ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.34 by root, Thu Nov 1 11:43:11 2007 UTC vs.
Revision 1.403 by root, Wed Jan 18 12:13:14 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met:
8 * 9 *
9 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
10 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
11 * 12 *
12 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
13 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
14 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
15 * with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
28 */ 38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
30# include "config.h" 45# include "config.h"
31#endif 46# endif
32 47
33#include <math.h> 48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
34#include <stdlib.h> 167#include <stdlib.h>
35#include <unistd.h> 168#include <string.h>
36#include <fcntl.h> 169#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 170#include <stddef.h>
39 171
40#include <stdio.h> 172#include <stdio.h>
41 173
42#include <assert.h> 174#include <assert.h>
43#include <errno.h> 175#include <errno.h>
44#include <sys/types.h> 176#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#ifndef _WIN32
189# include <sys/time.h>
190# include <sys/wait.h>
191# include <unistd.h>
192#else
193# include <io.h>
194# define WIN32_LEAN_AND_MEAN
195# include <windows.h>
196# ifndef EV_SELECT_IS_WINSOCKET
197# define EV_SELECT_IS_WINSOCKET 1
198# endif
199# undef EV_AVOID_STDIO
200#endif
201
202/* OS X, in its infinite idiocy, actually HARDCODES
203 * a limit of 1024 into their select. Where people have brains,
204 * OS X engineers apparently have a vacuum. Or maybe they were
205 * ordered to have a vacuum, or they do anything for money.
206 * This might help. Or not.
207 */
208#define _DARWIN_UNLIMITED_SELECT 1
209
210/* this block tries to deduce configuration from header-defined symbols and defaults */
211
212/* try to deduce the maximum number of signals on this platform */
213#if defined (EV_NSIG)
214/* use what's provided */
215#elif defined (NSIG)
216# define EV_NSIG (NSIG)
217#elif defined(_NSIG)
218# define EV_NSIG (_NSIG)
219#elif defined (SIGMAX)
220# define EV_NSIG (SIGMAX+1)
221#elif defined (SIG_MAX)
222# define EV_NSIG (SIG_MAX+1)
223#elif defined (_SIG_MAX)
224# define EV_NSIG (_SIG_MAX+1)
225#elif defined (MAXSIG)
226# define EV_NSIG (MAXSIG+1)
227#elif defined (MAX_SIG)
228# define EV_NSIG (MAX_SIG+1)
229#elif defined (SIGARRAYSIZE)
230# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
231#elif defined (_sys_nsig)
232# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
233#else
234# error "unable to find value for NSIG, please report"
235/* to make it compile regardless, just remove the above line, */
236/* but consider reporting it, too! :) */
237# define EV_NSIG 65
238#endif
239
240#ifndef EV_USE_FLOOR
241# define EV_USE_FLOOR 0
242#endif
243
244#ifndef EV_USE_CLOCK_SYSCALL
245# if __linux && __GLIBC__ >= 2
246# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
247# else
248# define EV_USE_CLOCK_SYSCALL 0
249# endif
250#endif
48 251
49#ifndef EV_USE_MONOTONIC 252#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 253# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
254# define EV_USE_MONOTONIC EV_FEATURE_OS
255# else
256# define EV_USE_MONOTONIC 0
257# endif
258#endif
259
260#ifndef EV_USE_REALTIME
261# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
262#endif
263
264#ifndef EV_USE_NANOSLEEP
265# if _POSIX_C_SOURCE >= 199309L
266# define EV_USE_NANOSLEEP EV_FEATURE_OS
267# else
268# define EV_USE_NANOSLEEP 0
269# endif
270#endif
271
272#ifndef EV_USE_SELECT
273# define EV_USE_SELECT EV_FEATURE_BACKENDS
274#endif
275
276#ifndef EV_USE_POLL
277# ifdef _WIN32
278# define EV_USE_POLL 0
279# else
280# define EV_USE_POLL EV_FEATURE_BACKENDS
281# endif
282#endif
283
284#ifndef EV_USE_EPOLL
285# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
286# define EV_USE_EPOLL EV_FEATURE_BACKENDS
287# else
288# define EV_USE_EPOLL 0
289# endif
290#endif
291
292#ifndef EV_USE_KQUEUE
293# define EV_USE_KQUEUE 0
294#endif
295
296#ifndef EV_USE_PORT
297# define EV_USE_PORT 0
298#endif
299
300#ifndef EV_USE_INOTIFY
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
302# define EV_USE_INOTIFY EV_FEATURE_OS
303# else
304# define EV_USE_INOTIFY 0
305# endif
306#endif
307
308#ifndef EV_PID_HASHSIZE
309# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
310#endif
311
312#ifndef EV_INOTIFY_HASHSIZE
313# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
314#endif
315
316#ifndef EV_USE_EVENTFD
317# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
318# define EV_USE_EVENTFD EV_FEATURE_OS
319# else
320# define EV_USE_EVENTFD 0
321# endif
322#endif
323
324#ifndef EV_USE_SIGNALFD
325# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
326# define EV_USE_SIGNALFD EV_FEATURE_OS
327# else
328# define EV_USE_SIGNALFD 0
329# endif
330#endif
331
332#if 0 /* debugging */
333# define EV_VERIFY 3
334# define EV_USE_4HEAP 1
335# define EV_HEAP_CACHE_AT 1
336#endif
337
338#ifndef EV_VERIFY
339# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
340#endif
341
342#ifndef EV_USE_4HEAP
343# define EV_USE_4HEAP EV_FEATURE_DATA
344#endif
345
346#ifndef EV_HEAP_CACHE_AT
347# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
348#endif
349
350/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
351/* which makes programs even slower. might work on other unices, too. */
352#if EV_USE_CLOCK_SYSCALL
353# include <syscall.h>
354# ifdef SYS_clock_gettime
355# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
356# undef EV_USE_MONOTONIC
51# define EV_USE_MONOTONIC 1 357# define EV_USE_MONOTONIC 1
358# else
359# undef EV_USE_CLOCK_SYSCALL
360# define EV_USE_CLOCK_SYSCALL 0
52# endif 361# endif
53#endif 362#endif
54 363
55#ifndef EV_USE_SELECT 364/* this block fixes any misconfiguration where we know we run into trouble otherwise */
56# define EV_USE_SELECT 1
57#endif
58 365
366#ifdef _AIX
367/* AIX has a completely broken poll.h header */
59#ifndef EV_USE_EPOLL 368# undef EV_USE_POLL
60# define EV_USE_EPOLL 0 369# define EV_USE_POLL 0
370#endif
371
372#ifndef CLOCK_MONOTONIC
373# undef EV_USE_MONOTONIC
374# define EV_USE_MONOTONIC 0
61#endif 375#endif
62 376
63#ifndef CLOCK_REALTIME 377#ifndef CLOCK_REALTIME
378# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 379# define EV_USE_REALTIME 0
65#endif 380#endif
66#ifndef EV_USE_REALTIME 381
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 382#if !EV_STAT_ENABLE
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385#endif
386
387#if !EV_USE_NANOSLEEP
388/* hp-ux has it in sys/time.h, which we unconditionally include above */
389# if !defined(_WIN32) && !defined(__hpux)
390# include <sys/select.h>
68#endif 391# endif
392#endif
393
394#if EV_USE_INOTIFY
395# include <sys/statfs.h>
396# include <sys/inotify.h>
397/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
398# ifndef IN_DONT_FOLLOW
399# undef EV_USE_INOTIFY
400# define EV_USE_INOTIFY 0
401# endif
402#endif
403
404#if EV_SELECT_IS_WINSOCKET
405# include <winsock.h>
406#endif
407
408#if EV_USE_EVENTFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef EFD_NONBLOCK
412# define EFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef EFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define EFD_CLOEXEC O_CLOEXEC
417# else
418# define EFD_CLOEXEC 02000000
419# endif
420# endif
421EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
422#endif
423
424#if EV_USE_SIGNALFD
425/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
426# include <stdint.h>
427# ifndef SFD_NONBLOCK
428# define SFD_NONBLOCK O_NONBLOCK
429# endif
430# ifndef SFD_CLOEXEC
431# ifdef O_CLOEXEC
432# define SFD_CLOEXEC O_CLOEXEC
433# else
434# define SFD_CLOEXEC 02000000
435# endif
436# endif
437EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
438
439struct signalfd_siginfo
440{
441 uint32_t ssi_signo;
442 char pad[128 - sizeof (uint32_t)];
443};
444#endif
445
446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to work around floating point rounding problems.
456 * This value is good at least till the year 4000.
457 */
458#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
459/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
69 460
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
74 463
75#include "ev.h" 464#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
465#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
76 466
77typedef struct ev_watcher *W; 467/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
78typedef struct ev_watcher_list *WL; 468/* ECB.H BEGIN */
79typedef struct ev_watcher_time *WT; 469/*
470 * libecb - http://software.schmorp.de/pkg/libecb
471 *
472 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
473 * Copyright (©) 2011 Emanuele Giaquinta
474 * All rights reserved.
475 *
476 * Redistribution and use in source and binary forms, with or without modifica-
477 * tion, are permitted provided that the following conditions are met:
478 *
479 * 1. Redistributions of source code must retain the above copyright notice,
480 * this list of conditions and the following disclaimer.
481 *
482 * 2. Redistributions in binary form must reproduce the above copyright
483 * notice, this list of conditions and the following disclaimer in the
484 * documentation and/or other materials provided with the distribution.
485 *
486 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
487 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
488 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
489 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
490 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
491 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
492 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
493 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
494 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
495 * OF THE POSSIBILITY OF SUCH DAMAGE.
496 */
80 497
81static ev_tstamp now, diff; /* monotonic clock */ 498#ifndef ECB_H
82ev_tstamp ev_now; 499#define ECB_H
83int ev_method;
84 500
85static int have_monotonic; /* runtime */ 501#ifdef _WIN32
502 typedef signed char int8_t;
503 typedef unsigned char uint8_t;
504 typedef signed short int16_t;
505 typedef unsigned short uint16_t;
506 typedef signed int int32_t;
507 typedef unsigned int uint32_t;
508 #if __GNUC__
509 typedef signed long long int64_t;
510 typedef unsigned long long uint64_t;
511 #else /* _MSC_VER || __BORLANDC__ */
512 typedef signed __int64 int64_t;
513 typedef unsigned __int64 uint64_t;
514 #endif
515#else
516 #include <inttypes.h>
517#endif
86 518
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 519/* many compilers define _GNUC_ to some versions but then only implement
88static void (*method_modify)(int fd, int oev, int nev); 520 * what their idiot authors think are the "more important" extensions,
89static void (*method_poll)(ev_tstamp timeout); 521 * causing enormous grief in return for some better fake benchmark numbers.
522 * or so.
523 * we try to detect these and simply assume they are not gcc - if they have
524 * an issue with that they should have done it right in the first place.
525 */
526#ifndef ECB_GCC_VERSION
527 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
528 #define ECB_GCC_VERSION(major,minor) 0
529 #else
530 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
531 #endif
532#endif
90 533
91/*****************************************************************************/ 534/*****************************************************************************/
92 535
536/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
537/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
538
539#if ECB_NO_THREADS || ECB_NO_SMP
540 #define ECB_MEMORY_FENCE do { } while (0)
541#endif
542
543#ifndef ECB_MEMORY_FENCE
544 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || defined(__clang__) || __SUNPRO_C >= 0x5110 || __SUNPRO_xC >= 0x5110
545 #if __i386__
546 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
547 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
548 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
549 #elif __amd64
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
552 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
553 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
555 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
556 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
557 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
558 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
559 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
560 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
561 #elif defined(__sparc)
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #StoreLoad | #LoadLoad | #StoreStore" : : : "memory")
563 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadLoad" : : : "memory")
564 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #StoreStore")
565 #endif
566 #endif
567#endif
568
569#ifndef ECB_MEMORY_FENCE
570 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
571 #define ECB_MEMORY_FENCE __sync_synchronize ()
572 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
573 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
574 #elif _MSC_VER >= 1400 /* VC++ 2005 */
575 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
576 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
577 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
578 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
579 #elif defined(_WIN32)
580 #include <WinNT.h>
581 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
582 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
583 #include <mbarrier.h>
584 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
585 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
586 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if !ECB_AVOID_PTHREADS
592 /*
593 * if you get undefined symbol references to pthread_mutex_lock,
594 * or failure to find pthread.h, then you should implement
595 * the ECB_MEMORY_FENCE operations for your cpu/compiler
596 * OR provide pthread.h and link against the posix thread library
597 * of your system.
598 */
599 #include <pthread.h>
600 #define ECB_NEEDS_PTHREADS 1
601 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
602
603 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
604 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
605 #endif
606#endif
607
608#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
609 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
610#endif
611
612#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
613 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
614#endif
615
616/*****************************************************************************/
617
618#define ECB_C99 (__STDC_VERSION__ >= 199901L)
619
620#if __cplusplus
621 #define ecb_inline static inline
622#elif ECB_GCC_VERSION(2,5)
623 #define ecb_inline static __inline__
624#elif ECB_C99
625 #define ecb_inline static inline
626#else
627 #define ecb_inline static
628#endif
629
630#if ECB_GCC_VERSION(3,3)
631 #define ecb_restrict __restrict__
632#elif ECB_C99
633 #define ecb_restrict restrict
634#else
635 #define ecb_restrict
636#endif
637
638typedef int ecb_bool;
639
640#define ECB_CONCAT_(a, b) a ## b
641#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
642#define ECB_STRINGIFY_(a) # a
643#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
644
645#define ecb_function_ ecb_inline
646
647#if ECB_GCC_VERSION(3,1)
648 #define ecb_attribute(attrlist) __attribute__(attrlist)
649 #define ecb_is_constant(expr) __builtin_constant_p (expr)
650 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
651 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
652#else
653 #define ecb_attribute(attrlist)
654 #define ecb_is_constant(expr) 0
655 #define ecb_expect(expr,value) (expr)
656 #define ecb_prefetch(addr,rw,locality)
657#endif
658
659/* no emulation for ecb_decltype */
660#if ECB_GCC_VERSION(4,5)
661 #define ecb_decltype(x) __decltype(x)
662#elif ECB_GCC_VERSION(3,0)
663 #define ecb_decltype(x) __typeof(x)
664#endif
665
666#define ecb_noinline ecb_attribute ((__noinline__))
667#define ecb_noreturn ecb_attribute ((__noreturn__))
668#define ecb_unused ecb_attribute ((__unused__))
669#define ecb_const ecb_attribute ((__const__))
670#define ecb_pure ecb_attribute ((__pure__))
671
672#if ECB_GCC_VERSION(4,3)
673 #define ecb_artificial ecb_attribute ((__artificial__))
674 #define ecb_hot ecb_attribute ((__hot__))
675 #define ecb_cold ecb_attribute ((__cold__))
676#else
677 #define ecb_artificial
678 #define ecb_hot
679 #define ecb_cold
680#endif
681
682/* put around conditional expressions if you are very sure that the */
683/* expression is mostly true or mostly false. note that these return */
684/* booleans, not the expression. */
685#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
686#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
687/* for compatibility to the rest of the world */
688#define ecb_likely(expr) ecb_expect_true (expr)
689#define ecb_unlikely(expr) ecb_expect_false (expr)
690
691/* count trailing zero bits and count # of one bits */
692#if ECB_GCC_VERSION(3,4)
693 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
694 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
695 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
696 #define ecb_ctz32(x) __builtin_ctz (x)
697 #define ecb_ctz64(x) __builtin_ctzll (x)
698 #define ecb_popcount32(x) __builtin_popcount (x)
699 /* no popcountll */
700#else
701 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
702 ecb_function_ int
703 ecb_ctz32 (uint32_t x)
704 {
705 int r = 0;
706
707 x &= ~x + 1; /* this isolates the lowest bit */
708
709#if ECB_branchless_on_i386
710 r += !!(x & 0xaaaaaaaa) << 0;
711 r += !!(x & 0xcccccccc) << 1;
712 r += !!(x & 0xf0f0f0f0) << 2;
713 r += !!(x & 0xff00ff00) << 3;
714 r += !!(x & 0xffff0000) << 4;
715#else
716 if (x & 0xaaaaaaaa) r += 1;
717 if (x & 0xcccccccc) r += 2;
718 if (x & 0xf0f0f0f0) r += 4;
719 if (x & 0xff00ff00) r += 8;
720 if (x & 0xffff0000) r += 16;
721#endif
722
723 return r;
724 }
725
726 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
727 ecb_function_ int
728 ecb_ctz64 (uint64_t x)
729 {
730 int shift = x & 0xffffffffU ? 0 : 32;
731 return ecb_ctz32 (x >> shift) + shift;
732 }
733
734 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
735 ecb_function_ int
736 ecb_popcount32 (uint32_t x)
737 {
738 x -= (x >> 1) & 0x55555555;
739 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
740 x = ((x >> 4) + x) & 0x0f0f0f0f;
741 x *= 0x01010101;
742
743 return x >> 24;
744 }
745
746 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
747 ecb_function_ int ecb_ld32 (uint32_t x)
748 {
749 int r = 0;
750
751 if (x >> 16) { x >>= 16; r += 16; }
752 if (x >> 8) { x >>= 8; r += 8; }
753 if (x >> 4) { x >>= 4; r += 4; }
754 if (x >> 2) { x >>= 2; r += 2; }
755 if (x >> 1) { r += 1; }
756
757 return r;
758 }
759
760 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
761 ecb_function_ int ecb_ld64 (uint64_t x)
762 {
763 int r = 0;
764
765 if (x >> 32) { x >>= 32; r += 32; }
766
767 return r + ecb_ld32 (x);
768 }
769#endif
770
771ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
772ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
773{
774 return ( (x * 0x0802U & 0x22110U)
775 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
776}
777
778ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
779ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
780{
781 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
782 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
783 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
784 x = ( x >> 8 ) | ( x << 8);
785
786 return x;
787}
788
789ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
790ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
791{
792 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
793 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
794 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
795 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
796 x = ( x >> 16 ) | ( x << 16);
797
798 return x;
799}
800
801/* popcount64 is only available on 64 bit cpus as gcc builtin */
802/* so for this version we are lazy */
803ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
804ecb_function_ int
805ecb_popcount64 (uint64_t x)
806{
807 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
808}
809
810ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
811ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
812ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
813ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
814ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
815ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
816ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
817ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
818
819ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
820ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
821ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
822ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
823ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
824ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
825ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
826ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
827
828#if ECB_GCC_VERSION(4,3)
829 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
830 #define ecb_bswap32(x) __builtin_bswap32 (x)
831 #define ecb_bswap64(x) __builtin_bswap64 (x)
832#else
833 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
834 ecb_function_ uint16_t
835 ecb_bswap16 (uint16_t x)
836 {
837 return ecb_rotl16 (x, 8);
838 }
839
840 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
841 ecb_function_ uint32_t
842 ecb_bswap32 (uint32_t x)
843 {
844 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
845 }
846
847 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
848 ecb_function_ uint64_t
849 ecb_bswap64 (uint64_t x)
850 {
851 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
852 }
853#endif
854
855#if ECB_GCC_VERSION(4,5)
856 #define ecb_unreachable() __builtin_unreachable ()
857#else
858 /* this seems to work fine, but gcc always emits a warning for it :/ */
859 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
860 ecb_function_ void ecb_unreachable (void) { }
861#endif
862
863/* try to tell the compiler that some condition is definitely true */
864#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
865
866ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
867ecb_function_ unsigned char
868ecb_byteorder_helper (void)
869{
870 const uint32_t u = 0x11223344;
871 return *(unsigned char *)&u;
872}
873
874ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
875ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
876ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
877ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
878
879#if ECB_GCC_VERSION(3,0) || ECB_C99
880 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
881#else
882 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
883#endif
884
885#if __cplusplus
886 template<typename T>
887 static inline T ecb_div_rd (T val, T div)
888 {
889 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
890 }
891 template<typename T>
892 static inline T ecb_div_ru (T val, T div)
893 {
894 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
895 }
896#else
897 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
898 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
899#endif
900
901#if ecb_cplusplus_does_not_suck
902 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
903 template<typename T, int N>
904 static inline int ecb_array_length (const T (&arr)[N])
905 {
906 return N;
907 }
908#else
909 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
910#endif
911
912#endif
913
914/* ECB.H END */
915
916#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
917/* if your architecture doesn't need memory fences, e.g. because it is
918 * single-cpu/core, or if you use libev in a project that doesn't use libev
919 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
920 * libev, in which cases the memory fences become nops.
921 * alternatively, you can remove this #error and link against libpthread,
922 * which will then provide the memory fences.
923 */
924# error "memory fences not defined for your architecture, please report"
925#endif
926
927#ifndef ECB_MEMORY_FENCE
928# define ECB_MEMORY_FENCE do { } while (0)
929# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
930# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
931#endif
932
933#define expect_false(cond) ecb_expect_false (cond)
934#define expect_true(cond) ecb_expect_true (cond)
935#define noinline ecb_noinline
936
937#define inline_size ecb_inline
938
939#if EV_FEATURE_CODE
940# define inline_speed ecb_inline
941#else
942# define inline_speed static noinline
943#endif
944
945#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
946
947#if EV_MINPRI == EV_MAXPRI
948# define ABSPRI(w) (((W)w), 0)
949#else
950# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
951#endif
952
953#define EMPTY /* required for microsofts broken pseudo-c compiler */
954#define EMPTY2(a,b) /* used to suppress some warnings */
955
956typedef ev_watcher *W;
957typedef ev_watcher_list *WL;
958typedef ev_watcher_time *WT;
959
960#define ev_active(w) ((W)(w))->active
961#define ev_at(w) ((WT)(w))->at
962
963#if EV_USE_REALTIME
964/* sig_atomic_t is used to avoid per-thread variables or locking but still */
965/* giving it a reasonably high chance of working on typical architectures */
966static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
967#endif
968
969#if EV_USE_MONOTONIC
970static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
971#endif
972
973#ifndef EV_FD_TO_WIN32_HANDLE
974# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
975#endif
976#ifndef EV_WIN32_HANDLE_TO_FD
977# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
978#endif
979#ifndef EV_WIN32_CLOSE_FD
980# define EV_WIN32_CLOSE_FD(fd) close (fd)
981#endif
982
983#ifdef _WIN32
984# include "ev_win32.c"
985#endif
986
987/*****************************************************************************/
988
989/* define a suitable floor function (only used by periodics atm) */
990
991#if EV_USE_FLOOR
992# include <math.h>
993# define ev_floor(v) floor (v)
994#else
995
996#include <float.h>
997
998/* a floor() replacement function, should be independent of ev_tstamp type */
999static ev_tstamp noinline
1000ev_floor (ev_tstamp v)
1001{
1002 /* the choice of shift factor is not terribly important */
1003#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1004 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1005#else
1006 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1007#endif
1008
1009 /* argument too large for an unsigned long? */
1010 if (expect_false (v >= shift))
1011 {
1012 ev_tstamp f;
1013
1014 if (v == v - 1.)
1015 return v; /* very large number */
1016
1017 f = shift * ev_floor (v * (1. / shift));
1018 return f + ev_floor (v - f);
1019 }
1020
1021 /* special treatment for negative args? */
1022 if (expect_false (v < 0.))
1023 {
1024 ev_tstamp f = -ev_floor (-v);
1025
1026 return f - (f == v ? 0 : 1);
1027 }
1028
1029 /* fits into an unsigned long */
1030 return (unsigned long)v;
1031}
1032
1033#endif
1034
1035/*****************************************************************************/
1036
1037#ifdef __linux
1038# include <sys/utsname.h>
1039#endif
1040
1041static unsigned int noinline ecb_cold
1042ev_linux_version (void)
1043{
1044#ifdef __linux
1045 unsigned int v = 0;
1046 struct utsname buf;
1047 int i;
1048 char *p = buf.release;
1049
1050 if (uname (&buf))
1051 return 0;
1052
1053 for (i = 3+1; --i; )
1054 {
1055 unsigned int c = 0;
1056
1057 for (;;)
1058 {
1059 if (*p >= '0' && *p <= '9')
1060 c = c * 10 + *p++ - '0';
1061 else
1062 {
1063 p += *p == '.';
1064 break;
1065 }
1066 }
1067
1068 v = (v << 8) | c;
1069 }
1070
1071 return v;
1072#else
1073 return 0;
1074#endif
1075}
1076
1077/*****************************************************************************/
1078
1079#if EV_AVOID_STDIO
1080static void noinline ecb_cold
1081ev_printerr (const char *msg)
1082{
1083 write (STDERR_FILENO, msg, strlen (msg));
1084}
1085#endif
1086
1087static void (*syserr_cb)(const char *msg);
1088
1089void ecb_cold
1090ev_set_syserr_cb (void (*cb)(const char *msg))
1091{
1092 syserr_cb = cb;
1093}
1094
1095static void noinline ecb_cold
1096ev_syserr (const char *msg)
1097{
1098 if (!msg)
1099 msg = "(libev) system error";
1100
1101 if (syserr_cb)
1102 syserr_cb (msg);
1103 else
1104 {
1105#if EV_AVOID_STDIO
1106 ev_printerr (msg);
1107 ev_printerr (": ");
1108 ev_printerr (strerror (errno));
1109 ev_printerr ("\n");
1110#else
1111 perror (msg);
1112#endif
1113 abort ();
1114 }
1115}
1116
1117static void *
1118ev_realloc_emul (void *ptr, long size)
1119{
1120#if __GLIBC__
1121 return realloc (ptr, size);
1122#else
1123 /* some systems, notably openbsd and darwin, fail to properly
1124 * implement realloc (x, 0) (as required by both ansi c-89 and
1125 * the single unix specification, so work around them here.
1126 */
1127
1128 if (size)
1129 return realloc (ptr, size);
1130
1131 free (ptr);
1132 return 0;
1133#endif
1134}
1135
1136static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1137
1138void ecb_cold
1139ev_set_allocator (void *(*cb)(void *ptr, long size))
1140{
1141 alloc = cb;
1142}
1143
1144inline_speed void *
1145ev_realloc (void *ptr, long size)
1146{
1147 ptr = alloc (ptr, size);
1148
1149 if (!ptr && size)
1150 {
1151#if EV_AVOID_STDIO
1152 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1153#else
1154 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1155#endif
1156 abort ();
1157 }
1158
1159 return ptr;
1160}
1161
1162#define ev_malloc(size) ev_realloc (0, (size))
1163#define ev_free(ptr) ev_realloc ((ptr), 0)
1164
1165/*****************************************************************************/
1166
1167/* set in reify when reification needed */
1168#define EV_ANFD_REIFY 1
1169
1170/* file descriptor info structure */
1171typedef struct
1172{
1173 WL head;
1174 unsigned char events; /* the events watched for */
1175 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1176 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
1177 unsigned char unused;
1178#if EV_USE_EPOLL
1179 unsigned int egen; /* generation counter to counter epoll bugs */
1180#endif
1181#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1182 SOCKET handle;
1183#endif
1184#if EV_USE_IOCP
1185 OVERLAPPED or, ow;
1186#endif
1187} ANFD;
1188
1189/* stores the pending event set for a given watcher */
1190typedef struct
1191{
1192 W w;
1193 int events; /* the pending event set for the given watcher */
1194} ANPENDING;
1195
1196#if EV_USE_INOTIFY
1197/* hash table entry per inotify-id */
1198typedef struct
1199{
1200 WL head;
1201} ANFS;
1202#endif
1203
1204/* Heap Entry */
1205#if EV_HEAP_CACHE_AT
1206 /* a heap element */
1207 typedef struct {
1208 ev_tstamp at;
1209 WT w;
1210 } ANHE;
1211
1212 #define ANHE_w(he) (he).w /* access watcher, read-write */
1213 #define ANHE_at(he) (he).at /* access cached at, read-only */
1214 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1215#else
1216 /* a heap element */
1217 typedef WT ANHE;
1218
1219 #define ANHE_w(he) (he)
1220 #define ANHE_at(he) (he)->at
1221 #define ANHE_at_cache(he)
1222#endif
1223
1224#if EV_MULTIPLICITY
1225
1226 struct ev_loop
1227 {
1228 ev_tstamp ev_rt_now;
1229 #define ev_rt_now ((loop)->ev_rt_now)
1230 #define VAR(name,decl) decl;
1231 #include "ev_vars.h"
1232 #undef VAR
1233 };
1234 #include "ev_wrap.h"
1235
1236 static struct ev_loop default_loop_struct;
1237 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1238
1239#else
1240
1241 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1242 #define VAR(name,decl) static decl;
1243 #include "ev_vars.h"
1244 #undef VAR
1245
1246 static int ev_default_loop_ptr;
1247
1248#endif
1249
1250#if EV_FEATURE_API
1251# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1252# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1253# define EV_INVOKE_PENDING invoke_cb (EV_A)
1254#else
1255# define EV_RELEASE_CB (void)0
1256# define EV_ACQUIRE_CB (void)0
1257# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1258#endif
1259
1260#define EVBREAK_RECURSE 0x80
1261
1262/*****************************************************************************/
1263
1264#ifndef EV_HAVE_EV_TIME
93ev_tstamp 1265ev_tstamp
94ev_time (void) 1266ev_time (void)
95{ 1267{
96#if EV_USE_REALTIME 1268#if EV_USE_REALTIME
1269 if (expect_true (have_realtime))
1270 {
97 struct timespec ts; 1271 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 1272 clock_gettime (CLOCK_REALTIME, &ts);
99 return ts.tv_sec + ts.tv_nsec * 1e-9; 1273 return ts.tv_sec + ts.tv_nsec * 1e-9;
100#else 1274 }
1275#endif
1276
101 struct timeval tv; 1277 struct timeval tv;
102 gettimeofday (&tv, 0); 1278 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 1279 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif
105} 1280}
1281#endif
106 1282
107static ev_tstamp 1283inline_size ev_tstamp
108get_clock (void) 1284get_clock (void)
109{ 1285{
110#if EV_USE_MONOTONIC 1286#if EV_USE_MONOTONIC
111 if (have_monotonic) 1287 if (expect_true (have_monotonic))
112 { 1288 {
113 struct timespec ts; 1289 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 1290 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 1291 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 1292 }
117#endif 1293#endif
118 1294
119 return ev_time (); 1295 return ev_time ();
120} 1296}
121 1297
122#define array_roundsize(base,n) ((n) | 4 & ~3) 1298#if EV_MULTIPLICITY
1299ev_tstamp
1300ev_now (EV_P)
1301{
1302 return ev_rt_now;
1303}
1304#endif
123 1305
124#define array_needsize(base,cur,cnt,init) \ 1306void
125 if ((cnt) > cur) \ 1307ev_sleep (ev_tstamp delay)
126 { \ 1308{
127 int newcnt = cur; \ 1309 if (delay > 0.)
128 do \
129 { \
130 newcnt = array_roundsize (base, newcnt << 1); \
131 } \
132 while ((cnt) > newcnt); \
133 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \
136 cur = newcnt; \
137 } 1310 {
1311#if EV_USE_NANOSLEEP
1312 struct timespec ts;
1313
1314 EV_TS_SET (ts, delay);
1315 nanosleep (&ts, 0);
1316#elif defined(_WIN32)
1317 Sleep ((unsigned long)(delay * 1e3));
1318#else
1319 struct timeval tv;
1320
1321 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1322 /* something not guaranteed by newer posix versions, but guaranteed */
1323 /* by older ones */
1324 EV_TV_SET (tv, delay);
1325 select (0, 0, 0, 0, &tv);
1326#endif
1327 }
1328}
138 1329
139/*****************************************************************************/ 1330/*****************************************************************************/
140 1331
141typedef struct 1332#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147 1333
148static ANFD *anfds; 1334/* find a suitable new size for the given array, */
149static int anfdmax; 1335/* hopefully by rounding to a nice-to-malloc size */
150 1336inline_size int
151static void 1337array_nextsize (int elem, int cur, int cnt)
152anfds_init (ANFD *base, int count)
153{ 1338{
154 while (count--) 1339 int ncur = cur + 1;
155 {
156 base->head = 0;
157 base->events = EV_NONE;
158 base->reify = 0;
159 1340
160 ++base; 1341 do
1342 ncur <<= 1;
1343 while (cnt > ncur);
1344
1345 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1346 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
161 } 1347 {
162} 1348 ncur *= elem;
163 1349 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
164typedef struct 1350 ncur = ncur - sizeof (void *) * 4;
165{ 1351 ncur /= elem;
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void
174event (W w, int events)
175{
176 if (w->pending)
177 { 1352 }
1353
1354 return ncur;
1355}
1356
1357static void * noinline ecb_cold
1358array_realloc (int elem, void *base, int *cur, int cnt)
1359{
1360 *cur = array_nextsize (elem, *cur, cnt);
1361 return ev_realloc (base, elem * *cur);
1362}
1363
1364#define array_init_zero(base,count) \
1365 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1366
1367#define array_needsize(type,base,cur,cnt,init) \
1368 if (expect_false ((cnt) > (cur))) \
1369 { \
1370 int ecb_unused ocur_ = (cur); \
1371 (base) = (type *)array_realloc \
1372 (sizeof (type), (base), &(cur), (cnt)); \
1373 init ((base) + (ocur_), (cur) - ocur_); \
1374 }
1375
1376#if 0
1377#define array_slim(type,stem) \
1378 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1379 { \
1380 stem ## max = array_roundsize (stem ## cnt >> 1); \
1381 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1382 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1383 }
1384#endif
1385
1386#define array_free(stem, idx) \
1387 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1388
1389/*****************************************************************************/
1390
1391/* dummy callback for pending events */
1392static void noinline
1393pendingcb (EV_P_ ev_prepare *w, int revents)
1394{
1395}
1396
1397void noinline
1398ev_feed_event (EV_P_ void *w, int revents)
1399{
1400 W w_ = (W)w;
1401 int pri = ABSPRI (w_);
1402
1403 if (expect_false (w_->pending))
1404 pendings [pri][w_->pending - 1].events |= revents;
1405 else
1406 {
1407 w_->pending = ++pendingcnt [pri];
1408 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1409 pendings [pri][w_->pending - 1].w = w_;
178 pendings [w->pending - 1].events |= events; 1410 pendings [pri][w_->pending - 1].events = revents;
179 return;
180 } 1411 }
181
182 w->pending = ++pendingcnt;
183 array_needsize (pendings, pendingmax, pendingcnt, );
184 pendings [pendingcnt - 1].w = w;
185 pendings [pendingcnt - 1].events = events;
186} 1412}
187 1413
188static void 1414inline_speed void
1415feed_reverse (EV_P_ W w)
1416{
1417 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1418 rfeeds [rfeedcnt++] = w;
1419}
1420
1421inline_size void
1422feed_reverse_done (EV_P_ int revents)
1423{
1424 do
1425 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1426 while (rfeedcnt);
1427}
1428
1429inline_speed void
189queue_events (W *events, int eventcnt, int type) 1430queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 1431{
191 int i; 1432 int i;
192 1433
193 for (i = 0; i < eventcnt; ++i) 1434 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 1435 ev_feed_event (EV_A_ events [i], type);
195} 1436}
196 1437
197static void 1438/*****************************************************************************/
1439
1440inline_speed void
198fd_event (int fd, int events) 1441fd_event_nocheck (EV_P_ int fd, int revents)
199{ 1442{
200 ANFD *anfd = anfds + fd; 1443 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 1444 ev_io *w;
202 1445
203 for (w = anfd->head; w; w = w->next) 1446 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
204 { 1447 {
205 int ev = w->events & events; 1448 int ev = w->events & revents;
206 1449
207 if (ev) 1450 if (ev)
208 event ((W)w, ev); 1451 ev_feed_event (EV_A_ (W)w, ev);
209 } 1452 }
210} 1453}
211 1454
212/*****************************************************************************/ 1455/* do not submit kernel events for fds that have reify set */
1456/* because that means they changed while we were polling for new events */
1457inline_speed void
1458fd_event (EV_P_ int fd, int revents)
1459{
1460 ANFD *anfd = anfds + fd;
213 1461
214static int *fdchanges; 1462 if (expect_true (!anfd->reify))
215static int fdchangemax, fdchangecnt; 1463 fd_event_nocheck (EV_A_ fd, revents);
1464}
216 1465
217static void 1466void
218fd_reify (void) 1467ev_feed_fd_event (EV_P_ int fd, int revents)
1468{
1469 if (fd >= 0 && fd < anfdmax)
1470 fd_event_nocheck (EV_A_ fd, revents);
1471}
1472
1473/* make sure the external fd watch events are in-sync */
1474/* with the kernel/libev internal state */
1475inline_size void
1476fd_reify (EV_P)
219{ 1477{
220 int i; 1478 int i;
221 1479
1480#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
222 for (i = 0; i < fdchangecnt; ++i) 1481 for (i = 0; i < fdchangecnt; ++i)
223 { 1482 {
224 int fd = fdchanges [i]; 1483 int fd = fdchanges [i];
225 ANFD *anfd = anfds + fd; 1484 ANFD *anfd = anfds + fd;
226 struct ev_io *w;
227 1485
228 int events = 0; 1486 if (anfd->reify & EV__IOFDSET && anfd->head)
229
230 for (w = anfd->head; w; w = w->next)
231 events |= w->events;
232
233 anfd->reify = 0;
234
235 if (anfd->events != events)
236 { 1487 {
1488 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1489
1490 if (handle != anfd->handle)
1491 {
1492 unsigned long arg;
1493
1494 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1495
1496 /* handle changed, but fd didn't - we need to do it in two steps */
237 method_modify (fd, anfd->events, events); 1497 backend_modify (EV_A_ fd, anfd->events, 0);
238 anfd->events = events; 1498 anfd->events = 0;
1499 anfd->handle = handle;
1500 }
239 } 1501 }
240 } 1502 }
1503#endif
1504
1505 for (i = 0; i < fdchangecnt; ++i)
1506 {
1507 int fd = fdchanges [i];
1508 ANFD *anfd = anfds + fd;
1509 ev_io *w;
1510
1511 unsigned char o_events = anfd->events;
1512 unsigned char o_reify = anfd->reify;
1513
1514 anfd->reify = 0;
1515
1516 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1517 {
1518 anfd->events = 0;
1519
1520 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1521 anfd->events |= (unsigned char)w->events;
1522
1523 if (o_events != anfd->events)
1524 o_reify = EV__IOFDSET; /* actually |= */
1525 }
1526
1527 if (o_reify & EV__IOFDSET)
1528 backend_modify (EV_A_ fd, o_events, anfd->events);
1529 }
241 1530
242 fdchangecnt = 0; 1531 fdchangecnt = 0;
243} 1532}
244 1533
245static void 1534/* something about the given fd changed */
246fd_change (int fd) 1535inline_size void
1536fd_change (EV_P_ int fd, int flags)
247{ 1537{
248 if (anfds [fd].reify || fdchangecnt < 0) 1538 unsigned char reify = anfds [fd].reify;
249 return;
250
251 anfds [fd].reify = 1; 1539 anfds [fd].reify |= flags;
252 1540
1541 if (expect_true (!reify))
1542 {
253 ++fdchangecnt; 1543 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1544 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
255 fdchanges [fdchangecnt - 1] = fd; 1545 fdchanges [fdchangecnt - 1] = fd;
1546 }
1547}
1548
1549/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1550inline_speed void ecb_cold
1551fd_kill (EV_P_ int fd)
1552{
1553 ev_io *w;
1554
1555 while ((w = (ev_io *)anfds [fd].head))
1556 {
1557 ev_io_stop (EV_A_ w);
1558 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1559 }
1560}
1561
1562/* check whether the given fd is actually valid, for error recovery */
1563inline_size int ecb_cold
1564fd_valid (int fd)
1565{
1566#ifdef _WIN32
1567 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1568#else
1569 return fcntl (fd, F_GETFD) != -1;
1570#endif
256} 1571}
257 1572
258/* called on EBADF to verify fds */ 1573/* called on EBADF to verify fds */
259static void 1574static void noinline ecb_cold
260fd_recheck (void) 1575fd_ebadf (EV_P)
261{ 1576{
262 int fd; 1577 int fd;
263 1578
264 for (fd = 0; fd < anfdmax; ++fd) 1579 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 1580 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1581 if (!fd_valid (fd) && errno == EBADF)
267 while (anfds [fd].head) 1582 fd_kill (EV_A_ fd);
1583}
1584
1585/* called on ENOMEM in select/poll to kill some fds and retry */
1586static void noinline ecb_cold
1587fd_enomem (EV_P)
1588{
1589 int fd;
1590
1591 for (fd = anfdmax; fd--; )
1592 if (anfds [fd].events)
1593 {
1594 fd_kill (EV_A_ fd);
1595 break;
1596 }
1597}
1598
1599/* usually called after fork if backend needs to re-arm all fds from scratch */
1600static void noinline
1601fd_rearm_all (EV_P)
1602{
1603 int fd;
1604
1605 for (fd = 0; fd < anfdmax; ++fd)
1606 if (anfds [fd].events)
1607 {
1608 anfds [fd].events = 0;
1609 anfds [fd].emask = 0;
1610 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1611 }
1612}
1613
1614/* used to prepare libev internal fd's */
1615/* this is not fork-safe */
1616inline_speed void
1617fd_intern (int fd)
1618{
1619#ifdef _WIN32
1620 unsigned long arg = 1;
1621 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1622#else
1623 fcntl (fd, F_SETFD, FD_CLOEXEC);
1624 fcntl (fd, F_SETFL, O_NONBLOCK);
1625#endif
1626}
1627
1628/*****************************************************************************/
1629
1630/*
1631 * the heap functions want a real array index. array index 0 is guaranteed to not
1632 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1633 * the branching factor of the d-tree.
1634 */
1635
1636/*
1637 * at the moment we allow libev the luxury of two heaps,
1638 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1639 * which is more cache-efficient.
1640 * the difference is about 5% with 50000+ watchers.
1641 */
1642#if EV_USE_4HEAP
1643
1644#define DHEAP 4
1645#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1646#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1647#define UPHEAP_DONE(p,k) ((p) == (k))
1648
1649/* away from the root */
1650inline_speed void
1651downheap (ANHE *heap, int N, int k)
1652{
1653 ANHE he = heap [k];
1654 ANHE *E = heap + N + HEAP0;
1655
1656 for (;;)
1657 {
1658 ev_tstamp minat;
1659 ANHE *minpos;
1660 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1661
1662 /* find minimum child */
1663 if (expect_true (pos + DHEAP - 1 < E))
1664 {
1665 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1666 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1667 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1668 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1669 }
1670 else if (pos < E)
1671 {
1672 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1673 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1674 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1675 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1676 }
1677 else
1678 break;
1679
1680 if (ANHE_at (he) <= minat)
1681 break;
1682
1683 heap [k] = *minpos;
1684 ev_active (ANHE_w (*minpos)) = k;
1685
1686 k = minpos - heap;
1687 }
1688
1689 heap [k] = he;
1690 ev_active (ANHE_w (he)) = k;
1691}
1692
1693#else /* 4HEAP */
1694
1695#define HEAP0 1
1696#define HPARENT(k) ((k) >> 1)
1697#define UPHEAP_DONE(p,k) (!(p))
1698
1699/* away from the root */
1700inline_speed void
1701downheap (ANHE *heap, int N, int k)
1702{
1703 ANHE he = heap [k];
1704
1705 for (;;)
1706 {
1707 int c = k << 1;
1708
1709 if (c >= N + HEAP0)
1710 break;
1711
1712 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1713 ? 1 : 0;
1714
1715 if (ANHE_at (he) <= ANHE_at (heap [c]))
1716 break;
1717
1718 heap [k] = heap [c];
1719 ev_active (ANHE_w (heap [k])) = k;
1720
1721 k = c;
1722 }
1723
1724 heap [k] = he;
1725 ev_active (ANHE_w (he)) = k;
1726}
1727#endif
1728
1729/* towards the root */
1730inline_speed void
1731upheap (ANHE *heap, int k)
1732{
1733 ANHE he = heap [k];
1734
1735 for (;;)
1736 {
1737 int p = HPARENT (k);
1738
1739 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1740 break;
1741
1742 heap [k] = heap [p];
1743 ev_active (ANHE_w (heap [k])) = k;
1744 k = p;
1745 }
1746
1747 heap [k] = he;
1748 ev_active (ANHE_w (he)) = k;
1749}
1750
1751/* move an element suitably so it is in a correct place */
1752inline_size void
1753adjustheap (ANHE *heap, int N, int k)
1754{
1755 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1756 upheap (heap, k);
1757 else
1758 downheap (heap, N, k);
1759}
1760
1761/* rebuild the heap: this function is used only once and executed rarely */
1762inline_size void
1763reheap (ANHE *heap, int N)
1764{
1765 int i;
1766
1767 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1768 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1769 for (i = 0; i < N; ++i)
1770 upheap (heap, i + HEAP0);
1771}
1772
1773/*****************************************************************************/
1774
1775/* associate signal watchers to a signal signal */
1776typedef struct
1777{
1778 EV_ATOMIC_T pending;
1779#if EV_MULTIPLICITY
1780 EV_P;
1781#endif
1782 WL head;
1783} ANSIG;
1784
1785static ANSIG signals [EV_NSIG - 1];
1786
1787/*****************************************************************************/
1788
1789#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1790
1791static void noinline ecb_cold
1792evpipe_init (EV_P)
1793{
1794 if (!ev_is_active (&pipe_w))
1795 {
1796# if EV_USE_EVENTFD
1797 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1798 if (evfd < 0 && errno == EINVAL)
1799 evfd = eventfd (0, 0);
1800
1801 if (evfd >= 0)
1802 {
1803 evpipe [0] = -1;
1804 fd_intern (evfd); /* doing it twice doesn't hurt */
1805 ev_io_set (&pipe_w, evfd, EV_READ);
1806 }
1807 else
1808# endif
1809 {
1810 while (pipe (evpipe))
1811 ev_syserr ("(libev) error creating signal/async pipe");
1812
1813 fd_intern (evpipe [0]);
1814 fd_intern (evpipe [1]);
1815 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1816 }
1817
1818 ev_io_start (EV_A_ &pipe_w);
1819 ev_unref (EV_A); /* watcher should not keep loop alive */
1820 }
1821}
1822
1823inline_speed void
1824evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1825{
1826 if (expect_true (*flag))
1827 return;
1828
1829 *flag = 1;
1830
1831 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1832
1833 pipe_write_skipped = 1;
1834
1835 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1836
1837 if (pipe_write_wanted)
1838 {
1839 int old_errno;
1840
1841 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1842
1843 old_errno = errno; /* save errno because write will clobber it */
1844
1845#if EV_USE_EVENTFD
1846 if (evfd >= 0)
1847 {
1848 uint64_t counter = 1;
1849 write (evfd, &counter, sizeof (uint64_t));
1850 }
1851 else
1852#endif
1853 {
1854 /* win32 people keep sending patches that change this write() to send() */
1855 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1856 /* so when you think this write should be a send instead, please find out */
1857 /* where your send() is from - it's definitely not the microsoft send, and */
1858 /* tell me. thank you. */
1859 write (evpipe [1], &(evpipe [1]), 1);
1860 }
1861
1862 errno = old_errno;
1863 }
1864}
1865
1866/* called whenever the libev signal pipe */
1867/* got some events (signal, async) */
1868static void
1869pipecb (EV_P_ ev_io *iow, int revents)
1870{
1871 int i;
1872
1873 if (revents & EV_READ)
1874 {
1875#if EV_USE_EVENTFD
1876 if (evfd >= 0)
1877 {
1878 uint64_t counter;
1879 read (evfd, &counter, sizeof (uint64_t));
1880 }
1881 else
1882#endif
1883 {
1884 char dummy;
1885 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1886 read (evpipe [0], &dummy, 1);
1887 }
1888 }
1889
1890 pipe_write_skipped = 0;
1891
1892#if EV_SIGNAL_ENABLE
1893 if (sig_pending)
1894 {
1895 sig_pending = 0;
1896
1897 for (i = EV_NSIG - 1; i--; )
1898 if (expect_false (signals [i].pending))
1899 ev_feed_signal_event (EV_A_ i + 1);
1900 }
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 if (async_pending)
1905 {
1906 async_pending = 0;
1907
1908 for (i = asynccnt; i--; )
1909 if (asyncs [i]->sent)
268 { 1910 {
269 ev_io_stop (anfds [fd].head); 1911 asyncs [i]->sent = 0;
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 1912 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
271 } 1913 }
1914 }
1915#endif
272} 1916}
273 1917
274/*****************************************************************************/ 1918/*****************************************************************************/
275 1919
276static struct ev_timer **timers; 1920void
277static int timermax, timercnt; 1921ev_feed_signal (int signum)
1922{
1923#if EV_MULTIPLICITY
1924 EV_P = signals [signum - 1].loop;
278 1925
279static struct ev_periodic **periodics; 1926 if (!EV_A)
280static int periodicmax, periodiccnt; 1927 return;
1928#endif
1929
1930 if (!ev_active (&pipe_w))
1931 return;
1932
1933 signals [signum - 1].pending = 1;
1934 evpipe_write (EV_A_ &sig_pending);
1935}
281 1936
282static void 1937static void
283upheap (WT *timers, int k) 1938ev_sighandler (int signum)
284{ 1939{
285 WT w = timers [k]; 1940#ifdef _WIN32
1941 signal (signum, ev_sighandler);
1942#endif
286 1943
287 while (k && timers [k >> 1]->at > w->at) 1944 ev_feed_signal (signum);
288 {
289 timers [k] = timers [k >> 1];
290 timers [k]->active = k + 1;
291 k >>= 1;
292 }
293
294 timers [k] = w;
295 timers [k]->active = k + 1;
296
297} 1945}
298 1946
1947void noinline
1948ev_feed_signal_event (EV_P_ int signum)
1949{
1950 WL w;
1951
1952 if (expect_false (signum <= 0 || signum > EV_NSIG))
1953 return;
1954
1955 --signum;
1956
1957#if EV_MULTIPLICITY
1958 /* it is permissible to try to feed a signal to the wrong loop */
1959 /* or, likely more useful, feeding a signal nobody is waiting for */
1960
1961 if (expect_false (signals [signum].loop != EV_A))
1962 return;
1963#endif
1964
1965 signals [signum].pending = 0;
1966
1967 for (w = signals [signum].head; w; w = w->next)
1968 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1969}
1970
1971#if EV_USE_SIGNALFD
299static void 1972static void
300downheap (WT *timers, int N, int k) 1973sigfdcb (EV_P_ ev_io *iow, int revents)
301{ 1974{
302 WT w = timers [k]; 1975 struct signalfd_siginfo si[2], *sip; /* these structs are big */
303 1976
304 while (k < (N >> 1)) 1977 for (;;)
305 { 1978 {
306 int j = k << 1; 1979 ssize_t res = read (sigfd, si, sizeof (si));
307 1980
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1981 /* not ISO-C, as res might be -1, but works with SuS */
309 ++j; 1982 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1983 ev_feed_signal_event (EV_A_ sip->ssi_signo);
310 1984
311 if (w->at <= timers [j]->at) 1985 if (res < (ssize_t)sizeof (si))
312 break; 1986 break;
313
314 timers [k] = timers [j];
315 timers [k]->active = k + 1;
316 k = j;
317 } 1987 }
318
319 timers [k] = w;
320 timers [k]->active = k + 1;
321} 1988}
1989#endif
1990
1991#endif
322 1992
323/*****************************************************************************/ 1993/*****************************************************************************/
324 1994
325typedef struct 1995#if EV_CHILD_ENABLE
326{ 1996static WL childs [EV_PID_HASHSIZE];
327 struct ev_signal *head;
328 sig_atomic_t volatile gotsig;
329} ANSIG;
330 1997
331static ANSIG *signals;
332static int signalmax;
333
334static int sigpipe [2];
335static sig_atomic_t volatile gotsig;
336static struct ev_io sigev;
337
338static void
339signals_init (ANSIG *base, int count)
340{
341 while (count--)
342 {
343 base->head = 0;
344 base->gotsig = 0;
345
346 ++base;
347 }
348}
349
350static void
351sighandler (int signum)
352{
353 signals [signum - 1].gotsig = 1;
354
355 if (!gotsig)
356 {
357 gotsig = 1;
358 write (sigpipe [1], &signum, 1);
359 }
360}
361
362static void
363sigcb (struct ev_io *iow, int revents)
364{
365 struct ev_signal *w;
366 int sig;
367
368 read (sigpipe [0], &revents, 1);
369 gotsig = 0;
370
371 for (sig = signalmax; sig--; )
372 if (signals [sig].gotsig)
373 {
374 signals [sig].gotsig = 0;
375
376 for (w = signals [sig].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL);
378 }
379}
380
381static void
382siginit (void)
383{
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386
387 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
390
391 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev);
393}
394
395/*****************************************************************************/
396
397static struct ev_idle **idles;
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407
408static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 1998static ev_signal childev;
1999
2000#ifndef WIFCONTINUED
2001# define WIFCONTINUED(status) 0
2002#endif
2003
2004/* handle a single child status event */
2005inline_speed void
2006child_reap (EV_P_ int chain, int pid, int status)
2007{
2008 ev_child *w;
2009 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2010
2011 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2012 {
2013 if ((w->pid == pid || !w->pid)
2014 && (!traced || (w->flags & 1)))
2015 {
2016 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2017 w->rpid = pid;
2018 w->rstatus = status;
2019 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2020 }
2021 }
2022}
410 2023
411#ifndef WCONTINUED 2024#ifndef WCONTINUED
412# define WCONTINUED 0 2025# define WCONTINUED 0
413#endif 2026#endif
414 2027
2028/* called on sigchld etc., calls waitpid */
415static void 2029static void
416childcb (struct ev_signal *sw, int revents) 2030childcb (EV_P_ ev_signal *sw, int revents)
417{ 2031{
418 struct ev_child *w;
419 int pid, status; 2032 int pid, status;
420 2033
2034 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 2035 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 2036 if (!WCONTINUED
423 if (w->pid == pid || w->pid == -1) 2037 || errno != EINVAL
424 { 2038 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
425 w->status = status; 2039 return;
426 event ((W)w, EV_CHILD); 2040
427 } 2041 /* make sure we are called again until all children have been reaped */
2042 /* we need to do it this way so that the callback gets called before we continue */
2043 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2044
2045 child_reap (EV_A_ pid, pid, status);
2046 if ((EV_PID_HASHSIZE) > 1)
2047 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
428} 2048}
2049
2050#endif
429 2051
430/*****************************************************************************/ 2052/*****************************************************************************/
431 2053
2054#if EV_USE_IOCP
2055# include "ev_iocp.c"
2056#endif
2057#if EV_USE_PORT
2058# include "ev_port.c"
2059#endif
2060#if EV_USE_KQUEUE
2061# include "ev_kqueue.c"
2062#endif
432#if EV_USE_EPOLL 2063#if EV_USE_EPOLL
433# include "ev_epoll.c" 2064# include "ev_epoll.c"
434#endif 2065#endif
2066#if EV_USE_POLL
2067# include "ev_poll.c"
2068#endif
435#if EV_USE_SELECT 2069#if EV_USE_SELECT
436# include "ev_select.c" 2070# include "ev_select.c"
437#endif 2071#endif
438 2072
2073int ecb_cold
2074ev_version_major (void)
2075{
2076 return EV_VERSION_MAJOR;
2077}
2078
2079int ecb_cold
2080ev_version_minor (void)
2081{
2082 return EV_VERSION_MINOR;
2083}
2084
2085/* return true if we are running with elevated privileges and should ignore env variables */
2086int inline_size ecb_cold
2087enable_secure (void)
2088{
2089#ifdef _WIN32
2090 return 0;
2091#else
2092 return getuid () != geteuid ()
2093 || getgid () != getegid ();
2094#endif
2095}
2096
2097unsigned int ecb_cold
2098ev_supported_backends (void)
2099{
2100 unsigned int flags = 0;
2101
2102 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2103 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2104 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2105 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2106 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2107
2108 return flags;
2109}
2110
2111unsigned int ecb_cold
2112ev_recommended_backends (void)
2113{
2114 unsigned int flags = ev_supported_backends ();
2115
2116#ifndef __NetBSD__
2117 /* kqueue is borked on everything but netbsd apparently */
2118 /* it usually doesn't work correctly on anything but sockets and pipes */
2119 flags &= ~EVBACKEND_KQUEUE;
2120#endif
2121#ifdef __APPLE__
2122 /* only select works correctly on that "unix-certified" platform */
2123 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2124 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2125#endif
2126#ifdef __FreeBSD__
2127 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2128#endif
2129
2130 return flags;
2131}
2132
2133unsigned int ecb_cold
2134ev_embeddable_backends (void)
2135{
2136 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2137
2138 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2139 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2140 flags &= ~EVBACKEND_EPOLL;
2141
2142 return flags;
2143}
2144
2145unsigned int
2146ev_backend (EV_P)
2147{
2148 return backend;
2149}
2150
2151#if EV_FEATURE_API
2152unsigned int
2153ev_iteration (EV_P)
2154{
2155 return loop_count;
2156}
2157
2158unsigned int
2159ev_depth (EV_P)
2160{
2161 return loop_depth;
2162}
2163
2164void
2165ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2166{
2167 io_blocktime = interval;
2168}
2169
2170void
2171ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2172{
2173 timeout_blocktime = interval;
2174}
2175
2176void
2177ev_set_userdata (EV_P_ void *data)
2178{
2179 userdata = data;
2180}
2181
2182void *
2183ev_userdata (EV_P)
2184{
2185 return userdata;
2186}
2187
2188void
2189ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2190{
2191 invoke_cb = invoke_pending_cb;
2192}
2193
2194void
2195ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2196{
2197 release_cb = release;
2198 acquire_cb = acquire;
2199}
2200#endif
2201
2202/* initialise a loop structure, must be zero-initialised */
2203static void noinline ecb_cold
2204loop_init (EV_P_ unsigned int flags)
2205{
2206 if (!backend)
2207 {
2208 origflags = flags;
2209
2210#if EV_USE_REALTIME
2211 if (!have_realtime)
2212 {
2213 struct timespec ts;
2214
2215 if (!clock_gettime (CLOCK_REALTIME, &ts))
2216 have_realtime = 1;
2217 }
2218#endif
2219
2220#if EV_USE_MONOTONIC
2221 if (!have_monotonic)
2222 {
2223 struct timespec ts;
2224
2225 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2226 have_monotonic = 1;
2227 }
2228#endif
2229
2230 /* pid check not overridable via env */
2231#ifndef _WIN32
2232 if (flags & EVFLAG_FORKCHECK)
2233 curpid = getpid ();
2234#endif
2235
2236 if (!(flags & EVFLAG_NOENV)
2237 && !enable_secure ()
2238 && getenv ("LIBEV_FLAGS"))
2239 flags = atoi (getenv ("LIBEV_FLAGS"));
2240
2241 ev_rt_now = ev_time ();
2242 mn_now = get_clock ();
2243 now_floor = mn_now;
2244 rtmn_diff = ev_rt_now - mn_now;
2245#if EV_FEATURE_API
2246 invoke_cb = ev_invoke_pending;
2247#endif
2248
2249 io_blocktime = 0.;
2250 timeout_blocktime = 0.;
2251 backend = 0;
2252 backend_fd = -1;
2253 sig_pending = 0;
2254#if EV_ASYNC_ENABLE
2255 async_pending = 0;
2256#endif
2257 pipe_write_skipped = 0;
2258 pipe_write_wanted = 0;
2259#if EV_USE_INOTIFY
2260 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2261#endif
2262#if EV_USE_SIGNALFD
2263 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2264#endif
2265
2266 if (!(flags & EVBACKEND_MASK))
2267 flags |= ev_recommended_backends ();
2268
2269#if EV_USE_IOCP
2270 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2271#endif
2272#if EV_USE_PORT
2273 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2274#endif
2275#if EV_USE_KQUEUE
2276 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2277#endif
2278#if EV_USE_EPOLL
2279 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2280#endif
2281#if EV_USE_POLL
2282 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2283#endif
2284#if EV_USE_SELECT
2285 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2286#endif
2287
2288 ev_prepare_init (&pending_w, pendingcb);
2289
2290#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2291 ev_init (&pipe_w, pipecb);
2292 ev_set_priority (&pipe_w, EV_MAXPRI);
2293#endif
2294 }
2295}
2296
2297/* free up a loop structure */
2298void ecb_cold
2299ev_loop_destroy (EV_P)
2300{
2301 int i;
2302
2303#if EV_MULTIPLICITY
2304 /* mimic free (0) */
2305 if (!EV_A)
2306 return;
2307#endif
2308
2309#if EV_CLEANUP_ENABLE
2310 /* queue cleanup watchers (and execute them) */
2311 if (expect_false (cleanupcnt))
2312 {
2313 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2314 EV_INVOKE_PENDING;
2315 }
2316#endif
2317
2318#if EV_CHILD_ENABLE
2319 if (ev_is_active (&childev))
2320 {
2321 ev_ref (EV_A); /* child watcher */
2322 ev_signal_stop (EV_A_ &childev);
2323 }
2324#endif
2325
2326 if (ev_is_active (&pipe_w))
2327 {
2328 /*ev_ref (EV_A);*/
2329 /*ev_io_stop (EV_A_ &pipe_w);*/
2330
2331#if EV_USE_EVENTFD
2332 if (evfd >= 0)
2333 close (evfd);
2334#endif
2335
2336 if (evpipe [0] >= 0)
2337 {
2338 EV_WIN32_CLOSE_FD (evpipe [0]);
2339 EV_WIN32_CLOSE_FD (evpipe [1]);
2340 }
2341 }
2342
2343#if EV_USE_SIGNALFD
2344 if (ev_is_active (&sigfd_w))
2345 close (sigfd);
2346#endif
2347
2348#if EV_USE_INOTIFY
2349 if (fs_fd >= 0)
2350 close (fs_fd);
2351#endif
2352
2353 if (backend_fd >= 0)
2354 close (backend_fd);
2355
2356#if EV_USE_IOCP
2357 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2358#endif
2359#if EV_USE_PORT
2360 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2361#endif
2362#if EV_USE_KQUEUE
2363 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2364#endif
2365#if EV_USE_EPOLL
2366 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2367#endif
2368#if EV_USE_POLL
2369 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2370#endif
2371#if EV_USE_SELECT
2372 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2373#endif
2374
2375 for (i = NUMPRI; i--; )
2376 {
2377 array_free (pending, [i]);
2378#if EV_IDLE_ENABLE
2379 array_free (idle, [i]);
2380#endif
2381 }
2382
2383 ev_free (anfds); anfds = 0; anfdmax = 0;
2384
2385 /* have to use the microsoft-never-gets-it-right macro */
2386 array_free (rfeed, EMPTY);
2387 array_free (fdchange, EMPTY);
2388 array_free (timer, EMPTY);
2389#if EV_PERIODIC_ENABLE
2390 array_free (periodic, EMPTY);
2391#endif
2392#if EV_FORK_ENABLE
2393 array_free (fork, EMPTY);
2394#endif
2395#if EV_CLEANUP_ENABLE
2396 array_free (cleanup, EMPTY);
2397#endif
2398 array_free (prepare, EMPTY);
2399 array_free (check, EMPTY);
2400#if EV_ASYNC_ENABLE
2401 array_free (async, EMPTY);
2402#endif
2403
2404 backend = 0;
2405
2406#if EV_MULTIPLICITY
2407 if (ev_is_default_loop (EV_A))
2408#endif
2409 ev_default_loop_ptr = 0;
2410#if EV_MULTIPLICITY
2411 else
2412 ev_free (EV_A);
2413#endif
2414}
2415
2416#if EV_USE_INOTIFY
2417inline_size void infy_fork (EV_P);
2418#endif
2419
2420inline_size void
2421loop_fork (EV_P)
2422{
2423#if EV_USE_PORT
2424 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2425#endif
2426#if EV_USE_KQUEUE
2427 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2428#endif
2429#if EV_USE_EPOLL
2430 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2431#endif
2432#if EV_USE_INOTIFY
2433 infy_fork (EV_A);
2434#endif
2435
2436 if (ev_is_active (&pipe_w))
2437 {
2438 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2439
2440 ev_ref (EV_A);
2441 ev_io_stop (EV_A_ &pipe_w);
2442
2443#if EV_USE_EVENTFD
2444 if (evfd >= 0)
2445 close (evfd);
2446#endif
2447
2448 if (evpipe [0] >= 0)
2449 {
2450 EV_WIN32_CLOSE_FD (evpipe [0]);
2451 EV_WIN32_CLOSE_FD (evpipe [1]);
2452 }
2453
2454#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2455 evpipe_init (EV_A);
2456 /* now iterate over everything, in case we missed something */
2457 pipecb (EV_A_ &pipe_w, EV_READ);
2458#endif
2459 }
2460
2461 postfork = 0;
2462}
2463
2464#if EV_MULTIPLICITY
2465
2466struct ev_loop * ecb_cold
2467ev_loop_new (unsigned int flags)
2468{
2469 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2470
2471 memset (EV_A, 0, sizeof (struct ev_loop));
2472 loop_init (EV_A_ flags);
2473
2474 if (ev_backend (EV_A))
2475 return EV_A;
2476
2477 ev_free (EV_A);
2478 return 0;
2479}
2480
2481#endif /* multiplicity */
2482
2483#if EV_VERIFY
2484static void noinline ecb_cold
2485verify_watcher (EV_P_ W w)
2486{
2487 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2488
2489 if (w->pending)
2490 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2491}
2492
2493static void noinline ecb_cold
2494verify_heap (EV_P_ ANHE *heap, int N)
2495{
2496 int i;
2497
2498 for (i = HEAP0; i < N + HEAP0; ++i)
2499 {
2500 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2501 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2502 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2503
2504 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2505 }
2506}
2507
2508static void noinline ecb_cold
2509array_verify (EV_P_ W *ws, int cnt)
2510{
2511 while (cnt--)
2512 {
2513 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2514 verify_watcher (EV_A_ ws [cnt]);
2515 }
2516}
2517#endif
2518
2519#if EV_FEATURE_API
2520void ecb_cold
2521ev_verify (EV_P)
2522{
2523#if EV_VERIFY
2524 int i;
2525 WL w;
2526
2527 assert (activecnt >= -1);
2528
2529 assert (fdchangemax >= fdchangecnt);
2530 for (i = 0; i < fdchangecnt; ++i)
2531 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2532
2533 assert (anfdmax >= 0);
2534 for (i = 0; i < anfdmax; ++i)
2535 for (w = anfds [i].head; w; w = w->next)
2536 {
2537 verify_watcher (EV_A_ (W)w);
2538 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2539 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2540 }
2541
2542 assert (timermax >= timercnt);
2543 verify_heap (EV_A_ timers, timercnt);
2544
2545#if EV_PERIODIC_ENABLE
2546 assert (periodicmax >= periodiccnt);
2547 verify_heap (EV_A_ periodics, periodiccnt);
2548#endif
2549
2550 for (i = NUMPRI; i--; )
2551 {
2552 assert (pendingmax [i] >= pendingcnt [i]);
2553#if EV_IDLE_ENABLE
2554 assert (idleall >= 0);
2555 assert (idlemax [i] >= idlecnt [i]);
2556 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2557#endif
2558 }
2559
2560#if EV_FORK_ENABLE
2561 assert (forkmax >= forkcnt);
2562 array_verify (EV_A_ (W *)forks, forkcnt);
2563#endif
2564
2565#if EV_CLEANUP_ENABLE
2566 assert (cleanupmax >= cleanupcnt);
2567 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2568#endif
2569
2570#if EV_ASYNC_ENABLE
2571 assert (asyncmax >= asynccnt);
2572 array_verify (EV_A_ (W *)asyncs, asynccnt);
2573#endif
2574
2575#if EV_PREPARE_ENABLE
2576 assert (preparemax >= preparecnt);
2577 array_verify (EV_A_ (W *)prepares, preparecnt);
2578#endif
2579
2580#if EV_CHECK_ENABLE
2581 assert (checkmax >= checkcnt);
2582 array_verify (EV_A_ (W *)checks, checkcnt);
2583#endif
2584
2585# if 0
2586#if EV_CHILD_ENABLE
2587 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2588 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2589#endif
2590# endif
2591#endif
2592}
2593#endif
2594
2595#if EV_MULTIPLICITY
2596struct ev_loop * ecb_cold
2597#else
439int 2598int
440ev_version_major (void) 2599#endif
2600ev_default_loop (unsigned int flags)
441{ 2601{
442 return EV_VERSION_MAJOR; 2602 if (!ev_default_loop_ptr)
2603 {
2604#if EV_MULTIPLICITY
2605 EV_P = ev_default_loop_ptr = &default_loop_struct;
2606#else
2607 ev_default_loop_ptr = 1;
2608#endif
2609
2610 loop_init (EV_A_ flags);
2611
2612 if (ev_backend (EV_A))
2613 {
2614#if EV_CHILD_ENABLE
2615 ev_signal_init (&childev, childcb, SIGCHLD);
2616 ev_set_priority (&childev, EV_MAXPRI);
2617 ev_signal_start (EV_A_ &childev);
2618 ev_unref (EV_A); /* child watcher should not keep loop alive */
2619#endif
2620 }
2621 else
2622 ev_default_loop_ptr = 0;
2623 }
2624
2625 return ev_default_loop_ptr;
2626}
2627
2628void
2629ev_loop_fork (EV_P)
2630{
2631 postfork = 1; /* must be in line with ev_default_fork */
2632}
2633
2634/*****************************************************************************/
2635
2636void
2637ev_invoke (EV_P_ void *w, int revents)
2638{
2639 EV_CB_INVOKE ((W)w, revents);
2640}
2641
2642unsigned int
2643ev_pending_count (EV_P)
2644{
2645 int pri;
2646 unsigned int count = 0;
2647
2648 for (pri = NUMPRI; pri--; )
2649 count += pendingcnt [pri];
2650
2651 return count;
2652}
2653
2654void noinline
2655ev_invoke_pending (EV_P)
2656{
2657 int pri;
2658
2659 for (pri = NUMPRI; pri--; )
2660 while (pendingcnt [pri])
2661 {
2662 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2663
2664 p->w->pending = 0;
2665 EV_CB_INVOKE (p->w, p->events);
2666 EV_FREQUENT_CHECK;
2667 }
2668}
2669
2670#if EV_IDLE_ENABLE
2671/* make idle watchers pending. this handles the "call-idle */
2672/* only when higher priorities are idle" logic */
2673inline_size void
2674idle_reify (EV_P)
2675{
2676 if (expect_false (idleall))
2677 {
2678 int pri;
2679
2680 for (pri = NUMPRI; pri--; )
2681 {
2682 if (pendingcnt [pri])
2683 break;
2684
2685 if (idlecnt [pri])
2686 {
2687 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2688 break;
2689 }
2690 }
2691 }
2692}
2693#endif
2694
2695/* make timers pending */
2696inline_size void
2697timers_reify (EV_P)
2698{
2699 EV_FREQUENT_CHECK;
2700
2701 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2702 {
2703 do
2704 {
2705 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2706
2707 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2708
2709 /* first reschedule or stop timer */
2710 if (w->repeat)
2711 {
2712 ev_at (w) += w->repeat;
2713 if (ev_at (w) < mn_now)
2714 ev_at (w) = mn_now;
2715
2716 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2717
2718 ANHE_at_cache (timers [HEAP0]);
2719 downheap (timers, timercnt, HEAP0);
2720 }
2721 else
2722 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2723
2724 EV_FREQUENT_CHECK;
2725 feed_reverse (EV_A_ (W)w);
2726 }
2727 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2728
2729 feed_reverse_done (EV_A_ EV_TIMER);
2730 }
2731}
2732
2733#if EV_PERIODIC_ENABLE
2734
2735static void noinline
2736periodic_recalc (EV_P_ ev_periodic *w)
2737{
2738 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2739 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2740
2741 /* the above almost always errs on the low side */
2742 while (at <= ev_rt_now)
2743 {
2744 ev_tstamp nat = at + w->interval;
2745
2746 /* when resolution fails us, we use ev_rt_now */
2747 if (expect_false (nat == at))
2748 {
2749 at = ev_rt_now;
2750 break;
2751 }
2752
2753 at = nat;
2754 }
2755
2756 ev_at (w) = at;
2757}
2758
2759/* make periodics pending */
2760inline_size void
2761periodics_reify (EV_P)
2762{
2763 EV_FREQUENT_CHECK;
2764
2765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2766 {
2767 int feed_count = 0;
2768
2769 do
2770 {
2771 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2772
2773 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2774
2775 /* first reschedule or stop timer */
2776 if (w->reschedule_cb)
2777 {
2778 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2779
2780 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2781
2782 ANHE_at_cache (periodics [HEAP0]);
2783 downheap (periodics, periodiccnt, HEAP0);
2784 }
2785 else if (w->interval)
2786 {
2787 periodic_recalc (EV_A_ w);
2788 ANHE_at_cache (periodics [HEAP0]);
2789 downheap (periodics, periodiccnt, HEAP0);
2790 }
2791 else
2792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2793
2794 EV_FREQUENT_CHECK;
2795 feed_reverse (EV_A_ (W)w);
2796 }
2797 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2798
2799 feed_reverse_done (EV_A_ EV_PERIODIC);
2800 }
2801}
2802
2803/* simply recalculate all periodics */
2804/* TODO: maybe ensure that at least one event happens when jumping forward? */
2805static void noinline ecb_cold
2806periodics_reschedule (EV_P)
2807{
2808 int i;
2809
2810 /* adjust periodics after time jump */
2811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2812 {
2813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2814
2815 if (w->reschedule_cb)
2816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2817 else if (w->interval)
2818 periodic_recalc (EV_A_ w);
2819
2820 ANHE_at_cache (periodics [i]);
2821 }
2822
2823 reheap (periodics, periodiccnt);
2824}
2825#endif
2826
2827/* adjust all timers by a given offset */
2828static void noinline ecb_cold
2829timers_reschedule (EV_P_ ev_tstamp adjust)
2830{
2831 int i;
2832
2833 for (i = 0; i < timercnt; ++i)
2834 {
2835 ANHE *he = timers + i + HEAP0;
2836 ANHE_w (*he)->at += adjust;
2837 ANHE_at_cache (*he);
2838 }
2839}
2840
2841/* fetch new monotonic and realtime times from the kernel */
2842/* also detect if there was a timejump, and act accordingly */
2843inline_speed void
2844time_update (EV_P_ ev_tstamp max_block)
2845{
2846#if EV_USE_MONOTONIC
2847 if (expect_true (have_monotonic))
2848 {
2849 int i;
2850 ev_tstamp odiff = rtmn_diff;
2851
2852 mn_now = get_clock ();
2853
2854 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2855 /* interpolate in the meantime */
2856 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2857 {
2858 ev_rt_now = rtmn_diff + mn_now;
2859 return;
2860 }
2861
2862 now_floor = mn_now;
2863 ev_rt_now = ev_time ();
2864
2865 /* loop a few times, before making important decisions.
2866 * on the choice of "4": one iteration isn't enough,
2867 * in case we get preempted during the calls to
2868 * ev_time and get_clock. a second call is almost guaranteed
2869 * to succeed in that case, though. and looping a few more times
2870 * doesn't hurt either as we only do this on time-jumps or
2871 * in the unlikely event of having been preempted here.
2872 */
2873 for (i = 4; --i; )
2874 {
2875 ev_tstamp diff;
2876 rtmn_diff = ev_rt_now - mn_now;
2877
2878 diff = odiff - rtmn_diff;
2879
2880 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2881 return; /* all is well */
2882
2883 ev_rt_now = ev_time ();
2884 mn_now = get_clock ();
2885 now_floor = mn_now;
2886 }
2887
2888 /* no timer adjustment, as the monotonic clock doesn't jump */
2889 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2890# if EV_PERIODIC_ENABLE
2891 periodics_reschedule (EV_A);
2892# endif
2893 }
2894 else
2895#endif
2896 {
2897 ev_rt_now = ev_time ();
2898
2899 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2900 {
2901 /* adjust timers. this is easy, as the offset is the same for all of them */
2902 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2903#if EV_PERIODIC_ENABLE
2904 periodics_reschedule (EV_A);
2905#endif
2906 }
2907
2908 mn_now = ev_rt_now;
2909 }
2910}
2911
2912void
2913ev_run (EV_P_ int flags)
2914{
2915#if EV_FEATURE_API
2916 ++loop_depth;
2917#endif
2918
2919 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2920
2921 loop_done = EVBREAK_CANCEL;
2922
2923 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2924
2925 do
2926 {
2927#if EV_VERIFY >= 2
2928 ev_verify (EV_A);
2929#endif
2930
2931#ifndef _WIN32
2932 if (expect_false (curpid)) /* penalise the forking check even more */
2933 if (expect_false (getpid () != curpid))
2934 {
2935 curpid = getpid ();
2936 postfork = 1;
2937 }
2938#endif
2939
2940#if EV_FORK_ENABLE
2941 /* we might have forked, so queue fork handlers */
2942 if (expect_false (postfork))
2943 if (forkcnt)
2944 {
2945 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2946 EV_INVOKE_PENDING;
2947 }
2948#endif
2949
2950#if EV_PREPARE_ENABLE
2951 /* queue prepare watchers (and execute them) */
2952 if (expect_false (preparecnt))
2953 {
2954 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2955 EV_INVOKE_PENDING;
2956 }
2957#endif
2958
2959 if (expect_false (loop_done))
2960 break;
2961
2962 /* we might have forked, so reify kernel state if necessary */
2963 if (expect_false (postfork))
2964 loop_fork (EV_A);
2965
2966 /* update fd-related kernel structures */
2967 fd_reify (EV_A);
2968
2969 /* calculate blocking time */
2970 {
2971 ev_tstamp waittime = 0.;
2972 ev_tstamp sleeptime = 0.;
2973
2974 /* remember old timestamp for io_blocktime calculation */
2975 ev_tstamp prev_mn_now = mn_now;
2976
2977 /* update time to cancel out callback processing overhead */
2978 time_update (EV_A_ 1e100);
2979
2980 /* from now on, we want a pipe-wake-up */
2981 pipe_write_wanted = 1;
2982
2983 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2984
2985 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2986 {
2987 waittime = MAX_BLOCKTIME;
2988
2989 if (timercnt)
2990 {
2991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2992 if (waittime > to) waittime = to;
2993 }
2994
2995#if EV_PERIODIC_ENABLE
2996 if (periodiccnt)
2997 {
2998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2999 if (waittime > to) waittime = to;
3000 }
3001#endif
3002
3003 /* don't let timeouts decrease the waittime below timeout_blocktime */
3004 if (expect_false (waittime < timeout_blocktime))
3005 waittime = timeout_blocktime;
3006
3007 /* at this point, we NEED to wait, so we have to ensure */
3008 /* to pass a minimum nonzero value to the backend */
3009 if (expect_false (waittime < backend_mintime))
3010 waittime = backend_mintime;
3011
3012 /* extra check because io_blocktime is commonly 0 */
3013 if (expect_false (io_blocktime))
3014 {
3015 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3016
3017 if (sleeptime > waittime - backend_mintime)
3018 sleeptime = waittime - backend_mintime;
3019
3020 if (expect_true (sleeptime > 0.))
3021 {
3022 ev_sleep (sleeptime);
3023 waittime -= sleeptime;
3024 }
3025 }
3026 }
3027
3028#if EV_FEATURE_API
3029 ++loop_count;
3030#endif
3031 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3032 backend_poll (EV_A_ waittime);
3033 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3034
3035 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3036
3037 if (pipe_write_skipped)
3038 {
3039 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3040 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3041 }
3042
3043
3044 /* update ev_rt_now, do magic */
3045 time_update (EV_A_ waittime + sleeptime);
3046 }
3047
3048 /* queue pending timers and reschedule them */
3049 timers_reify (EV_A); /* relative timers called last */
3050#if EV_PERIODIC_ENABLE
3051 periodics_reify (EV_A); /* absolute timers called first */
3052#endif
3053
3054#if EV_IDLE_ENABLE
3055 /* queue idle watchers unless other events are pending */
3056 idle_reify (EV_A);
3057#endif
3058
3059#if EV_CHECK_ENABLE
3060 /* queue check watchers, to be executed first */
3061 if (expect_false (checkcnt))
3062 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3063#endif
3064
3065 EV_INVOKE_PENDING;
3066 }
3067 while (expect_true (
3068 activecnt
3069 && !loop_done
3070 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3071 ));
3072
3073 if (loop_done == EVBREAK_ONE)
3074 loop_done = EVBREAK_CANCEL;
3075
3076#if EV_FEATURE_API
3077 --loop_depth;
3078#endif
3079}
3080
3081void
3082ev_break (EV_P_ int how)
3083{
3084 loop_done = how;
3085}
3086
3087void
3088ev_ref (EV_P)
3089{
3090 ++activecnt;
3091}
3092
3093void
3094ev_unref (EV_P)
3095{
3096 --activecnt;
3097}
3098
3099void
3100ev_now_update (EV_P)
3101{
3102 time_update (EV_A_ 1e100);
3103}
3104
3105void
3106ev_suspend (EV_P)
3107{
3108 ev_now_update (EV_A);
3109}
3110
3111void
3112ev_resume (EV_P)
3113{
3114 ev_tstamp mn_prev = mn_now;
3115
3116 ev_now_update (EV_A);
3117 timers_reschedule (EV_A_ mn_now - mn_prev);
3118#if EV_PERIODIC_ENABLE
3119 /* TODO: really do this? */
3120 periodics_reschedule (EV_A);
3121#endif
3122}
3123
3124/*****************************************************************************/
3125/* singly-linked list management, used when the expected list length is short */
3126
3127inline_size void
3128wlist_add (WL *head, WL elem)
3129{
3130 elem->next = *head;
3131 *head = elem;
3132}
3133
3134inline_size void
3135wlist_del (WL *head, WL elem)
3136{
3137 while (*head)
3138 {
3139 if (expect_true (*head == elem))
3140 {
3141 *head = elem->next;
3142 break;
3143 }
3144
3145 head = &(*head)->next;
3146 }
3147}
3148
3149/* internal, faster, version of ev_clear_pending */
3150inline_speed void
3151clear_pending (EV_P_ W w)
3152{
3153 if (w->pending)
3154 {
3155 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3156 w->pending = 0;
3157 }
443} 3158}
444 3159
445int 3160int
446ev_version_minor (void) 3161ev_clear_pending (EV_P_ void *w)
447{ 3162{
448 return EV_VERSION_MINOR; 3163 W w_ = (W)w;
449} 3164 int pending = w_->pending;
450 3165
451int ev_init (int flags) 3166 if (expect_true (pending))
452{ 3167 {
453 if (!ev_method) 3168 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3169 p->w = (W)&pending_w;
3170 w_->pending = 0;
3171 return p->events;
454 { 3172 }
455#if EV_USE_MONOTONIC 3173 else
3174 return 0;
3175}
3176
3177inline_size void
3178pri_adjust (EV_P_ W w)
3179{
3180 int pri = ev_priority (w);
3181 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3182 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3183 ev_set_priority (w, pri);
3184}
3185
3186inline_speed void
3187ev_start (EV_P_ W w, int active)
3188{
3189 pri_adjust (EV_A_ w);
3190 w->active = active;
3191 ev_ref (EV_A);
3192}
3193
3194inline_size void
3195ev_stop (EV_P_ W w)
3196{
3197 ev_unref (EV_A);
3198 w->active = 0;
3199}
3200
3201/*****************************************************************************/
3202
3203void noinline
3204ev_io_start (EV_P_ ev_io *w)
3205{
3206 int fd = w->fd;
3207
3208 if (expect_false (ev_is_active (w)))
3209 return;
3210
3211 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3212 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3213
3214 EV_FREQUENT_CHECK;
3215
3216 ev_start (EV_A_ (W)w, 1);
3217 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3218 wlist_add (&anfds[fd].head, (WL)w);
3219
3220 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3221 w->events &= ~EV__IOFDSET;
3222
3223 EV_FREQUENT_CHECK;
3224}
3225
3226void noinline
3227ev_io_stop (EV_P_ ev_io *w)
3228{
3229 clear_pending (EV_A_ (W)w);
3230 if (expect_false (!ev_is_active (w)))
3231 return;
3232
3233 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3234
3235 EV_FREQUENT_CHECK;
3236
3237 wlist_del (&anfds[w->fd].head, (WL)w);
3238 ev_stop (EV_A_ (W)w);
3239
3240 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3241
3242 EV_FREQUENT_CHECK;
3243}
3244
3245void noinline
3246ev_timer_start (EV_P_ ev_timer *w)
3247{
3248 if (expect_false (ev_is_active (w)))
3249 return;
3250
3251 ev_at (w) += mn_now;
3252
3253 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3254
3255 EV_FREQUENT_CHECK;
3256
3257 ++timercnt;
3258 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3259 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3260 ANHE_w (timers [ev_active (w)]) = (WT)w;
3261 ANHE_at_cache (timers [ev_active (w)]);
3262 upheap (timers, ev_active (w));
3263
3264 EV_FREQUENT_CHECK;
3265
3266 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3267}
3268
3269void noinline
3270ev_timer_stop (EV_P_ ev_timer *w)
3271{
3272 clear_pending (EV_A_ (W)w);
3273 if (expect_false (!ev_is_active (w)))
3274 return;
3275
3276 EV_FREQUENT_CHECK;
3277
3278 {
3279 int active = ev_active (w);
3280
3281 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3282
3283 --timercnt;
3284
3285 if (expect_true (active < timercnt + HEAP0))
456 { 3286 {
457 struct timespec ts; 3287 timers [active] = timers [timercnt + HEAP0];
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3288 adjustheap (timers, timercnt, active);
459 have_monotonic = 1;
460 } 3289 }
461#endif 3290 }
462 3291
463 ev_now = ev_time (); 3292 ev_at (w) -= mn_now;
464 now = get_clock ();
465 diff = ev_now - now;
466 3293
467 if (pipe (sigpipe)) 3294 ev_stop (EV_A_ (W)w);
468 return 0;
469 3295
470 ev_method = EVMETHOD_NONE; 3296 EV_FREQUENT_CHECK;
471#if EV_USE_EPOLL 3297}
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
473#endif
474#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags);
476#endif
477 3298
478 if (ev_method) 3299void noinline
479 { 3300ev_timer_again (EV_P_ ev_timer *w)
480 ev_watcher_init (&sigev, sigcb); 3301{
481 siginit (); 3302 EV_FREQUENT_CHECK;
482 3303
483 ev_signal_init (&childev, childcb, SIGCHLD); 3304 if (ev_is_active (w))
484 ev_signal_start (&childev);
485 }
486 } 3305 {
487
488 return ev_method;
489}
490
491/*****************************************************************************/
492
493void
494ev_prefork (void)
495{
496 /* nop */
497}
498
499void
500ev_postfork_parent (void)
501{
502 /* nop */
503}
504
505void
506ev_postfork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif
512
513 ev_io_stop (&sigev);
514 close (sigpipe [0]);
515 close (sigpipe [1]);
516 pipe (sigpipe);
517 siginit ();
518}
519
520/*****************************************************************************/
521
522static void
523call_pending (void)
524{
525 while (pendingcnt)
526 {
527 ANPENDING *p = pendings + --pendingcnt;
528
529 if (p->w)
530 {
531 p->w->pending = 0;
532 p->w->cb (p->w, p->events);
533 }
534 }
535}
536
537static void
538timers_reify (void)
539{
540 while (timercnt && timers [0]->at <= now)
541 {
542 struct ev_timer *w = timers [0];
543
544 /* first reschedule or stop timer */
545 if (w->repeat) 3306 if (w->repeat)
546 { 3307 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 3308 ev_at (w) = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 3309 ANHE_at_cache (timers [ev_active (w)]);
3310 adjustheap (timers, timercnt, ev_active (w));
550 } 3311 }
551 else 3312 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 3313 ev_timer_stop (EV_A_ w);
553
554 event ((W)w, EV_TIMEOUT);
555 }
556}
557
558static void
559periodics_reify (void)
560{
561 while (periodiccnt && periodics [0]->at <= ev_now)
562 { 3314 }
563 struct ev_periodic *w = periodics [0]; 3315 else if (w->repeat)
3316 {
3317 ev_at (w) = w->repeat;
3318 ev_timer_start (EV_A_ w);
3319 }
564 3320
565 /* first reschedule or stop timer */ 3321 EV_FREQUENT_CHECK;
3322}
3323
3324ev_tstamp
3325ev_timer_remaining (EV_P_ ev_timer *w)
3326{
3327 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3328}
3329
3330#if EV_PERIODIC_ENABLE
3331void noinline
3332ev_periodic_start (EV_P_ ev_periodic *w)
3333{
3334 if (expect_false (ev_is_active (w)))
3335 return;
3336
3337 if (w->reschedule_cb)
3338 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
566 if (w->interval) 3339 else if (w->interval)
3340 {
3341 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3342 periodic_recalc (EV_A_ w);
3343 }
3344 else
3345 ev_at (w) = w->offset;
3346
3347 EV_FREQUENT_CHECK;
3348
3349 ++periodiccnt;
3350 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3351 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3352 ANHE_w (periodics [ev_active (w)]) = (WT)w;
3353 ANHE_at_cache (periodics [ev_active (w)]);
3354 upheap (periodics, ev_active (w));
3355
3356 EV_FREQUENT_CHECK;
3357
3358 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3359}
3360
3361void noinline
3362ev_periodic_stop (EV_P_ ev_periodic *w)
3363{
3364 clear_pending (EV_A_ (W)w);
3365 if (expect_false (!ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 {
3371 int active = ev_active (w);
3372
3373 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3374
3375 --periodiccnt;
3376
3377 if (expect_true (active < periodiccnt + HEAP0))
3378 {
3379 periodics [active] = periodics [periodiccnt + HEAP0];
3380 adjustheap (periodics, periodiccnt, active);
3381 }
3382 }
3383
3384 ev_stop (EV_A_ (W)w);
3385
3386 EV_FREQUENT_CHECK;
3387}
3388
3389void noinline
3390ev_periodic_again (EV_P_ ev_periodic *w)
3391{
3392 /* TODO: use adjustheap and recalculation */
3393 ev_periodic_stop (EV_A_ w);
3394 ev_periodic_start (EV_A_ w);
3395}
3396#endif
3397
3398#ifndef SA_RESTART
3399# define SA_RESTART 0
3400#endif
3401
3402#if EV_SIGNAL_ENABLE
3403
3404void noinline
3405ev_signal_start (EV_P_ ev_signal *w)
3406{
3407 if (expect_false (ev_is_active (w)))
3408 return;
3409
3410 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3411
3412#if EV_MULTIPLICITY
3413 assert (("libev: a signal must not be attached to two different loops",
3414 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3415
3416 signals [w->signum - 1].loop = EV_A;
3417#endif
3418
3419 EV_FREQUENT_CHECK;
3420
3421#if EV_USE_SIGNALFD
3422 if (sigfd == -2)
3423 {
3424 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3425 if (sigfd < 0 && errno == EINVAL)
3426 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3427
3428 if (sigfd >= 0)
567 { 3429 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 3430 fd_intern (sigfd); /* doing it twice will not hurt */
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 3431
570 downheap ((WT *)periodics, periodiccnt, 0); 3432 sigemptyset (&sigfd_set);
3433
3434 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3435 ev_set_priority (&sigfd_w, EV_MAXPRI);
3436 ev_io_start (EV_A_ &sigfd_w);
3437 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3438 }
3439 }
3440
3441 if (sigfd >= 0)
3442 {
3443 /* TODO: check .head */
3444 sigaddset (&sigfd_set, w->signum);
3445 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3446
3447 signalfd (sigfd, &sigfd_set, 0);
3448 }
3449#endif
3450
3451 ev_start (EV_A_ (W)w, 1);
3452 wlist_add (&signals [w->signum - 1].head, (WL)w);
3453
3454 if (!((WL)w)->next)
3455# if EV_USE_SIGNALFD
3456 if (sigfd < 0) /*TODO*/
3457# endif
3458 {
3459# ifdef _WIN32
3460 evpipe_init (EV_A);
3461
3462 signal (w->signum, ev_sighandler);
3463# else
3464 struct sigaction sa;
3465
3466 evpipe_init (EV_A);
3467
3468 sa.sa_handler = ev_sighandler;
3469 sigfillset (&sa.sa_mask);
3470 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3471 sigaction (w->signum, &sa, 0);
3472
3473 if (origflags & EVFLAG_NOSIGMASK)
3474 {
3475 sigemptyset (&sa.sa_mask);
3476 sigaddset (&sa.sa_mask, w->signum);
3477 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3478 }
3479#endif
3480 }
3481
3482 EV_FREQUENT_CHECK;
3483}
3484
3485void noinline
3486ev_signal_stop (EV_P_ ev_signal *w)
3487{
3488 clear_pending (EV_A_ (W)w);
3489 if (expect_false (!ev_is_active (w)))
3490 return;
3491
3492 EV_FREQUENT_CHECK;
3493
3494 wlist_del (&signals [w->signum - 1].head, (WL)w);
3495 ev_stop (EV_A_ (W)w);
3496
3497 if (!signals [w->signum - 1].head)
3498 {
3499#if EV_MULTIPLICITY
3500 signals [w->signum - 1].loop = 0; /* unattach from signal */
3501#endif
3502#if EV_USE_SIGNALFD
3503 if (sigfd >= 0)
3504 {
3505 sigset_t ss;
3506
3507 sigemptyset (&ss);
3508 sigaddset (&ss, w->signum);
3509 sigdelset (&sigfd_set, w->signum);
3510
3511 signalfd (sigfd, &sigfd_set, 0);
3512 sigprocmask (SIG_UNBLOCK, &ss, 0);
571 } 3513 }
572 else 3514 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 3515#endif
574 3516 signal (w->signum, SIG_DFL);
575 event ((W)w, EV_PERIODIC);
576 }
577}
578
579static void
580periodics_reschedule (ev_tstamp diff)
581{
582 int i;
583
584 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i)
586 { 3517 }
587 struct ev_periodic *w = periodics [i];
588 3518
589 if (w->interval) 3519 EV_FREQUENT_CHECK;
3520}
3521
3522#endif
3523
3524#if EV_CHILD_ENABLE
3525
3526void
3527ev_child_start (EV_P_ ev_child *w)
3528{
3529#if EV_MULTIPLICITY
3530 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3531#endif
3532 if (expect_false (ev_is_active (w)))
3533 return;
3534
3535 EV_FREQUENT_CHECK;
3536
3537 ev_start (EV_A_ (W)w, 1);
3538 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3539
3540 EV_FREQUENT_CHECK;
3541}
3542
3543void
3544ev_child_stop (EV_P_ ev_child *w)
3545{
3546 clear_pending (EV_A_ (W)w);
3547 if (expect_false (!ev_is_active (w)))
3548 return;
3549
3550 EV_FREQUENT_CHECK;
3551
3552 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3553 ev_stop (EV_A_ (W)w);
3554
3555 EV_FREQUENT_CHECK;
3556}
3557
3558#endif
3559
3560#if EV_STAT_ENABLE
3561
3562# ifdef _WIN32
3563# undef lstat
3564# define lstat(a,b) _stati64 (a,b)
3565# endif
3566
3567#define DEF_STAT_INTERVAL 5.0074891
3568#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3569#define MIN_STAT_INTERVAL 0.1074891
3570
3571static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3572
3573#if EV_USE_INOTIFY
3574
3575/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3576# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3577
3578static void noinline
3579infy_add (EV_P_ ev_stat *w)
3580{
3581 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3582
3583 if (w->wd >= 0)
3584 {
3585 struct statfs sfs;
3586
3587 /* now local changes will be tracked by inotify, but remote changes won't */
3588 /* unless the filesystem is known to be local, we therefore still poll */
3589 /* also do poll on <2.6.25, but with normal frequency */
3590
3591 if (!fs_2625)
3592 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3593 else if (!statfs (w->path, &sfs)
3594 && (sfs.f_type == 0x1373 /* devfs */
3595 || sfs.f_type == 0xEF53 /* ext2/3 */
3596 || sfs.f_type == 0x3153464a /* jfs */
3597 || sfs.f_type == 0x52654973 /* reiser3 */
3598 || sfs.f_type == 0x01021994 /* tempfs */
3599 || sfs.f_type == 0x58465342 /* xfs */))
3600 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3601 else
3602 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3603 }
3604 else
3605 {
3606 /* can't use inotify, continue to stat */
3607 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3608
3609 /* if path is not there, monitor some parent directory for speedup hints */
3610 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3611 /* but an efficiency issue only */
3612 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
590 { 3613 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 3614 char path [4096];
3615 strcpy (path, w->path);
592 3616
593 if (fabs (diff) >= 1e-4) 3617 do
594 { 3618 {
595 ev_periodic_stop (w); 3619 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
596 ev_periodic_start (w); 3620 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
597 3621
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 3622 char *pend = strrchr (path, '/');
3623
3624 if (!pend || pend == path)
3625 break;
3626
3627 *pend = 0;
3628 w->wd = inotify_add_watch (fs_fd, path, mask);
3629 }
3630 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3631 }
3632 }
3633
3634 if (w->wd >= 0)
3635 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3636
3637 /* now re-arm timer, if required */
3638 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3639 ev_timer_again (EV_A_ &w->timer);
3640 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3641}
3642
3643static void noinline
3644infy_del (EV_P_ ev_stat *w)
3645{
3646 int slot;
3647 int wd = w->wd;
3648
3649 if (wd < 0)
3650 return;
3651
3652 w->wd = -2;
3653 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3654 wlist_del (&fs_hash [slot].head, (WL)w);
3655
3656 /* remove this watcher, if others are watching it, they will rearm */
3657 inotify_rm_watch (fs_fd, wd);
3658}
3659
3660static void noinline
3661infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3662{
3663 if (slot < 0)
3664 /* overflow, need to check for all hash slots */
3665 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3666 infy_wd (EV_A_ slot, wd, ev);
3667 else
3668 {
3669 WL w_;
3670
3671 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3672 {
3673 ev_stat *w = (ev_stat *)w_;
3674 w_ = w_->next; /* lets us remove this watcher and all before it */
3675
3676 if (w->wd == wd || wd == -1)
3677 {
3678 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3679 {
3680 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3681 w->wd = -1;
3682 infy_add (EV_A_ w); /* re-add, no matter what */
3683 }
3684
3685 stat_timer_cb (EV_A_ &w->timer, 0);
599 } 3686 }
600 } 3687 }
601 } 3688 }
602} 3689}
603 3690
604static void 3691static void
605time_update (void) 3692infy_cb (EV_P_ ev_io *w, int revents)
606{ 3693{
3694 char buf [EV_INOTIFY_BUFSIZE];
607 int i; 3695 int ofs;
3696 int len = read (fs_fd, buf, sizeof (buf));
608 3697
609 ev_now = ev_time (); 3698 for (ofs = 0; ofs < len; )
610 3699 {
611 if (have_monotonic) 3700 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3701 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3702 ofs += sizeof (struct inotify_event) + ev->len;
612 { 3703 }
613 ev_tstamp odiff = diff; 3704}
614 3705
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3706inline_size void ecb_cold
3707ev_check_2625 (EV_P)
3708{
3709 /* kernels < 2.6.25 are borked
3710 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3711 */
3712 if (ev_linux_version () < 0x020619)
3713 return;
3714
3715 fs_2625 = 1;
3716}
3717
3718inline_size int
3719infy_newfd (void)
3720{
3721#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3722 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3723 if (fd >= 0)
3724 return fd;
3725#endif
3726 return inotify_init ();
3727}
3728
3729inline_size void
3730infy_init (EV_P)
3731{
3732 if (fs_fd != -2)
3733 return;
3734
3735 fs_fd = -1;
3736
3737 ev_check_2625 (EV_A);
3738
3739 fs_fd = infy_newfd ();
3740
3741 if (fs_fd >= 0)
3742 {
3743 fd_intern (fs_fd);
3744 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3745 ev_set_priority (&fs_w, EV_MAXPRI);
3746 ev_io_start (EV_A_ &fs_w);
3747 ev_unref (EV_A);
3748 }
3749}
3750
3751inline_size void
3752infy_fork (EV_P)
3753{
3754 int slot;
3755
3756 if (fs_fd < 0)
3757 return;
3758
3759 ev_ref (EV_A);
3760 ev_io_stop (EV_A_ &fs_w);
3761 close (fs_fd);
3762 fs_fd = infy_newfd ();
3763
3764 if (fs_fd >= 0)
3765 {
3766 fd_intern (fs_fd);
3767 ev_io_set (&fs_w, fs_fd, EV_READ);
3768 ev_io_start (EV_A_ &fs_w);
3769 ev_unref (EV_A);
3770 }
3771
3772 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3773 {
3774 WL w_ = fs_hash [slot].head;
3775 fs_hash [slot].head = 0;
3776
3777 while (w_)
616 { 3778 {
617 now = get_clock (); 3779 ev_stat *w = (ev_stat *)w_;
618 diff = ev_now - now; 3780 w_ = w_->next; /* lets us add this watcher */
619 3781
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3782 w->wd = -1;
621 return; /* all is well */
622 3783
623 ev_now = ev_time (); 3784 if (fs_fd >= 0)
3785 infy_add (EV_A_ w); /* re-add, no matter what */
3786 else
3787 {
3788 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3789 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3790 ev_timer_again (EV_A_ &w->timer);
3791 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3792 }
624 } 3793 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 3794 }
3795}
3796
3797#endif
3798
3799#ifdef _WIN32
3800# define EV_LSTAT(p,b) _stati64 (p, b)
3801#else
3802# define EV_LSTAT(p,b) lstat (p, b)
3803#endif
3804
3805void
3806ev_stat_stat (EV_P_ ev_stat *w)
3807{
3808 if (lstat (w->path, &w->attr) < 0)
3809 w->attr.st_nlink = 0;
3810 else if (!w->attr.st_nlink)
3811 w->attr.st_nlink = 1;
3812}
3813
3814static void noinline
3815stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3816{
3817 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3818
3819 ev_statdata prev = w->attr;
3820 ev_stat_stat (EV_A_ w);
3821
3822 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3823 if (
3824 prev.st_dev != w->attr.st_dev
3825 || prev.st_ino != w->attr.st_ino
3826 || prev.st_mode != w->attr.st_mode
3827 || prev.st_nlink != w->attr.st_nlink
3828 || prev.st_uid != w->attr.st_uid
3829 || prev.st_gid != w->attr.st_gid
3830 || prev.st_rdev != w->attr.st_rdev
3831 || prev.st_size != w->attr.st_size
3832 || prev.st_atime != w->attr.st_atime
3833 || prev.st_mtime != w->attr.st_mtime
3834 || prev.st_ctime != w->attr.st_ctime
3835 ) {
3836 /* we only update w->prev on actual differences */
3837 /* in case we test more often than invoke the callback, */
3838 /* to ensure that prev is always different to attr */
3839 w->prev = prev;
3840
3841 #if EV_USE_INOTIFY
3842 if (fs_fd >= 0)
3843 {
3844 infy_del (EV_A_ w);
3845 infy_add (EV_A_ w);
3846 ev_stat_stat (EV_A_ w); /* avoid race... */
3847 }
3848 #endif
3849
3850 ev_feed_event (EV_A_ w, EV_STAT);
3851 }
3852}
3853
3854void
3855ev_stat_start (EV_P_ ev_stat *w)
3856{
3857 if (expect_false (ev_is_active (w)))
3858 return;
3859
3860 ev_stat_stat (EV_A_ w);
3861
3862 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3863 w->interval = MIN_STAT_INTERVAL;
3864
3865 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3866 ev_set_priority (&w->timer, ev_priority (w));
3867
3868#if EV_USE_INOTIFY
3869 infy_init (EV_A);
3870
3871 if (fs_fd >= 0)
3872 infy_add (EV_A_ w);
629 else 3873 else
3874#endif
3875 {
3876 ev_timer_again (EV_A_ &w->timer);
3877 ev_unref (EV_A);
630 { 3878 }
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 3879
3880 ev_start (EV_A_ (W)w, 1);
3881
3882 EV_FREQUENT_CHECK;
3883}
3884
3885void
3886ev_stat_stop (EV_P_ ev_stat *w)
3887{
3888 clear_pending (EV_A_ (W)w);
3889 if (expect_false (!ev_is_active (w)))
3890 return;
3891
3892 EV_FREQUENT_CHECK;
3893
3894#if EV_USE_INOTIFY
3895 infy_del (EV_A_ w);
3896#endif
3897
3898 if (ev_is_active (&w->timer))
3899 {
3900 ev_ref (EV_A);
3901 ev_timer_stop (EV_A_ &w->timer);
3902 }
3903
3904 ev_stop (EV_A_ (W)w);
3905
3906 EV_FREQUENT_CHECK;
3907}
3908#endif
3909
3910#if EV_IDLE_ENABLE
3911void
3912ev_idle_start (EV_P_ ev_idle *w)
3913{
3914 if (expect_false (ev_is_active (w)))
3915 return;
3916
3917 pri_adjust (EV_A_ (W)w);
3918
3919 EV_FREQUENT_CHECK;
3920
3921 {
3922 int active = ++idlecnt [ABSPRI (w)];
3923
3924 ++idleall;
3925 ev_start (EV_A_ (W)w, active);
3926
3927 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3928 idles [ABSPRI (w)][active - 1] = w;
3929 }
3930
3931 EV_FREQUENT_CHECK;
3932}
3933
3934void
3935ev_idle_stop (EV_P_ ev_idle *w)
3936{
3937 clear_pending (EV_A_ (W)w);
3938 if (expect_false (!ev_is_active (w)))
3939 return;
3940
3941 EV_FREQUENT_CHECK;
3942
3943 {
3944 int active = ev_active (w);
3945
3946 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3947 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3948
3949 ev_stop (EV_A_ (W)w);
3950 --idleall;
3951 }
3952
3953 EV_FREQUENT_CHECK;
3954}
3955#endif
3956
3957#if EV_PREPARE_ENABLE
3958void
3959ev_prepare_start (EV_P_ ev_prepare *w)
3960{
3961 if (expect_false (ev_is_active (w)))
3962 return;
3963
3964 EV_FREQUENT_CHECK;
3965
3966 ev_start (EV_A_ (W)w, ++preparecnt);
3967 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3968 prepares [preparecnt - 1] = w;
3969
3970 EV_FREQUENT_CHECK;
3971}
3972
3973void
3974ev_prepare_stop (EV_P_ ev_prepare *w)
3975{
3976 clear_pending (EV_A_ (W)w);
3977 if (expect_false (!ev_is_active (w)))
3978 return;
3979
3980 EV_FREQUENT_CHECK;
3981
3982 {
3983 int active = ev_active (w);
3984
3985 prepares [active - 1] = prepares [--preparecnt];
3986 ev_active (prepares [active - 1]) = active;
3987 }
3988
3989 ev_stop (EV_A_ (W)w);
3990
3991 EV_FREQUENT_CHECK;
3992}
3993#endif
3994
3995#if EV_CHECK_ENABLE
3996void
3997ev_check_start (EV_P_ ev_check *w)
3998{
3999 if (expect_false (ev_is_active (w)))
4000 return;
4001
4002 EV_FREQUENT_CHECK;
4003
4004 ev_start (EV_A_ (W)w, ++checkcnt);
4005 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4006 checks [checkcnt - 1] = w;
4007
4008 EV_FREQUENT_CHECK;
4009}
4010
4011void
4012ev_check_stop (EV_P_ ev_check *w)
4013{
4014 clear_pending (EV_A_ (W)w);
4015 if (expect_false (!ev_is_active (w)))
4016 return;
4017
4018 EV_FREQUENT_CHECK;
4019
4020 {
4021 int active = ev_active (w);
4022
4023 checks [active - 1] = checks [--checkcnt];
4024 ev_active (checks [active - 1]) = active;
4025 }
4026
4027 ev_stop (EV_A_ (W)w);
4028
4029 EV_FREQUENT_CHECK;
4030}
4031#endif
4032
4033#if EV_EMBED_ENABLE
4034void noinline
4035ev_embed_sweep (EV_P_ ev_embed *w)
4036{
4037 ev_run (w->other, EVRUN_NOWAIT);
4038}
4039
4040static void
4041embed_io_cb (EV_P_ ev_io *io, int revents)
4042{
4043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4044
4045 if (ev_cb (w))
4046 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4047 else
4048 ev_run (w->other, EVRUN_NOWAIT);
4049}
4050
4051static void
4052embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4053{
4054 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4055
4056 {
4057 EV_P = w->other;
4058
4059 while (fdchangecnt)
632 { 4060 {
633 periodics_reschedule (ev_now - now); 4061 fd_reify (EV_A);
634 4062 ev_run (EV_A_ EVRUN_NOWAIT);
635 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff;
638 } 4063 }
639
640 now = ev_now;
641 } 4064 }
642} 4065}
643 4066
644int ev_loop_done; 4067static void
645 4068embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
646void ev_loop (int flags)
647{ 4069{
648 double block; 4070 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 4071
651 do 4072 ev_embed_stop (EV_A_ w);
4073
652 { 4074 {
653 /* queue check watchers (and execute them) */ 4075 EV_P = w->other;
654 if (preparecnt)
655 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
657 call_pending ();
658 }
659 4076
660 /* update fd-related kernel structures */ 4077 ev_loop_fork (EV_A);
661 fd_reify (); 4078 ev_run (EV_A_ EVRUN_NOWAIT);
662
663 /* calculate blocking time */
664
665 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */
667 ev_now = ev_time ();
668
669 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.;
671 else
672 {
673 block = MAX_BLOCKTIME;
674
675 if (timercnt)
676 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
678 if (block > to) block = to;
679 }
680
681 if (periodiccnt)
682 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
684 if (block > to) block = to;
685 }
686
687 if (block < 0.) block = 0.;
688 }
689
690 method_poll (block);
691
692 /* update ev_now, do magic */
693 time_update ();
694
695 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */
698
699 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE);
702
703 /* queue check watchers, to be executed first */
704 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK);
706
707 call_pending ();
708 } 4079 }
709 while (!ev_loop_done);
710 4080
711 if (ev_loop_done != 2) 4081 ev_embed_start (EV_A_ w);
712 ev_loop_done = 0;
713} 4082}
4083
4084#if 0
4085static void
4086embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4087{
4088 ev_idle_stop (EV_A_ idle);
4089}
4090#endif
4091
4092void
4093ev_embed_start (EV_P_ ev_embed *w)
4094{
4095 if (expect_false (ev_is_active (w)))
4096 return;
4097
4098 {
4099 EV_P = w->other;
4100 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4101 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4102 }
4103
4104 EV_FREQUENT_CHECK;
4105
4106 ev_set_priority (&w->io, ev_priority (w));
4107 ev_io_start (EV_A_ &w->io);
4108
4109 ev_prepare_init (&w->prepare, embed_prepare_cb);
4110 ev_set_priority (&w->prepare, EV_MINPRI);
4111 ev_prepare_start (EV_A_ &w->prepare);
4112
4113 ev_fork_init (&w->fork, embed_fork_cb);
4114 ev_fork_start (EV_A_ &w->fork);
4115
4116 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4117
4118 ev_start (EV_A_ (W)w, 1);
4119
4120 EV_FREQUENT_CHECK;
4121}
4122
4123void
4124ev_embed_stop (EV_P_ ev_embed *w)
4125{
4126 clear_pending (EV_A_ (W)w);
4127 if (expect_false (!ev_is_active (w)))
4128 return;
4129
4130 EV_FREQUENT_CHECK;
4131
4132 ev_io_stop (EV_A_ &w->io);
4133 ev_prepare_stop (EV_A_ &w->prepare);
4134 ev_fork_stop (EV_A_ &w->fork);
4135
4136 ev_stop (EV_A_ (W)w);
4137
4138 EV_FREQUENT_CHECK;
4139}
4140#endif
4141
4142#if EV_FORK_ENABLE
4143void
4144ev_fork_start (EV_P_ ev_fork *w)
4145{
4146 if (expect_false (ev_is_active (w)))
4147 return;
4148
4149 EV_FREQUENT_CHECK;
4150
4151 ev_start (EV_A_ (W)w, ++forkcnt);
4152 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4153 forks [forkcnt - 1] = w;
4154
4155 EV_FREQUENT_CHECK;
4156}
4157
4158void
4159ev_fork_stop (EV_P_ ev_fork *w)
4160{
4161 clear_pending (EV_A_ (W)w);
4162 if (expect_false (!ev_is_active (w)))
4163 return;
4164
4165 EV_FREQUENT_CHECK;
4166
4167 {
4168 int active = ev_active (w);
4169
4170 forks [active - 1] = forks [--forkcnt];
4171 ev_active (forks [active - 1]) = active;
4172 }
4173
4174 ev_stop (EV_A_ (W)w);
4175
4176 EV_FREQUENT_CHECK;
4177}
4178#endif
4179
4180#if EV_CLEANUP_ENABLE
4181void
4182ev_cleanup_start (EV_P_ ev_cleanup *w)
4183{
4184 if (expect_false (ev_is_active (w)))
4185 return;
4186
4187 EV_FREQUENT_CHECK;
4188
4189 ev_start (EV_A_ (W)w, ++cleanupcnt);
4190 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4191 cleanups [cleanupcnt - 1] = w;
4192
4193 /* cleanup watchers should never keep a refcount on the loop */
4194 ev_unref (EV_A);
4195 EV_FREQUENT_CHECK;
4196}
4197
4198void
4199ev_cleanup_stop (EV_P_ ev_cleanup *w)
4200{
4201 clear_pending (EV_A_ (W)w);
4202 if (expect_false (!ev_is_active (w)))
4203 return;
4204
4205 EV_FREQUENT_CHECK;
4206 ev_ref (EV_A);
4207
4208 {
4209 int active = ev_active (w);
4210
4211 cleanups [active - 1] = cleanups [--cleanupcnt];
4212 ev_active (cleanups [active - 1]) = active;
4213 }
4214
4215 ev_stop (EV_A_ (W)w);
4216
4217 EV_FREQUENT_CHECK;
4218}
4219#endif
4220
4221#if EV_ASYNC_ENABLE
4222void
4223ev_async_start (EV_P_ ev_async *w)
4224{
4225 if (expect_false (ev_is_active (w)))
4226 return;
4227
4228 w->sent = 0;
4229
4230 evpipe_init (EV_A);
4231
4232 EV_FREQUENT_CHECK;
4233
4234 ev_start (EV_A_ (W)w, ++asynccnt);
4235 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4236 asyncs [asynccnt - 1] = w;
4237
4238 EV_FREQUENT_CHECK;
4239}
4240
4241void
4242ev_async_stop (EV_P_ ev_async *w)
4243{
4244 clear_pending (EV_A_ (W)w);
4245 if (expect_false (!ev_is_active (w)))
4246 return;
4247
4248 EV_FREQUENT_CHECK;
4249
4250 {
4251 int active = ev_active (w);
4252
4253 asyncs [active - 1] = asyncs [--asynccnt];
4254 ev_active (asyncs [active - 1]) = active;
4255 }
4256
4257 ev_stop (EV_A_ (W)w);
4258
4259 EV_FREQUENT_CHECK;
4260}
4261
4262void
4263ev_async_send (EV_P_ ev_async *w)
4264{
4265 w->sent = 1;
4266 evpipe_write (EV_A_ &async_pending);
4267}
4268#endif
714 4269
715/*****************************************************************************/ 4270/*****************************************************************************/
716 4271
717static void
718wlist_add (WL *head, WL elem)
719{
720 elem->next = *head;
721 *head = elem;
722}
723
724static void
725wlist_del (WL *head, WL elem)
726{
727 while (*head)
728 {
729 if (*head == elem)
730 {
731 *head = elem->next;
732 return;
733 }
734
735 head = &(*head)->next;
736 }
737}
738
739static void
740ev_clear_pending (W w)
741{
742 if (w->pending)
743 {
744 pendings [w->pending - 1].w = 0;
745 w->pending = 0;
746 }
747}
748
749static void
750ev_start (W w, int active)
751{
752 w->active = active;
753}
754
755static void
756ev_stop (W w)
757{
758 w->active = 0;
759}
760
761/*****************************************************************************/
762
763void
764ev_io_start (struct ev_io *w)
765{
766 if (ev_is_active (w))
767 return;
768
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0));
772
773 ev_start ((W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776
777 fd_change (fd);
778}
779
780void
781ev_io_stop (struct ev_io *w)
782{
783 ev_clear_pending ((W)w);
784 if (!ev_is_active (w))
785 return;
786
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w);
789
790 fd_change (w->fd);
791}
792
793void
794ev_timer_start (struct ev_timer *w)
795{
796 if (ev_is_active (w))
797 return;
798
799 w->at += now;
800
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802
803 ev_start ((W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1);
807}
808
809void
810ev_timer_stop (struct ev_timer *w)
811{
812 ev_clear_pending ((W)w);
813 if (!ev_is_active (w))
814 return;
815
816 if (w->active < timercnt--)
817 {
818 timers [w->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1);
820 }
821
822 w->at = w->repeat;
823
824 ev_stop ((W)w);
825}
826
827void
828ev_timer_again (struct ev_timer *w)
829{
830 if (ev_is_active (w))
831 {
832 if (w->repeat)
833 {
834 w->at = now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1);
836 }
837 else
838 ev_timer_stop (w);
839 }
840 else if (w->repeat)
841 ev_timer_start (w);
842}
843
844void
845ev_periodic_start (struct ev_periodic *w)
846{
847 if (ev_is_active (w))
848 return;
849
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851
852 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
855
856 ev_start ((W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1);
860}
861
862void
863ev_periodic_stop (struct ev_periodic *w)
864{
865 ev_clear_pending ((W)w);
866 if (!ev_is_active (w))
867 return;
868
869 if (w->active < periodiccnt--)
870 {
871 periodics [w->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1);
873 }
874
875 ev_stop ((W)w);
876}
877
878void
879ev_signal_start (struct ev_signal *w)
880{
881 if (ev_is_active (w))
882 return;
883
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885
886 ev_start ((W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889
890 if (!w->next)
891 {
892 struct sigaction sa;
893 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0;
896 sigaction (w->signum, &sa, 0);
897 }
898}
899
900void
901ev_signal_stop (struct ev_signal *w)
902{
903 ev_clear_pending ((W)w);
904 if (!ev_is_active (w))
905 return;
906
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w);
909
910 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL);
912}
913
914void
915ev_idle_start (struct ev_idle *w)
916{
917 if (ev_is_active (w))
918 return;
919
920 ev_start ((W)w, ++idlecnt);
921 array_needsize (idles, idlemax, idlecnt, );
922 idles [idlecnt - 1] = w;
923}
924
925void
926ev_idle_stop (struct ev_idle *w)
927{
928 ev_clear_pending ((W)w);
929 if (ev_is_active (w))
930 return;
931
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w);
999}
1000
1001/*****************************************************************************/
1002
1003struct ev_once 4272struct ev_once
1004{ 4273{
1005 struct ev_io io; 4274 ev_io io;
1006 struct ev_timer to; 4275 ev_timer to;
1007 void (*cb)(int revents, void *arg); 4276 void (*cb)(int revents, void *arg);
1008 void *arg; 4277 void *arg;
1009}; 4278};
1010 4279
1011static void 4280static void
1012once_cb (struct ev_once *once, int revents) 4281once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 4282{
1014 void (*cb)(int revents, void *arg) = once->cb; 4283 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 4284 void *arg = once->arg;
1016 4285
1017 ev_io_stop (&once->io); 4286 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 4287 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 4288 ev_free (once);
1020 4289
1021 cb (revents, arg); 4290 cb (revents, arg);
1022} 4291}
1023 4292
1024static void 4293static void
1025once_cb_io (struct ev_io *w, int revents) 4294once_cb_io (EV_P_ ev_io *w, int revents)
1026{ 4295{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4296 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4297
4298 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1028} 4299}
1029 4300
1030static void 4301static void
1031once_cb_to (struct ev_timer *w, int revents) 4302once_cb_to (EV_P_ ev_timer *w, int revents)
1032{ 4303{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4304 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4305
4306 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1034} 4307}
1035 4308
1036void 4309void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 4311{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 4312 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1040 4313
1041 if (!once) 4314 if (expect_false (!once))
4315 {
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4316 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1043 else 4317 return;
1044 { 4318 }
4319
1045 once->cb = cb; 4320 once->cb = cb;
1046 once->arg = arg; 4321 once->arg = arg;
1047 4322
1048 ev_watcher_init (&once->io, once_cb_io); 4323 ev_init (&once->io, once_cb_io);
1049 if (fd >= 0) 4324 if (fd >= 0)
4325 {
4326 ev_io_set (&once->io, fd, events);
4327 ev_io_start (EV_A_ &once->io);
4328 }
4329
4330 ev_init (&once->to, once_cb_to);
4331 if (timeout >= 0.)
4332 {
4333 ev_timer_set (&once->to, timeout, 0.);
4334 ev_timer_start (EV_A_ &once->to);
4335 }
4336}
4337
4338/*****************************************************************************/
4339
4340#if EV_WALK_ENABLE
4341void ecb_cold
4342ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4343{
4344 int i, j;
4345 ev_watcher_list *wl, *wn;
4346
4347 if (types & (EV_IO | EV_EMBED))
4348 for (i = 0; i < anfdmax; ++i)
4349 for (wl = anfds [i].head; wl; )
1050 { 4350 {
1051 ev_io_set (&once->io, fd, events); 4351 wn = wl->next;
1052 ev_io_start (&once->io); 4352
4353#if EV_EMBED_ENABLE
4354 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4355 {
4356 if (types & EV_EMBED)
4357 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4358 }
4359 else
4360#endif
4361#if EV_USE_INOTIFY
4362 if (ev_cb ((ev_io *)wl) == infy_cb)
4363 ;
4364 else
4365#endif
4366 if ((ev_io *)wl != &pipe_w)
4367 if (types & EV_IO)
4368 cb (EV_A_ EV_IO, wl);
4369
4370 wl = wn;
1053 } 4371 }
1054 4372
1055 ev_watcher_init (&once->to, once_cb_to); 4373 if (types & (EV_TIMER | EV_STAT))
1056 if (timeout >= 0.) 4374 for (i = timercnt + HEAP0; i-- > HEAP0; )
4375#if EV_STAT_ENABLE
4376 /*TODO: timer is not always active*/
4377 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1057 { 4378 {
1058 ev_timer_set (&once->to, timeout, 0.); 4379 if (types & EV_STAT)
1059 ev_timer_start (&once->to); 4380 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1060 } 4381 }
1061 } 4382 else
1062} 4383#endif
4384 if (types & EV_TIMER)
4385 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1063 4386
1064/*****************************************************************************/ 4387#if EV_PERIODIC_ENABLE
4388 if (types & EV_PERIODIC)
4389 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4390 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4391#endif
1065 4392
1066#if 0 4393#if EV_IDLE_ENABLE
4394 if (types & EV_IDLE)
4395 for (j = NUMPRI; j--; )
4396 for (i = idlecnt [j]; i--; )
4397 cb (EV_A_ EV_IDLE, idles [j][i]);
4398#endif
1067 4399
1068struct ev_io wio; 4400#if EV_FORK_ENABLE
4401 if (types & EV_FORK)
4402 for (i = forkcnt; i--; )
4403 if (ev_cb (forks [i]) != embed_fork_cb)
4404 cb (EV_A_ EV_FORK, forks [i]);
4405#endif
1069 4406
1070static void 4407#if EV_ASYNC_ENABLE
1071sin_cb (struct ev_io *w, int revents) 4408 if (types & EV_ASYNC)
1072{ 4409 for (i = asynccnt; i--; )
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 4410 cb (EV_A_ EV_ASYNC, asyncs [i]);
1074} 4411#endif
1075 4412
1076static void 4413#if EV_PREPARE_ENABLE
1077ocb (struct ev_timer *w, int revents) 4414 if (types & EV_PREPARE)
1078{ 4415 for (i = preparecnt; i--; )
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 4416# if EV_EMBED_ENABLE
1080 ev_timer_stop (w); 4417 if (ev_cb (prepares [i]) != embed_prepare_cb)
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 {
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif 4418# endif
1120 4419 cb (EV_A_ EV_PREPARE, prepares [i]);
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140}
1141
1142#endif 4420#endif
1143 4421
4422#if EV_CHECK_ENABLE
4423 if (types & EV_CHECK)
4424 for (i = checkcnt; i--; )
4425 cb (EV_A_ EV_CHECK, checks [i]);
4426#endif
1144 4427
4428#if EV_SIGNAL_ENABLE
4429 if (types & EV_SIGNAL)
4430 for (i = 0; i < EV_NSIG - 1; ++i)
4431 for (wl = signals [i].head; wl; )
4432 {
4433 wn = wl->next;
4434 cb (EV_A_ EV_SIGNAL, wl);
4435 wl = wn;
4436 }
4437#endif
1145 4438
4439#if EV_CHILD_ENABLE
4440 if (types & EV_CHILD)
4441 for (i = (EV_PID_HASHSIZE); i--; )
4442 for (wl = childs [i]; wl; )
4443 {
4444 wn = wl->next;
4445 cb (EV_A_ EV_CHILD, wl);
4446 wl = wn;
4447 }
4448#endif
4449/* EV_STAT 0x00001000 /* stat data changed */
4450/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4451}
4452#endif
1146 4453
4454#if EV_MULTIPLICITY
4455 #include "ev_wrap.h"
4456#endif
4457

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines