ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.34 by root, Thu Nov 1 11:43:11 2007 UTC vs.
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
63#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
65#endif 119#endif
66#ifndef EV_USE_REALTIME 120
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
68#endif
69 122
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 127
75#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 143
77typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
80 147
81static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84 149
85static int have_monotonic; /* runtime */ 150#if WIN32
86 151/* note: the comment below could not be substantiated, but what would I care */
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
88static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
89static void (*method_poll)(ev_tstamp timeout); 154#endif
90 155
91/*****************************************************************************/ 156/*****************************************************************************/
92 157
93ev_tstamp 158static void (*syserr_cb)(const char *msg);
159
160void ev_set_syserr_cb (void (*cb)(const char *msg))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (const char *msg)
167{
168 if (!msg)
169 msg = "(libev) system error";
170
171 if (syserr_cb)
172 syserr_cb (msg);
173 else
174 {
175 perror (msg);
176 abort ();
177 }
178}
179
180static void *(*alloc)(void *ptr, long size);
181
182void ev_set_allocator (void *(*cb)(void *ptr, long size))
183{
184 alloc = cb;
185}
186
187static void *
188ev_realloc (void *ptr, long size)
189{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191
192 if (!ptr && size)
193 {
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195 abort ();
196 }
197
198 return ptr;
199}
200
201#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0)
203
204/*****************************************************************************/
205
206typedef struct
207{
208 WL head;
209 unsigned char events;
210 unsigned char reify;
211} ANFD;
212
213typedef struct
214{
215 W w;
216 int events;
217} ANPENDING;
218
219#if EV_MULTIPLICITY
220
221struct ev_loop
222{
223# define VAR(name,decl) decl;
224# include "ev_vars.h"
225};
226# undef VAR
227# include "ev_wrap.h"
228
229#else
230
231# define VAR(name,decl) static decl;
232# include "ev_vars.h"
233# undef VAR
234
235#endif
236
237/*****************************************************************************/
238
239inline ev_tstamp
94ev_time (void) 240ev_time (void)
95{ 241{
96#if EV_USE_REALTIME 242#if EV_USE_REALTIME
97 struct timespec ts; 243 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 244 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 248 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 249 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 250#endif
105} 251}
106 252
107static ev_tstamp 253inline ev_tstamp
108get_clock (void) 254get_clock (void)
109{ 255{
110#if EV_USE_MONOTONIC 256#if EV_USE_MONOTONIC
111 if (have_monotonic) 257 if (expect_true (have_monotonic))
112 { 258 {
113 struct timespec ts; 259 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 260 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 261 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 262 }
117#endif 263#endif
118 264
119 return ev_time (); 265 return ev_time ();
120} 266}
121 267
268ev_tstamp
269ev_now (EV_P)
270{
271 return rt_now;
272}
273
122#define array_roundsize(base,n) ((n) | 4 & ~3) 274#define array_roundsize(base,n) ((n) | 4 & ~3)
123 275
124#define array_needsize(base,cur,cnt,init) \ 276#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 277 if (expect_false ((cnt) > cur)) \
126 { \ 278 { \
127 int newcnt = cur; \ 279 int newcnt = cur; \
128 do \ 280 do \
129 { \ 281 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 282 newcnt = array_roundsize (base, newcnt << 1); \
131 } \ 283 } \
132 while ((cnt) > newcnt); \ 284 while ((cnt) > newcnt); \
133 \ 285 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \ 286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \ 287 init (base + cur, newcnt - cur); \
136 cur = newcnt; \ 288 cur = newcnt; \
137 } 289 }
290
291#define array_slim(stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 }
298
299#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
138 301
139/*****************************************************************************/ 302/*****************************************************************************/
140
141typedef struct
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147
148static ANFD *anfds;
149static int anfdmax;
150 303
151static void 304static void
152anfds_init (ANFD *base, int count) 305anfds_init (ANFD *base, int count)
153{ 306{
154 while (count--) 307 while (count--)
159 312
160 ++base; 313 ++base;
161 } 314 }
162} 315}
163 316
164typedef struct
165{
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void 317static void
174event (W w, int events) 318event (EV_P_ W w, int events)
175{ 319{
176 if (w->pending) 320 if (w->pending)
177 { 321 {
178 pendings [w->pending - 1].events |= events; 322 pendings [ABSPRI (w)][w->pending - 1].events |= events;
179 return; 323 return;
180 } 324 }
181 325
182 w->pending = ++pendingcnt; 326 w->pending = ++pendingcnt [ABSPRI (w)];
183 array_needsize (pendings, pendingmax, pendingcnt, ); 327 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
184 pendings [pendingcnt - 1].w = w; 328 pendings [ABSPRI (w)][w->pending - 1].w = w;
185 pendings [pendingcnt - 1].events = events; 329 pendings [ABSPRI (w)][w->pending - 1].events = events;
186} 330}
187 331
188static void 332static void
189queue_events (W *events, int eventcnt, int type) 333queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 334{
191 int i; 335 int i;
192 336
193 for (i = 0; i < eventcnt; ++i) 337 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 338 event (EV_A_ events [i], type);
195} 339}
196 340
197static void 341static void
198fd_event (int fd, int events) 342fd_event (EV_P_ int fd, int events)
199{ 343{
200 ANFD *anfd = anfds + fd; 344 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 345 struct ev_io *w;
202 346
203 for (w = anfd->head; w; w = w->next) 347 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
204 { 348 {
205 int ev = w->events & events; 349 int ev = w->events & events;
206 350
207 if (ev) 351 if (ev)
208 event ((W)w, ev); 352 event (EV_A_ (W)w, ev);
209 } 353 }
210} 354}
211 355
212/*****************************************************************************/ 356/*****************************************************************************/
213 357
214static int *fdchanges;
215static int fdchangemax, fdchangecnt;
216
217static void 358static void
218fd_reify (void) 359fd_reify (EV_P)
219{ 360{
220 int i; 361 int i;
221 362
222 for (i = 0; i < fdchangecnt; ++i) 363 for (i = 0; i < fdchangecnt; ++i)
223 { 364 {
225 ANFD *anfd = anfds + fd; 366 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 367 struct ev_io *w;
227 368
228 int events = 0; 369 int events = 0;
229 370
230 for (w = anfd->head; w; w = w->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
231 events |= w->events; 372 events |= w->events;
232 373
233 anfd->reify = 0; 374 anfd->reify = 0;
234 375
235 if (anfd->events != events)
236 {
237 method_modify (fd, anfd->events, events); 376 method_modify (EV_A_ fd, anfd->events, events);
238 anfd->events = events; 377 anfd->events = events;
239 }
240 } 378 }
241 379
242 fdchangecnt = 0; 380 fdchangecnt = 0;
243} 381}
244 382
245static void 383static void
246fd_change (int fd) 384fd_change (EV_P_ int fd)
247{ 385{
248 if (anfds [fd].reify || fdchangecnt < 0) 386 if (anfds [fd].reify)
249 return; 387 return;
250 388
251 anfds [fd].reify = 1; 389 anfds [fd].reify = 1;
252 390
253 ++fdchangecnt; 391 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 392 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
255 fdchanges [fdchangecnt - 1] = fd; 393 fdchanges [fdchangecnt - 1] = fd;
256} 394}
257 395
396static void
397fd_kill (EV_P_ int fd)
398{
399 struct ev_io *w;
400
401 while ((w = (struct ev_io *)anfds [fd].head))
402 {
403 ev_io_stop (EV_A_ w);
404 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
405 }
406}
407
258/* called on EBADF to verify fds */ 408/* called on EBADF to verify fds */
259static void 409static void
260fd_recheck (void) 410fd_ebadf (EV_P)
261{ 411{
262 int fd; 412 int fd;
263 413
264 for (fd = 0; fd < anfdmax; ++fd) 414 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 415 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 416 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
267 while (anfds [fd].head) 417 fd_kill (EV_A_ fd);
418}
419
420/* called on ENOMEM in select/poll to kill some fds and retry */
421static void
422fd_enomem (EV_P)
423{
424 int fd;
425
426 for (fd = anfdmax; fd--; )
427 if (anfds [fd].events)
268 { 428 {
269 ev_io_stop (anfds [fd].head); 429 fd_kill (EV_A_ fd);
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 430 return;
271 } 431 }
432}
433
434/* usually called after fork if method needs to re-arm all fds from scratch */
435static void
436fd_rearm_all (EV_P)
437{
438 int fd;
439
440 /* this should be highly optimised to not do anything but set a flag */
441 for (fd = 0; fd < anfdmax; ++fd)
442 if (anfds [fd].events)
443 {
444 anfds [fd].events = 0;
445 fd_change (EV_A_ fd);
446 }
272} 447}
273 448
274/*****************************************************************************/ 449/*****************************************************************************/
275 450
276static struct ev_timer **timers;
277static int timermax, timercnt;
278
279static struct ev_periodic **periodics;
280static int periodicmax, periodiccnt;
281
282static void 451static void
283upheap (WT *timers, int k) 452upheap (WT *heap, int k)
284{ 453{
285 WT w = timers [k]; 454 WT w = heap [k];
286 455
287 while (k && timers [k >> 1]->at > w->at) 456 while (k && heap [k >> 1]->at > w->at)
288 { 457 {
289 timers [k] = timers [k >> 1]; 458 heap [k] = heap [k >> 1];
290 timers [k]->active = k + 1; 459 ((W)heap [k])->active = k + 1;
291 k >>= 1; 460 k >>= 1;
292 } 461 }
293 462
294 timers [k] = w; 463 heap [k] = w;
295 timers [k]->active = k + 1; 464 ((W)heap [k])->active = k + 1;
296 465
297} 466}
298 467
299static void 468static void
300downheap (WT *timers, int N, int k) 469downheap (WT *heap, int N, int k)
301{ 470{
302 WT w = timers [k]; 471 WT w = heap [k];
303 472
304 while (k < (N >> 1)) 473 while (k < (N >> 1))
305 { 474 {
306 int j = k << 1; 475 int j = k << 1;
307 476
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 477 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
309 ++j; 478 ++j;
310 479
311 if (w->at <= timers [j]->at) 480 if (w->at <= heap [j]->at)
312 break; 481 break;
313 482
314 timers [k] = timers [j]; 483 heap [k] = heap [j];
315 timers [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
316 k = j; 485 k = j;
317 } 486 }
318 487
319 timers [k] = w; 488 heap [k] = w;
320 timers [k]->active = k + 1; 489 ((W)heap [k])->active = k + 1;
321} 490}
322 491
323/*****************************************************************************/ 492/*****************************************************************************/
324 493
325typedef struct 494typedef struct
326{ 495{
327 struct ev_signal *head; 496 WL head;
328 sig_atomic_t volatile gotsig; 497 sig_atomic_t volatile gotsig;
329} ANSIG; 498} ANSIG;
330 499
331static ANSIG *signals; 500static ANSIG *signals;
332static int signalmax; 501static int signalmax;
348} 517}
349 518
350static void 519static void
351sighandler (int signum) 520sighandler (int signum)
352{ 521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
353 signals [signum - 1].gotsig = 1; 526 signals [signum - 1].gotsig = 1;
354 527
355 if (!gotsig) 528 if (!gotsig)
356 { 529 {
530 int old_errno = errno;
357 gotsig = 1; 531 gotsig = 1;
358 write (sigpipe [1], &signum, 1); 532 write (sigpipe [1], &signum, 1);
533 errno = old_errno;
359 } 534 }
360} 535}
361 536
362static void 537static void
363sigcb (struct ev_io *iow, int revents) 538sigcb (EV_P_ struct ev_io *iow, int revents)
364{ 539{
365 struct ev_signal *w; 540 WL w;
366 int sig; 541 int signum;
367 542
368 read (sigpipe [0], &revents, 1); 543 read (sigpipe [0], &revents, 1);
369 gotsig = 0; 544 gotsig = 0;
370 545
371 for (sig = signalmax; sig--; ) 546 for (signum = signalmax; signum--; )
372 if (signals [sig].gotsig) 547 if (signals [signum].gotsig)
373 { 548 {
374 signals [sig].gotsig = 0; 549 signals [signum].gotsig = 0;
375 550
376 for (w = signals [sig].head; w; w = w->next) 551 for (w = signals [signum].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL); 552 event (EV_A_ (W)w, EV_SIGNAL);
378 } 553 }
379} 554}
380 555
381static void 556static void
382siginit (void) 557siginit (EV_P)
383{ 558{
559#ifndef WIN32
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 560 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 561 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386 562
387 /* rather than sort out wether we really need nb, set it */ 563 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 564 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 565 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
566#endif
390 567
391 ev_io_set (&sigev, sigpipe [0], EV_READ); 568 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev); 569 ev_io_start (EV_A_ &sigev);
570 ev_unref (EV_A); /* child watcher should not keep loop alive */
393} 571}
394 572
395/*****************************************************************************/ 573/*****************************************************************************/
396 574
397static struct ev_idle **idles; 575#ifndef WIN32
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407 576
408static struct ev_child *childs [PID_HASHSIZE]; 577static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 578static struct ev_signal childev;
410 579
411#ifndef WCONTINUED 580#ifndef WCONTINUED
412# define WCONTINUED 0 581# define WCONTINUED 0
413#endif 582#endif
414 583
415static void 584static void
416childcb (struct ev_signal *sw, int revents) 585child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
417{ 586{
418 struct ev_child *w; 587 struct ev_child *w;
588
589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
590 if (w->pid == pid || !w->pid)
591 {
592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
593 w->rpid = pid;
594 w->rstatus = status;
595 event (EV_A_ (W)w, EV_CHILD);
596 }
597}
598
599static void
600childcb (EV_P_ struct ev_signal *sw, int revents)
601{
419 int pid, status; 602 int pid, status;
420 603
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 604 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 605 {
423 if (w->pid == pid || w->pid == -1) 606 /* make sure we are called again until all childs have been reaped */
424 { 607 event (EV_A_ (W)sw, EV_SIGNAL);
425 w->status = status; 608
426 event ((W)w, EV_CHILD); 609 child_reap (EV_A_ sw, pid, pid, status);
427 } 610 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
611 }
428} 612}
613
614#endif
429 615
430/*****************************************************************************/ 616/*****************************************************************************/
431 617
618#if EV_USE_KQUEUE
619# include "ev_kqueue.c"
620#endif
432#if EV_USE_EPOLL 621#if EV_USE_EPOLL
433# include "ev_epoll.c" 622# include "ev_epoll.c"
434#endif 623#endif
624#if EV_USE_POLL
625# include "ev_poll.c"
626#endif
435#if EV_USE_SELECT 627#if EV_USE_SELECT
436# include "ev_select.c" 628# include "ev_select.c"
437#endif 629#endif
438 630
439int 631int
446ev_version_minor (void) 638ev_version_minor (void)
447{ 639{
448 return EV_VERSION_MINOR; 640 return EV_VERSION_MINOR;
449} 641}
450 642
451int ev_init (int flags) 643/* return true if we are running with elevated privileges and should ignore env variables */
644static int
645enable_secure (void)
452{ 646{
647#ifdef WIN32
648 return 0;
649#else
650 return getuid () != geteuid ()
651 || getgid () != getegid ();
652#endif
653}
654
655int
656ev_method (EV_P)
657{
658 return method;
659}
660
661static void
662loop_init (EV_P_ int methods)
663{
453 if (!ev_method) 664 if (!method)
454 { 665 {
455#if EV_USE_MONOTONIC 666#if EV_USE_MONOTONIC
456 { 667 {
457 struct timespec ts; 668 struct timespec ts;
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 669 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
459 have_monotonic = 1; 670 have_monotonic = 1;
460 } 671 }
461#endif 672#endif
462 673
463 ev_now = ev_time (); 674 rt_now = ev_time ();
464 now = get_clock (); 675 mn_now = get_clock ();
676 now_floor = mn_now;
465 diff = ev_now - now; 677 rtmn_diff = rt_now - mn_now;
466 678
467 if (pipe (sigpipe)) 679 if (methods == EVMETHOD_AUTO)
468 return 0; 680 if (!enable_secure () && getenv ("LIBEV_METHODS"))
469 681 methods = atoi (getenv ("LIBEV_METHODS"));
682 else
470 ev_method = EVMETHOD_NONE; 683 methods = EVMETHOD_ANY;
684
685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
689#if EV_USE_KQUEUE
690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
691#endif
471#if EV_USE_EPOLL 692#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
694#endif
695#if EV_USE_POLL
696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
473#endif 697#endif
474#if EV_USE_SELECT 698#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags); 699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
476#endif 700#endif
477 701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
704 }
705}
706
707void
708loop_destroy (EV_P)
709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
715#if EV_USE_KQUEUE
716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
717#endif
718#if EV_USE_EPOLL
719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
720#endif
721#if EV_USE_POLL
722 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
723#endif
724#if EV_USE_SELECT
725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
726#endif
727
728 for (i = NUMPRI; i--; )
729 array_free (pending, [i]);
730
731 array_free (fdchange, );
732 array_free (timer, );
733 array_free (periodic, );
734 array_free (idle, );
735 array_free (prepare, );
736 array_free (check, );
737
738 method = 0;
739}
740
741static void
742loop_fork (EV_P)
743{
744#if EV_USE_EPOLL
745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
746#endif
747#if EV_USE_KQUEUE
748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
749#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
767}
768
769#if EV_MULTIPLICITY
770struct ev_loop *
771ev_loop_new (int methods)
772{
773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
776
777 loop_init (EV_A_ methods);
778
779 if (ev_method (EV_A))
780 return loop;
781
782 return 0;
783}
784
785void
786ev_loop_destroy (EV_P)
787{
788 loop_destroy (EV_A);
789 ev_free (loop);
790}
791
792void
793ev_loop_fork (EV_P)
794{
795 postfork = 1;
796}
797
798#endif
799
800#if EV_MULTIPLICITY
801struct ev_loop default_loop_struct;
802static struct ev_loop *default_loop;
803
804struct ev_loop *
805#else
806static int default_loop;
807
808int
809#endif
810ev_default_loop (int methods)
811{
812 if (sigpipe [0] == sigpipe [1])
813 if (pipe (sigpipe))
814 return 0;
815
816 if (!default_loop)
817 {
818#if EV_MULTIPLICITY
819 struct ev_loop *loop = default_loop = &default_loop_struct;
820#else
821 default_loop = 1;
822#endif
823
824 loop_init (EV_A_ methods);
825
478 if (ev_method) 826 if (ev_method (EV_A))
479 { 827 {
480 ev_watcher_init (&sigev, sigcb);
481 siginit (); 828 siginit (EV_A);
482 829
830#ifndef WIN32
483 ev_signal_init (&childev, childcb, SIGCHLD); 831 ev_signal_init (&childev, childcb, SIGCHLD);
832 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 833 ev_signal_start (EV_A_ &childev);
834 ev_unref (EV_A); /* child watcher should not keep loop alive */
835#endif
485 } 836 }
837 else
838 default_loop = 0;
486 } 839 }
487 840
488 return ev_method; 841 return default_loop;
842}
843
844void
845ev_default_destroy (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 ev_ref (EV_A); /* child watcher */
852 ev_signal_stop (EV_A_ &childev);
853
854 ev_ref (EV_A); /* signal watcher */
855 ev_io_stop (EV_A_ &sigev);
856
857 close (sigpipe [0]); sigpipe [0] = 0;
858 close (sigpipe [1]); sigpipe [1] = 0;
859
860 loop_destroy (EV_A);
861}
862
863void
864ev_default_fork (void)
865{
866#if EV_MULTIPLICITY
867 struct ev_loop *loop = default_loop;
868#endif
869
870 if (method)
871 postfork = 1;
489} 872}
490 873
491/*****************************************************************************/ 874/*****************************************************************************/
492 875
493void
494ev_prefork (void)
495{
496 /* nop */
497}
498
499void
500ev_postfork_parent (void)
501{
502 /* nop */
503}
504
505void
506ev_postfork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif
512
513 ev_io_stop (&sigev);
514 close (sigpipe [0]);
515 close (sigpipe [1]);
516 pipe (sigpipe);
517 siginit ();
518}
519
520/*****************************************************************************/
521
522static void 876static void
523call_pending (void) 877call_pending (EV_P)
524{ 878{
879 int pri;
880
881 for (pri = NUMPRI; pri--; )
525 while (pendingcnt) 882 while (pendingcnt [pri])
526 { 883 {
527 ANPENDING *p = pendings + --pendingcnt; 884 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
528 885
529 if (p->w) 886 if (p->w)
530 { 887 {
531 p->w->pending = 0; 888 p->w->pending = 0;
532 p->w->cb (p->w, p->events); 889 p->w->cb (EV_A_ p->w, p->events);
533 } 890 }
534 } 891 }
535} 892}
536 893
537static void 894static void
538timers_reify (void) 895timers_reify (EV_P)
539{ 896{
540 while (timercnt && timers [0]->at <= now) 897 while (timercnt && ((WT)timers [0])->at <= mn_now)
541 { 898 {
542 struct ev_timer *w = timers [0]; 899 struct ev_timer *w = timers [0];
900
901 assert (("inactive timer on timer heap detected", ev_is_active (w)));
543 902
544 /* first reschedule or stop timer */ 903 /* first reschedule or stop timer */
545 if (w->repeat) 904 if (w->repeat)
546 { 905 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 907 ((WT)w)->at = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 908 downheap ((WT *)timers, timercnt, 0);
550 } 909 }
551 else 910 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
553 912
554 event ((W)w, EV_TIMEOUT); 913 event (EV_A_ (W)w, EV_TIMEOUT);
555 } 914 }
556} 915}
557 916
558static void 917static void
559periodics_reify (void) 918periodics_reify (EV_P)
560{ 919{
561 while (periodiccnt && periodics [0]->at <= ev_now) 920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
562 { 921 {
563 struct ev_periodic *w = periodics [0]; 922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
564 925
565 /* first reschedule or stop timer */ 926 /* first reschedule or stop timer */
566 if (w->interval) 927 if (w->interval)
567 { 928 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
570 downheap ((WT *)periodics, periodiccnt, 0); 931 downheap ((WT *)periodics, periodiccnt, 0);
571 } 932 }
572 else 933 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
574 935
575 event ((W)w, EV_PERIODIC); 936 event (EV_A_ (W)w, EV_PERIODIC);
576 } 937 }
577} 938}
578 939
579static void 940static void
580periodics_reschedule (ev_tstamp diff) 941periodics_reschedule (EV_P)
581{ 942{
582 int i; 943 int i;
583 944
584 /* adjust periodics after time jump */ 945 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i) 946 for (i = 0; i < periodiccnt; ++i)
586 { 947 {
587 struct ev_periodic *w = periodics [i]; 948 struct ev_periodic *w = periodics [i];
588 949
589 if (w->interval) 950 if (w->interval)
590 { 951 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
592 953
593 if (fabs (diff) >= 1e-4) 954 if (fabs (diff) >= 1e-4)
594 { 955 {
595 ev_periodic_stop (w); 956 ev_periodic_stop (EV_A_ w);
596 ev_periodic_start (w); 957 ev_periodic_start (EV_A_ w);
597 958
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 959 i = 0; /* restart loop, inefficient, but time jumps should be rare */
599 } 960 }
600 } 961 }
601 } 962 }
602} 963}
603 964
965inline int
966time_update_monotonic (EV_P)
967{
968 mn_now = get_clock ();
969
970 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
971 {
972 rt_now = rtmn_diff + mn_now;
973 return 0;
974 }
975 else
976 {
977 now_floor = mn_now;
978 rt_now = ev_time ();
979 return 1;
980 }
981}
982
604static void 983static void
605time_update (void) 984time_update (EV_P)
606{ 985{
607 int i; 986 int i;
608 987
609 ev_now = ev_time (); 988#if EV_USE_MONOTONIC
610
611 if (have_monotonic) 989 if (expect_true (have_monotonic))
612 { 990 {
613 ev_tstamp odiff = diff; 991 if (time_update_monotonic (EV_A))
614
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */
616 { 992 {
617 now = get_clock (); 993 ev_tstamp odiff = rtmn_diff;
994
995 for (i = 4; --i; ) /* loop a few times, before making important decisions */
996 {
618 diff = ev_now - now; 997 rtmn_diff = rt_now - mn_now;
619 998
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 999 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
621 return; /* all is well */ 1000 return; /* all is well */
622 1001
623 ev_now = ev_time (); 1002 rt_now = ev_time ();
1003 mn_now = get_clock ();
1004 now_floor = mn_now;
1005 }
1006
1007 periodics_reschedule (EV_A);
1008 /* no timer adjustment, as the monotonic clock doesn't jump */
1009 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
624 } 1010 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 1011 }
629 else 1012 else
1013#endif
630 { 1014 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1015 rt_now = ev_time ();
1016
1017 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
632 { 1018 {
633 periodics_reschedule (ev_now - now); 1019 periodics_reschedule (EV_A);
634 1020
635 /* adjust timers. this is easy, as the offset is the same for all */ 1021 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i) 1022 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff; 1023 ((WT)timers [i])->at += rt_now - mn_now;
638 } 1024 }
639 1025
640 now = ev_now; 1026 mn_now = rt_now;
641 } 1027 }
642} 1028}
643 1029
644int ev_loop_done; 1030void
1031ev_ref (EV_P)
1032{
1033 ++activecnt;
1034}
645 1035
1036void
1037ev_unref (EV_P)
1038{
1039 --activecnt;
1040}
1041
1042static int loop_done;
1043
1044void
646void ev_loop (int flags) 1045ev_loop (EV_P_ int flags)
647{ 1046{
648 double block; 1047 double block;
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1048 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 1049
651 do 1050 do
652 { 1051 {
653 /* queue check watchers (and execute them) */ 1052 /* queue check watchers (and execute them) */
654 if (preparecnt) 1053 if (expect_false (preparecnt))
655 { 1054 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
657 call_pending (); 1056 call_pending (EV_A);
658 } 1057 }
659 1058
1059 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork))
1061 loop_fork (EV_A);
1062
660 /* update fd-related kernel structures */ 1063 /* update fd-related kernel structures */
661 fd_reify (); 1064 fd_reify (EV_A);
662 1065
663 /* calculate blocking time */ 1066 /* calculate blocking time */
664 1067
665 /* we only need this for !monotonic clockor timers, but as we basically 1068 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */ 1069 always have timers, we just calculate it always */
1070#if EV_USE_MONOTONIC
1071 if (expect_true (have_monotonic))
1072 time_update_monotonic (EV_A);
1073 else
1074#endif
1075 {
667 ev_now = ev_time (); 1076 rt_now = ev_time ();
1077 mn_now = rt_now;
1078 }
668 1079
669 if (flags & EVLOOP_NONBLOCK || idlecnt) 1080 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.; 1081 block = 0.;
671 else 1082 else
672 { 1083 {
673 block = MAX_BLOCKTIME; 1084 block = MAX_BLOCKTIME;
674 1085
675 if (timercnt) 1086 if (timercnt)
676 { 1087 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
678 if (block > to) block = to; 1089 if (block > to) block = to;
679 } 1090 }
680 1091
681 if (periodiccnt) 1092 if (periodiccnt)
682 { 1093 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
684 if (block > to) block = to; 1095 if (block > to) block = to;
685 } 1096 }
686 1097
687 if (block < 0.) block = 0.; 1098 if (block < 0.) block = 0.;
688 } 1099 }
689 1100
690 method_poll (block); 1101 method_poll (EV_A_ block);
691 1102
692 /* update ev_now, do magic */ 1103 /* update rt_now, do magic */
693 time_update (); 1104 time_update (EV_A);
694 1105
695 /* queue pending timers and reschedule them */ 1106 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */ 1107 timers_reify (EV_A); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */ 1108 periodics_reify (EV_A); /* absolute timers called first */
698 1109
699 /* queue idle watchers unless io or timers are pending */ 1110 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt) 1111 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE); 1112 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
702 1113
703 /* queue check watchers, to be executed first */ 1114 /* queue check watchers, to be executed first */
704 if (checkcnt) 1115 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK); 1116 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
706 1117
707 call_pending (); 1118 call_pending (EV_A);
708 } 1119 }
709 while (!ev_loop_done); 1120 while (activecnt && !loop_done);
710 1121
711 if (ev_loop_done != 2) 1122 if (loop_done != 2)
712 ev_loop_done = 0; 1123 loop_done = 0;
1124}
1125
1126void
1127ev_unloop (EV_P_ int how)
1128{
1129 loop_done = how;
713} 1130}
714 1131
715/*****************************************************************************/ 1132/*****************************************************************************/
716 1133
717static void 1134inline void
718wlist_add (WL *head, WL elem) 1135wlist_add (WL *head, WL elem)
719{ 1136{
720 elem->next = *head; 1137 elem->next = *head;
721 *head = elem; 1138 *head = elem;
722} 1139}
723 1140
724static void 1141inline void
725wlist_del (WL *head, WL elem) 1142wlist_del (WL *head, WL elem)
726{ 1143{
727 while (*head) 1144 while (*head)
728 { 1145 {
729 if (*head == elem) 1146 if (*head == elem)
734 1151
735 head = &(*head)->next; 1152 head = &(*head)->next;
736 } 1153 }
737} 1154}
738 1155
739static void 1156inline void
740ev_clear_pending (W w) 1157ev_clear_pending (EV_P_ W w)
741{ 1158{
742 if (w->pending) 1159 if (w->pending)
743 { 1160 {
744 pendings [w->pending - 1].w = 0; 1161 pendings [ABSPRI (w)][w->pending - 1].w = 0;
745 w->pending = 0; 1162 w->pending = 0;
746 } 1163 }
747} 1164}
748 1165
749static void 1166inline void
750ev_start (W w, int active) 1167ev_start (EV_P_ W w, int active)
751{ 1168{
1169 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1170 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1171
752 w->active = active; 1172 w->active = active;
1173 ev_ref (EV_A);
753} 1174}
754 1175
755static void 1176inline void
756ev_stop (W w) 1177ev_stop (EV_P_ W w)
757{ 1178{
1179 ev_unref (EV_A);
758 w->active = 0; 1180 w->active = 0;
759} 1181}
760 1182
761/*****************************************************************************/ 1183/*****************************************************************************/
762 1184
763void 1185void
764ev_io_start (struct ev_io *w) 1186ev_io_start (EV_P_ struct ev_io *w)
765{ 1187{
1188 int fd = w->fd;
1189
766 if (ev_is_active (w)) 1190 if (ev_is_active (w))
767 return; 1191 return;
768 1192
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0)); 1193 assert (("ev_io_start called with negative fd", fd >= 0));
772 1194
773 ev_start ((W)w, 1); 1195 ev_start (EV_A_ (W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1196 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1197 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776 1198
777 fd_change (fd); 1199 fd_change (EV_A_ fd);
778} 1200}
779 1201
780void 1202void
781ev_io_stop (struct ev_io *w) 1203ev_io_stop (EV_P_ struct ev_io *w)
782{ 1204{
783 ev_clear_pending ((W)w); 1205 ev_clear_pending (EV_A_ (W)w);
784 if (!ev_is_active (w)) 1206 if (!ev_is_active (w))
785 return; 1207 return;
786 1208
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1209 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w); 1210 ev_stop (EV_A_ (W)w);
789 1211
790 fd_change (w->fd); 1212 fd_change (EV_A_ w->fd);
791} 1213}
792 1214
793void 1215void
794ev_timer_start (struct ev_timer *w) 1216ev_timer_start (EV_P_ struct ev_timer *w)
795{ 1217{
796 if (ev_is_active (w)) 1218 if (ev_is_active (w))
797 return; 1219 return;
798 1220
799 w->at += now; 1221 ((WT)w)->at += mn_now;
800 1222
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802 1224
803 ev_start ((W)w, ++timercnt); 1225 ev_start (EV_A_ (W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, ); 1226 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w; 1227 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1); 1228 upheap ((WT *)timers, timercnt - 1);
807}
808 1229
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1231}
1232
809void 1233void
810ev_timer_stop (struct ev_timer *w) 1234ev_timer_stop (EV_P_ struct ev_timer *w)
811{ 1235{
812 ev_clear_pending ((W)w); 1236 ev_clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 1237 if (!ev_is_active (w))
814 return; 1238 return;
815 1239
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241
816 if (w->active < timercnt--) 1242 if (((W)w)->active < timercnt--)
817 { 1243 {
818 timers [w->active - 1] = timers [timercnt]; 1244 timers [((W)w)->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
820 } 1246 }
821 1247
822 w->at = w->repeat; 1248 ((WT)w)->at = w->repeat;
823 1249
824 ev_stop ((W)w); 1250 ev_stop (EV_A_ (W)w);
825} 1251}
826 1252
827void 1253void
828ev_timer_again (struct ev_timer *w) 1254ev_timer_again (EV_P_ struct ev_timer *w)
829{ 1255{
830 if (ev_is_active (w)) 1256 if (ev_is_active (w))
831 { 1257 {
832 if (w->repeat) 1258 if (w->repeat)
833 { 1259 {
834 w->at = now + w->repeat; 1260 ((WT)w)->at = mn_now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1); 1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
836 } 1262 }
837 else 1263 else
838 ev_timer_stop (w); 1264 ev_timer_stop (EV_A_ w);
839 } 1265 }
840 else if (w->repeat) 1266 else if (w->repeat)
841 ev_timer_start (w); 1267 ev_timer_start (EV_A_ w);
842} 1268}
843 1269
844void 1270void
845ev_periodic_start (struct ev_periodic *w) 1271ev_periodic_start (EV_P_ struct ev_periodic *w)
846{ 1272{
847 if (ev_is_active (w)) 1273 if (ev_is_active (w))
848 return; 1274 return;
849 1275
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851 1277
852 /* this formula differs from the one in periodic_reify because we do not always round up */ 1278 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval) 1279 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
855 1281
856 ev_start ((W)w, ++periodiccnt); 1282 ev_start (EV_A_ (W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, ); 1283 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w; 1284 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1); 1285 upheap ((WT *)periodics, periodiccnt - 1);
860}
861 1286
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1288}
1289
862void 1290void
863ev_periodic_stop (struct ev_periodic *w) 1291ev_periodic_stop (EV_P_ struct ev_periodic *w)
864{ 1292{
865 ev_clear_pending ((W)w); 1293 ev_clear_pending (EV_A_ (W)w);
866 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
867 return; 1295 return;
868 1296
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298
869 if (w->active < periodiccnt--) 1299 if (((W)w)->active < periodiccnt--)
870 { 1300 {
871 periodics [w->active - 1] = periodics [periodiccnt]; 1301 periodics [((W)w)->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
873 } 1303 }
874 1304
875 ev_stop ((W)w); 1305 ev_stop (EV_A_ (W)w);
876} 1306}
877 1307
878void 1308void
879ev_signal_start (struct ev_signal *w) 1309ev_idle_start (EV_P_ struct ev_idle *w)
880{ 1310{
881 if (ev_is_active (w)) 1311 if (ev_is_active (w))
882 return; 1312 return;
883 1313
1314 ev_start (EV_A_ (W)w, ++idlecnt);
1315 array_needsize (idles, idlemax, idlecnt, );
1316 idles [idlecnt - 1] = w;
1317}
1318
1319void
1320ev_idle_stop (EV_P_ struct ev_idle *w)
1321{
1322 ev_clear_pending (EV_A_ (W)w);
1323 if (ev_is_active (w))
1324 return;
1325
1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1327 ev_stop (EV_A_ (W)w);
1328}
1329
1330void
1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1332{
1333 if (ev_is_active (w))
1334 return;
1335
1336 ev_start (EV_A_ (W)w, ++preparecnt);
1337 array_needsize (prepares, preparemax, preparecnt, );
1338 prepares [preparecnt - 1] = w;
1339}
1340
1341void
1342ev_prepare_stop (EV_P_ struct ev_prepare *w)
1343{
1344 ev_clear_pending (EV_A_ (W)w);
1345 if (ev_is_active (w))
1346 return;
1347
1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1349 ev_stop (EV_A_ (W)w);
1350}
1351
1352void
1353ev_check_start (EV_P_ struct ev_check *w)
1354{
1355 if (ev_is_active (w))
1356 return;
1357
1358 ev_start (EV_A_ (W)w, ++checkcnt);
1359 array_needsize (checks, checkmax, checkcnt, );
1360 checks [checkcnt - 1] = w;
1361}
1362
1363void
1364ev_check_stop (EV_P_ struct ev_check *w)
1365{
1366 ev_clear_pending (EV_A_ (W)w);
1367 if (ev_is_active (w))
1368 return;
1369
1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1371 ev_stop (EV_A_ (W)w);
1372}
1373
1374#ifndef SA_RESTART
1375# define SA_RESTART 0
1376#endif
1377
1378void
1379ev_signal_start (EV_P_ struct ev_signal *w)
1380{
1381#if EV_MULTIPLICITY
1382 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1383#endif
1384 if (ev_is_active (w))
1385 return;
1386
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1387 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885 1388
886 ev_start ((W)w, 1); 1389 ev_start (EV_A_ (W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init); 1390 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889 1392
890 if (!w->next) 1393 if (!((WL)w)->next)
891 { 1394 {
1395#if WIN32
1396 signal (w->signum, sighandler);
1397#else
892 struct sigaction sa; 1398 struct sigaction sa;
893 sa.sa_handler = sighandler; 1399 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask); 1400 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0; 1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
896 sigaction (w->signum, &sa, 0); 1402 sigaction (w->signum, &sa, 0);
1403#endif
897 } 1404 }
898} 1405}
899 1406
900void 1407void
901ev_signal_stop (struct ev_signal *w) 1408ev_signal_stop (EV_P_ struct ev_signal *w)
902{ 1409{
903 ev_clear_pending ((W)w); 1410 ev_clear_pending (EV_A_ (W)w);
904 if (!ev_is_active (w)) 1411 if (!ev_is_active (w))
905 return; 1412 return;
906 1413
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1414 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w); 1415 ev_stop (EV_A_ (W)w);
909 1416
910 if (!signals [w->signum - 1].head) 1417 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL); 1418 signal (w->signum, SIG_DFL);
912} 1419}
913 1420
914void 1421void
915ev_idle_start (struct ev_idle *w) 1422ev_child_start (EV_P_ struct ev_child *w)
916{ 1423{
1424#if EV_MULTIPLICITY
1425 assert (("child watchers are only supported in the default loop", loop == default_loop));
1426#endif
917 if (ev_is_active (w)) 1427 if (ev_is_active (w))
918 return; 1428 return;
919 1429
920 ev_start ((W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, 1);
921 array_needsize (idles, idlemax, idlecnt, ); 1431 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
922 idles [idlecnt - 1] = w;
923} 1432}
924 1433
925void 1434void
926ev_idle_stop (struct ev_idle *w) 1435ev_child_stop (EV_P_ struct ev_child *w)
927{ 1436{
928 ev_clear_pending ((W)w); 1437 ev_clear_pending (EV_A_ (W)w);
929 if (ev_is_active (w)) 1438 if (ev_is_active (w))
930 return; 1439 return;
931 1440
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1441 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w); 1442 ev_stop (EV_A_ (W)w);
999} 1443}
1000 1444
1001/*****************************************************************************/ 1445/*****************************************************************************/
1002 1446
1003struct ev_once 1447struct ev_once
1007 void (*cb)(int revents, void *arg); 1451 void (*cb)(int revents, void *arg);
1008 void *arg; 1452 void *arg;
1009}; 1453};
1010 1454
1011static void 1455static void
1012once_cb (struct ev_once *once, int revents) 1456once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 1457{
1014 void (*cb)(int revents, void *arg) = once->cb; 1458 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 1459 void *arg = once->arg;
1016 1460
1017 ev_io_stop (&once->io); 1461 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 1462 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 1463 ev_free (once);
1020 1464
1021 cb (revents, arg); 1465 cb (revents, arg);
1022} 1466}
1023 1467
1024static void 1468static void
1025once_cb_io (struct ev_io *w, int revents) 1469once_cb_io (EV_P_ struct ev_io *w, int revents)
1026{ 1470{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1471 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1028} 1472}
1029 1473
1030static void 1474static void
1031once_cb_to (struct ev_timer *w, int revents) 1475once_cb_to (EV_P_ struct ev_timer *w, int revents)
1032{ 1476{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1477 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1034} 1478}
1035 1479
1036void 1480void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 1482{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1040 1484
1041 if (!once) 1485 if (!once)
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1043 else 1487 else
1044 { 1488 {
1047 1491
1048 ev_watcher_init (&once->io, once_cb_io); 1492 ev_watcher_init (&once->io, once_cb_io);
1049 if (fd >= 0) 1493 if (fd >= 0)
1050 { 1494 {
1051 ev_io_set (&once->io, fd, events); 1495 ev_io_set (&once->io, fd, events);
1052 ev_io_start (&once->io); 1496 ev_io_start (EV_A_ &once->io);
1053 } 1497 }
1054 1498
1055 ev_watcher_init (&once->to, once_cb_to); 1499 ev_watcher_init (&once->to, once_cb_to);
1056 if (timeout >= 0.) 1500 if (timeout >= 0.)
1057 { 1501 {
1058 ev_timer_set (&once->to, timeout, 0.); 1502 ev_timer_set (&once->to, timeout, 0.);
1059 ev_timer_start (&once->to); 1503 ev_timer_start (EV_A_ &once->to);
1060 } 1504 }
1061 } 1505 }
1062} 1506}
1063 1507
1064/*****************************************************************************/
1065
1066#if 0
1067
1068struct ev_io wio;
1069
1070static void
1071sin_cb (struct ev_io *w, int revents)
1072{
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1074}
1075
1076static void
1077ocb (struct ev_timer *w, int revents)
1078{
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1080 ev_timer_stop (w);
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 {
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif
1120
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140}
1141
1142#endif
1143
1144
1145
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines