ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.170 by root, Sat Dec 8 22:11:14 2007 UTC vs.
Revision 1.337 by root, Wed Mar 10 09:18:24 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL 1
225# else
226# define EV_USE_CLOCK_SYSCALL 0
139#endif 227# endif
140 228#endif
141/**/
142 229
143#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC 1
233# else
144# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
145#endif 236#endif
146 237
147#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP 1
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
149#endif 248#endif
150 249
151#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 251# define EV_USE_SELECT 1
153#endif 252#endif
159# define EV_USE_POLL 1 258# define EV_USE_POLL 1
160# endif 259# endif
161#endif 260#endif
162 261
163#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL 1
265# else
164# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
165#endif 268#endif
166 269
167#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
169#endif 272#endif
171#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 275# define EV_USE_PORT 0
173#endif 276#endif
174 277
175#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY 1
281# else
176# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
283# endif
177#endif 284#endif
178 285
179#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 287# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 288# define EV_PID_HASHSIZE 1
190# else 297# else
191# define EV_INOTIFY_HASHSIZE 16 298# define EV_INOTIFY_HASHSIZE 16
192# endif 299# endif
193#endif 300#endif
194 301
195/**/ 302#ifndef EV_USE_EVENTFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_EVENTFD 1
305# else
306# define EV_USE_EVENTFD 0
307# endif
308#endif
309
310#ifndef EV_USE_SIGNALFD
311# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312# define EV_USE_SIGNALFD 1
313# else
314# define EV_USE_SIGNALFD 0
315# endif
316#endif
317
318#if 0 /* debugging */
319# define EV_VERIFY 3
320# define EV_USE_4HEAP 1
321# define EV_HEAP_CACHE_AT 1
322#endif
323
324#ifndef EV_VERIFY
325# define EV_VERIFY !EV_MINIMAL
326#endif
327
328#ifndef EV_USE_4HEAP
329# define EV_USE_4HEAP !EV_MINIMAL
330#endif
331
332#ifndef EV_HEAP_CACHE_AT
333# define EV_HEAP_CACHE_AT !EV_MINIMAL
334#endif
335
336/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337/* which makes programs even slower. might work on other unices, too. */
338#if EV_USE_CLOCK_SYSCALL
339# include <syscall.h>
340# ifdef SYS_clock_gettime
341# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342# undef EV_USE_MONOTONIC
343# define EV_USE_MONOTONIC 1
344# else
345# undef EV_USE_CLOCK_SYSCALL
346# define EV_USE_CLOCK_SYSCALL 0
347# endif
348#endif
349
350/* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352#ifdef _AIX
353/* AIX has a completely broken poll.h header */
354# undef EV_USE_POLL
355# define EV_USE_POLL 0
356#endif
196 357
197#ifndef CLOCK_MONOTONIC 358#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 359# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 360# define EV_USE_MONOTONIC 0
200#endif 361#endif
202#ifndef CLOCK_REALTIME 363#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 364# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 365# define EV_USE_REALTIME 0
205#endif 366#endif
206 367
368#if !EV_STAT_ENABLE
369# undef EV_USE_INOTIFY
370# define EV_USE_INOTIFY 0
371#endif
372
373#if !EV_USE_NANOSLEEP
374# ifndef _WIN32
375# include <sys/select.h>
376# endif
377#endif
378
379#if EV_USE_INOTIFY
380# include <sys/utsname.h>
381# include <sys/statfs.h>
382# include <sys/inotify.h>
383/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384# ifndef IN_DONT_FOLLOW
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387# endif
388#endif
389
207#if EV_SELECT_IS_WINSOCKET 390#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 391# include <winsock.h>
209#endif 392#endif
210 393
211#if !EV_STAT_ENABLE 394#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 395/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
396# include <stdint.h>
397# ifndef EFD_NONBLOCK
398# define EFD_NONBLOCK O_NONBLOCK
213#endif 399# endif
214 400# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 401# ifdef O_CLOEXEC
216# include <sys/inotify.h> 402# define EFD_CLOEXEC O_CLOEXEC
403# else
404# define EFD_CLOEXEC 02000000
405# endif
217#endif 406# endif
407# ifdef __cplusplus
408extern "C" {
409# endif
410int (eventfd) (unsigned int initval, int flags);
411# ifdef __cplusplus
412}
413# endif
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429# ifdef __cplusplus
430extern "C" {
431# endif
432int signalfd (int fd, const sigset_t *mask, int flags);
433
434struct signalfd_siginfo
435{
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438};
439# ifdef __cplusplus
440}
441# endif
442#endif
443
218 444
219/**/ 445/**/
446
447#if EV_VERIFY >= 3
448# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449#else
450# define EV_FREQUENT_CHECK do { } while (0)
451#endif
452
453/*
454 * This is used to avoid floating point rounding problems.
455 * It is added to ev_rt_now when scheduling periodics
456 * to ensure progress, time-wise, even when rounding
457 * errors are against us.
458 * This value is good at least till the year 4000.
459 * Better solutions welcome.
460 */
461#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 462
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 465
225#if __GNUC__ >= 3 466#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 467# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 468# define noinline __attribute__ ((noinline))
228#else 469#else
229# define expect(expr,value) (expr) 470# define expect(expr,value) (expr)
230# define noinline 471# define noinline
231# if __STDC_VERSION__ < 199901L 472# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 473# define inline
233# endif 474# endif
234#endif 475#endif
235 476
236#define expect_false(expr) expect ((expr) != 0, 0) 477#define expect_false(expr) expect ((expr) != 0, 0)
241# define inline_speed static noinline 482# define inline_speed static noinline
242#else 483#else
243# define inline_speed static inline 484# define inline_speed static inline
244#endif 485#endif
245 486
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 487#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489#if EV_MINPRI == EV_MAXPRI
490# define ABSPRI(w) (((W)w), 0)
491#else
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 492# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493#endif
248 494
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 495#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 496#define EMPTY2(a,b) /* used to suppress some warnings */
251 497
252typedef ev_watcher *W; 498typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 499typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 500typedef ev_watcher_time *WT;
255 501
502#define ev_active(w) ((W)(w))->active
503#define ev_at(w) ((WT)(w))->at
504
505#if EV_USE_REALTIME
506/* sig_atomic_t is used to avoid per-thread variables or locking but still */
507/* giving it a reasonably high chance of working on typical architetcures */
508static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509#endif
510
511#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 512static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513#endif
514
515#ifndef EV_FD_TO_WIN32_HANDLE
516# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517#endif
518#ifndef EV_WIN32_HANDLE_TO_FD
519# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520#endif
521#ifndef EV_WIN32_CLOSE_FD
522# define EV_WIN32_CLOSE_FD(fd) close (fd)
523#endif
257 524
258#ifdef _WIN32 525#ifdef _WIN32
259# include "ev_win32.c" 526# include "ev_win32.c"
260#endif 527#endif
261 528
262/*****************************************************************************/ 529/*****************************************************************************/
263 530
531#if EV_AVOID_STDIO
532static void noinline
533ev_printerr (const char *msg)
534{
535 write (STDERR_FILENO, msg, strlen (msg));
536}
537#endif
538
264static void (*syserr_cb)(const char *msg); 539static void (*syserr_cb)(const char *msg);
265 540
266void 541void
267ev_set_syserr_cb (void (*cb)(const char *msg)) 542ev_set_syserr_cb (void (*cb)(const char *msg))
268{ 543{
269 syserr_cb = cb; 544 syserr_cb = cb;
270} 545}
271 546
272static void noinline 547static void noinline
273syserr (const char *msg) 548ev_syserr (const char *msg)
274{ 549{
275 if (!msg) 550 if (!msg)
276 msg = "(libev) system error"; 551 msg = "(libev) system error";
277 552
278 if (syserr_cb) 553 if (syserr_cb)
279 syserr_cb (msg); 554 syserr_cb (msg);
280 else 555 else
281 { 556 {
557#if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564#else
282 perror (msg); 565 perror (msg);
566#endif
283 abort (); 567 abort ();
284 } 568 }
285} 569}
286 570
571static void *
572ev_realloc_emul (void *ptr, long size)
573{
574#if __GLIBC__
575 return realloc (ptr, size);
576#else
577 /* some systems, notably openbsd and darwin, fail to properly
578 * implement realloc (x, 0) (as required by both ansi c-89 and
579 * the single unix specification, so work around them here.
580 */
581
582 if (size)
583 return realloc (ptr, size);
584
585 free (ptr);
586 return 0;
587#endif
588}
589
287static void *(*alloc)(void *ptr, long size); 590static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 591
289void 592void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 593ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 594{
292 alloc = cb; 595 alloc = cb;
293} 596}
294 597
295inline_speed void * 598inline_speed void *
296ev_realloc (void *ptr, long size) 599ev_realloc (void *ptr, long size)
297{ 600{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 601 ptr = alloc (ptr, size);
299 602
300 if (!ptr && size) 603 if (!ptr && size)
301 { 604 {
605#if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609#endif
303 abort (); 610 abort ();
304 } 611 }
305 612
306 return ptr; 613 return ptr;
307} 614}
309#define ev_malloc(size) ev_realloc (0, (size)) 616#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 617#define ev_free(ptr) ev_realloc ((ptr), 0)
311 618
312/*****************************************************************************/ 619/*****************************************************************************/
313 620
621/* set in reify when reification needed */
622#define EV_ANFD_REIFY 1
623
624/* file descriptor info structure */
314typedef struct 625typedef struct
315{ 626{
316 WL head; 627 WL head;
317 unsigned char events; 628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 631 unsigned char unused;
632#if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634#endif
319#if EV_SELECT_IS_WINSOCKET 635#if EV_SELECT_IS_WINSOCKET
320 SOCKET handle; 636 SOCKET handle;
321#endif 637#endif
322} ANFD; 638} ANFD;
323 639
640/* stores the pending event set for a given watcher */
324typedef struct 641typedef struct
325{ 642{
326 W w; 643 W w;
327 int events; 644 int events; /* the pending event set for the given watcher */
328} ANPENDING; 645} ANPENDING;
329 646
330#if EV_USE_INOTIFY 647#if EV_USE_INOTIFY
648/* hash table entry per inotify-id */
331typedef struct 649typedef struct
332{ 650{
333 WL head; 651 WL head;
334} ANFS; 652} ANFS;
653#endif
654
655/* Heap Entry */
656#if EV_HEAP_CACHE_AT
657 /* a heap element */
658 typedef struct {
659 ev_tstamp at;
660 WT w;
661 } ANHE;
662
663 #define ANHE_w(he) (he).w /* access watcher, read-write */
664 #define ANHE_at(he) (he).at /* access cached at, read-only */
665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666#else
667 /* a heap element */
668 typedef WT ANHE;
669
670 #define ANHE_w(he) (he)
671 #define ANHE_at(he) (he)->at
672 #define ANHE_at_cache(he)
335#endif 673#endif
336 674
337#if EV_MULTIPLICITY 675#if EV_MULTIPLICITY
338 676
339 struct ev_loop 677 struct ev_loop
358 696
359 static int ev_default_loop_ptr; 697 static int ev_default_loop_ptr;
360 698
361#endif 699#endif
362 700
701#if EV_MINIMAL < 2
702# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704# define EV_INVOKE_PENDING invoke_cb (EV_A)
705#else
706# define EV_RELEASE_CB (void)0
707# define EV_ACQUIRE_CB (void)0
708# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709#endif
710
711#define EVUNLOOP_RECURSE 0x80
712
363/*****************************************************************************/ 713/*****************************************************************************/
364 714
715#ifndef EV_HAVE_EV_TIME
365ev_tstamp 716ev_tstamp
366ev_time (void) 717ev_time (void)
367{ 718{
368#if EV_USE_REALTIME 719#if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
369 struct timespec ts; 722 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 723 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 724 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 725 }
726#endif
727
373 struct timeval tv; 728 struct timeval tv;
374 gettimeofday (&tv, 0); 729 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 730 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 731}
732#endif
378 733
379ev_tstamp inline_size 734inline_size ev_tstamp
380get_clock (void) 735get_clock (void)
381{ 736{
382#if EV_USE_MONOTONIC 737#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 738 if (expect_true (have_monotonic))
384 { 739 {
397{ 752{
398 return ev_rt_now; 753 return ev_rt_now;
399} 754}
400#endif 755#endif
401 756
402int inline_size 757void
758ev_sleep (ev_tstamp delay)
759{
760 if (delay > 0.)
761 {
762#if EV_USE_NANOSLEEP
763 struct timespec ts;
764
765 ts.tv_sec = (time_t)delay;
766 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
767
768 nanosleep (&ts, 0);
769#elif defined(_WIN32)
770 Sleep ((unsigned long)(delay * 1e3));
771#else
772 struct timeval tv;
773
774 tv.tv_sec = (time_t)delay;
775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
780 select (0, 0, 0, 0, &tv);
781#endif
782 }
783}
784
785/*****************************************************************************/
786
787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788
789/* find a suitable new size for the given array, */
790/* hopefully by rounding to a ncie-to-malloc size */
791inline_size int
403array_nextsize (int elem, int cur, int cnt) 792array_nextsize (int elem, int cur, int cnt)
404{ 793{
405 int ncur = cur + 1; 794 int ncur = cur + 1;
406 795
407 do 796 do
408 ncur <<= 1; 797 ncur <<= 1;
409 while (cnt > ncur); 798 while (cnt > ncur);
410 799
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 802 {
414 ncur *= elem; 803 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 805 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 806 ncur /= elem;
418 } 807 }
419 808
420 return ncur; 809 return ncur;
421} 810}
422 811
423inline_speed void * 812static noinline void *
424array_realloc (int elem, void *base, int *cur, int cnt) 813array_realloc (int elem, void *base, int *cur, int cnt)
425{ 814{
426 *cur = array_nextsize (elem, *cur, cnt); 815 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 816 return ev_realloc (base, elem * *cur);
428} 817}
818
819#define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 821
430#define array_needsize(type,base,cur,cnt,init) \ 822#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 823 if (expect_false ((cnt) > (cur))) \
432 { \ 824 { \
433 int ocur_ = (cur); \ 825 int ocur_ = (cur); \
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 838 }
447#endif 839#endif
448 840
449#define array_free(stem, idx) \ 841#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 843
452/*****************************************************************************/ 844/*****************************************************************************/
845
846/* dummy callback for pending events */
847static void noinline
848pendingcb (EV_P_ ev_prepare *w, int revents)
849{
850}
453 851
454void noinline 852void noinline
455ev_feed_event (EV_P_ void *w, int revents) 853ev_feed_event (EV_P_ void *w, int revents)
456{ 854{
457 W w_ = (W)w; 855 W w_ = (W)w;
856 int pri = ABSPRI (w_);
458 857
459 if (expect_false (w_->pending)) 858 if (expect_false (w_->pending))
859 pendings [pri][w_->pending - 1].events |= revents;
860 else
460 { 861 {
862 w_->pending = ++pendingcnt [pri];
863 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
864 pendings [pri][w_->pending - 1].w = w_;
461 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 865 pendings [pri][w_->pending - 1].events = revents;
462 return;
463 } 866 }
464
465 w_->pending = ++pendingcnt [ABSPRI (w_)];
466 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
467 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
468 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
469} 867}
470 868
471void inline_size 869inline_speed void
870feed_reverse (EV_P_ W w)
871{
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874}
875
876inline_size void
877feed_reverse_done (EV_P_ int revents)
878{
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882}
883
884inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 885queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 886{
474 int i; 887 int i;
475 888
476 for (i = 0; i < eventcnt; ++i) 889 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 890 ev_feed_event (EV_A_ events [i], type);
478} 891}
479 892
480/*****************************************************************************/ 893/*****************************************************************************/
481 894
482void inline_size 895inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 896fd_event_nocheck (EV_P_ int fd, int revents)
497{ 897{
498 ANFD *anfd = anfds + fd; 898 ANFD *anfd = anfds + fd;
499 ev_io *w; 899 ev_io *w;
500 900
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 905 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 906 ev_feed_event (EV_A_ (W)w, ev);
507 } 907 }
508} 908}
509 909
910/* do not submit kernel events for fds that have reify set */
911/* because that means they changed while we were polling for new events */
912inline_speed void
913fd_event (EV_P_ int fd, int revents)
914{
915 ANFD *anfd = anfds + fd;
916
917 if (expect_true (!anfd->reify))
918 fd_event_nocheck (EV_A_ fd, revents);
919}
920
510void 921void
511ev_feed_fd_event (EV_P_ int fd, int revents) 922ev_feed_fd_event (EV_P_ int fd, int revents)
512{ 923{
513 if (fd >= 0 && fd < anfdmax) 924 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 925 fd_event_nocheck (EV_A_ fd, revents);
515} 926}
516 927
517void inline_size 928/* make sure the external fd watch events are in-sync */
929/* with the kernel/libev internal state */
930inline_size void
518fd_reify (EV_P) 931fd_reify (EV_P)
519{ 932{
520 int i; 933 int i;
521 934
522 for (i = 0; i < fdchangecnt; ++i) 935 for (i = 0; i < fdchangecnt; ++i)
523 { 936 {
524 int fd = fdchanges [i]; 937 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 938 ANFD *anfd = anfds + fd;
526 ev_io *w; 939 ev_io *w;
527 940
528 int events = 0; 941 unsigned char events = 0;
529 942
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 943 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 944 events |= (unsigned char)w->events;
532 945
533#if EV_SELECT_IS_WINSOCKET 946#if EV_SELECT_IS_WINSOCKET
534 if (events) 947 if (events)
535 { 948 {
536 unsigned long argp; 949 unsigned long arg;
537 anfd->handle = _get_osfhandle (fd); 950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
539 } 952 }
540#endif 953#endif
541 954
955 {
956 unsigned char o_events = anfd->events;
957 unsigned char o_reify = anfd->reify;
958
542 anfd->reify = 0; 959 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 960 anfd->events = events;
961
962 if (o_events != events || o_reify & EV__IOFDSET)
963 backend_modify (EV_A_ fd, o_events, events);
964 }
546 } 965 }
547 966
548 fdchangecnt = 0; 967 fdchangecnt = 0;
549} 968}
550 969
551void inline_size 970/* something about the given fd changed */
971inline_size void
552fd_change (EV_P_ int fd) 972fd_change (EV_P_ int fd, int flags)
553{ 973{
554 if (expect_false (anfds [fd].reify)) 974 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 975 anfds [fd].reify |= flags;
558 976
977 if (expect_true (!reify))
978 {
559 ++fdchangecnt; 979 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 981 fdchanges [fdchangecnt - 1] = fd;
982 }
562} 983}
563 984
564void inline_speed 985/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986inline_speed void
565fd_kill (EV_P_ int fd) 987fd_kill (EV_P_ int fd)
566{ 988{
567 ev_io *w; 989 ev_io *w;
568 990
569 while ((w = (ev_io *)anfds [fd].head)) 991 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 993 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 995 }
574} 996}
575 997
576int inline_size 998/* check whether the given fd is actually valid, for error recovery */
999inline_size int
577fd_valid (int fd) 1000fd_valid (int fd)
578{ 1001{
579#ifdef _WIN32 1002#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1004#else
582 return fcntl (fd, F_GETFD) != -1; 1005 return fcntl (fd, F_GETFD) != -1;
583#endif 1006#endif
584} 1007}
585 1008
589{ 1012{
590 int fd; 1013 int fd;
591 1014
592 for (fd = 0; fd < anfdmax; ++fd) 1015 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1016 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1017 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1018 fd_kill (EV_A_ fd);
596} 1019}
597 1020
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1021/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1022static void noinline
603 1026
604 for (fd = anfdmax; fd--; ) 1027 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1028 if (anfds [fd].events)
606 { 1029 {
607 fd_kill (EV_A_ fd); 1030 fd_kill (EV_A_ fd);
608 return; 1031 break;
609 } 1032 }
610} 1033}
611 1034
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1035/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1036static void noinline
617 1040
618 for (fd = 0; fd < anfdmax; ++fd) 1041 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1042 if (anfds [fd].events)
620 { 1043 {
621 anfds [fd].events = 0; 1044 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1045 anfds [fd].emask = 0;
1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1047 }
624} 1048}
625 1049
626/*****************************************************************************/ 1050/* used to prepare libev internal fd's */
627 1051/* this is not fork-safe */
628void inline_speed 1052inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_size
755fd_intern (int fd) 1053fd_intern (int fd)
756{ 1054{
757#ifdef _WIN32 1055#ifdef _WIN32
758 int arg = 1; 1056 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1058#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1060 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1061#endif
764} 1062}
765 1063
1064/*****************************************************************************/
1065
1066/*
1067 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069 * the branching factor of the d-tree.
1070 */
1071
1072/*
1073 * at the moment we allow libev the luxury of two heaps,
1074 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075 * which is more cache-efficient.
1076 * the difference is about 5% with 50000+ watchers.
1077 */
1078#if EV_USE_4HEAP
1079
1080#define DHEAP 4
1081#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083#define UPHEAP_DONE(p,k) ((p) == (k))
1084
1085/* away from the root */
1086inline_speed void
1087downheap (ANHE *heap, int N, int k)
1088{
1089 ANHE he = heap [k];
1090 ANHE *E = heap + N + HEAP0;
1091
1092 for (;;)
1093 {
1094 ev_tstamp minat;
1095 ANHE *minpos;
1096 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097
1098 /* find minimum child */
1099 if (expect_true (pos + DHEAP - 1 < E))
1100 {
1101 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 }
1106 else if (pos < E)
1107 {
1108 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else
1114 break;
1115
1116 if (ANHE_at (he) <= minat)
1117 break;
1118
1119 heap [k] = *minpos;
1120 ev_active (ANHE_w (*minpos)) = k;
1121
1122 k = minpos - heap;
1123 }
1124
1125 heap [k] = he;
1126 ev_active (ANHE_w (he)) = k;
1127}
1128
1129#else /* 4HEAP */
1130
1131#define HEAP0 1
1132#define HPARENT(k) ((k) >> 1)
1133#define UPHEAP_DONE(p,k) (!(p))
1134
1135/* away from the root */
1136inline_speed void
1137downheap (ANHE *heap, int N, int k)
1138{
1139 ANHE he = heap [k];
1140
1141 for (;;)
1142 {
1143 int c = k << 1;
1144
1145 if (c >= N + HEAP0)
1146 break;
1147
1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149 ? 1 : 0;
1150
1151 if (ANHE_at (he) <= ANHE_at (heap [c]))
1152 break;
1153
1154 heap [k] = heap [c];
1155 ev_active (ANHE_w (heap [k])) = k;
1156
1157 k = c;
1158 }
1159
1160 heap [k] = he;
1161 ev_active (ANHE_w (he)) = k;
1162}
1163#endif
1164
1165/* towards the root */
1166inline_speed void
1167upheap (ANHE *heap, int k)
1168{
1169 ANHE he = heap [k];
1170
1171 for (;;)
1172 {
1173 int p = HPARENT (k);
1174
1175 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 break;
1177
1178 heap [k] = heap [p];
1179 ev_active (ANHE_w (heap [k])) = k;
1180 k = p;
1181 }
1182
1183 heap [k] = he;
1184 ev_active (ANHE_w (he)) = k;
1185}
1186
1187/* move an element suitably so it is in a correct place */
1188inline_size void
1189adjustheap (ANHE *heap, int N, int k)
1190{
1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 upheap (heap, k);
1193 else
1194 downheap (heap, N, k);
1195}
1196
1197/* rebuild the heap: this function is used only once and executed rarely */
1198inline_size void
1199reheap (ANHE *heap, int N)
1200{
1201 int i;
1202
1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205 for (i = 0; i < N; ++i)
1206 upheap (heap, i + HEAP0);
1207}
1208
1209/*****************************************************************************/
1210
1211/* associate signal watchers to a signal signal */
1212typedef struct
1213{
1214 EV_ATOMIC_T pending;
1215#if EV_MULTIPLICITY
1216 EV_P;
1217#endif
1218 WL head;
1219} ANSIG;
1220
1221static ANSIG signals [EV_NSIG - 1];
1222
1223/*****************************************************************************/
1224
1225#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226
766static void noinline 1227static void noinline
767siginit (EV_P) 1228evpipe_init (EV_P)
768{ 1229{
1230 if (!ev_is_active (&pipe_w))
1231 {
1232# if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
1238 {
1239 evpipe [0] = -1;
1240 fd_intern (evfd); /* doing it twice doesn't hurt */
1241 ev_io_set (&pipe_w, evfd, EV_READ);
1242 }
1243 else
1244# endif
1245 {
1246 while (pipe (evpipe))
1247 ev_syserr ("(libev) error creating signal/async pipe");
1248
769 fd_intern (sigpipe [0]); 1249 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1250 fd_intern (evpipe [1]);
1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1252 }
771 1253
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1254 ev_io_start (EV_A_ &pipe_w);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1255 ev_unref (EV_A); /* watcher should not keep loop alive */
1256 }
1257}
1258
1259inline_size void
1260evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1261{
1262 if (!*flag)
1263 {
1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
1266
1267 *flag = 1;
1268
1269#if EV_USE_EVENTFD
1270 if (evfd >= 0)
1271 {
1272 uint64_t counter = 1;
1273 write (evfd, &counter, sizeof (uint64_t));
1274 }
1275 else
1276#endif
1277 write (evpipe [1], &dummy, 1);
1278
1279 errno = old_errno;
1280 }
1281}
1282
1283/* called whenever the libev signal pipe */
1284/* got some events (signal, async) */
1285static void
1286pipecb (EV_P_ ev_io *iow, int revents)
1287{
1288 int i;
1289
1290#if EV_USE_EVENTFD
1291 if (evfd >= 0)
1292 {
1293 uint64_t counter;
1294 read (evfd, &counter, sizeof (uint64_t));
1295 }
1296 else
1297#endif
1298 {
1299 char dummy;
1300 read (evpipe [0], &dummy, 1);
1301 }
1302
1303 if (sig_pending)
1304 {
1305 sig_pending = 0;
1306
1307 for (i = EV_NSIG - 1; i--; )
1308 if (expect_false (signals [i].pending))
1309 ev_feed_signal_event (EV_A_ i + 1);
1310 }
1311
1312#if EV_ASYNC_ENABLE
1313 if (async_pending)
1314 {
1315 async_pending = 0;
1316
1317 for (i = asynccnt; i--; )
1318 if (asyncs [i]->sent)
1319 {
1320 asyncs [i]->sent = 0;
1321 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1322 }
1323 }
1324#endif
775} 1325}
776 1326
777/*****************************************************************************/ 1327/*****************************************************************************/
778 1328
779static ev_child *childs [EV_PID_HASHSIZE]; 1329static void
1330ev_sighandler (int signum)
1331{
1332#if EV_MULTIPLICITY
1333 EV_P = signals [signum - 1].loop;
1334#endif
780 1335
781#ifndef _WIN32 1336#ifdef _WIN32
1337 signal (signum, ev_sighandler);
1338#endif
1339
1340 signals [signum - 1].pending = 1;
1341 evpipe_write (EV_A_ &sig_pending);
1342}
1343
1344void noinline
1345ev_feed_signal_event (EV_P_ int signum)
1346{
1347 WL w;
1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
1354#if EV_MULTIPLICITY
1355 /* it is permissible to try to feed a signal to the wrong loop */
1356 /* or, likely more useful, feeding a signal nobody is waiting for */
1357
1358 if (expect_false (signals [signum].loop != EV_A))
1359 return;
1360#endif
1361
1362 signals [signum].pending = 0;
1363
1364 for (w = signals [signum].head; w; w = w->next)
1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1366}
1367
1368#if EV_USE_SIGNALFD
1369static void
1370sigfdcb (EV_P_ ev_io *iow, int revents)
1371{
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385}
1386#endif
1387
1388#endif
1389
1390/*****************************************************************************/
1391
1392#if EV_CHILD_ENABLE
1393static WL childs [EV_PID_HASHSIZE];
782 1394
783static ev_signal childev; 1395static ev_signal childev;
784 1396
785void inline_speed 1397#ifndef WIFCONTINUED
1398# define WIFCONTINUED(status) 0
1399#endif
1400
1401/* handle a single child status event */
1402inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1403child_reap (EV_P_ int chain, int pid, int status)
787{ 1404{
788 ev_child *w; 1405 ev_child *w;
1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1407
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1408 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1409 {
791 if (w->pid == pid || !w->pid) 1410 if ((w->pid == pid || !w->pid)
1411 && (!traced || (w->flags & 1)))
792 { 1412 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1413 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1414 w->rpid = pid;
795 w->rstatus = status; 1415 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1416 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1417 }
1418 }
798} 1419}
799 1420
800#ifndef WCONTINUED 1421#ifndef WCONTINUED
801# define WCONTINUED 0 1422# define WCONTINUED 0
802#endif 1423#endif
803 1424
1425/* called on sigchld etc., calls waitpid */
804static void 1426static void
805childcb (EV_P_ ev_signal *sw, int revents) 1427childcb (EV_P_ ev_signal *sw, int revents)
806{ 1428{
807 int pid, status; 1429 int pid, status;
808 1430
811 if (!WCONTINUED 1433 if (!WCONTINUED
812 || errno != EINVAL 1434 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1435 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1436 return;
815 1437
816 /* make sure we are called again until all childs have been reaped */ 1438 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1439 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1440 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1441
820 child_reap (EV_A_ sw, pid, pid, status); 1442 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1443 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1444 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1445}
824 1446
825#endif 1447#endif
826 1448
827/*****************************************************************************/ 1449/*****************************************************************************/
889 /* kqueue is borked on everything but netbsd apparently */ 1511 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 1512 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 1513 flags &= ~EVBACKEND_KQUEUE;
892#endif 1514#endif
893#ifdef __APPLE__ 1515#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 1516 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
896#endif 1519#endif
897 1520
898 return flags; 1521 return flags;
899} 1522}
900 1523
901unsigned int 1524unsigned int
902ev_embeddable_backends (void) 1525ev_embeddable_backends (void)
903{ 1526{
904 return EVBACKEND_EPOLL 1527 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1528
906 | EVBACKEND_PORT; 1529 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1530 /* please fix it and tell me how to detect the fix */
1531 flags &= ~EVBACKEND_EPOLL;
1532
1533 return flags;
907} 1534}
908 1535
909unsigned int 1536unsigned int
910ev_backend (EV_P) 1537ev_backend (EV_P)
911{ 1538{
912 return backend; 1539 return backend;
913} 1540}
914 1541
1542#if EV_MINIMAL < 2
915unsigned int 1543unsigned int
916ev_loop_count (EV_P) 1544ev_loop_count (EV_P)
917{ 1545{
918 return loop_count; 1546 return loop_count;
919} 1547}
920 1548
1549unsigned int
1550ev_loop_depth (EV_P)
1551{
1552 return loop_depth;
1553}
1554
1555void
1556ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1557{
1558 io_blocktime = interval;
1559}
1560
1561void
1562ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1563{
1564 timeout_blocktime = interval;
1565}
1566
1567void
1568ev_set_userdata (EV_P_ void *data)
1569{
1570 userdata = data;
1571}
1572
1573void *
1574ev_userdata (EV_P)
1575{
1576 return userdata;
1577}
1578
1579void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580{
1581 invoke_cb = invoke_pending_cb;
1582}
1583
1584void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585{
1586 release_cb = release;
1587 acquire_cb = acquire;
1588}
1589#endif
1590
1591/* initialise a loop structure, must be zero-initialised */
921static void noinline 1592static void noinline
922loop_init (EV_P_ unsigned int flags) 1593loop_init (EV_P_ unsigned int flags)
923{ 1594{
924 if (!backend) 1595 if (!backend)
925 { 1596 {
1597#if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605#endif
1606
926#if EV_USE_MONOTONIC 1607#if EV_USE_MONOTONIC
1608 if (!have_monotonic)
927 { 1609 {
928 struct timespec ts; 1610 struct timespec ts;
1611
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1613 have_monotonic = 1;
931 } 1614 }
932#endif 1615#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 1616
939 /* pid check not overridable via env */ 1617 /* pid check not overridable via env */
940#ifndef _WIN32 1618#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1619 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1620 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1623 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1624 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1625 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1626 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1627
1628 ev_rt_now = ev_time ();
1629 mn_now = get_clock ();
1630 now_floor = mn_now;
1631 rtmn_diff = ev_rt_now - mn_now;
1632#if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634#endif
1635
1636 io_blocktime = 0.;
1637 timeout_blocktime = 0.;
1638 backend = 0;
1639 backend_fd = -1;
1640 sig_pending = 0;
1641#if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643#endif
1644#if EV_USE_INOTIFY
1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1646#endif
1647#if EV_USE_SIGNALFD
1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1649#endif
1650
950 if (!(flags & 0x0000ffffUL)) 1651 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1652 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1653
959#if EV_USE_PORT 1654#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1655 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1656#endif
962#if EV_USE_KQUEUE 1657#if EV_USE_KQUEUE
970#endif 1665#endif
971#if EV_USE_SELECT 1666#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1668#endif
974 1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 1673 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675#endif
977 } 1676 }
978} 1677}
979 1678
1679/* free up a loop structure */
980static void noinline 1680static void noinline
981loop_destroy (EV_P) 1681loop_destroy (EV_P)
982{ 1682{
983 int i; 1683 int i;
1684
1685 if (ev_is_active (&pipe_w))
1686 {
1687 /*ev_ref (EV_A);*/
1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1689
1690#if EV_USE_EVENTFD
1691 if (evfd >= 0)
1692 close (evfd);
1693#endif
1694
1695 if (evpipe [0] >= 0)
1696 {
1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1699 }
1700 }
1701
1702#if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705#endif
984 1706
985#if EV_USE_INOTIFY 1707#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1708 if (fs_fd >= 0)
987 close (fs_fd); 1709 close (fs_fd);
988#endif 1710#endif
1012#if EV_IDLE_ENABLE 1734#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1735 array_free (idle, [i]);
1014#endif 1736#endif
1015 } 1737 }
1016 1738
1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1740
1017 /* have to use the microsoft-never-gets-it-right macro */ 1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 1743 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1744 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1745#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1746 array_free (periodic, EMPTY);
1022#endif 1747#endif
1748#if EV_FORK_ENABLE
1749 array_free (fork, EMPTY);
1750#endif
1023 array_free (prepare, EMPTY); 1751 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1752 array_free (check, EMPTY);
1753#if EV_ASYNC_ENABLE
1754 array_free (async, EMPTY);
1755#endif
1025 1756
1026 backend = 0; 1757 backend = 0;
1027} 1758}
1028 1759
1760#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1761inline_size void infy_fork (EV_P);
1762#endif
1030 1763
1031void inline_size 1764inline_size void
1032loop_fork (EV_P) 1765loop_fork (EV_P)
1033{ 1766{
1034#if EV_USE_PORT 1767#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 1769#endif
1042#endif 1775#endif
1043#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1777 infy_fork (EV_A);
1045#endif 1778#endif
1046 1779
1047 if (ev_is_active (&sigev)) 1780 if (ev_is_active (&pipe_w))
1048 { 1781 {
1049 /* default loop */ 1782 /* this "locks" the handlers against writing to the pipe */
1783 /* while we modify the fd vars */
1784 sig_pending = 1;
1785#if EV_ASYNC_ENABLE
1786 async_pending = 1;
1787#endif
1050 1788
1051 ev_ref (EV_A); 1789 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1790 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 1791
1056 while (pipe (sigpipe)) 1792#if EV_USE_EVENTFD
1057 syserr ("(libev) error creating pipe"); 1793 if (evfd >= 0)
1794 close (evfd);
1795#endif
1058 1796
1797 if (evpipe [0] >= 0)
1798 {
1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1801 }
1802
1803#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1059 siginit (EV_A); 1804 evpipe_init (EV_A);
1805 /* now iterate over everything, in case we missed something */
1806 pipecb (EV_A_ &pipe_w, EV_READ);
1807#endif
1060 } 1808 }
1061 1809
1062 postfork = 0; 1810 postfork = 0;
1063} 1811}
1064 1812
1065#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1814
1066struct ev_loop * 1815struct ev_loop *
1067ev_loop_new (unsigned int flags) 1816ev_loop_new (unsigned int flags)
1068{ 1817{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1818 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1819
1071 memset (loop, 0, sizeof (struct ev_loop)); 1820 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 1821 loop_init (EV_A_ flags);
1074 1822
1075 if (ev_backend (EV_A)) 1823 if (ev_backend (EV_A))
1076 return loop; 1824 return EV_A;
1077 1825
1078 return 0; 1826 return 0;
1079} 1827}
1080 1828
1081void 1829void
1086} 1834}
1087 1835
1088void 1836void
1089ev_loop_fork (EV_P) 1837ev_loop_fork (EV_P)
1090{ 1838{
1091 postfork = 1; 1839 postfork = 1; /* must be in line with ev_default_fork */
1092} 1840}
1841#endif /* multiplicity */
1093 1842
1843#if EV_VERIFY
1844static void noinline
1845verify_watcher (EV_P_ W w)
1846{
1847 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1848
1849 if (w->pending)
1850 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1851}
1852
1853static void noinline
1854verify_heap (EV_P_ ANHE *heap, int N)
1855{
1856 int i;
1857
1858 for (i = HEAP0; i < N + HEAP0; ++i)
1859 {
1860 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1861 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1862 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1863
1864 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1865 }
1866}
1867
1868static void noinline
1869array_verify (EV_P_ W *ws, int cnt)
1870{
1871 while (cnt--)
1872 {
1873 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1874 verify_watcher (EV_A_ ws [cnt]);
1875 }
1876}
1877#endif
1878
1879#if EV_MINIMAL < 2
1880void
1881ev_loop_verify (EV_P)
1882{
1883#if EV_VERIFY
1884 int i;
1885 WL w;
1886
1887 assert (activecnt >= -1);
1888
1889 assert (fdchangemax >= fdchangecnt);
1890 for (i = 0; i < fdchangecnt; ++i)
1891 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1892
1893 assert (anfdmax >= 0);
1894 for (i = 0; i < anfdmax; ++i)
1895 for (w = anfds [i].head; w; w = w->next)
1896 {
1897 verify_watcher (EV_A_ (W)w);
1898 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1899 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1900 }
1901
1902 assert (timermax >= timercnt);
1903 verify_heap (EV_A_ timers, timercnt);
1904
1905#if EV_PERIODIC_ENABLE
1906 assert (periodicmax >= periodiccnt);
1907 verify_heap (EV_A_ periodics, periodiccnt);
1908#endif
1909
1910 for (i = NUMPRI; i--; )
1911 {
1912 assert (pendingmax [i] >= pendingcnt [i]);
1913#if EV_IDLE_ENABLE
1914 assert (idleall >= 0);
1915 assert (idlemax [i] >= idlecnt [i]);
1916 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1917#endif
1918 }
1919
1920#if EV_FORK_ENABLE
1921 assert (forkmax >= forkcnt);
1922 array_verify (EV_A_ (W *)forks, forkcnt);
1923#endif
1924
1925#if EV_ASYNC_ENABLE
1926 assert (asyncmax >= asynccnt);
1927 array_verify (EV_A_ (W *)asyncs, asynccnt);
1928#endif
1929
1930#if EV_PREPARE_ENABLE
1931 assert (preparemax >= preparecnt);
1932 array_verify (EV_A_ (W *)prepares, preparecnt);
1933#endif
1934
1935#if EV_CHECK_ENABLE
1936 assert (checkmax >= checkcnt);
1937 array_verify (EV_A_ (W *)checks, checkcnt);
1938#endif
1939
1940# if 0
1941#if EV_CHILD_ENABLE
1942 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1943 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1944#endif
1945# endif
1946#endif
1947}
1094#endif 1948#endif
1095 1949
1096#if EV_MULTIPLICITY 1950#if EV_MULTIPLICITY
1097struct ev_loop * 1951struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1952ev_default_loop_init (unsigned int flags)
1099#else 1953#else
1100int 1954int
1101ev_default_loop (unsigned int flags) 1955ev_default_loop (unsigned int flags)
1102#endif 1956#endif
1103{ 1957{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1958 if (!ev_default_loop_ptr)
1109 { 1959 {
1110#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1961 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 1962#else
1113 ev_default_loop_ptr = 1; 1963 ev_default_loop_ptr = 1;
1114#endif 1964#endif
1115 1965
1116 loop_init (EV_A_ flags); 1966 loop_init (EV_A_ flags);
1117 1967
1118 if (ev_backend (EV_A)) 1968 if (ev_backend (EV_A))
1119 { 1969 {
1120 siginit (EV_A); 1970#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1971 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1972 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1973 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1974 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 1975#endif
1135 1983
1136void 1984void
1137ev_default_destroy (void) 1985ev_default_destroy (void)
1138{ 1986{
1139#if EV_MULTIPLICITY 1987#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr; 1988 EV_P = ev_default_loop_ptr;
1141#endif 1989#endif
1142 1990
1143#ifndef _WIN32 1991 ev_default_loop_ptr = 0;
1992
1993#if EV_CHILD_ENABLE
1144 ev_ref (EV_A); /* child watcher */ 1994 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1995 ev_signal_stop (EV_A_ &childev);
1146#endif 1996#endif
1147 1997
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1998 loop_destroy (EV_A);
1155} 1999}
1156 2000
1157void 2001void
1158ev_default_fork (void) 2002ev_default_fork (void)
1159{ 2003{
1160#if EV_MULTIPLICITY 2004#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 2005 EV_P = ev_default_loop_ptr;
1162#endif 2006#endif
1163 2007
1164 if (backend) 2008 postfork = 1; /* must be in line with ev_loop_fork */
1165 postfork = 1;
1166} 2009}
1167 2010
1168/*****************************************************************************/ 2011/*****************************************************************************/
1169 2012
1170void 2013void
1171ev_invoke (EV_P_ void *w, int revents) 2014ev_invoke (EV_P_ void *w, int revents)
1172{ 2015{
1173 EV_CB_INVOKE ((W)w, revents); 2016 EV_CB_INVOKE ((W)w, revents);
1174} 2017}
1175 2018
1176void inline_speed 2019unsigned int
1177call_pending (EV_P) 2020ev_pending_count (EV_P)
2021{
2022 int pri;
2023 unsigned int count = 0;
2024
2025 for (pri = NUMPRI; pri--; )
2026 count += pendingcnt [pri];
2027
2028 return count;
2029}
2030
2031void noinline
2032ev_invoke_pending (EV_P)
1178{ 2033{
1179 int pri; 2034 int pri;
1180 2035
1181 for (pri = NUMPRI; pri--; ) 2036 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 2037 while (pendingcnt [pri])
1183 { 2038 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2039 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 2040
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2041 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2042 /* ^ this is no longer true, as pending_w could be here */
1189 2043
1190 p->w->pending = 0; 2044 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 2045 EV_CB_INVOKE (p->w, p->events);
1192 } 2046 EV_FREQUENT_CHECK;
1193 } 2047 }
1194} 2048}
1195 2049
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275#if EV_IDLE_ENABLE 2050#if EV_IDLE_ENABLE
1276void inline_size 2051/* make idle watchers pending. this handles the "call-idle */
2052/* only when higher priorities are idle" logic */
2053inline_size void
1277idle_reify (EV_P) 2054idle_reify (EV_P)
1278{ 2055{
1279 if (expect_false (idleall)) 2056 if (expect_false (idleall))
1280 { 2057 {
1281 int pri; 2058 int pri;
1293 } 2070 }
1294 } 2071 }
1295} 2072}
1296#endif 2073#endif
1297 2074
1298int inline_size 2075/* make timers pending */
1299time_update_monotonic (EV_P) 2076inline_size void
2077timers_reify (EV_P)
1300{ 2078{
2079 EV_FREQUENT_CHECK;
2080
2081 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2082 {
2083 do
2084 {
2085 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->repeat)
2091 {
2092 ev_at (w) += w->repeat;
2093 if (ev_at (w) < mn_now)
2094 ev_at (w) = mn_now;
2095
2096 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2097
2098 ANHE_at_cache (timers [HEAP0]);
2099 downheap (timers, timercnt, HEAP0);
2100 }
2101 else
2102 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2103
2104 EV_FREQUENT_CHECK;
2105 feed_reverse (EV_A_ (W)w);
2106 }
2107 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2108
2109 feed_reverse_done (EV_A_ EV_TIMEOUT);
2110 }
2111}
2112
2113#if EV_PERIODIC_ENABLE
2114/* make periodics pending */
2115inline_size void
2116periodics_reify (EV_P)
2117{
2118 EV_FREQUENT_CHECK;
2119
2120 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2121 {
2122 int feed_count = 0;
2123
2124 do
2125 {
2126 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2127
2128 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2129
2130 /* first reschedule or stop timer */
2131 if (w->reschedule_cb)
2132 {
2133 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2134
2135 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else if (w->interval)
2141 {
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143 /* if next trigger time is not sufficiently in the future, put it there */
2144 /* this might happen because of floating point inexactness */
2145 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2146 {
2147 ev_at (w) += w->interval;
2148
2149 /* if interval is unreasonably low we might still have a time in the past */
2150 /* so correct this. this will make the periodic very inexact, but the user */
2151 /* has effectively asked to get triggered more often than possible */
2152 if (ev_at (w) < ev_rt_now)
2153 ev_at (w) = ev_rt_now;
2154 }
2155
2156 ANHE_at_cache (periodics [HEAP0]);
2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else
2160 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2161
2162 EV_FREQUENT_CHECK;
2163 feed_reverse (EV_A_ (W)w);
2164 }
2165 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2166
2167 feed_reverse_done (EV_A_ EV_PERIODIC);
2168 }
2169}
2170
2171/* simply recalculate all periodics */
2172/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2173static void noinline
2174periodics_reschedule (EV_P)
2175{
2176 int i;
2177
2178 /* adjust periodics after time jump */
2179 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2180 {
2181 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2182
2183 if (w->reschedule_cb)
2184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2185 else if (w->interval)
2186 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2187
2188 ANHE_at_cache (periodics [i]);
2189 }
2190
2191 reheap (periodics, periodiccnt);
2192}
2193#endif
2194
2195/* adjust all timers by a given offset */
2196static void noinline
2197timers_reschedule (EV_P_ ev_tstamp adjust)
2198{
2199 int i;
2200
2201 for (i = 0; i < timercnt; ++i)
2202 {
2203 ANHE *he = timers + i + HEAP0;
2204 ANHE_w (*he)->at += adjust;
2205 ANHE_at_cache (*he);
2206 }
2207}
2208
2209/* fetch new monotonic and realtime times from the kernel */
2210/* also detect if there was a timejump, and act accordingly */
2211inline_speed void
2212time_update (EV_P_ ev_tstamp max_block)
2213{
2214#if EV_USE_MONOTONIC
2215 if (expect_true (have_monotonic))
2216 {
2217 int i;
2218 ev_tstamp odiff = rtmn_diff;
2219
1301 mn_now = get_clock (); 2220 mn_now = get_clock ();
1302 2221
2222 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2223 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2224 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 2225 {
1305 ev_rt_now = rtmn_diff + mn_now; 2226 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 2227 return;
1307 } 2228 }
1308 else 2229
1309 {
1310 now_floor = mn_now; 2230 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 2231 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 2232
1316void inline_size 2233 /* loop a few times, before making important decisions.
1317time_update (EV_P) 2234 * on the choice of "4": one iteration isn't enough,
1318{ 2235 * in case we get preempted during the calls to
1319 int i; 2236 * ev_time and get_clock. a second call is almost guaranteed
1320 2237 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 2238 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 2239 * in the unlikely event of having been preempted here.
1323 { 2240 */
1324 if (time_update_monotonic (EV_A)) 2241 for (i = 4; --i; )
1325 { 2242 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 2243 rtmn_diff = ev_rt_now - mn_now;
1339 2244
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2245 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 2246 return; /* all is well */
1342 2247
1343 ev_rt_now = ev_time (); 2248 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 2249 mn_now = get_clock ();
1345 now_floor = mn_now; 2250 now_floor = mn_now;
1346 } 2251 }
1347 2252
2253 /* no timer adjustment, as the monotonic clock doesn't jump */
2254 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 2255# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 2256 periodics_reschedule (EV_A);
1350# endif 2257# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 2258 }
1355 else 2259 else
1356#endif 2260#endif
1357 { 2261 {
1358 ev_rt_now = ev_time (); 2262 ev_rt_now = ev_time ();
1359 2263
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2264 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 2265 {
2266 /* adjust timers. this is easy, as the offset is the same for all of them */
2267 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 2268#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 2269 periodics_reschedule (EV_A);
1364#endif 2270#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 2271 }
1370 2272
1371 mn_now = ev_rt_now; 2273 mn_now = ev_rt_now;
1372 } 2274 }
1373} 2275}
1374 2276
1375void 2277void
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 2278ev_loop (EV_P_ int flags)
1391{ 2279{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2280#if EV_MINIMAL < 2
1393 ? EVUNLOOP_ONE 2281 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 2282#endif
1395 2283
2284 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2285
2286 loop_done = EVUNLOOP_CANCEL;
2287
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2288 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 2289
1398 do 2290 do
1399 { 2291 {
2292#if EV_VERIFY >= 2
2293 ev_loop_verify (EV_A);
2294#endif
2295
1400#ifndef _WIN32 2296#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 2297 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 2298 if (expect_false (getpid () != curpid))
1403 { 2299 {
1404 curpid = getpid (); 2300 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 2306 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1412 if (forkcnt) 2308 if (forkcnt)
1413 { 2309 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2310 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 2311 EV_INVOKE_PENDING;
1416 } 2312 }
1417#endif 2313#endif
1418 2314
2315#if EV_PREPARE_ENABLE
1419 /* queue prepare watchers (and execute them) */ 2316 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 2317 if (expect_false (preparecnt))
1421 { 2318 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2319 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 2320 EV_INVOKE_PENDING;
1424 } 2321 }
2322#endif
1425 2323
1426 if (expect_false (!activecnt)) 2324 if (expect_false (loop_done))
1427 break; 2325 break;
1428 2326
1429 /* we might have forked, so reify kernel state if necessary */ 2327 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 2328 if (expect_false (postfork))
1431 loop_fork (EV_A); 2329 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 2331 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 2332 fd_reify (EV_A);
1435 2333
1436 /* calculate blocking time */ 2334 /* calculate blocking time */
1437 { 2335 {
1438 ev_tstamp block; 2336 ev_tstamp waittime = 0.;
2337 ev_tstamp sleeptime = 0.;
1439 2338
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2339 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 2340 {
2341 /* remember old timestamp for io_blocktime calculation */
2342 ev_tstamp prev_mn_now = mn_now;
2343
1444 /* update time to cancel out callback processing overhead */ 2344 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 2345 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 2346
1455 block = MAX_BLOCKTIME; 2347 waittime = MAX_BLOCKTIME;
1456 2348
1457 if (timercnt) 2349 if (timercnt)
1458 { 2350 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 2352 if (waittime > to) waittime = to;
1461 } 2353 }
1462 2354
1463#if EV_PERIODIC_ENABLE 2355#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 2356 if (periodiccnt)
1465 { 2357 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 2359 if (waittime > to) waittime = to;
1468 } 2360 }
1469#endif 2361#endif
1470 2362
2363 /* don't let timeouts decrease the waittime below timeout_blocktime */
2364 if (expect_false (waittime < timeout_blocktime))
2365 waittime = timeout_blocktime;
2366
2367 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 2368 if (expect_false (io_blocktime))
2369 {
2370 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2371
2372 if (sleeptime > waittime - backend_fudge)
2373 sleeptime = waittime - backend_fudge;
2374
2375 if (expect_true (sleeptime > 0.))
2376 {
2377 ev_sleep (sleeptime);
2378 waittime -= sleeptime;
2379 }
2380 }
1472 } 2381 }
1473 2382
2383#if EV_MINIMAL < 2
1474 ++loop_count; 2384 ++loop_count;
2385#endif
2386 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 2387 backend_poll (EV_A_ waittime);
2388 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2389
2390 /* update ev_rt_now, do magic */
2391 time_update (EV_A_ waittime + sleeptime);
1476 } 2392 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2393
1481 /* queue pending timers and reschedule them */ 2394 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2395 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2396#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2397 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 2400#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 2401 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 2402 idle_reify (EV_A);
1490#endif 2403#endif
1491 2404
2405#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 2406 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2407 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2408 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2409#endif
1495 2410
1496 call_pending (EV_A); 2411 EV_INVOKE_PENDING;
1497
1498 } 2412 }
1499 while (expect_true (activecnt && !loop_done)); 2413 while (expect_true (
2414 activecnt
2415 && !loop_done
2416 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2417 ));
1500 2418
1501 if (loop_done == EVUNLOOP_ONE) 2419 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2420 loop_done = EVUNLOOP_CANCEL;
2421
2422#if EV_MINIMAL < 2
2423 --loop_depth;
2424#endif
1503} 2425}
1504 2426
1505void 2427void
1506ev_unloop (EV_P_ int how) 2428ev_unloop (EV_P_ int how)
1507{ 2429{
1508 loop_done = how; 2430 loop_done = how;
1509} 2431}
1510 2432
2433void
2434ev_ref (EV_P)
2435{
2436 ++activecnt;
2437}
2438
2439void
2440ev_unref (EV_P)
2441{
2442 --activecnt;
2443}
2444
2445void
2446ev_now_update (EV_P)
2447{
2448 time_update (EV_A_ 1e100);
2449}
2450
2451void
2452ev_suspend (EV_P)
2453{
2454 ev_now_update (EV_A);
2455}
2456
2457void
2458ev_resume (EV_P)
2459{
2460 ev_tstamp mn_prev = mn_now;
2461
2462 ev_now_update (EV_A);
2463 timers_reschedule (EV_A_ mn_now - mn_prev);
2464#if EV_PERIODIC_ENABLE
2465 /* TODO: really do this? */
2466 periodics_reschedule (EV_A);
2467#endif
2468}
2469
1511/*****************************************************************************/ 2470/*****************************************************************************/
2471/* singly-linked list management, used when the expected list length is short */
1512 2472
1513void inline_size 2473inline_size void
1514wlist_add (WL *head, WL elem) 2474wlist_add (WL *head, WL elem)
1515{ 2475{
1516 elem->next = *head; 2476 elem->next = *head;
1517 *head = elem; 2477 *head = elem;
1518} 2478}
1519 2479
1520void inline_size 2480inline_size void
1521wlist_del (WL *head, WL elem) 2481wlist_del (WL *head, WL elem)
1522{ 2482{
1523 while (*head) 2483 while (*head)
1524 { 2484 {
1525 if (*head == elem) 2485 if (expect_true (*head == elem))
1526 { 2486 {
1527 *head = elem->next; 2487 *head = elem->next;
1528 return; 2488 break;
1529 } 2489 }
1530 2490
1531 head = &(*head)->next; 2491 head = &(*head)->next;
1532 } 2492 }
1533} 2493}
1534 2494
1535void inline_speed 2495/* internal, faster, version of ev_clear_pending */
2496inline_speed void
1536clear_pending (EV_P_ W w) 2497clear_pending (EV_P_ W w)
1537{ 2498{
1538 if (w->pending) 2499 if (w->pending)
1539 { 2500 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2501 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 2502 w->pending = 0;
1542 } 2503 }
1543} 2504}
1544 2505
1545int 2506int
1546ev_clear_pending (EV_P_ void *w) 2507ev_clear_pending (EV_P_ void *w)
1547{ 2508{
1548 W w_ = (W)w; 2509 W w_ = (W)w;
1549 int pending = w_->pending; 2510 int pending = w_->pending;
1550 2511
1551 if (!pending) 2512 if (expect_true (pending))
2513 {
2514 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2515 p->w = (W)&pending_w;
2516 w_->pending = 0;
2517 return p->events;
2518 }
2519 else
1552 return 0; 2520 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 2521}
1560 2522
1561void inline_size 2523inline_size void
1562pri_adjust (EV_P_ W w) 2524pri_adjust (EV_P_ W w)
1563{ 2525{
1564 int pri = w->priority; 2526 int pri = ev_priority (w);
1565 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2527 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1566 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2528 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1567 w->priority = pri; 2529 ev_set_priority (w, pri);
1568} 2530}
1569 2531
1570void inline_speed 2532inline_speed void
1571ev_start (EV_P_ W w, int active) 2533ev_start (EV_P_ W w, int active)
1572{ 2534{
1573 pri_adjust (EV_A_ w); 2535 pri_adjust (EV_A_ w);
1574 w->active = active; 2536 w->active = active;
1575 ev_ref (EV_A); 2537 ev_ref (EV_A);
1576} 2538}
1577 2539
1578void inline_size 2540inline_size void
1579ev_stop (EV_P_ W w) 2541ev_stop (EV_P_ W w)
1580{ 2542{
1581 ev_unref (EV_A); 2543 ev_unref (EV_A);
1582 w->active = 0; 2544 w->active = 0;
1583} 2545}
1584 2546
1585/*****************************************************************************/ 2547/*****************************************************************************/
1586 2548
1587void 2549void noinline
1588ev_io_start (EV_P_ ev_io *w) 2550ev_io_start (EV_P_ ev_io *w)
1589{ 2551{
1590 int fd = w->fd; 2552 int fd = w->fd;
1591 2553
1592 if (expect_false (ev_is_active (w))) 2554 if (expect_false (ev_is_active (w)))
1593 return; 2555 return;
1594 2556
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 2557 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2558 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2559
2560 EV_FREQUENT_CHECK;
1596 2561
1597 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2563 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2564 wlist_add (&anfds[fd].head, (WL)w);
1600 2565
1601 fd_change (EV_A_ fd); 2566 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1602} 2567 w->events &= ~EV__IOFDSET;
1603 2568
1604void 2569 EV_FREQUENT_CHECK;
2570}
2571
2572void noinline
1605ev_io_stop (EV_P_ ev_io *w) 2573ev_io_stop (EV_P_ ev_io *w)
1606{ 2574{
1607 clear_pending (EV_A_ (W)w); 2575 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 2576 if (expect_false (!ev_is_active (w)))
1609 return; 2577 return;
1610 2578
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2579 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 2580
2581 EV_FREQUENT_CHECK;
2582
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2583 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 2584 ev_stop (EV_A_ (W)w);
1615 2585
1616 fd_change (EV_A_ w->fd); 2586 fd_change (EV_A_ w->fd, 1);
1617}
1618 2587
1619void 2588 EV_FREQUENT_CHECK;
2589}
2590
2591void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 2592ev_timer_start (EV_P_ ev_timer *w)
1621{ 2593{
1622 if (expect_false (ev_is_active (w))) 2594 if (expect_false (ev_is_active (w)))
1623 return; 2595 return;
1624 2596
1625 ((WT)w)->at += mn_now; 2597 ev_at (w) += mn_now;
1626 2598
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2599 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 2600
2601 EV_FREQUENT_CHECK;
2602
2603 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 2604 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2605 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 2606 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 2607 ANHE_at_cache (timers [ev_active (w)]);
2608 upheap (timers, ev_active (w));
1633 2609
2610 EV_FREQUENT_CHECK;
2611
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2612 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 2613}
1636 2614
1637void 2615void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 2616ev_timer_stop (EV_P_ ev_timer *w)
1639{ 2617{
1640 clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1642 return; 2620 return;
1643 2621
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2622 EV_FREQUENT_CHECK;
1645 2623
1646 { 2624 {
1647 int active = ((W)w)->active; 2625 int active = ev_active (w);
1648 2626
2627 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2628
2629 --timercnt;
2630
1649 if (expect_true (--active < --timercnt)) 2631 if (expect_true (active < timercnt + HEAP0))
1650 { 2632 {
1651 timers [active] = timers [timercnt]; 2633 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 2634 adjustheap (timers, timercnt, active);
1653 } 2635 }
1654 } 2636 }
1655 2637
1656 ((WT)w)->at -= mn_now; 2638 ev_at (w) -= mn_now;
1657 2639
1658 ev_stop (EV_A_ (W)w); 2640 ev_stop (EV_A_ (W)w);
1659}
1660 2641
1661void 2642 EV_FREQUENT_CHECK;
2643}
2644
2645void noinline
1662ev_timer_again (EV_P_ ev_timer *w) 2646ev_timer_again (EV_P_ ev_timer *w)
1663{ 2647{
2648 EV_FREQUENT_CHECK;
2649
1664 if (ev_is_active (w)) 2650 if (ev_is_active (w))
1665 { 2651 {
1666 if (w->repeat) 2652 if (w->repeat)
1667 { 2653 {
1668 ((WT)w)->at = mn_now + w->repeat; 2654 ev_at (w) = mn_now + w->repeat;
2655 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2656 adjustheap (timers, timercnt, ev_active (w));
1670 } 2657 }
1671 else 2658 else
1672 ev_timer_stop (EV_A_ w); 2659 ev_timer_stop (EV_A_ w);
1673 } 2660 }
1674 else if (w->repeat) 2661 else if (w->repeat)
1675 { 2662 {
1676 w->at = w->repeat; 2663 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 2664 ev_timer_start (EV_A_ w);
1678 } 2665 }
2666
2667 EV_FREQUENT_CHECK;
2668}
2669
2670ev_tstamp
2671ev_timer_remaining (EV_P_ ev_timer *w)
2672{
2673 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1679} 2674}
1680 2675
1681#if EV_PERIODIC_ENABLE 2676#if EV_PERIODIC_ENABLE
1682void 2677void noinline
1683ev_periodic_start (EV_P_ ev_periodic *w) 2678ev_periodic_start (EV_P_ ev_periodic *w)
1684{ 2679{
1685 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
1686 return; 2681 return;
1687 2682
1688 if (w->reschedule_cb) 2683 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2684 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 2685 else if (w->interval)
1691 { 2686 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2687 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 2688 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2689 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 2690 }
2691 else
2692 ev_at (w) = w->offset;
1696 2693
2694 EV_FREQUENT_CHECK;
2695
2696 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 2697 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2698 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 2699 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 2700 ANHE_at_cache (periodics [ev_active (w)]);
2701 upheap (periodics, ev_active (w));
1701 2702
2703 EV_FREQUENT_CHECK;
2704
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2705 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 2706}
1704 2707
1705void 2708void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 2709ev_periodic_stop (EV_P_ ev_periodic *w)
1707{ 2710{
1708 clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 2712 if (expect_false (!ev_is_active (w)))
1710 return; 2713 return;
1711 2714
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2715 EV_FREQUENT_CHECK;
1713 2716
1714 { 2717 {
1715 int active = ((W)w)->active; 2718 int active = ev_active (w);
1716 2719
2720 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2721
2722 --periodiccnt;
2723
1717 if (expect_true (--active < --periodiccnt)) 2724 if (expect_true (active < periodiccnt + HEAP0))
1718 { 2725 {
1719 periodics [active] = periodics [periodiccnt]; 2726 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 2727 adjustheap (periodics, periodiccnt, active);
1721 } 2728 }
1722 } 2729 }
1723 2730
1724 ev_stop (EV_A_ (W)w); 2731 ev_stop (EV_A_ (W)w);
1725}
1726 2732
1727void 2733 EV_FREQUENT_CHECK;
2734}
2735
2736void noinline
1728ev_periodic_again (EV_P_ ev_periodic *w) 2737ev_periodic_again (EV_P_ ev_periodic *w)
1729{ 2738{
1730 /* TODO: use adjustheap and recalculation */ 2739 /* TODO: use adjustheap and recalculation */
1731 ev_periodic_stop (EV_A_ w); 2740 ev_periodic_stop (EV_A_ w);
1732 ev_periodic_start (EV_A_ w); 2741 ev_periodic_start (EV_A_ w);
1735 2744
1736#ifndef SA_RESTART 2745#ifndef SA_RESTART
1737# define SA_RESTART 0 2746# define SA_RESTART 0
1738#endif 2747#endif
1739 2748
1740void 2749#if EV_SIGNAL_ENABLE
2750
2751void noinline
1741ev_signal_start (EV_P_ ev_signal *w) 2752ev_signal_start (EV_P_ ev_signal *w)
1742{ 2753{
1743#if EV_MULTIPLICITY
1744 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1745#endif
1746 if (expect_false (ev_is_active (w))) 2754 if (expect_false (ev_is_active (w)))
1747 return; 2755 return;
1748 2756
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2757 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2758
2759#if EV_MULTIPLICITY
2760 assert (("libev: a signal must not be attached to two different loops",
2761 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2762
2763 signals [w->signum - 1].loop = EV_A;
2764#endif
2765
2766 EV_FREQUENT_CHECK;
2767
2768#if EV_USE_SIGNALFD
2769 if (sigfd == -2)
2770 {
2771 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2772 if (sigfd < 0 && errno == EINVAL)
2773 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2774
2775 if (sigfd >= 0)
2776 {
2777 fd_intern (sigfd); /* doing it twice will not hurt */
2778
2779 sigemptyset (&sigfd_set);
2780
2781 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2782 ev_set_priority (&sigfd_w, EV_MAXPRI);
2783 ev_io_start (EV_A_ &sigfd_w);
2784 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2785 }
2786 }
2787
2788 if (sigfd >= 0)
2789 {
2790 /* TODO: check .head */
2791 sigaddset (&sigfd_set, w->signum);
2792 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2793
2794 signalfd (sigfd, &sigfd_set, 0);
2795 }
2796#endif
1750 2797
1751 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2799 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 2800
1755 if (!((WL)w)->next) 2801 if (!((WL)w)->next)
2802# if EV_USE_SIGNALFD
2803 if (sigfd < 0) /*TODO*/
2804# endif
1756 { 2805 {
1757#if _WIN32 2806# ifdef _WIN32
2807 evpipe_init (EV_A);
2808
1758 signal (w->signum, sighandler); 2809 signal (w->signum, ev_sighandler);
1759#else 2810# else
1760 struct sigaction sa; 2811 struct sigaction sa;
2812
2813 evpipe_init (EV_A);
2814
1761 sa.sa_handler = sighandler; 2815 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 2816 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2817 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 2818 sigaction (w->signum, &sa, 0);
2819
2820 sigemptyset (&sa.sa_mask);
2821 sigaddset (&sa.sa_mask, w->signum);
2822 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1765#endif 2823#endif
1766 } 2824 }
1767}
1768 2825
1769void 2826 EV_FREQUENT_CHECK;
2827}
2828
2829void noinline
1770ev_signal_stop (EV_P_ ev_signal *w) 2830ev_signal_stop (EV_P_ ev_signal *w)
1771{ 2831{
1772 clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1774 return; 2834 return;
1775 2835
2836 EV_FREQUENT_CHECK;
2837
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2838 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
1778 2840
1779 if (!signals [w->signum - 1].head) 2841 if (!signals [w->signum - 1].head)
2842 {
2843#if EV_MULTIPLICITY
2844 signals [w->signum - 1].loop = 0; /* unattach from signal */
2845#endif
2846#if EV_USE_SIGNALFD
2847 if (sigfd >= 0)
2848 {
2849 sigset_t ss;
2850
2851 sigemptyset (&ss);
2852 sigaddset (&ss, w->signum);
2853 sigdelset (&sigfd_set, w->signum);
2854
2855 signalfd (sigfd, &sigfd_set, 0);
2856 sigprocmask (SIG_UNBLOCK, &ss, 0);
2857 }
2858 else
2859#endif
1780 signal (w->signum, SIG_DFL); 2860 signal (w->signum, SIG_DFL);
2861 }
2862
2863 EV_FREQUENT_CHECK;
1781} 2864}
2865
2866#endif
2867
2868#if EV_CHILD_ENABLE
1782 2869
1783void 2870void
1784ev_child_start (EV_P_ ev_child *w) 2871ev_child_start (EV_P_ ev_child *w)
1785{ 2872{
1786#if EV_MULTIPLICITY 2873#if EV_MULTIPLICITY
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2874 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 2875#endif
1789 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
1790 return; 2877 return;
1791 2878
2879 EV_FREQUENT_CHECK;
2880
1792 ev_start (EV_A_ (W)w, 1); 2881 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2882 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2883
2884 EV_FREQUENT_CHECK;
1794} 2885}
1795 2886
1796void 2887void
1797ev_child_stop (EV_P_ ev_child *w) 2888ev_child_stop (EV_P_ ev_child *w)
1798{ 2889{
1799 clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
1801 return; 2892 return;
1802 2893
2894 EV_FREQUENT_CHECK;
2895
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2896 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
2898
2899 EV_FREQUENT_CHECK;
1805} 2900}
2901
2902#endif
1806 2903
1807#if EV_STAT_ENABLE 2904#if EV_STAT_ENABLE
1808 2905
1809# ifdef _WIN32 2906# ifdef _WIN32
1810# undef lstat 2907# undef lstat
1811# define lstat(a,b) _stati64 (a,b) 2908# define lstat(a,b) _stati64 (a,b)
1812# endif 2909# endif
1813 2910
1814#define DEF_STAT_INTERVAL 5.0074891 2911#define DEF_STAT_INTERVAL 5.0074891
2912#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1815#define MIN_STAT_INTERVAL 0.1074891 2913#define MIN_STAT_INTERVAL 0.1074891
1816 2914
1817static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2915static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1818 2916
1819#if EV_USE_INOTIFY 2917#if EV_USE_INOTIFY
1820# define EV_INOTIFY_BUFSIZE 8192 2918
2919/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2920# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1821 2921
1822static void noinline 2922static void noinline
1823infy_add (EV_P_ ev_stat *w) 2923infy_add (EV_P_ ev_stat *w)
1824{ 2924{
1825 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2925 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1826 2926
1827 if (w->wd < 0) 2927 if (w->wd >= 0)
2928 {
2929 struct statfs sfs;
2930
2931 /* now local changes will be tracked by inotify, but remote changes won't */
2932 /* unless the filesystem is known to be local, we therefore still poll */
2933 /* also do poll on <2.6.25, but with normal frequency */
2934
2935 if (!fs_2625)
2936 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2937 else if (!statfs (w->path, &sfs)
2938 && (sfs.f_type == 0x1373 /* devfs */
2939 || sfs.f_type == 0xEF53 /* ext2/3 */
2940 || sfs.f_type == 0x3153464a /* jfs */
2941 || sfs.f_type == 0x52654973 /* reiser3 */
2942 || sfs.f_type == 0x01021994 /* tempfs */
2943 || sfs.f_type == 0x58465342 /* xfs */))
2944 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2945 else
2946 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1828 { 2947 }
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2948 else
2949 {
2950 /* can't use inotify, continue to stat */
2951 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1830 2952
1831 /* monitor some parent directory for speedup hints */ 2953 /* if path is not there, monitor some parent directory for speedup hints */
2954 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2955 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 2957 {
1834 char path [4096]; 2958 char path [4096];
1835 strcpy (path, w->path); 2959 strcpy (path, w->path);
1836 2960
1839 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1840 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1841 2965
1842 char *pend = strrchr (path, '/'); 2966 char *pend = strrchr (path, '/');
1843 2967
1844 if (!pend) 2968 if (!pend || pend == path)
1845 break; /* whoops, no '/', complain to your admin */ 2969 break;
1846 2970
1847 *pend = 0; 2971 *pend = 0;
1848 w->wd = inotify_add_watch (fs_fd, path, mask); 2972 w->wd = inotify_add_watch (fs_fd, path, mask);
1849 } 2973 }
1850 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1851 } 2975 }
1852 } 2976 }
1853 else
1854 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1855 2977
1856 if (w->wd >= 0) 2978 if (w->wd >= 0)
1857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2979 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2980
2981 /* now re-arm timer, if required */
2982 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2983 ev_timer_again (EV_A_ &w->timer);
2984 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1858} 2985}
1859 2986
1860static void noinline 2987static void noinline
1861infy_del (EV_P_ ev_stat *w) 2988infy_del (EV_P_ ev_stat *w)
1862{ 2989{
1876 3003
1877static void noinline 3004static void noinline
1878infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3005infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1879{ 3006{
1880 if (slot < 0) 3007 if (slot < 0)
1881 /* overflow, need to check for all hahs slots */ 3008 /* overflow, need to check for all hash slots */
1882 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3009 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1883 infy_wd (EV_A_ slot, wd, ev); 3010 infy_wd (EV_A_ slot, wd, ev);
1884 else 3011 else
1885 { 3012 {
1886 WL w_; 3013 WL w_;
1892 3019
1893 if (w->wd == wd || wd == -1) 3020 if (w->wd == wd || wd == -1)
1894 { 3021 {
1895 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3022 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1896 { 3023 {
3024 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1897 w->wd = -1; 3025 w->wd = -1;
1898 infy_add (EV_A_ w); /* re-add, no matter what */ 3026 infy_add (EV_A_ w); /* re-add, no matter what */
1899 } 3027 }
1900 3028
1901 stat_timer_cb (EV_A_ &w->timer, 0); 3029 stat_timer_cb (EV_A_ &w->timer, 0);
1906 3034
1907static void 3035static void
1908infy_cb (EV_P_ ev_io *w, int revents) 3036infy_cb (EV_P_ ev_io *w, int revents)
1909{ 3037{
1910 char buf [EV_INOTIFY_BUFSIZE]; 3038 char buf [EV_INOTIFY_BUFSIZE];
1911 struct inotify_event *ev = (struct inotify_event *)buf;
1912 int ofs; 3039 int ofs;
1913 int len = read (fs_fd, buf, sizeof (buf)); 3040 int len = read (fs_fd, buf, sizeof (buf));
1914 3041
1915 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3042 for (ofs = 0; ofs < len; )
3043 {
3044 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1916 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3045 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3046 ofs += sizeof (struct inotify_event) + ev->len;
3047 }
1917} 3048}
1918 3049
1919void inline_size 3050inline_size unsigned int
3051ev_linux_version (void)
3052{
3053 struct utsname buf;
3054 unsigned int v;
3055 int i;
3056 char *p = buf.release;
3057
3058 if (uname (&buf))
3059 return 0;
3060
3061 for (i = 3+1; --i; )
3062 {
3063 unsigned int c = 0;
3064
3065 for (;;)
3066 {
3067 if (*p >= '0' && *p <= '9')
3068 c = c * 10 + *p++ - '0';
3069 else
3070 {
3071 p += *p == '.';
3072 break;
3073 }
3074 }
3075
3076 v = (v << 8) | c;
3077 }
3078
3079 return v;
3080}
3081
3082inline_size void
3083ev_check_2625 (EV_P)
3084{
3085 /* kernels < 2.6.25 are borked
3086 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3087 */
3088 if (ev_linux_version () < 0x020619)
3089 return;
3090
3091 fs_2625 = 1;
3092}
3093
3094inline_size int
3095infy_newfd (void)
3096{
3097#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3098 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3099 if (fd >= 0)
3100 return fd;
3101#endif
3102 return inotify_init ();
3103}
3104
3105inline_size void
1920infy_init (EV_P) 3106infy_init (EV_P)
1921{ 3107{
1922 if (fs_fd != -2) 3108 if (fs_fd != -2)
1923 return; 3109 return;
1924 3110
3111 fs_fd = -1;
3112
3113 ev_check_2625 (EV_A);
3114
1925 fs_fd = inotify_init (); 3115 fs_fd = infy_newfd ();
1926 3116
1927 if (fs_fd >= 0) 3117 if (fs_fd >= 0)
1928 { 3118 {
3119 fd_intern (fs_fd);
1929 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3120 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1930 ev_set_priority (&fs_w, EV_MAXPRI); 3121 ev_set_priority (&fs_w, EV_MAXPRI);
1931 ev_io_start (EV_A_ &fs_w); 3122 ev_io_start (EV_A_ &fs_w);
3123 ev_unref (EV_A);
1932 } 3124 }
1933} 3125}
1934 3126
1935void inline_size 3127inline_size void
1936infy_fork (EV_P) 3128infy_fork (EV_P)
1937{ 3129{
1938 int slot; 3130 int slot;
1939 3131
1940 if (fs_fd < 0) 3132 if (fs_fd < 0)
1941 return; 3133 return;
1942 3134
3135 ev_ref (EV_A);
3136 ev_io_stop (EV_A_ &fs_w);
1943 close (fs_fd); 3137 close (fs_fd);
1944 fs_fd = inotify_init (); 3138 fs_fd = infy_newfd ();
3139
3140 if (fs_fd >= 0)
3141 {
3142 fd_intern (fs_fd);
3143 ev_io_set (&fs_w, fs_fd, EV_READ);
3144 ev_io_start (EV_A_ &fs_w);
3145 ev_unref (EV_A);
3146 }
1945 3147
1946 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3148 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1947 { 3149 {
1948 WL w_ = fs_hash [slot].head; 3150 WL w_ = fs_hash [slot].head;
1949 fs_hash [slot].head = 0; 3151 fs_hash [slot].head = 0;
1956 w->wd = -1; 3158 w->wd = -1;
1957 3159
1958 if (fs_fd >= 0) 3160 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); /* re-add, no matter what */ 3161 infy_add (EV_A_ w); /* re-add, no matter what */
1960 else 3162 else
3163 {
3164 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3165 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1961 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3168 }
1962 } 3169 }
1963
1964 } 3170 }
1965} 3171}
1966 3172
3173#endif
3174
3175#ifdef _WIN32
3176# define EV_LSTAT(p,b) _stati64 (p, b)
3177#else
3178# define EV_LSTAT(p,b) lstat (p, b)
1967#endif 3179#endif
1968 3180
1969void 3181void
1970ev_stat_stat (EV_P_ ev_stat *w) 3182ev_stat_stat (EV_P_ ev_stat *w)
1971{ 3183{
1978static void noinline 3190static void noinline
1979stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3191stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1980{ 3192{
1981 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3193 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1982 3194
1983 /* we copy this here each the time so that */ 3195 ev_statdata prev = w->attr;
1984 /* prev has the old value when the callback gets invoked */
1985 w->prev = w->attr;
1986 ev_stat_stat (EV_A_ w); 3196 ev_stat_stat (EV_A_ w);
1987 3197
1988 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3198 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1989 if ( 3199 if (
1990 w->prev.st_dev != w->attr.st_dev 3200 prev.st_dev != w->attr.st_dev
1991 || w->prev.st_ino != w->attr.st_ino 3201 || prev.st_ino != w->attr.st_ino
1992 || w->prev.st_mode != w->attr.st_mode 3202 || prev.st_mode != w->attr.st_mode
1993 || w->prev.st_nlink != w->attr.st_nlink 3203 || prev.st_nlink != w->attr.st_nlink
1994 || w->prev.st_uid != w->attr.st_uid 3204 || prev.st_uid != w->attr.st_uid
1995 || w->prev.st_gid != w->attr.st_gid 3205 || prev.st_gid != w->attr.st_gid
1996 || w->prev.st_rdev != w->attr.st_rdev 3206 || prev.st_rdev != w->attr.st_rdev
1997 || w->prev.st_size != w->attr.st_size 3207 || prev.st_size != w->attr.st_size
1998 || w->prev.st_atime != w->attr.st_atime 3208 || prev.st_atime != w->attr.st_atime
1999 || w->prev.st_mtime != w->attr.st_mtime 3209 || prev.st_mtime != w->attr.st_mtime
2000 || w->prev.st_ctime != w->attr.st_ctime 3210 || prev.st_ctime != w->attr.st_ctime
2001 ) { 3211 ) {
3212 /* we only update w->prev on actual differences */
3213 /* in case we test more often than invoke the callback, */
3214 /* to ensure that prev is always different to attr */
3215 w->prev = prev;
3216
2002 #if EV_USE_INOTIFY 3217 #if EV_USE_INOTIFY
3218 if (fs_fd >= 0)
3219 {
2003 infy_del (EV_A_ w); 3220 infy_del (EV_A_ w);
2004 infy_add (EV_A_ w); 3221 infy_add (EV_A_ w);
2005 ev_stat_stat (EV_A_ w); /* avoid race... */ 3222 ev_stat_stat (EV_A_ w); /* avoid race... */
3223 }
2006 #endif 3224 #endif
2007 3225
2008 ev_feed_event (EV_A_ w, EV_STAT); 3226 ev_feed_event (EV_A_ w, EV_STAT);
2009 } 3227 }
2010} 3228}
2013ev_stat_start (EV_P_ ev_stat *w) 3231ev_stat_start (EV_P_ ev_stat *w)
2014{ 3232{
2015 if (expect_false (ev_is_active (w))) 3233 if (expect_false (ev_is_active (w)))
2016 return; 3234 return;
2017 3235
2018 /* since we use memcmp, we need to clear any padding data etc. */
2019 memset (&w->prev, 0, sizeof (ev_statdata));
2020 memset (&w->attr, 0, sizeof (ev_statdata));
2021
2022 ev_stat_stat (EV_A_ w); 3236 ev_stat_stat (EV_A_ w);
2023 3237
3238 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2024 if (w->interval < MIN_STAT_INTERVAL) 3239 w->interval = MIN_STAT_INTERVAL;
2025 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2026 3240
2027 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3241 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2028 ev_set_priority (&w->timer, ev_priority (w)); 3242 ev_set_priority (&w->timer, ev_priority (w));
2029 3243
2030#if EV_USE_INOTIFY 3244#if EV_USE_INOTIFY
2031 infy_init (EV_A); 3245 infy_init (EV_A);
2032 3246
2033 if (fs_fd >= 0) 3247 if (fs_fd >= 0)
2034 infy_add (EV_A_ w); 3248 infy_add (EV_A_ w);
2035 else 3249 else
2036#endif 3250#endif
3251 {
2037 ev_timer_start (EV_A_ &w->timer); 3252 ev_timer_again (EV_A_ &w->timer);
3253 ev_unref (EV_A);
3254 }
2038 3255
2039 ev_start (EV_A_ (W)w, 1); 3256 ev_start (EV_A_ (W)w, 1);
3257
3258 EV_FREQUENT_CHECK;
2040} 3259}
2041 3260
2042void 3261void
2043ev_stat_stop (EV_P_ ev_stat *w) 3262ev_stat_stop (EV_P_ ev_stat *w)
2044{ 3263{
2045 clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 3265 if (expect_false (!ev_is_active (w)))
2047 return; 3266 return;
2048 3267
3268 EV_FREQUENT_CHECK;
3269
2049#if EV_USE_INOTIFY 3270#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 3271 infy_del (EV_A_ w);
2051#endif 3272#endif
3273
3274 if (ev_is_active (&w->timer))
3275 {
3276 ev_ref (EV_A);
2052 ev_timer_stop (EV_A_ &w->timer); 3277 ev_timer_stop (EV_A_ &w->timer);
3278 }
2053 3279
2054 ev_stop (EV_A_ (W)w); 3280 ev_stop (EV_A_ (W)w);
3281
3282 EV_FREQUENT_CHECK;
2055} 3283}
2056#endif 3284#endif
2057 3285
2058#if EV_IDLE_ENABLE 3286#if EV_IDLE_ENABLE
2059void 3287void
2061{ 3289{
2062 if (expect_false (ev_is_active (w))) 3290 if (expect_false (ev_is_active (w)))
2063 return; 3291 return;
2064 3292
2065 pri_adjust (EV_A_ (W)w); 3293 pri_adjust (EV_A_ (W)w);
3294
3295 EV_FREQUENT_CHECK;
2066 3296
2067 { 3297 {
2068 int active = ++idlecnt [ABSPRI (w)]; 3298 int active = ++idlecnt [ABSPRI (w)];
2069 3299
2070 ++idleall; 3300 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 3301 ev_start (EV_A_ (W)w, active);
2072 3302
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3303 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 3304 idles [ABSPRI (w)][active - 1] = w;
2075 } 3305 }
3306
3307 EV_FREQUENT_CHECK;
2076} 3308}
2077 3309
2078void 3310void
2079ev_idle_stop (EV_P_ ev_idle *w) 3311ev_idle_stop (EV_P_ ev_idle *w)
2080{ 3312{
2081 clear_pending (EV_A_ (W)w); 3313 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 3314 if (expect_false (!ev_is_active (w)))
2083 return; 3315 return;
2084 3316
3317 EV_FREQUENT_CHECK;
3318
2085 { 3319 {
2086 int active = ((W)w)->active; 3320 int active = ev_active (w);
2087 3321
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3322 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3323 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 3324
2091 ev_stop (EV_A_ (W)w); 3325 ev_stop (EV_A_ (W)w);
2092 --idleall; 3326 --idleall;
2093 } 3327 }
2094}
2095#endif
2096 3328
3329 EV_FREQUENT_CHECK;
3330}
3331#endif
3332
3333#if EV_PREPARE_ENABLE
2097void 3334void
2098ev_prepare_start (EV_P_ ev_prepare *w) 3335ev_prepare_start (EV_P_ ev_prepare *w)
2099{ 3336{
2100 if (expect_false (ev_is_active (w))) 3337 if (expect_false (ev_is_active (w)))
2101 return; 3338 return;
3339
3340 EV_FREQUENT_CHECK;
2102 3341
2103 ev_start (EV_A_ (W)w, ++preparecnt); 3342 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3343 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 3344 prepares [preparecnt - 1] = w;
3345
3346 EV_FREQUENT_CHECK;
2106} 3347}
2107 3348
2108void 3349void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 3350ev_prepare_stop (EV_P_ ev_prepare *w)
2110{ 3351{
2111 clear_pending (EV_A_ (W)w); 3352 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 3353 if (expect_false (!ev_is_active (w)))
2113 return; 3354 return;
2114 3355
3356 EV_FREQUENT_CHECK;
3357
2115 { 3358 {
2116 int active = ((W)w)->active; 3359 int active = ev_active (w);
3360
2117 prepares [active - 1] = prepares [--preparecnt]; 3361 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 3362 ev_active (prepares [active - 1]) = active;
2119 } 3363 }
2120 3364
2121 ev_stop (EV_A_ (W)w); 3365 ev_stop (EV_A_ (W)w);
2122}
2123 3366
3367 EV_FREQUENT_CHECK;
3368}
3369#endif
3370
3371#if EV_CHECK_ENABLE
2124void 3372void
2125ev_check_start (EV_P_ ev_check *w) 3373ev_check_start (EV_P_ ev_check *w)
2126{ 3374{
2127 if (expect_false (ev_is_active (w))) 3375 if (expect_false (ev_is_active (w)))
2128 return; 3376 return;
3377
3378 EV_FREQUENT_CHECK;
2129 3379
2130 ev_start (EV_A_ (W)w, ++checkcnt); 3380 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3381 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 3382 checks [checkcnt - 1] = w;
3383
3384 EV_FREQUENT_CHECK;
2133} 3385}
2134 3386
2135void 3387void
2136ev_check_stop (EV_P_ ev_check *w) 3388ev_check_stop (EV_P_ ev_check *w)
2137{ 3389{
2138 clear_pending (EV_A_ (W)w); 3390 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 3391 if (expect_false (!ev_is_active (w)))
2140 return; 3392 return;
2141 3393
3394 EV_FREQUENT_CHECK;
3395
2142 { 3396 {
2143 int active = ((W)w)->active; 3397 int active = ev_active (w);
3398
2144 checks [active - 1] = checks [--checkcnt]; 3399 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 3400 ev_active (checks [active - 1]) = active;
2146 } 3401 }
2147 3402
2148 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
2149} 3406}
3407#endif
2150 3408
2151#if EV_EMBED_ENABLE 3409#if EV_EMBED_ENABLE
2152void noinline 3410void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 3411ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 3412{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 3413 ev_loop (w->other, EVLOOP_NONBLOCK);
2156} 3414}
2157 3415
2158static void 3416static void
2159embed_cb (EV_P_ ev_io *io, int revents) 3417embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 3418{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3419 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 3420
2163 if (ev_cb (w)) 3421 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3422 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 3423 else
2166 ev_embed_sweep (loop, w); 3424 ev_loop (w->other, EVLOOP_NONBLOCK);
2167} 3425}
3426
3427static void
3428embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3429{
3430 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3431
3432 {
3433 EV_P = w->other;
3434
3435 while (fdchangecnt)
3436 {
3437 fd_reify (EV_A);
3438 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3439 }
3440 }
3441}
3442
3443static void
3444embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3445{
3446 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3447
3448 ev_embed_stop (EV_A_ w);
3449
3450 {
3451 EV_P = w->other;
3452
3453 ev_loop_fork (EV_A);
3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3455 }
3456
3457 ev_embed_start (EV_A_ w);
3458}
3459
3460#if 0
3461static void
3462embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3463{
3464 ev_idle_stop (EV_A_ idle);
3465}
3466#endif
2168 3467
2169void 3468void
2170ev_embed_start (EV_P_ ev_embed *w) 3469ev_embed_start (EV_P_ ev_embed *w)
2171{ 3470{
2172 if (expect_false (ev_is_active (w))) 3471 if (expect_false (ev_is_active (w)))
2173 return; 3472 return;
2174 3473
2175 { 3474 {
2176 struct ev_loop *loop = w->loop; 3475 EV_P = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3476 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 3478 }
3479
3480 EV_FREQUENT_CHECK;
2180 3481
2181 ev_set_priority (&w->io, ev_priority (w)); 3482 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 3483 ev_io_start (EV_A_ &w->io);
2183 3484
3485 ev_prepare_init (&w->prepare, embed_prepare_cb);
3486 ev_set_priority (&w->prepare, EV_MINPRI);
3487 ev_prepare_start (EV_A_ &w->prepare);
3488
3489 ev_fork_init (&w->fork, embed_fork_cb);
3490 ev_fork_start (EV_A_ &w->fork);
3491
3492 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3493
2184 ev_start (EV_A_ (W)w, 1); 3494 ev_start (EV_A_ (W)w, 1);
3495
3496 EV_FREQUENT_CHECK;
2185} 3497}
2186 3498
2187void 3499void
2188ev_embed_stop (EV_P_ ev_embed *w) 3500ev_embed_stop (EV_P_ ev_embed *w)
2189{ 3501{
2190 clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2192 return; 3504 return;
2193 3505
3506 EV_FREQUENT_CHECK;
3507
2194 ev_io_stop (EV_A_ &w->io); 3508 ev_io_stop (EV_A_ &w->io);
3509 ev_prepare_stop (EV_A_ &w->prepare);
3510 ev_fork_stop (EV_A_ &w->fork);
2195 3511
2196 ev_stop (EV_A_ (W)w); 3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
2197} 3515}
2198#endif 3516#endif
2199 3517
2200#if EV_FORK_ENABLE 3518#if EV_FORK_ENABLE
2201void 3519void
2202ev_fork_start (EV_P_ ev_fork *w) 3520ev_fork_start (EV_P_ ev_fork *w)
2203{ 3521{
2204 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
2205 return; 3523 return;
3524
3525 EV_FREQUENT_CHECK;
2206 3526
2207 ev_start (EV_A_ (W)w, ++forkcnt); 3527 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 3529 forks [forkcnt - 1] = w;
3530
3531 EV_FREQUENT_CHECK;
2210} 3532}
2211 3533
2212void 3534void
2213ev_fork_stop (EV_P_ ev_fork *w) 3535ev_fork_stop (EV_P_ ev_fork *w)
2214{ 3536{
2215 clear_pending (EV_A_ (W)w); 3537 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 3538 if (expect_false (!ev_is_active (w)))
2217 return; 3539 return;
2218 3540
3541 EV_FREQUENT_CHECK;
3542
2219 { 3543 {
2220 int active = ((W)w)->active; 3544 int active = ev_active (w);
3545
2221 forks [active - 1] = forks [--forkcnt]; 3546 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 3547 ev_active (forks [active - 1]) = active;
2223 } 3548 }
2224 3549
2225 ev_stop (EV_A_ (W)w); 3550 ev_stop (EV_A_ (W)w);
3551
3552 EV_FREQUENT_CHECK;
3553}
3554#endif
3555
3556#if EV_ASYNC_ENABLE
3557void
3558ev_async_start (EV_P_ ev_async *w)
3559{
3560 if (expect_false (ev_is_active (w)))
3561 return;
3562
3563 evpipe_init (EV_A);
3564
3565 EV_FREQUENT_CHECK;
3566
3567 ev_start (EV_A_ (W)w, ++asynccnt);
3568 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3569 asyncs [asynccnt - 1] = w;
3570
3571 EV_FREQUENT_CHECK;
3572}
3573
3574void
3575ev_async_stop (EV_P_ ev_async *w)
3576{
3577 clear_pending (EV_A_ (W)w);
3578 if (expect_false (!ev_is_active (w)))
3579 return;
3580
3581 EV_FREQUENT_CHECK;
3582
3583 {
3584 int active = ev_active (w);
3585
3586 asyncs [active - 1] = asyncs [--asynccnt];
3587 ev_active (asyncs [active - 1]) = active;
3588 }
3589
3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
3593}
3594
3595void
3596ev_async_send (EV_P_ ev_async *w)
3597{
3598 w->sent = 1;
3599 evpipe_write (EV_A_ &async_pending);
2226} 3600}
2227#endif 3601#endif
2228 3602
2229/*****************************************************************************/ 3603/*****************************************************************************/
2230 3604
2240once_cb (EV_P_ struct ev_once *once, int revents) 3614once_cb (EV_P_ struct ev_once *once, int revents)
2241{ 3615{
2242 void (*cb)(int revents, void *arg) = once->cb; 3616 void (*cb)(int revents, void *arg) = once->cb;
2243 void *arg = once->arg; 3617 void *arg = once->arg;
2244 3618
2245 ev_io_stop (EV_A_ &once->io); 3619 ev_io_stop (EV_A_ &once->io);
2246 ev_timer_stop (EV_A_ &once->to); 3620 ev_timer_stop (EV_A_ &once->to);
2247 ev_free (once); 3621 ev_free (once);
2248 3622
2249 cb (revents, arg); 3623 cb (revents, arg);
2250} 3624}
2251 3625
2252static void 3626static void
2253once_cb_io (EV_P_ ev_io *w, int revents) 3627once_cb_io (EV_P_ ev_io *w, int revents)
2254{ 3628{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2256} 3632}
2257 3633
2258static void 3634static void
2259once_cb_to (EV_P_ ev_timer *w, int revents) 3635once_cb_to (EV_P_ ev_timer *w, int revents)
2260{ 3636{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3637 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3638
3639 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2262} 3640}
2263 3641
2264void 3642void
2265ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3643ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2266{ 3644{
2288 ev_timer_set (&once->to, timeout, 0.); 3666 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 3667 ev_timer_start (EV_A_ &once->to);
2290 } 3668 }
2291} 3669}
2292 3670
3671/*****************************************************************************/
3672
3673#if EV_WALK_ENABLE
3674void
3675ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3676{
3677 int i, j;
3678 ev_watcher_list *wl, *wn;
3679
3680 if (types & (EV_IO | EV_EMBED))
3681 for (i = 0; i < anfdmax; ++i)
3682 for (wl = anfds [i].head; wl; )
3683 {
3684 wn = wl->next;
3685
3686#if EV_EMBED_ENABLE
3687 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3688 {
3689 if (types & EV_EMBED)
3690 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3691 }
3692 else
3693#endif
3694#if EV_USE_INOTIFY
3695 if (ev_cb ((ev_io *)wl) == infy_cb)
3696 ;
3697 else
3698#endif
3699 if ((ev_io *)wl != &pipe_w)
3700 if (types & EV_IO)
3701 cb (EV_A_ EV_IO, wl);
3702
3703 wl = wn;
3704 }
3705
3706 if (types & (EV_TIMER | EV_STAT))
3707 for (i = timercnt + HEAP0; i-- > HEAP0; )
3708#if EV_STAT_ENABLE
3709 /*TODO: timer is not always active*/
3710 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3711 {
3712 if (types & EV_STAT)
3713 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3714 }
3715 else
3716#endif
3717 if (types & EV_TIMER)
3718 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3719
3720#if EV_PERIODIC_ENABLE
3721 if (types & EV_PERIODIC)
3722 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3723 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3724#endif
3725
3726#if EV_IDLE_ENABLE
3727 if (types & EV_IDLE)
3728 for (j = NUMPRI; i--; )
3729 for (i = idlecnt [j]; i--; )
3730 cb (EV_A_ EV_IDLE, idles [j][i]);
3731#endif
3732
3733#if EV_FORK_ENABLE
3734 if (types & EV_FORK)
3735 for (i = forkcnt; i--; )
3736 if (ev_cb (forks [i]) != embed_fork_cb)
3737 cb (EV_A_ EV_FORK, forks [i]);
3738#endif
3739
3740#if EV_ASYNC_ENABLE
3741 if (types & EV_ASYNC)
3742 for (i = asynccnt; i--; )
3743 cb (EV_A_ EV_ASYNC, asyncs [i]);
3744#endif
3745
3746#if EV_PREPARE_ENABLE
3747 if (types & EV_PREPARE)
3748 for (i = preparecnt; i--; )
3749# if EV_EMBED_ENABLE
3750 if (ev_cb (prepares [i]) != embed_prepare_cb)
3751# endif
3752 cb (EV_A_ EV_PREPARE, prepares [i]);
3753#endif
3754
3755#if EV_CHECK_ENABLE
3756 if (types & EV_CHECK)
3757 for (i = checkcnt; i--; )
3758 cb (EV_A_ EV_CHECK, checks [i]);
3759#endif
3760
3761#if EV_SIGNAL_ENABLE
3762 if (types & EV_SIGNAL)
3763 for (i = 0; i < EV_NSIG - 1; ++i)
3764 for (wl = signals [i].head; wl; )
3765 {
3766 wn = wl->next;
3767 cb (EV_A_ EV_SIGNAL, wl);
3768 wl = wn;
3769 }
3770#endif
3771
3772#if EV_CHILD_ENABLE
3773 if (types & EV_CHILD)
3774 for (i = EV_PID_HASHSIZE; i--; )
3775 for (wl = childs [i]; wl; )
3776 {
3777 wn = wl->next;
3778 cb (EV_A_ EV_CHILD, wl);
3779 wl = wn;
3780 }
3781#endif
3782/* EV_STAT 0x00001000 /* stat data changed */
3783/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3784}
3785#endif
3786
3787#if EV_MULTIPLICITY
3788 #include "ev_wrap.h"
3789#endif
3790
2293#ifdef __cplusplus 3791#ifdef __cplusplus
2294} 3792}
2295#endif 3793#endif
2296 3794

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines