#endif
301
302#ifndef EV_USE_EVENTFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_EVENTFD 1
305# else
306# define EV_USE_EVENTFD 0
307# endif
308#endif
309
310#ifndef EV_USE_SIGNALFD
311# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312# define EV_USE_SIGNALFD 1
313# else
314# define EV_USE_SIGNALFD 0
315# endif
316#endif
317
318#if 0 /* debugging */
319# define EV_VERIFY 3
320# define EV_USE_4HEAP 1
321# define EV_HEAP_CACHE_AT 1
322#endif
323
324#ifndef EV_VERIFY
325# define EV_VERIFY !EV_MINIMAL
326#endif
327
328#ifndef EV_USE_4HEAP
329# define EV_USE_4HEAP !EV_MINIMAL
330#endif
331
332#ifndef EV_HEAP_CACHE_AT
333# define EV_HEAP_CACHE_AT !EV_MINIMAL
334#endif
335
336/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337/* which makes programs even slower. might work on other unices, too. */
338#if EV_USE_CLOCK_SYSCALL
339# include <syscall.h>
340# ifdef SYS_clock_gettime
341# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342# undef EV_USE_MONOTONIC
343# define EV_USE_MONOTONIC 1
344# else
345# undef EV_USE_CLOCK_SYSCALL
346# define EV_USE_CLOCK_SYSCALL 0
347# endif
348#endif
349
350/* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352#ifdef _AIX
353/* AIX has a completely broken poll.h header */
134# undef EV_USE_POLL 354# undef EV_USE_POLL
135# undef EV_USE_KQUEUE 355# define EV_USE_POLL 0
136#endif 356#endif
137 357
138#ifndef CLOCK_MONOTONIC 358#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 359# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 360# define EV_USE_MONOTONIC 0
143#ifndef CLOCK_REALTIME 363#ifndef CLOCK_REALTIME
144# undef EV_USE_REALTIME 364# undef EV_USE_REALTIME
145# define EV_USE_REALTIME 0 365# define EV_USE_REALTIME 0
146#endif 366#endif
147 367
368#if !EV_STAT_ENABLE
369# undef EV_USE_INOTIFY
370# define EV_USE_INOTIFY 0
371#endif
372
373#if !EV_USE_NANOSLEEP
374# ifndef _WIN32
375# include <sys/select.h>
376# endif
377#endif
378
379#if EV_USE_INOTIFY
380# include <sys/utsname.h>
381# include <sys/statfs.h>
382# include <sys/inotify.h>
383/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384# ifndef IN_DONT_FOLLOW
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387# endif
388#endif
389
148#if EV_SELECT_IS_WINSOCKET 390#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 391# include <winsock.h>
150#endif 392#endif
151 393
394#if EV_USE_EVENTFD
395/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
396# include <stdint.h>
397# ifndef EFD_NONBLOCK
398# define EFD_NONBLOCK O_NONBLOCK
399# endif
400# ifndef EFD_CLOEXEC
401# ifdef O_CLOEXEC
402# define EFD_CLOEXEC O_CLOEXEC
403# else
404# define EFD_CLOEXEC 02000000
405# endif
406# endif
407# ifdef __cplusplus
408extern "C" {
409# endif
410int (eventfd) (unsigned int initval, int flags);
411# ifdef __cplusplus
412}
413# endif
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429# ifdef __cplusplus
430extern "C" {
431# endif
432int signalfd (int fd, const sigset_t *mask, int flags);
433
434struct signalfd_siginfo
435{
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438};
439# ifdef __cplusplus
440}
441# endif
442#endif
443
444
152/**/ 445/**/
446
447#if EV_VERIFY >= 3
448# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449#else
450# define EV_FREQUENT_CHECK do { } while (0)
451#endif
452
453/*
454 * This is used to avoid floating point rounding problems.
455 * It is added to ev_rt_now when scheduling periodics
456 * to ensure progress, time-wise, even when rounding
457 * errors are against us.
458 * This value is good at least till the year 4000.
459 * Better solutions welcome.
460 */
461#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 462
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
158 465
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164
165#if __GNUC__ >= 3 466#if __GNUC__ >= 4
166# define expect(expr,value) __builtin_expect ((expr),(value)) 467# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 468# define noinline __attribute__ ((noinline))
168#else 469#else
169# define expect(expr,value) (expr) 470# define expect(expr,value) (expr)
170# define inline static 471# define noinline
472# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
473# define inline
474# endif
171#endif 475#endif
172 476
173#define expect_false(expr) expect ((expr) != 0, 0) 477#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 478#define expect_true(expr) expect ((expr) != 0, 1)
479#define inline_size static inline
175 480
481#if EV_MINIMAL
482# define inline_speed static noinline
483#else
484# define inline_speed static inline
485#endif
486
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 487#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489#if EV_MINPRI == EV_MAXPRI
490# define ABSPRI(w) (((W)w), 0)
491#else
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 492# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493#endif
178 494
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 495#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 496#define EMPTY2(a,b) /* used to suppress some warnings */
181 497
182typedef struct ev_watcher *W; 498typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 499typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 500typedef ev_watcher_time *WT;
185 501
502#define ev_active(w) ((W)(w))->active
503#define ev_at(w) ((WT)(w))->at
504
505#if EV_USE_REALTIME
506/* sig_atomic_t is used to avoid per-thread variables or locking but still */
507/* giving it a reasonably high chance of working on typical architetcures */
508static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509#endif
510
511#if EV_USE_MONOTONIC
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 512static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513#endif
514
515#ifndef EV_FD_TO_WIN32_HANDLE
516# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517#endif
518#ifndef EV_WIN32_HANDLE_TO_FD
519# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520#endif
521#ifndef EV_WIN32_CLOSE_FD
522# define EV_WIN32_CLOSE_FD(fd) close (fd)
523#endif
187 524
188#ifdef _WIN32 525#ifdef _WIN32
189# include "ev_win32.c" 526# include "ev_win32.c"
190#endif 527#endif
191 528
192/*****************************************************************************/ 529/*****************************************************************************/
193 530
531#if EV_AVOID_STDIO
532static void noinline
533ev_printerr (const char *msg)
534{
535 write (STDERR_FILENO, msg, strlen (msg));
536}
537#endif
538
194static void (*syserr_cb)(const char *msg); 539static void (*syserr_cb)(const char *msg);
195 540
541void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 542ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 543{
198 syserr_cb = cb; 544 syserr_cb = cb;
199} 545}
200 546
201static void 547static void noinline
202syserr (const char *msg) 548ev_syserr (const char *msg)
203{ 549{
204 if (!msg) 550 if (!msg)
205 msg = "(libev) system error"; 551 msg = "(libev) system error";
206 552
207 if (syserr_cb) 553 if (syserr_cb)
208 syserr_cb (msg); 554 syserr_cb (msg);
209 else 555 else
210 { 556 {
557#if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564#else
211 perror (msg); 565 perror (msg);
566#endif
212 abort (); 567 abort ();
213 } 568 }
214} 569}
215 570
571static void *
572ev_realloc_emul (void *ptr, long size)
573{
574#if __GLIBC__
575 return realloc (ptr, size);
576#else
577 /* some systems, notably openbsd and darwin, fail to properly
578 * implement realloc (x, 0) (as required by both ansi c-89 and
579 * the single unix specification, so work around them here.
580 */
581
582 if (size)
583 return realloc (ptr, size);
584
585 free (ptr);
586 return 0;
587#endif
588}
589
216static void *(*alloc)(void *ptr, long size); 590static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
217 591
592void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 593ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 594{
220 alloc = cb; 595 alloc = cb;
221} 596}
222 597
223static void * 598inline_speed void *
224ev_realloc (void *ptr, long size) 599ev_realloc (void *ptr, long size)
225{ 600{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 601 ptr = alloc (ptr, size);
227 602
228 if (!ptr && size) 603 if (!ptr && size)
229 { 604 {
605#if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607#else
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609#endif
231 abort (); 610 abort ();
232 } 611 }
233 612
234 return ptr; 613 return ptr;
235} 614}
237#define ev_malloc(size) ev_realloc (0, (size)) 616#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0) 617#define ev_free(ptr) ev_realloc ((ptr), 0)
239 618
240/*****************************************************************************/ 619/*****************************************************************************/
241 620
621/* set in reify when reification needed */
622#define EV_ANFD_REIFY 1
623
624/* file descriptor info structure */
242typedef struct 625typedef struct
243{ 626{
244 WL head; 627 WL head;
245 unsigned char events; 628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
246 unsigned char reify; 631 unsigned char unused;
632#if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634#endif
247#if EV_SELECT_IS_WINSOCKET 635#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle; 636 SOCKET handle;
249#endif 637#endif
250} ANFD; 638} ANFD;
251 639
640/* stores the pending event set for a given watcher */
252typedef struct 641typedef struct
253{ 642{
254 W w; 643 W w;
255 int events; 644 int events; /* the pending event set for the given watcher */
256} ANPENDING; 645} ANPENDING;
646
647#if EV_USE_INOTIFY
648/* hash table entry per inotify-id */
649typedef struct
650{
651 WL head;
652} ANFS;
653#endif
654
655/* Heap Entry */
656#if EV_HEAP_CACHE_AT
657 /* a heap element */
658 typedef struct {
659 ev_tstamp at;
660 WT w;
661 } ANHE;
662
663 #define ANHE_w(he) (he).w /* access watcher, read-write */
664 #define ANHE_at(he) (he).at /* access cached at, read-only */
665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666#else
667 /* a heap element */
668 typedef WT ANHE;
669
670 #define ANHE_w(he) (he)
671 #define ANHE_at(he) (he)->at
672 #define ANHE_at_cache(he)
673#endif
257 674
258#if EV_MULTIPLICITY 675#if EV_MULTIPLICITY
259 676
260 struct ev_loop 677 struct ev_loop
261 { 678 {
279 696
280 static int ev_default_loop_ptr; 697 static int ev_default_loop_ptr;
281 698
282#endif 699#endif
283 700
701#if EV_MINIMAL < 2
702# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704# define EV_INVOKE_PENDING invoke_cb (EV_A)
705#else
706# define EV_RELEASE_CB (void)0
707# define EV_ACQUIRE_CB (void)0
708# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709#endif
710
711#define EVUNLOOP_RECURSE 0x80
712
284/*****************************************************************************/ 713/*****************************************************************************/
285 714
715#ifndef EV_HAVE_EV_TIME
286ev_tstamp 716ev_tstamp
287ev_time (void) 717ev_time (void)
288{ 718{
289#if EV_USE_REALTIME 719#if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
290 struct timespec ts; 722 struct timespec ts;
291 clock_gettime (CLOCK_REALTIME, &ts); 723 clock_gettime (CLOCK_REALTIME, &ts);
292 return ts.tv_sec + ts.tv_nsec * 1e-9; 724 return ts.tv_sec + ts.tv_nsec * 1e-9;
293#else 725 }
726#endif
727
294 struct timeval tv; 728 struct timeval tv;
295 gettimeofday (&tv, 0); 729 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 730 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif
298} 731}
732#endif
299 733
300inline ev_tstamp 734inline_size ev_tstamp
301get_clock (void) 735get_clock (void)
302{ 736{
303#if EV_USE_MONOTONIC 737#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 738 if (expect_true (have_monotonic))
305 { 739 {
318{ 752{
319 return ev_rt_now; 753 return ev_rt_now;
320} 754}
321#endif 755#endif
322 756
323#define array_roundsize(type,n) (((n) | 4) & ~3) 757void
758ev_sleep (ev_tstamp delay)
759{
760 if (delay > 0.)
761 {
762#if EV_USE_NANOSLEEP
763 struct timespec ts;
764
765 ts.tv_sec = (time_t)delay;
766 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
767
768 nanosleep (&ts, 0);
769#elif defined(_WIN32)
770 Sleep ((unsigned long)(delay * 1e3));
771#else
772 struct timeval tv;
773
774 tv.tv_sec = (time_t)delay;
775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
780 select (0, 0, 0, 0, &tv);
781#endif
782 }
783}
784
785/*****************************************************************************/
786
787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788
789/* find a suitable new size for the given array, */
790/* hopefully by rounding to a ncie-to-malloc size */
791inline_size int
792array_nextsize (int elem, int cur, int cnt)
793{
794 int ncur = cur + 1;
795
796 do
797 ncur <<= 1;
798 while (cnt > ncur);
799
800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
802 {
803 ncur *= elem;
804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
805 ncur = ncur - sizeof (void *) * 4;
806 ncur /= elem;
807 }
808
809 return ncur;
810}
811
812static noinline void *
813array_realloc (int elem, void *base, int *cur, int cnt)
814{
815 *cur = array_nextsize (elem, *cur, cnt);
816 return ev_realloc (base, elem * *cur);
817}
818
819#define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
324 821
325#define array_needsize(type,base,cur,cnt,init) \ 822#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 823 if (expect_false ((cnt) > (cur))) \
327 { \ 824 { \
328 int newcnt = cur; \ 825 int ocur_ = (cur); \
329 do \ 826 (base) = (type *)array_realloc \
330 { \ 827 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 828 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 829 }
339 830
831#if 0
340#define array_slim(type,stem) \ 832#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 833 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 834 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 835 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 836 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 838 }
839#endif
347 840
348#define array_free(stem, idx) \ 841#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
350 843
351/*****************************************************************************/ 844/*****************************************************************************/
352 845
353static void 846/* dummy callback for pending events */
354anfds_init (ANFD *base, int count) 847static void noinline
848pendingcb (EV_P_ ev_prepare *w, int revents)
355{ 849{
356 while (count--)
357 {
358 base->head = 0;
359 base->events = EV_NONE;
360 base->reify = 0;
361
362 ++base;
363 }
364} 850}
365 851
366void 852void noinline
367ev_feed_event (EV_P_ void *w, int revents) 853ev_feed_event (EV_P_ void *w, int revents)
368{ 854{
369 W w_ = (W)w; 855 W w_ = (W)w;
856 int pri = ABSPRI (w_);
370 857
371 if (expect_false (w_->pending)) 858 if (expect_false (w_->pending))
859 pendings [pri][w_->pending - 1].events |= revents;
860 else
372 { 861 {
862 w_->pending = ++pendingcnt [pri];
863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
864 pendings [pri][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 865 pendings [pri][w_->pending - 1].events = revents;
374 return;
375 } 866 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381} 867}
382 868
383static void 869inline_speed void
870feed_reverse (EV_P_ W w)
871{
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874}
875
876inline_size void
877feed_reverse_done (EV_P_ int revents)
878{
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882}
883
884inline_speed void
384queue_events (EV_P_ W *events, int eventcnt, int type) 885queue_events (EV_P_ W *events, int eventcnt, int type)
385{ 886{
386 int i; 887 int i;
387 888
388 for (i = 0; i < eventcnt; ++i) 889 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type); 890 ev_feed_event (EV_A_ events [i], type);
390} 891}
391 892
893/*****************************************************************************/
894
392inline void 895inline_speed void
393fd_event (EV_P_ int fd, int revents) 896fd_event_nocheck (EV_P_ int fd, int revents)
394{ 897{
395 ANFD *anfd = anfds + fd; 898 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 899 ev_io *w;
397 900
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 902 {
400 int ev = w->events & revents; 903 int ev = w->events & revents;
401 904
402 if (ev) 905 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 906 ev_feed_event (EV_A_ (W)w, ev);
404 } 907 }
405} 908}
406 909
910/* do not submit kernel events for fds that have reify set */
911/* because that means they changed while we were polling for new events */
912inline_speed void
913fd_event (EV_P_ int fd, int revents)
914{
915 ANFD *anfd = anfds + fd;
916
917 if (expect_true (!anfd->reify))
918 fd_event_nocheck (EV_A_ fd, revents);
919}
920
407void 921void
408ev_feed_fd_event (EV_P_ int fd, int revents) 922ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 923{
924 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 925 fd_event_nocheck (EV_A_ fd, revents);
411} 926}
412 927
413/*****************************************************************************/ 928/* make sure the external fd watch events are in-sync */
414 929/* with the kernel/libev internal state */
415inline void 930inline_size void
416fd_reify (EV_P) 931fd_reify (EV_P)
417{ 932{
418 int i; 933 int i;
419 934
420 for (i = 0; i < fdchangecnt; ++i) 935 for (i = 0; i < fdchangecnt; ++i)
421 { 936 {
422 int fd = fdchanges [i]; 937 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 938 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 939 ev_io *w;
425 940
426 int events = 0; 941 unsigned char events = 0;
427 942
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 943 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 944 events |= (unsigned char)w->events;
430 945
431#if EV_SELECT_IS_WINSOCKET 946#if EV_SELECT_IS_WINSOCKET
432 if (events) 947 if (events)
433 { 948 {
434 unsigned long argp; 949 unsigned long arg;
435 anfd->handle = _get_osfhandle (fd); 950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
437 } 952 }
438#endif 953#endif
439 954
955 {
956 unsigned char o_events = anfd->events;
957 unsigned char o_reify = anfd->reify;
958
440 anfd->reify = 0; 959 anfd->reify = 0;
441
442 method_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 960 anfd->events = events;
961
962 if (o_events != events || o_reify & EV__IOFDSET)
963 backend_modify (EV_A_ fd, o_events, events);
964 }
444 } 965 }
445 966
446 fdchangecnt = 0; 967 fdchangecnt = 0;
447} 968}
448 969
449static void 970/* something about the given fd changed */
971inline_size void
450fd_change (EV_P_ int fd) 972fd_change (EV_P_ int fd, int flags)
451{ 973{
452 if (expect_false (anfds [fd].reify)) 974 unsigned char reify = anfds [fd].reify;
453 return;
454
455 anfds [fd].reify = 1; 975 anfds [fd].reify |= flags;
456 976
977 if (expect_true (!reify))
978 {
457 ++fdchangecnt; 979 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 981 fdchanges [fdchangecnt - 1] = fd;
982 }
460} 983}
461 984
462static void 985/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986inline_speed void
463fd_kill (EV_P_ int fd) 987fd_kill (EV_P_ int fd)
464{ 988{
465 struct ev_io *w; 989 ev_io *w;
466 990
467 while ((w = (struct ev_io *)anfds [fd].head)) 991 while ((w = (ev_io *)anfds [fd].head))
468 { 992 {
469 ev_io_stop (EV_A_ w); 993 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 995 }
472} 996}
473 997
998/* check whether the given fd is actually valid, for error recovery */
474inline int 999inline_size int
475fd_valid (int fd) 1000fd_valid (int fd)
476{ 1001{
477#ifdef _WIN32 1002#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
479#else 1004#else
480 return fcntl (fd, F_GETFD) != -1; 1005 return fcntl (fd, F_GETFD) != -1;
481#endif 1006#endif
482} 1007}
483 1008
484/* called on EBADF to verify fds */ 1009/* called on EBADF to verify fds */
485static void 1010static void noinline
486fd_ebadf (EV_P) 1011fd_ebadf (EV_P)
487{ 1012{
488 int fd; 1013 int fd;
489 1014
490 for (fd = 0; fd < anfdmax; ++fd) 1015 for (fd = 0; fd < anfdmax; ++fd)
491 if (anfds [fd].events) 1016 if (anfds [fd].events)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 1017 if (!fd_valid (fd) && errno == EBADF)
493 fd_kill (EV_A_ fd); 1018 fd_kill (EV_A_ fd);
494} 1019}
495 1020
496/* called on ENOMEM in select/poll to kill some fds and retry */ 1021/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 1022static void noinline
498fd_enomem (EV_P) 1023fd_enomem (EV_P)
499{ 1024{
500 int fd; 1025 int fd;
501 1026
502 for (fd = anfdmax; fd--; ) 1027 for (fd = anfdmax; fd--; )
503 if (anfds [fd].events) 1028 if (anfds [fd].events)
504 { 1029 {
505 fd_kill (EV_A_ fd); 1030 fd_kill (EV_A_ fd);
506 return; 1031 break;
507 } 1032 }
508} 1033}
509 1034
510/* usually called after fork if method needs to re-arm all fds from scratch */ 1035/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 1036static void noinline
512fd_rearm_all (EV_P) 1037fd_rearm_all (EV_P)
513{ 1038{
514 int fd; 1039 int fd;
515 1040
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 1041 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1042 if (anfds [fd].events)
519 { 1043 {
520 anfds [fd].events = 0; 1044 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 1045 anfds [fd].emask = 0;
1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
522 } 1047 }
523} 1048}
524 1049
525/*****************************************************************************/ 1050/* used to prepare libev internal fd's */
526 1051/* this is not fork-safe */
527static void
528upheap (WT *heap, int k)
529{
530 WT w = heap [k];
531
532 while (k && heap [k >> 1]->at > w->at)
533 {
534 heap [k] = heap [k >> 1];
535 ((W)heap [k])->active = k + 1;
536 k >>= 1;
537 }
538
539 heap [k] = w;
540 ((W)heap [k])->active = k + 1;
541
542}
543
544static void
545downheap (WT *heap, int N, int k)
546{
547 WT w = heap [k];
548
549 while (k < (N >> 1))
550 {
551 int j = k << 1;
552
553 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
554 ++j;
555
556 if (w->at <= heap [j]->at)
557 break;
558
559 heap [k] = heap [j];
560 ((W)heap [k])->active = k + 1;
561 k = j;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566}
567
568inline void 1052inline_speed void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
573}
574
575/*****************************************************************************/
576
577typedef struct
578{
579 WL head;
580 sig_atomic_t volatile gotsig;
581} ANSIG;
582
583static ANSIG *signals;
584static int signalmax;
585
586static int sigpipe [2];
587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
589
590static void
591signals_init (ANSIG *base, int count)
592{
593 while (count--)
594 {
595 base->head = 0;
596 base->gotsig = 0;
597
598 ++base;
599 }
600}
601
602static void
603sighandler (int signum)
604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
609 signals [signum - 1].gotsig = 1;
610
611 if (!gotsig)
612 {
613 int old_errno = errno;
614 gotsig = 1;
615 write (sigpipe [1], &signum, 1);
616 errno = old_errno;
617 }
618}
619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
640static void
641sigcb (EV_P_ struct ev_io *iow, int revents)
642{
643 int signum;
644
645 read (sigpipe [0], &revents, 1);
646 gotsig = 0;
647
648 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1);
651}
652
653static void
654fd_intern (int fd) 1053fd_intern (int fd)
655{ 1054{
656#ifdef _WIN32 1055#ifdef _WIN32
657 int arg = 1; 1056 unsigned long arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
659#else 1058#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 1060 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 1061#endif
663} 1062}
664 1063
1064/*****************************************************************************/
1065
1066/*
1067 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069 * the branching factor of the d-tree.
1070 */
1071
1072/*
1073 * at the moment we allow libev the luxury of two heaps,
1074 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075 * which is more cache-efficient.
1076 * the difference is about 5% with 50000+ watchers.
1077 */
1078#if EV_USE_4HEAP
1079
1080#define DHEAP 4
1081#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083#define UPHEAP_DONE(p,k) ((p) == (k))
1084
1085/* away from the root */
1086inline_speed void
1087downheap (ANHE *heap, int N, int k)
1088{
1089 ANHE he = heap [k];
1090 ANHE *E = heap + N + HEAP0;
1091
1092 for (;;)
1093 {
1094 ev_tstamp minat;
1095 ANHE *minpos;
1096 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097
1098 /* find minimum child */
1099 if (expect_true (pos + DHEAP - 1 < E))
1100 {
1101 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 }
1106 else if (pos < E)
1107 {
1108 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else
1114 break;
1115
1116 if (ANHE_at (he) <= minat)
1117 break;
1118
1119 heap [k] = *minpos;
1120 ev_active (ANHE_w (*minpos)) = k;
1121
1122 k = minpos - heap;
1123 }
1124
1125 heap [k] = he;
1126 ev_active (ANHE_w (he)) = k;
1127}
1128
1129#else /* 4HEAP */
1130
1131#define HEAP0 1
1132#define HPARENT(k) ((k) >> 1)
1133#define UPHEAP_DONE(p,k) (!(p))
1134
1135/* away from the root */
1136inline_speed void
1137downheap (ANHE *heap, int N, int k)
1138{
1139 ANHE he = heap [k];
1140
1141 for (;;)
1142 {
1143 int c = k << 1;
1144
1145 if (c >= N + HEAP0)
1146 break;
1147
1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149 ? 1 : 0;
1150
1151 if (ANHE_at (he) <= ANHE_at (heap [c]))
1152 break;
1153
1154 heap [k] = heap [c];
1155 ev_active (ANHE_w (heap [k])) = k;
1156
1157 k = c;
1158 }
1159
1160 heap [k] = he;
1161 ev_active (ANHE_w (he)) = k;
1162}
1163#endif
1164
1165/* towards the root */
1166inline_speed void
1167upheap (ANHE *heap, int k)
1168{
1169 ANHE he = heap [k];
1170
1171 for (;;)
1172 {
1173 int p = HPARENT (k);
1174
1175 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 break;
1177
1178 heap [k] = heap [p];
1179 ev_active (ANHE_w (heap [k])) = k;
1180 k = p;
1181 }
1182
1183 heap [k] = he;
1184 ev_active (ANHE_w (he)) = k;
1185}
1186
1187/* move an element suitably so it is in a correct place */
1188inline_size void
1189adjustheap (ANHE *heap, int N, int k)
1190{
1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 upheap (heap, k);
1193 else
1194 downheap (heap, N, k);
1195}
1196
1197/* rebuild the heap: this function is used only once and executed rarely */
1198inline_size void
1199reheap (ANHE *heap, int N)
1200{
1201 int i;
1202
1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205 for (i = 0; i < N; ++i)
1206 upheap (heap, i + HEAP0);
1207}
1208
1209/*****************************************************************************/
1210
1211/* associate signal watchers to a signal signal */
1212typedef struct
1213{
1214 EV_ATOMIC_T pending;
1215#if EV_MULTIPLICITY
1216 EV_P;
1217#endif
1218 WL head;
1219} ANSIG;
1220
1221static ANSIG signals [EV_NSIG - 1];
1222
1223/*****************************************************************************/
1224
1225#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226
1227static void noinline
1228evpipe_init (EV_P)
1229{
1230 if (!ev_is_active (&pipe_w))
1231 {
1232# if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
1238 {
1239 evpipe [0] = -1;
1240 fd_intern (evfd); /* doing it twice doesn't hurt */
1241 ev_io_set (&pipe_w, evfd, EV_READ);
1242 }
1243 else
1244# endif
1245 {
1246 while (pipe (evpipe))
1247 ev_syserr ("(libev) error creating signal/async pipe");
1248
1249 fd_intern (evpipe [0]);
1250 fd_intern (evpipe [1]);
1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1252 }
1253
1254 ev_io_start (EV_A_ &pipe_w);
1255 ev_unref (EV_A); /* watcher should not keep loop alive */
1256 }
1257}
1258
1259inline_size void
1260evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1261{
1262 if (!*flag)
1263 {
1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
1266
1267 *flag = 1;
1268
1269#if EV_USE_EVENTFD
1270 if (evfd >= 0)
1271 {
1272 uint64_t counter = 1;
1273 write (evfd, &counter, sizeof (uint64_t));
1274 }
1275 else
1276#endif
1277 write (evpipe [1], &dummy, 1);
1278
1279 errno = old_errno;
1280 }
1281}
1282
1283/* called whenever the libev signal pipe */
1284/* got some events (signal, async) */
665static void 1285static void
666siginit (EV_P) 1286pipecb (EV_P_ ev_io *iow, int revents)
667{ 1287{
668 fd_intern (sigpipe [0]); 1288 int i;
669 fd_intern (sigpipe [1]);
670 1289
671 ev_io_set (&sigev, sigpipe [0], EV_READ); 1290#if EV_USE_EVENTFD
672 ev_io_start (EV_A_ &sigev); 1291 if (evfd >= 0)
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1292 {
1293 uint64_t counter;
1294 read (evfd, &counter, sizeof (uint64_t));
1295 }
1296 else
1297#endif
1298 {
1299 char dummy;
1300 read (evpipe [0], &dummy, 1);
1301 }
1302
1303 if (sig_pending)
1304 {
1305 sig_pending = 0;
1306
1307 for (i = EV_NSIG - 1; i--; )
1308 if (expect_false (signals [i].pending))
1309 ev_feed_signal_event (EV_A_ i + 1);
1310 }
1311
1312#if EV_ASYNC_ENABLE
1313 if (async_pending)
1314 {
1315 async_pending = 0;
1316
1317 for (i = asynccnt; i--; )
1318 if (asyncs [i]->sent)
1319 {
1320 asyncs [i]->sent = 0;
1321 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1322 }
1323 }
1324#endif
674} 1325}
675 1326
676/*****************************************************************************/ 1327/*****************************************************************************/
677 1328
678static struct ev_child *childs [PID_HASHSIZE]; 1329static void
1330ev_sighandler (int signum)
1331{
1332#if EV_MULTIPLICITY
1333 EV_P = signals [signum - 1].loop;
1334#endif
679 1335
680#ifndef _WIN32 1336#ifdef _WIN32
1337 signal (signum, ev_sighandler);
1338#endif
681 1339
1340 signals [signum - 1].pending = 1;
1341 evpipe_write (EV_A_ &sig_pending);
1342}
1343
1344void noinline
1345ev_feed_signal_event (EV_P_ int signum)
1346{
1347 WL w;
1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
1354#if EV_MULTIPLICITY
1355 /* it is permissible to try to feed a signal to the wrong loop */
1356 /* or, likely more useful, feeding a signal nobody is waiting for */
1357
1358 if (expect_false (signals [signum].loop != EV_A))
1359 return;
1360#endif
1361
1362 signals [signum].pending = 0;
1363
1364 for (w = signals [signum].head; w; w = w->next)
1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1366}
1367
1368#if EV_USE_SIGNALFD
1369static void
1370sigfdcb (EV_P_ ev_io *iow, int revents)
1371{
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385}
1386#endif
1387
1388#endif
1389
1390/*****************************************************************************/
1391
1392#if EV_CHILD_ENABLE
1393static WL childs [EV_PID_HASHSIZE];
1394
682static struct ev_signal childev; 1395static ev_signal childev;
1396
1397#ifndef WIFCONTINUED
1398# define WIFCONTINUED(status) 0
1399#endif
1400
1401/* handle a single child status event */
1402inline_speed void
1403child_reap (EV_P_ int chain, int pid, int status)
1404{
1405 ev_child *w;
1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1407
1408 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1409 {
1410 if ((w->pid == pid || !w->pid)
1411 && (!traced || (w->flags & 1)))
1412 {
1413 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1414 w->rpid = pid;
1415 w->rstatus = status;
1416 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1417 }
1418 }
1419}
683 1420
684#ifndef WCONTINUED 1421#ifndef WCONTINUED
685# define WCONTINUED 0 1422# define WCONTINUED 0
686#endif 1423#endif
687 1424
1425/* called on sigchld etc., calls waitpid */
688static void 1426static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 1427childcb (EV_P_ ev_signal *sw, int revents)
705{ 1428{
706 int pid, status; 1429 int pid, status;
707 1430
1431 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1432 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 1433 if (!WCONTINUED
1434 || errno != EINVAL
1435 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1436 return;
1437
710 /* make sure we are called again until all childs have been reaped */ 1438 /* make sure we are called again until all children have been reaped */
1439 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1440 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 1441
713 child_reap (EV_A_ sw, pid, pid, status); 1442 child_reap (EV_A_ pid, pid, status);
1443 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1444 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 1445}
717 1446
718#endif 1447#endif
719 1448
720/*****************************************************************************/ 1449/*****************************************************************************/
746{ 1475{
747 return EV_VERSION_MINOR; 1476 return EV_VERSION_MINOR;
748} 1477}
749 1478
750/* return true if we are running with elevated privileges and should ignore env variables */ 1479/* return true if we are running with elevated privileges and should ignore env variables */
751static int 1480int inline_size
752enable_secure (void) 1481enable_secure (void)
753{ 1482{
754#ifdef _WIN32 1483#ifdef _WIN32
755 return 0; 1484 return 0;
756#else 1485#else
758 || getgid () != getegid (); 1487 || getgid () != getegid ();
759#endif 1488#endif
760} 1489}
761 1490
762unsigned int 1491unsigned int
763ev_method (EV_P) 1492ev_supported_backends (void)
764{ 1493{
765 return method; 1494 unsigned int flags = 0;
766}
767 1495
768static void 1496 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1497 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1498 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1499 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1500 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1501
1502 return flags;
1503}
1504
1505unsigned int
1506ev_recommended_backends (void)
1507{
1508 unsigned int flags = ev_supported_backends ();
1509
1510#ifndef __NetBSD__
1511 /* kqueue is borked on everything but netbsd apparently */
1512 /* it usually doesn't work correctly on anything but sockets and pipes */
1513 flags &= ~EVBACKEND_KQUEUE;
1514#endif
1515#ifdef __APPLE__
1516 /* only select works correctly on that "unix-certified" platform */
1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1519#endif
1520
1521 return flags;
1522}
1523
1524unsigned int
1525ev_embeddable_backends (void)
1526{
1527 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1528
1529 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1530 /* please fix it and tell me how to detect the fix */
1531 flags &= ~EVBACKEND_EPOLL;
1532
1533 return flags;
1534}
1535
1536unsigned int
1537ev_backend (EV_P)
1538{
1539 return backend;
1540}
1541
1542#if EV_MINIMAL < 2
1543unsigned int
1544ev_loop_count (EV_P)
1545{
1546 return loop_count;
1547}
1548
1549unsigned int
1550ev_loop_depth (EV_P)
1551{
1552 return loop_depth;
1553}
1554
1555void
1556ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1557{
1558 io_blocktime = interval;
1559}
1560
1561void
1562ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1563{
1564 timeout_blocktime = interval;
1565}
1566
1567void
1568ev_set_userdata (EV_P_ void *data)
1569{
1570 userdata = data;
1571}
1572
1573void *
1574ev_userdata (EV_P)
1575{
1576 return userdata;
1577}
1578
1579void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580{
1581 invoke_cb = invoke_pending_cb;
1582}
1583
1584void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585{
1586 release_cb = release;
1587 acquire_cb = acquire;
1588}
1589#endif
1590
1591/* initialise a loop structure, must be zero-initialised */
1592static void noinline
769loop_init (EV_P_ unsigned int flags) 1593loop_init (EV_P_ unsigned int flags)
770{ 1594{
771 if (!method) 1595 if (!backend)
772 { 1596 {
1597#if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605#endif
1606
773#if EV_USE_MONOTONIC 1607#if EV_USE_MONOTONIC
1608 if (!have_monotonic)
1609 {
1610 struct timespec ts;
1611
1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1613 have_monotonic = 1;
1614 }
1615#endif
1616
1617 /* pid check not overridable via env */
1618#ifndef _WIN32
1619 if (flags & EVFLAG_FORKCHECK)
1620 curpid = getpid ();
1621#endif
1622
1623 if (!(flags & EVFLAG_NOENV)
1624 && !enable_secure ()
1625 && getenv ("LIBEV_FLAGS"))
1626 flags = atoi (getenv ("LIBEV_FLAGS"));
1627
1628 ev_rt_now = ev_time ();
1629 mn_now = get_clock ();
1630 now_floor = mn_now;
1631 rtmn_diff = ev_rt_now - mn_now;
1632#if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634#endif
1635
1636 io_blocktime = 0.;
1637 timeout_blocktime = 0.;
1638 backend = 0;
1639 backend_fd = -1;
1640 sig_pending = 0;
1641#if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643#endif
1644#if EV_USE_INOTIFY
1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1646#endif
1647#if EV_USE_SIGNALFD
1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1649#endif
1650
1651 if (!(flags & 0x0000ffffU))
1652 flags |= ev_recommended_backends ();
1653
1654#if EV_USE_PORT
1655 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1656#endif
1657#if EV_USE_KQUEUE
1658 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1659#endif
1660#if EV_USE_EPOLL
1661 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1662#endif
1663#if EV_USE_POLL
1664 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1665#endif
1666#if EV_USE_SELECT
1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1668#endif
1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1673 ev_init (&pipe_w, pipecb);
1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675#endif
1676 }
1677}
1678
1679/* free up a loop structure */
1680static void noinline
1681loop_destroy (EV_P)
1682{
1683 int i;
1684
1685 if (ev_is_active (&pipe_w))
1686 {
1687 /*ev_ref (EV_A);*/
1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1689
1690#if EV_USE_EVENTFD
1691 if (evfd >= 0)
1692 close (evfd);
1693#endif
1694
1695 if (evpipe [0] >= 0)
1696 {
1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1699 }
1700 }
1701
1702#if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705#endif
1706
1707#if EV_USE_INOTIFY
1708 if (fs_fd >= 0)
1709 close (fs_fd);
1710#endif
1711
1712 if (backend_fd >= 0)
1713 close (backend_fd);
1714
1715#if EV_USE_PORT
1716 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1717#endif
1718#if EV_USE_KQUEUE
1719 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1720#endif
1721#if EV_USE_EPOLL
1722 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1723#endif
1724#if EV_USE_POLL
1725 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1726#endif
1727#if EV_USE_SELECT
1728 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1729#endif
1730
1731 for (i = NUMPRI; i--; )
1732 {
1733 array_free (pending, [i]);
1734#if EV_IDLE_ENABLE
1735 array_free (idle, [i]);
1736#endif
1737 }
1738
1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1740
1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1743 array_free (fdchange, EMPTY);
1744 array_free (timer, EMPTY);
1745#if EV_PERIODIC_ENABLE
1746 array_free (periodic, EMPTY);
1747#endif
1748#if EV_FORK_ENABLE
1749 array_free (fork, EMPTY);
1750#endif
1751 array_free (prepare, EMPTY);
1752 array_free (check, EMPTY);
1753#if EV_ASYNC_ENABLE
1754 array_free (async, EMPTY);
1755#endif
1756
1757 backend = 0;
1758}
1759
1760#if EV_USE_INOTIFY
1761inline_size void infy_fork (EV_P);
1762#endif
1763
1764inline_size void
1765loop_fork (EV_P)
1766{
1767#if EV_USE_PORT
1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1769#endif
1770#if EV_USE_KQUEUE
1771 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1772#endif
1773#if EV_USE_EPOLL
1774 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1775#endif
1776#if EV_USE_INOTIFY
1777 infy_fork (EV_A);
1778#endif
1779
1780 if (ev_is_active (&pipe_w))
1781 {
1782 /* this "locks" the handlers against writing to the pipe */
1783 /* while we modify the fd vars */
1784 sig_pending = 1;
1785#if EV_ASYNC_ENABLE
1786 async_pending = 1;
1787#endif
1788
1789 ev_ref (EV_A);
1790 ev_io_stop (EV_A_ &pipe_w);
1791
1792#if EV_USE_EVENTFD
1793 if (evfd >= 0)
1794 close (evfd);
1795#endif
1796
1797 if (evpipe [0] >= 0)
1798 {
1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1801 }
1802
1803#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1804 evpipe_init (EV_A);
1805 /* now iterate over everything, in case we missed something */
1806 pipecb (EV_A_ &pipe_w, EV_READ);
1807#endif
1808 }
1809
1810 postfork = 0;
1811}
1812
1813#if EV_MULTIPLICITY
1814
1815struct ev_loop *
1816ev_loop_new (unsigned int flags)
1817{
1818 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1819
1820 memset (EV_A, 0, sizeof (struct ev_loop));
1821 loop_init (EV_A_ flags);
1822
1823 if (ev_backend (EV_A))
1824 return EV_A;
1825
1826 return 0;
1827}
1828
1829void
1830ev_loop_destroy (EV_P)
1831{
1832 loop_destroy (EV_A);
1833 ev_free (loop);
1834}
1835
1836void
1837ev_loop_fork (EV_P)
1838{
1839 postfork = 1; /* must be in line with ev_default_fork */
1840}
1841#endif /* multiplicity */
1842
1843#if EV_VERIFY
1844static void noinline
1845verify_watcher (EV_P_ W w)
1846{
1847 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1848
1849 if (w->pending)
1850 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1851}
1852
1853static void noinline
1854verify_heap (EV_P_ ANHE *heap, int N)
1855{
1856 int i;
1857
1858 for (i = HEAP0; i < N + HEAP0; ++i)
1859 {
1860 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1861 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1862 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1863
1864 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1865 }
1866}
1867
1868static void noinline
1869array_verify (EV_P_ W *ws, int cnt)
1870{
1871 while (cnt--)
1872 {
1873 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1874 verify_watcher (EV_A_ ws [cnt]);
1875 }
1876}
1877#endif
1878
1879#if EV_MINIMAL < 2
1880void
1881ev_loop_verify (EV_P)
1882{
1883#if EV_VERIFY
1884 int i;
1885 WL w;
1886
1887 assert (activecnt >= -1);
1888
1889 assert (fdchangemax >= fdchangecnt);
1890 for (i = 0; i < fdchangecnt; ++i)
1891 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1892
1893 assert (anfdmax >= 0);
1894 for (i = 0; i < anfdmax; ++i)
1895 for (w = anfds [i].head; w; w = w->next)
774 { 1896 {
775 struct timespec ts; 1897 verify_watcher (EV_A_ (W)w);
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1898 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
777 have_monotonic = 1; 1899 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
778 } 1900 }
779#endif
780 1901
781 ev_rt_now = ev_time (); 1902 assert (timermax >= timercnt);
782 mn_now = get_clock (); 1903 verify_heap (EV_A_ timers, timercnt);
783 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now;
785 1904
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1905#if EV_PERIODIC_ENABLE
787 flags = atoi (getenv ("LIBEV_FLAGS")); 1906 assert (periodicmax >= periodiccnt);
788 1907 verify_heap (EV_A_ periodics, periodiccnt);
789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
791
792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
796#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
798#endif
799#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
801#endif
802#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
804#endif
805#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814static void
815loop_destroy (EV_P)
816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
822#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
824#endif
825#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
827#endif
828#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
830#endif
831#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
833#endif 1908#endif
834 1909
835 for (i = NUMPRI; i--; ) 1910 for (i = NUMPRI; i--; )
836 array_free (pending, [i]); 1911 {
1912 assert (pendingmax [i] >= pendingcnt [i]);
1913#if EV_IDLE_ENABLE
1914 assert (idleall >= 0);
1915 assert (idlemax [i] >= idlecnt [i]);
1916 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1917#endif
1918 }
837 1919
838 /* have to use the microsoft-never-gets-it-right macro */ 1920#if EV_FORK_ENABLE
839 array_free (fdchange, EMPTY0); 1921 assert (forkmax >= forkcnt);
840 array_free (timer, EMPTY0); 1922 array_verify (EV_A_ (W *)forks, forkcnt);
841#if EV_PERIODICS 1923#endif
842 array_free (periodic, EMPTY0); 1924
1925#if EV_ASYNC_ENABLE
1926 assert (asyncmax >= asynccnt);
1927 array_verify (EV_A_ (W *)asyncs, asynccnt);
1928#endif
1929
1930#if EV_PREPARE_ENABLE
1931 assert (preparemax >= preparecnt);
1932 array_verify (EV_A_ (W *)prepares, preparecnt);
1933#endif
1934
1935#if EV_CHECK_ENABLE
1936 assert (checkmax >= checkcnt);
1937 array_verify (EV_A_ (W *)checks, checkcnt);
1938#endif
1939
1940# if 0
1941#if EV_CHILD_ENABLE
1942 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1943 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1944#endif
843#endif 1945# endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
848 method = 0;
849}
850
851static void
852loop_fork (EV_P)
853{
854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif 1946#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
860#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
862#endif
863
864 if (ev_is_active (&sigev))
865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
880} 1947}
1948#endif
881 1949
882#if EV_MULTIPLICITY 1950#if EV_MULTIPLICITY
883struct ev_loop * 1951struct ev_loop *
884ev_loop_new (unsigned int flags)
885{
886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
887
888 memset (loop, 0, sizeof (struct ev_loop));
889
890 loop_init (EV_A_ flags);
891
892 if (ev_method (EV_A))
893 return loop;
894
895 return 0;
896}
897
898void
899ev_loop_destroy (EV_P)
900{
901 loop_destroy (EV_A);
902 ev_free (loop);
903}
904
905void
906ev_loop_fork (EV_P)
907{
908 postfork = 1;
909}
910
911#endif
912
913#if EV_MULTIPLICITY
914struct ev_loop *
915ev_default_loop_ (unsigned int flags) 1952ev_default_loop_init (unsigned int flags)
916#else 1953#else
917int 1954int
918ev_default_loop (unsigned int flags) 1955ev_default_loop (unsigned int flags)
919#endif 1956#endif
920{ 1957{
921 if (sigpipe [0] == sigpipe [1])
922 if (pipe (sigpipe))
923 return 0;
924
925 if (!ev_default_loop_ptr) 1958 if (!ev_default_loop_ptr)
926 { 1959 {
927#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1961 EV_P = ev_default_loop_ptr = &default_loop_struct;
929#else 1962#else
930 ev_default_loop_ptr = 1; 1963 ev_default_loop_ptr = 1;
931#endif 1964#endif
932 1965
933 loop_init (EV_A_ flags); 1966 loop_init (EV_A_ flags);
934 1967
935 if (ev_method (EV_A)) 1968 if (ev_backend (EV_A))
936 { 1969 {
937 siginit (EV_A); 1970#if EV_CHILD_ENABLE
938
939#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1971 ev_signal_init (&childev, childcb, SIGCHLD);
941 ev_set_priority (&childev, EV_MAXPRI); 1972 ev_set_priority (&childev, EV_MAXPRI);
942 ev_signal_start (EV_A_ &childev); 1973 ev_signal_start (EV_A_ &childev);
943 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1974 ev_unref (EV_A); /* child watcher should not keep loop alive */
944#endif 1975#endif
952 1983
953void 1984void
954ev_default_destroy (void) 1985ev_default_destroy (void)
955{ 1986{
956#if EV_MULTIPLICITY 1987#if EV_MULTIPLICITY
957 struct ev_loop *loop = ev_default_loop_ptr; 1988 EV_P = ev_default_loop_ptr;
958#endif 1989#endif
959 1990
960#ifndef _WIN32 1991 ev_default_loop_ptr = 0;
1992
1993#if EV_CHILD_ENABLE
961 ev_ref (EV_A); /* child watcher */ 1994 ev_ref (EV_A); /* child watcher */
962 ev_signal_stop (EV_A_ &childev); 1995 ev_signal_stop (EV_A_ &childev);
963#endif 1996#endif
964 1997
965 ev_ref (EV_A); /* signal watcher */
966 ev_io_stop (EV_A_ &sigev);
967
968 close (sigpipe [0]); sigpipe [0] = 0;
969 close (sigpipe [1]); sigpipe [1] = 0;
970
971 loop_destroy (EV_A); 1998 loop_destroy (EV_A);
972} 1999}
973 2000
974void 2001void
975ev_default_fork (void) 2002ev_default_fork (void)
976{ 2003{
977#if EV_MULTIPLICITY 2004#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 2005 EV_P = ev_default_loop_ptr;
979#endif 2006#endif
980 2007
981 if (method) 2008 postfork = 1; /* must be in line with ev_loop_fork */
982 postfork = 1;
983} 2009}
984 2010
985/*****************************************************************************/ 2011/*****************************************************************************/
986 2012
987static int 2013void
988any_pending (EV_P) 2014ev_invoke (EV_P_ void *w, int revents)
2015{
2016 EV_CB_INVOKE ((W)w, revents);
2017}
2018
2019unsigned int
2020ev_pending_count (EV_P)
989{ 2021{
990 int pri; 2022 int pri;
2023 unsigned int count = 0;
991 2024
992 for (pri = NUMPRI; pri--; ) 2025 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri]) 2026 count += pendingcnt [pri];
994 return 1;
995 2027
996 return 0; 2028 return count;
997} 2029}
998 2030
999inline void 2031void noinline
1000call_pending (EV_P) 2032ev_invoke_pending (EV_P)
1001{ 2033{
1002 int pri; 2034 int pri;
1003 2035
1004 for (pri = NUMPRI; pri--; ) 2036 for (pri = NUMPRI; pri--; )
1005 while (pendingcnt [pri]) 2037 while (pendingcnt [pri])
1006 { 2038 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2039 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 2040
1009 if (expect_true (p->w)) 2041 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1010 { 2042 /* ^ this is no longer true, as pending_w could be here */
2043
1011 p->w->pending = 0; 2044 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 2045 EV_CB_INVOKE (p->w, p->events);
1013 } 2046 EV_FREQUENT_CHECK;
1014 } 2047 }
1015} 2048}
1016 2049
2050#if EV_IDLE_ENABLE
2051/* make idle watchers pending. this handles the "call-idle */
2052/* only when higher priorities are idle" logic */
1017inline void 2053inline_size void
2054idle_reify (EV_P)
2055{
2056 if (expect_false (idleall))
2057 {
2058 int pri;
2059
2060 for (pri = NUMPRI; pri--; )
2061 {
2062 if (pendingcnt [pri])
2063 break;
2064
2065 if (idlecnt [pri])
2066 {
2067 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2068 break;
2069 }
2070 }
2071 }
2072}
2073#endif
2074
2075/* make timers pending */
2076inline_size void
1018timers_reify (EV_P) 2077timers_reify (EV_P)
1019{ 2078{
2079 EV_FREQUENT_CHECK;
2080
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 2081 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1021 { 2082 {
1022 struct ev_timer *w = timers [0]; 2083 do
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1025
1026 /* first reschedule or stop timer */
1027 if (w->repeat)
1028 { 2084 {
2085 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->repeat)
2091 {
2092 ev_at (w) += w->repeat;
2093 if (ev_at (w) < mn_now)
2094 ev_at (w) = mn_now;
2095
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2096 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030 2097
1031 ((WT)w)->at += w->repeat; 2098 ANHE_at_cache (timers [HEAP0]);
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
1035 downheap ((WT *)timers, timercnt, 0); 2099 downheap (timers, timercnt, HEAP0);
2100 }
2101 else
2102 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2103
2104 EV_FREQUENT_CHECK;
2105 feed_reverse (EV_A_ (W)w);
1036 } 2106 }
1037 else 2107 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1039 2108
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2109 feed_reverse_done (EV_A_ EV_TIMEOUT);
1041 } 2110 }
1042} 2111}
1043 2112
1044#if EV_PERIODICS 2113#if EV_PERIODIC_ENABLE
2114/* make periodics pending */
1045inline void 2115inline_size void
1046periodics_reify (EV_P) 2116periodics_reify (EV_P)
1047{ 2117{
2118 EV_FREQUENT_CHECK;
2119
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2120 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1049 { 2121 {
1050 struct ev_periodic *w = periodics [0]; 2122 int feed_count = 0;
1051 2123
2124 do
2125 {
2126 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2127
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2128 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 2129
1054 /* first reschedule or stop timer */ 2130 /* first reschedule or stop timer */
2131 if (w->reschedule_cb)
2132 {
2133 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2134
2135 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else if (w->interval)
2141 {
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143 /* if next trigger time is not sufficiently in the future, put it there */
2144 /* this might happen because of floating point inexactness */
2145 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2146 {
2147 ev_at (w) += w->interval;
2148
2149 /* if interval is unreasonably low we might still have a time in the past */
2150 /* so correct this. this will make the periodic very inexact, but the user */
2151 /* has effectively asked to get triggered more often than possible */
2152 if (ev_at (w) < ev_rt_now)
2153 ev_at (w) = ev_rt_now;
2154 }
2155
2156 ANHE_at_cache (periodics [HEAP0]);
2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else
2160 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2161
2162 EV_FREQUENT_CHECK;
2163 feed_reverse (EV_A_ (W)w);
2164 }
2165 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2166
2167 feed_reverse_done (EV_A_ EV_PERIODIC);
2168 }
2169}
2170
2171/* simply recalculate all periodics */
2172/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2173static void noinline
2174periodics_reschedule (EV_P)
2175{
2176 int i;
2177
2178 /* adjust periodics after time jump */
2179 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2180 {
2181 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2182
1055 if (w->reschedule_cb) 2183 if (w->reschedule_cb)
2184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2185 else if (w->interval)
2186 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2187
2188 ANHE_at_cache (periodics [i]);
2189 }
2190
2191 reheap (periodics, periodiccnt);
2192}
2193#endif
2194
2195/* adjust all timers by a given offset */
2196static void noinline
2197timers_reschedule (EV_P_ ev_tstamp adjust)
2198{
2199 int i;
2200
2201 for (i = 0; i < timercnt; ++i)
2202 {
2203 ANHE *he = timers + i + HEAP0;
2204 ANHE_w (*he)->at += adjust;
2205 ANHE_at_cache (*he);
2206 }
2207}
2208
2209/* fetch new monotonic and realtime times from the kernel */
2210/* also detect if there was a timejump, and act accordingly */
2211inline_speed void
2212time_update (EV_P_ ev_tstamp max_block)
2213{
2214#if EV_USE_MONOTONIC
2215 if (expect_true (have_monotonic))
2216 {
2217 int i;
2218 ev_tstamp odiff = rtmn_diff;
2219
2220 mn_now = get_clock ();
2221
2222 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2223 /* interpolate in the meantime */
2224 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1056 { 2225 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2226 ev_rt_now = rtmn_diff + mn_now;
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2227 return;
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 2228 }
1061 else if (w->interval)
1062 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0);
1066 }
1067 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 2229
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 }
1072}
1073
1074static void
1075periodics_reschedule (EV_P)
1076{
1077 int i;
1078
1079 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i)
1081 {
1082 struct ev_periodic *w = periodics [i];
1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
1093}
1094#endif
1095
1096inline int
1097time_update_monotonic (EV_P)
1098{
1099 mn_now = get_clock ();
1100
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 {
1103 ev_rt_now = rtmn_diff + mn_now;
1104 return 0;
1105 }
1106 else
1107 {
1108 now_floor = mn_now; 2230 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 2231 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 2232
1114inline void 2233 /* loop a few times, before making important decisions.
1115time_update (EV_P) 2234 * on the choice of "4": one iteration isn't enough,
1116{ 2235 * in case we get preempted during the calls to
1117 int i; 2236 * ev_time and get_clock. a second call is almost guaranteed
1118 2237 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 2238 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 2239 * in the unlikely event of having been preempted here.
1121 { 2240 */
1122 if (time_update_monotonic (EV_A)) 2241 for (i = 4; --i; )
1123 { 2242 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 2243 rtmn_diff = ev_rt_now - mn_now;
1129 2244
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2245 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1131 return; /* all is well */ 2246 return; /* all is well */
1132 2247
1133 ev_rt_now = ev_time (); 2248 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 2249 mn_now = get_clock ();
1135 now_floor = mn_now; 2250 now_floor = mn_now;
1136 } 2251 }
1137 2252
2253 /* no timer adjustment, as the monotonic clock doesn't jump */
2254 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1138# if EV_PERIODICS 2255# if EV_PERIODIC_ENABLE
2256 periodics_reschedule (EV_A);
2257# endif
2258 }
2259 else
2260#endif
2261 {
2262 ev_rt_now = ev_time ();
2263
2264 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2265 {
2266 /* adjust timers. this is easy, as the offset is the same for all of them */
2267 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2268#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 2269 periodics_reschedule (EV_A);
1140# endif 2270#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 } 2271 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */
1157 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 }
1160 2272
1161 mn_now = ev_rt_now; 2273 mn_now = ev_rt_now;
1162 } 2274 }
1163} 2275}
1164 2276
1165void 2277void
1166ev_ref (EV_P)
1167{
1168 ++activecnt;
1169}
1170
1171void
1172ev_unref (EV_P)
1173{
1174 --activecnt;
1175}
1176
1177static int loop_done;
1178
1179void
1180ev_loop (EV_P_ int flags) 2278ev_loop (EV_P_ int flags)
1181{ 2279{
1182 double block; 2280#if EV_MINIMAL < 2
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2281 ++loop_depth;
2282#endif
1184 2283
1185 while (activecnt) 2284 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2285
2286 loop_done = EVUNLOOP_CANCEL;
2287
2288 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2289
2290 do
1186 { 2291 {
2292#if EV_VERIFY >= 2
2293 ev_loop_verify (EV_A);
2294#endif
2295
2296#ifndef _WIN32
2297 if (expect_false (curpid)) /* penalise the forking check even more */
2298 if (expect_false (getpid () != curpid))
2299 {
2300 curpid = getpid ();
2301 postfork = 1;
2302 }
2303#endif
2304
2305#if EV_FORK_ENABLE
2306 /* we might have forked, so queue fork handlers */
2307 if (expect_false (postfork))
2308 if (forkcnt)
2309 {
2310 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2311 EV_INVOKE_PENDING;
2312 }
2313#endif
2314
2315#if EV_PREPARE_ENABLE
1187 /* queue check watchers (and execute them) */ 2316 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 2317 if (expect_false (preparecnt))
1189 { 2318 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2319 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 2320 EV_INVOKE_PENDING;
1192 } 2321 }
2322#endif
2323
2324 if (expect_false (loop_done))
2325 break;
1193 2326
1194 /* we might have forked, so reify kernel state if necessary */ 2327 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 2328 if (expect_false (postfork))
1196 loop_fork (EV_A); 2329 loop_fork (EV_A);
1197 2330
1198 /* update fd-related kernel structures */ 2331 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 2332 fd_reify (EV_A);
1200 2333
1201 /* calculate blocking time */ 2334 /* calculate blocking time */
2335 {
2336 ev_tstamp waittime = 0.;
2337 ev_tstamp sleeptime = 0.;
1202 2338
1203 /* we only need this for !monotonic clock or timers, but as we basically 2339 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1204 always have timers, we just calculate it always */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else
1209#endif
1210 { 2340 {
1211 ev_rt_now = ev_time (); 2341 /* remember old timestamp for io_blocktime calculation */
1212 mn_now = ev_rt_now; 2342 ev_tstamp prev_mn_now = mn_now;
1213 }
1214 2343
1215 if (flags & EVLOOP_NONBLOCK || idlecnt) 2344 /* update time to cancel out callback processing overhead */
1216 block = 0.; 2345 time_update (EV_A_ 1e100);
1217 else 2346
1218 {
1219 block = MAX_BLOCKTIME; 2347 waittime = MAX_BLOCKTIME;
1220 2348
1221 if (timercnt) 2349 if (timercnt)
1222 { 2350 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1224 if (block > to) block = to; 2352 if (waittime > to) waittime = to;
1225 } 2353 }
1226 2354
1227#if EV_PERIODICS 2355#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 2356 if (periodiccnt)
1229 { 2357 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 2359 if (waittime > to) waittime = to;
1232 } 2360 }
1233#endif 2361#endif
1234 2362
1235 if (expect_false (block < 0.)) block = 0.; 2363 /* don't let timeouts decrease the waittime below timeout_blocktime */
2364 if (expect_false (waittime < timeout_blocktime))
2365 waittime = timeout_blocktime;
2366
2367 /* extra check because io_blocktime is commonly 0 */
2368 if (expect_false (io_blocktime))
2369 {
2370 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2371
2372 if (sleeptime > waittime - backend_fudge)
2373 sleeptime = waittime - backend_fudge;
2374
2375 if (expect_true (sleeptime > 0.))
2376 {
2377 ev_sleep (sleeptime);
2378 waittime -= sleeptime;
2379 }
2380 }
1236 } 2381 }
1237 2382
1238 method_poll (EV_A_ block); 2383#if EV_MINIMAL < 2
2384 ++loop_count;
2385#endif
2386 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2387 backend_poll (EV_A_ waittime);
2388 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1239 2389
1240 /* update ev_rt_now, do magic */ 2390 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 2391 time_update (EV_A_ waittime + sleeptime);
2392 }
1242 2393
1243 /* queue pending timers and reschedule them */ 2394 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 2395 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 2396#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 2397 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 2398#endif
1248 2399
2400#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 2401 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 2402 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2403#endif
1252 2404
2405#if EV_CHECK_ENABLE
1253 /* queue check watchers, to be executed first */ 2406 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 2407 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2408 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2409#endif
1256 2410
1257 call_pending (EV_A); 2411 EV_INVOKE_PENDING;
1258
1259 if (expect_false (loop_done))
1260 break;
1261 } 2412 }
2413 while (expect_true (
2414 activecnt
2415 && !loop_done
2416 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2417 ));
1262 2418
1263 if (loop_done != 2) 2419 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 2420 loop_done = EVUNLOOP_CANCEL;
2421
2422#if EV_MINIMAL < 2
2423 --loop_depth;
2424#endif
1265} 2425}
1266 2426
1267void 2427void
1268ev_unloop (EV_P_ int how) 2428ev_unloop (EV_P_ int how)
1269{ 2429{
1270 loop_done = how; 2430 loop_done = how;
1271} 2431}
1272 2432
2433void
2434ev_ref (EV_P)
2435{
2436 ++activecnt;
2437}
2438
2439void
2440ev_unref (EV_P)
2441{
2442 --activecnt;
2443}
2444
2445void
2446ev_now_update (EV_P)
2447{
2448 time_update (EV_A_ 1e100);
2449}
2450
2451void
2452ev_suspend (EV_P)
2453{
2454 ev_now_update (EV_A);
2455}
2456
2457void
2458ev_resume (EV_P)
2459{
2460 ev_tstamp mn_prev = mn_now;
2461
2462 ev_now_update (EV_A);
2463 timers_reschedule (EV_A_ mn_now - mn_prev);
2464#if EV_PERIODIC_ENABLE
2465 /* TODO: really do this? */
2466 periodics_reschedule (EV_A);
2467#endif
2468}
2469
1273/*****************************************************************************/ 2470/*****************************************************************************/
2471/* singly-linked list management, used when the expected list length is short */
1274 2472
1275inline void 2473inline_size void
1276wlist_add (WL *head, WL elem) 2474wlist_add (WL *head, WL elem)
1277{ 2475{
1278 elem->next = *head; 2476 elem->next = *head;
1279 *head = elem; 2477 *head = elem;
1280} 2478}
1281 2479
1282inline void 2480inline_size void
1283wlist_del (WL *head, WL elem) 2481wlist_del (WL *head, WL elem)
1284{ 2482{
1285 while (*head) 2483 while (*head)
1286 { 2484 {
1287 if (*head == elem) 2485 if (expect_true (*head == elem))
1288 { 2486 {
1289 *head = elem->next; 2487 *head = elem->next;
1290 return; 2488 break;
1291 } 2489 }
1292 2490
1293 head = &(*head)->next; 2491 head = &(*head)->next;
1294 } 2492 }
1295} 2493}
1296 2494
2495/* internal, faster, version of ev_clear_pending */
1297inline void 2496inline_speed void
1298ev_clear_pending (EV_P_ W w) 2497clear_pending (EV_P_ W w)
1299{ 2498{
1300 if (w->pending) 2499 if (w->pending)
1301 { 2500 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2501 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1303 w->pending = 0; 2502 w->pending = 0;
1304 } 2503 }
1305} 2504}
1306 2505
2506int
2507ev_clear_pending (EV_P_ void *w)
2508{
2509 W w_ = (W)w;
2510 int pending = w_->pending;
2511
2512 if (expect_true (pending))
2513 {
2514 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2515 p->w = (W)&pending_w;
2516 w_->pending = 0;
2517 return p->events;
2518 }
2519 else
2520 return 0;
2521}
2522
1307inline void 2523inline_size void
2524pri_adjust (EV_P_ W w)
2525{
2526 int pri = ev_priority (w);
2527 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2528 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2529 ev_set_priority (w, pri);
2530}
2531
2532inline_speed void
1308ev_start (EV_P_ W w, int active) 2533ev_start (EV_P_ W w, int active)
1309{ 2534{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2535 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 2536 w->active = active;
1314 ev_ref (EV_A); 2537 ev_ref (EV_A);
1315} 2538}
1316 2539
1317inline void 2540inline_size void
1318ev_stop (EV_P_ W w) 2541ev_stop (EV_P_ W w)
1319{ 2542{
1320 ev_unref (EV_A); 2543 ev_unref (EV_A);
1321 w->active = 0; 2544 w->active = 0;
1322} 2545}
1323 2546
1324/*****************************************************************************/ 2547/*****************************************************************************/
1325 2548
1326void 2549void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 2550ev_io_start (EV_P_ ev_io *w)
1328{ 2551{
1329 int fd = w->fd; 2552 int fd = w->fd;
1330 2553
1331 if (expect_false (ev_is_active (w))) 2554 if (expect_false (ev_is_active (w)))
1332 return; 2555 return;
1333 2556
1334 assert (("ev_io_start called with negative fd", fd >= 0)); 2557 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2558 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2559
2560 EV_FREQUENT_CHECK;
1335 2561
1336 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2563 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2564 wlist_add (&anfds[fd].head, (WL)w);
1339 2565
1340 fd_change (EV_A_ fd); 2566 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1341} 2567 w->events &= ~EV__IOFDSET;
1342 2568
1343void 2569 EV_FREQUENT_CHECK;
2570}
2571
2572void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 2573ev_io_stop (EV_P_ ev_io *w)
1345{ 2574{
1346 ev_clear_pending (EV_A_ (W)w); 2575 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 2576 if (expect_false (!ev_is_active (w)))
1348 return; 2577 return;
1349 2578
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2579 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 2580
2581 EV_FREQUENT_CHECK;
2582
1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2583 wlist_del (&anfds[w->fd].head, (WL)w);
1353 ev_stop (EV_A_ (W)w); 2584 ev_stop (EV_A_ (W)w);
1354 2585
1355 fd_change (EV_A_ w->fd); 2586 fd_change (EV_A_ w->fd, 1);
1356}
1357 2587
1358void 2588 EV_FREQUENT_CHECK;
2589}
2590
2591void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 2592ev_timer_start (EV_P_ ev_timer *w)
1360{ 2593{
1361 if (expect_false (ev_is_active (w))) 2594 if (expect_false (ev_is_active (w)))
1362 return; 2595 return;
1363 2596
1364 ((WT)w)->at += mn_now; 2597 ev_at (w) += mn_now;
1365 2598
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2599 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 2600
2601 EV_FREQUENT_CHECK;
2602
2603 ++timercnt;
1368 ev_start (EV_A_ (W)w, ++timercnt); 2604 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2605 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1370 timers [timercnt - 1] = w; 2606 ANHE_w (timers [ev_active (w)]) = (WT)w;
1371 upheap ((WT *)timers, timercnt - 1); 2607 ANHE_at_cache (timers [ev_active (w)]);
2608 upheap (timers, ev_active (w));
1372 2609
2610 EV_FREQUENT_CHECK;
2611
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2612 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1374} 2613}
1375 2614
1376void 2615void noinline
1377ev_timer_stop (EV_P_ struct ev_timer *w) 2616ev_timer_stop (EV_P_ ev_timer *w)
1378{ 2617{
1379 ev_clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1381 return; 2620 return;
1382 2621
2622 EV_FREQUENT_CHECK;
2623
2624 {
2625 int active = ev_active (w);
2626
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2627 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1384 2628
2629 --timercnt;
2630
1385 if (expect_true (((W)w)->active < timercnt--)) 2631 if (expect_true (active < timercnt + HEAP0))
1386 { 2632 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 2633 timers [active] = timers [timercnt + HEAP0];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2634 adjustheap (timers, timercnt, active);
1389 } 2635 }
2636 }
1390 2637
1391 ((WT)w)->at -= mn_now; 2638 ev_at (w) -= mn_now;
1392 2639
1393 ev_stop (EV_A_ (W)w); 2640 ev_stop (EV_A_ (W)w);
1394}
1395 2641
1396void 2642 EV_FREQUENT_CHECK;
2643}
2644
2645void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 2646ev_timer_again (EV_P_ ev_timer *w)
1398{ 2647{
2648 EV_FREQUENT_CHECK;
2649
1399 if (ev_is_active (w)) 2650 if (ev_is_active (w))
1400 { 2651 {
1401 if (w->repeat) 2652 if (w->repeat)
1402 { 2653 {
1403 ((WT)w)->at = mn_now + w->repeat; 2654 ev_at (w) = mn_now + w->repeat;
2655 ANHE_at_cache (timers [ev_active (w)]);
1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2656 adjustheap (timers, timercnt, ev_active (w));
1405 } 2657 }
1406 else 2658 else
1407 ev_timer_stop (EV_A_ w); 2659 ev_timer_stop (EV_A_ w);
1408 } 2660 }
1409 else if (w->repeat) 2661 else if (w->repeat)
1410 { 2662 {
1411 w->at = w->repeat; 2663 ev_at (w) = w->repeat;
1412 ev_timer_start (EV_A_ w); 2664 ev_timer_start (EV_A_ w);
1413 } 2665 }
1414}
1415 2666
2667 EV_FREQUENT_CHECK;
2668}
2669
2670ev_tstamp
2671ev_timer_remaining (EV_P_ ev_timer *w)
2672{
2673 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2674}
2675
1416#if EV_PERIODICS 2676#if EV_PERIODIC_ENABLE
1417void 2677void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 2678ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 2679{
1420 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
1421 return; 2681 return;
1422 2682
1423 if (w->reschedule_cb) 2683 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2684 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 2685 else if (w->interval)
1426 { 2686 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2687 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 2688 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2689 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 2690 }
2691 else
2692 ev_at (w) = w->offset;
1431 2693
2694 EV_FREQUENT_CHECK;
2695
2696 ++periodiccnt;
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 2697 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2698 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 2699 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 2700 ANHE_at_cache (periodics [ev_active (w)]);
2701 upheap (periodics, ev_active (w));
1436 2702
2703 EV_FREQUENT_CHECK;
2704
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2705 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1438} 2706}
1439 2707
1440void 2708void noinline
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 2709ev_periodic_stop (EV_P_ ev_periodic *w)
1442{ 2710{
1443 ev_clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w))) 2712 if (expect_false (!ev_is_active (w)))
1445 return; 2713 return;
1446 2714
2715 EV_FREQUENT_CHECK;
2716
2717 {
2718 int active = ev_active (w);
2719
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2720 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1448 2721
2722 --periodiccnt;
2723
1449 if (expect_true (((W)w)->active < periodiccnt--)) 2724 if (expect_true (active < periodiccnt + HEAP0))
1450 { 2725 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2726 periodics [active] = periodics [periodiccnt + HEAP0];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2727 adjustheap (periodics, periodiccnt, active);
1453 } 2728 }
2729 }
1454 2730
1455 ev_stop (EV_A_ (W)w); 2731 ev_stop (EV_A_ (W)w);
1456}
1457 2732
1458void 2733 EV_FREQUENT_CHECK;
2734}
2735
2736void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 2737ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 2738{
1461 /* TODO: use adjustheap and recalculation */ 2739 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 2740 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 2741 ev_periodic_start (EV_A_ w);
1464} 2742}
1465#endif 2743#endif
1466 2744
1467void 2745#ifndef SA_RESTART
1468ev_idle_start (EV_P_ struct ev_idle *w) 2746# define SA_RESTART 0
2747#endif
2748
2749#if EV_SIGNAL_ENABLE
2750
2751void noinline
2752ev_signal_start (EV_P_ ev_signal *w)
1469{ 2753{
1470 if (expect_false (ev_is_active (w))) 2754 if (expect_false (ev_is_active (w)))
1471 return; 2755 return;
1472 2756
2757 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2758
2759#if EV_MULTIPLICITY
2760 assert (("libev: a signal must not be attached to two different loops",
2761 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2762
2763 signals [w->signum - 1].loop = EV_A;
2764#endif
2765
2766 EV_FREQUENT_CHECK;
2767
2768#if EV_USE_SIGNALFD
2769 if (sigfd == -2)
2770 {
2771 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2772 if (sigfd < 0 && errno == EINVAL)
2773 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2774
2775 if (sigfd >= 0)
2776 {
2777 fd_intern (sigfd); /* doing it twice will not hurt */
2778
2779 sigemptyset (&sigfd_set);
2780
2781 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2782 ev_set_priority (&sigfd_w, EV_MAXPRI);
2783 ev_io_start (EV_A_ &sigfd_w);
2784 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2785 }
2786 }
2787
2788 if (sigfd >= 0)
2789 {
2790 /* TODO: check .head */
2791 sigaddset (&sigfd_set, w->signum);
2792 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2793
2794 signalfd (sigfd, &sigfd_set, 0);
2795 }
2796#endif
2797
1473 ev_start (EV_A_ (W)w, ++idlecnt); 2798 ev_start (EV_A_ (W)w, 1);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2799 wlist_add (&signals [w->signum - 1].head, (WL)w);
1475 idles [idlecnt - 1] = w;
1476}
1477 2800
1478void 2801 if (!((WL)w)->next)
1479ev_idle_stop (EV_P_ struct ev_idle *w) 2802# if EV_USE_SIGNALFD
2803 if (sigfd < 0) /*TODO*/
2804# endif
2805 {
2806# ifdef _WIN32
2807 evpipe_init (EV_A);
2808
2809 signal (w->signum, ev_sighandler);
2810# else
2811 struct sigaction sa;
2812
2813 evpipe_init (EV_A);
2814
2815 sa.sa_handler = ev_sighandler;
2816 sigfillset (&sa.sa_mask);
2817 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2818 sigaction (w->signum, &sa, 0);
2819
2820 sigemptyset (&sa.sa_mask);
2821 sigaddset (&sa.sa_mask, w->signum);
2822 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2823#endif
2824 }
2825
2826 EV_FREQUENT_CHECK;
2827}
2828
2829void noinline
2830ev_signal_stop (EV_P_ ev_signal *w)
1480{ 2831{
1481 ev_clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1483 return; 2834 return;
1484 2835
1485 idles [((W)w)->active - 1] = idles [--idlecnt]; 2836 EV_FREQUENT_CHECK;
2837
2838 wlist_del (&signals [w->signum - 1].head, (WL)w);
1486 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
1487}
1488 2840
2841 if (!signals [w->signum - 1].head)
2842 {
2843#if EV_MULTIPLICITY
2844 signals [w->signum - 1].loop = 0; /* unattach from signal */
2845#endif
2846#if EV_USE_SIGNALFD
2847 if (sigfd >= 0)
2848 {
2849 sigset_t ss;
2850
2851 sigemptyset (&ss);
2852 sigaddset (&ss, w->signum);
2853 sigdelset (&sigfd_set, w->signum);
2854
2855 signalfd (sigfd, &sigfd_set, 0);
2856 sigprocmask (SIG_UNBLOCK, &ss, 0);
2857 }
2858 else
2859#endif
2860 signal (w->signum, SIG_DFL);
2861 }
2862
2863 EV_FREQUENT_CHECK;
2864}
2865
2866#endif
2867
2868#if EV_CHILD_ENABLE
2869
1489void 2870void
1490ev_prepare_start (EV_P_ struct ev_prepare *w) 2871ev_child_start (EV_P_ ev_child *w)
1491{ 2872{
2873#if EV_MULTIPLICITY
2874 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2875#endif
1492 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
1493 return; 2877 return;
1494 2878
2879 EV_FREQUENT_CHECK;
2880
1495 ev_start (EV_A_ (W)w, ++preparecnt); 2881 ev_start (EV_A_ (W)w, 1);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2882 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1497 prepares [preparecnt - 1] = w;
1498}
1499 2883
2884 EV_FREQUENT_CHECK;
2885}
2886
1500void 2887void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w) 2888ev_child_stop (EV_P_ ev_child *w)
1502{ 2889{
1503 ev_clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
1505 return; 2892 return;
1506 2893
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2894 EV_FREQUENT_CHECK;
2895
2896 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1508 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
1509}
1510 2898
2899 EV_FREQUENT_CHECK;
2900}
2901
2902#endif
2903
2904#if EV_STAT_ENABLE
2905
2906# ifdef _WIN32
2907# undef lstat
2908# define lstat(a,b) _stati64 (a,b)
2909# endif
2910
2911#define DEF_STAT_INTERVAL 5.0074891
2912#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2913#define MIN_STAT_INTERVAL 0.1074891
2914
2915static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2916
2917#if EV_USE_INOTIFY
2918
2919/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2920# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2921
2922static void noinline
2923infy_add (EV_P_ ev_stat *w)
2924{
2925 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2926
2927 if (w->wd >= 0)
2928 {
2929 struct statfs sfs;
2930
2931 /* now local changes will be tracked by inotify, but remote changes won't */
2932 /* unless the filesystem is known to be local, we therefore still poll */
2933 /* also do poll on <2.6.25, but with normal frequency */
2934
2935 if (!fs_2625)
2936 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2937 else if (!statfs (w->path, &sfs)
2938 && (sfs.f_type == 0x1373 /* devfs */
2939 || sfs.f_type == 0xEF53 /* ext2/3 */
2940 || sfs.f_type == 0x3153464a /* jfs */
2941 || sfs.f_type == 0x52654973 /* reiser3 */
2942 || sfs.f_type == 0x01021994 /* tempfs */
2943 || sfs.f_type == 0x58465342 /* xfs */))
2944 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2945 else
2946 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2947 }
2948 else
2949 {
2950 /* can't use inotify, continue to stat */
2951 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2952
2953 /* if path is not there, monitor some parent directory for speedup hints */
2954 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2955 /* but an efficiency issue only */
2956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2957 {
2958 char path [4096];
2959 strcpy (path, w->path);
2960
2961 do
2962 {
2963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2965
2966 char *pend = strrchr (path, '/');
2967
2968 if (!pend || pend == path)
2969 break;
2970
2971 *pend = 0;
2972 w->wd = inotify_add_watch (fs_fd, path, mask);
2973 }
2974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2975 }
2976 }
2977
2978 if (w->wd >= 0)
2979 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2980
2981 /* now re-arm timer, if required */
2982 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2983 ev_timer_again (EV_A_ &w->timer);
2984 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2985}
2986
2987static void noinline
2988infy_del (EV_P_ ev_stat *w)
2989{
2990 int slot;
2991 int wd = w->wd;
2992
2993 if (wd < 0)
2994 return;
2995
2996 w->wd = -2;
2997 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2998 wlist_del (&fs_hash [slot].head, (WL)w);
2999
3000 /* remove this watcher, if others are watching it, they will rearm */
3001 inotify_rm_watch (fs_fd, wd);
3002}
3003
3004static void noinline
3005infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3006{
3007 if (slot < 0)
3008 /* overflow, need to check for all hash slots */
3009 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3010 infy_wd (EV_A_ slot, wd, ev);
3011 else
3012 {
3013 WL w_;
3014
3015 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
3016 {
3017 ev_stat *w = (ev_stat *)w_;
3018 w_ = w_->next; /* lets us remove this watcher and all before it */
3019
3020 if (w->wd == wd || wd == -1)
3021 {
3022 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3023 {
3024 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
3025 w->wd = -1;
3026 infy_add (EV_A_ w); /* re-add, no matter what */
3027 }
3028
3029 stat_timer_cb (EV_A_ &w->timer, 0);
3030 }
3031 }
3032 }
3033}
3034
3035static void
3036infy_cb (EV_P_ ev_io *w, int revents)
3037{
3038 char buf [EV_INOTIFY_BUFSIZE];
3039 int ofs;
3040 int len = read (fs_fd, buf, sizeof (buf));
3041
3042 for (ofs = 0; ofs < len; )
3043 {
3044 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3045 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3046 ofs += sizeof (struct inotify_event) + ev->len;
3047 }
3048}
3049
3050inline_size unsigned int
3051ev_linux_version (void)
3052{
3053 struct utsname buf;
3054 unsigned int v;
3055 int i;
3056 char *p = buf.release;
3057
3058 if (uname (&buf))
3059 return 0;
3060
3061 for (i = 3+1; --i; )
3062 {
3063 unsigned int c = 0;
3064
3065 for (;;)
3066 {
3067 if (*p >= '0' && *p <= '9')
3068 c = c * 10 + *p++ - '0';
3069 else
3070 {
3071 p += *p == '.';
3072 break;
3073 }
3074 }
3075
3076 v = (v << 8) | c;
3077 }
3078
3079 return v;
3080}
3081
3082inline_size void
3083ev_check_2625 (EV_P)
3084{
3085 /* kernels < 2.6.25 are borked
3086 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3087 */
3088 if (ev_linux_version () < 0x020619)
3089 return;
3090
3091 fs_2625 = 1;
3092}
3093
3094inline_size int
3095infy_newfd (void)
3096{
3097#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3098 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3099 if (fd >= 0)
3100 return fd;
3101#endif
3102 return inotify_init ();
3103}
3104
3105inline_size void
3106infy_init (EV_P)
3107{
3108 if (fs_fd != -2)
3109 return;
3110
3111 fs_fd = -1;
3112
3113 ev_check_2625 (EV_A);
3114
3115 fs_fd = infy_newfd ();
3116
3117 if (fs_fd >= 0)
3118 {
3119 fd_intern (fs_fd);
3120 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3121 ev_set_priority (&fs_w, EV_MAXPRI);
3122 ev_io_start (EV_A_ &fs_w);
3123 ev_unref (EV_A);
3124 }
3125}
3126
3127inline_size void
3128infy_fork (EV_P)
3129{
3130 int slot;
3131
3132 if (fs_fd < 0)
3133 return;
3134
3135 ev_ref (EV_A);
3136 ev_io_stop (EV_A_ &fs_w);
3137 close (fs_fd);
3138 fs_fd = infy_newfd ();
3139
3140 if (fs_fd >= 0)
3141 {
3142 fd_intern (fs_fd);
3143 ev_io_set (&fs_w, fs_fd, EV_READ);
3144 ev_io_start (EV_A_ &fs_w);
3145 ev_unref (EV_A);
3146 }
3147
3148 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3149 {
3150 WL w_ = fs_hash [slot].head;
3151 fs_hash [slot].head = 0;
3152
3153 while (w_)
3154 {
3155 ev_stat *w = (ev_stat *)w_;
3156 w_ = w_->next; /* lets us add this watcher */
3157
3158 w->wd = -1;
3159
3160 if (fs_fd >= 0)
3161 infy_add (EV_A_ w); /* re-add, no matter what */
3162 else
3163 {
3164 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3165 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3166 ev_timer_again (EV_A_ &w->timer);
3167 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3168 }
3169 }
3170 }
3171}
3172
3173#endif
3174
3175#ifdef _WIN32
3176# define EV_LSTAT(p,b) _stati64 (p, b)
3177#else
3178# define EV_LSTAT(p,b) lstat (p, b)
3179#endif
3180
1511void 3181void
1512ev_check_start (EV_P_ struct ev_check *w) 3182ev_stat_stat (EV_P_ ev_stat *w)
3183{
3184 if (lstat (w->path, &w->attr) < 0)
3185 w->attr.st_nlink = 0;
3186 else if (!w->attr.st_nlink)
3187 w->attr.st_nlink = 1;
3188}
3189
3190static void noinline
3191stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3192{
3193 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3194
3195 ev_statdata prev = w->attr;
3196 ev_stat_stat (EV_A_ w);
3197
3198 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3199 if (
3200 prev.st_dev != w->attr.st_dev
3201 || prev.st_ino != w->attr.st_ino
3202 || prev.st_mode != w->attr.st_mode
3203 || prev.st_nlink != w->attr.st_nlink
3204 || prev.st_uid != w->attr.st_uid
3205 || prev.st_gid != w->attr.st_gid
3206 || prev.st_rdev != w->attr.st_rdev
3207 || prev.st_size != w->attr.st_size
3208 || prev.st_atime != w->attr.st_atime
3209 || prev.st_mtime != w->attr.st_mtime
3210 || prev.st_ctime != w->attr.st_ctime
3211 ) {
3212 /* we only update w->prev on actual differences */
3213 /* in case we test more often than invoke the callback, */
3214 /* to ensure that prev is always different to attr */
3215 w->prev = prev;
3216
3217 #if EV_USE_INOTIFY
3218 if (fs_fd >= 0)
3219 {
3220 infy_del (EV_A_ w);
3221 infy_add (EV_A_ w);
3222 ev_stat_stat (EV_A_ w); /* avoid race... */
3223 }
3224 #endif
3225
3226 ev_feed_event (EV_A_ w, EV_STAT);
3227 }
3228}
3229
3230void
3231ev_stat_start (EV_P_ ev_stat *w)
1513{ 3232{
1514 if (expect_false (ev_is_active (w))) 3233 if (expect_false (ev_is_active (w)))
1515 return; 3234 return;
1516 3235
3236 ev_stat_stat (EV_A_ w);
3237
3238 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3239 w->interval = MIN_STAT_INTERVAL;
3240
3241 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3242 ev_set_priority (&w->timer, ev_priority (w));
3243
3244#if EV_USE_INOTIFY
3245 infy_init (EV_A);
3246
3247 if (fs_fd >= 0)
3248 infy_add (EV_A_ w);
3249 else
3250#endif
3251 {
3252 ev_timer_again (EV_A_ &w->timer);
3253 ev_unref (EV_A);
3254 }
3255
1517 ev_start (EV_A_ (W)w, ++checkcnt); 3256 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521 3257
3258 EV_FREQUENT_CHECK;
3259}
3260
1522void 3261void
1523ev_check_stop (EV_P_ struct ev_check *w) 3262ev_stat_stop (EV_P_ ev_stat *w)
1524{ 3263{
1525 ev_clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w))) 3265 if (expect_false (!ev_is_active (w)))
1527 return; 3266 return;
1528 3267
1529 checks [((W)w)->active - 1] = checks [--checkcnt]; 3268 EV_FREQUENT_CHECK;
3269
3270#if EV_USE_INOTIFY
3271 infy_del (EV_A_ w);
3272#endif
3273
3274 if (ev_is_active (&w->timer))
3275 {
3276 ev_ref (EV_A);
3277 ev_timer_stop (EV_A_ &w->timer);
3278 }
3279
1530 ev_stop (EV_A_ (W)w); 3280 ev_stop (EV_A_ (W)w);
1531}
1532 3281
1533#ifndef SA_RESTART 3282 EV_FREQUENT_CHECK;
1534# define SA_RESTART 0 3283}
1535#endif 3284#endif
1536 3285
3286#if EV_IDLE_ENABLE
1537void 3287void
1538ev_signal_start (EV_P_ struct ev_signal *w) 3288ev_idle_start (EV_P_ ev_idle *w)
1539{ 3289{
1540#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif
1543 if (expect_false (ev_is_active (w))) 3290 if (expect_false (ev_is_active (w)))
1544 return; 3291 return;
1545 3292
1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3293 pri_adjust (EV_A_ (W)w);
1547 3294
3295 EV_FREQUENT_CHECK;
3296
3297 {
3298 int active = ++idlecnt [ABSPRI (w)];
3299
3300 ++idleall;
1548 ev_start (EV_A_ (W)w, 1); 3301 ev_start (EV_A_ (W)w, active);
1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1551 3302
1552 if (!((WL)w)->next) 3303 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1553 { 3304 idles [ABSPRI (w)][active - 1] = w;
1554#if _WIN32
1555 signal (w->signum, sighandler);
1556#else
1557 struct sigaction sa;
1558 sa.sa_handler = sighandler;
1559 sigfillset (&sa.sa_mask);
1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1561 sigaction (w->signum, &sa, 0);
1562#endif
1563 } 3305 }
1564}
1565 3306
3307 EV_FREQUENT_CHECK;
3308}
3309
1566void 3310void
1567ev_signal_stop (EV_P_ struct ev_signal *w) 3311ev_idle_stop (EV_P_ ev_idle *w)
1568{ 3312{
1569 ev_clear_pending (EV_A_ (W)w); 3313 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 3314 if (expect_false (!ev_is_active (w)))
1571 return; 3315 return;
1572 3316
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3317 EV_FREQUENT_CHECK;
3318
3319 {
3320 int active = ev_active (w);
3321
3322 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3323 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3324
1574 ev_stop (EV_A_ (W)w); 3325 ev_stop (EV_A_ (W)w);
3326 --idleall;
3327 }
1575 3328
1576 if (!signals [w->signum - 1].head) 3329 EV_FREQUENT_CHECK;
1577 signal (w->signum, SIG_DFL);
1578} 3330}
1579
1580void
1581ev_child_start (EV_P_ struct ev_child *w)
1582{
1583#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 3331#endif
3332
3333#if EV_PREPARE_ENABLE
3334void
3335ev_prepare_start (EV_P_ ev_prepare *w)
3336{
1586 if (expect_false (ev_is_active (w))) 3337 if (expect_false (ev_is_active (w)))
1587 return; 3338 return;
1588 3339
3340 EV_FREQUENT_CHECK;
3341
1589 ev_start (EV_A_ (W)w, 1); 3342 ev_start (EV_A_ (W)w, ++preparecnt);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3343 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1591} 3344 prepares [preparecnt - 1] = w;
1592 3345
3346 EV_FREQUENT_CHECK;
3347}
3348
1593void 3349void
1594ev_child_stop (EV_P_ struct ev_child *w) 3350ev_prepare_stop (EV_P_ ev_prepare *w)
1595{ 3351{
1596 ev_clear_pending (EV_A_ (W)w); 3352 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3353 if (expect_false (!ev_is_active (w)))
1598 return; 3354 return;
1599 3355
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3356 EV_FREQUENT_CHECK;
3357
3358 {
3359 int active = ev_active (w);
3360
3361 prepares [active - 1] = prepares [--preparecnt];
3362 ev_active (prepares [active - 1]) = active;
3363 }
3364
1601 ev_stop (EV_A_ (W)w); 3365 ev_stop (EV_A_ (W)w);
3366
3367 EV_FREQUENT_CHECK;
1602} 3368}
3369#endif
3370
3371#if EV_CHECK_ENABLE
3372void
3373ev_check_start (EV_P_ ev_check *w)
3374{
3375 if (expect_false (ev_is_active (w)))
3376 return;
3377
3378 EV_FREQUENT_CHECK;
3379
3380 ev_start (EV_A_ (W)w, ++checkcnt);
3381 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3382 checks [checkcnt - 1] = w;
3383
3384 EV_FREQUENT_CHECK;
3385}
3386
3387void
3388ev_check_stop (EV_P_ ev_check *w)
3389{
3390 clear_pending (EV_A_ (W)w);
3391 if (expect_false (!ev_is_active (w)))
3392 return;
3393
3394 EV_FREQUENT_CHECK;
3395
3396 {
3397 int active = ev_active (w);
3398
3399 checks [active - 1] = checks [--checkcnt];
3400 ev_active (checks [active - 1]) = active;
3401 }
3402
3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
3406}
3407#endif
3408
3409#if EV_EMBED_ENABLE
3410void noinline
3411ev_embed_sweep (EV_P_ ev_embed *w)
3412{
3413 ev_loop (w->other, EVLOOP_NONBLOCK);
3414}
3415
3416static void
3417embed_io_cb (EV_P_ ev_io *io, int revents)
3418{
3419 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3420
3421 if (ev_cb (w))
3422 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3423 else
3424 ev_loop (w->other, EVLOOP_NONBLOCK);
3425}
3426
3427static void
3428embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3429{
3430 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3431
3432 {
3433 EV_P = w->other;
3434
3435 while (fdchangecnt)
3436 {
3437 fd_reify (EV_A);
3438 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3439 }
3440 }
3441}
3442
3443static void
3444embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3445{
3446 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3447
3448 ev_embed_stop (EV_A_ w);
3449
3450 {
3451 EV_P = w->other;
3452
3453 ev_loop_fork (EV_A);
3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3455 }
3456
3457 ev_embed_start (EV_A_ w);
3458}
3459
3460#if 0
3461static void
3462embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3463{
3464 ev_idle_stop (EV_A_ idle);
3465}
3466#endif
3467
3468void
3469ev_embed_start (EV_P_ ev_embed *w)
3470{
3471 if (expect_false (ev_is_active (w)))
3472 return;
3473
3474 {
3475 EV_P = w->other;
3476 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3478 }
3479
3480 EV_FREQUENT_CHECK;
3481
3482 ev_set_priority (&w->io, ev_priority (w));
3483 ev_io_start (EV_A_ &w->io);
3484
3485 ev_prepare_init (&w->prepare, embed_prepare_cb);
3486 ev_set_priority (&w->prepare, EV_MINPRI);
3487 ev_prepare_start (EV_A_ &w->prepare);
3488
3489 ev_fork_init (&w->fork, embed_fork_cb);
3490 ev_fork_start (EV_A_ &w->fork);
3491
3492 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3493
3494 ev_start (EV_A_ (W)w, 1);
3495
3496 EV_FREQUENT_CHECK;
3497}
3498
3499void
3500ev_embed_stop (EV_P_ ev_embed *w)
3501{
3502 clear_pending (EV_A_ (W)w);
3503 if (expect_false (!ev_is_active (w)))
3504 return;
3505
3506 EV_FREQUENT_CHECK;
3507
3508 ev_io_stop (EV_A_ &w->io);
3509 ev_prepare_stop (EV_A_ &w->prepare);
3510 ev_fork_stop (EV_A_ &w->fork);
3511
3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
3515}
3516#endif
3517
3518#if EV_FORK_ENABLE
3519void
3520ev_fork_start (EV_P_ ev_fork *w)
3521{
3522 if (expect_false (ev_is_active (w)))
3523 return;
3524
3525 EV_FREQUENT_CHECK;
3526
3527 ev_start (EV_A_ (W)w, ++forkcnt);
3528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3529 forks [forkcnt - 1] = w;
3530
3531 EV_FREQUENT_CHECK;
3532}
3533
3534void
3535ev_fork_stop (EV_P_ ev_fork *w)
3536{
3537 clear_pending (EV_A_ (W)w);
3538 if (expect_false (!ev_is_active (w)))
3539 return;
3540
3541 EV_FREQUENT_CHECK;
3542
3543 {
3544 int active = ev_active (w);
3545
3546 forks [active - 1] = forks [--forkcnt];
3547 ev_active (forks [active - 1]) = active;
3548 }
3549
3550 ev_stop (EV_A_ (W)w);
3551
3552 EV_FREQUENT_CHECK;
3553}
3554#endif
3555
3556#if EV_ASYNC_ENABLE
3557void
3558ev_async_start (EV_P_ ev_async *w)
3559{
3560 if (expect_false (ev_is_active (w)))
3561 return;
3562
3563 evpipe_init (EV_A);
3564
3565 EV_FREQUENT_CHECK;
3566
3567 ev_start (EV_A_ (W)w, ++asynccnt);
3568 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3569 asyncs [asynccnt - 1] = w;
3570
3571 EV_FREQUENT_CHECK;
3572}
3573
3574void
3575ev_async_stop (EV_P_ ev_async *w)
3576{
3577 clear_pending (EV_A_ (W)w);
3578 if (expect_false (!ev_is_active (w)))
3579 return;
3580
3581 EV_FREQUENT_CHECK;
3582
3583 {
3584 int active = ev_active (w);
3585
3586 asyncs [active - 1] = asyncs [--asynccnt];
3587 ev_active (asyncs [active - 1]) = active;
3588 }
3589
3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
3593}
3594
3595void
3596ev_async_send (EV_P_ ev_async *w)
3597{
3598 w->sent = 1;
3599 evpipe_write (EV_A_ &async_pending);
3600}
3601#endif
1603 3602
1604/*****************************************************************************/ 3603/*****************************************************************************/
1605 3604
1606struct ev_once 3605struct ev_once
1607{ 3606{
1608 struct ev_io io; 3607 ev_io io;
1609 struct ev_timer to; 3608 ev_timer to;
1610 void (*cb)(int revents, void *arg); 3609 void (*cb)(int revents, void *arg);
1611 void *arg; 3610 void *arg;
1612}; 3611};
1613 3612
1614static void 3613static void
1615once_cb (EV_P_ struct ev_once *once, int revents) 3614once_cb (EV_P_ struct ev_once *once, int revents)
1616{ 3615{
1617 void (*cb)(int revents, void *arg) = once->cb; 3616 void (*cb)(int revents, void *arg) = once->cb;
1618 void *arg = once->arg; 3617 void *arg = once->arg;
1619 3618
1620 ev_io_stop (EV_A_ &once->io); 3619 ev_io_stop (EV_A_ &once->io);
1621 ev_timer_stop (EV_A_ &once->to); 3620 ev_timer_stop (EV_A_ &once->to);
1622 ev_free (once); 3621 ev_free (once);
1623 3622
1624 cb (revents, arg); 3623 cb (revents, arg);
1625} 3624}
1626 3625
1627static void 3626static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 3627once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 3628{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1631} 3632}
1632 3633
1633static void 3634static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 3635once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 3636{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3637 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3638
3639 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1637} 3640}
1638 3641
1639void 3642void
1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3643ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1641{ 3644{
1663 ev_timer_set (&once->to, timeout, 0.); 3666 ev_timer_set (&once->to, timeout, 0.);
1664 ev_timer_start (EV_A_ &once->to); 3667 ev_timer_start (EV_A_ &once->to);
1665 } 3668 }
1666} 3669}
1667 3670
3671/*****************************************************************************/
3672
3673#if EV_WALK_ENABLE
3674void
3675ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3676{
3677 int i, j;
3678 ev_watcher_list *wl, *wn;
3679
3680 if (types & (EV_IO | EV_EMBED))
3681 for (i = 0; i < anfdmax; ++i)
3682 for (wl = anfds [i].head; wl; )
3683 {
3684 wn = wl->next;
3685
3686#if EV_EMBED_ENABLE
3687 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3688 {
3689 if (types & EV_EMBED)
3690 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3691 }
3692 else
3693#endif
3694#if EV_USE_INOTIFY
3695 if (ev_cb ((ev_io *)wl) == infy_cb)
3696 ;
3697 else
3698#endif
3699 if ((ev_io *)wl != &pipe_w)
3700 if (types & EV_IO)
3701 cb (EV_A_ EV_IO, wl);
3702
3703 wl = wn;
3704 }
3705
3706 if (types & (EV_TIMER | EV_STAT))
3707 for (i = timercnt + HEAP0; i-- > HEAP0; )
3708#if EV_STAT_ENABLE
3709 /*TODO: timer is not always active*/
3710 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3711 {
3712 if (types & EV_STAT)
3713 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3714 }
3715 else
3716#endif
3717 if (types & EV_TIMER)
3718 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3719
3720#if EV_PERIODIC_ENABLE
3721 if (types & EV_PERIODIC)
3722 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3723 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3724#endif
3725
3726#if EV_IDLE_ENABLE
3727 if (types & EV_IDLE)
3728 for (j = NUMPRI; i--; )
3729 for (i = idlecnt [j]; i--; )
3730 cb (EV_A_ EV_IDLE, idles [j][i]);
3731#endif
3732
3733#if EV_FORK_ENABLE
3734 if (types & EV_FORK)
3735 for (i = forkcnt; i--; )
3736 if (ev_cb (forks [i]) != embed_fork_cb)
3737 cb (EV_A_ EV_FORK, forks [i]);
3738#endif
3739
3740#if EV_ASYNC_ENABLE
3741 if (types & EV_ASYNC)
3742 for (i = asynccnt; i--; )
3743 cb (EV_A_ EV_ASYNC, asyncs [i]);
3744#endif
3745
3746#if EV_PREPARE_ENABLE
3747 if (types & EV_PREPARE)
3748 for (i = preparecnt; i--; )
3749# if EV_EMBED_ENABLE
3750 if (ev_cb (prepares [i]) != embed_prepare_cb)
3751# endif
3752 cb (EV_A_ EV_PREPARE, prepares [i]);
3753#endif
3754
3755#if EV_CHECK_ENABLE
3756 if (types & EV_CHECK)
3757 for (i = checkcnt; i--; )
3758 cb (EV_A_ EV_CHECK, checks [i]);
3759#endif
3760
3761#if EV_SIGNAL_ENABLE
3762 if (types & EV_SIGNAL)
3763 for (i = 0; i < EV_NSIG - 1; ++i)
3764 for (wl = signals [i].head; wl; )
3765 {
3766 wn = wl->next;
3767 cb (EV_A_ EV_SIGNAL, wl);
3768 wl = wn;
3769 }
3770#endif
3771
3772#if EV_CHILD_ENABLE
3773 if (types & EV_CHILD)
3774 for (i = EV_PID_HASHSIZE; i--; )
3775 for (wl = childs [i]; wl; )
3776 {
3777 wn = wl->next;
3778 cb (EV_A_ EV_CHILD, wl);
3779 wl = wn;
3780 }
3781#endif
3782/* EV_STAT 0x00001000 /* stat data changed */
3783/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3784}
3785#endif
3786
3787#if EV_MULTIPLICITY
3788 #include "ev_wrap.h"
3789#endif
3790
1668#ifdef __cplusplus 3791#ifdef __cplusplus
1669} 3792}
1670#endif 3793#endif
1671 3794

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines