ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.34 by root, Thu Nov 1 11:43:11 2007 UTC vs.
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
63#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
65#endif 119#endif
66#ifndef EV_USE_REALTIME 120
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
68#endif
69 122
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 127
75#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 143
77typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
80 147
81static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84
85static int have_monotonic; /* runtime */
86
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
88static void (*method_modify)(int fd, int oev, int nev);
89static void (*method_poll)(ev_tstamp timeout);
90 149
91/*****************************************************************************/ 150/*****************************************************************************/
92 151
93ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
94ev_time (void) 186ev_time (void)
95{ 187{
96#if EV_USE_REALTIME 188#if EV_USE_REALTIME
97 struct timespec ts; 189 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 196#endif
105} 197}
106 198
107static ev_tstamp 199inline ev_tstamp
108get_clock (void) 200get_clock (void)
109{ 201{
110#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
111 if (have_monotonic) 203 if (expect_true (have_monotonic))
112 { 204 {
113 struct timespec ts; 205 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 208 }
117#endif 209#endif
118 210
119 return ev_time (); 211 return ev_time ();
120} 212}
121 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
122#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
123 221
124#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
126 { \ 224 { \
127 int newcnt = cur; \ 225 int newcnt = cur; \
128 do \ 226 do \
129 { \ 227 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 228 newcnt = array_roundsize (base, newcnt << 1); \
136 cur = newcnt; \ 234 cur = newcnt; \
137 } 235 }
138 236
139/*****************************************************************************/ 237/*****************************************************************************/
140 238
141typedef struct
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147
148static ANFD *anfds;
149static int anfdmax;
150
151static void 239static void
152anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
153{ 241{
154 while (count--) 242 while (count--)
155 { 243 {
159 247
160 ++base; 248 ++base;
161 } 249 }
162} 250}
163 251
164typedef struct
165{
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void 252static void
174event (W w, int events) 253event (EV_P_ W w, int events)
175{ 254{
176 if (w->pending) 255 if (w->pending)
177 { 256 {
178 pendings [w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
179 return; 258 return;
180 } 259 }
181 260
182 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
183 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
184 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
185 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
186} 265}
187 266
188static void 267static void
189queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 269{
191 int i; 270 int i;
192 271
193 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 273 event (EV_A_ events [i], type);
195} 274}
196 275
197static void 276static void
198fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
199{ 278{
200 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 280 struct ev_io *w;
202 281
203 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
204 { 283 {
205 int ev = w->events & events; 284 int ev = w->events & events;
206 285
207 if (ev) 286 if (ev)
208 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
209 } 288 }
210} 289}
211 290
212/*****************************************************************************/ 291/*****************************************************************************/
213 292
214static int *fdchanges;
215static int fdchangemax, fdchangecnt;
216
217static void 293static void
218fd_reify (void) 294fd_reify (EV_P)
219{ 295{
220 int i; 296 int i;
221 297
222 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
223 { 299 {
225 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 302 struct ev_io *w;
227 303
228 int events = 0; 304 int events = 0;
229 305
230 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
231 events |= w->events; 307 events |= w->events;
232 308
233 anfd->reify = 0; 309 anfd->reify = 0;
234 310
235 if (anfd->events != events)
236 {
237 method_modify (fd, anfd->events, events); 311 method_modify (EV_A_ fd, anfd->events, events);
238 anfd->events = events; 312 anfd->events = events;
239 }
240 } 313 }
241 314
242 fdchangecnt = 0; 315 fdchangecnt = 0;
243} 316}
244 317
245static void 318static void
246fd_change (int fd) 319fd_change (EV_P_ int fd)
247{ 320{
248 if (anfds [fd].reify || fdchangecnt < 0) 321 if (anfds [fd].reify || fdchangecnt < 0)
249 return; 322 return;
250 323
251 anfds [fd].reify = 1; 324 anfds [fd].reify = 1;
253 ++fdchangecnt; 326 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
255 fdchanges [fdchangecnt - 1] = fd; 328 fdchanges [fdchangecnt - 1] = fd;
256} 329}
257 330
331static void
332fd_kill (EV_P_ int fd)
333{
334 struct ev_io *w;
335
336 while ((w = (struct ev_io *)anfds [fd].head))
337 {
338 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 }
341}
342
258/* called on EBADF to verify fds */ 343/* called on EBADF to verify fds */
259static void 344static void
260fd_recheck (void) 345fd_ebadf (EV_P)
261{ 346{
262 int fd; 347 int fd;
263 348
264 for (fd = 0; fd < anfdmax; ++fd) 349 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 350 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
267 while (anfds [fd].head) 352 fd_kill (EV_A_ fd);
353}
354
355/* called on ENOMEM in select/poll to kill some fds and retry */
356static void
357fd_enomem (EV_P)
358{
359 int fd;
360
361 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events)
268 { 363 {
269 ev_io_stop (anfds [fd].head); 364 close (fd);
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 365 fd_kill (EV_A_ fd);
366 return;
271 } 367 }
368}
369
370/* susually called after fork if method needs to re-arm all fds from scratch */
371static void
372fd_rearm_all (EV_P)
373{
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
272} 383}
273 384
274/*****************************************************************************/ 385/*****************************************************************************/
275 386
276static struct ev_timer **timers;
277static int timermax, timercnt;
278
279static struct ev_periodic **periodics;
280static int periodicmax, periodiccnt;
281
282static void 387static void
283upheap (WT *timers, int k) 388upheap (WT *heap, int k)
284{ 389{
285 WT w = timers [k]; 390 WT w = heap [k];
286 391
287 while (k && timers [k >> 1]->at > w->at) 392 while (k && heap [k >> 1]->at > w->at)
288 { 393 {
289 timers [k] = timers [k >> 1]; 394 heap [k] = heap [k >> 1];
290 timers [k]->active = k + 1; 395 ((W)heap [k])->active = k + 1;
291 k >>= 1; 396 k >>= 1;
292 } 397 }
293 398
294 timers [k] = w; 399 heap [k] = w;
295 timers [k]->active = k + 1; 400 ((W)heap [k])->active = k + 1;
296 401
297} 402}
298 403
299static void 404static void
300downheap (WT *timers, int N, int k) 405downheap (WT *heap, int N, int k)
301{ 406{
302 WT w = timers [k]; 407 WT w = heap [k];
303 408
304 while (k < (N >> 1)) 409 while (k < (N >> 1))
305 { 410 {
306 int j = k << 1; 411 int j = k << 1;
307 412
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
309 ++j; 414 ++j;
310 415
311 if (w->at <= timers [j]->at) 416 if (w->at <= heap [j]->at)
312 break; 417 break;
313 418
314 timers [k] = timers [j]; 419 heap [k] = heap [j];
315 timers [k]->active = k + 1; 420 ((W)heap [k])->active = k + 1;
316 k = j; 421 k = j;
317 } 422 }
318 423
319 timers [k] = w; 424 heap [k] = w;
320 timers [k]->active = k + 1; 425 ((W)heap [k])->active = k + 1;
321} 426}
322 427
323/*****************************************************************************/ 428/*****************************************************************************/
324 429
325typedef struct 430typedef struct
326{ 431{
327 struct ev_signal *head; 432 struct ev_watcher_list *head;
328 sig_atomic_t volatile gotsig; 433 sig_atomic_t volatile gotsig;
329} ANSIG; 434} ANSIG;
330 435
331static ANSIG *signals; 436static ANSIG *signals;
332static int signalmax; 437static int signalmax;
352{ 457{
353 signals [signum - 1].gotsig = 1; 458 signals [signum - 1].gotsig = 1;
354 459
355 if (!gotsig) 460 if (!gotsig)
356 { 461 {
462 int old_errno = errno;
357 gotsig = 1; 463 gotsig = 1;
358 write (sigpipe [1], &signum, 1); 464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
359 } 466 }
360} 467}
361 468
362static void 469static void
363sigcb (struct ev_io *iow, int revents) 470sigcb (EV_P_ struct ev_io *iow, int revents)
364{ 471{
365 struct ev_signal *w; 472 struct ev_watcher_list *w;
366 int sig; 473 int signum;
367 474
368 read (sigpipe [0], &revents, 1); 475 read (sigpipe [0], &revents, 1);
369 gotsig = 0; 476 gotsig = 0;
370 477
371 for (sig = signalmax; sig--; ) 478 for (signum = signalmax; signum--; )
372 if (signals [sig].gotsig) 479 if (signals [signum].gotsig)
373 { 480 {
374 signals [sig].gotsig = 0; 481 signals [signum].gotsig = 0;
375 482
376 for (w = signals [sig].head; w; w = w->next) 483 for (w = signals [signum].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL); 484 event (EV_A_ (W)w, EV_SIGNAL);
378 } 485 }
379} 486}
380 487
381static void 488static void
382siginit (void) 489siginit (EV_P)
383{ 490{
491#ifndef WIN32
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386 494
387 /* rather than sort out wether we really need nb, set it */ 495 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
390 499
391 ev_io_set (&sigev, sigpipe [0], EV_READ); 500 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev); 501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
393} 503}
394 504
395/*****************************************************************************/ 505/*****************************************************************************/
396 506
397static struct ev_idle **idles; 507#ifndef WIN32
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407 508
408static struct ev_child *childs [PID_HASHSIZE]; 509static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 510static struct ev_signal childev;
410 511
411#ifndef WCONTINUED 512#ifndef WCONTINUED
412# define WCONTINUED 0 513# define WCONTINUED 0
413#endif 514#endif
414 515
415static void 516static void
416childcb (struct ev_signal *sw, int revents) 517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
417{ 518{
418 struct ev_child *w; 519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents)
533{
419 int pid, status; 534 int pid, status;
420 535
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 537 {
423 if (w->pid == pid || w->pid == -1) 538 /* make sure we are called again until all childs have been reaped */
424 { 539 event (EV_A_ (W)sw, EV_SIGNAL);
425 w->status = status; 540
426 event ((W)w, EV_CHILD); 541 child_reap (EV_A_ sw, pid, pid, status);
427 } 542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 }
428} 544}
545
546#endif
429 547
430/*****************************************************************************/ 548/*****************************************************************************/
431 549
550#if EV_USE_KQUEUE
551# include "ev_kqueue.c"
552#endif
432#if EV_USE_EPOLL 553#if EV_USE_EPOLL
433# include "ev_epoll.c" 554# include "ev_epoll.c"
434#endif 555#endif
556#if EV_USE_POLL
557# include "ev_poll.c"
558#endif
435#if EV_USE_SELECT 559#if EV_USE_SELECT
436# include "ev_select.c" 560# include "ev_select.c"
437#endif 561#endif
438 562
439int 563int
446ev_version_minor (void) 570ev_version_minor (void)
447{ 571{
448 return EV_VERSION_MINOR; 572 return EV_VERSION_MINOR;
449} 573}
450 574
451int ev_init (int flags) 575/* return true if we are running with elevated privileges and should ignore env variables */
576static int
577enable_secure (void)
452{ 578{
579#ifdef WIN32
580 return 0;
581#else
582 return getuid () != geteuid ()
583 || getgid () != getegid ();
584#endif
585}
586
587int
588ev_method (EV_P)
589{
590 return method;
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
453 if (!ev_method) 596 if (!method)
454 { 597 {
455#if EV_USE_MONOTONIC 598#if EV_USE_MONOTONIC
456 { 599 {
457 struct timespec ts; 600 struct timespec ts;
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
459 have_monotonic = 1; 602 have_monotonic = 1;
460 } 603 }
461#endif 604#endif
462 605
463 ev_now = ev_time (); 606 rt_now = ev_time ();
464 now = get_clock (); 607 mn_now = get_clock ();
608 now_floor = mn_now;
465 diff = ev_now - now; 609 rtmn_diff = rt_now - mn_now;
466 610
467 if (pipe (sigpipe)) 611 if (methods == EVMETHOD_AUTO)
468 return 0; 612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
469 613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
470 ev_method = EVMETHOD_NONE; 615 methods = EVMETHOD_ANY;
616
617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
471#if EV_USE_EPOLL 624#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
473#endif 629#endif
474#if EV_USE_SELECT 630#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags); 631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
476#endif 632#endif
633 }
634}
477 635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop)
717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1;
722#endif
723
724 loop_init (EV_A_ methods);
725
478 if (ev_method) 726 if (ev_method (EV_A))
479 { 727 {
480 ev_watcher_init (&sigev, sigcb); 728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
481 siginit (); 730 siginit (EV_A);
482 731
732#ifndef WIN32
483 ev_signal_init (&childev, childcb, SIGCHLD); 733 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 735 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif
485 } 738 }
739 else
740 default_loop = 0;
486 } 741 }
487 742
488 return ev_method; 743 return default_loop;
489} 744}
490 745
491/*****************************************************************************/
492
493void 746void
494ev_prefork (void) 747ev_default_destroy (void)
495{ 748{
496 /* nop */ 749#if EV_MULTIPLICITY
497} 750 struct ev_loop *loop = default_loop;
498
499void
500ev_postfork_parent (void)
501{
502 /* nop */
503}
504
505void
506ev_postfork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif 751#endif
512 752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
513 ev_io_stop (&sigev); 757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763}
764
765void
766ev_default_fork (void)
767{
768#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
514 close (sigpipe [0]); 775 close (sigpipe [0]);
515 close (sigpipe [1]); 776 close (sigpipe [1]);
516 pipe (sigpipe); 777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
517 siginit (); 780 siginit (EV_A);
518} 781}
519 782
520/*****************************************************************************/ 783/*****************************************************************************/
521 784
522static void 785static void
523call_pending (void) 786call_pending (EV_P)
524{ 787{
788 int pri;
789
790 for (pri = NUMPRI; pri--; )
525 while (pendingcnt) 791 while (pendingcnt [pri])
526 { 792 {
527 ANPENDING *p = pendings + --pendingcnt; 793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
528 794
529 if (p->w) 795 if (p->w)
530 { 796 {
531 p->w->pending = 0; 797 p->w->pending = 0;
532 p->w->cb (p->w, p->events); 798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
533 } 800 }
534 } 801 }
535} 802}
536 803
537static void 804static void
538timers_reify (void) 805timers_reify (EV_P)
539{ 806{
540 while (timercnt && timers [0]->at <= now) 807 while (timercnt && ((WT)timers [0])->at <= mn_now)
541 { 808 {
542 struct ev_timer *w = timers [0]; 809 struct ev_timer *w = timers [0];
810
811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
543 812
544 /* first reschedule or stop timer */ 813 /* first reschedule or stop timer */
545 if (w->repeat) 814 if (w->repeat)
546 { 815 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 817 ((WT)w)->at = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 818 downheap ((WT *)timers, timercnt, 0);
550 } 819 }
551 else 820 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
553 822
554 event ((W)w, EV_TIMEOUT); 823 event (EV_A_ (W)w, EV_TIMEOUT);
555 } 824 }
556} 825}
557 826
558static void 827static void
559periodics_reify (void) 828periodics_reify (EV_P)
560{ 829{
561 while (periodiccnt && periodics [0]->at <= ev_now) 830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
562 { 831 {
563 struct ev_periodic *w = periodics [0]; 832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
564 835
565 /* first reschedule or stop timer */ 836 /* first reschedule or stop timer */
566 if (w->interval) 837 if (w->interval)
567 { 838 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
570 downheap ((WT *)periodics, periodiccnt, 0); 841 downheap ((WT *)periodics, periodiccnt, 0);
571 } 842 }
572 else 843 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
574 845
575 event ((W)w, EV_PERIODIC); 846 event (EV_A_ (W)w, EV_PERIODIC);
576 } 847 }
577} 848}
578 849
579static void 850static void
580periodics_reschedule (ev_tstamp diff) 851periodics_reschedule (EV_P)
581{ 852{
582 int i; 853 int i;
583 854
584 /* adjust periodics after time jump */ 855 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i) 856 for (i = 0; i < periodiccnt; ++i)
586 { 857 {
587 struct ev_periodic *w = periodics [i]; 858 struct ev_periodic *w = periodics [i];
588 859
589 if (w->interval) 860 if (w->interval)
590 { 861 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
592 863
593 if (fabs (diff) >= 1e-4) 864 if (fabs (diff) >= 1e-4)
594 { 865 {
595 ev_periodic_stop (w); 866 ev_periodic_stop (EV_A_ w);
596 ev_periodic_start (w); 867 ev_periodic_start (EV_A_ w);
597 868
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
599 } 870 }
600 } 871 }
601 } 872 }
602} 873}
603 874
875inline int
876time_update_monotonic (EV_P)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
604static void 893static void
605time_update (void) 894time_update (EV_P)
606{ 895{
607 int i; 896 int i;
608 897
609 ev_now = ev_time (); 898#if EV_USE_MONOTONIC
610
611 if (have_monotonic) 899 if (expect_true (have_monotonic))
612 { 900 {
613 ev_tstamp odiff = diff; 901 if (time_update_monotonic (EV_A))
614
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */
616 { 902 {
617 now = get_clock (); 903 ev_tstamp odiff = rtmn_diff;
904
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 {
618 diff = ev_now - now; 907 rtmn_diff = rt_now - mn_now;
619 908
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
621 return; /* all is well */ 910 return; /* all is well */
622 911
623 ev_now = ev_time (); 912 rt_now = ev_time ();
913 mn_now = get_clock ();
914 now_floor = mn_now;
915 }
916
917 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
624 } 920 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 921 }
629 else 922 else
923#endif
630 { 924 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 925 rt_now = ev_time ();
926
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
632 { 928 {
633 periodics_reschedule (ev_now - now); 929 periodics_reschedule (EV_A);
634 930
635 /* adjust timers. this is easy, as the offset is the same for all */ 931 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i) 932 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff; 933 ((WT)timers [i])->at += rt_now - mn_now;
638 } 934 }
639 935
640 now = ev_now; 936 mn_now = rt_now;
641 } 937 }
642} 938}
643 939
644int ev_loop_done; 940void
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
645 945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
646void ev_loop (int flags) 955ev_loop (EV_P_ int flags)
647{ 956{
648 double block; 957 double block;
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 959
651 do 960 do
652 { 961 {
653 /* queue check watchers (and execute them) */ 962 /* queue check watchers (and execute them) */
654 if (preparecnt) 963 if (expect_false (preparecnt))
655 { 964 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
657 call_pending (); 966 call_pending (EV_A);
658 } 967 }
659 968
660 /* update fd-related kernel structures */ 969 /* update fd-related kernel structures */
661 fd_reify (); 970 fd_reify (EV_A);
662 971
663 /* calculate blocking time */ 972 /* calculate blocking time */
664 973
665 /* we only need this for !monotonic clockor timers, but as we basically 974 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */ 975 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980#endif
981 {
667 ev_now = ev_time (); 982 rt_now = ev_time ();
983 mn_now = rt_now;
984 }
668 985
669 if (flags & EVLOOP_NONBLOCK || idlecnt) 986 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.; 987 block = 0.;
671 else 988 else
672 { 989 {
673 block = MAX_BLOCKTIME; 990 block = MAX_BLOCKTIME;
674 991
675 if (timercnt) 992 if (timercnt)
676 { 993 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
678 if (block > to) block = to; 995 if (block > to) block = to;
679 } 996 }
680 997
681 if (periodiccnt) 998 if (periodiccnt)
682 { 999 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
684 if (block > to) block = to; 1001 if (block > to) block = to;
685 } 1002 }
686 1003
687 if (block < 0.) block = 0.; 1004 if (block < 0.) block = 0.;
688 } 1005 }
689 1006
690 method_poll (block); 1007 method_poll (EV_A_ block);
691 1008
692 /* update ev_now, do magic */ 1009 /* update rt_now, do magic */
693 time_update (); 1010 time_update (EV_A);
694 1011
695 /* queue pending timers and reschedule them */ 1012 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */ 1013 timers_reify (EV_A); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */ 1014 periodics_reify (EV_A); /* absolute timers called first */
698 1015
699 /* queue idle watchers unless io or timers are pending */ 1016 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt) 1017 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE); 1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
702 1019
703 /* queue check watchers, to be executed first */ 1020 /* queue check watchers, to be executed first */
704 if (checkcnt) 1021 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK); 1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
706 1023
707 call_pending (); 1024 call_pending (EV_A);
708 } 1025 }
709 while (!ev_loop_done); 1026 while (activecnt && !loop_done);
710 1027
711 if (ev_loop_done != 2) 1028 if (loop_done != 2)
712 ev_loop_done = 0; 1029 loop_done = 0;
1030}
1031
1032void
1033ev_unloop (EV_P_ int how)
1034{
1035 loop_done = how;
713} 1036}
714 1037
715/*****************************************************************************/ 1038/*****************************************************************************/
716 1039
717static void 1040inline void
718wlist_add (WL *head, WL elem) 1041wlist_add (WL *head, WL elem)
719{ 1042{
720 elem->next = *head; 1043 elem->next = *head;
721 *head = elem; 1044 *head = elem;
722} 1045}
723 1046
724static void 1047inline void
725wlist_del (WL *head, WL elem) 1048wlist_del (WL *head, WL elem)
726{ 1049{
727 while (*head) 1050 while (*head)
728 { 1051 {
729 if (*head == elem) 1052 if (*head == elem)
734 1057
735 head = &(*head)->next; 1058 head = &(*head)->next;
736 } 1059 }
737} 1060}
738 1061
739static void 1062inline void
740ev_clear_pending (W w) 1063ev_clear_pending (EV_P_ W w)
741{ 1064{
742 if (w->pending) 1065 if (w->pending)
743 { 1066 {
744 pendings [w->pending - 1].w = 0; 1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
745 w->pending = 0; 1068 w->pending = 0;
746 } 1069 }
747} 1070}
748 1071
749static void 1072inline void
750ev_start (W w, int active) 1073ev_start (EV_P_ W w, int active)
751{ 1074{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
752 w->active = active; 1078 w->active = active;
1079 ev_ref (EV_A);
753} 1080}
754 1081
755static void 1082inline void
756ev_stop (W w) 1083ev_stop (EV_P_ W w)
757{ 1084{
1085 ev_unref (EV_A);
758 w->active = 0; 1086 w->active = 0;
759} 1087}
760 1088
761/*****************************************************************************/ 1089/*****************************************************************************/
762 1090
763void 1091void
764ev_io_start (struct ev_io *w) 1092ev_io_start (EV_P_ struct ev_io *w)
765{ 1093{
1094 int fd = w->fd;
1095
766 if (ev_is_active (w)) 1096 if (ev_is_active (w))
767 return; 1097 return;
768 1098
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0)); 1099 assert (("ev_io_start called with negative fd", fd >= 0));
772 1100
773 ev_start ((W)w, 1); 1101 ev_start (EV_A_ (W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776 1104
777 fd_change (fd); 1105 fd_change (EV_A_ fd);
778} 1106}
779 1107
780void 1108void
781ev_io_stop (struct ev_io *w) 1109ev_io_stop (EV_P_ struct ev_io *w)
782{ 1110{
783 ev_clear_pending ((W)w); 1111 ev_clear_pending (EV_A_ (W)w);
784 if (!ev_is_active (w)) 1112 if (!ev_is_active (w))
785 return; 1113 return;
786 1114
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w); 1116 ev_stop (EV_A_ (W)w);
789 1117
790 fd_change (w->fd); 1118 fd_change (EV_A_ w->fd);
791} 1119}
792 1120
793void 1121void
794ev_timer_start (struct ev_timer *w) 1122ev_timer_start (EV_P_ struct ev_timer *w)
795{ 1123{
796 if (ev_is_active (w)) 1124 if (ev_is_active (w))
797 return; 1125 return;
798 1126
799 w->at += now; 1127 ((WT)w)->at += mn_now;
800 1128
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802 1130
803 ev_start ((W)w, ++timercnt); 1131 ev_start (EV_A_ (W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, ); 1132 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w; 1133 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1); 1134 upheap ((WT *)timers, timercnt - 1);
807}
808 1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138
809void 1139void
810ev_timer_stop (struct ev_timer *w) 1140ev_timer_stop (EV_P_ struct ev_timer *w)
811{ 1141{
812 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
814 return; 1144 return;
815 1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
816 if (w->active < timercnt--) 1148 if (((W)w)->active < timercnt--)
817 { 1149 {
818 timers [w->active - 1] = timers [timercnt]; 1150 timers [((W)w)->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
820 } 1152 }
821 1153
822 w->at = w->repeat; 1154 ((WT)w)->at = w->repeat;
823 1155
824 ev_stop ((W)w); 1156 ev_stop (EV_A_ (W)w);
825} 1157}
826 1158
827void 1159void
828ev_timer_again (struct ev_timer *w) 1160ev_timer_again (EV_P_ struct ev_timer *w)
829{ 1161{
830 if (ev_is_active (w)) 1162 if (ev_is_active (w))
831 { 1163 {
832 if (w->repeat) 1164 if (w->repeat)
833 { 1165 {
834 w->at = now + w->repeat; 1166 ((WT)w)->at = mn_now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1); 1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
836 } 1168 }
837 else 1169 else
838 ev_timer_stop (w); 1170 ev_timer_stop (EV_A_ w);
839 } 1171 }
840 else if (w->repeat) 1172 else if (w->repeat)
841 ev_timer_start (w); 1173 ev_timer_start (EV_A_ w);
842} 1174}
843 1175
844void 1176void
845ev_periodic_start (struct ev_periodic *w) 1177ev_periodic_start (EV_P_ struct ev_periodic *w)
846{ 1178{
847 if (ev_is_active (w)) 1179 if (ev_is_active (w))
848 return; 1180 return;
849 1181
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851 1183
852 /* this formula differs from the one in periodic_reify because we do not always round up */ 1184 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval) 1185 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
855 1187
856 ev_start ((W)w, ++periodiccnt); 1188 ev_start (EV_A_ (W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, ); 1189 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w; 1190 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1); 1191 upheap ((WT *)periodics, periodiccnt - 1);
860}
861 1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195
862void 1196void
863ev_periodic_stop (struct ev_periodic *w) 1197ev_periodic_stop (EV_P_ struct ev_periodic *w)
864{ 1198{
865 ev_clear_pending ((W)w); 1199 ev_clear_pending (EV_A_ (W)w);
866 if (!ev_is_active (w)) 1200 if (!ev_is_active (w))
867 return; 1201 return;
868 1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
869 if (w->active < periodiccnt--) 1205 if (((W)w)->active < periodiccnt--)
870 { 1206 {
871 periodics [w->active - 1] = periodics [periodiccnt]; 1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
873 } 1209 }
874 1210
875 ev_stop ((W)w); 1211 ev_stop (EV_A_ (W)w);
876} 1212}
877 1213
878void 1214void
879ev_signal_start (struct ev_signal *w) 1215ev_idle_start (EV_P_ struct ev_idle *w)
880{ 1216{
881 if (ev_is_active (w)) 1217 if (ev_is_active (w))
882 return; 1218 return;
883 1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234}
1235
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279
1280#ifndef SA_RESTART
1281# define SA_RESTART 0
1282#endif
1283
1284void
1285ev_signal_start (EV_P_ struct ev_signal *w)
1286{
1287#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289#endif
1290 if (ev_is_active (w))
1291 return;
1292
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885 1294
886 ev_start ((W)w, 1); 1295 ev_start (EV_A_ (W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init); 1296 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889 1298
890 if (!w->next) 1299 if (!((WL)w)->next)
891 { 1300 {
892 struct sigaction sa; 1301 struct sigaction sa;
893 sa.sa_handler = sighandler; 1302 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask); 1303 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0; 1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
896 sigaction (w->signum, &sa, 0); 1305 sigaction (w->signum, &sa, 0);
897 } 1306 }
898} 1307}
899 1308
900void 1309void
901ev_signal_stop (struct ev_signal *w) 1310ev_signal_stop (EV_P_ struct ev_signal *w)
902{ 1311{
903 ev_clear_pending ((W)w); 1312 ev_clear_pending (EV_A_ (W)w);
904 if (!ev_is_active (w)) 1313 if (!ev_is_active (w))
905 return; 1314 return;
906 1315
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
909 1318
910 if (!signals [w->signum - 1].head) 1319 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL); 1320 signal (w->signum, SIG_DFL);
912} 1321}
913 1322
914void 1323void
915ev_idle_start (struct ev_idle *w) 1324ev_child_start (EV_P_ struct ev_child *w)
916{ 1325{
1326#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328#endif
917 if (ev_is_active (w)) 1329 if (ev_is_active (w))
918 return; 1330 return;
919 1331
920 ev_start ((W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, 1);
921 array_needsize (idles, idlemax, idlecnt, ); 1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
922 idles [idlecnt - 1] = w;
923} 1334}
924 1335
925void 1336void
926ev_idle_stop (struct ev_idle *w) 1337ev_child_stop (EV_P_ struct ev_child *w)
927{ 1338{
928 ev_clear_pending ((W)w); 1339 ev_clear_pending (EV_A_ (W)w);
929 if (ev_is_active (w)) 1340 if (ev_is_active (w))
930 return; 1341 return;
931 1342
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w); 1344 ev_stop (EV_A_ (W)w);
999} 1345}
1000 1346
1001/*****************************************************************************/ 1347/*****************************************************************************/
1002 1348
1003struct ev_once 1349struct ev_once
1007 void (*cb)(int revents, void *arg); 1353 void (*cb)(int revents, void *arg);
1008 void *arg; 1354 void *arg;
1009}; 1355};
1010 1356
1011static void 1357static void
1012once_cb (struct ev_once *once, int revents) 1358once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 1359{
1014 void (*cb)(int revents, void *arg) = once->cb; 1360 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 1361 void *arg = once->arg;
1016 1362
1017 ev_io_stop (&once->io); 1363 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 1364 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 1365 free (once);
1020 1366
1021 cb (revents, arg); 1367 cb (revents, arg);
1022} 1368}
1023 1369
1024static void 1370static void
1025once_cb_io (struct ev_io *w, int revents) 1371once_cb_io (EV_P_ struct ev_io *w, int revents)
1026{ 1372{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1028} 1374}
1029 1375
1030static void 1376static void
1031once_cb_to (struct ev_timer *w, int revents) 1377once_cb_to (EV_P_ struct ev_timer *w, int revents)
1032{ 1378{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1034} 1380}
1035 1381
1036void 1382void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 1384{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 1385 struct ev_once *once = malloc (sizeof (struct ev_once));
1040 1386
1041 if (!once) 1387 if (!once)
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1047 1393
1048 ev_watcher_init (&once->io, once_cb_io); 1394 ev_watcher_init (&once->io, once_cb_io);
1049 if (fd >= 0) 1395 if (fd >= 0)
1050 { 1396 {
1051 ev_io_set (&once->io, fd, events); 1397 ev_io_set (&once->io, fd, events);
1052 ev_io_start (&once->io); 1398 ev_io_start (EV_A_ &once->io);
1053 } 1399 }
1054 1400
1055 ev_watcher_init (&once->to, once_cb_to); 1401 ev_watcher_init (&once->to, once_cb_to);
1056 if (timeout >= 0.) 1402 if (timeout >= 0.)
1057 { 1403 {
1058 ev_timer_set (&once->to, timeout, 0.); 1404 ev_timer_set (&once->to, timeout, 0.);
1059 ev_timer_start (&once->to); 1405 ev_timer_start (EV_A_ &once->to);
1060 } 1406 }
1061 } 1407 }
1062} 1408}
1063 1409
1064/*****************************************************************************/
1065
1066#if 0
1067
1068struct ev_io wio;
1069
1070static void
1071sin_cb (struct ev_io *w, int revents)
1072{
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1074}
1075
1076static void
1077ocb (struct ev_timer *w, int revents)
1078{
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1080 ev_timer_stop (w);
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 {
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif
1120
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140}
1141
1142#endif
1143
1144
1145
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines