ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC vs.
Revision 1.337 by root, Wed Mar 10 09:18:24 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL 1
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
168#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC 1
233# else
169# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
170#endif 236#endif
171 237
172#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 240#endif
175 241
176#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP 1
245# else
177# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
178#endif 248#endif
179 249
180#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 251# define EV_USE_SELECT 1
182#endif 252#endif
235# else 305# else
236# define EV_USE_EVENTFD 0 306# define EV_USE_EVENTFD 0
237# endif 307# endif
238#endif 308#endif
239 309
310#ifndef EV_USE_SIGNALFD
311# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312# define EV_USE_SIGNALFD 1
313# else
314# define EV_USE_SIGNALFD 0
315# endif
316#endif
317
240#if 0 /* debugging */ 318#if 0 /* debugging */
241# define EV_VERIFY 3 319# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 320# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 321# define EV_HEAP_CACHE_AT 1
244#endif 322#endif
253 331
254#ifndef EV_HEAP_CACHE_AT 332#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 333# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif 334#endif
257 335
336/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337/* which makes programs even slower. might work on other unices, too. */
338#if EV_USE_CLOCK_SYSCALL
339# include <syscall.h>
340# ifdef SYS_clock_gettime
341# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342# undef EV_USE_MONOTONIC
343# define EV_USE_MONOTONIC 1
344# else
345# undef EV_USE_CLOCK_SYSCALL
346# define EV_USE_CLOCK_SYSCALL 0
347# endif
348#endif
349
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 350/* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352#ifdef _AIX
353/* AIX has a completely broken poll.h header */
354# undef EV_USE_POLL
355# define EV_USE_POLL 0
356#endif
259 357
260#ifndef CLOCK_MONOTONIC 358#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC 359# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0 360# define EV_USE_MONOTONIC 0
263#endif 361#endif
277# include <sys/select.h> 375# include <sys/select.h>
278# endif 376# endif
279#endif 377#endif
280 378
281#if EV_USE_INOTIFY 379#if EV_USE_INOTIFY
380# include <sys/utsname.h>
381# include <sys/statfs.h>
282# include <sys/inotify.h> 382# include <sys/inotify.h>
383/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384# ifndef IN_DONT_FOLLOW
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387# endif
283#endif 388#endif
284 389
285#if EV_SELECT_IS_WINSOCKET 390#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h> 391# include <winsock.h>
287#endif 392#endif
288 393
289#if EV_USE_EVENTFD 394#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 395/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 396# include <stdint.h>
397# ifndef EFD_NONBLOCK
398# define EFD_NONBLOCK O_NONBLOCK
399# endif
400# ifndef EFD_CLOEXEC
401# ifdef O_CLOEXEC
402# define EFD_CLOEXEC O_CLOEXEC
403# else
404# define EFD_CLOEXEC 02000000
405# endif
406# endif
292# ifdef __cplusplus 407# ifdef __cplusplus
293extern "C" { 408extern "C" {
294# endif 409# endif
295int eventfd (unsigned int initval, int flags); 410int (eventfd) (unsigned int initval, int flags);
296# ifdef __cplusplus 411# ifdef __cplusplus
297} 412}
298# endif 413# endif
299#endif 414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429# ifdef __cplusplus
430extern "C" {
431# endif
432int signalfd (int fd, const sigset_t *mask, int flags);
433
434struct signalfd_siginfo
435{
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438};
439# ifdef __cplusplus
440}
441# endif
442#endif
443
300 444
301/**/ 445/**/
302 446
303#if EV_VERIFY >= 3 447#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 448# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
316 */ 460 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 461#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
318 462
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322 465
323#if __GNUC__ >= 4 466#if __GNUC__ >= 4
324# define expect(expr,value) __builtin_expect ((expr),(value)) 467# define expect(expr,value) __builtin_expect ((expr),(value))
325# define noinline __attribute__ ((noinline)) 468# define noinline __attribute__ ((noinline))
326#else 469#else
339# define inline_speed static noinline 482# define inline_speed static noinline
340#else 483#else
341# define inline_speed static inline 484# define inline_speed static inline
342#endif 485#endif
343 486
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 487#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489#if EV_MINPRI == EV_MAXPRI
490# define ABSPRI(w) (((W)w), 0)
491#else
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 492# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493#endif
346 494
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 495#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 496#define EMPTY2(a,b) /* used to suppress some warnings */
349 497
350typedef ev_watcher *W; 498typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 500typedef ev_watcher_time *WT;
353 501
354#define ev_active(w) ((W)(w))->active 502#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 503#define ev_at(w) ((WT)(w))->at
356 504
357#if EV_USE_MONOTONIC 505#if EV_USE_REALTIME
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 506/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */ 507/* giving it a reasonably high chance of working on typical architetcures */
508static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509#endif
510
511#if EV_USE_MONOTONIC
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 512static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513#endif
514
515#ifndef EV_FD_TO_WIN32_HANDLE
516# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517#endif
518#ifndef EV_WIN32_HANDLE_TO_FD
519# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520#endif
521#ifndef EV_WIN32_CLOSE_FD
522# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 523#endif
362 524
363#ifdef _WIN32 525#ifdef _WIN32
364# include "ev_win32.c" 526# include "ev_win32.c"
365#endif 527#endif
366 528
367/*****************************************************************************/ 529/*****************************************************************************/
368 530
531#if EV_AVOID_STDIO
532static void noinline
533ev_printerr (const char *msg)
534{
535 write (STDERR_FILENO, msg, strlen (msg));
536}
537#endif
538
369static void (*syserr_cb)(const char *msg); 539static void (*syserr_cb)(const char *msg);
370 540
371void 541void
372ev_set_syserr_cb (void (*cb)(const char *msg)) 542ev_set_syserr_cb (void (*cb)(const char *msg))
373{ 543{
374 syserr_cb = cb; 544 syserr_cb = cb;
375} 545}
376 546
377static void noinline 547static void noinline
378syserr (const char *msg) 548ev_syserr (const char *msg)
379{ 549{
380 if (!msg) 550 if (!msg)
381 msg = "(libev) system error"; 551 msg = "(libev) system error";
382 552
383 if (syserr_cb) 553 if (syserr_cb)
384 syserr_cb (msg); 554 syserr_cb (msg);
385 else 555 else
386 { 556 {
557#if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564#else
387 perror (msg); 565 perror (msg);
566#endif
388 abort (); 567 abort ();
389 } 568 }
390} 569}
391 570
392static void * 571static void *
393ev_realloc_emul (void *ptr, long size) 572ev_realloc_emul (void *ptr, long size)
394{ 573{
574#if __GLIBC__
575 return realloc (ptr, size);
576#else
395 /* some systems, notably openbsd and darwin, fail to properly 577 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 578 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 579 * the single unix specification, so work around them here.
398 */ 580 */
399 581
400 if (size) 582 if (size)
401 return realloc (ptr, size); 583 return realloc (ptr, size);
402 584
403 free (ptr); 585 free (ptr);
404 return 0; 586 return 0;
587#endif
405} 588}
406 589
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 590static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
408 591
409void 592void
417{ 600{
418 ptr = alloc (ptr, size); 601 ptr = alloc (ptr, size);
419 602
420 if (!ptr && size) 603 if (!ptr && size)
421 { 604 {
605#if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609#endif
423 abort (); 610 abort ();
424 } 611 }
425 612
426 return ptr; 613 return ptr;
427} 614}
429#define ev_malloc(size) ev_realloc (0, (size)) 616#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 617#define ev_free(ptr) ev_realloc ((ptr), 0)
431 618
432/*****************************************************************************/ 619/*****************************************************************************/
433 620
621/* set in reify when reification needed */
622#define EV_ANFD_REIFY 1
623
624/* file descriptor info structure */
434typedef struct 625typedef struct
435{ 626{
436 WL head; 627 WL head;
437 unsigned char events; 628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 631 unsigned char unused;
632#if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634#endif
439#if EV_SELECT_IS_WINSOCKET 635#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle; 636 SOCKET handle;
441#endif 637#endif
442} ANFD; 638} ANFD;
443 639
640/* stores the pending event set for a given watcher */
444typedef struct 641typedef struct
445{ 642{
446 W w; 643 W w;
447 int events; 644 int events; /* the pending event set for the given watcher */
448} ANPENDING; 645} ANPENDING;
449 646
450#if EV_USE_INOTIFY 647#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 648/* hash table entry per inotify-id */
452typedef struct 649typedef struct
455} ANFS; 652} ANFS;
456#endif 653#endif
457 654
458/* Heap Entry */ 655/* Heap Entry */
459#if EV_HEAP_CACHE_AT 656#if EV_HEAP_CACHE_AT
657 /* a heap element */
460 typedef struct { 658 typedef struct {
461 ev_tstamp at; 659 ev_tstamp at;
462 WT w; 660 WT w;
463 } ANHE; 661 } ANHE;
464 662
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 663 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 664 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 666#else
667 /* a heap element */
469 typedef WT ANHE; 668 typedef WT ANHE;
470 669
471 #define ANHE_w(he) (he) 670 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 671 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 672 #define ANHE_at_cache(he)
497 696
498 static int ev_default_loop_ptr; 697 static int ev_default_loop_ptr;
499 698
500#endif 699#endif
501 700
701#if EV_MINIMAL < 2
702# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704# define EV_INVOKE_PENDING invoke_cb (EV_A)
705#else
706# define EV_RELEASE_CB (void)0
707# define EV_ACQUIRE_CB (void)0
708# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709#endif
710
711#define EVUNLOOP_RECURSE 0x80
712
502/*****************************************************************************/ 713/*****************************************************************************/
503 714
715#ifndef EV_HAVE_EV_TIME
504ev_tstamp 716ev_tstamp
505ev_time (void) 717ev_time (void)
506{ 718{
507#if EV_USE_REALTIME 719#if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
508 struct timespec ts; 722 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 723 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 724 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 725 }
726#endif
727
512 struct timeval tv; 728 struct timeval tv;
513 gettimeofday (&tv, 0); 729 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 730 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 731}
732#endif
517 733
518ev_tstamp inline_size 734inline_size ev_tstamp
519get_clock (void) 735get_clock (void)
520{ 736{
521#if EV_USE_MONOTONIC 737#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 738 if (expect_true (have_monotonic))
523 { 739 {
556 struct timeval tv; 772 struct timeval tv;
557 773
558 tv.tv_sec = (time_t)delay; 774 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560 776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
561 select (0, 0, 0, 0, &tv); 780 select (0, 0, 0, 0, &tv);
562#endif 781#endif
563 } 782 }
564} 783}
565 784
566/*****************************************************************************/ 785/*****************************************************************************/
567 786
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 788
570int inline_size 789/* find a suitable new size for the given array, */
790/* hopefully by rounding to a ncie-to-malloc size */
791inline_size int
571array_nextsize (int elem, int cur, int cnt) 792array_nextsize (int elem, int cur, int cnt)
572{ 793{
573 int ncur = cur + 1; 794 int ncur = cur + 1;
574 795
575 do 796 do
592array_realloc (int elem, void *base, int *cur, int cnt) 813array_realloc (int elem, void *base, int *cur, int cnt)
593{ 814{
594 *cur = array_nextsize (elem, *cur, cnt); 815 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 816 return ev_realloc (base, elem * *cur);
596} 817}
818
819#define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 821
598#define array_needsize(type,base,cur,cnt,init) \ 822#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 823 if (expect_false ((cnt) > (cur))) \
600 { \ 824 { \
601 int ocur_ = (cur); \ 825 int ocur_ = (cur); \
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 838 }
615#endif 839#endif
616 840
617#define array_free(stem, idx) \ 841#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 843
620/*****************************************************************************/ 844/*****************************************************************************/
845
846/* dummy callback for pending events */
847static void noinline
848pendingcb (EV_P_ ev_prepare *w, int revents)
849{
850}
621 851
622void noinline 852void noinline
623ev_feed_event (EV_P_ void *w, int revents) 853ev_feed_event (EV_P_ void *w, int revents)
624{ 854{
625 W w_ = (W)w; 855 W w_ = (W)w;
634 pendings [pri][w_->pending - 1].w = w_; 864 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 865 pendings [pri][w_->pending - 1].events = revents;
636 } 866 }
637} 867}
638 868
639void inline_speed 869inline_speed void
870feed_reverse (EV_P_ W w)
871{
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874}
875
876inline_size void
877feed_reverse_done (EV_P_ int revents)
878{
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882}
883
884inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 885queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 886{
642 int i; 887 int i;
643 888
644 for (i = 0; i < eventcnt; ++i) 889 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 890 ev_feed_event (EV_A_ events [i], type);
646} 891}
647 892
648/*****************************************************************************/ 893/*****************************************************************************/
649 894
650void inline_size 895inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 896fd_event_nocheck (EV_P_ int fd, int revents)
665{ 897{
666 ANFD *anfd = anfds + fd; 898 ANFD *anfd = anfds + fd;
667 ev_io *w; 899 ev_io *w;
668 900
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 905 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 906 ev_feed_event (EV_A_ (W)w, ev);
675 } 907 }
676} 908}
677 909
910/* do not submit kernel events for fds that have reify set */
911/* because that means they changed while we were polling for new events */
912inline_speed void
913fd_event (EV_P_ int fd, int revents)
914{
915 ANFD *anfd = anfds + fd;
916
917 if (expect_true (!anfd->reify))
918 fd_event_nocheck (EV_A_ fd, revents);
919}
920
678void 921void
679ev_feed_fd_event (EV_P_ int fd, int revents) 922ev_feed_fd_event (EV_P_ int fd, int revents)
680{ 923{
681 if (fd >= 0 && fd < anfdmax) 924 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 925 fd_event_nocheck (EV_A_ fd, revents);
683} 926}
684 927
685void inline_size 928/* make sure the external fd watch events are in-sync */
929/* with the kernel/libev internal state */
930inline_size void
686fd_reify (EV_P) 931fd_reify (EV_P)
687{ 932{
688 int i; 933 int i;
689 934
690 for (i = 0; i < fdchangecnt; ++i) 935 for (i = 0; i < fdchangecnt; ++i)
699 events |= (unsigned char)w->events; 944 events |= (unsigned char)w->events;
700 945
701#if EV_SELECT_IS_WINSOCKET 946#if EV_SELECT_IS_WINSOCKET
702 if (events) 947 if (events)
703 { 948 {
704 unsigned long argp; 949 unsigned long arg;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
711 } 952 }
712#endif 953#endif
713 954
714 { 955 {
715 unsigned char o_events = anfd->events; 956 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify; 957 unsigned char o_reify = anfd->reify;
717 958
718 anfd->reify = 0; 959 anfd->reify = 0;
719 anfd->events = events; 960 anfd->events = events;
720 961
721 if (o_events != events || o_reify & EV_IOFDSET) 962 if (o_events != events || o_reify & EV__IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 963 backend_modify (EV_A_ fd, o_events, events);
723 } 964 }
724 } 965 }
725 966
726 fdchangecnt = 0; 967 fdchangecnt = 0;
727} 968}
728 969
729void inline_size 970/* something about the given fd changed */
971inline_size void
730fd_change (EV_P_ int fd, int flags) 972fd_change (EV_P_ int fd, int flags)
731{ 973{
732 unsigned char reify = anfds [fd].reify; 974 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 975 anfds [fd].reify |= flags;
734 976
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 981 fdchanges [fdchangecnt - 1] = fd;
740 } 982 }
741} 983}
742 984
743void inline_speed 985/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986inline_speed void
744fd_kill (EV_P_ int fd) 987fd_kill (EV_P_ int fd)
745{ 988{
746 ev_io *w; 989 ev_io *w;
747 990
748 while ((w = (ev_io *)anfds [fd].head)) 991 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 993 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 995 }
753} 996}
754 997
755int inline_size 998/* check whether the given fd is actually valid, for error recovery */
999inline_size int
756fd_valid (int fd) 1000fd_valid (int fd)
757{ 1001{
758#ifdef _WIN32 1002#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 1004#else
761 return fcntl (fd, F_GETFD) != -1; 1005 return fcntl (fd, F_GETFD) != -1;
762#endif 1006#endif
763} 1007}
764 1008
768{ 1012{
769 int fd; 1013 int fd;
770 1014
771 for (fd = 0; fd < anfdmax; ++fd) 1015 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1016 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1017 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1018 fd_kill (EV_A_ fd);
775} 1019}
776 1020
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1021/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1022static void noinline
782 1026
783 for (fd = anfdmax; fd--; ) 1027 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1028 if (anfds [fd].events)
785 { 1029 {
786 fd_kill (EV_A_ fd); 1030 fd_kill (EV_A_ fd);
787 return; 1031 break;
788 } 1032 }
789} 1033}
790 1034
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1035/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1036static void noinline
796 1040
797 for (fd = 0; fd < anfdmax; ++fd) 1041 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1042 if (anfds [fd].events)
799 { 1043 {
800 anfds [fd].events = 0; 1044 anfds [fd].events = 0;
1045 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1047 }
1048}
1049
1050/* used to prepare libev internal fd's */
1051/* this is not fork-safe */
1052inline_speed void
1053fd_intern (int fd)
1054{
1055#ifdef _WIN32
1056 unsigned long arg = 1;
1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1058#else
1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
1060 fcntl (fd, F_SETFL, O_NONBLOCK);
1061#endif
803} 1062}
804 1063
805/*****************************************************************************/ 1064/*****************************************************************************/
806 1065
807/* 1066/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1081#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1082#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 1083#define UPHEAP_DONE(p,k) ((p) == (k))
825 1084
826/* away from the root */ 1085/* away from the root */
827void inline_speed 1086inline_speed void
828downheap (ANHE *heap, int N, int k) 1087downheap (ANHE *heap, int N, int k)
829{ 1088{
830 ANHE he = heap [k]; 1089 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 1090 ANHE *E = heap + N + HEAP0;
832 1091
872#define HEAP0 1 1131#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 1132#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 1133#define UPHEAP_DONE(p,k) (!(p))
875 1134
876/* away from the root */ 1135/* away from the root */
877void inline_speed 1136inline_speed void
878downheap (ANHE *heap, int N, int k) 1137downheap (ANHE *heap, int N, int k)
879{ 1138{
880 ANHE he = heap [k]; 1139 ANHE he = heap [k];
881 1140
882 for (;;) 1141 for (;;)
883 { 1142 {
884 int c = k << 1; 1143 int c = k << 1;
885 1144
886 if (c > N + HEAP0 - 1) 1145 if (c >= N + HEAP0)
887 break; 1146 break;
888 1147
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 1149 ? 1 : 0;
891 1150
902 ev_active (ANHE_w (he)) = k; 1161 ev_active (ANHE_w (he)) = k;
903} 1162}
904#endif 1163#endif
905 1164
906/* towards the root */ 1165/* towards the root */
907void inline_speed 1166inline_speed void
908upheap (ANHE *heap, int k) 1167upheap (ANHE *heap, int k)
909{ 1168{
910 ANHE he = heap [k]; 1169 ANHE he = heap [k];
911 1170
912 for (;;) 1171 for (;;)
923 1182
924 heap [k] = he; 1183 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 1184 ev_active (ANHE_w (he)) = k;
926} 1185}
927 1186
928void inline_size 1187/* move an element suitably so it is in a correct place */
1188inline_size void
929adjustheap (ANHE *heap, int N, int k) 1189adjustheap (ANHE *heap, int N, int k)
930{ 1190{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 1192 upheap (heap, k);
933 else 1193 else
934 downheap (heap, N, k); 1194 downheap (heap, N, k);
935} 1195}
936 1196
937/* rebuild the heap: this function is used only once and executed rarely */ 1197/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 1198inline_size void
939reheap (ANHE *heap, int N) 1199reheap (ANHE *heap, int N)
940{ 1200{
941 int i; 1201 int i;
942 1202
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
946 upheap (heap, i + HEAP0); 1206 upheap (heap, i + HEAP0);
947} 1207}
948 1208
949/*****************************************************************************/ 1209/*****************************************************************************/
950 1210
1211/* associate signal watchers to a signal signal */
951typedef struct 1212typedef struct
952{ 1213{
1214 EV_ATOMIC_T pending;
1215#if EV_MULTIPLICITY
1216 EV_P;
1217#endif
953 WL head; 1218 WL head;
954 EV_ATOMIC_T gotsig;
955} ANSIG; 1219} ANSIG;
956 1220
957static ANSIG *signals; 1221static ANSIG signals [EV_NSIG - 1];
958static int signalmax;
959
960static EV_ATOMIC_T gotsig;
961
962void inline_size
963signals_init (ANSIG *base, int count)
964{
965 while (count--)
966 {
967 base->head = 0;
968 base->gotsig = 0;
969
970 ++base;
971 }
972}
973 1222
974/*****************************************************************************/ 1223/*****************************************************************************/
975 1224
976void inline_speed 1225#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
977fd_intern (int fd)
978{
979#ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif
986}
987 1226
988static void noinline 1227static void noinline
989evpipe_init (EV_P) 1228evpipe_init (EV_P)
990{ 1229{
991 if (!ev_is_active (&pipeev)) 1230 if (!ev_is_active (&pipe_w))
992 { 1231 {
993#if EV_USE_EVENTFD 1232# if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
994 if ((evfd = eventfd (0, 0)) >= 0) 1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
995 { 1238 {
996 evpipe [0] = -1; 1239 evpipe [0] = -1;
997 fd_intern (evfd); 1240 fd_intern (evfd); /* doing it twice doesn't hurt */
998 ev_io_set (&pipeev, evfd, EV_READ); 1241 ev_io_set (&pipe_w, evfd, EV_READ);
999 } 1242 }
1000 else 1243 else
1001#endif 1244# endif
1002 { 1245 {
1003 while (pipe (evpipe)) 1246 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe"); 1247 ev_syserr ("(libev) error creating signal/async pipe");
1005 1248
1006 fd_intern (evpipe [0]); 1249 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]); 1250 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ); 1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1009 } 1252 }
1010 1253
1011 ev_io_start (EV_A_ &pipeev); 1254 ev_io_start (EV_A_ &pipe_w);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */ 1255 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 } 1256 }
1014} 1257}
1015 1258
1016void inline_size 1259inline_size void
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1260evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{ 1261{
1019 if (!*flag) 1262 if (!*flag)
1020 { 1263 {
1021 int old_errno = errno; /* save errno because write might clobber it */ 1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
1022 1266
1023 *flag = 1; 1267 *flag = 1;
1024 1268
1025#if EV_USE_EVENTFD 1269#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1270 if (evfd >= 0)
1028 uint64_t counter = 1; 1272 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t)); 1273 write (evfd, &counter, sizeof (uint64_t));
1030 } 1274 }
1031 else 1275 else
1032#endif 1276#endif
1033 write (evpipe [1], &old_errno, 1); 1277 write (evpipe [1], &dummy, 1);
1034 1278
1035 errno = old_errno; 1279 errno = old_errno;
1036 } 1280 }
1037} 1281}
1038 1282
1283/* called whenever the libev signal pipe */
1284/* got some events (signal, async) */
1039static void 1285static void
1040pipecb (EV_P_ ev_io *iow, int revents) 1286pipecb (EV_P_ ev_io *iow, int revents)
1041{ 1287{
1288 int i;
1289
1042#if EV_USE_EVENTFD 1290#if EV_USE_EVENTFD
1043 if (evfd >= 0) 1291 if (evfd >= 0)
1044 { 1292 {
1045 uint64_t counter; 1293 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t)); 1294 read (evfd, &counter, sizeof (uint64_t));
1050 { 1298 {
1051 char dummy; 1299 char dummy;
1052 read (evpipe [0], &dummy, 1); 1300 read (evpipe [0], &dummy, 1);
1053 } 1301 }
1054 1302
1055 if (gotsig && ev_is_default_loop (EV_A)) 1303 if (sig_pending)
1056 { 1304 {
1057 int signum; 1305 sig_pending = 0;
1058 gotsig = 0;
1059 1306
1060 for (signum = signalmax; signum--; ) 1307 for (i = EV_NSIG - 1; i--; )
1061 if (signals [signum].gotsig) 1308 if (expect_false (signals [i].pending))
1062 ev_feed_signal_event (EV_A_ signum + 1); 1309 ev_feed_signal_event (EV_A_ i + 1);
1063 } 1310 }
1064 1311
1065#if EV_ASYNC_ENABLE 1312#if EV_ASYNC_ENABLE
1066 if (gotasync) 1313 if (async_pending)
1067 { 1314 {
1068 int i; 1315 async_pending = 0;
1069 gotasync = 0;
1070 1316
1071 for (i = asynccnt; i--; ) 1317 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent) 1318 if (asyncs [i]->sent)
1073 { 1319 {
1074 asyncs [i]->sent = 0; 1320 asyncs [i]->sent = 0;
1082 1328
1083static void 1329static void
1084ev_sighandler (int signum) 1330ev_sighandler (int signum)
1085{ 1331{
1086#if EV_MULTIPLICITY 1332#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct; 1333 EV_P = signals [signum - 1].loop;
1088#endif 1334#endif
1089 1335
1090#if _WIN32 1336#ifdef _WIN32
1091 signal (signum, ev_sighandler); 1337 signal (signum, ev_sighandler);
1092#endif 1338#endif
1093 1339
1094 signals [signum - 1].gotsig = 1; 1340 signals [signum - 1].pending = 1;
1095 evpipe_write (EV_A_ &gotsig); 1341 evpipe_write (EV_A_ &sig_pending);
1096} 1342}
1097 1343
1098void noinline 1344void noinline
1099ev_feed_signal_event (EV_P_ int signum) 1345ev_feed_signal_event (EV_P_ int signum)
1100{ 1346{
1101 WL w; 1347 WL w;
1102 1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
1103#if EV_MULTIPLICITY 1354#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1355 /* it is permissible to try to feed a signal to the wrong loop */
1105#endif 1356 /* or, likely more useful, feeding a signal nobody is waiting for */
1106 1357
1107 --signum; 1358 if (expect_false (signals [signum].loop != EV_A))
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return; 1359 return;
1360#endif
1111 1361
1112 signals [signum].gotsig = 0; 1362 signals [signum].pending = 0;
1113 1363
1114 for (w = signals [signum].head; w; w = w->next) 1364 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116} 1366}
1117 1367
1368#if EV_USE_SIGNALFD
1369static void
1370sigfdcb (EV_P_ ev_io *iow, int revents)
1371{
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385}
1386#endif
1387
1388#endif
1389
1118/*****************************************************************************/ 1390/*****************************************************************************/
1119 1391
1392#if EV_CHILD_ENABLE
1120static WL childs [EV_PID_HASHSIZE]; 1393static WL childs [EV_PID_HASHSIZE];
1121
1122#ifndef _WIN32
1123 1394
1124static ev_signal childev; 1395static ev_signal childev;
1125 1396
1126#ifndef WIFCONTINUED 1397#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0 1398# define WIFCONTINUED(status) 0
1128#endif 1399#endif
1129 1400
1130void inline_speed 1401/* handle a single child status event */
1402inline_speed void
1131child_reap (EV_P_ int chain, int pid, int status) 1403child_reap (EV_P_ int chain, int pid, int status)
1132{ 1404{
1133 ev_child *w; 1405 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135 1407
1148 1420
1149#ifndef WCONTINUED 1421#ifndef WCONTINUED
1150# define WCONTINUED 0 1422# define WCONTINUED 0
1151#endif 1423#endif
1152 1424
1425/* called on sigchld etc., calls waitpid */
1153static void 1426static void
1154childcb (EV_P_ ev_signal *sw, int revents) 1427childcb (EV_P_ ev_signal *sw, int revents)
1155{ 1428{
1156 int pid, status; 1429 int pid, status;
1157 1430
1238 /* kqueue is borked on everything but netbsd apparently */ 1511 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */ 1512 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE; 1513 flags &= ~EVBACKEND_KQUEUE;
1241#endif 1514#endif
1242#ifdef __APPLE__ 1515#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation 1516 /* only select works correctly on that "unix-certified" platform */
1244 flags &= ~EVBACKEND_POLL; 1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1245#endif 1519#endif
1246 1520
1247 return flags; 1521 return flags;
1248} 1522}
1249 1523
1263ev_backend (EV_P) 1537ev_backend (EV_P)
1264{ 1538{
1265 return backend; 1539 return backend;
1266} 1540}
1267 1541
1542#if EV_MINIMAL < 2
1268unsigned int 1543unsigned int
1269ev_loop_count (EV_P) 1544ev_loop_count (EV_P)
1270{ 1545{
1271 return loop_count; 1546 return loop_count;
1272} 1547}
1273 1548
1549unsigned int
1550ev_loop_depth (EV_P)
1551{
1552 return loop_depth;
1553}
1554
1274void 1555void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1556ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{ 1557{
1277 io_blocktime = interval; 1558 io_blocktime = interval;
1278} 1559}
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1562ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{ 1563{
1283 timeout_blocktime = interval; 1564 timeout_blocktime = interval;
1284} 1565}
1285 1566
1567void
1568ev_set_userdata (EV_P_ void *data)
1569{
1570 userdata = data;
1571}
1572
1573void *
1574ev_userdata (EV_P)
1575{
1576 return userdata;
1577}
1578
1579void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580{
1581 invoke_cb = invoke_pending_cb;
1582}
1583
1584void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585{
1586 release_cb = release;
1587 acquire_cb = acquire;
1588}
1589#endif
1590
1591/* initialise a loop structure, must be zero-initialised */
1286static void noinline 1592static void noinline
1287loop_init (EV_P_ unsigned int flags) 1593loop_init (EV_P_ unsigned int flags)
1288{ 1594{
1289 if (!backend) 1595 if (!backend)
1290 { 1596 {
1597#if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605#endif
1606
1291#if EV_USE_MONOTONIC 1607#if EV_USE_MONOTONIC
1608 if (!have_monotonic)
1292 { 1609 {
1293 struct timespec ts; 1610 struct timespec ts;
1611
1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1295 have_monotonic = 1; 1613 have_monotonic = 1;
1296 } 1614 }
1297#endif 1615#endif
1616
1617 /* pid check not overridable via env */
1618#ifndef _WIN32
1619 if (flags & EVFLAG_FORKCHECK)
1620 curpid = getpid ();
1621#endif
1622
1623 if (!(flags & EVFLAG_NOENV)
1624 && !enable_secure ()
1625 && getenv ("LIBEV_FLAGS"))
1626 flags = atoi (getenv ("LIBEV_FLAGS"));
1298 1627
1299 ev_rt_now = ev_time (); 1628 ev_rt_now = ev_time ();
1300 mn_now = get_clock (); 1629 mn_now = get_clock ();
1301 now_floor = mn_now; 1630 now_floor = mn_now;
1302 rtmn_diff = ev_rt_now - mn_now; 1631 rtmn_diff = ev_rt_now - mn_now;
1632#if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634#endif
1303 1635
1304 io_blocktime = 0.; 1636 io_blocktime = 0.;
1305 timeout_blocktime = 0.; 1637 timeout_blocktime = 0.;
1306 backend = 0; 1638 backend = 0;
1307 backend_fd = -1; 1639 backend_fd = -1;
1308 gotasync = 0; 1640 sig_pending = 0;
1641#if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643#endif
1309#if EV_USE_INOTIFY 1644#if EV_USE_INOTIFY
1310 fs_fd = -2; 1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1311#endif 1646#endif
1312 1647#if EV_USE_SIGNALFD
1313 /* pid check not overridable via env */ 1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1314#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317#endif 1649#endif
1318
1319 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS"))
1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1323 1650
1324 if (!(flags & 0x0000ffffU)) 1651 if (!(flags & 0x0000ffffU))
1325 flags |= ev_recommended_backends (); 1652 flags |= ev_recommended_backends ();
1326 1653
1327#if EV_USE_PORT 1654#if EV_USE_PORT
1338#endif 1665#endif
1339#if EV_USE_SELECT 1666#if EV_USE_SELECT
1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1341#endif 1668#endif
1342 1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343 ev_init (&pipeev, pipecb); 1673 ev_init (&pipe_w, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI); 1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675#endif
1345 } 1676 }
1346} 1677}
1347 1678
1679/* free up a loop structure */
1348static void noinline 1680static void noinline
1349loop_destroy (EV_P) 1681loop_destroy (EV_P)
1350{ 1682{
1351 int i; 1683 int i;
1352 1684
1353 if (ev_is_active (&pipeev)) 1685 if (ev_is_active (&pipe_w))
1354 { 1686 {
1355 ev_ref (EV_A); /* signal watcher */ 1687 /*ev_ref (EV_A);*/
1356 ev_io_stop (EV_A_ &pipeev); 1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1357 1689
1358#if EV_USE_EVENTFD 1690#if EV_USE_EVENTFD
1359 if (evfd >= 0) 1691 if (evfd >= 0)
1360 close (evfd); 1692 close (evfd);
1361#endif 1693#endif
1362 1694
1363 if (evpipe [0] >= 0) 1695 if (evpipe [0] >= 0)
1364 { 1696 {
1365 close (evpipe [0]); 1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1366 close (evpipe [1]); 1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1367 } 1699 }
1368 } 1700 }
1701
1702#if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705#endif
1369 1706
1370#if EV_USE_INOTIFY 1707#if EV_USE_INOTIFY
1371 if (fs_fd >= 0) 1708 if (fs_fd >= 0)
1372 close (fs_fd); 1709 close (fs_fd);
1373#endif 1710#endif
1397#if EV_IDLE_ENABLE 1734#if EV_IDLE_ENABLE
1398 array_free (idle, [i]); 1735 array_free (idle, [i]);
1399#endif 1736#endif
1400 } 1737 }
1401 1738
1402 ev_free (anfds); anfdmax = 0; 1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1403 1740
1404 /* have to use the microsoft-never-gets-it-right macro */ 1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1405 array_free (fdchange, EMPTY); 1743 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY); 1744 array_free (timer, EMPTY);
1407#if EV_PERIODIC_ENABLE 1745#if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY); 1746 array_free (periodic, EMPTY);
1409#endif 1747#endif
1418 1756
1419 backend = 0; 1757 backend = 0;
1420} 1758}
1421 1759
1422#if EV_USE_INOTIFY 1760#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P); 1761inline_size void infy_fork (EV_P);
1424#endif 1762#endif
1425 1763
1426void inline_size 1764inline_size void
1427loop_fork (EV_P) 1765loop_fork (EV_P)
1428{ 1766{
1429#if EV_USE_PORT 1767#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif 1769#endif
1437#endif 1775#endif
1438#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1439 infy_fork (EV_A); 1777 infy_fork (EV_A);
1440#endif 1778#endif
1441 1779
1442 if (ev_is_active (&pipeev)) 1780 if (ev_is_active (&pipe_w))
1443 { 1781 {
1444 /* this "locks" the handlers against writing to the pipe */ 1782 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */ 1783 /* while we modify the fd vars */
1446 gotsig = 1; 1784 sig_pending = 1;
1447#if EV_ASYNC_ENABLE 1785#if EV_ASYNC_ENABLE
1448 gotasync = 1; 1786 async_pending = 1;
1449#endif 1787#endif
1450 1788
1451 ev_ref (EV_A); 1789 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev); 1790 ev_io_stop (EV_A_ &pipe_w);
1453 1791
1454#if EV_USE_EVENTFD 1792#if EV_USE_EVENTFD
1455 if (evfd >= 0) 1793 if (evfd >= 0)
1456 close (evfd); 1794 close (evfd);
1457#endif 1795#endif
1458 1796
1459 if (evpipe [0] >= 0) 1797 if (evpipe [0] >= 0)
1460 { 1798 {
1461 close (evpipe [0]); 1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1462 close (evpipe [1]); 1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1463 } 1801 }
1464 1802
1803#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1465 evpipe_init (EV_A); 1804 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */ 1805 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ); 1806 pipecb (EV_A_ &pipe_w, EV_READ);
1807#endif
1468 } 1808 }
1469 1809
1470 postfork = 0; 1810 postfork = 0;
1471} 1811}
1472 1812
1473#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1474 1814
1475struct ev_loop * 1815struct ev_loop *
1476ev_loop_new (unsigned int flags) 1816ev_loop_new (unsigned int flags)
1477{ 1817{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1818 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479 1819
1480 memset (loop, 0, sizeof (struct ev_loop)); 1820 memset (EV_A, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags); 1821 loop_init (EV_A_ flags);
1483 1822
1484 if (ev_backend (EV_A)) 1823 if (ev_backend (EV_A))
1485 return loop; 1824 return EV_A;
1486 1825
1487 return 0; 1826 return 0;
1488} 1827}
1489 1828
1490void 1829void
1497void 1836void
1498ev_loop_fork (EV_P) 1837ev_loop_fork (EV_P)
1499{ 1838{
1500 postfork = 1; /* must be in line with ev_default_fork */ 1839 postfork = 1; /* must be in line with ev_default_fork */
1501} 1840}
1841#endif /* multiplicity */
1502 1842
1503#if EV_VERIFY 1843#if EV_VERIFY
1504void noinline 1844static void noinline
1505verify_watcher (EV_P_ W w) 1845verify_watcher (EV_P_ W w)
1506{ 1846{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1847 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508 1848
1509 if (w->pending) 1849 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1850 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511} 1851}
1512 1852
1513static void noinline 1853static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N) 1854verify_heap (EV_P_ ANHE *heap, int N)
1515{ 1855{
1516 int i; 1856 int i;
1517 1857
1518 for (i = HEAP0; i < N + HEAP0; ++i) 1858 for (i = HEAP0; i < N + HEAP0; ++i)
1519 { 1859 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1860 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1861 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1862 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523 1863
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1864 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 } 1865 }
1526} 1866}
1527 1867
1528static void noinline 1868static void noinline
1529array_verify (EV_P_ W *ws, int cnt) 1869array_verify (EV_P_ W *ws, int cnt)
1530{ 1870{
1531 while (cnt--) 1871 while (cnt--)
1532 { 1872 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1873 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]); 1874 verify_watcher (EV_A_ ws [cnt]);
1535 } 1875 }
1536} 1876}
1537#endif 1877#endif
1538 1878
1879#if EV_MINIMAL < 2
1539void 1880void
1540ev_loop_verify (EV_P) 1881ev_loop_verify (EV_P)
1541{ 1882{
1542#if EV_VERIFY 1883#if EV_VERIFY
1543 int i; 1884 int i;
1545 1886
1546 assert (activecnt >= -1); 1887 assert (activecnt >= -1);
1547 1888
1548 assert (fdchangemax >= fdchangecnt); 1889 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i) 1890 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1891 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1551 1892
1552 assert (anfdmax >= 0); 1893 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i) 1894 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next) 1895 for (w = anfds [i].head; w; w = w->next)
1555 { 1896 {
1556 verify_watcher (EV_A_ (W)w); 1897 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1898 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1899 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 } 1900 }
1560 1901
1561 assert (timermax >= timercnt); 1902 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt); 1903 verify_heap (EV_A_ timers, timercnt);
1563 1904
1568 1909
1569 for (i = NUMPRI; i--; ) 1910 for (i = NUMPRI; i--; )
1570 { 1911 {
1571 assert (pendingmax [i] >= pendingcnt [i]); 1912 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE 1913#if EV_IDLE_ENABLE
1914 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]); 1915 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]); 1916 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif 1917#endif
1576 } 1918 }
1577 1919
1583#if EV_ASYNC_ENABLE 1925#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt); 1926 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt); 1927 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif 1928#endif
1587 1929
1930#if EV_PREPARE_ENABLE
1588 assert (preparemax >= preparecnt); 1931 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt); 1932 array_verify (EV_A_ (W *)prepares, preparecnt);
1933#endif
1590 1934
1935#if EV_CHECK_ENABLE
1591 assert (checkmax >= checkcnt); 1936 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt); 1937 array_verify (EV_A_ (W *)checks, checkcnt);
1938#endif
1593 1939
1594# if 0 1940# if 0
1941#if EV_CHILD_ENABLE
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1942 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1943 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1597# endif 1944#endif
1598#endif 1945# endif
1946#endif
1599} 1947}
1600 1948#endif
1601#endif /* multiplicity */
1602 1949
1603#if EV_MULTIPLICITY 1950#if EV_MULTIPLICITY
1604struct ev_loop * 1951struct ev_loop *
1605ev_default_loop_init (unsigned int flags) 1952ev_default_loop_init (unsigned int flags)
1606#else 1953#else
1609#endif 1956#endif
1610{ 1957{
1611 if (!ev_default_loop_ptr) 1958 if (!ev_default_loop_ptr)
1612 { 1959 {
1613#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1961 EV_P = ev_default_loop_ptr = &default_loop_struct;
1615#else 1962#else
1616 ev_default_loop_ptr = 1; 1963 ev_default_loop_ptr = 1;
1617#endif 1964#endif
1618 1965
1619 loop_init (EV_A_ flags); 1966 loop_init (EV_A_ flags);
1620 1967
1621 if (ev_backend (EV_A)) 1968 if (ev_backend (EV_A))
1622 { 1969 {
1623#ifndef _WIN32 1970#if EV_CHILD_ENABLE
1624 ev_signal_init (&childev, childcb, SIGCHLD); 1971 ev_signal_init (&childev, childcb, SIGCHLD);
1625 ev_set_priority (&childev, EV_MAXPRI); 1972 ev_set_priority (&childev, EV_MAXPRI);
1626 ev_signal_start (EV_A_ &childev); 1973 ev_signal_start (EV_A_ &childev);
1627 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1974 ev_unref (EV_A); /* child watcher should not keep loop alive */
1628#endif 1975#endif
1636 1983
1637void 1984void
1638ev_default_destroy (void) 1985ev_default_destroy (void)
1639{ 1986{
1640#if EV_MULTIPLICITY 1987#if EV_MULTIPLICITY
1641 struct ev_loop *loop = ev_default_loop_ptr; 1988 EV_P = ev_default_loop_ptr;
1642#endif 1989#endif
1643 1990
1644#ifndef _WIN32 1991 ev_default_loop_ptr = 0;
1992
1993#if EV_CHILD_ENABLE
1645 ev_ref (EV_A); /* child watcher */ 1994 ev_ref (EV_A); /* child watcher */
1646 ev_signal_stop (EV_A_ &childev); 1995 ev_signal_stop (EV_A_ &childev);
1647#endif 1996#endif
1648 1997
1649 loop_destroy (EV_A); 1998 loop_destroy (EV_A);
1651 2000
1652void 2001void
1653ev_default_fork (void) 2002ev_default_fork (void)
1654{ 2003{
1655#if EV_MULTIPLICITY 2004#if EV_MULTIPLICITY
1656 struct ev_loop *loop = ev_default_loop_ptr; 2005 EV_P = ev_default_loop_ptr;
1657#endif 2006#endif
1658 2007
1659 if (backend)
1660 postfork = 1; /* must be in line with ev_loop_fork */ 2008 postfork = 1; /* must be in line with ev_loop_fork */
1661} 2009}
1662 2010
1663/*****************************************************************************/ 2011/*****************************************************************************/
1664 2012
1665void 2013void
1666ev_invoke (EV_P_ void *w, int revents) 2014ev_invoke (EV_P_ void *w, int revents)
1667{ 2015{
1668 EV_CB_INVOKE ((W)w, revents); 2016 EV_CB_INVOKE ((W)w, revents);
1669} 2017}
1670 2018
1671void inline_speed 2019unsigned int
1672call_pending (EV_P) 2020ev_pending_count (EV_P)
2021{
2022 int pri;
2023 unsigned int count = 0;
2024
2025 for (pri = NUMPRI; pri--; )
2026 count += pendingcnt [pri];
2027
2028 return count;
2029}
2030
2031void noinline
2032ev_invoke_pending (EV_P)
1673{ 2033{
1674 int pri; 2034 int pri;
1675 2035
1676 for (pri = NUMPRI; pri--; ) 2036 for (pri = NUMPRI; pri--; )
1677 while (pendingcnt [pri]) 2037 while (pendingcnt [pri])
1678 { 2038 {
1679 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2039 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1680 2040
1681 if (expect_true (p->w))
1682 {
1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2041 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2042 /* ^ this is no longer true, as pending_w could be here */
1684 2043
1685 p->w->pending = 0; 2044 p->w->pending = 0;
1686 EV_CB_INVOKE (p->w, p->events); 2045 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK; 2046 EV_FREQUENT_CHECK;
1688 }
1689 } 2047 }
1690} 2048}
1691 2049
1692#if EV_IDLE_ENABLE 2050#if EV_IDLE_ENABLE
1693void inline_size 2051/* make idle watchers pending. this handles the "call-idle */
2052/* only when higher priorities are idle" logic */
2053inline_size void
1694idle_reify (EV_P) 2054idle_reify (EV_P)
1695{ 2055{
1696 if (expect_false (idleall)) 2056 if (expect_false (idleall))
1697 { 2057 {
1698 int pri; 2058 int pri;
1710 } 2070 }
1711 } 2071 }
1712} 2072}
1713#endif 2073#endif
1714 2074
1715void inline_size 2075/* make timers pending */
2076inline_size void
1716timers_reify (EV_P) 2077timers_reify (EV_P)
1717{ 2078{
1718 EV_FREQUENT_CHECK; 2079 EV_FREQUENT_CHECK;
1719 2080
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2081 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 { 2082 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2083 do
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 { 2084 {
2085 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->repeat)
2091 {
1729 ev_at (w) += w->repeat; 2092 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now) 2093 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now; 2094 ev_at (w) = mn_now;
1732 2095
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2096 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734 2097
1735 ANHE_at_cache (timers [HEAP0]); 2098 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0); 2099 downheap (timers, timercnt, HEAP0);
2100 }
2101 else
2102 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2103
2104 EV_FREQUENT_CHECK;
2105 feed_reverse (EV_A_ (W)w);
1737 } 2106 }
1738 else 2107 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740 2108
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2109 feed_reverse_done (EV_A_ EV_TIMEOUT);
1743 } 2110 }
1744} 2111}
1745 2112
1746#if EV_PERIODIC_ENABLE 2113#if EV_PERIODIC_ENABLE
1747void inline_size 2114/* make periodics pending */
2115inline_size void
1748periodics_reify (EV_P) 2116periodics_reify (EV_P)
1749{ 2117{
1750 EV_FREQUENT_CHECK; 2118 EV_FREQUENT_CHECK;
1751 2119
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2120 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 { 2121 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2122 int feed_count = 0;
1755 2123
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2124 do
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 { 2125 {
2126 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2127
2128 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2129
2130 /* first reschedule or stop timer */
2131 if (w->reschedule_cb)
2132 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2133 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762 2134
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2135 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764 2136
1765 ANHE_at_cache (periodics [HEAP0]); 2137 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0); 2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else if (w->interval)
2141 {
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143 /* if next trigger time is not sufficiently in the future, put it there */
2144 /* this might happen because of floating point inexactness */
2145 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2146 {
2147 ev_at (w) += w->interval;
2148
2149 /* if interval is unreasonably low we might still have a time in the past */
2150 /* so correct this. this will make the periodic very inexact, but the user */
2151 /* has effectively asked to get triggered more often than possible */
2152 if (ev_at (w) < ev_rt_now)
2153 ev_at (w) = ev_rt_now;
2154 }
2155
2156 ANHE_at_cache (periodics [HEAP0]);
2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else
2160 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2161
2162 EV_FREQUENT_CHECK;
2163 feed_reverse (EV_A_ (W)w);
1767 } 2164 }
1768 else if (w->interval) 2165 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776 2166
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2167 feed_reverse_done (EV_A_ EV_PERIODIC);
1792 } 2168 }
1793} 2169}
1794 2170
2171/* simply recalculate all periodics */
2172/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1795static void noinline 2173static void noinline
1796periodics_reschedule (EV_P) 2174periodics_reschedule (EV_P)
1797{ 2175{
1798 int i; 2176 int i;
1799 2177
1812 2190
1813 reheap (periodics, periodiccnt); 2191 reheap (periodics, periodiccnt);
1814} 2192}
1815#endif 2193#endif
1816 2194
1817void inline_speed 2195/* adjust all timers by a given offset */
2196static void noinline
2197timers_reschedule (EV_P_ ev_tstamp adjust)
2198{
2199 int i;
2200
2201 for (i = 0; i < timercnt; ++i)
2202 {
2203 ANHE *he = timers + i + HEAP0;
2204 ANHE_w (*he)->at += adjust;
2205 ANHE_at_cache (*he);
2206 }
2207}
2208
2209/* fetch new monotonic and realtime times from the kernel */
2210/* also detect if there was a timejump, and act accordingly */
2211inline_speed void
1818time_update (EV_P_ ev_tstamp max_block) 2212time_update (EV_P_ ev_tstamp max_block)
1819{ 2213{
1820 int i;
1821
1822#if EV_USE_MONOTONIC 2214#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic)) 2215 if (expect_true (have_monotonic))
1824 { 2216 {
2217 int i;
1825 ev_tstamp odiff = rtmn_diff; 2218 ev_tstamp odiff = rtmn_diff;
1826 2219
1827 mn_now = get_clock (); 2220 mn_now = get_clock ();
1828 2221
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2222 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1855 ev_rt_now = ev_time (); 2248 ev_rt_now = ev_time ();
1856 mn_now = get_clock (); 2249 mn_now = get_clock ();
1857 now_floor = mn_now; 2250 now_floor = mn_now;
1858 } 2251 }
1859 2252
2253 /* no timer adjustment, as the monotonic clock doesn't jump */
2254 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1860# if EV_PERIODIC_ENABLE 2255# if EV_PERIODIC_ENABLE
1861 periodics_reschedule (EV_A); 2256 periodics_reschedule (EV_A);
1862# endif 2257# endif
1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865 } 2258 }
1866 else 2259 else
1867#endif 2260#endif
1868 { 2261 {
1869 ev_rt_now = ev_time (); 2262 ev_rt_now = ev_time ();
1870 2263
1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2264 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1872 { 2265 {
2266 /* adjust timers. this is easy, as the offset is the same for all of them */
2267 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1873#if EV_PERIODIC_ENABLE 2268#if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 2269 periodics_reschedule (EV_A);
1875#endif 2270#endif
1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1883 } 2271 }
1884 2272
1885 mn_now = ev_rt_now; 2273 mn_now = ev_rt_now;
1886 } 2274 }
1887} 2275}
1888 2276
1889void 2277void
1890ev_ref (EV_P)
1891{
1892 ++activecnt;
1893}
1894
1895void
1896ev_unref (EV_P)
1897{
1898 --activecnt;
1899}
1900
1901static int loop_done;
1902
1903void
1904ev_loop (EV_P_ int flags) 2278ev_loop (EV_P_ int flags)
1905{ 2279{
2280#if EV_MINIMAL < 2
2281 ++loop_depth;
2282#endif
2283
2284 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2285
1906 loop_done = EVUNLOOP_CANCEL; 2286 loop_done = EVUNLOOP_CANCEL;
1907 2287
1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2288 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1909 2289
1910 do 2290 do
1911 { 2291 {
1912#if EV_VERIFY >= 2 2292#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A); 2293 ev_loop_verify (EV_A);
1926 /* we might have forked, so queue fork handlers */ 2306 /* we might have forked, so queue fork handlers */
1927 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1928 if (forkcnt) 2308 if (forkcnt)
1929 { 2309 {
1930 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2310 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1931 call_pending (EV_A); 2311 EV_INVOKE_PENDING;
1932 } 2312 }
1933#endif 2313#endif
1934 2314
2315#if EV_PREPARE_ENABLE
1935 /* queue prepare watchers (and execute them) */ 2316 /* queue prepare watchers (and execute them) */
1936 if (expect_false (preparecnt)) 2317 if (expect_false (preparecnt))
1937 { 2318 {
1938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2319 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1939 call_pending (EV_A); 2320 EV_INVOKE_PENDING;
1940 } 2321 }
2322#endif
1941 2323
1942 if (expect_false (!activecnt)) 2324 if (expect_false (loop_done))
1943 break; 2325 break;
1944 2326
1945 /* we might have forked, so reify kernel state if necessary */ 2327 /* we might have forked, so reify kernel state if necessary */
1946 if (expect_false (postfork)) 2328 if (expect_false (postfork))
1947 loop_fork (EV_A); 2329 loop_fork (EV_A);
1954 ev_tstamp waittime = 0.; 2336 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.; 2337 ev_tstamp sleeptime = 0.;
1956 2338
1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2339 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1958 { 2340 {
2341 /* remember old timestamp for io_blocktime calculation */
2342 ev_tstamp prev_mn_now = mn_now;
2343
1959 /* update time to cancel out callback processing overhead */ 2344 /* update time to cancel out callback processing overhead */
1960 time_update (EV_A_ 1e100); 2345 time_update (EV_A_ 1e100);
1961 2346
1962 waittime = MAX_BLOCKTIME; 2347 waittime = MAX_BLOCKTIME;
1963 2348
1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1974 if (waittime > to) waittime = to; 2359 if (waittime > to) waittime = to;
1975 } 2360 }
1976#endif 2361#endif
1977 2362
2363 /* don't let timeouts decrease the waittime below timeout_blocktime */
1978 if (expect_false (waittime < timeout_blocktime)) 2364 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime; 2365 waittime = timeout_blocktime;
1980 2366
1981 sleeptime = waittime - backend_fudge; 2367 /* extra check because io_blocktime is commonly 0 */
1982
1983 if (expect_true (sleeptime > io_blocktime)) 2368 if (expect_false (io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 { 2369 {
2370 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2371
2372 if (sleeptime > waittime - backend_fudge)
2373 sleeptime = waittime - backend_fudge;
2374
2375 if (expect_true (sleeptime > 0.))
2376 {
1988 ev_sleep (sleeptime); 2377 ev_sleep (sleeptime);
1989 waittime -= sleeptime; 2378 waittime -= sleeptime;
2379 }
1990 } 2380 }
1991 } 2381 }
1992 2382
2383#if EV_MINIMAL < 2
1993 ++loop_count; 2384 ++loop_count;
2385#endif
2386 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1994 backend_poll (EV_A_ waittime); 2387 backend_poll (EV_A_ waittime);
2388 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1995 2389
1996 /* update ev_rt_now, do magic */ 2390 /* update ev_rt_now, do magic */
1997 time_update (EV_A_ waittime + sleeptime); 2391 time_update (EV_A_ waittime + sleeptime);
1998 } 2392 }
1999 2393
2006#if EV_IDLE_ENABLE 2400#if EV_IDLE_ENABLE
2007 /* queue idle watchers unless other events are pending */ 2401 /* queue idle watchers unless other events are pending */
2008 idle_reify (EV_A); 2402 idle_reify (EV_A);
2009#endif 2403#endif
2010 2404
2405#if EV_CHECK_ENABLE
2011 /* queue check watchers, to be executed first */ 2406 /* queue check watchers, to be executed first */
2012 if (expect_false (checkcnt)) 2407 if (expect_false (checkcnt))
2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2408 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2409#endif
2014 2410
2015 call_pending (EV_A); 2411 EV_INVOKE_PENDING;
2016 } 2412 }
2017 while (expect_true ( 2413 while (expect_true (
2018 activecnt 2414 activecnt
2019 && !loop_done 2415 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2416 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 )); 2417 ));
2022 2418
2023 if (loop_done == EVUNLOOP_ONE) 2419 if (loop_done == EVUNLOOP_ONE)
2024 loop_done = EVUNLOOP_CANCEL; 2420 loop_done = EVUNLOOP_CANCEL;
2421
2422#if EV_MINIMAL < 2
2423 --loop_depth;
2424#endif
2025} 2425}
2026 2426
2027void 2427void
2028ev_unloop (EV_P_ int how) 2428ev_unloop (EV_P_ int how)
2029{ 2429{
2030 loop_done = how; 2430 loop_done = how;
2031} 2431}
2032 2432
2433void
2434ev_ref (EV_P)
2435{
2436 ++activecnt;
2437}
2438
2439void
2440ev_unref (EV_P)
2441{
2442 --activecnt;
2443}
2444
2445void
2446ev_now_update (EV_P)
2447{
2448 time_update (EV_A_ 1e100);
2449}
2450
2451void
2452ev_suspend (EV_P)
2453{
2454 ev_now_update (EV_A);
2455}
2456
2457void
2458ev_resume (EV_P)
2459{
2460 ev_tstamp mn_prev = mn_now;
2461
2462 ev_now_update (EV_A);
2463 timers_reschedule (EV_A_ mn_now - mn_prev);
2464#if EV_PERIODIC_ENABLE
2465 /* TODO: really do this? */
2466 periodics_reschedule (EV_A);
2467#endif
2468}
2469
2033/*****************************************************************************/ 2470/*****************************************************************************/
2471/* singly-linked list management, used when the expected list length is short */
2034 2472
2035void inline_size 2473inline_size void
2036wlist_add (WL *head, WL elem) 2474wlist_add (WL *head, WL elem)
2037{ 2475{
2038 elem->next = *head; 2476 elem->next = *head;
2039 *head = elem; 2477 *head = elem;
2040} 2478}
2041 2479
2042void inline_size 2480inline_size void
2043wlist_del (WL *head, WL elem) 2481wlist_del (WL *head, WL elem)
2044{ 2482{
2045 while (*head) 2483 while (*head)
2046 { 2484 {
2047 if (*head == elem) 2485 if (expect_true (*head == elem))
2048 { 2486 {
2049 *head = elem->next; 2487 *head = elem->next;
2050 return; 2488 break;
2051 } 2489 }
2052 2490
2053 head = &(*head)->next; 2491 head = &(*head)->next;
2054 } 2492 }
2055} 2493}
2056 2494
2057void inline_speed 2495/* internal, faster, version of ev_clear_pending */
2496inline_speed void
2058clear_pending (EV_P_ W w) 2497clear_pending (EV_P_ W w)
2059{ 2498{
2060 if (w->pending) 2499 if (w->pending)
2061 { 2500 {
2062 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2501 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2063 w->pending = 0; 2502 w->pending = 0;
2064 } 2503 }
2065} 2504}
2066 2505
2067int 2506int
2071 int pending = w_->pending; 2510 int pending = w_->pending;
2072 2511
2073 if (expect_true (pending)) 2512 if (expect_true (pending))
2074 { 2513 {
2075 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2514 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2515 p->w = (W)&pending_w;
2076 w_->pending = 0; 2516 w_->pending = 0;
2077 p->w = 0;
2078 return p->events; 2517 return p->events;
2079 } 2518 }
2080 else 2519 else
2081 return 0; 2520 return 0;
2082} 2521}
2083 2522
2084void inline_size 2523inline_size void
2085pri_adjust (EV_P_ W w) 2524pri_adjust (EV_P_ W w)
2086{ 2525{
2087 int pri = w->priority; 2526 int pri = ev_priority (w);
2088 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2527 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2089 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2528 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2090 w->priority = pri; 2529 ev_set_priority (w, pri);
2091} 2530}
2092 2531
2093void inline_speed 2532inline_speed void
2094ev_start (EV_P_ W w, int active) 2533ev_start (EV_P_ W w, int active)
2095{ 2534{
2096 pri_adjust (EV_A_ w); 2535 pri_adjust (EV_A_ w);
2097 w->active = active; 2536 w->active = active;
2098 ev_ref (EV_A); 2537 ev_ref (EV_A);
2099} 2538}
2100 2539
2101void inline_size 2540inline_size void
2102ev_stop (EV_P_ W w) 2541ev_stop (EV_P_ W w)
2103{ 2542{
2104 ev_unref (EV_A); 2543 ev_unref (EV_A);
2105 w->active = 0; 2544 w->active = 0;
2106} 2545}
2113 int fd = w->fd; 2552 int fd = w->fd;
2114 2553
2115 if (expect_false (ev_is_active (w))) 2554 if (expect_false (ev_is_active (w)))
2116 return; 2555 return;
2117 2556
2118 assert (("ev_io_start called with negative fd", fd >= 0)); 2557 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2558 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2119 2559
2120 EV_FREQUENT_CHECK; 2560 EV_FREQUENT_CHECK;
2121 2561
2122 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2563 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2124 wlist_add (&anfds[fd].head, (WL)w); 2564 wlist_add (&anfds[fd].head, (WL)w);
2125 2565
2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2566 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2127 w->events &= ~EV_IOFDSET; 2567 w->events &= ~EV__IOFDSET;
2128 2568
2129 EV_FREQUENT_CHECK; 2569 EV_FREQUENT_CHECK;
2130} 2570}
2131 2571
2132void noinline 2572void noinline
2134{ 2574{
2135 clear_pending (EV_A_ (W)w); 2575 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w))) 2576 if (expect_false (!ev_is_active (w)))
2137 return; 2577 return;
2138 2578
2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2579 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140 2580
2141 EV_FREQUENT_CHECK; 2581 EV_FREQUENT_CHECK;
2142 2582
2143 wlist_del (&anfds[w->fd].head, (WL)w); 2583 wlist_del (&anfds[w->fd].head, (WL)w);
2144 ev_stop (EV_A_ (W)w); 2584 ev_stop (EV_A_ (W)w);
2154 if (expect_false (ev_is_active (w))) 2594 if (expect_false (ev_is_active (w)))
2155 return; 2595 return;
2156 2596
2157 ev_at (w) += mn_now; 2597 ev_at (w) += mn_now;
2158 2598
2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2599 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2160 2600
2161 EV_FREQUENT_CHECK; 2601 EV_FREQUENT_CHECK;
2162 2602
2163 ++timercnt; 2603 ++timercnt;
2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2604 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2167 ANHE_at_cache (timers [ev_active (w)]); 2607 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w)); 2608 upheap (timers, ev_active (w));
2169 2609
2170 EV_FREQUENT_CHECK; 2610 EV_FREQUENT_CHECK;
2171 2611
2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2612 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2173} 2613}
2174 2614
2175void noinline 2615void noinline
2176ev_timer_stop (EV_P_ ev_timer *w) 2616ev_timer_stop (EV_P_ ev_timer *w)
2177{ 2617{
2182 EV_FREQUENT_CHECK; 2622 EV_FREQUENT_CHECK;
2183 2623
2184 { 2624 {
2185 int active = ev_active (w); 2625 int active = ev_active (w);
2186 2626
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2627 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188 2628
2189 --timercnt; 2629 --timercnt;
2190 2630
2191 if (expect_true (active < timercnt + HEAP0)) 2631 if (expect_true (active < timercnt + HEAP0))
2192 { 2632 {
2193 timers [active] = timers [timercnt + HEAP0]; 2633 timers [active] = timers [timercnt + HEAP0];
2194 adjustheap (timers, timercnt, active); 2634 adjustheap (timers, timercnt, active);
2195 } 2635 }
2196 } 2636 }
2197 2637
2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now; 2638 ev_at (w) -= mn_now;
2201 2639
2202 ev_stop (EV_A_ (W)w); 2640 ev_stop (EV_A_ (W)w);
2641
2642 EV_FREQUENT_CHECK;
2203} 2643}
2204 2644
2205void noinline 2645void noinline
2206ev_timer_again (EV_P_ ev_timer *w) 2646ev_timer_again (EV_P_ ev_timer *w)
2207{ 2647{
2225 } 2665 }
2226 2666
2227 EV_FREQUENT_CHECK; 2667 EV_FREQUENT_CHECK;
2228} 2668}
2229 2669
2670ev_tstamp
2671ev_timer_remaining (EV_P_ ev_timer *w)
2672{
2673 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2674}
2675
2230#if EV_PERIODIC_ENABLE 2676#if EV_PERIODIC_ENABLE
2231void noinline 2677void noinline
2232ev_periodic_start (EV_P_ ev_periodic *w) 2678ev_periodic_start (EV_P_ ev_periodic *w)
2233{ 2679{
2234 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
2236 2682
2237 if (w->reschedule_cb) 2683 if (w->reschedule_cb)
2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2684 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2239 else if (w->interval) 2685 else if (w->interval)
2240 { 2686 {
2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2687 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2242 /* this formula differs from the one in periodic_reify because we do not always round up */ 2688 /* this formula differs from the one in periodic_reify because we do not always round up */
2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2689 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2244 } 2690 }
2245 else 2691 else
2246 ev_at (w) = w->offset; 2692 ev_at (w) = w->offset;
2254 ANHE_at_cache (periodics [ev_active (w)]); 2700 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w)); 2701 upheap (periodics, ev_active (w));
2256 2702
2257 EV_FREQUENT_CHECK; 2703 EV_FREQUENT_CHECK;
2258 2704
2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2705 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2260} 2706}
2261 2707
2262void noinline 2708void noinline
2263ev_periodic_stop (EV_P_ ev_periodic *w) 2709ev_periodic_stop (EV_P_ ev_periodic *w)
2264{ 2710{
2269 EV_FREQUENT_CHECK; 2715 EV_FREQUENT_CHECK;
2270 2716
2271 { 2717 {
2272 int active = ev_active (w); 2718 int active = ev_active (w);
2273 2719
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2720 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275 2721
2276 --periodiccnt; 2722 --periodiccnt;
2277 2723
2278 if (expect_true (active < periodiccnt + HEAP0)) 2724 if (expect_true (active < periodiccnt + HEAP0))
2279 { 2725 {
2280 periodics [active] = periodics [periodiccnt + HEAP0]; 2726 periodics [active] = periodics [periodiccnt + HEAP0];
2281 adjustheap (periodics, periodiccnt, active); 2727 adjustheap (periodics, periodiccnt, active);
2282 } 2728 }
2283 } 2729 }
2284 2730
2285 EV_FREQUENT_CHECK;
2286
2287 ev_stop (EV_A_ (W)w); 2731 ev_stop (EV_A_ (W)w);
2732
2733 EV_FREQUENT_CHECK;
2288} 2734}
2289 2735
2290void noinline 2736void noinline
2291ev_periodic_again (EV_P_ ev_periodic *w) 2737ev_periodic_again (EV_P_ ev_periodic *w)
2292{ 2738{
2298 2744
2299#ifndef SA_RESTART 2745#ifndef SA_RESTART
2300# define SA_RESTART 0 2746# define SA_RESTART 0
2301#endif 2747#endif
2302 2748
2749#if EV_SIGNAL_ENABLE
2750
2303void noinline 2751void noinline
2304ev_signal_start (EV_P_ ev_signal *w) 2752ev_signal_start (EV_P_ ev_signal *w)
2305{ 2753{
2306#if EV_MULTIPLICITY
2307 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2308#endif
2309 if (expect_false (ev_is_active (w))) 2754 if (expect_false (ev_is_active (w)))
2310 return; 2755 return;
2311 2756
2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2757 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2313 2758
2314 evpipe_init (EV_A); 2759#if EV_MULTIPLICITY
2760 assert (("libev: a signal must not be attached to two different loops",
2761 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2315 2762
2316 EV_FREQUENT_CHECK; 2763 signals [w->signum - 1].loop = EV_A;
2764#endif
2317 2765
2766 EV_FREQUENT_CHECK;
2767
2768#if EV_USE_SIGNALFD
2769 if (sigfd == -2)
2318 { 2770 {
2319#ifndef _WIN32 2771 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2320 sigset_t full, prev; 2772 if (sigfd < 0 && errno == EINVAL)
2321 sigfillset (&full); 2773 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324 2774
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2775 if (sigfd >= 0)
2776 {
2777 fd_intern (sigfd); /* doing it twice will not hurt */
2326 2778
2327#ifndef _WIN32 2779 sigemptyset (&sigfd_set);
2328 sigprocmask (SIG_SETMASK, &prev, 0); 2780
2329#endif 2781 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2782 ev_set_priority (&sigfd_w, EV_MAXPRI);
2783 ev_io_start (EV_A_ &sigfd_w);
2784 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2785 }
2330 } 2786 }
2787
2788 if (sigfd >= 0)
2789 {
2790 /* TODO: check .head */
2791 sigaddset (&sigfd_set, w->signum);
2792 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2793
2794 signalfd (sigfd, &sigfd_set, 0);
2795 }
2796#endif
2331 2797
2332 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
2333 wlist_add (&signals [w->signum - 1].head, (WL)w); 2799 wlist_add (&signals [w->signum - 1].head, (WL)w);
2334 2800
2335 if (!((WL)w)->next) 2801 if (!((WL)w)->next)
2802# if EV_USE_SIGNALFD
2803 if (sigfd < 0) /*TODO*/
2804# endif
2336 { 2805 {
2337#if _WIN32 2806# ifdef _WIN32
2807 evpipe_init (EV_A);
2808
2338 signal (w->signum, ev_sighandler); 2809 signal (w->signum, ev_sighandler);
2339#else 2810# else
2340 struct sigaction sa; 2811 struct sigaction sa;
2812
2813 evpipe_init (EV_A);
2814
2341 sa.sa_handler = ev_sighandler; 2815 sa.sa_handler = ev_sighandler;
2342 sigfillset (&sa.sa_mask); 2816 sigfillset (&sa.sa_mask);
2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2817 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2344 sigaction (w->signum, &sa, 0); 2818 sigaction (w->signum, &sa, 0);
2819
2820 sigemptyset (&sa.sa_mask);
2821 sigaddset (&sa.sa_mask, w->signum);
2822 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2345#endif 2823#endif
2346 } 2824 }
2347 2825
2348 EV_FREQUENT_CHECK; 2826 EV_FREQUENT_CHECK;
2349} 2827}
2350 2828
2351void noinline 2829void noinline
2359 2837
2360 wlist_del (&signals [w->signum - 1].head, (WL)w); 2838 wlist_del (&signals [w->signum - 1].head, (WL)w);
2361 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2362 2840
2363 if (!signals [w->signum - 1].head) 2841 if (!signals [w->signum - 1].head)
2842 {
2843#if EV_MULTIPLICITY
2844 signals [w->signum - 1].loop = 0; /* unattach from signal */
2845#endif
2846#if EV_USE_SIGNALFD
2847 if (sigfd >= 0)
2848 {
2849 sigset_t ss;
2850
2851 sigemptyset (&ss);
2852 sigaddset (&ss, w->signum);
2853 sigdelset (&sigfd_set, w->signum);
2854
2855 signalfd (sigfd, &sigfd_set, 0);
2856 sigprocmask (SIG_UNBLOCK, &ss, 0);
2857 }
2858 else
2859#endif
2364 signal (w->signum, SIG_DFL); 2860 signal (w->signum, SIG_DFL);
2861 }
2365 2862
2366 EV_FREQUENT_CHECK; 2863 EV_FREQUENT_CHECK;
2367} 2864}
2865
2866#endif
2867
2868#if EV_CHILD_ENABLE
2368 2869
2369void 2870void
2370ev_child_start (EV_P_ ev_child *w) 2871ev_child_start (EV_P_ ev_child *w)
2371{ 2872{
2372#if EV_MULTIPLICITY 2873#if EV_MULTIPLICITY
2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2874 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2374#endif 2875#endif
2375 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
2376 return; 2877 return;
2377 2878
2378 EV_FREQUENT_CHECK; 2879 EV_FREQUENT_CHECK;
2396 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
2397 2898
2398 EV_FREQUENT_CHECK; 2899 EV_FREQUENT_CHECK;
2399} 2900}
2400 2901
2902#endif
2903
2401#if EV_STAT_ENABLE 2904#if EV_STAT_ENABLE
2402 2905
2403# ifdef _WIN32 2906# ifdef _WIN32
2404# undef lstat 2907# undef lstat
2405# define lstat(a,b) _stati64 (a,b) 2908# define lstat(a,b) _stati64 (a,b)
2406# endif 2909# endif
2407 2910
2408#define DEF_STAT_INTERVAL 5.0074891 2911#define DEF_STAT_INTERVAL 5.0074891
2912#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2409#define MIN_STAT_INTERVAL 0.1074891 2913#define MIN_STAT_INTERVAL 0.1074891
2410 2914
2411static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2915static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2412 2916
2413#if EV_USE_INOTIFY 2917#if EV_USE_INOTIFY
2414# define EV_INOTIFY_BUFSIZE 8192 2918
2919/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2920# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2415 2921
2416static void noinline 2922static void noinline
2417infy_add (EV_P_ ev_stat *w) 2923infy_add (EV_P_ ev_stat *w)
2418{ 2924{
2419 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2925 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2420 2926
2421 if (w->wd < 0) 2927 if (w->wd >= 0)
2928 {
2929 struct statfs sfs;
2930
2931 /* now local changes will be tracked by inotify, but remote changes won't */
2932 /* unless the filesystem is known to be local, we therefore still poll */
2933 /* also do poll on <2.6.25, but with normal frequency */
2934
2935 if (!fs_2625)
2936 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2937 else if (!statfs (w->path, &sfs)
2938 && (sfs.f_type == 0x1373 /* devfs */
2939 || sfs.f_type == 0xEF53 /* ext2/3 */
2940 || sfs.f_type == 0x3153464a /* jfs */
2941 || sfs.f_type == 0x52654973 /* reiser3 */
2942 || sfs.f_type == 0x01021994 /* tempfs */
2943 || sfs.f_type == 0x58465342 /* xfs */))
2944 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2945 else
2946 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2422 { 2947 }
2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2948 else
2949 {
2950 /* can't use inotify, continue to stat */
2951 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2424 2952
2425 /* monitor some parent directory for speedup hints */ 2953 /* if path is not there, monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2954 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2427 /* but an efficiency issue only */ 2955 /* but an efficiency issue only */
2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2429 { 2957 {
2430 char path [4096]; 2958 char path [4096];
2431 strcpy (path, w->path); 2959 strcpy (path, w->path);
2435 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2436 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2437 2965
2438 char *pend = strrchr (path, '/'); 2966 char *pend = strrchr (path, '/');
2439 2967
2440 if (!pend) 2968 if (!pend || pend == path)
2441 break; /* whoops, no '/', complain to your admin */ 2969 break;
2442 2970
2443 *pend = 0; 2971 *pend = 0;
2444 w->wd = inotify_add_watch (fs_fd, path, mask); 2972 w->wd = inotify_add_watch (fs_fd, path, mask);
2445 } 2973 }
2446 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2447 } 2975 }
2448 } 2976 }
2449 else
2450 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2451 2977
2452 if (w->wd >= 0) 2978 if (w->wd >= 0)
2453 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2979 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2980
2981 /* now re-arm timer, if required */
2982 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2983 ev_timer_again (EV_A_ &w->timer);
2984 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2454} 2985}
2455 2986
2456static void noinline 2987static void noinline
2457infy_del (EV_P_ ev_stat *w) 2988infy_del (EV_P_ ev_stat *w)
2458{ 2989{
2472 3003
2473static void noinline 3004static void noinline
2474infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3005infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2475{ 3006{
2476 if (slot < 0) 3007 if (slot < 0)
2477 /* overflow, need to check for all hahs slots */ 3008 /* overflow, need to check for all hash slots */
2478 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3009 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2479 infy_wd (EV_A_ slot, wd, ev); 3010 infy_wd (EV_A_ slot, wd, ev);
2480 else 3011 else
2481 { 3012 {
2482 WL w_; 3013 WL w_;
2488 3019
2489 if (w->wd == wd || wd == -1) 3020 if (w->wd == wd || wd == -1)
2490 { 3021 {
2491 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3022 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2492 { 3023 {
3024 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2493 w->wd = -1; 3025 w->wd = -1;
2494 infy_add (EV_A_ w); /* re-add, no matter what */ 3026 infy_add (EV_A_ w); /* re-add, no matter what */
2495 } 3027 }
2496 3028
2497 stat_timer_cb (EV_A_ &w->timer, 0); 3029 stat_timer_cb (EV_A_ &w->timer, 0);
2502 3034
2503static void 3035static void
2504infy_cb (EV_P_ ev_io *w, int revents) 3036infy_cb (EV_P_ ev_io *w, int revents)
2505{ 3037{
2506 char buf [EV_INOTIFY_BUFSIZE]; 3038 char buf [EV_INOTIFY_BUFSIZE];
2507 struct inotify_event *ev = (struct inotify_event *)buf;
2508 int ofs; 3039 int ofs;
2509 int len = read (fs_fd, buf, sizeof (buf)); 3040 int len = read (fs_fd, buf, sizeof (buf));
2510 3041
2511 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3042 for (ofs = 0; ofs < len; )
3043 {
3044 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2512 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3045 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3046 ofs += sizeof (struct inotify_event) + ev->len;
3047 }
2513} 3048}
2514 3049
2515void inline_size 3050inline_size unsigned int
3051ev_linux_version (void)
3052{
3053 struct utsname buf;
3054 unsigned int v;
3055 int i;
3056 char *p = buf.release;
3057
3058 if (uname (&buf))
3059 return 0;
3060
3061 for (i = 3+1; --i; )
3062 {
3063 unsigned int c = 0;
3064
3065 for (;;)
3066 {
3067 if (*p >= '0' && *p <= '9')
3068 c = c * 10 + *p++ - '0';
3069 else
3070 {
3071 p += *p == '.';
3072 break;
3073 }
3074 }
3075
3076 v = (v << 8) | c;
3077 }
3078
3079 return v;
3080}
3081
3082inline_size void
3083ev_check_2625 (EV_P)
3084{
3085 /* kernels < 2.6.25 are borked
3086 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3087 */
3088 if (ev_linux_version () < 0x020619)
3089 return;
3090
3091 fs_2625 = 1;
3092}
3093
3094inline_size int
3095infy_newfd (void)
3096{
3097#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3098 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3099 if (fd >= 0)
3100 return fd;
3101#endif
3102 return inotify_init ();
3103}
3104
3105inline_size void
2516infy_init (EV_P) 3106infy_init (EV_P)
2517{ 3107{
2518 if (fs_fd != -2) 3108 if (fs_fd != -2)
2519 return; 3109 return;
2520 3110
3111 fs_fd = -1;
3112
3113 ev_check_2625 (EV_A);
3114
2521 fs_fd = inotify_init (); 3115 fs_fd = infy_newfd ();
2522 3116
2523 if (fs_fd >= 0) 3117 if (fs_fd >= 0)
2524 { 3118 {
3119 fd_intern (fs_fd);
2525 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3120 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2526 ev_set_priority (&fs_w, EV_MAXPRI); 3121 ev_set_priority (&fs_w, EV_MAXPRI);
2527 ev_io_start (EV_A_ &fs_w); 3122 ev_io_start (EV_A_ &fs_w);
3123 ev_unref (EV_A);
2528 } 3124 }
2529} 3125}
2530 3126
2531void inline_size 3127inline_size void
2532infy_fork (EV_P) 3128infy_fork (EV_P)
2533{ 3129{
2534 int slot; 3130 int slot;
2535 3131
2536 if (fs_fd < 0) 3132 if (fs_fd < 0)
2537 return; 3133 return;
2538 3134
3135 ev_ref (EV_A);
3136 ev_io_stop (EV_A_ &fs_w);
2539 close (fs_fd); 3137 close (fs_fd);
2540 fs_fd = inotify_init (); 3138 fs_fd = infy_newfd ();
3139
3140 if (fs_fd >= 0)
3141 {
3142 fd_intern (fs_fd);
3143 ev_io_set (&fs_w, fs_fd, EV_READ);
3144 ev_io_start (EV_A_ &fs_w);
3145 ev_unref (EV_A);
3146 }
2541 3147
2542 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3148 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2543 { 3149 {
2544 WL w_ = fs_hash [slot].head; 3150 WL w_ = fs_hash [slot].head;
2545 fs_hash [slot].head = 0; 3151 fs_hash [slot].head = 0;
2552 w->wd = -1; 3158 w->wd = -1;
2553 3159
2554 if (fs_fd >= 0) 3160 if (fs_fd >= 0)
2555 infy_add (EV_A_ w); /* re-add, no matter what */ 3161 infy_add (EV_A_ w); /* re-add, no matter what */
2556 else 3162 else
3163 {
3164 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3165 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2557 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3168 }
2558 } 3169 }
2559
2560 } 3170 }
2561} 3171}
2562 3172
3173#endif
3174
3175#ifdef _WIN32
3176# define EV_LSTAT(p,b) _stati64 (p, b)
3177#else
3178# define EV_LSTAT(p,b) lstat (p, b)
2563#endif 3179#endif
2564 3180
2565void 3181void
2566ev_stat_stat (EV_P_ ev_stat *w) 3182ev_stat_stat (EV_P_ ev_stat *w)
2567{ 3183{
2574static void noinline 3190static void noinline
2575stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3191stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2576{ 3192{
2577 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3193 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2578 3194
2579 /* we copy this here each the time so that */ 3195 ev_statdata prev = w->attr;
2580 /* prev has the old value when the callback gets invoked */
2581 w->prev = w->attr;
2582 ev_stat_stat (EV_A_ w); 3196 ev_stat_stat (EV_A_ w);
2583 3197
2584 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3198 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2585 if ( 3199 if (
2586 w->prev.st_dev != w->attr.st_dev 3200 prev.st_dev != w->attr.st_dev
2587 || w->prev.st_ino != w->attr.st_ino 3201 || prev.st_ino != w->attr.st_ino
2588 || w->prev.st_mode != w->attr.st_mode 3202 || prev.st_mode != w->attr.st_mode
2589 || w->prev.st_nlink != w->attr.st_nlink 3203 || prev.st_nlink != w->attr.st_nlink
2590 || w->prev.st_uid != w->attr.st_uid 3204 || prev.st_uid != w->attr.st_uid
2591 || w->prev.st_gid != w->attr.st_gid 3205 || prev.st_gid != w->attr.st_gid
2592 || w->prev.st_rdev != w->attr.st_rdev 3206 || prev.st_rdev != w->attr.st_rdev
2593 || w->prev.st_size != w->attr.st_size 3207 || prev.st_size != w->attr.st_size
2594 || w->prev.st_atime != w->attr.st_atime 3208 || prev.st_atime != w->attr.st_atime
2595 || w->prev.st_mtime != w->attr.st_mtime 3209 || prev.st_mtime != w->attr.st_mtime
2596 || w->prev.st_ctime != w->attr.st_ctime 3210 || prev.st_ctime != w->attr.st_ctime
2597 ) { 3211 ) {
3212 /* we only update w->prev on actual differences */
3213 /* in case we test more often than invoke the callback, */
3214 /* to ensure that prev is always different to attr */
3215 w->prev = prev;
3216
2598 #if EV_USE_INOTIFY 3217 #if EV_USE_INOTIFY
3218 if (fs_fd >= 0)
3219 {
2599 infy_del (EV_A_ w); 3220 infy_del (EV_A_ w);
2600 infy_add (EV_A_ w); 3221 infy_add (EV_A_ w);
2601 ev_stat_stat (EV_A_ w); /* avoid race... */ 3222 ev_stat_stat (EV_A_ w); /* avoid race... */
3223 }
2602 #endif 3224 #endif
2603 3225
2604 ev_feed_event (EV_A_ w, EV_STAT); 3226 ev_feed_event (EV_A_ w, EV_STAT);
2605 } 3227 }
2606} 3228}
2609ev_stat_start (EV_P_ ev_stat *w) 3231ev_stat_start (EV_P_ ev_stat *w)
2610{ 3232{
2611 if (expect_false (ev_is_active (w))) 3233 if (expect_false (ev_is_active (w)))
2612 return; 3234 return;
2613 3235
2614 /* since we use memcmp, we need to clear any padding data etc. */
2615 memset (&w->prev, 0, sizeof (ev_statdata));
2616 memset (&w->attr, 0, sizeof (ev_statdata));
2617
2618 ev_stat_stat (EV_A_ w); 3236 ev_stat_stat (EV_A_ w);
2619 3237
3238 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2620 if (w->interval < MIN_STAT_INTERVAL) 3239 w->interval = MIN_STAT_INTERVAL;
2621 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2622 3240
2623 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3241 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2624 ev_set_priority (&w->timer, ev_priority (w)); 3242 ev_set_priority (&w->timer, ev_priority (w));
2625 3243
2626#if EV_USE_INOTIFY 3244#if EV_USE_INOTIFY
2627 infy_init (EV_A); 3245 infy_init (EV_A);
2628 3246
2629 if (fs_fd >= 0) 3247 if (fs_fd >= 0)
2630 infy_add (EV_A_ w); 3248 infy_add (EV_A_ w);
2631 else 3249 else
2632#endif 3250#endif
3251 {
2633 ev_timer_start (EV_A_ &w->timer); 3252 ev_timer_again (EV_A_ &w->timer);
3253 ev_unref (EV_A);
3254 }
2634 3255
2635 ev_start (EV_A_ (W)w, 1); 3256 ev_start (EV_A_ (W)w, 1);
2636 3257
2637 EV_FREQUENT_CHECK; 3258 EV_FREQUENT_CHECK;
2638} 3259}
2647 EV_FREQUENT_CHECK; 3268 EV_FREQUENT_CHECK;
2648 3269
2649#if EV_USE_INOTIFY 3270#if EV_USE_INOTIFY
2650 infy_del (EV_A_ w); 3271 infy_del (EV_A_ w);
2651#endif 3272#endif
3273
3274 if (ev_is_active (&w->timer))
3275 {
3276 ev_ref (EV_A);
2652 ev_timer_stop (EV_A_ &w->timer); 3277 ev_timer_stop (EV_A_ &w->timer);
3278 }
2653 3279
2654 ev_stop (EV_A_ (W)w); 3280 ev_stop (EV_A_ (W)w);
2655 3281
2656 EV_FREQUENT_CHECK; 3282 EV_FREQUENT_CHECK;
2657} 3283}
2702 3328
2703 EV_FREQUENT_CHECK; 3329 EV_FREQUENT_CHECK;
2704} 3330}
2705#endif 3331#endif
2706 3332
3333#if EV_PREPARE_ENABLE
2707void 3334void
2708ev_prepare_start (EV_P_ ev_prepare *w) 3335ev_prepare_start (EV_P_ ev_prepare *w)
2709{ 3336{
2710 if (expect_false (ev_is_active (w))) 3337 if (expect_false (ev_is_active (w)))
2711 return; 3338 return;
2737 3364
2738 ev_stop (EV_A_ (W)w); 3365 ev_stop (EV_A_ (W)w);
2739 3366
2740 EV_FREQUENT_CHECK; 3367 EV_FREQUENT_CHECK;
2741} 3368}
3369#endif
2742 3370
3371#if EV_CHECK_ENABLE
2743void 3372void
2744ev_check_start (EV_P_ ev_check *w) 3373ev_check_start (EV_P_ ev_check *w)
2745{ 3374{
2746 if (expect_false (ev_is_active (w))) 3375 if (expect_false (ev_is_active (w)))
2747 return; 3376 return;
2773 3402
2774 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
2775 3404
2776 EV_FREQUENT_CHECK; 3405 EV_FREQUENT_CHECK;
2777} 3406}
3407#endif
2778 3408
2779#if EV_EMBED_ENABLE 3409#if EV_EMBED_ENABLE
2780void noinline 3410void noinline
2781ev_embed_sweep (EV_P_ ev_embed *w) 3411ev_embed_sweep (EV_P_ ev_embed *w)
2782{ 3412{
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3428embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{ 3429{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3430 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801 3431
2802 { 3432 {
2803 struct ev_loop *loop = w->other; 3433 EV_P = w->other;
2804 3434
2805 while (fdchangecnt) 3435 while (fdchangecnt)
2806 { 3436 {
2807 fd_reify (EV_A); 3437 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3438 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 } 3439 }
2810 } 3440 }
2811} 3441}
2812 3442
3443static void
3444embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3445{
3446 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3447
3448 ev_embed_stop (EV_A_ w);
3449
3450 {
3451 EV_P = w->other;
3452
3453 ev_loop_fork (EV_A);
3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3455 }
3456
3457 ev_embed_start (EV_A_ w);
3458}
3459
2813#if 0 3460#if 0
2814static void 3461static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3462embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{ 3463{
2817 ev_idle_stop (EV_A_ idle); 3464 ev_idle_stop (EV_A_ idle);
2823{ 3470{
2824 if (expect_false (ev_is_active (w))) 3471 if (expect_false (ev_is_active (w)))
2825 return; 3472 return;
2826 3473
2827 { 3474 {
2828 struct ev_loop *loop = w->other; 3475 EV_P = w->other;
2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3476 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2831 } 3478 }
2832 3479
2833 EV_FREQUENT_CHECK; 3480 EV_FREQUENT_CHECK;
2834 3481
2837 3484
2838 ev_prepare_init (&w->prepare, embed_prepare_cb); 3485 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI); 3486 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare); 3487 ev_prepare_start (EV_A_ &w->prepare);
2841 3488
3489 ev_fork_init (&w->fork, embed_fork_cb);
3490 ev_fork_start (EV_A_ &w->fork);
3491
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3492 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843 3493
2844 ev_start (EV_A_ (W)w, 1); 3494 ev_start (EV_A_ (W)w, 1);
2845 3495
2846 EV_FREQUENT_CHECK; 3496 EV_FREQUENT_CHECK;
2853 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2854 return; 3504 return;
2855 3505
2856 EV_FREQUENT_CHECK; 3506 EV_FREQUENT_CHECK;
2857 3507
2858 ev_io_stop (EV_A_ &w->io); 3508 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare); 3509 ev_prepare_stop (EV_A_ &w->prepare);
3510 ev_fork_stop (EV_A_ &w->fork);
2860 3511
2861 ev_stop (EV_A_ (W)w); 3512 ev_stop (EV_A_ (W)w);
2862 3513
2863 EV_FREQUENT_CHECK; 3514 EV_FREQUENT_CHECK;
2864} 3515}
2943 3594
2944void 3595void
2945ev_async_send (EV_P_ ev_async *w) 3596ev_async_send (EV_P_ ev_async *w)
2946{ 3597{
2947 w->sent = 1; 3598 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync); 3599 evpipe_write (EV_A_ &async_pending);
2949} 3600}
2950#endif 3601#endif
2951 3602
2952/*****************************************************************************/ 3603/*****************************************************************************/
2953 3604
2963once_cb (EV_P_ struct ev_once *once, int revents) 3614once_cb (EV_P_ struct ev_once *once, int revents)
2964{ 3615{
2965 void (*cb)(int revents, void *arg) = once->cb; 3616 void (*cb)(int revents, void *arg) = once->cb;
2966 void *arg = once->arg; 3617 void *arg = once->arg;
2967 3618
2968 ev_io_stop (EV_A_ &once->io); 3619 ev_io_stop (EV_A_ &once->io);
2969 ev_timer_stop (EV_A_ &once->to); 3620 ev_timer_stop (EV_A_ &once->to);
2970 ev_free (once); 3621 ev_free (once);
2971 3622
2972 cb (revents, arg); 3623 cb (revents, arg);
2973} 3624}
2974 3625
2975static void 3626static void
2976once_cb_io (EV_P_ ev_io *w, int revents) 3627once_cb_io (EV_P_ ev_io *w, int revents)
2977{ 3628{
2978 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2979} 3632}
2980 3633
2981static void 3634static void
2982once_cb_to (EV_P_ ev_timer *w, int revents) 3635once_cb_to (EV_P_ ev_timer *w, int revents)
2983{ 3636{
2984 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3637 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3638
3639 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2985} 3640}
2986 3641
2987void 3642void
2988ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3643ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2989{ 3644{
3011 ev_timer_set (&once->to, timeout, 0.); 3666 ev_timer_set (&once->to, timeout, 0.);
3012 ev_timer_start (EV_A_ &once->to); 3667 ev_timer_start (EV_A_ &once->to);
3013 } 3668 }
3014} 3669}
3015 3670
3671/*****************************************************************************/
3672
3673#if EV_WALK_ENABLE
3674void
3675ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3676{
3677 int i, j;
3678 ev_watcher_list *wl, *wn;
3679
3680 if (types & (EV_IO | EV_EMBED))
3681 for (i = 0; i < anfdmax; ++i)
3682 for (wl = anfds [i].head; wl; )
3683 {
3684 wn = wl->next;
3685
3686#if EV_EMBED_ENABLE
3687 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3688 {
3689 if (types & EV_EMBED)
3690 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3691 }
3692 else
3693#endif
3694#if EV_USE_INOTIFY
3695 if (ev_cb ((ev_io *)wl) == infy_cb)
3696 ;
3697 else
3698#endif
3699 if ((ev_io *)wl != &pipe_w)
3700 if (types & EV_IO)
3701 cb (EV_A_ EV_IO, wl);
3702
3703 wl = wn;
3704 }
3705
3706 if (types & (EV_TIMER | EV_STAT))
3707 for (i = timercnt + HEAP0; i-- > HEAP0; )
3708#if EV_STAT_ENABLE
3709 /*TODO: timer is not always active*/
3710 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3711 {
3712 if (types & EV_STAT)
3713 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3714 }
3715 else
3716#endif
3717 if (types & EV_TIMER)
3718 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3719
3720#if EV_PERIODIC_ENABLE
3721 if (types & EV_PERIODIC)
3722 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3723 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3724#endif
3725
3726#if EV_IDLE_ENABLE
3727 if (types & EV_IDLE)
3728 for (j = NUMPRI; i--; )
3729 for (i = idlecnt [j]; i--; )
3730 cb (EV_A_ EV_IDLE, idles [j][i]);
3731#endif
3732
3733#if EV_FORK_ENABLE
3734 if (types & EV_FORK)
3735 for (i = forkcnt; i--; )
3736 if (ev_cb (forks [i]) != embed_fork_cb)
3737 cb (EV_A_ EV_FORK, forks [i]);
3738#endif
3739
3740#if EV_ASYNC_ENABLE
3741 if (types & EV_ASYNC)
3742 for (i = asynccnt; i--; )
3743 cb (EV_A_ EV_ASYNC, asyncs [i]);
3744#endif
3745
3746#if EV_PREPARE_ENABLE
3747 if (types & EV_PREPARE)
3748 for (i = preparecnt; i--; )
3749# if EV_EMBED_ENABLE
3750 if (ev_cb (prepares [i]) != embed_prepare_cb)
3751# endif
3752 cb (EV_A_ EV_PREPARE, prepares [i]);
3753#endif
3754
3755#if EV_CHECK_ENABLE
3756 if (types & EV_CHECK)
3757 for (i = checkcnt; i--; )
3758 cb (EV_A_ EV_CHECK, checks [i]);
3759#endif
3760
3761#if EV_SIGNAL_ENABLE
3762 if (types & EV_SIGNAL)
3763 for (i = 0; i < EV_NSIG - 1; ++i)
3764 for (wl = signals [i].head; wl; )
3765 {
3766 wn = wl->next;
3767 cb (EV_A_ EV_SIGNAL, wl);
3768 wl = wn;
3769 }
3770#endif
3771
3772#if EV_CHILD_ENABLE
3773 if (types & EV_CHILD)
3774 for (i = EV_PID_HASHSIZE; i--; )
3775 for (wl = childs [i]; wl; )
3776 {
3777 wn = wl->next;
3778 cb (EV_A_ EV_CHILD, wl);
3779 wl = wn;
3780 }
3781#endif
3782/* EV_STAT 0x00001000 /* stat data changed */
3783/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3784}
3785#endif
3786
3016#if EV_MULTIPLICITY 3787#if EV_MULTIPLICITY
3017 #include "ev_wrap.h" 3788 #include "ev_wrap.h"
3018#endif 3789#endif
3019 3790
3020#ifdef __cplusplus 3791#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines