ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.34 by root, Thu Nov 1 11:43:11 2007 UTC vs.
Revision 1.535 by sf-exg, Mon May 17 15:41:10 2021 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2020 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met:
8 * 9 *
9 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
10 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
11 * 12 *
12 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
13 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
14 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
15 * with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
28 */ 38 */
39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
30# include "config.h" 45# include "config.h"
31#endif 46# endif
32 47
33#include <math.h> 48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_LINUX_AIO_ABI_H
121# ifndef EV_USE_LINUXAIO
122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
127# endif
128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
130# ifndef EV_USE_IOURING
131# define EV_USE_IOURING EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_IOURING
135# define EV_USE_IOURING 0
136# endif
137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
155
156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
34#include <stdlib.h> 204#include <stdlib.h>
35#include <unistd.h> 205#include <string.h>
36#include <fcntl.h> 206#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 207#include <stddef.h>
39 208
40#include <stdio.h> 209#include <stdio.h>
41 210
42#include <assert.h> 211#include <assert.h>
43#include <errno.h> 212#include <errno.h>
44#include <sys/types.h> 213#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 214#include <time.h>
215#include <limits.h>
216
217#include <signal.h>
218
219#ifdef EV_H
220# include EV_H
221#else
222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
234#endif
235
236#ifndef _WIN32
237# include <sys/time.h>
238# include <sys/wait.h>
239# include <unistd.h>
240#else
241# include <io.h>
242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
244# include <windows.h>
245# ifndef EV_SELECT_IS_WINSOCKET
246# define EV_SELECT_IS_WINSOCKET 1
247# endif
248# undef EV_AVOID_STDIO
249#endif
250
251/* this block tries to deduce configuration from header-defined symbols and defaults */
252
253/* try to deduce the maximum number of signals on this platform */
254#if defined EV_NSIG
255/* use what's provided */
256#elif defined NSIG
257# define EV_NSIG (NSIG)
258#elif defined _NSIG
259# define EV_NSIG (_NSIG)
260#elif defined SIGMAX
261# define EV_NSIG (SIGMAX+1)
262#elif defined SIG_MAX
263# define EV_NSIG (SIG_MAX+1)
264#elif defined _SIG_MAX
265# define EV_NSIG (_SIG_MAX+1)
266#elif defined MAXSIG
267# define EV_NSIG (MAXSIG+1)
268#elif defined MAX_SIG
269# define EV_NSIG (MAX_SIG+1)
270#elif defined SIGARRAYSIZE
271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
272#elif defined _sys_nsig
273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
274#else
275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
276#endif
277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
280#endif
281
282#ifndef EV_USE_CLOCK_SYSCALL
283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
285# else
286# define EV_USE_CLOCK_SYSCALL 0
287# endif
288#endif
289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
48 298
49#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
301# define EV_USE_MONOTONIC EV_FEATURE_OS
302# else
303# define EV_USE_MONOTONIC 0
304# endif
305#endif
306
307#ifndef EV_USE_REALTIME
308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
309#endif
310
311#ifndef EV_USE_NANOSLEEP
312# if _POSIX_C_SOURCE >= 199309L
313# define EV_USE_NANOSLEEP EV_FEATURE_OS
314# else
315# define EV_USE_NANOSLEEP 0
316# endif
317#endif
318
319#ifndef EV_USE_SELECT
320# define EV_USE_SELECT EV_FEATURE_BACKENDS
321#endif
322
323#ifndef EV_USE_POLL
324# ifdef _WIN32
325# define EV_USE_POLL 0
326# else
327# define EV_USE_POLL EV_FEATURE_BACKENDS
328# endif
329#endif
330
331#ifndef EV_USE_EPOLL
332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
334# else
335# define EV_USE_EPOLL 0
336# endif
337#endif
338
339#ifndef EV_USE_KQUEUE
340# define EV_USE_KQUEUE 0
341#endif
342
343#ifndef EV_USE_PORT
344# define EV_USE_PORT 0
345#endif
346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
363#ifndef EV_USE_INOTIFY
364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
365# define EV_USE_INOTIFY EV_FEATURE_OS
366# else
367# define EV_USE_INOTIFY 0
368# endif
369#endif
370
371#ifndef EV_PID_HASHSIZE
372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
373#endif
374
375#ifndef EV_INOTIFY_HASHSIZE
376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
377#endif
378
379#ifndef EV_USE_EVENTFD
380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
381# define EV_USE_EVENTFD EV_FEATURE_OS
382# else
383# define EV_USE_EVENTFD 0
384# endif
385#endif
386
387#ifndef EV_USE_SIGNALFD
388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
389# define EV_USE_SIGNALFD EV_FEATURE_OS
390# else
391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
400# endif
401#endif
402
403#if 0 /* debugging */
404# define EV_VERIFY 3
405# define EV_USE_4HEAP 1
406# define EV_HEAP_CACHE_AT 1
407#endif
408
409#ifndef EV_VERIFY
410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
411#endif
412
413#ifndef EV_USE_4HEAP
414# define EV_USE_4HEAP EV_FEATURE_DATA
415#endif
416
417#ifndef EV_HEAP_CACHE_AT
418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
435#endif
436
437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
438/* which makes programs even slower. might work on other unices, too. */
439#if EV_USE_CLOCK_SYSCALL
440# include <sys/syscall.h>
441# ifdef SYS_clock_gettime
442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
443# undef EV_USE_MONOTONIC
51# define EV_USE_MONOTONIC 1 444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
446# else
447# undef EV_USE_CLOCK_SYSCALL
448# define EV_USE_CLOCK_SYSCALL 0
52# endif 449# endif
53#endif 450#endif
54 451
55#ifndef EV_USE_SELECT 452/* this block fixes any misconfiguration where we know we run into trouble otherwise */
56# define EV_USE_SELECT 1
57#endif
58 453
59#ifndef EV_USE_EPOLL 454#ifndef CLOCK_MONOTONIC
455# undef EV_USE_MONOTONIC
60# define EV_USE_EPOLL 0 456# define EV_USE_MONOTONIC 0
61#endif 457#endif
62 458
63#ifndef CLOCK_REALTIME 459#ifndef CLOCK_REALTIME
460# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 461# define EV_USE_REALTIME 0
65#endif 462#endif
66#ifndef EV_USE_REALTIME 463
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 464#if !EV_STAT_ENABLE
465# undef EV_USE_INOTIFY
466# define EV_USE_INOTIFY 0
467#endif
468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
68#endif 474# endif
475#endif
69 476
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 477#if !EV_USE_NANOSLEEP
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 479# if !defined _WIN32 && !defined __hpux
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 480# include <sys/select.h>
481# endif
482#endif
74 483
75#include "ev.h" 484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
76 493
77typedef struct ev_watcher *W; 494#if EV_USE_IOURING
78typedef struct ev_watcher_list *WL; 495# include <sys/syscall.h>
79typedef struct ev_watcher_time *WT; 496# if !SYS_io_uring_register && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_register 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
80 508
81static ev_tstamp now, diff; /* monotonic clock */ 509#if EV_USE_INOTIFY
82ev_tstamp ev_now; 510# include <sys/statfs.h>
83int ev_method; 511# include <sys/inotify.h>
512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
513# ifndef IN_DONT_FOLLOW
514# undef EV_USE_INOTIFY
515# define EV_USE_INOTIFY 0
516# endif
517#endif
84 518
85static int have_monotonic; /* runtime */ 519#if EV_USE_EVENTFD
520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
521# include <stdint.h>
522# ifndef EFD_NONBLOCK
523# define EFD_NONBLOCK O_NONBLOCK
524# endif
525# ifndef EFD_CLOEXEC
526# ifdef O_CLOEXEC
527# define EFD_CLOEXEC O_CLOEXEC
528# else
529# define EFD_CLOEXEC 02000000
530# endif
531# endif
532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
533#endif
86 534
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 535#if EV_USE_SIGNALFD
88static void (*method_modify)(int fd, int oev, int nev); 536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
89static void (*method_poll)(ev_tstamp timeout); 537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
540# endif
541# ifndef SFD_CLOEXEC
542# ifdef O_CLOEXEC
543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
564# endif
565#endif
90 566
91/*****************************************************************************/ 567/*****************************************************************************/
92 568
569#if EV_VERIFY >= 3
570# define EV_FREQUENT_CHECK ev_verify (EV_A)
571#else
572# define EV_FREQUENT_CHECK do { } while (0)
573#endif
574
575/*
576 * This is used to work around floating point rounding problems.
577 * This value is good at least till the year 4000.
578 */
579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
581
582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#if defined (_WIN32) && !defined (__MINGW32__)
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
667 #if __GNUC__
668 typedef signed long long int64_t;
669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
685#else
686 #include <inttypes.h>
687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
688 #define ECB_PTRSIZE 8
689 #else
690 #define ECB_PTRSIZE 4
691 #endif
692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
702 #endif
703#endif
704
705/* work around x32 idiocy by defining proper macros */
706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
713
714/* many compilers define _GNUC_ to some versions but then only implement
715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
978 #define ecb_expect(expr,value) (expr)
979#endif
980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
1776#endif
1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
1843
1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1845
1846#if EV_MINPRI == EV_MAXPRI
1847# define ABSPRI(w) (((W)w), 0)
1848#else
1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1850#endif
1851
1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
1853
1854typedef ev_watcher *W;
1855typedef ev_watcher_list *WL;
1856typedef ev_watcher_time *WT;
1857
1858#define ev_active(w) ((W)(w))->active
1859#define ev_at(w) ((WT)(w))->at
1860
1861#if EV_USE_REALTIME
1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1863/* giving it a reasonably high chance of working on typical architectures */
1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1865#endif
1866
1867#if EV_USE_MONOTONIC
1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1869#endif
1870
1871#ifndef EV_FD_TO_WIN32_HANDLE
1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1873#endif
1874#ifndef EV_WIN32_HANDLE_TO_FD
1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1876#endif
1877#ifndef EV_WIN32_CLOSE_FD
1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
1879#endif
1880
1881#ifdef _WIN32
1882# include "ev_win32.c"
1883#endif
1884
1885/*****************************************************************************/
1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1993
1994ecb_cold
1995void
1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1997{
1998 syserr_cb = cb;
1999}
2000
2001ecb_noinline ecb_cold
2002static void
2003ev_syserr (const char *msg)
2004{
2005 if (!msg)
2006 msg = "(libev) system error";
2007
2008 if (syserr_cb)
2009 syserr_cb (msg);
2010 else
2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
2018 perror (msg);
2019#endif
2020 abort ();
2021 }
2022}
2023
2024static void *
2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
2026{
2027 /* some systems, notably openbsd and darwin, fail to properly
2028 * implement realloc (x, 0) (as required by both ansi c-89 and
2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
2032 */
2033
2034 if (size)
2035 return realloc (ptr, size);
2036
2037 free (ptr);
2038 return 0;
2039}
2040
2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
2042
2043ecb_cold
2044void
2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
2046{
2047 alloc = cb;
2048}
2049
2050inline_speed void *
2051ev_realloc (void *ptr, long size)
2052{
2053 ptr = alloc (ptr, size);
2054
2055 if (!ptr && size)
2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
2062 abort ();
2063 }
2064
2065 return ptr;
2066}
2067
2068#define ev_malloc(size) ev_realloc (0, (size))
2069#define ev_free(ptr) ev_realloc ((ptr), 0)
2070
2071/*****************************************************************************/
2072
2073/* set in reify when reification needed */
2074#define EV_ANFD_REIFY 1
2075
2076/* file descriptor info structure */
2077typedef struct
2078{
2079 WL head;
2080 unsigned char events; /* the events watched for */
2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
2082 unsigned char emask; /* some backends store the actual kernel mask in here */
2083 unsigned char eflags; /* flags field for use by backends */
2084#if EV_USE_EPOLL
2085 unsigned int egen; /* generation counter to counter epoll bugs */
2086#endif
2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2088 SOCKET handle;
2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
2092#endif
2093} ANFD;
2094
2095/* stores the pending event set for a given watcher */
2096typedef struct
2097{
2098 W w;
2099 int events; /* the pending event set for the given watcher */
2100} ANPENDING;
2101
2102#if EV_USE_INOTIFY
2103/* hash table entry per inotify-id */
2104typedef struct
2105{
2106 WL head;
2107} ANFS;
2108#endif
2109
2110/* Heap Entry */
2111#if EV_HEAP_CACHE_AT
2112 /* a heap element */
2113 typedef struct {
2114 ev_tstamp at;
2115 WT w;
2116 } ANHE;
2117
2118 #define ANHE_w(he) (he).w /* access watcher, read-write */
2119 #define ANHE_at(he) (he).at /* access cached at, read-only */
2120 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
2121#else
2122 /* a heap element */
2123 typedef WT ANHE;
2124
2125 #define ANHE_w(he) (he)
2126 #define ANHE_at(he) (he)->at
2127 #define ANHE_at_cache(he)
2128#endif
2129
2130#if EV_MULTIPLICITY
2131
2132 struct ev_loop
2133 {
2134 ev_tstamp ev_rt_now;
2135 #define ev_rt_now ((loop)->ev_rt_now)
2136 #define VAR(name,decl) decl;
2137 #include "ev_vars.h"
2138 #undef VAR
2139 };
2140 #include "ev_wrap.h"
2141
2142 static struct ev_loop default_loop_struct;
2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
2144
2145#else
2146
2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
2148 #define VAR(name,decl) static decl;
2149 #include "ev_vars.h"
2150 #undef VAR
2151
2152 static int ev_default_loop_ptr;
2153
2154#endif
2155
2156#if EV_FEATURE_API
2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
2160#else
2161# define EV_RELEASE_CB (void)0
2162# define EV_ACQUIRE_CB (void)0
2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2164#endif
2165
2166#define EVBREAK_RECURSE 0x80
2167
2168/*****************************************************************************/
2169
2170#ifndef EV_HAVE_EV_TIME
93ev_tstamp 2171ev_tstamp
94ev_time (void) 2172ev_time (void) EV_NOEXCEPT
95{ 2173{
96#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
2175 if (ecb_expect_true (have_realtime))
2176 {
97 struct timespec ts; 2177 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
99 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
100#else 2180 }
2181#endif
2182
2183 {
101 struct timeval tv; 2184 struct timeval tv;
102 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
104#endif 2187 }
105} 2188}
2189#endif
106 2190
107static ev_tstamp 2191inline_size ev_tstamp
108get_clock (void) 2192get_clock (void)
109{ 2193{
110#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
111 if (have_monotonic) 2195 if (ecb_expect_true (have_monotonic))
112 { 2196 {
113 struct timespec ts; 2197 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
116 } 2200 }
117#endif 2201#endif
118 2202
119 return ev_time (); 2203 return ev_time ();
120} 2204}
121 2205
122#define array_roundsize(base,n) ((n) | 4 & ~3) 2206#if EV_MULTIPLICITY
2207ev_tstamp
2208ev_now (EV_P) EV_NOEXCEPT
2209{
2210 return ev_rt_now;
2211}
2212#endif
123 2213
124#define array_needsize(base,cur,cnt,init) \ 2214void
125 if ((cnt) > cur) \ 2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
126 { \ 2216{
127 int newcnt = cur; \ 2217 if (delay > EV_TS_CONST (0.))
128 do \
129 { \
130 newcnt = array_roundsize (base, newcnt << 1); \
131 } \
132 while ((cnt) > newcnt); \
133 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \
136 cur = newcnt; \
137 } 2218 {
2219#if EV_USE_NANOSLEEP
2220 struct timespec ts;
2221
2222 EV_TS_SET (ts, delay);
2223 nanosleep (&ts, 0);
2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
2228#else
2229 struct timeval tv;
2230
2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
2232 /* something not guaranteed by newer posix versions, but guaranteed */
2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
2235 select (0, 0, 0, 0, &tv);
2236#endif
2237 }
2238}
138 2239
139/*****************************************************************************/ 2240/*****************************************************************************/
140 2241
141typedef struct 2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147 2243
148static ANFD *anfds; 2244/* find a suitable new size for the given array, */
149static int anfdmax; 2245/* hopefully by rounding to a nice-to-malloc size */
2246inline_size int
2247array_nextsize (int elem, int cur, int cnt)
2248{
2249 int ncur = cur + 1;
150 2250
2251 do
2252 ncur <<= 1;
2253 while (cnt > ncur);
2254
2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
2257 {
2258 ncur *= elem;
2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
2260 ncur = ncur - sizeof (void *) * 4;
2261 ncur /= elem;
2262 }
2263
2264 return ncur;
2265}
2266
2267ecb_noinline ecb_cold
2268static void *
2269array_realloc (int elem, void *base, int *cur, int cnt)
2270{
2271 *cur = array_nextsize (elem, *cur, cnt);
2272 return ev_realloc (base, elem * *cur);
2273}
2274
2275#define array_needsize_noinit(base,offset,count)
2276
2277#define array_needsize_zerofill(base,offset,count) \
2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
2279
2280#define array_needsize(type,base,cur,cnt,init) \
2281 if (ecb_expect_false ((cnt) > (cur))) \
2282 { \
2283 ecb_unused int ocur_ = (cur); \
2284 (base) = (type *)array_realloc \
2285 (sizeof (type), (base), &(cur), (cnt)); \
2286 init ((base), ocur_, ((cur) - ocur_)); \
2287 }
2288
2289#if 0
2290#define array_slim(type,stem) \
2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
2292 { \
2293 stem ## max = array_roundsize (stem ## cnt >> 1); \
2294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
2295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
2296 }
2297#endif
2298
2299#define array_free(stem, idx) \
2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
2301
2302/*****************************************************************************/
2303
2304/* dummy callback for pending events */
2305ecb_noinline
151static void 2306static void
152anfds_init (ANFD *base, int count) 2307pendingcb (EV_P_ ev_prepare *w, int revents)
153{ 2308{
154 while (count--) 2309}
155 {
156 base->head = 0;
157 base->events = EV_NONE;
158 base->reify = 0;
159 2310
160 ++base; 2311ecb_noinline
2312void
2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2314{
2315 W w_ = (W)w;
2316 int pri = ABSPRI (w_);
2317
2318 if (ecb_expect_false (w_->pending))
2319 pendings [pri][w_->pending - 1].events |= revents;
2320 else
161 } 2321 {
162} 2322 w_->pending = ++pendingcnt [pri];
163 2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
164typedef struct 2324 pendings [pri][w_->pending - 1].w = w_;
165{
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void
174event (W w, int events)
175{
176 if (w->pending)
177 {
178 pendings [w->pending - 1].events |= events; 2325 pendings [pri][w_->pending - 1].events = revents;
179 return;
180 } 2326 }
181 2327
182 w->pending = ++pendingcnt; 2328 pendingpri = NUMPRI - 1;
183 array_needsize (pendings, pendingmax, pendingcnt, );
184 pendings [pendingcnt - 1].w = w;
185 pendings [pendingcnt - 1].events = events;
186} 2329}
187 2330
188static void 2331inline_speed void
2332feed_reverse (EV_P_ W w)
2333{
2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2335 rfeeds [rfeedcnt++] = w;
2336}
2337
2338inline_size void
2339feed_reverse_done (EV_P_ int revents)
2340{
2341 do
2342 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2343 while (rfeedcnt);
2344}
2345
2346inline_speed void
189queue_events (W *events, int eventcnt, int type) 2347queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 2348{
191 int i; 2349 int i;
192 2350
193 for (i = 0; i < eventcnt; ++i) 2351 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 2352 ev_feed_event (EV_A_ events [i], type);
195} 2353}
196 2354
197static void 2355/*****************************************************************************/
2356
2357inline_speed void
198fd_event (int fd, int events) 2358fd_event_nocheck (EV_P_ int fd, int revents)
199{ 2359{
200 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 2361 ev_io *w;
202 2362
203 for (w = anfd->head; w; w = w->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
204 { 2364 {
205 int ev = w->events & events; 2365 int ev = w->events & revents;
206 2366
207 if (ev) 2367 if (ev)
208 event ((W)w, ev); 2368 ev_feed_event (EV_A_ (W)w, ev);
209 } 2369 }
210} 2370}
211 2371
212/*****************************************************************************/ 2372/* do not submit kernel events for fds that have reify set */
2373/* because that means they changed while we were polling for new events */
2374inline_speed void
2375fd_event (EV_P_ int fd, int revents)
2376{
2377 ANFD *anfd = anfds + fd;
213 2378
214static int *fdchanges; 2379 if (ecb_expect_true (!anfd->reify))
215static int fdchangemax, fdchangecnt; 2380 fd_event_nocheck (EV_A_ fd, revents);
2381}
216 2382
217static void 2383void
218fd_reify (void) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2385{
2386 if (fd >= 0 && fd < anfdmax)
2387 fd_event_nocheck (EV_A_ fd, revents);
2388}
2389
2390/* make sure the external fd watch events are in-sync */
2391/* with the kernel/libev internal state */
2392inline_size void
2393fd_reify (EV_P)
219{ 2394{
220 int i; 2395 int i;
221 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
222 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
223 { 2411 {
224 int fd = fdchanges [i]; 2412 int fd = fdchanges [i];
225 ANFD *anfd = anfds + fd; 2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
2435 {
2436 int fd = fdchanges [i];
2437 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 2438 ev_io *w;
227 2439
228 int events = 0; 2440 unsigned char o_events = anfd->events;
229 2441 unsigned char o_reify = anfd->reify;
230 for (w = anfd->head; w; w = w->next)
231 events |= w->events;
232 2442
233 anfd->reify = 0; 2443 anfd->reify = 0;
234 2444
235 if (anfd->events != events) 2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
236 { 2446 {
237 method_modify (fd, anfd->events, events);
238 anfd->events = events; 2447 anfd->events = 0;
2448
2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2450 anfd->events |= (unsigned char)w->events;
2451
2452 if (o_events != anfd->events)
2453 o_reify = EV__IOFDSET; /* actually |= */
239 } 2454 }
2455
2456 if (o_reify & EV__IOFDSET)
2457 backend_modify (EV_A_ fd, o_events, anfd->events);
2458 }
2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
2467 fdchangecnt -= changecnt;
2468}
2469
2470/* something about the given fd changed */
2471inline_size
2472void
2473fd_change (EV_P_ int fd, int flags)
2474{
2475 unsigned char reify = anfds [fd].reify;
2476 anfds [fd].reify = reify | flags;
2477
2478 if (ecb_expect_true (!reify))
240 } 2479 {
241 2480 ++fdchangecnt;
242 fdchangecnt = 0; 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
2482 fdchanges [fdchangecnt - 1] = fd;
2483 }
243} 2484}
244 2485
2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2487inline_speed ecb_cold void
2488fd_kill (EV_P_ int fd)
2489{
2490 ev_io *w;
2491
2492 while ((w = (ev_io *)anfds [fd].head))
2493 {
2494 ev_io_stop (EV_A_ w);
2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2496 }
2497}
2498
2499/* check whether the given fd is actually valid, for error recovery */
2500inline_size ecb_cold int
2501fd_valid (int fd)
2502{
2503#ifdef _WIN32
2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2505#else
2506 return fcntl (fd, F_GETFD) != -1;
2507#endif
2508}
2509
2510/* called on EBADF to verify fds */
2511ecb_noinline ecb_cold
245static void 2512static void
246fd_change (int fd) 2513fd_ebadf (EV_P)
247{
248 if (anfds [fd].reify || fdchangecnt < 0)
249 return;
250
251 anfds [fd].reify = 1;
252
253 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
255 fdchanges [fdchangecnt - 1] = fd;
256}
257
258/* called on EBADF to verify fds */
259static void
260fd_recheck (void)
261{ 2514{
262 int fd; 2515 int fd;
263 2516
264 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 2518 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
267 while (anfds [fd].head) 2520 fd_kill (EV_A_ fd);
2521}
2522
2523/* called on ENOMEM in select/poll to kill some fds and retry */
2524ecb_noinline ecb_cold
2525static void
2526fd_enomem (EV_P)
2527{
2528 int fd;
2529
2530 for (fd = anfdmax; fd--; )
2531 if (anfds [fd].events)
2532 {
2533 fd_kill (EV_A_ fd);
2534 break;
2535 }
2536}
2537
2538/* usually called after fork if backend needs to re-arm all fds from scratch */
2539ecb_noinline
2540static void
2541fd_rearm_all (EV_P)
2542{
2543 int fd;
2544
2545 for (fd = 0; fd < anfdmax; ++fd)
2546 if (anfds [fd].events)
2547 {
2548 anfds [fd].events = 0;
2549 anfds [fd].emask = 0;
2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2551 }
2552}
2553
2554/* used to prepare libev internal fd's */
2555/* this is not fork-safe */
2556inline_speed void
2557fd_intern (int fd)
2558{
2559#ifdef _WIN32
2560 unsigned long arg = 1;
2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2562#else
2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
2564 fcntl (fd, F_SETFL, O_NONBLOCK);
2565#endif
2566}
2567
2568/*****************************************************************************/
2569
2570/*
2571 * the heap functions want a real array index. array index 0 is guaranteed to not
2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2573 * the branching factor of the d-tree.
2574 */
2575
2576/*
2577 * at the moment we allow libev the luxury of two heaps,
2578 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2579 * which is more cache-efficient.
2580 * the difference is about 5% with 50000+ watchers.
2581 */
2582#if EV_USE_4HEAP
2583
2584#define DHEAP 4
2585#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2586#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2587#define UPHEAP_DONE(p,k) ((p) == (k))
2588
2589/* away from the root */
2590inline_speed void
2591downheap (ANHE *heap, int N, int k)
2592{
2593 ANHE he = heap [k];
2594 ANHE *E = heap + N + HEAP0;
2595
2596 for (;;)
2597 {
2598 ev_tstamp minat;
2599 ANHE *minpos;
2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2601
2602 /* find minimum child */
2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
2604 {
2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2609 }
2610 else if (pos < E)
2611 {
2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2616 }
2617 else
2618 break;
2619
2620 if (ANHE_at (he) <= minat)
2621 break;
2622
2623 heap [k] = *minpos;
2624 ev_active (ANHE_w (*minpos)) = k;
2625
2626 k = minpos - heap;
2627 }
2628
2629 heap [k] = he;
2630 ev_active (ANHE_w (he)) = k;
2631}
2632
2633#else /* not 4HEAP */
2634
2635#define HEAP0 1
2636#define HPARENT(k) ((k) >> 1)
2637#define UPHEAP_DONE(p,k) (!(p))
2638
2639/* away from the root */
2640inline_speed void
2641downheap (ANHE *heap, int N, int k)
2642{
2643 ANHE he = heap [k];
2644
2645 for (;;)
2646 {
2647 int c = k << 1;
2648
2649 if (c >= N + HEAP0)
2650 break;
2651
2652 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2653 ? 1 : 0;
2654
2655 if (ANHE_at (he) <= ANHE_at (heap [c]))
2656 break;
2657
2658 heap [k] = heap [c];
2659 ev_active (ANHE_w (heap [k])) = k;
2660
2661 k = c;
2662 }
2663
2664 heap [k] = he;
2665 ev_active (ANHE_w (he)) = k;
2666}
2667#endif
2668
2669/* towards the root */
2670inline_speed void
2671upheap (ANHE *heap, int k)
2672{
2673 ANHE he = heap [k];
2674
2675 for (;;)
2676 {
2677 int p = HPARENT (k);
2678
2679 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2680 break;
2681
2682 heap [k] = heap [p];
2683 ev_active (ANHE_w (heap [k])) = k;
2684 k = p;
2685 }
2686
2687 heap [k] = he;
2688 ev_active (ANHE_w (he)) = k;
2689}
2690
2691/* move an element suitably so it is in a correct place */
2692inline_size void
2693adjustheap (ANHE *heap, int N, int k)
2694{
2695 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2696 upheap (heap, k);
2697 else
2698 downheap (heap, N, k);
2699}
2700
2701/* rebuild the heap: this function is used only once and executed rarely */
2702inline_size void
2703reheap (ANHE *heap, int N)
2704{
2705 int i;
2706
2707 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2708 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2709 for (i = 0; i < N; ++i)
2710 upheap (heap, i + HEAP0);
2711}
2712
2713/*****************************************************************************/
2714
2715/* associate signal watchers to a signal */
2716typedef struct
2717{
2718 EV_ATOMIC_T pending;
2719#if EV_MULTIPLICITY
2720 EV_P;
2721#endif
2722 WL head;
2723} ANSIG;
2724
2725static ANSIG signals [EV_NSIG - 1];
2726
2727/*****************************************************************************/
2728
2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2730
2731ecb_noinline ecb_cold
2732static void
2733evpipe_init (EV_P)
2734{
2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746# endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 ev_io_start (EV_A_ &pipe_w);
2773 ev_unref (EV_A); /* watcher should not keep loop alive */
2774 }
2775}
2776
2777inline_speed void
2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2779{
2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2781
2782 if (ecb_expect_true (*flag))
2783 return;
2784
2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
2801#if EV_USE_EVENTFD
2802 if (evpipe [0] < 0)
2803 {
2804 uint64_t counter = 1;
2805 write (evpipe [1], &counter, sizeof (uint64_t));
2806 }
2807 else
2808#endif
2809 {
2810#ifdef _WIN32
2811 WSABUF buf;
2812 DWORD sent;
2813 buf.buf = (char *)&buf;
2814 buf.len = 1;
2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
2819 }
2820
2821 errno = old_errno;
2822 }
2823}
2824
2825/* called whenever the libev signal pipe */
2826/* got some events (signal, async) */
2827static void
2828pipecb (EV_P_ ev_io *iow, int revents)
2829{
2830 int i;
2831
2832 if (revents & EV_READ)
2833 {
2834#if EV_USE_EVENTFD
2835 if (evpipe [0] < 0)
2836 {
2837 uint64_t counter;
2838 read (evpipe [1], &counter, sizeof (uint64_t));
2839 }
2840 else
2841#endif
2842 {
2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
2855 }
2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
2862 if (sig_pending)
2863 {
2864 sig_pending = 0;
2865
2866 ECB_MEMORY_FENCE;
2867
2868 for (i = EV_NSIG - 1; i--; )
2869 if (ecb_expect_false (signals [i].pending))
2870 ev_feed_signal_event (EV_A_ i + 1);
2871 }
2872#endif
2873
2874#if EV_ASYNC_ENABLE
2875 if (async_pending)
2876 {
2877 async_pending = 0;
2878
2879 ECB_MEMORY_FENCE;
2880
2881 for (i = asynccnt; i--; )
2882 if (asyncs [i]->sent)
268 { 2883 {
269 ev_io_stop (anfds [fd].head); 2884 asyncs [i]->sent = 0;
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 2885 ECB_MEMORY_FENCE_RELEASE;
2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
271 } 2887 }
2888 }
2889#endif
272} 2890}
273 2891
274/*****************************************************************************/ 2892/*****************************************************************************/
275 2893
276static struct ev_timer **timers; 2894void
277static int timermax, timercnt; 2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
278 2901
279static struct ev_periodic **periodics; 2902 if (!EV_A)
280static int periodicmax, periodiccnt; 2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
281 2909
282static void 2910static void
283upheap (WT *timers, int k) 2911ev_sighandler (int signum)
284{ 2912{
285 WT w = timers [k]; 2913#ifdef _WIN32
2914 signal (signum, ev_sighandler);
2915#endif
286 2916
287 while (k && timers [k >> 1]->at > w->at) 2917 ev_feed_signal (signum);
288 {
289 timers [k] = timers [k >> 1];
290 timers [k]->active = k + 1;
291 k >>= 1;
292 }
293
294 timers [k] = w;
295 timers [k]->active = k + 1;
296
297} 2918}
298 2919
2920ecb_noinline
2921void
2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2923{
2924 WL w;
2925
2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2927 return;
2928
2929 --signum;
2930
2931#if EV_MULTIPLICITY
2932 /* it is permissible to try to feed a signal to the wrong loop */
2933 /* or, likely more useful, feeding a signal nobody is waiting for */
2934
2935 if (ecb_expect_false (signals [signum].loop != EV_A))
2936 return;
2937#endif
2938
2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
2941
2942 for (w = signals [signum].head; w; w = w->next)
2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2944}
2945
2946#if EV_USE_SIGNALFD
299static void 2947static void
300downheap (WT *timers, int N, int k) 2948sigfdcb (EV_P_ ev_io *iow, int revents)
301{ 2949{
302 WT w = timers [k]; 2950 struct signalfd_siginfo si[2], *sip; /* these structs are big */
303 2951
304 while (k < (N >> 1)) 2952 for (;;)
305 { 2953 {
306 int j = k << 1; 2954 ssize_t res = read (sigfd, si, sizeof (si));
307 2955
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 2956 /* not ISO-C, as res might be -1, but works with SuS */
309 ++j; 2957 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2958 ev_feed_signal_event (EV_A_ sip->ssi_signo);
310 2959
311 if (w->at <= timers [j]->at) 2960 if (res < (ssize_t)sizeof (si))
312 break; 2961 break;
313
314 timers [k] = timers [j];
315 timers [k]->active = k + 1;
316 k = j;
317 } 2962 }
318
319 timers [k] = w;
320 timers [k]->active = k + 1;
321} 2963}
2964#endif
2965
2966#endif
322 2967
323/*****************************************************************************/ 2968/*****************************************************************************/
324 2969
325typedef struct 2970#if EV_CHILD_ENABLE
326{ 2971static WL childs [EV_PID_HASHSIZE];
327 struct ev_signal *head;
328 sig_atomic_t volatile gotsig;
329} ANSIG;
330 2972
331static ANSIG *signals;
332static int signalmax;
333
334static int sigpipe [2];
335static sig_atomic_t volatile gotsig;
336static struct ev_io sigev;
337
338static void
339signals_init (ANSIG *base, int count)
340{
341 while (count--)
342 {
343 base->head = 0;
344 base->gotsig = 0;
345
346 ++base;
347 }
348}
349
350static void
351sighandler (int signum)
352{
353 signals [signum - 1].gotsig = 1;
354
355 if (!gotsig)
356 {
357 gotsig = 1;
358 write (sigpipe [1], &signum, 1);
359 }
360}
361
362static void
363sigcb (struct ev_io *iow, int revents)
364{
365 struct ev_signal *w;
366 int sig;
367
368 read (sigpipe [0], &revents, 1);
369 gotsig = 0;
370
371 for (sig = signalmax; sig--; )
372 if (signals [sig].gotsig)
373 {
374 signals [sig].gotsig = 0;
375
376 for (w = signals [sig].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL);
378 }
379}
380
381static void
382siginit (void)
383{
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386
387 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
390
391 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev);
393}
394
395/*****************************************************************************/
396
397static struct ev_idle **idles;
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407
408static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 2973static ev_signal childev;
2974
2975#ifndef WIFCONTINUED
2976# define WIFCONTINUED(status) 0
2977#endif
2978
2979/* handle a single child status event */
2980inline_speed void
2981child_reap (EV_P_ int chain, int pid, int status)
2982{
2983 ev_child *w;
2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2985
2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2987 {
2988 if ((w->pid == pid || !w->pid)
2989 && (!traced || (w->flags & 1)))
2990 {
2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2992 w->rpid = pid;
2993 w->rstatus = status;
2994 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2995 }
2996 }
2997}
410 2998
411#ifndef WCONTINUED 2999#ifndef WCONTINUED
412# define WCONTINUED 0 3000# define WCONTINUED 0
413#endif 3001#endif
414 3002
3003/* called on sigchld etc., calls waitpid */
415static void 3004static void
416childcb (struct ev_signal *sw, int revents) 3005childcb (EV_P_ ev_signal *sw, int revents)
417{ 3006{
418 struct ev_child *w;
419 int pid, status; 3007 int pid, status;
420 3008
3009 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 3010 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 3011 if (!WCONTINUED
423 if (w->pid == pid || w->pid == -1) 3012 || errno != EINVAL
3013 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
3014 return;
3015
3016 /* make sure we are called again until all children have been reaped */
3017 /* we need to do it this way so that the callback gets called before we continue */
3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
3019
3020 child_reap (EV_A_ pid, pid, status);
3021 if ((EV_PID_HASHSIZE) > 1)
3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
3023}
3024
3025#endif
3026
3027/*****************************************************************************/
3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
3032
3033static void
3034timerfdcb (EV_P_ ev_io *iow, int revents)
3035{
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048#if EV_PERIODIC_ENABLE
3049 periodics_reschedule (EV_A);
3050#endif
3051}
3052
3053ecb_noinline ecb_cold
3054static void
3055evtimerfd_init (EV_P)
3056{
3057 if (!ev_is_active (&timerfd_w))
3058 {
3059 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3060
3061 if (timerfd >= 0)
424 { 3062 {
425 w->status = status; 3063 fd_intern (timerfd); /* just to be sure */
426 event ((W)w, EV_CHILD); 3064
3065 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3066 ev_set_priority (&timerfd_w, EV_MINPRI);
3067 ev_io_start (EV_A_ &timerfd_w);
3068 ev_unref (EV_A); /* watcher should not keep loop alive */
3069
3070 /* (re-) arm timer */
3071 timerfdcb (EV_A_ 0, 0);
427 } 3072 }
3073 }
428} 3074}
3075
3076#endif
429 3077
430/*****************************************************************************/ 3078/*****************************************************************************/
431 3079
3080#if EV_USE_IOCP
3081# include "ev_iocp.c"
3082#endif
3083#if EV_USE_PORT
3084# include "ev_port.c"
3085#endif
3086#if EV_USE_KQUEUE
3087# include "ev_kqueue.c"
3088#endif
432#if EV_USE_EPOLL 3089#if EV_USE_EPOLL
433# include "ev_epoll.c" 3090# include "ev_epoll.c"
434#endif 3091#endif
3092#if EV_USE_LINUXAIO
3093# include "ev_linuxaio.c"
3094#endif
3095#if EV_USE_IOURING
3096# include "ev_iouring.c"
3097#endif
3098#if EV_USE_POLL
3099# include "ev_poll.c"
3100#endif
435#if EV_USE_SELECT 3101#if EV_USE_SELECT
436# include "ev_select.c" 3102# include "ev_select.c"
437#endif 3103#endif
438 3104
3105ecb_cold int
3106ev_version_major (void) EV_NOEXCEPT
3107{
3108 return EV_VERSION_MAJOR;
3109}
3110
3111ecb_cold int
3112ev_version_minor (void) EV_NOEXCEPT
3113{
3114 return EV_VERSION_MINOR;
3115}
3116
3117/* return true if we are running with elevated privileges and should ignore env variables */
3118inline_size ecb_cold int
3119enable_secure (void)
3120{
3121#ifdef _WIN32
3122 return 0;
3123#else
3124 return getuid () != geteuid ()
3125 || getgid () != getegid ();
3126#endif
3127}
3128
3129ecb_cold
3130unsigned int
3131ev_supported_backends (void) EV_NOEXCEPT
3132{
3133 unsigned int flags = 0;
3134
3135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
3136 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
3137 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
3138 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
3139 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
3140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3141 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3142
3143 return flags;
3144}
3145
3146ecb_cold
3147unsigned int
3148ev_recommended_backends (void) EV_NOEXCEPT
3149{
3150 unsigned int flags = ev_supported_backends ();
3151
3152#ifndef __NetBSD__
3153 /* kqueue is borked on everything but netbsd apparently */
3154 /* it usually doesn't work correctly on anything but sockets and pipes */
3155 flags &= ~EVBACKEND_KQUEUE;
3156#endif
3157#ifdef __APPLE__
3158 /* only select works correctly on that "unix-certified" platform */
3159 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
3160 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
3161#endif
3162#ifdef __FreeBSD__
3163 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3164#endif
3165
3166 /* TODO: linuxaio is very experimental */
3167#if !EV_RECOMMEND_LINUXAIO
3168 flags &= ~EVBACKEND_LINUXAIO;
3169#endif
3170 /* TODO: iouring is super experimental */
3171#if !EV_RECOMMEND_IOURING
3172 flags &= ~EVBACKEND_IOURING;
3173#endif
3174
3175 return flags;
3176}
3177
3178ecb_cold
3179unsigned int
3180ev_embeddable_backends (void) EV_NOEXCEPT
3181{
3182 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
3183
3184 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
3185 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
3186 flags &= ~EVBACKEND_EPOLL;
3187
3188 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
3189
3190 return flags;
3191}
3192
3193unsigned int
3194ev_backend (EV_P) EV_NOEXCEPT
3195{
3196 return backend;
3197}
3198
3199#if EV_FEATURE_API
3200unsigned int
3201ev_iteration (EV_P) EV_NOEXCEPT
3202{
3203 return loop_count;
3204}
3205
3206unsigned int
3207ev_depth (EV_P) EV_NOEXCEPT
3208{
3209 return loop_depth;
3210}
3211
3212void
3213ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3214{
3215 io_blocktime = interval;
3216}
3217
3218void
3219ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
3220{
3221 timeout_blocktime = interval;
3222}
3223
3224void
3225ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3226{
3227 userdata = data;
3228}
3229
3230void *
3231ev_userdata (EV_P) EV_NOEXCEPT
3232{
3233 return userdata;
3234}
3235
3236void
3237ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3238{
3239 invoke_cb = invoke_pending_cb;
3240}
3241
3242void
3243ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3244{
3245 release_cb = release;
3246 acquire_cb = acquire;
3247}
3248#endif
3249
3250/* initialise a loop structure, must be zero-initialised */
3251ecb_noinline ecb_cold
3252static void
3253loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
3254{
3255 if (!backend)
3256 {
3257 origflags = flags;
3258
3259#if EV_USE_REALTIME
3260 if (!have_realtime)
3261 {
3262 struct timespec ts;
3263
3264 if (!clock_gettime (CLOCK_REALTIME, &ts))
3265 have_realtime = 1;
3266 }
3267#endif
3268
3269#if EV_USE_MONOTONIC
3270 if (!have_monotonic)
3271 {
3272 struct timespec ts;
3273
3274 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
3275 have_monotonic = 1;
3276 }
3277#endif
3278
3279 /* pid check not overridable via env */
3280#ifndef _WIN32
3281 if (flags & EVFLAG_FORKCHECK)
3282 curpid = getpid ();
3283#endif
3284
3285 if (!(flags & EVFLAG_NOENV)
3286 && !enable_secure ()
3287 && getenv ("LIBEV_FLAGS"))
3288 flags = atoi (getenv ("LIBEV_FLAGS"));
3289
3290 ev_rt_now = ev_time ();
3291 mn_now = get_clock ();
3292 now_floor = mn_now;
3293 rtmn_diff = ev_rt_now - mn_now;
3294#if EV_FEATURE_API
3295 invoke_cb = ev_invoke_pending;
3296#endif
3297
3298 io_blocktime = 0.;
3299 timeout_blocktime = 0.;
3300 backend = 0;
3301 backend_fd = -1;
3302 sig_pending = 0;
3303#if EV_ASYNC_ENABLE
3304 async_pending = 0;
3305#endif
3306 pipe_write_skipped = 0;
3307 pipe_write_wanted = 0;
3308 evpipe [0] = -1;
3309 evpipe [1] = -1;
3310#if EV_USE_INOTIFY
3311 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3312#endif
3313#if EV_USE_SIGNALFD
3314 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3315#endif
3316#if EV_USE_TIMERFD
3317 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3318#endif
3319
3320 if (!(flags & EVBACKEND_MASK))
3321 flags |= ev_recommended_backends ();
3322
3323#if EV_USE_IOCP
3324 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3325#endif
3326#if EV_USE_PORT
3327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
3328#endif
3329#if EV_USE_KQUEUE
3330 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3331#endif
3332#if EV_USE_IOURING
3333 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3334#endif
3335#if EV_USE_LINUXAIO
3336 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
3337#endif
3338#if EV_USE_EPOLL
3339 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
3340#endif
3341#if EV_USE_POLL
3342 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
3343#endif
3344#if EV_USE_SELECT
3345 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
3346#endif
3347
3348 ev_prepare_init (&pending_w, pendingcb);
3349
3350#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3351 ev_init (&pipe_w, pipecb);
3352 ev_set_priority (&pipe_w, EV_MAXPRI);
3353#endif
3354 }
3355}
3356
3357/* free up a loop structure */
3358ecb_cold
3359void
3360ev_loop_destroy (EV_P)
3361{
3362 int i;
3363
3364#if EV_MULTIPLICITY
3365 /* mimic free (0) */
3366 if (!EV_A)
3367 return;
3368#endif
3369
3370#if EV_CLEANUP_ENABLE
3371 /* queue cleanup watchers (and execute them) */
3372 if (ecb_expect_false (cleanupcnt))
3373 {
3374 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3375 EV_INVOKE_PENDING;
3376 }
3377#endif
3378
3379#if EV_CHILD_ENABLE
3380 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3381 {
3382 ev_ref (EV_A); /* child watcher */
3383 ev_signal_stop (EV_A_ &childev);
3384 }
3385#endif
3386
3387 if (ev_is_active (&pipe_w))
3388 {
3389 /*ev_ref (EV_A);*/
3390 /*ev_io_stop (EV_A_ &pipe_w);*/
3391
3392 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3393 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3394 }
3395
3396#if EV_USE_SIGNALFD
3397 if (ev_is_active (&sigfd_w))
3398 close (sigfd);
3399#endif
3400
3401#if EV_USE_TIMERFD
3402 if (ev_is_active (&timerfd_w))
3403 close (timerfd);
3404#endif
3405
3406#if EV_USE_INOTIFY
3407 if (fs_fd >= 0)
3408 close (fs_fd);
3409#endif
3410
3411 if (backend_fd >= 0)
3412 close (backend_fd);
3413
3414#if EV_USE_IOCP
3415 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3416#endif
3417#if EV_USE_PORT
3418 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3419#endif
3420#if EV_USE_KQUEUE
3421 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3422#endif
3423#if EV_USE_IOURING
3424 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3425#endif
3426#if EV_USE_LINUXAIO
3427 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
3428#endif
3429#if EV_USE_EPOLL
3430 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3431#endif
3432#if EV_USE_POLL
3433 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3434#endif
3435#if EV_USE_SELECT
3436 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
3437#endif
3438
3439 for (i = NUMPRI; i--; )
3440 {
3441 array_free (pending, [i]);
3442#if EV_IDLE_ENABLE
3443 array_free (idle, [i]);
3444#endif
3445 }
3446
3447 ev_free (anfds); anfds = 0; anfdmax = 0;
3448
3449 /* have to use the microsoft-never-gets-it-right macro */
3450 array_free (rfeed, EMPTY);
3451 array_free (fdchange, EMPTY);
3452 array_free (timer, EMPTY);
3453#if EV_PERIODIC_ENABLE
3454 array_free (periodic, EMPTY);
3455#endif
3456#if EV_FORK_ENABLE
3457 array_free (fork, EMPTY);
3458#endif
3459#if EV_CLEANUP_ENABLE
3460 array_free (cleanup, EMPTY);
3461#endif
3462 array_free (prepare, EMPTY);
3463 array_free (check, EMPTY);
3464#if EV_ASYNC_ENABLE
3465 array_free (async, EMPTY);
3466#endif
3467
3468 backend = 0;
3469
3470#if EV_MULTIPLICITY
3471 if (ev_is_default_loop (EV_A))
3472#endif
3473 ev_default_loop_ptr = 0;
3474#if EV_MULTIPLICITY
3475 else
3476 ev_free (EV_A);
3477#endif
3478}
3479
3480#if EV_USE_INOTIFY
3481inline_size void infy_fork (EV_P);
3482#endif
3483
3484inline_size void
3485loop_fork (EV_P)
3486{
3487#if EV_USE_PORT
3488 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3489#endif
3490#if EV_USE_KQUEUE
3491 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3492#endif
3493#if EV_USE_IOURING
3494 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3495#endif
3496#if EV_USE_LINUXAIO
3497 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
3498#endif
3499#if EV_USE_EPOLL
3500 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3501#endif
3502#if EV_USE_INOTIFY
3503 infy_fork (EV_A);
3504#endif
3505
3506 if (postfork != 2)
3507 {
3508 #if EV_USE_SIGNALFD
3509 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3510 #endif
3511
3512 #if EV_USE_TIMERFD
3513 if (ev_is_active (&timerfd_w))
3514 {
3515 ev_ref (EV_A);
3516 ev_io_stop (EV_A_ &timerfd_w);
3517
3518 close (timerfd);
3519 timerfd = -2;
3520
3521 evtimerfd_init (EV_A);
3522 /* reschedule periodics, in case we missed something */
3523 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3524 }
3525 #endif
3526
3527 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3528 if (ev_is_active (&pipe_w))
3529 {
3530 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3531
3532 ev_ref (EV_A);
3533 ev_io_stop (EV_A_ &pipe_w);
3534
3535 if (evpipe [0] >= 0)
3536 EV_WIN32_CLOSE_FD (evpipe [0]);
3537
3538 evpipe_init (EV_A);
3539 /* iterate over everything, in case we missed something before */
3540 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3541 }
3542 #endif
3543 }
3544
3545 postfork = 0;
3546}
3547
3548#if EV_MULTIPLICITY
3549
3550ecb_cold
3551struct ev_loop *
3552ev_loop_new (unsigned int flags) EV_NOEXCEPT
3553{
3554 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3555
3556 memset (EV_A, 0, sizeof (struct ev_loop));
3557 loop_init (EV_A_ flags);
3558
3559 if (ev_backend (EV_A))
3560 return EV_A;
3561
3562 ev_free (EV_A);
3563 return 0;
3564}
3565
3566#endif /* multiplicity */
3567
3568#if EV_VERIFY
3569ecb_noinline ecb_cold
3570static void
3571verify_watcher (EV_P_ W w)
3572{
3573 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3574
3575 if (w->pending)
3576 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3577}
3578
3579ecb_noinline ecb_cold
3580static void
3581verify_heap (EV_P_ ANHE *heap, int N)
3582{
3583 int i;
3584
3585 for (i = HEAP0; i < N + HEAP0; ++i)
3586 {
3587 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3588 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3589 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3590
3591 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3592 }
3593}
3594
3595ecb_noinline ecb_cold
3596static void
3597array_verify (EV_P_ W *ws, int cnt)
3598{
3599 while (cnt--)
3600 {
3601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3602 verify_watcher (EV_A_ ws [cnt]);
3603 }
3604}
3605#endif
3606
3607#if EV_FEATURE_API
3608void ecb_cold
3609ev_verify (EV_P) EV_NOEXCEPT
3610{
3611#if EV_VERIFY
3612 int i;
3613 WL w, w2;
3614
3615 assert (activecnt >= -1);
3616
3617 assert (fdchangemax >= fdchangecnt);
3618 for (i = 0; i < fdchangecnt; ++i)
3619 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3620
3621 assert (anfdmax >= 0);
3622 for (i = 0; i < anfdmax; ++i)
3623 {
3624 int j = 0;
3625
3626 for (w = w2 = anfds [i].head; w; w = w->next)
3627 {
3628 verify_watcher (EV_A_ (W)w);
3629
3630 if (j++ & 1)
3631 {
3632 assert (("libev: io watcher list contains a loop", w != w2));
3633 w2 = w2->next;
3634 }
3635
3636 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3637 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3638 }
3639 }
3640
3641 assert (timermax >= timercnt);
3642 verify_heap (EV_A_ timers, timercnt);
3643
3644#if EV_PERIODIC_ENABLE
3645 assert (periodicmax >= periodiccnt);
3646 verify_heap (EV_A_ periodics, periodiccnt);
3647#endif
3648
3649 for (i = NUMPRI; i--; )
3650 {
3651 assert (pendingmax [i] >= pendingcnt [i]);
3652#if EV_IDLE_ENABLE
3653 assert (idleall >= 0);
3654 assert (idlemax [i] >= idlecnt [i]);
3655 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3656#endif
3657 }
3658
3659#if EV_FORK_ENABLE
3660 assert (forkmax >= forkcnt);
3661 array_verify (EV_A_ (W *)forks, forkcnt);
3662#endif
3663
3664#if EV_CLEANUP_ENABLE
3665 assert (cleanupmax >= cleanupcnt);
3666 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3667#endif
3668
3669#if EV_ASYNC_ENABLE
3670 assert (asyncmax >= asynccnt);
3671 array_verify (EV_A_ (W *)asyncs, asynccnt);
3672#endif
3673
3674#if EV_PREPARE_ENABLE
3675 assert (preparemax >= preparecnt);
3676 array_verify (EV_A_ (W *)prepares, preparecnt);
3677#endif
3678
3679#if EV_CHECK_ENABLE
3680 assert (checkmax >= checkcnt);
3681 array_verify (EV_A_ (W *)checks, checkcnt);
3682#endif
3683
3684# if 0
3685#if EV_CHILD_ENABLE
3686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3687 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3688#endif
3689# endif
3690#endif
3691}
3692#endif
3693
3694#if EV_MULTIPLICITY
3695ecb_cold
3696struct ev_loop *
3697#else
439int 3698int
440ev_version_major (void) 3699#endif
3700ev_default_loop (unsigned int flags) EV_NOEXCEPT
441{ 3701{
442 return EV_VERSION_MAJOR; 3702 if (!ev_default_loop_ptr)
3703 {
3704#if EV_MULTIPLICITY
3705 EV_P = ev_default_loop_ptr = &default_loop_struct;
3706#else
3707 ev_default_loop_ptr = 1;
3708#endif
3709
3710 loop_init (EV_A_ flags);
3711
3712 if (ev_backend (EV_A))
3713 {
3714#if EV_CHILD_ENABLE
3715 ev_signal_init (&childev, childcb, SIGCHLD);
3716 ev_set_priority (&childev, EV_MAXPRI);
3717 ev_signal_start (EV_A_ &childev);
3718 ev_unref (EV_A); /* child watcher should not keep loop alive */
3719#endif
3720 }
3721 else
3722 ev_default_loop_ptr = 0;
3723 }
3724
3725 return ev_default_loop_ptr;
3726}
3727
3728void
3729ev_loop_fork (EV_P) EV_NOEXCEPT
3730{
3731 postfork = 1;
3732}
3733
3734/*****************************************************************************/
3735
3736void
3737ev_invoke (EV_P_ void *w, int revents)
3738{
3739 EV_CB_INVOKE ((W)w, revents);
3740}
3741
3742unsigned int
3743ev_pending_count (EV_P) EV_NOEXCEPT
3744{
3745 int pri;
3746 unsigned int count = 0;
3747
3748 for (pri = NUMPRI; pri--; )
3749 count += pendingcnt [pri];
3750
3751 return count;
3752}
3753
3754ecb_noinline
3755void
3756ev_invoke_pending (EV_P)
3757{
3758 pendingpri = NUMPRI;
3759
3760 do
3761 {
3762 --pendingpri;
3763
3764 /* pendingpri possibly gets modified in the inner loop */
3765 while (pendingcnt [pendingpri])
3766 {
3767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3768
3769 p->w->pending = 0;
3770 EV_CB_INVOKE (p->w, p->events);
3771 EV_FREQUENT_CHECK;
3772 }
3773 }
3774 while (pendingpri);
3775}
3776
3777#if EV_IDLE_ENABLE
3778/* make idle watchers pending. this handles the "call-idle */
3779/* only when higher priorities are idle" logic */
3780inline_size void
3781idle_reify (EV_P)
3782{
3783 if (ecb_expect_false (idleall))
3784 {
3785 int pri;
3786
3787 for (pri = NUMPRI; pri--; )
3788 {
3789 if (pendingcnt [pri])
3790 break;
3791
3792 if (idlecnt [pri])
3793 {
3794 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3795 break;
3796 }
3797 }
3798 }
3799}
3800#endif
3801
3802/* make timers pending */
3803inline_size void
3804timers_reify (EV_P)
3805{
3806 EV_FREQUENT_CHECK;
3807
3808 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3809 {
3810 do
3811 {
3812 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3813
3814 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3815
3816 /* first reschedule or stop timer */
3817 if (w->repeat)
3818 {
3819 ev_at (w) += w->repeat;
3820 if (ev_at (w) < mn_now)
3821 ev_at (w) = mn_now;
3822
3823 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
3824
3825 ANHE_at_cache (timers [HEAP0]);
3826 downheap (timers, timercnt, HEAP0);
3827 }
3828 else
3829 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3830
3831 EV_FREQUENT_CHECK;
3832 feed_reverse (EV_A_ (W)w);
3833 }
3834 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3835
3836 feed_reverse_done (EV_A_ EV_TIMER);
3837 }
3838}
3839
3840#if EV_PERIODIC_ENABLE
3841
3842ecb_noinline
3843static void
3844periodic_recalc (EV_P_ ev_periodic *w)
3845{
3846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3848
3849 /* the above almost always errs on the low side */
3850 while (at <= ev_rt_now)
3851 {
3852 ev_tstamp nat = at + w->interval;
3853
3854 /* when resolution fails us, we use ev_rt_now */
3855 if (ecb_expect_false (nat == at))
3856 {
3857 at = ev_rt_now;
3858 break;
3859 }
3860
3861 at = nat;
3862 }
3863
3864 ev_at (w) = at;
3865}
3866
3867/* make periodics pending */
3868inline_size void
3869periodics_reify (EV_P)
3870{
3871 EV_FREQUENT_CHECK;
3872
3873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3874 {
3875 do
3876 {
3877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3878
3879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3880
3881 /* first reschedule or stop timer */
3882 if (w->reschedule_cb)
3883 {
3884 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3885
3886 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3887
3888 ANHE_at_cache (periodics [HEAP0]);
3889 downheap (periodics, periodiccnt, HEAP0);
3890 }
3891 else if (w->interval)
3892 {
3893 periodic_recalc (EV_A_ w);
3894 ANHE_at_cache (periodics [HEAP0]);
3895 downheap (periodics, periodiccnt, HEAP0);
3896 }
3897 else
3898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3899
3900 EV_FREQUENT_CHECK;
3901 feed_reverse (EV_A_ (W)w);
3902 }
3903 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3904
3905 feed_reverse_done (EV_A_ EV_PERIODIC);
3906 }
3907}
3908
3909/* simply recalculate all periodics */
3910/* TODO: maybe ensure that at least one event happens when jumping forward? */
3911ecb_noinline ecb_cold
3912static void
3913periodics_reschedule (EV_P)
3914{
3915 int i;
3916
3917 /* adjust periodics after time jump */
3918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3919 {
3920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3921
3922 if (w->reschedule_cb)
3923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3924 else if (w->interval)
3925 periodic_recalc (EV_A_ w);
3926
3927 ANHE_at_cache (periodics [i]);
3928 }
3929
3930 reheap (periodics, periodiccnt);
3931}
3932#endif
3933
3934/* adjust all timers by a given offset */
3935ecb_noinline ecb_cold
3936static void
3937timers_reschedule (EV_P_ ev_tstamp adjust)
3938{
3939 int i;
3940
3941 for (i = 0; i < timercnt; ++i)
3942 {
3943 ANHE *he = timers + i + HEAP0;
3944 ANHE_w (*he)->at += adjust;
3945 ANHE_at_cache (*he);
3946 }
3947}
3948
3949/* fetch new monotonic and realtime times from the kernel */
3950/* also detect if there was a timejump, and act accordingly */
3951inline_speed void
3952time_update (EV_P_ ev_tstamp max_block)
3953{
3954#if EV_USE_MONOTONIC
3955 if (ecb_expect_true (have_monotonic))
3956 {
3957 int i;
3958 ev_tstamp odiff = rtmn_diff;
3959
3960 mn_now = get_clock ();
3961
3962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3963 /* interpolate in the meantime */
3964 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
3965 {
3966 ev_rt_now = rtmn_diff + mn_now;
3967 return;
3968 }
3969
3970 now_floor = mn_now;
3971 ev_rt_now = ev_time ();
3972
3973 /* loop a few times, before making important decisions.
3974 * on the choice of "4": one iteration isn't enough,
3975 * in case we get preempted during the calls to
3976 * ev_time and get_clock. a second call is almost guaranteed
3977 * to succeed in that case, though. and looping a few more times
3978 * doesn't hurt either as we only do this on time-jumps or
3979 * in the unlikely event of having been preempted here.
3980 */
3981 for (i = 4; --i; )
3982 {
3983 ev_tstamp diff;
3984 rtmn_diff = ev_rt_now - mn_now;
3985
3986 diff = odiff - rtmn_diff;
3987
3988 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
3989 return; /* all is well */
3990
3991 ev_rt_now = ev_time ();
3992 mn_now = get_clock ();
3993 now_floor = mn_now;
3994 }
3995
3996 /* no timer adjustment, as the monotonic clock doesn't jump */
3997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3998# if EV_PERIODIC_ENABLE
3999 periodics_reschedule (EV_A);
4000# endif
4001 }
4002 else
4003#endif
4004 {
4005 ev_rt_now = ev_time ();
4006
4007 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
4008 {
4009 /* adjust timers. this is easy, as the offset is the same for all of them */
4010 timers_reschedule (EV_A_ ev_rt_now - mn_now);
4011#if EV_PERIODIC_ENABLE
4012 periodics_reschedule (EV_A);
4013#endif
4014 }
4015
4016 mn_now = ev_rt_now;
4017 }
443} 4018}
444 4019
445int 4020int
446ev_version_minor (void) 4021ev_run (EV_P_ int flags)
447{ 4022{
448 return EV_VERSION_MINOR; 4023#if EV_FEATURE_API
449} 4024 ++loop_depth;
4025#endif
450 4026
451int ev_init (int flags) 4027 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
452{ 4028
453 if (!ev_method) 4029 loop_done = EVBREAK_CANCEL;
4030
4031 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
4032
4033 do
4034 {
4035#if EV_VERIFY >= 2
4036 ev_verify (EV_A);
4037#endif
4038
4039#ifndef _WIN32
4040 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
4041 if (ecb_expect_false (getpid () != curpid))
4042 {
4043 curpid = getpid ();
4044 postfork = 1;
4045 }
4046#endif
4047
4048#if EV_FORK_ENABLE
4049 /* we might have forked, so queue fork handlers */
4050 if (ecb_expect_false (postfork))
4051 if (forkcnt)
4052 {
4053 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
4054 EV_INVOKE_PENDING;
4055 }
4056#endif
4057
4058#if EV_PREPARE_ENABLE
4059 /* queue prepare watchers (and execute them) */
4060 if (ecb_expect_false (preparecnt))
4061 {
4062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
4063 EV_INVOKE_PENDING;
4064 }
4065#endif
4066
4067 if (ecb_expect_false (loop_done))
4068 break;
4069
4070 /* we might have forked, so reify kernel state if necessary */
4071 if (ecb_expect_false (postfork))
4072 loop_fork (EV_A);
4073
4074 /* update fd-related kernel structures */
4075 fd_reify (EV_A);
4076
4077 /* calculate blocking time */
454 { 4078 {
4079 ev_tstamp waittime = 0.;
4080 ev_tstamp sleeptime = 0.;
4081
4082 /* remember old timestamp for io_blocktime calculation */
4083 ev_tstamp prev_mn_now = mn_now;
4084
4085 /* update time to cancel out callback processing overhead */
4086 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4087
4088 /* from now on, we want a pipe-wake-up */
4089 pipe_write_wanted = 1;
4090
4091 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4092
4093 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
4094 {
4095 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4096
455#if EV_USE_MONOTONIC 4097#if EV_USE_MONOTONIC
4098 if (ecb_expect_true (have_monotonic))
4099 {
4100#if EV_USE_TIMERFD
4101 /* sleep a lot longer when we can reliably detect timejumps */
4102 if (ecb_expect_true (timerfd != -1))
4103 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4104#endif
4105#if !EV_PERIODIC_ENABLE
4106 /* without periodics but with monotonic clock there is no need */
4107 /* for any time jump detection, so sleep longer */
4108 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4109#endif
4110 }
4111#endif
4112
4113 if (timercnt)
4114 {
4115 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
4116 if (waittime > to) waittime = to;
4117 }
4118
4119#if EV_PERIODIC_ENABLE
4120 if (periodiccnt)
4121 {
4122 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
4123 if (waittime > to) waittime = to;
4124 }
4125#endif
4126
4127 /* don't let timeouts decrease the waittime below timeout_blocktime */
4128 if (ecb_expect_false (waittime < timeout_blocktime))
4129 waittime = timeout_blocktime;
4130
4131 /* now there are two more special cases left, either we have
4132 * already-expired timers, so we should not sleep, or we have timers
4133 * that expire very soon, in which case we need to wait for a minimum
4134 * amount of time for some event loop backends.
4135 */
4136 if (ecb_expect_false (waittime < backend_mintime))
4137 waittime = waittime <= EV_TS_CONST (0.)
4138 ? EV_TS_CONST (0.)
4139 : backend_mintime;
4140
4141 /* extra check because io_blocktime is commonly 0 */
4142 if (ecb_expect_false (io_blocktime))
4143 {
4144 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4145
4146 if (sleeptime > waittime - backend_mintime)
4147 sleeptime = waittime - backend_mintime;
4148
4149 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4150 {
4151 ev_sleep (sleeptime);
4152 waittime -= sleeptime;
4153 }
4154 }
4155 }
4156
4157#if EV_FEATURE_API
4158 ++loop_count;
4159#endif
4160 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
4161 backend_poll (EV_A_ waittime);
4162 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4163
4164 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4165
4166 ECB_MEMORY_FENCE_ACQUIRE;
4167 if (pipe_write_skipped)
4168 {
4169 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4170 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4171 }
4172
4173 /* update ev_rt_now, do magic */
4174 time_update (EV_A_ waittime + sleeptime);
4175 }
4176
4177 /* queue pending timers and reschedule them */
4178 timers_reify (EV_A); /* relative timers called last */
4179#if EV_PERIODIC_ENABLE
4180 periodics_reify (EV_A); /* absolute timers called first */
4181#endif
4182
4183#if EV_IDLE_ENABLE
4184 /* queue idle watchers unless other events are pending */
4185 idle_reify (EV_A);
4186#endif
4187
4188#if EV_CHECK_ENABLE
4189 /* queue check watchers, to be executed first */
4190 if (ecb_expect_false (checkcnt))
4191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4192#endif
4193
4194 EV_INVOKE_PENDING;
4195 }
4196 while (ecb_expect_true (
4197 activecnt
4198 && !loop_done
4199 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
4200 ));
4201
4202 if (loop_done == EVBREAK_ONE)
4203 loop_done = EVBREAK_CANCEL;
4204
4205#if EV_FEATURE_API
4206 --loop_depth;
4207#endif
4208
4209 return activecnt;
4210}
4211
4212void
4213ev_break (EV_P_ int how) EV_NOEXCEPT
4214{
4215 loop_done = how;
4216}
4217
4218void
4219ev_ref (EV_P) EV_NOEXCEPT
4220{
4221 ++activecnt;
4222}
4223
4224void
4225ev_unref (EV_P) EV_NOEXCEPT
4226{
4227 --activecnt;
4228}
4229
4230void
4231ev_now_update (EV_P) EV_NOEXCEPT
4232{
4233 time_update (EV_A_ EV_TSTAMP_HUGE);
4234}
4235
4236void
4237ev_suspend (EV_P) EV_NOEXCEPT
4238{
4239 ev_now_update (EV_A);
4240}
4241
4242void
4243ev_resume (EV_P) EV_NOEXCEPT
4244{
4245 ev_tstamp mn_prev = mn_now;
4246
4247 ev_now_update (EV_A);
4248 timers_reschedule (EV_A_ mn_now - mn_prev);
4249#if EV_PERIODIC_ENABLE
4250 /* TODO: really do this? */
4251 periodics_reschedule (EV_A);
4252#endif
4253}
4254
4255/*****************************************************************************/
4256/* singly-linked list management, used when the expected list length is short */
4257
4258inline_size void
4259wlist_add (WL *head, WL elem)
4260{
4261 elem->next = *head;
4262 *head = elem;
4263}
4264
4265inline_size void
4266wlist_del (WL *head, WL elem)
4267{
4268 while (*head)
4269 {
4270 if (ecb_expect_true (*head == elem))
4271 {
4272 *head = elem->next;
4273 break;
4274 }
4275
4276 head = &(*head)->next;
4277 }
4278}
4279
4280/* internal, faster, version of ev_clear_pending */
4281inline_speed void
4282clear_pending (EV_P_ W w)
4283{
4284 if (w->pending)
4285 {
4286 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
4287 w->pending = 0;
4288 }
4289}
4290
4291int
4292ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
4293{
4294 W w_ = (W)w;
4295 int pending = w_->pending;
4296
4297 if (ecb_expect_true (pending))
4298 {
4299 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4300 p->w = (W)&pending_w;
4301 w_->pending = 0;
4302 return p->events;
4303 }
4304 else
4305 return 0;
4306}
4307
4308inline_size void
4309pri_adjust (EV_P_ W w)
4310{
4311 int pri = ev_priority (w);
4312 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
4313 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
4314 ev_set_priority (w, pri);
4315}
4316
4317inline_speed void
4318ev_start (EV_P_ W w, int active)
4319{
4320 pri_adjust (EV_A_ w);
4321 w->active = active;
4322 ev_ref (EV_A);
4323}
4324
4325inline_size void
4326ev_stop (EV_P_ W w)
4327{
4328 ev_unref (EV_A);
4329 w->active = 0;
4330}
4331
4332/*****************************************************************************/
4333
4334ecb_noinline
4335void
4336ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
4337{
4338 int fd = w->fd;
4339
4340 if (ecb_expect_false (ev_is_active (w)))
4341 return;
4342
4343 assert (("libev: ev_io_start called with negative fd", fd >= 0));
4344 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
4345
4346#if EV_VERIFY >= 2
4347 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4348#endif
4349 EV_FREQUENT_CHECK;
4350
4351 ev_start (EV_A_ (W)w, 1);
4352 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
4353 wlist_add (&anfds[fd].head, (WL)w);
4354
4355 /* common bug, apparently */
4356 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4357
4358 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
4359 w->events &= ~EV__IOFDSET;
4360
4361 EV_FREQUENT_CHECK;
4362}
4363
4364ecb_noinline
4365void
4366ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
4367{
4368 clear_pending (EV_A_ (W)w);
4369 if (ecb_expect_false (!ev_is_active (w)))
4370 return;
4371
4372 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
4373
4374#if EV_VERIFY >= 2
4375 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4376#endif
4377 EV_FREQUENT_CHECK;
4378
4379 wlist_del (&anfds[w->fd].head, (WL)w);
4380 ev_stop (EV_A_ (W)w);
4381
4382 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
4383
4384 EV_FREQUENT_CHECK;
4385}
4386
4387ecb_noinline
4388void
4389ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
4390{
4391 if (ecb_expect_false (ev_is_active (w)))
4392 return;
4393
4394 ev_at (w) += mn_now;
4395
4396 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
4397
4398 EV_FREQUENT_CHECK;
4399
4400 ++timercnt;
4401 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
4402 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
4403 ANHE_w (timers [ev_active (w)]) = (WT)w;
4404 ANHE_at_cache (timers [ev_active (w)]);
4405 upheap (timers, ev_active (w));
4406
4407 EV_FREQUENT_CHECK;
4408
4409 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
4410}
4411
4412ecb_noinline
4413void
4414ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
4415{
4416 clear_pending (EV_A_ (W)w);
4417 if (ecb_expect_false (!ev_is_active (w)))
4418 return;
4419
4420 EV_FREQUENT_CHECK;
4421
4422 {
4423 int active = ev_active (w);
4424
4425 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
4426
4427 --timercnt;
4428
4429 if (ecb_expect_true (active < timercnt + HEAP0))
456 { 4430 {
457 struct timespec ts; 4431 timers [active] = timers [timercnt + HEAP0];
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 4432 adjustheap (timers, timercnt, active);
459 have_monotonic = 1;
460 } 4433 }
461#endif
462
463 ev_now = ev_time ();
464 now = get_clock ();
465 diff = ev_now - now;
466
467 if (pipe (sigpipe))
468 return 0;
469
470 ev_method = EVMETHOD_NONE;
471#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
473#endif
474#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags);
476#endif
477
478 if (ev_method)
479 {
480 ev_watcher_init (&sigev, sigcb);
481 siginit ();
482
483 ev_signal_init (&childev, childcb, SIGCHLD);
484 ev_signal_start (&childev);
485 }
486 } 4434 }
487 4435
488 return ev_method; 4436 ev_at (w) -= mn_now;
489}
490 4437
491/*****************************************************************************/ 4438 ev_stop (EV_A_ (W)w);
492 4439
4440 EV_FREQUENT_CHECK;
4441}
4442
4443ecb_noinline
493void 4444void
494ev_prefork (void) 4445ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
495{ 4446{
496 /* nop */ 4447 EV_FREQUENT_CHECK;
497}
498 4448
499void 4449 clear_pending (EV_A_ (W)w);
500ev_postfork_parent (void)
501{
502 /* nop */
503}
504 4450
505void 4451 if (ev_is_active (w))
506ev_postfork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif
512
513 ev_io_stop (&sigev);
514 close (sigpipe [0]);
515 close (sigpipe [1]);
516 pipe (sigpipe);
517 siginit ();
518}
519
520/*****************************************************************************/
521
522static void
523call_pending (void)
524{
525 while (pendingcnt)
526 {
527 ANPENDING *p = pendings + --pendingcnt;
528
529 if (p->w)
530 {
531 p->w->pending = 0;
532 p->w->cb (p->w, p->events);
533 }
534 } 4452 {
535}
536
537static void
538timers_reify (void)
539{
540 while (timercnt && timers [0]->at <= now)
541 {
542 struct ev_timer *w = timers [0];
543
544 /* first reschedule or stop timer */
545 if (w->repeat) 4453 if (w->repeat)
546 { 4454 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 4455 ev_at (w) = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 4456 ANHE_at_cache (timers [ev_active (w)]);
4457 adjustheap (timers, timercnt, ev_active (w));
550 } 4458 }
551 else 4459 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 4460 ev_timer_stop (EV_A_ w);
553
554 event ((W)w, EV_TIMEOUT);
555 }
556}
557
558static void
559periodics_reify (void)
560{
561 while (periodiccnt && periodics [0]->at <= ev_now)
562 { 4461 }
563 struct ev_periodic *w = periodics [0]; 4462 else if (w->repeat)
4463 {
4464 ev_at (w) = w->repeat;
4465 ev_timer_start (EV_A_ w);
4466 }
564 4467
565 /* first reschedule or stop timer */ 4468 EV_FREQUENT_CHECK;
4469}
4470
4471ev_tstamp
4472ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4473{
4474 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4475}
4476
4477#if EV_PERIODIC_ENABLE
4478ecb_noinline
4479void
4480ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
4481{
4482 if (ecb_expect_false (ev_is_active (w)))
4483 return;
4484
4485#if EV_USE_TIMERFD
4486 if (timerfd == -2)
4487 evtimerfd_init (EV_A);
4488#endif
4489
4490 if (w->reschedule_cb)
4491 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
566 if (w->interval) 4492 else if (w->interval)
4493 {
4494 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4495 periodic_recalc (EV_A_ w);
4496 }
4497 else
4498 ev_at (w) = w->offset;
4499
4500 EV_FREQUENT_CHECK;
4501
4502 ++periodiccnt;
4503 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
4504 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
4505 ANHE_w (periodics [ev_active (w)]) = (WT)w;
4506 ANHE_at_cache (periodics [ev_active (w)]);
4507 upheap (periodics, ev_active (w));
4508
4509 EV_FREQUENT_CHECK;
4510
4511 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4512}
4513
4514ecb_noinline
4515void
4516ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
4517{
4518 clear_pending (EV_A_ (W)w);
4519 if (ecb_expect_false (!ev_is_active (w)))
4520 return;
4521
4522 EV_FREQUENT_CHECK;
4523
4524 {
4525 int active = ev_active (w);
4526
4527 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4528
4529 --periodiccnt;
4530
4531 if (ecb_expect_true (active < periodiccnt + HEAP0))
4532 {
4533 periodics [active] = periodics [periodiccnt + HEAP0];
4534 adjustheap (periodics, periodiccnt, active);
4535 }
4536 }
4537
4538 ev_stop (EV_A_ (W)w);
4539
4540 EV_FREQUENT_CHECK;
4541}
4542
4543ecb_noinline
4544void
4545ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
4546{
4547 /* TODO: use adjustheap and recalculation */
4548 ev_periodic_stop (EV_A_ w);
4549 ev_periodic_start (EV_A_ w);
4550}
4551#endif
4552
4553#ifndef SA_RESTART
4554# define SA_RESTART 0
4555#endif
4556
4557#if EV_SIGNAL_ENABLE
4558
4559ecb_noinline
4560void
4561ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
4562{
4563 if (ecb_expect_false (ev_is_active (w)))
4564 return;
4565
4566 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4567
4568#if EV_MULTIPLICITY
4569 assert (("libev: a signal must not be attached to two different loops",
4570 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4571
4572 signals [w->signum - 1].loop = EV_A;
4573 ECB_MEMORY_FENCE_RELEASE;
4574#endif
4575
4576 EV_FREQUENT_CHECK;
4577
4578#if EV_USE_SIGNALFD
4579 if (sigfd == -2)
4580 {
4581 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4582 if (sigfd < 0 && errno == EINVAL)
4583 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4584
4585 if (sigfd >= 0)
567 { 4586 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 4587 fd_intern (sigfd); /* doing it twice will not hurt */
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 4588
570 downheap ((WT *)periodics, periodiccnt, 0); 4589 sigemptyset (&sigfd_set);
4590
4591 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4592 ev_set_priority (&sigfd_w, EV_MAXPRI);
4593 ev_io_start (EV_A_ &sigfd_w);
4594 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4595 }
4596 }
4597
4598 if (sigfd >= 0)
4599 {
4600 /* TODO: check .head */
4601 sigaddset (&sigfd_set, w->signum);
4602 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4603
4604 signalfd (sigfd, &sigfd_set, 0);
4605 }
4606#endif
4607
4608 ev_start (EV_A_ (W)w, 1);
4609 wlist_add (&signals [w->signum - 1].head, (WL)w);
4610
4611 if (!((WL)w)->next)
4612# if EV_USE_SIGNALFD
4613 if (sigfd < 0) /*TODO*/
4614# endif
4615 {
4616# ifdef _WIN32
4617 evpipe_init (EV_A);
4618
4619 signal (w->signum, ev_sighandler);
4620# else
4621 struct sigaction sa;
4622
4623 evpipe_init (EV_A);
4624
4625 sa.sa_handler = ev_sighandler;
4626 sigfillset (&sa.sa_mask);
4627 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4628 sigaction (w->signum, &sa, 0);
4629
4630 if (origflags & EVFLAG_NOSIGMASK)
4631 {
4632 sigemptyset (&sa.sa_mask);
4633 sigaddset (&sa.sa_mask, w->signum);
4634 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4635 }
4636#endif
4637 }
4638
4639 EV_FREQUENT_CHECK;
4640}
4641
4642ecb_noinline
4643void
4644ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4645{
4646 clear_pending (EV_A_ (W)w);
4647 if (ecb_expect_false (!ev_is_active (w)))
4648 return;
4649
4650 EV_FREQUENT_CHECK;
4651
4652 wlist_del (&signals [w->signum - 1].head, (WL)w);
4653 ev_stop (EV_A_ (W)w);
4654
4655 if (!signals [w->signum - 1].head)
4656 {
4657#if EV_MULTIPLICITY
4658 signals [w->signum - 1].loop = 0; /* unattach from signal */
4659#endif
4660#if EV_USE_SIGNALFD
4661 if (sigfd >= 0)
4662 {
4663 sigset_t ss;
4664
4665 sigemptyset (&ss);
4666 sigaddset (&ss, w->signum);
4667 sigdelset (&sigfd_set, w->signum);
4668
4669 signalfd (sigfd, &sigfd_set, 0);
4670 sigprocmask (SIG_UNBLOCK, &ss, 0);
571 } 4671 }
572 else 4672 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 4673#endif
574 4674 signal (w->signum, SIG_DFL);
575 event ((W)w, EV_PERIODIC);
576 } 4675 }
577}
578 4676
4677 EV_FREQUENT_CHECK;
4678}
4679
4680#endif
4681
4682#if EV_CHILD_ENABLE
4683
4684void
4685ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4686{
4687#if EV_MULTIPLICITY
4688 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4689#endif
4690 if (ecb_expect_false (ev_is_active (w)))
4691 return;
4692
4693 EV_FREQUENT_CHECK;
4694
4695 ev_start (EV_A_ (W)w, 1);
4696 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4697
4698 EV_FREQUENT_CHECK;
4699}
4700
4701void
4702ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
4703{
4704 clear_pending (EV_A_ (W)w);
4705 if (ecb_expect_false (!ev_is_active (w)))
4706 return;
4707
4708 EV_FREQUENT_CHECK;
4709
4710 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4711 ev_stop (EV_A_ (W)w);
4712
4713 EV_FREQUENT_CHECK;
4714}
4715
4716#endif
4717
4718#if EV_STAT_ENABLE
4719
4720# ifdef _WIN32
4721# undef lstat
4722# define lstat(a,b) _stati64 (a,b)
4723# endif
4724
4725#define DEF_STAT_INTERVAL 5.0074891
4726#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4727#define MIN_STAT_INTERVAL 0.1074891
4728
4729ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4730
4731#if EV_USE_INOTIFY
4732
4733/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4734# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4735
4736ecb_noinline
579static void 4737static void
580periodics_reschedule (ev_tstamp diff) 4738infy_add (EV_P_ ev_stat *w)
581{ 4739{
582 int i; 4740 w->wd = inotify_add_watch (fs_fd, w->path,
4741 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4742 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4743 | IN_DONT_FOLLOW | IN_MASK_ADD);
583 4744
584 /* adjust periodics after time jump */ 4745 if (w->wd >= 0)
585 for (i = 0; i < periodiccnt; ++i) 4746 {
4747 struct statfs sfs;
4748
4749 /* now local changes will be tracked by inotify, but remote changes won't */
4750 /* unless the filesystem is known to be local, we therefore still poll */
4751 /* also do poll on <2.6.25, but with normal frequency */
4752
4753 if (!fs_2625)
4754 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4755 else if (!statfs (w->path, &sfs)
4756 && (sfs.f_type == 0x1373 /* devfs */
4757 || sfs.f_type == 0x4006 /* fat */
4758 || sfs.f_type == 0x4d44 /* msdos */
4759 || sfs.f_type == 0xEF53 /* ext2/3 */
4760 || sfs.f_type == 0x72b6 /* jffs2 */
4761 || sfs.f_type == 0x858458f6 /* ramfs */
4762 || sfs.f_type == 0x5346544e /* ntfs */
4763 || sfs.f_type == 0x3153464a /* jfs */
4764 || sfs.f_type == 0x9123683e /* btrfs */
4765 || sfs.f_type == 0x52654973 /* reiser3 */
4766 || sfs.f_type == 0x01021994 /* tmpfs */
4767 || sfs.f_type == 0x58465342 /* xfs */))
4768 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4769 else
4770 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
586 { 4771 }
587 struct ev_periodic *w = periodics [i]; 4772 else
4773 {
4774 /* can't use inotify, continue to stat */
4775 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
588 4776
589 if (w->interval) 4777 /* if path is not there, monitor some parent directory for speedup hints */
4778 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4779 /* but an efficiency issue only */
4780 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
590 { 4781 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 4782 char path [4096];
4783 strcpy (path, w->path);
592 4784
593 if (fabs (diff) >= 1e-4) 4785 do
594 { 4786 {
595 ev_periodic_stop (w); 4787 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
596 ev_periodic_start (w); 4788 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
597 4789
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 4790 char *pend = strrchr (path, '/');
4791
4792 if (!pend || pend == path)
4793 break;
4794
4795 *pend = 0;
4796 w->wd = inotify_add_watch (fs_fd, path, mask);
4797 }
4798 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4799 }
4800 }
4801
4802 if (w->wd >= 0)
4803 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4804
4805 /* now re-arm timer, if required */
4806 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4807 ev_timer_again (EV_A_ &w->timer);
4808 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4809}
4810
4811ecb_noinline
4812static void
4813infy_del (EV_P_ ev_stat *w)
4814{
4815 int slot;
4816 int wd = w->wd;
4817
4818 if (wd < 0)
4819 return;
4820
4821 w->wd = -2;
4822 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4823 wlist_del (&fs_hash [slot].head, (WL)w);
4824
4825 /* remove this watcher, if others are watching it, they will rearm */
4826 inotify_rm_watch (fs_fd, wd);
4827}
4828
4829ecb_noinline
4830static void
4831infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4832{
4833 if (slot < 0)
4834 /* overflow, need to check for all hash slots */
4835 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4836 infy_wd (EV_A_ slot, wd, ev);
4837 else
4838 {
4839 WL w_;
4840
4841 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4842 {
4843 ev_stat *w = (ev_stat *)w_;
4844 w_ = w_->next; /* lets us remove this watcher and all before it */
4845
4846 if (w->wd == wd || wd == -1)
4847 {
4848 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4849 {
4850 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4851 w->wd = -1;
4852 infy_add (EV_A_ w); /* re-add, no matter what */
4853 }
4854
4855 stat_timer_cb (EV_A_ &w->timer, 0);
599 } 4856 }
600 } 4857 }
601 } 4858 }
602} 4859}
603 4860
604static void 4861static void
605time_update (void) 4862infy_cb (EV_P_ ev_io *w, int revents)
606{ 4863{
4864 char buf [EV_INOTIFY_BUFSIZE];
607 int i; 4865 int ofs;
4866 int len = read (fs_fd, buf, sizeof (buf));
608 4867
609 ev_now = ev_time (); 4868 for (ofs = 0; ofs < len; )
610 4869 {
611 if (have_monotonic) 4870 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4871 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4872 ofs += sizeof (struct inotify_event) + ev->len;
612 { 4873 }
613 ev_tstamp odiff = diff; 4874}
614 4875
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 4876inline_size ecb_cold
4877void
4878ev_check_2625 (EV_P)
4879{
4880 /* kernels < 2.6.25 are borked
4881 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4882 */
4883 if (ev_linux_version () < 0x020619)
4884 return;
4885
4886 fs_2625 = 1;
4887}
4888
4889inline_size int
4890infy_newfd (void)
4891{
4892#if defined IN_CLOEXEC && defined IN_NONBLOCK
4893 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4894 if (fd >= 0)
4895 return fd;
4896#endif
4897 return inotify_init ();
4898}
4899
4900inline_size void
4901infy_init (EV_P)
4902{
4903 if (fs_fd != -2)
4904 return;
4905
4906 fs_fd = -1;
4907
4908 ev_check_2625 (EV_A);
4909
4910 fs_fd = infy_newfd ();
4911
4912 if (fs_fd >= 0)
4913 {
4914 fd_intern (fs_fd);
4915 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4916 ev_set_priority (&fs_w, EV_MAXPRI);
4917 ev_io_start (EV_A_ &fs_w);
4918 ev_unref (EV_A);
4919 }
4920}
4921
4922inline_size void
4923infy_fork (EV_P)
4924{
4925 int slot;
4926
4927 if (fs_fd < 0)
4928 return;
4929
4930 ev_ref (EV_A);
4931 ev_io_stop (EV_A_ &fs_w);
4932 close (fs_fd);
4933 fs_fd = infy_newfd ();
4934
4935 if (fs_fd >= 0)
4936 {
4937 fd_intern (fs_fd);
4938 ev_io_set (&fs_w, fs_fd, EV_READ);
4939 ev_io_start (EV_A_ &fs_w);
4940 ev_unref (EV_A);
4941 }
4942
4943 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4944 {
4945 WL w_ = fs_hash [slot].head;
4946 fs_hash [slot].head = 0;
4947
4948 while (w_)
616 { 4949 {
617 now = get_clock (); 4950 ev_stat *w = (ev_stat *)w_;
618 diff = ev_now - now; 4951 w_ = w_->next; /* lets us add this watcher */
619 4952
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 4953 w->wd = -1;
621 return; /* all is well */
622 4954
623 ev_now = ev_time (); 4955 if (fs_fd >= 0)
4956 infy_add (EV_A_ w); /* re-add, no matter what */
4957 else
4958 {
4959 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4960 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4961 ev_timer_again (EV_A_ &w->timer);
4962 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4963 }
624 } 4964 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 4965 }
4966}
4967
4968#endif
4969
4970#ifdef _WIN32
4971# define EV_LSTAT(p,b) _stati64 (p, b)
4972#else
4973# define EV_LSTAT(p,b) lstat (p, b)
4974#endif
4975
4976void
4977ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4978{
4979 if (lstat (w->path, &w->attr) < 0)
4980 w->attr.st_nlink = 0;
4981 else if (!w->attr.st_nlink)
4982 w->attr.st_nlink = 1;
4983}
4984
4985ecb_noinline
4986static void
4987stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4988{
4989 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4990
4991 ev_statdata prev = w->attr;
4992 ev_stat_stat (EV_A_ w);
4993
4994 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4995 if (
4996 prev.st_dev != w->attr.st_dev
4997 || prev.st_ino != w->attr.st_ino
4998 || prev.st_mode != w->attr.st_mode
4999 || prev.st_nlink != w->attr.st_nlink
5000 || prev.st_uid != w->attr.st_uid
5001 || prev.st_gid != w->attr.st_gid
5002 || prev.st_rdev != w->attr.st_rdev
5003 || prev.st_size != w->attr.st_size
5004 || prev.st_atime != w->attr.st_atime
5005 || prev.st_mtime != w->attr.st_mtime
5006 || prev.st_ctime != w->attr.st_ctime
5007 ) {
5008 /* we only update w->prev on actual differences */
5009 /* in case we test more often than invoke the callback, */
5010 /* to ensure that prev is always different to attr */
5011 w->prev = prev;
5012
5013 #if EV_USE_INOTIFY
5014 if (fs_fd >= 0)
5015 {
5016 infy_del (EV_A_ w);
5017 infy_add (EV_A_ w);
5018 ev_stat_stat (EV_A_ w); /* avoid race... */
5019 }
5020 #endif
5021
5022 ev_feed_event (EV_A_ w, EV_STAT);
5023 }
5024}
5025
5026void
5027ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
5028{
5029 if (ecb_expect_false (ev_is_active (w)))
5030 return;
5031
5032 ev_stat_stat (EV_A_ w);
5033
5034 if (w->interval < MIN_STAT_INTERVAL && w->interval)
5035 w->interval = MIN_STAT_INTERVAL;
5036
5037 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
5038 ev_set_priority (&w->timer, ev_priority (w));
5039
5040#if EV_USE_INOTIFY
5041 infy_init (EV_A);
5042
5043 if (fs_fd >= 0)
5044 infy_add (EV_A_ w);
629 else 5045 else
5046#endif
5047 {
5048 ev_timer_again (EV_A_ &w->timer);
5049 ev_unref (EV_A);
630 { 5050 }
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 5051
5052 ev_start (EV_A_ (W)w, 1);
5053
5054 EV_FREQUENT_CHECK;
5055}
5056
5057void
5058ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
5059{
5060 clear_pending (EV_A_ (W)w);
5061 if (ecb_expect_false (!ev_is_active (w)))
5062 return;
5063
5064 EV_FREQUENT_CHECK;
5065
5066#if EV_USE_INOTIFY
5067 infy_del (EV_A_ w);
5068#endif
5069
5070 if (ev_is_active (&w->timer))
5071 {
5072 ev_ref (EV_A);
5073 ev_timer_stop (EV_A_ &w->timer);
5074 }
5075
5076 ev_stop (EV_A_ (W)w);
5077
5078 EV_FREQUENT_CHECK;
5079}
5080#endif
5081
5082#if EV_IDLE_ENABLE
5083void
5084ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
5085{
5086 if (ecb_expect_false (ev_is_active (w)))
5087 return;
5088
5089 pri_adjust (EV_A_ (W)w);
5090
5091 EV_FREQUENT_CHECK;
5092
5093 {
5094 int active = ++idlecnt [ABSPRI (w)];
5095
5096 ++idleall;
5097 ev_start (EV_A_ (W)w, active);
5098
5099 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
5100 idles [ABSPRI (w)][active - 1] = w;
5101 }
5102
5103 EV_FREQUENT_CHECK;
5104}
5105
5106void
5107ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
5108{
5109 clear_pending (EV_A_ (W)w);
5110 if (ecb_expect_false (!ev_is_active (w)))
5111 return;
5112
5113 EV_FREQUENT_CHECK;
5114
5115 {
5116 int active = ev_active (w);
5117
5118 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
5119 ev_active (idles [ABSPRI (w)][active - 1]) = active;
5120
5121 ev_stop (EV_A_ (W)w);
5122 --idleall;
5123 }
5124
5125 EV_FREQUENT_CHECK;
5126}
5127#endif
5128
5129#if EV_PREPARE_ENABLE
5130void
5131ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
5132{
5133 if (ecb_expect_false (ev_is_active (w)))
5134 return;
5135
5136 EV_FREQUENT_CHECK;
5137
5138 ev_start (EV_A_ (W)w, ++preparecnt);
5139 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
5140 prepares [preparecnt - 1] = w;
5141
5142 EV_FREQUENT_CHECK;
5143}
5144
5145void
5146ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
5147{
5148 clear_pending (EV_A_ (W)w);
5149 if (ecb_expect_false (!ev_is_active (w)))
5150 return;
5151
5152 EV_FREQUENT_CHECK;
5153
5154 {
5155 int active = ev_active (w);
5156
5157 prepares [active - 1] = prepares [--preparecnt];
5158 ev_active (prepares [active - 1]) = active;
5159 }
5160
5161 ev_stop (EV_A_ (W)w);
5162
5163 EV_FREQUENT_CHECK;
5164}
5165#endif
5166
5167#if EV_CHECK_ENABLE
5168void
5169ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
5170{
5171 if (ecb_expect_false (ev_is_active (w)))
5172 return;
5173
5174 EV_FREQUENT_CHECK;
5175
5176 ev_start (EV_A_ (W)w, ++checkcnt);
5177 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
5178 checks [checkcnt - 1] = w;
5179
5180 EV_FREQUENT_CHECK;
5181}
5182
5183void
5184ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
5185{
5186 clear_pending (EV_A_ (W)w);
5187 if (ecb_expect_false (!ev_is_active (w)))
5188 return;
5189
5190 EV_FREQUENT_CHECK;
5191
5192 {
5193 int active = ev_active (w);
5194
5195 checks [active - 1] = checks [--checkcnt];
5196 ev_active (checks [active - 1]) = active;
5197 }
5198
5199 ev_stop (EV_A_ (W)w);
5200
5201 EV_FREQUENT_CHECK;
5202}
5203#endif
5204
5205#if EV_EMBED_ENABLE
5206ecb_noinline
5207void
5208ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
5209{
5210 ev_run (w->other, EVRUN_NOWAIT);
5211}
5212
5213static void
5214embed_io_cb (EV_P_ ev_io *io, int revents)
5215{
5216 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
5217
5218 if (ev_cb (w))
5219 ev_feed_event (EV_A_ (W)w, EV_EMBED);
5220 else
5221 ev_run (w->other, EVRUN_NOWAIT);
5222}
5223
5224static void
5225embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
5226{
5227 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
5228
5229 {
5230 EV_P = w->other;
5231
5232 while (fdchangecnt)
632 { 5233 {
633 periodics_reschedule (ev_now - now); 5234 fd_reify (EV_A);
634 5235 ev_run (EV_A_ EVRUN_NOWAIT);
635 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff;
638 } 5236 }
639
640 now = ev_now;
641 } 5237 }
642} 5238}
643 5239
644int ev_loop_done; 5240#if EV_FORK_ENABLE
645 5241static void
646void ev_loop (int flags) 5242embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
647{ 5243{
648 double block; 5244 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 5245
651 do 5246 ev_embed_stop (EV_A_ w);
5247
652 { 5248 {
653 /* queue check watchers (and execute them) */ 5249 EV_P = w->other;
654 if (preparecnt)
655 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
657 call_pending ();
658 }
659 5250
660 /* update fd-related kernel structures */ 5251 ev_loop_fork (EV_A);
661 fd_reify (); 5252 ev_run (EV_A_ EVRUN_NOWAIT);
662
663 /* calculate blocking time */
664
665 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */
667 ev_now = ev_time ();
668
669 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.;
671 else
672 {
673 block = MAX_BLOCKTIME;
674
675 if (timercnt)
676 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
678 if (block > to) block = to;
679 }
680
681 if (periodiccnt)
682 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
684 if (block > to) block = to;
685 }
686
687 if (block < 0.) block = 0.;
688 }
689
690 method_poll (block);
691
692 /* update ev_now, do magic */
693 time_update ();
694
695 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */
698
699 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE);
702
703 /* queue check watchers, to be executed first */
704 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK);
706
707 call_pending ();
708 } 5253 }
709 while (!ev_loop_done);
710 5254
711 if (ev_loop_done != 2) 5255 ev_embed_start (EV_A_ w);
712 ev_loop_done = 0;
713} 5256}
5257#endif
5258
5259#if 0
5260static void
5261embed_idle_cb (EV_P_ ev_idle *idle, int revents)
5262{
5263 ev_idle_stop (EV_A_ idle);
5264}
5265#endif
5266
5267void
5268ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
5269{
5270 if (ecb_expect_false (ev_is_active (w)))
5271 return;
5272
5273 {
5274 EV_P = w->other;
5275 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
5276 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
5277 }
5278
5279 EV_FREQUENT_CHECK;
5280
5281 ev_set_priority (&w->io, ev_priority (w));
5282 ev_io_start (EV_A_ &w->io);
5283
5284 ev_prepare_init (&w->prepare, embed_prepare_cb);
5285 ev_set_priority (&w->prepare, EV_MINPRI);
5286 ev_prepare_start (EV_A_ &w->prepare);
5287
5288#if EV_FORK_ENABLE
5289 ev_fork_init (&w->fork, embed_fork_cb);
5290 ev_fork_start (EV_A_ &w->fork);
5291#endif
5292
5293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
5294
5295 ev_start (EV_A_ (W)w, 1);
5296
5297 EV_FREQUENT_CHECK;
5298}
5299
5300void
5301ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
5302{
5303 clear_pending (EV_A_ (W)w);
5304 if (ecb_expect_false (!ev_is_active (w)))
5305 return;
5306
5307 EV_FREQUENT_CHECK;
5308
5309 ev_io_stop (EV_A_ &w->io);
5310 ev_prepare_stop (EV_A_ &w->prepare);
5311#if EV_FORK_ENABLE
5312 ev_fork_stop (EV_A_ &w->fork);
5313#endif
5314
5315 ev_stop (EV_A_ (W)w);
5316
5317 EV_FREQUENT_CHECK;
5318}
5319#endif
5320
5321#if EV_FORK_ENABLE
5322void
5323ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
5324{
5325 if (ecb_expect_false (ev_is_active (w)))
5326 return;
5327
5328 EV_FREQUENT_CHECK;
5329
5330 ev_start (EV_A_ (W)w, ++forkcnt);
5331 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
5332 forks [forkcnt - 1] = w;
5333
5334 EV_FREQUENT_CHECK;
5335}
5336
5337void
5338ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
5339{
5340 clear_pending (EV_A_ (W)w);
5341 if (ecb_expect_false (!ev_is_active (w)))
5342 return;
5343
5344 EV_FREQUENT_CHECK;
5345
5346 {
5347 int active = ev_active (w);
5348
5349 forks [active - 1] = forks [--forkcnt];
5350 ev_active (forks [active - 1]) = active;
5351 }
5352
5353 ev_stop (EV_A_ (W)w);
5354
5355 EV_FREQUENT_CHECK;
5356}
5357#endif
5358
5359#if EV_CLEANUP_ENABLE
5360void
5361ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5362{
5363 if (ecb_expect_false (ev_is_active (w)))
5364 return;
5365
5366 EV_FREQUENT_CHECK;
5367
5368 ev_start (EV_A_ (W)w, ++cleanupcnt);
5369 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5370 cleanups [cleanupcnt - 1] = w;
5371
5372 /* cleanup watchers should never keep a refcount on the loop */
5373 ev_unref (EV_A);
5374 EV_FREQUENT_CHECK;
5375}
5376
5377void
5378ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5379{
5380 clear_pending (EV_A_ (W)w);
5381 if (ecb_expect_false (!ev_is_active (w)))
5382 return;
5383
5384 EV_FREQUENT_CHECK;
5385 ev_ref (EV_A);
5386
5387 {
5388 int active = ev_active (w);
5389
5390 cleanups [active - 1] = cleanups [--cleanupcnt];
5391 ev_active (cleanups [active - 1]) = active;
5392 }
5393
5394 ev_stop (EV_A_ (W)w);
5395
5396 EV_FREQUENT_CHECK;
5397}
5398#endif
5399
5400#if EV_ASYNC_ENABLE
5401void
5402ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
5403{
5404 if (ecb_expect_false (ev_is_active (w)))
5405 return;
5406
5407 w->sent = 0;
5408
5409 evpipe_init (EV_A);
5410
5411 EV_FREQUENT_CHECK;
5412
5413 ev_start (EV_A_ (W)w, ++asynccnt);
5414 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
5415 asyncs [asynccnt - 1] = w;
5416
5417 EV_FREQUENT_CHECK;
5418}
5419
5420void
5421ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
5422{
5423 clear_pending (EV_A_ (W)w);
5424 if (ecb_expect_false (!ev_is_active (w)))
5425 return;
5426
5427 EV_FREQUENT_CHECK;
5428
5429 {
5430 int active = ev_active (w);
5431
5432 asyncs [active - 1] = asyncs [--asynccnt];
5433 ev_active (asyncs [active - 1]) = active;
5434 }
5435
5436 ev_stop (EV_A_ (W)w);
5437
5438 EV_FREQUENT_CHECK;
5439}
5440
5441void
5442ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
5443{
5444 w->sent = 1;
5445 evpipe_write (EV_A_ &async_pending);
5446}
5447#endif
714 5448
715/*****************************************************************************/ 5449/*****************************************************************************/
716 5450
717static void
718wlist_add (WL *head, WL elem)
719{
720 elem->next = *head;
721 *head = elem;
722}
723
724static void
725wlist_del (WL *head, WL elem)
726{
727 while (*head)
728 {
729 if (*head == elem)
730 {
731 *head = elem->next;
732 return;
733 }
734
735 head = &(*head)->next;
736 }
737}
738
739static void
740ev_clear_pending (W w)
741{
742 if (w->pending)
743 {
744 pendings [w->pending - 1].w = 0;
745 w->pending = 0;
746 }
747}
748
749static void
750ev_start (W w, int active)
751{
752 w->active = active;
753}
754
755static void
756ev_stop (W w)
757{
758 w->active = 0;
759}
760
761/*****************************************************************************/
762
763void
764ev_io_start (struct ev_io *w)
765{
766 if (ev_is_active (w))
767 return;
768
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0));
772
773 ev_start ((W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776
777 fd_change (fd);
778}
779
780void
781ev_io_stop (struct ev_io *w)
782{
783 ev_clear_pending ((W)w);
784 if (!ev_is_active (w))
785 return;
786
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w);
789
790 fd_change (w->fd);
791}
792
793void
794ev_timer_start (struct ev_timer *w)
795{
796 if (ev_is_active (w))
797 return;
798
799 w->at += now;
800
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802
803 ev_start ((W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1);
807}
808
809void
810ev_timer_stop (struct ev_timer *w)
811{
812 ev_clear_pending ((W)w);
813 if (!ev_is_active (w))
814 return;
815
816 if (w->active < timercnt--)
817 {
818 timers [w->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1);
820 }
821
822 w->at = w->repeat;
823
824 ev_stop ((W)w);
825}
826
827void
828ev_timer_again (struct ev_timer *w)
829{
830 if (ev_is_active (w))
831 {
832 if (w->repeat)
833 {
834 w->at = now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1);
836 }
837 else
838 ev_timer_stop (w);
839 }
840 else if (w->repeat)
841 ev_timer_start (w);
842}
843
844void
845ev_periodic_start (struct ev_periodic *w)
846{
847 if (ev_is_active (w))
848 return;
849
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851
852 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
855
856 ev_start ((W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1);
860}
861
862void
863ev_periodic_stop (struct ev_periodic *w)
864{
865 ev_clear_pending ((W)w);
866 if (!ev_is_active (w))
867 return;
868
869 if (w->active < periodiccnt--)
870 {
871 periodics [w->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1);
873 }
874
875 ev_stop ((W)w);
876}
877
878void
879ev_signal_start (struct ev_signal *w)
880{
881 if (ev_is_active (w))
882 return;
883
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885
886 ev_start ((W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889
890 if (!w->next)
891 {
892 struct sigaction sa;
893 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0;
896 sigaction (w->signum, &sa, 0);
897 }
898}
899
900void
901ev_signal_stop (struct ev_signal *w)
902{
903 ev_clear_pending ((W)w);
904 if (!ev_is_active (w))
905 return;
906
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w);
909
910 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL);
912}
913
914void
915ev_idle_start (struct ev_idle *w)
916{
917 if (ev_is_active (w))
918 return;
919
920 ev_start ((W)w, ++idlecnt);
921 array_needsize (idles, idlemax, idlecnt, );
922 idles [idlecnt - 1] = w;
923}
924
925void
926ev_idle_stop (struct ev_idle *w)
927{
928 ev_clear_pending ((W)w);
929 if (ev_is_active (w))
930 return;
931
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w);
999}
1000
1001/*****************************************************************************/
1002
1003struct ev_once 5451struct ev_once
1004{ 5452{
1005 struct ev_io io; 5453 ev_io io;
1006 struct ev_timer to; 5454 ev_timer to;
1007 void (*cb)(int revents, void *arg); 5455 void (*cb)(int revents, void *arg);
1008 void *arg; 5456 void *arg;
1009}; 5457};
1010 5458
1011static void 5459static void
1012once_cb (struct ev_once *once, int revents) 5460once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 5461{
1014 void (*cb)(int revents, void *arg) = once->cb; 5462 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 5463 void *arg = once->arg;
1016 5464
1017 ev_io_stop (&once->io); 5465 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 5466 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 5467 ev_free (once);
1020 5468
1021 cb (revents, arg); 5469 cb (revents, arg);
1022} 5470}
1023 5471
1024static void 5472static void
1025once_cb_io (struct ev_io *w, int revents) 5473once_cb_io (EV_P_ ev_io *w, int revents)
1026{ 5474{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 5475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
5476
5477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1028} 5478}
1029 5479
1030static void 5480static void
1031once_cb_to (struct ev_timer *w, int revents) 5481once_cb_to (EV_P_ ev_timer *w, int revents)
1032{ 5482{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 5483 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
5484
5485 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1034} 5486}
1035 5487
1036void 5488void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5489ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1038{ 5490{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 5491 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1040 5492
1041 if (!once)
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1043 else
1044 {
1045 once->cb = cb; 5493 once->cb = cb;
1046 once->arg = arg; 5494 once->arg = arg;
1047 5495
1048 ev_watcher_init (&once->io, once_cb_io); 5496 ev_init (&once->io, once_cb_io);
1049 if (fd >= 0) 5497 if (fd >= 0)
5498 {
5499 ev_io_set (&once->io, fd, events);
5500 ev_io_start (EV_A_ &once->io);
5501 }
5502
5503 ev_init (&once->to, once_cb_to);
5504 if (timeout >= 0.)
5505 {
5506 ev_timer_set (&once->to, timeout, 0.);
5507 ev_timer_start (EV_A_ &once->to);
5508 }
5509}
5510
5511/*****************************************************************************/
5512
5513#if EV_WALK_ENABLE
5514ecb_cold
5515void
5516ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5517{
5518 int i, j;
5519 ev_watcher_list *wl, *wn;
5520
5521 if (types & (EV_IO | EV_EMBED))
5522 for (i = 0; i < anfdmax; ++i)
5523 for (wl = anfds [i].head; wl; )
1050 { 5524 {
1051 ev_io_set (&once->io, fd, events); 5525 wn = wl->next;
1052 ev_io_start (&once->io); 5526
5527#if EV_EMBED_ENABLE
5528 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5529 {
5530 if (types & EV_EMBED)
5531 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5532 }
5533 else
5534#endif
5535#if EV_USE_INOTIFY
5536 if (ev_cb ((ev_io *)wl) == infy_cb)
5537 ;
5538 else
5539#endif
5540 if ((ev_io *)wl != &pipe_w)
5541 if (types & EV_IO)
5542 cb (EV_A_ EV_IO, wl);
5543
5544 wl = wn;
1053 } 5545 }
1054 5546
1055 ev_watcher_init (&once->to, once_cb_to); 5547 if (types & (EV_TIMER | EV_STAT))
1056 if (timeout >= 0.) 5548 for (i = timercnt + HEAP0; i-- > HEAP0; )
5549#if EV_STAT_ENABLE
5550 /*TODO: timer is not always active*/
5551 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1057 { 5552 {
1058 ev_timer_set (&once->to, timeout, 0.); 5553 if (types & EV_STAT)
1059 ev_timer_start (&once->to); 5554 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1060 } 5555 }
1061 } 5556 else
1062} 5557#endif
5558 if (types & EV_TIMER)
5559 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1063 5560
1064/*****************************************************************************/ 5561#if EV_PERIODIC_ENABLE
5562 if (types & EV_PERIODIC)
5563 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5564 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5565#endif
1065 5566
1066#if 0 5567#if EV_IDLE_ENABLE
5568 if (types & EV_IDLE)
5569 for (j = NUMPRI; j--; )
5570 for (i = idlecnt [j]; i--; )
5571 cb (EV_A_ EV_IDLE, idles [j][i]);
5572#endif
1067 5573
1068struct ev_io wio; 5574#if EV_FORK_ENABLE
5575 if (types & EV_FORK)
5576 for (i = forkcnt; i--; )
5577 if (ev_cb (forks [i]) != embed_fork_cb)
5578 cb (EV_A_ EV_FORK, forks [i]);
5579#endif
1069 5580
1070static void 5581#if EV_ASYNC_ENABLE
1071sin_cb (struct ev_io *w, int revents) 5582 if (types & EV_ASYNC)
1072{ 5583 for (i = asynccnt; i--; )
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 5584 cb (EV_A_ EV_ASYNC, asyncs [i]);
1074} 5585#endif
1075 5586
1076static void 5587#if EV_PREPARE_ENABLE
1077ocb (struct ev_timer *w, int revents) 5588 if (types & EV_PREPARE)
1078{ 5589 for (i = preparecnt; i--; )
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 5590# if EV_EMBED_ENABLE
1080 ev_timer_stop (w); 5591 if (ev_cb (prepares [i]) != embed_prepare_cb)
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 {
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif 5592# endif
1120 5593 cb (EV_A_ EV_PREPARE, prepares [i]);
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140}
1141
1142#endif 5594#endif
1143 5595
5596#if EV_CHECK_ENABLE
5597 if (types & EV_CHECK)
5598 for (i = checkcnt; i--; )
5599 cb (EV_A_ EV_CHECK, checks [i]);
5600#endif
1144 5601
5602#if EV_SIGNAL_ENABLE
5603 if (types & EV_SIGNAL)
5604 for (i = 0; i < EV_NSIG - 1; ++i)
5605 for (wl = signals [i].head; wl; )
5606 {
5607 wn = wl->next;
5608 cb (EV_A_ EV_SIGNAL, wl);
5609 wl = wn;
5610 }
5611#endif
1145 5612
5613#if EV_CHILD_ENABLE
5614 if (types & EV_CHILD)
5615 for (i = (EV_PID_HASHSIZE); i--; )
5616 for (wl = childs [i]; wl; )
5617 {
5618 wn = wl->next;
5619 cb (EV_A_ EV_CHILD, wl);
5620 wl = wn;
5621 }
5622#endif
5623/* EV_STAT 0x00001000 /* stat data changed */
5624/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5625}
5626#endif
1146 5627
5628#if EV_MULTIPLICITY
5629 #include "ev_wrap.h"
5630#endif
5631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines