ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.234 by root, Tue May 6 23:42:16 2008 UTC vs.
Revision 1.341 by root, Tue Mar 16 20:48:29 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
65# endif 79# endif
66# endif 80# endif
67 81
68# ifndef EV_USE_NANOSLEEP 82# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP 83# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
71# else 85# else
72# define EV_USE_NANOSLEEP 0 86# define EV_USE_NANOSLEEP 0
73# endif 87# endif
74# endif 88# endif
75 89
76# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1 92# define EV_USE_SELECT EV_FEATURE_BACKENDS
79# else 93# else
80# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
81# endif 95# endif
82# endif 96# endif
83 97
84# ifndef EV_USE_POLL 98# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1 100# define EV_USE_POLL EV_FEATURE_BACKENDS
87# else 101# else
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif 103# endif
90# endif 104# endif
91 105
92# ifndef EV_USE_EPOLL 106# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# else 109# else
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
107 121
108# ifndef EV_USE_PORT 122# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# define EV_USE_PORT EV_FEATURE_BACKENDS
111# else 125# else
112# define EV_USE_PORT 0 126# define EV_USE_PORT 0
113# endif 127# endif
114# endif 128# endif
115 129
116# ifndef EV_USE_INOTIFY 130# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 132# define EV_USE_INOTIFY EV_FEATURE_OS
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD EV_FEATURE_OS
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD EV_FEATURE_OS
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
168#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
169# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
170#endif 236#endif
171 237
172#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 240#endif
175 241
176#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
177# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
178#endif 248#endif
179 249
180#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 252#endif
183 253
184#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
185# ifdef _WIN32 255# ifdef _WIN32
186# define EV_USE_POLL 0 256# define EV_USE_POLL 0
187# else 257# else
188# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 259# endif
190#endif 260#endif
191 261
192#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 265# else
196# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
197# endif 267# endif
198#endif 268#endif
199 269
205# define EV_USE_PORT 0 275# define EV_USE_PORT 0
206#endif 276#endif
207 277
208#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 280# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 281# else
212# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
213# endif 283# endif
214#endif 284#endif
215 285
216#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 288#endif
223 289
224#ifndef EV_INOTIFY_HASHSIZE 290#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 292#endif
231 293
232#ifndef EV_USE_EVENTFD 294#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 296# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 297# else
236# define EV_USE_EVENTFD 0 298# define EV_USE_EVENTFD 0
237# endif 299# endif
238#endif 300#endif
239 301
302#ifndef EV_USE_SIGNALFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_SIGNALFD EV_FEATURE_OS
305# else
306# define EV_USE_SIGNALFD 0
307# endif
308#endif
309
310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
241 349
242#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
245#endif 353#endif
259# include <sys/select.h> 367# include <sys/select.h>
260# endif 368# endif
261#endif 369#endif
262 370
263#if EV_USE_INOTIFY 371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
264# include <sys/inotify.h> 374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
265#endif 380#endif
266 381
267#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 383# include <winsock.h>
269#endif 384#endif
270 385
271#if EV_USE_EVENTFD 386#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
391# endif
392# ifndef EFD_CLOEXEC
393# ifdef O_CLOEXEC
394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
398# endif
274# ifdef __cplusplus 399# ifdef __cplusplus
275extern "C" { 400extern "C" {
276# endif 401# endif
277int eventfd (unsigned int initval, int flags); 402int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 403# ifdef __cplusplus
279} 404}
280# endif 405# endif
281#endif 406#endif
282 407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
436
283/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
284 444
285/* 445/*
286 * This is used to avoid floating point rounding problems. 446 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 447 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 448 * to ensure progress, time-wise, even when rounding
292 */ 452 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 454
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 457
299#if __GNUC__ >= 4 458#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
302#else 461#else
309 468
310#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 471#define inline_size static inline
313 472
314#if EV_MINIMAL 473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
315# define inline_speed static noinline 476# define inline_speed static noinline
477#endif
478
479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
316#else 483#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
322 486
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
325 489
326typedef ev_watcher *W; 490typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
329 493
330#define ev_active(w) ((W)(w))->active 494#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 495#define ev_at(w) ((WT)(w))->at
332 496
333#if EV_USE_MONOTONIC 497#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 515#endif
338 516
339#ifdef _WIN32 517#ifdef _WIN32
340# include "ev_win32.c" 518# include "ev_win32.c"
341#endif 519#endif
342 520
343/*****************************************************************************/ 521/*****************************************************************************/
344 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
345static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
346 532
347void 533void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 535{
350 syserr_cb = cb; 536 syserr_cb = cb;
351} 537}
352 538
353static void noinline 539static void noinline
354syserr (const char *msg) 540ev_syserr (const char *msg)
355{ 541{
356 if (!msg) 542 if (!msg)
357 msg = "(libev) system error"; 543 msg = "(libev) system error";
358 544
359 if (syserr_cb) 545 if (syserr_cb)
360 syserr_cb (msg); 546 syserr_cb (msg);
361 else 547 else
362 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
363 perror (msg); 557 perror (msg);
558#endif
364 abort (); 559 abort ();
365 } 560 }
366} 561}
367 562
368static void * 563static void *
369ev_realloc_emul (void *ptr, long size) 564ev_realloc_emul (void *ptr, long size)
370{ 565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
371 /* some systems, notably openbsd and darwin, fail to properly 569 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 570 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 571 * the single unix specification, so work around them here.
374 */ 572 */
375 573
376 if (size) 574 if (size)
377 return realloc (ptr, size); 575 return realloc (ptr, size);
378 576
379 free (ptr); 577 free (ptr);
380 return 0; 578 return 0;
579#endif
381} 580}
382 581
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 583
385void 584void
393{ 592{
394 ptr = alloc (ptr, size); 593 ptr = alloc (ptr, size);
395 594
396 if (!ptr && size) 595 if (!ptr && size)
397 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
399 abort (); 602 abort ();
400 } 603 }
401 604
402 return ptr; 605 return ptr;
403} 606}
405#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
407 610
408/*****************************************************************************/ 611/*****************************************************************************/
409 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
410typedef struct 617typedef struct
411{ 618{
412 WL head; 619 WL head;
413 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
415#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 628 SOCKET handle;
417#endif 629#endif
418} ANFD; 630} ANFD;
419 631
632/* stores the pending event set for a given watcher */
420typedef struct 633typedef struct
421{ 634{
422 W w; 635 W w;
423 int events; 636 int events; /* the pending event set for the given watcher */
424} ANPENDING; 637} ANPENDING;
425 638
426#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
427typedef struct 641typedef struct
428{ 642{
429 WL head; 643 WL head;
430} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
431#endif 665#endif
432 666
433#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
434 668
435 struct ev_loop 669 struct ev_loop
454 688
455 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
456 690
457#endif 691#endif
458 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
459/*****************************************************************************/ 705/*****************************************************************************/
460 706
707#ifndef EV_HAVE_EV_TIME
461ev_tstamp 708ev_tstamp
462ev_time (void) 709ev_time (void)
463{ 710{
464#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
465 struct timespec ts; 714 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 717 }
718#endif
719
469 struct timeval tv; 720 struct timeval tv;
470 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 723}
724#endif
474 725
475ev_tstamp inline_size 726inline_size ev_tstamp
476get_clock (void) 727get_clock (void)
477{ 728{
478#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
480 { 731 {
513 struct timeval tv; 764 struct timeval tv;
514 765
515 tv.tv_sec = (time_t)delay; 766 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
518 select (0, 0, 0, 0, &tv); 772 select (0, 0, 0, 0, &tv);
519#endif 773#endif
520 } 774 }
521} 775}
522 776
523/*****************************************************************************/ 777/*****************************************************************************/
524 778
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 780
527int inline_size 781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
528array_nextsize (int elem, int cur, int cnt) 784array_nextsize (int elem, int cur, int cnt)
529{ 785{
530 int ncur = cur + 1; 786 int ncur = cur + 1;
531 787
532 do 788 do
549array_realloc (int elem, void *base, int *cur, int cnt) 805array_realloc (int elem, void *base, int *cur, int cnt)
550{ 806{
551 *cur = array_nextsize (elem, *cur, cnt); 807 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 808 return ev_realloc (base, elem * *cur);
553} 809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 813
555#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 815 if (expect_false ((cnt) > (cur))) \
557 { \ 816 { \
558 int ocur_ = (cur); \ 817 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 830 }
572#endif 831#endif
573 832
574#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 835
577/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
578 843
579void noinline 844void noinline
580ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
581{ 846{
582 W w_ = (W)w; 847 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 856 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 857 pendings [pri][w_->pending - 1].events = revents;
593 } 858 }
594} 859}
595 860
596void inline_speed 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 878{
599 int i; 879 int i;
600 880
601 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
603} 883}
604 884
605/*****************************************************************************/ 885/*****************************************************************************/
606 886
607void inline_size 887inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
622{ 889{
623 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
624 ev_io *w; 891 ev_io *w;
625 892
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 897 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
632 } 899 }
633} 900}
634 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
635void 913void
636ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 915{
638 if (fd >= 0 && fd < anfdmax) 916 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
640} 918}
641 919
642void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
643fd_reify (EV_P) 923fd_reify (EV_P)
644{ 924{
645 int i; 925 int i;
646 926
647 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 936 events |= (unsigned char)w->events;
657 937
658#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
659 if (events) 939 if (events)
660 { 940 {
661 unsigned long argp; 941 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 944 }
669#endif 945#endif
670 946
671 { 947 {
672 unsigned char o_events = anfd->events; 948 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 949 unsigned char o_reify = anfd->reify;
674 950
675 anfd->reify = 0; 951 anfd->reify = 0;
676 anfd->events = events; 952 anfd->events = events;
677 953
678 if (o_events != events || o_reify & EV_IOFDSET) 954 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 955 backend_modify (EV_A_ fd, o_events, events);
680 } 956 }
681 } 957 }
682 958
683 fdchangecnt = 0; 959 fdchangecnt = 0;
684} 960}
685 961
686void inline_size 962/* something about the given fd changed */
963inline_size void
687fd_change (EV_P_ int fd, int flags) 964fd_change (EV_P_ int fd, int flags)
688{ 965{
689 unsigned char reify = anfds [fd].reify; 966 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 967 anfds [fd].reify |= flags;
691 968
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
697 } 974 }
698} 975}
699 976
700void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
701fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
702{ 980{
703 ev_io *w; 981 ev_io *w;
704 982
705 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 987 }
710} 988}
711 989
712int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
713fd_valid (int fd) 992fd_valid (int fd)
714{ 993{
715#ifdef _WIN32 994#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 996#else
718 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
719#endif 998#endif
720} 999}
721 1000
725{ 1004{
726 int fd; 1005 int fd;
727 1006
728 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1008 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
732} 1011}
733 1012
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1014static void noinline
739 1018
740 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1020 if (anfds [fd].events)
742 { 1021 {
743 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
744 return; 1023 break;
745 } 1024 }
746} 1025}
747 1026
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1028static void noinline
753 1032
754 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1034 if (anfds [fd].events)
756 { 1035 {
757 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
1037 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1039 }
760} 1040}
761 1041
762/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
763 1043/* this is not fork-safe */
764/* towards the root */ 1044inline_speed void
765void inline_speed
766upheap (WT *heap, int k)
767{
768 WT w = heap [k];
769
770 for (;;)
771 {
772 int p = k >> 1;
773
774 /* maybe we could use a dummy element at heap [0]? */
775 if (!p || heap [p]->at <= w->at)
776 break;
777
778 heap [k] = heap [p];
779 ev_active (heap [k]) = k;
780 k = p;
781 }
782
783 heap [k] = w;
784 ev_active (heap [k]) = k;
785}
786
787/* away from the root */
788void inline_speed
789downheap (WT *heap, int N, int k)
790{
791 WT w = heap [k];
792
793 for (;;)
794 {
795 int c = k << 1;
796
797 if (c > N)
798 break;
799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
806 heap [k] = heap [c];
807 ev_active (heap [k]) = k;
808
809 k = c;
810 }
811
812 heap [k] = w;
813 ev_active (heap [k]) = k;
814}
815
816void inline_size
817adjustheap (WT *heap, int N, int k)
818{
819 upheap (heap, k);
820 downheap (heap, N, k);
821}
822
823/*****************************************************************************/
824
825typedef struct
826{
827 WL head;
828 EV_ATOMIC_T gotsig;
829} ANSIG;
830
831static ANSIG *signals;
832static int signalmax;
833
834static EV_ATOMIC_T gotsig;
835
836void inline_size
837signals_init (ANSIG *base, int count)
838{
839 while (count--)
840 {
841 base->head = 0;
842 base->gotsig = 0;
843
844 ++base;
845 }
846}
847
848/*****************************************************************************/
849
850void inline_speed
851fd_intern (int fd) 1045fd_intern (int fd)
852{ 1046{
853#ifdef _WIN32 1047#ifdef _WIN32
854 int arg = 1; 1048 unsigned long arg = 1;
855 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
856#else 1050#else
857 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
858 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
859#endif 1053#endif
860} 1054}
861 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
862static void noinline 1219static void noinline
863evpipe_init (EV_P) 1220evpipe_init (EV_P)
864{ 1221{
865 if (!ev_is_active (&pipeev)) 1222 if (!ev_is_active (&pipe_w))
866 { 1223 {
867#if EV_USE_EVENTFD 1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
868 if ((evfd = eventfd (0, 0)) >= 0) 1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
869 { 1230 {
870 evpipe [0] = -1; 1231 evpipe [0] = -1;
871 fd_intern (evfd); 1232 fd_intern (evfd); /* doing it twice doesn't hurt */
872 ev_io_set (&pipeev, evfd, EV_READ); 1233 ev_io_set (&pipe_w, evfd, EV_READ);
873 } 1234 }
874 else 1235 else
875#endif 1236# endif
876 { 1237 {
877 while (pipe (evpipe)) 1238 while (pipe (evpipe))
878 syserr ("(libev) error creating signal/async pipe"); 1239 ev_syserr ("(libev) error creating signal/async pipe");
879 1240
880 fd_intern (evpipe [0]); 1241 fd_intern (evpipe [0]);
881 fd_intern (evpipe [1]); 1242 fd_intern (evpipe [1]);
882 ev_io_set (&pipeev, evpipe [0], EV_READ); 1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
883 } 1244 }
884 1245
885 ev_io_start (EV_A_ &pipeev); 1246 ev_io_start (EV_A_ &pipe_w);
886 ev_unref (EV_A); /* watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
887 } 1248 }
888} 1249}
889 1250
890void inline_size 1251inline_size void
891evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
892{ 1253{
893 if (!*flag) 1254 if (!*flag)
894 { 1255 {
895 int old_errno = errno; /* save errno because write might clobber it */ 1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
896 1258
897 *flag = 1; 1259 *flag = 1;
898 1260
899#if EV_USE_EVENTFD 1261#if EV_USE_EVENTFD
900 if (evfd >= 0) 1262 if (evfd >= 0)
902 uint64_t counter = 1; 1264 uint64_t counter = 1;
903 write (evfd, &counter, sizeof (uint64_t)); 1265 write (evfd, &counter, sizeof (uint64_t));
904 } 1266 }
905 else 1267 else
906#endif 1268#endif
907 write (evpipe [1], &old_errno, 1); 1269 write (evpipe [1], &dummy, 1);
908 1270
909 errno = old_errno; 1271 errno = old_errno;
910 } 1272 }
911} 1273}
912 1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
913static void 1277static void
914pipecb (EV_P_ ev_io *iow, int revents) 1278pipecb (EV_P_ ev_io *iow, int revents)
915{ 1279{
1280 int i;
1281
916#if EV_USE_EVENTFD 1282#if EV_USE_EVENTFD
917 if (evfd >= 0) 1283 if (evfd >= 0)
918 { 1284 {
919 uint64_t counter; 1285 uint64_t counter;
920 read (evfd, &counter, sizeof (uint64_t)); 1286 read (evfd, &counter, sizeof (uint64_t));
924 { 1290 {
925 char dummy; 1291 char dummy;
926 read (evpipe [0], &dummy, 1); 1292 read (evpipe [0], &dummy, 1);
927 } 1293 }
928 1294
929 if (gotsig && ev_is_default_loop (EV_A)) 1295 if (sig_pending)
930 { 1296 {
931 int signum; 1297 sig_pending = 0;
932 gotsig = 0;
933 1298
934 for (signum = signalmax; signum--; ) 1299 for (i = EV_NSIG - 1; i--; )
935 if (signals [signum].gotsig) 1300 if (expect_false (signals [i].pending))
936 ev_feed_signal_event (EV_A_ signum + 1); 1301 ev_feed_signal_event (EV_A_ i + 1);
937 } 1302 }
938 1303
939#if EV_ASYNC_ENABLE 1304#if EV_ASYNC_ENABLE
940 if (gotasync) 1305 if (async_pending)
941 { 1306 {
942 int i; 1307 async_pending = 0;
943 gotasync = 0;
944 1308
945 for (i = asynccnt; i--; ) 1309 for (i = asynccnt; i--; )
946 if (asyncs [i]->sent) 1310 if (asyncs [i]->sent)
947 { 1311 {
948 asyncs [i]->sent = 0; 1312 asyncs [i]->sent = 0;
956 1320
957static void 1321static void
958ev_sighandler (int signum) 1322ev_sighandler (int signum)
959{ 1323{
960#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
961 struct ev_loop *loop = &default_loop_struct; 1325 EV_P = signals [signum - 1].loop;
962#endif 1326#endif
963 1327
964#if _WIN32 1328#ifdef _WIN32
965 signal (signum, ev_sighandler); 1329 signal (signum, ev_sighandler);
966#endif 1330#endif
967 1331
968 signals [signum - 1].gotsig = 1; 1332 signals [signum - 1].pending = 1;
969 evpipe_write (EV_A_ &gotsig); 1333 evpipe_write (EV_A_ &sig_pending);
970} 1334}
971 1335
972void noinline 1336void noinline
973ev_feed_signal_event (EV_P_ int signum) 1337ev_feed_signal_event (EV_P_ int signum)
974{ 1338{
975 WL w; 1339 WL w;
976 1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
977#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
978 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1347 /* it is permissible to try to feed a signal to the wrong loop */
979#endif 1348 /* or, likely more useful, feeding a signal nobody is waiting for */
980 1349
981 --signum; 1350 if (expect_false (signals [signum].loop != EV_A))
982
983 if (signum < 0 || signum >= signalmax)
984 return; 1351 return;
1352#endif
985 1353
986 signals [signum].gotsig = 0; 1354 signals [signum].pending = 0;
987 1355
988 for (w = signals [signum].head; w; w = w->next) 1356 for (w = signals [signum].head; w; w = w->next)
989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
990} 1358}
991 1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
992/*****************************************************************************/ 1382/*****************************************************************************/
993 1383
1384#if EV_CHILD_ENABLE
994static WL childs [EV_PID_HASHSIZE]; 1385static WL childs [EV_PID_HASHSIZE];
995
996#ifndef _WIN32
997 1386
998static ev_signal childev; 1387static ev_signal childev;
999 1388
1000#ifndef WIFCONTINUED 1389#ifndef WIFCONTINUED
1001# define WIFCONTINUED(status) 0 1390# define WIFCONTINUED(status) 0
1002#endif 1391#endif
1003 1392
1004void inline_speed 1393/* handle a single child status event */
1394inline_speed void
1005child_reap (EV_P_ int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
1006{ 1396{
1007 ev_child *w; 1397 ev_child *w;
1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1009 1399
1010 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1011 { 1401 {
1012 if ((w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1013 && (!traced || (w->flags & 1))) 1403 && (!traced || (w->flags & 1)))
1014 { 1404 {
1015 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1022 1412
1023#ifndef WCONTINUED 1413#ifndef WCONTINUED
1024# define WCONTINUED 0 1414# define WCONTINUED 0
1025#endif 1415#endif
1026 1416
1417/* called on sigchld etc., calls waitpid */
1027static void 1418static void
1028childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
1029{ 1420{
1030 int pid, status; 1421 int pid, status;
1031 1422
1039 /* make sure we are called again until all children have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
1040 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
1041 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1042 1433
1043 child_reap (EV_A_ pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
1044 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
1045 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1046} 1437}
1047 1438
1048#endif 1439#endif
1049 1440
1112 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
1113 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
1114 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
1115#endif 1506#endif
1116#ifdef __APPLE__ 1507#ifdef __APPLE__
1117 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
1118 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1119#endif 1511#endif
1120 1512
1121 return flags; 1513 return flags;
1122} 1514}
1123 1515
1137ev_backend (EV_P) 1529ev_backend (EV_P)
1138{ 1530{
1139 return backend; 1531 return backend;
1140} 1532}
1141 1533
1534#if EV_FEATURE_API
1142unsigned int 1535unsigned int
1143ev_loop_count (EV_P) 1536ev_iteration (EV_P)
1144{ 1537{
1145 return loop_count; 1538 return loop_count;
1146} 1539}
1147 1540
1541unsigned int
1542ev_depth (EV_P)
1543{
1544 return loop_depth;
1545}
1546
1148void 1547void
1149ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1548ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1150{ 1549{
1151 io_blocktime = interval; 1550 io_blocktime = interval;
1152} 1551}
1155ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1554ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1156{ 1555{
1157 timeout_blocktime = interval; 1556 timeout_blocktime = interval;
1158} 1557}
1159 1558
1559void
1560ev_set_userdata (EV_P_ void *data)
1561{
1562 userdata = data;
1563}
1564
1565void *
1566ev_userdata (EV_P)
1567{
1568 return userdata;
1569}
1570
1571void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1572{
1573 invoke_cb = invoke_pending_cb;
1574}
1575
1576void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1577{
1578 release_cb = release;
1579 acquire_cb = acquire;
1580}
1581#endif
1582
1583/* initialise a loop structure, must be zero-initialised */
1160static void noinline 1584static void noinline
1161loop_init (EV_P_ unsigned int flags) 1585loop_init (EV_P_ unsigned int flags)
1162{ 1586{
1163 if (!backend) 1587 if (!backend)
1164 { 1588 {
1589#if EV_USE_REALTIME
1590 if (!have_realtime)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_REALTIME, &ts))
1595 have_realtime = 1;
1596 }
1597#endif
1598
1165#if EV_USE_MONOTONIC 1599#if EV_USE_MONOTONIC
1600 if (!have_monotonic)
1166 { 1601 {
1167 struct timespec ts; 1602 struct timespec ts;
1603
1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1169 have_monotonic = 1; 1605 have_monotonic = 1;
1170 } 1606 }
1171#endif 1607#endif
1608
1609 /* pid check not overridable via env */
1610#ifndef _WIN32
1611 if (flags & EVFLAG_FORKCHECK)
1612 curpid = getpid ();
1613#endif
1614
1615 if (!(flags & EVFLAG_NOENV)
1616 && !enable_secure ()
1617 && getenv ("LIBEV_FLAGS"))
1618 flags = atoi (getenv ("LIBEV_FLAGS"));
1172 1619
1173 ev_rt_now = ev_time (); 1620 ev_rt_now = ev_time ();
1174 mn_now = get_clock (); 1621 mn_now = get_clock ();
1175 now_floor = mn_now; 1622 now_floor = mn_now;
1176 rtmn_diff = ev_rt_now - mn_now; 1623 rtmn_diff = ev_rt_now - mn_now;
1624#if EV_FEATURE_API
1625 invoke_cb = ev_invoke_pending;
1626#endif
1177 1627
1178 io_blocktime = 0.; 1628 io_blocktime = 0.;
1179 timeout_blocktime = 0.; 1629 timeout_blocktime = 0.;
1180 backend = 0; 1630 backend = 0;
1181 backend_fd = -1; 1631 backend_fd = -1;
1182 gotasync = 0; 1632 sig_pending = 0;
1633#if EV_ASYNC_ENABLE
1634 async_pending = 0;
1635#endif
1183#if EV_USE_INOTIFY 1636#if EV_USE_INOTIFY
1184 fs_fd = -2; 1637 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1185#endif 1638#endif
1186 1639#if EV_USE_SIGNALFD
1187 /* pid check not overridable via env */ 1640 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1188#ifndef _WIN32
1189 if (flags & EVFLAG_FORKCHECK)
1190 curpid = getpid ();
1191#endif 1641#endif
1192
1193 if (!(flags & EVFLAG_NOENV)
1194 && !enable_secure ()
1195 && getenv ("LIBEV_FLAGS"))
1196 flags = atoi (getenv ("LIBEV_FLAGS"));
1197 1642
1198 if (!(flags & 0x0000ffffU)) 1643 if (!(flags & 0x0000ffffU))
1199 flags |= ev_recommended_backends (); 1644 flags |= ev_recommended_backends ();
1200 1645
1201#if EV_USE_PORT 1646#if EV_USE_PORT
1212#endif 1657#endif
1213#if EV_USE_SELECT 1658#if EV_USE_SELECT
1214 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1215#endif 1660#endif
1216 1661
1662 ev_prepare_init (&pending_w, pendingcb);
1663
1664#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1217 ev_init (&pipeev, pipecb); 1665 ev_init (&pipe_w, pipecb);
1218 ev_set_priority (&pipeev, EV_MAXPRI); 1666 ev_set_priority (&pipe_w, EV_MAXPRI);
1667#endif
1219 } 1668 }
1220} 1669}
1221 1670
1671/* free up a loop structure */
1222static void noinline 1672static void noinline
1223loop_destroy (EV_P) 1673loop_destroy (EV_P)
1224{ 1674{
1225 int i; 1675 int i;
1226 1676
1227 if (ev_is_active (&pipeev)) 1677 if (ev_is_active (&pipe_w))
1228 { 1678 {
1229 ev_ref (EV_A); /* signal watcher */ 1679 /*ev_ref (EV_A);*/
1230 ev_io_stop (EV_A_ &pipeev); 1680 /*ev_io_stop (EV_A_ &pipe_w);*/
1231 1681
1232#if EV_USE_EVENTFD 1682#if EV_USE_EVENTFD
1233 if (evfd >= 0) 1683 if (evfd >= 0)
1234 close (evfd); 1684 close (evfd);
1235#endif 1685#endif
1236 1686
1237 if (evpipe [0] >= 0) 1687 if (evpipe [0] >= 0)
1238 { 1688 {
1239 close (evpipe [0]); 1689 EV_WIN32_CLOSE_FD (evpipe [0]);
1240 close (evpipe [1]); 1690 EV_WIN32_CLOSE_FD (evpipe [1]);
1241 } 1691 }
1242 } 1692 }
1693
1694#if EV_USE_SIGNALFD
1695 if (ev_is_active (&sigfd_w))
1696 close (sigfd);
1697#endif
1243 1698
1244#if EV_USE_INOTIFY 1699#if EV_USE_INOTIFY
1245 if (fs_fd >= 0) 1700 if (fs_fd >= 0)
1246 close (fs_fd); 1701 close (fs_fd);
1247#endif 1702#endif
1271#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1272 array_free (idle, [i]); 1727 array_free (idle, [i]);
1273#endif 1728#endif
1274 } 1729 }
1275 1730
1276 ev_free (anfds); anfdmax = 0; 1731 ev_free (anfds); anfds = 0; anfdmax = 0;
1277 1732
1278 /* have to use the microsoft-never-gets-it-right macro */ 1733 /* have to use the microsoft-never-gets-it-right macro */
1734 array_free (rfeed, EMPTY);
1279 array_free (fdchange, EMPTY); 1735 array_free (fdchange, EMPTY);
1280 array_free (timer, EMPTY); 1736 array_free (timer, EMPTY);
1281#if EV_PERIODIC_ENABLE 1737#if EV_PERIODIC_ENABLE
1282 array_free (periodic, EMPTY); 1738 array_free (periodic, EMPTY);
1283#endif 1739#endif
1292 1748
1293 backend = 0; 1749 backend = 0;
1294} 1750}
1295 1751
1296#if EV_USE_INOTIFY 1752#if EV_USE_INOTIFY
1297void inline_size infy_fork (EV_P); 1753inline_size void infy_fork (EV_P);
1298#endif 1754#endif
1299 1755
1300void inline_size 1756inline_size void
1301loop_fork (EV_P) 1757loop_fork (EV_P)
1302{ 1758{
1303#if EV_USE_PORT 1759#if EV_USE_PORT
1304 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1760 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1305#endif 1761#endif
1311#endif 1767#endif
1312#if EV_USE_INOTIFY 1768#if EV_USE_INOTIFY
1313 infy_fork (EV_A); 1769 infy_fork (EV_A);
1314#endif 1770#endif
1315 1771
1316 if (ev_is_active (&pipeev)) 1772 if (ev_is_active (&pipe_w))
1317 { 1773 {
1318 /* this "locks" the handlers against writing to the pipe */ 1774 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */ 1775 /* while we modify the fd vars */
1320 gotsig = 1; 1776 sig_pending = 1;
1321#if EV_ASYNC_ENABLE 1777#if EV_ASYNC_ENABLE
1322 gotasync = 1; 1778 async_pending = 1;
1323#endif 1779#endif
1324 1780
1325 ev_ref (EV_A); 1781 ev_ref (EV_A);
1326 ev_io_stop (EV_A_ &pipeev); 1782 ev_io_stop (EV_A_ &pipe_w);
1327 1783
1328#if EV_USE_EVENTFD 1784#if EV_USE_EVENTFD
1329 if (evfd >= 0) 1785 if (evfd >= 0)
1330 close (evfd); 1786 close (evfd);
1331#endif 1787#endif
1332 1788
1333 if (evpipe [0] >= 0) 1789 if (evpipe [0] >= 0)
1334 { 1790 {
1335 close (evpipe [0]); 1791 EV_WIN32_CLOSE_FD (evpipe [0]);
1336 close (evpipe [1]); 1792 EV_WIN32_CLOSE_FD (evpipe [1]);
1337 } 1793 }
1338 1794
1795#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1339 evpipe_init (EV_A); 1796 evpipe_init (EV_A);
1340 /* now iterate over everything, in case we missed something */ 1797 /* now iterate over everything, in case we missed something */
1341 pipecb (EV_A_ &pipeev, EV_READ); 1798 pipecb (EV_A_ &pipe_w, EV_READ);
1799#endif
1342 } 1800 }
1343 1801
1344 postfork = 0; 1802 postfork = 0;
1345} 1803}
1346 1804
1347#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1806
1348struct ev_loop * 1807struct ev_loop *
1349ev_loop_new (unsigned int flags) 1808ev_loop_new (unsigned int flags)
1350{ 1809{
1351 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1810 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1352 1811
1353 memset (loop, 0, sizeof (struct ev_loop)); 1812 memset (EV_A, 0, sizeof (struct ev_loop));
1354
1355 loop_init (EV_A_ flags); 1813 loop_init (EV_A_ flags);
1356 1814
1357 if (ev_backend (EV_A)) 1815 if (ev_backend (EV_A))
1358 return loop; 1816 return EV_A;
1359 1817
1360 return 0; 1818 return 0;
1361} 1819}
1362 1820
1363void 1821void
1369 1827
1370void 1828void
1371ev_loop_fork (EV_P) 1829ev_loop_fork (EV_P)
1372{ 1830{
1373 postfork = 1; /* must be in line with ev_default_fork */ 1831 postfork = 1; /* must be in line with ev_default_fork */
1832}
1833#endif /* multiplicity */
1834
1835#if EV_VERIFY
1836static void noinline
1837verify_watcher (EV_P_ W w)
1838{
1839 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1840
1841 if (w->pending)
1842 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1843}
1844
1845static void noinline
1846verify_heap (EV_P_ ANHE *heap, int N)
1847{
1848 int i;
1849
1850 for (i = HEAP0; i < N + HEAP0; ++i)
1851 {
1852 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1853 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1854 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1855
1856 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1857 }
1858}
1859
1860static void noinline
1861array_verify (EV_P_ W *ws, int cnt)
1862{
1863 while (cnt--)
1864 {
1865 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1866 verify_watcher (EV_A_ ws [cnt]);
1867 }
1868}
1869#endif
1870
1871#if EV_FEATURE_API
1872void
1873ev_verify (EV_P)
1874{
1875#if EV_VERIFY
1876 int i;
1877 WL w;
1878
1879 assert (activecnt >= -1);
1880
1881 assert (fdchangemax >= fdchangecnt);
1882 for (i = 0; i < fdchangecnt; ++i)
1883 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1884
1885 assert (anfdmax >= 0);
1886 for (i = 0; i < anfdmax; ++i)
1887 for (w = anfds [i].head; w; w = w->next)
1888 {
1889 verify_watcher (EV_A_ (W)w);
1890 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1891 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1892 }
1893
1894 assert (timermax >= timercnt);
1895 verify_heap (EV_A_ timers, timercnt);
1896
1897#if EV_PERIODIC_ENABLE
1898 assert (periodicmax >= periodiccnt);
1899 verify_heap (EV_A_ periodics, periodiccnt);
1900#endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 assert (pendingmax [i] >= pendingcnt [i]);
1905#if EV_IDLE_ENABLE
1906 assert (idleall >= 0);
1907 assert (idlemax [i] >= idlecnt [i]);
1908 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1909#endif
1910 }
1911
1912#if EV_FORK_ENABLE
1913 assert (forkmax >= forkcnt);
1914 array_verify (EV_A_ (W *)forks, forkcnt);
1915#endif
1916
1917#if EV_ASYNC_ENABLE
1918 assert (asyncmax >= asynccnt);
1919 array_verify (EV_A_ (W *)asyncs, asynccnt);
1920#endif
1921
1922#if EV_PREPARE_ENABLE
1923 assert (preparemax >= preparecnt);
1924 array_verify (EV_A_ (W *)prepares, preparecnt);
1925#endif
1926
1927#if EV_CHECK_ENABLE
1928 assert (checkmax >= checkcnt);
1929 array_verify (EV_A_ (W *)checks, checkcnt);
1930#endif
1931
1932# if 0
1933#if EV_CHILD_ENABLE
1934 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1935 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1936#endif
1937# endif
1938#endif
1374} 1939}
1375#endif 1940#endif
1376 1941
1377#if EV_MULTIPLICITY 1942#if EV_MULTIPLICITY
1378struct ev_loop * 1943struct ev_loop *
1383#endif 1948#endif
1384{ 1949{
1385 if (!ev_default_loop_ptr) 1950 if (!ev_default_loop_ptr)
1386 { 1951 {
1387#if EV_MULTIPLICITY 1952#if EV_MULTIPLICITY
1388 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1953 EV_P = ev_default_loop_ptr = &default_loop_struct;
1389#else 1954#else
1390 ev_default_loop_ptr = 1; 1955 ev_default_loop_ptr = 1;
1391#endif 1956#endif
1392 1957
1393 loop_init (EV_A_ flags); 1958 loop_init (EV_A_ flags);
1394 1959
1395 if (ev_backend (EV_A)) 1960 if (ev_backend (EV_A))
1396 { 1961 {
1397#ifndef _WIN32 1962#if EV_CHILD_ENABLE
1398 ev_signal_init (&childev, childcb, SIGCHLD); 1963 ev_signal_init (&childev, childcb, SIGCHLD);
1399 ev_set_priority (&childev, EV_MAXPRI); 1964 ev_set_priority (&childev, EV_MAXPRI);
1400 ev_signal_start (EV_A_ &childev); 1965 ev_signal_start (EV_A_ &childev);
1401 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1966 ev_unref (EV_A); /* child watcher should not keep loop alive */
1402#endif 1967#endif
1410 1975
1411void 1976void
1412ev_default_destroy (void) 1977ev_default_destroy (void)
1413{ 1978{
1414#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1415 struct ev_loop *loop = ev_default_loop_ptr; 1980 EV_P = ev_default_loop_ptr;
1416#endif 1981#endif
1417 1982
1418#ifndef _WIN32 1983 ev_default_loop_ptr = 0;
1984
1985#if EV_CHILD_ENABLE
1419 ev_ref (EV_A); /* child watcher */ 1986 ev_ref (EV_A); /* child watcher */
1420 ev_signal_stop (EV_A_ &childev); 1987 ev_signal_stop (EV_A_ &childev);
1421#endif 1988#endif
1422 1989
1423 loop_destroy (EV_A); 1990 loop_destroy (EV_A);
1425 1992
1426void 1993void
1427ev_default_fork (void) 1994ev_default_fork (void)
1428{ 1995{
1429#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1430 struct ev_loop *loop = ev_default_loop_ptr; 1997 EV_P = ev_default_loop_ptr;
1431#endif 1998#endif
1432 1999
1433 if (backend)
1434 postfork = 1; /* must be in line with ev_loop_fork */ 2000 postfork = 1; /* must be in line with ev_loop_fork */
1435} 2001}
1436 2002
1437/*****************************************************************************/ 2003/*****************************************************************************/
1438 2004
1439void 2005void
1440ev_invoke (EV_P_ void *w, int revents) 2006ev_invoke (EV_P_ void *w, int revents)
1441{ 2007{
1442 EV_CB_INVOKE ((W)w, revents); 2008 EV_CB_INVOKE ((W)w, revents);
1443} 2009}
1444 2010
1445void inline_speed 2011unsigned int
1446call_pending (EV_P) 2012ev_pending_count (EV_P)
2013{
2014 int pri;
2015 unsigned int count = 0;
2016
2017 for (pri = NUMPRI; pri--; )
2018 count += pendingcnt [pri];
2019
2020 return count;
2021}
2022
2023void noinline
2024ev_invoke_pending (EV_P)
1447{ 2025{
1448 int pri; 2026 int pri;
1449 2027
1450 for (pri = NUMPRI; pri--; ) 2028 for (pri = NUMPRI; pri--; )
1451 while (pendingcnt [pri]) 2029 while (pendingcnt [pri])
1452 { 2030 {
1453 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2031 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1454 2032
1455 if (expect_true (p->w))
1456 {
1457 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2033 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2034 /* ^ this is no longer true, as pending_w could be here */
1458 2035
1459 p->w->pending = 0; 2036 p->w->pending = 0;
1460 EV_CB_INVOKE (p->w, p->events); 2037 EV_CB_INVOKE (p->w, p->events);
1461 } 2038 EV_FREQUENT_CHECK;
1462 } 2039 }
1463} 2040}
1464 2041
1465#if EV_IDLE_ENABLE 2042#if EV_IDLE_ENABLE
1466void inline_size 2043/* make idle watchers pending. this handles the "call-idle */
2044/* only when higher priorities are idle" logic */
2045inline_size void
1467idle_reify (EV_P) 2046idle_reify (EV_P)
1468{ 2047{
1469 if (expect_false (idleall)) 2048 if (expect_false (idleall))
1470 { 2049 {
1471 int pri; 2050 int pri;
1483 } 2062 }
1484 } 2063 }
1485} 2064}
1486#endif 2065#endif
1487 2066
1488void inline_size 2067/* make timers pending */
2068inline_size void
1489timers_reify (EV_P) 2069timers_reify (EV_P)
1490{ 2070{
2071 EV_FREQUENT_CHECK;
2072
1491 while (timercnt && ev_at (timers [1]) <= mn_now) 2073 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1492 { 2074 {
1493 ev_timer *w = (ev_timer *)timers [1]; 2075 do
1494
1495 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->repeat)
1499 { 2076 {
2077 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->repeat)
2083 {
2084 ev_at (w) += w->repeat;
2085 if (ev_at (w) < mn_now)
2086 ev_at (w) = mn_now;
2087
1500 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2088 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1501 2089
1502 ev_at (w) += w->repeat; 2090 ANHE_at_cache (timers [HEAP0]);
1503 if (ev_at (w) < mn_now)
1504 ev_at (w) = mn_now;
1505
1506 downheap (timers, timercnt, 1); 2091 downheap (timers, timercnt, HEAP0);
2092 }
2093 else
2094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2095
2096 EV_FREQUENT_CHECK;
2097 feed_reverse (EV_A_ (W)w);
1507 } 2098 }
1508 else 2099 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1509 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1510 2100
1511 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2101 feed_reverse_done (EV_A_ EV_TIMER);
1512 } 2102 }
1513} 2103}
1514 2104
1515#if EV_PERIODIC_ENABLE 2105#if EV_PERIODIC_ENABLE
1516void inline_size 2106/* make periodics pending */
2107inline_size void
1517periodics_reify (EV_P) 2108periodics_reify (EV_P)
1518{ 2109{
2110 EV_FREQUENT_CHECK;
2111
1519 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now) 2112 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1520 { 2113 {
1521 ev_periodic *w = (ev_periodic *)periodics [1]; 2114 int feed_count = 0;
1522 2115
1523 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2116 do
1524
1525 /* first reschedule or stop timer */
1526 if (w->reschedule_cb)
1527 { 2117 {
2118 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2119
2120 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2121
2122 /* first reschedule or stop timer */
2123 if (w->reschedule_cb)
2124 {
1528 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2125 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2126
1529 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2127 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2128
2129 ANHE_at_cache (periodics [HEAP0]);
1530 downheap (periodics, periodiccnt, 1); 2130 downheap (periodics, periodiccnt, HEAP0);
2131 }
2132 else if (w->interval)
2133 {
2134 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2135 /* if next trigger time is not sufficiently in the future, put it there */
2136 /* this might happen because of floating point inexactness */
2137 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2138 {
2139 ev_at (w) += w->interval;
2140
2141 /* if interval is unreasonably low we might still have a time in the past */
2142 /* so correct this. this will make the periodic very inexact, but the user */
2143 /* has effectively asked to get triggered more often than possible */
2144 if (ev_at (w) < ev_rt_now)
2145 ev_at (w) = ev_rt_now;
2146 }
2147
2148 ANHE_at_cache (periodics [HEAP0]);
2149 downheap (periodics, periodiccnt, HEAP0);
2150 }
2151 else
2152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2153
2154 EV_FREQUENT_CHECK;
2155 feed_reverse (EV_A_ (W)w);
1531 } 2156 }
1532 else if (w->interval) 2157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1533 {
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1536 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1537 downheap (periodics, periodiccnt, 1);
1538 }
1539 else
1540 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1541 2158
1542 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2159 feed_reverse_done (EV_A_ EV_PERIODIC);
1543 } 2160 }
1544} 2161}
1545 2162
2163/* simply recalculate all periodics */
2164/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1546static void noinline 2165static void noinline
1547periodics_reschedule (EV_P) 2166periodics_reschedule (EV_P)
1548{ 2167{
1549 int i; 2168 int i;
1550 2169
1551 /* adjust periodics after time jump */ 2170 /* adjust periodics after time jump */
1552 for (i = 1; i <= periodiccnt; ++i) 2171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1553 { 2172 {
1554 ev_periodic *w = (ev_periodic *)periodics [i]; 2173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1555 2174
1556 if (w->reschedule_cb) 2175 if (w->reschedule_cb)
1557 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1558 else if (w->interval) 2177 else if (w->interval)
1559 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2178 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1560 }
1561 2179
1562 /* now rebuild the heap */ 2180 ANHE_at_cache (periodics [i]);
1563 for (i = periodiccnt >> 1; i--; ) 2181 }
2182
1564 downheap (periodics, periodiccnt, i); 2183 reheap (periodics, periodiccnt);
1565} 2184}
1566#endif 2185#endif
1567 2186
1568void inline_speed 2187/* adjust all timers by a given offset */
2188static void noinline
2189timers_reschedule (EV_P_ ev_tstamp adjust)
2190{
2191 int i;
2192
2193 for (i = 0; i < timercnt; ++i)
2194 {
2195 ANHE *he = timers + i + HEAP0;
2196 ANHE_w (*he)->at += adjust;
2197 ANHE_at_cache (*he);
2198 }
2199}
2200
2201/* fetch new monotonic and realtime times from the kernel */
2202/* also detect if there was a timejump, and act accordingly */
2203inline_speed void
1569time_update (EV_P_ ev_tstamp max_block) 2204time_update (EV_P_ ev_tstamp max_block)
1570{ 2205{
1571 int i;
1572
1573#if EV_USE_MONOTONIC 2206#if EV_USE_MONOTONIC
1574 if (expect_true (have_monotonic)) 2207 if (expect_true (have_monotonic))
1575 { 2208 {
2209 int i;
1576 ev_tstamp odiff = rtmn_diff; 2210 ev_tstamp odiff = rtmn_diff;
1577 2211
1578 mn_now = get_clock (); 2212 mn_now = get_clock ();
1579 2213
1580 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1606 ev_rt_now = ev_time (); 2240 ev_rt_now = ev_time ();
1607 mn_now = get_clock (); 2241 mn_now = get_clock ();
1608 now_floor = mn_now; 2242 now_floor = mn_now;
1609 } 2243 }
1610 2244
2245 /* no timer adjustment, as the monotonic clock doesn't jump */
2246 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1611# if EV_PERIODIC_ENABLE 2247# if EV_PERIODIC_ENABLE
1612 periodics_reschedule (EV_A); 2248 periodics_reschedule (EV_A);
1613# endif 2249# endif
1614 /* no timer adjustment, as the monotonic clock doesn't jump */
1615 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1616 } 2250 }
1617 else 2251 else
1618#endif 2252#endif
1619 { 2253 {
1620 ev_rt_now = ev_time (); 2254 ev_rt_now = ev_time ();
1621 2255
1622 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2256 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1623 { 2257 {
2258 /* adjust timers. this is easy, as the offset is the same for all of them */
2259 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1624#if EV_PERIODIC_ENABLE 2260#if EV_PERIODIC_ENABLE
1625 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1626#endif 2262#endif
1627 /* adjust timers. this is easy, as the offset is the same for all of them */
1628 for (i = 1; i <= timercnt; ++i)
1629 ev_at (timers [i]) += ev_rt_now - mn_now;
1630 } 2263 }
1631 2264
1632 mn_now = ev_rt_now; 2265 mn_now = ev_rt_now;
1633 } 2266 }
1634} 2267}
1635 2268
1636void 2269void
1637ev_ref (EV_P)
1638{
1639 ++activecnt;
1640}
1641
1642void
1643ev_unref (EV_P)
1644{
1645 --activecnt;
1646}
1647
1648static int loop_done;
1649
1650void
1651ev_loop (EV_P_ int flags) 2270ev_loop (EV_P_ int flags)
1652{ 2271{
2272#if EV_FEATURE_API
2273 ++loop_depth;
2274#endif
2275
2276 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2277
1653 loop_done = EVUNLOOP_CANCEL; 2278 loop_done = EVUNLOOP_CANCEL;
1654 2279
1655 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2280 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1656 2281
1657 do 2282 do
1658 { 2283 {
2284#if EV_VERIFY >= 2
2285 ev_verify (EV_A);
2286#endif
2287
1659#ifndef _WIN32 2288#ifndef _WIN32
1660 if (expect_false (curpid)) /* penalise the forking check even more */ 2289 if (expect_false (curpid)) /* penalise the forking check even more */
1661 if (expect_false (getpid () != curpid)) 2290 if (expect_false (getpid () != curpid))
1662 { 2291 {
1663 curpid = getpid (); 2292 curpid = getpid ();
1669 /* we might have forked, so queue fork handlers */ 2298 /* we might have forked, so queue fork handlers */
1670 if (expect_false (postfork)) 2299 if (expect_false (postfork))
1671 if (forkcnt) 2300 if (forkcnt)
1672 { 2301 {
1673 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2302 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1674 call_pending (EV_A); 2303 EV_INVOKE_PENDING;
1675 } 2304 }
1676#endif 2305#endif
1677 2306
2307#if EV_PREPARE_ENABLE
1678 /* queue prepare watchers (and execute them) */ 2308 /* queue prepare watchers (and execute them) */
1679 if (expect_false (preparecnt)) 2309 if (expect_false (preparecnt))
1680 { 2310 {
1681 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2311 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1682 call_pending (EV_A); 2312 EV_INVOKE_PENDING;
1683 } 2313 }
2314#endif
1684 2315
1685 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1686 break; 2317 break;
1687 2318
1688 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1689 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1690 loop_fork (EV_A); 2321 loop_fork (EV_A);
1697 ev_tstamp waittime = 0.; 2328 ev_tstamp waittime = 0.;
1698 ev_tstamp sleeptime = 0.; 2329 ev_tstamp sleeptime = 0.;
1699 2330
1700 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1701 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1702 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1703 time_update (EV_A_ 1e100); 2337 time_update (EV_A_ 1e100);
1704 2338
1705 waittime = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1706 2340
1707 if (timercnt) 2341 if (timercnt)
1708 { 2342 {
1709 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1710 if (waittime > to) waittime = to; 2344 if (waittime > to) waittime = to;
1711 } 2345 }
1712 2346
1713#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1714 if (periodiccnt) 2348 if (periodiccnt)
1715 { 2349 {
1716 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1717 if (waittime > to) waittime = to; 2351 if (waittime > to) waittime = to;
1718 } 2352 }
1719#endif 2353#endif
1720 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
1721 if (expect_false (waittime < timeout_blocktime)) 2356 if (expect_false (waittime < timeout_blocktime))
1722 waittime = timeout_blocktime; 2357 waittime = timeout_blocktime;
1723 2358
1724 sleeptime = waittime - backend_fudge; 2359 /* extra check because io_blocktime is commonly 0 */
1725
1726 if (expect_true (sleeptime > io_blocktime)) 2360 if (expect_false (io_blocktime))
1727 sleeptime = io_blocktime;
1728
1729 if (sleeptime)
1730 { 2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
1731 ev_sleep (sleeptime); 2369 ev_sleep (sleeptime);
1732 waittime -= sleeptime; 2370 waittime -= sleeptime;
2371 }
1733 } 2372 }
1734 } 2373 }
1735 2374
2375#if EV_FEATURE_API
1736 ++loop_count; 2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1737 backend_poll (EV_A_ waittime); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1738 2381
1739 /* update ev_rt_now, do magic */ 2382 /* update ev_rt_now, do magic */
1740 time_update (EV_A_ waittime + sleeptime); 2383 time_update (EV_A_ waittime + sleeptime);
1741 } 2384 }
1742 2385
1749#if EV_IDLE_ENABLE 2392#if EV_IDLE_ENABLE
1750 /* queue idle watchers unless other events are pending */ 2393 /* queue idle watchers unless other events are pending */
1751 idle_reify (EV_A); 2394 idle_reify (EV_A);
1752#endif 2395#endif
1753 2396
2397#if EV_CHECK_ENABLE
1754 /* queue check watchers, to be executed first */ 2398 /* queue check watchers, to be executed first */
1755 if (expect_false (checkcnt)) 2399 if (expect_false (checkcnt))
1756 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2400 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2401#endif
1757 2402
1758 call_pending (EV_A); 2403 EV_INVOKE_PENDING;
1759 } 2404 }
1760 while (expect_true ( 2405 while (expect_true (
1761 activecnt 2406 activecnt
1762 && !loop_done 2407 && !loop_done
1763 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2408 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1764 )); 2409 ));
1765 2410
1766 if (loop_done == EVUNLOOP_ONE) 2411 if (loop_done == EVUNLOOP_ONE)
1767 loop_done = EVUNLOOP_CANCEL; 2412 loop_done = EVUNLOOP_CANCEL;
2413
2414#if EV_FEATURE_API
2415 --loop_depth;
2416#endif
1768} 2417}
1769 2418
1770void 2419void
1771ev_unloop (EV_P_ int how) 2420ev_unloop (EV_P_ int how)
1772{ 2421{
1773 loop_done = how; 2422 loop_done = how;
1774} 2423}
1775 2424
2425void
2426ev_ref (EV_P)
2427{
2428 ++activecnt;
2429}
2430
2431void
2432ev_unref (EV_P)
2433{
2434 --activecnt;
2435}
2436
2437void
2438ev_now_update (EV_P)
2439{
2440 time_update (EV_A_ 1e100);
2441}
2442
2443void
2444ev_suspend (EV_P)
2445{
2446 ev_now_update (EV_A);
2447}
2448
2449void
2450ev_resume (EV_P)
2451{
2452 ev_tstamp mn_prev = mn_now;
2453
2454 ev_now_update (EV_A);
2455 timers_reschedule (EV_A_ mn_now - mn_prev);
2456#if EV_PERIODIC_ENABLE
2457 /* TODO: really do this? */
2458 periodics_reschedule (EV_A);
2459#endif
2460}
2461
1776/*****************************************************************************/ 2462/*****************************************************************************/
2463/* singly-linked list management, used when the expected list length is short */
1777 2464
1778void inline_size 2465inline_size void
1779wlist_add (WL *head, WL elem) 2466wlist_add (WL *head, WL elem)
1780{ 2467{
1781 elem->next = *head; 2468 elem->next = *head;
1782 *head = elem; 2469 *head = elem;
1783} 2470}
1784 2471
1785void inline_size 2472inline_size void
1786wlist_del (WL *head, WL elem) 2473wlist_del (WL *head, WL elem)
1787{ 2474{
1788 while (*head) 2475 while (*head)
1789 { 2476 {
1790 if (*head == elem) 2477 if (expect_true (*head == elem))
1791 { 2478 {
1792 *head = elem->next; 2479 *head = elem->next;
1793 return; 2480 break;
1794 } 2481 }
1795 2482
1796 head = &(*head)->next; 2483 head = &(*head)->next;
1797 } 2484 }
1798} 2485}
1799 2486
1800void inline_speed 2487/* internal, faster, version of ev_clear_pending */
2488inline_speed void
1801clear_pending (EV_P_ W w) 2489clear_pending (EV_P_ W w)
1802{ 2490{
1803 if (w->pending) 2491 if (w->pending)
1804 { 2492 {
1805 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2493 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1806 w->pending = 0; 2494 w->pending = 0;
1807 } 2495 }
1808} 2496}
1809 2497
1810int 2498int
1814 int pending = w_->pending; 2502 int pending = w_->pending;
1815 2503
1816 if (expect_true (pending)) 2504 if (expect_true (pending))
1817 { 2505 {
1818 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2506 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2507 p->w = (W)&pending_w;
1819 w_->pending = 0; 2508 w_->pending = 0;
1820 p->w = 0;
1821 return p->events; 2509 return p->events;
1822 } 2510 }
1823 else 2511 else
1824 return 0; 2512 return 0;
1825} 2513}
1826 2514
1827void inline_size 2515inline_size void
1828pri_adjust (EV_P_ W w) 2516pri_adjust (EV_P_ W w)
1829{ 2517{
1830 int pri = w->priority; 2518 int pri = ev_priority (w);
1831 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2519 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1832 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2520 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1833 w->priority = pri; 2521 ev_set_priority (w, pri);
1834} 2522}
1835 2523
1836void inline_speed 2524inline_speed void
1837ev_start (EV_P_ W w, int active) 2525ev_start (EV_P_ W w, int active)
1838{ 2526{
1839 pri_adjust (EV_A_ w); 2527 pri_adjust (EV_A_ w);
1840 w->active = active; 2528 w->active = active;
1841 ev_ref (EV_A); 2529 ev_ref (EV_A);
1842} 2530}
1843 2531
1844void inline_size 2532inline_size void
1845ev_stop (EV_P_ W w) 2533ev_stop (EV_P_ W w)
1846{ 2534{
1847 ev_unref (EV_A); 2535 ev_unref (EV_A);
1848 w->active = 0; 2536 w->active = 0;
1849} 2537}
1856 int fd = w->fd; 2544 int fd = w->fd;
1857 2545
1858 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1859 return; 2547 return;
1860 2548
1861 assert (("ev_io_start called with negative fd", fd >= 0)); 2549 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2550 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2551
2552 EV_FREQUENT_CHECK;
1862 2553
1863 ev_start (EV_A_ (W)w, 1); 2554 ev_start (EV_A_ (W)w, 1);
1864 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2555 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1865 wlist_add (&anfds[fd].head, (WL)w); 2556 wlist_add (&anfds[fd].head, (WL)w);
1866 2557
1867 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2558 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1868 w->events &= ~EV_IOFDSET; 2559 w->events &= ~EV__IOFDSET;
2560
2561 EV_FREQUENT_CHECK;
1869} 2562}
1870 2563
1871void noinline 2564void noinline
1872ev_io_stop (EV_P_ ev_io *w) 2565ev_io_stop (EV_P_ ev_io *w)
1873{ 2566{
1874 clear_pending (EV_A_ (W)w); 2567 clear_pending (EV_A_ (W)w);
1875 if (expect_false (!ev_is_active (w))) 2568 if (expect_false (!ev_is_active (w)))
1876 return; 2569 return;
1877 2570
1878 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2571 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2572
2573 EV_FREQUENT_CHECK;
1879 2574
1880 wlist_del (&anfds[w->fd].head, (WL)w); 2575 wlist_del (&anfds[w->fd].head, (WL)w);
1881 ev_stop (EV_A_ (W)w); 2576 ev_stop (EV_A_ (W)w);
1882 2577
1883 fd_change (EV_A_ w->fd, 1); 2578 fd_change (EV_A_ w->fd, 1);
2579
2580 EV_FREQUENT_CHECK;
1884} 2581}
1885 2582
1886void noinline 2583void noinline
1887ev_timer_start (EV_P_ ev_timer *w) 2584ev_timer_start (EV_P_ ev_timer *w)
1888{ 2585{
1889 if (expect_false (ev_is_active (w))) 2586 if (expect_false (ev_is_active (w)))
1890 return; 2587 return;
1891 2588
1892 ev_at (w) += mn_now; 2589 ev_at (w) += mn_now;
1893 2590
1894 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2591 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1895 2592
2593 EV_FREQUENT_CHECK;
2594
2595 ++timercnt;
1896 ev_start (EV_A_ (W)w, ++timercnt); 2596 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1897 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2597 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1898 timers [timercnt] = (WT)w; 2598 ANHE_w (timers [ev_active (w)]) = (WT)w;
2599 ANHE_at_cache (timers [ev_active (w)]);
1899 upheap (timers, timercnt); 2600 upheap (timers, ev_active (w));
1900 2601
2602 EV_FREQUENT_CHECK;
2603
1901 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2604 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1902} 2605}
1903 2606
1904void noinline 2607void noinline
1905ev_timer_stop (EV_P_ ev_timer *w) 2608ev_timer_stop (EV_P_ ev_timer *w)
1906{ 2609{
1907 clear_pending (EV_A_ (W)w); 2610 clear_pending (EV_A_ (W)w);
1908 if (expect_false (!ev_is_active (w))) 2611 if (expect_false (!ev_is_active (w)))
1909 return; 2612 return;
1910 2613
2614 EV_FREQUENT_CHECK;
2615
1911 { 2616 {
1912 int active = ev_active (w); 2617 int active = ev_active (w);
1913 2618
1914 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2619 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1915 2620
2621 --timercnt;
2622
1916 if (expect_true (active < timercnt)) 2623 if (expect_true (active < timercnt + HEAP0))
1917 { 2624 {
1918 timers [active] = timers [timercnt]; 2625 timers [active] = timers [timercnt + HEAP0];
1919 adjustheap (timers, timercnt, active); 2626 adjustheap (timers, timercnt, active);
1920 } 2627 }
1921
1922 --timercnt;
1923 } 2628 }
1924 2629
1925 ev_at (w) -= mn_now; 2630 ev_at (w) -= mn_now;
1926 2631
1927 ev_stop (EV_A_ (W)w); 2632 ev_stop (EV_A_ (W)w);
2633
2634 EV_FREQUENT_CHECK;
1928} 2635}
1929 2636
1930void noinline 2637void noinline
1931ev_timer_again (EV_P_ ev_timer *w) 2638ev_timer_again (EV_P_ ev_timer *w)
1932{ 2639{
2640 EV_FREQUENT_CHECK;
2641
1933 if (ev_is_active (w)) 2642 if (ev_is_active (w))
1934 { 2643 {
1935 if (w->repeat) 2644 if (w->repeat)
1936 { 2645 {
1937 ev_at (w) = mn_now + w->repeat; 2646 ev_at (w) = mn_now + w->repeat;
2647 ANHE_at_cache (timers [ev_active (w)]);
1938 adjustheap (timers, timercnt, ev_active (w)); 2648 adjustheap (timers, timercnt, ev_active (w));
1939 } 2649 }
1940 else 2650 else
1941 ev_timer_stop (EV_A_ w); 2651 ev_timer_stop (EV_A_ w);
1942 } 2652 }
1943 else if (w->repeat) 2653 else if (w->repeat)
1944 { 2654 {
1945 ev_at (w) = w->repeat; 2655 ev_at (w) = w->repeat;
1946 ev_timer_start (EV_A_ w); 2656 ev_timer_start (EV_A_ w);
1947 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2660}
2661
2662ev_tstamp
2663ev_timer_remaining (EV_P_ ev_timer *w)
2664{
2665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1948} 2666}
1949 2667
1950#if EV_PERIODIC_ENABLE 2668#if EV_PERIODIC_ENABLE
1951void noinline 2669void noinline
1952ev_periodic_start (EV_P_ ev_periodic *w) 2670ev_periodic_start (EV_P_ ev_periodic *w)
1956 2674
1957 if (w->reschedule_cb) 2675 if (w->reschedule_cb)
1958 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1959 else if (w->interval) 2677 else if (w->interval)
1960 { 2678 {
1961 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1962 /* this formula differs from the one in periodic_reify because we do not always round up */ 2680 /* this formula differs from the one in periodic_reify because we do not always round up */
1963 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1964 } 2682 }
1965 else 2683 else
1966 ev_at (w) = w->offset; 2684 ev_at (w) = w->offset;
1967 2685
2686 EV_FREQUENT_CHECK;
2687
2688 ++periodiccnt;
1968 ev_start (EV_A_ (W)w, ++periodiccnt); 2689 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1969 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2690 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1970 periodics [periodiccnt] = (WT)w; 2691 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1971 upheap (periodics, periodiccnt); 2692 ANHE_at_cache (periodics [ev_active (w)]);
2693 upheap (periodics, ev_active (w));
1972 2694
2695 EV_FREQUENT_CHECK;
2696
1973 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2697 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1974} 2698}
1975 2699
1976void noinline 2700void noinline
1977ev_periodic_stop (EV_P_ ev_periodic *w) 2701ev_periodic_stop (EV_P_ ev_periodic *w)
1978{ 2702{
1979 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
1980 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
1981 return; 2705 return;
1982 2706
2707 EV_FREQUENT_CHECK;
2708
1983 { 2709 {
1984 int active = ev_active (w); 2710 int active = ev_active (w);
1985 2711
1986 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2712 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1987 2713
2714 --periodiccnt;
2715
1988 if (expect_true (active < periodiccnt)) 2716 if (expect_true (active < periodiccnt + HEAP0))
1989 { 2717 {
1990 periodics [active] = periodics [periodiccnt]; 2718 periodics [active] = periodics [periodiccnt + HEAP0];
1991 adjustheap (periodics, periodiccnt, active); 2719 adjustheap (periodics, periodiccnt, active);
1992 } 2720 }
1993
1994 --periodiccnt;
1995 } 2721 }
1996 2722
1997 ev_stop (EV_A_ (W)w); 2723 ev_stop (EV_A_ (W)w);
2724
2725 EV_FREQUENT_CHECK;
1998} 2726}
1999 2727
2000void noinline 2728void noinline
2001ev_periodic_again (EV_P_ ev_periodic *w) 2729ev_periodic_again (EV_P_ ev_periodic *w)
2002{ 2730{
2008 2736
2009#ifndef SA_RESTART 2737#ifndef SA_RESTART
2010# define SA_RESTART 0 2738# define SA_RESTART 0
2011#endif 2739#endif
2012 2740
2741#if EV_SIGNAL_ENABLE
2742
2013void noinline 2743void noinline
2014ev_signal_start (EV_P_ ev_signal *w) 2744ev_signal_start (EV_P_ ev_signal *w)
2015{ 2745{
2016#if EV_MULTIPLICITY
2017 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2018#endif
2019 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2020 return; 2747 return;
2021 2748
2022 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2749 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2023 2750
2024 evpipe_init (EV_A); 2751#if EV_MULTIPLICITY
2752 assert (("libev: a signal must not be attached to two different loops",
2753 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2025 2754
2755 signals [w->signum - 1].loop = EV_A;
2756#endif
2757
2758 EV_FREQUENT_CHECK;
2759
2760#if EV_USE_SIGNALFD
2761 if (sigfd == -2)
2026 { 2762 {
2027#ifndef _WIN32 2763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2028 sigset_t full, prev; 2764 if (sigfd < 0 && errno == EINVAL)
2029 sigfillset (&full); 2765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2030 sigprocmask (SIG_SETMASK, &full, &prev);
2031#endif
2032 2766
2033 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2767 if (sigfd >= 0)
2768 {
2769 fd_intern (sigfd); /* doing it twice will not hurt */
2034 2770
2035#ifndef _WIN32 2771 sigemptyset (&sigfd_set);
2036 sigprocmask (SIG_SETMASK, &prev, 0); 2772
2037#endif 2773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2774 ev_set_priority (&sigfd_w, EV_MAXPRI);
2775 ev_io_start (EV_A_ &sigfd_w);
2776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2777 }
2038 } 2778 }
2779
2780 if (sigfd >= 0)
2781 {
2782 /* TODO: check .head */
2783 sigaddset (&sigfd_set, w->signum);
2784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2785
2786 signalfd (sigfd, &sigfd_set, 0);
2787 }
2788#endif
2039 2789
2040 ev_start (EV_A_ (W)w, 1); 2790 ev_start (EV_A_ (W)w, 1);
2041 wlist_add (&signals [w->signum - 1].head, (WL)w); 2791 wlist_add (&signals [w->signum - 1].head, (WL)w);
2042 2792
2043 if (!((WL)w)->next) 2793 if (!((WL)w)->next)
2794# if EV_USE_SIGNALFD
2795 if (sigfd < 0) /*TODO*/
2796# endif
2044 { 2797 {
2045#if _WIN32 2798# ifdef _WIN32
2799 evpipe_init (EV_A);
2800
2046 signal (w->signum, ev_sighandler); 2801 signal (w->signum, ev_sighandler);
2047#else 2802# else
2048 struct sigaction sa; 2803 struct sigaction sa;
2804
2805 evpipe_init (EV_A);
2806
2049 sa.sa_handler = ev_sighandler; 2807 sa.sa_handler = ev_sighandler;
2050 sigfillset (&sa.sa_mask); 2808 sigfillset (&sa.sa_mask);
2051 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2052 sigaction (w->signum, &sa, 0); 2810 sigaction (w->signum, &sa, 0);
2811
2812 sigemptyset (&sa.sa_mask);
2813 sigaddset (&sa.sa_mask, w->signum);
2814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2053#endif 2815#endif
2054 } 2816 }
2817
2818 EV_FREQUENT_CHECK;
2055} 2819}
2056 2820
2057void noinline 2821void noinline
2058ev_signal_stop (EV_P_ ev_signal *w) 2822ev_signal_stop (EV_P_ ev_signal *w)
2059{ 2823{
2060 clear_pending (EV_A_ (W)w); 2824 clear_pending (EV_A_ (W)w);
2061 if (expect_false (!ev_is_active (w))) 2825 if (expect_false (!ev_is_active (w)))
2062 return; 2826 return;
2063 2827
2828 EV_FREQUENT_CHECK;
2829
2064 wlist_del (&signals [w->signum - 1].head, (WL)w); 2830 wlist_del (&signals [w->signum - 1].head, (WL)w);
2065 ev_stop (EV_A_ (W)w); 2831 ev_stop (EV_A_ (W)w);
2066 2832
2067 if (!signals [w->signum - 1].head) 2833 if (!signals [w->signum - 1].head)
2834 {
2835#if EV_MULTIPLICITY
2836 signals [w->signum - 1].loop = 0; /* unattach from signal */
2837#endif
2838#if EV_USE_SIGNALFD
2839 if (sigfd >= 0)
2840 {
2841 sigset_t ss;
2842
2843 sigemptyset (&ss);
2844 sigaddset (&ss, w->signum);
2845 sigdelset (&sigfd_set, w->signum);
2846
2847 signalfd (sigfd, &sigfd_set, 0);
2848 sigprocmask (SIG_UNBLOCK, &ss, 0);
2849 }
2850 else
2851#endif
2068 signal (w->signum, SIG_DFL); 2852 signal (w->signum, SIG_DFL);
2853 }
2854
2855 EV_FREQUENT_CHECK;
2069} 2856}
2857
2858#endif
2859
2860#if EV_CHILD_ENABLE
2070 2861
2071void 2862void
2072ev_child_start (EV_P_ ev_child *w) 2863ev_child_start (EV_P_ ev_child *w)
2073{ 2864{
2074#if EV_MULTIPLICITY 2865#if EV_MULTIPLICITY
2075 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2866 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2076#endif 2867#endif
2077 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2078 return; 2869 return;
2079 2870
2871 EV_FREQUENT_CHECK;
2872
2080 ev_start (EV_A_ (W)w, 1); 2873 ev_start (EV_A_ (W)w, 1);
2081 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2874 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2875
2876 EV_FREQUENT_CHECK;
2082} 2877}
2083 2878
2084void 2879void
2085ev_child_stop (EV_P_ ev_child *w) 2880ev_child_stop (EV_P_ ev_child *w)
2086{ 2881{
2087 clear_pending (EV_A_ (W)w); 2882 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2883 if (expect_false (!ev_is_active (w)))
2089 return; 2884 return;
2090 2885
2886 EV_FREQUENT_CHECK;
2887
2091 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2888 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2092 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
2093} 2892}
2893
2894#endif
2094 2895
2095#if EV_STAT_ENABLE 2896#if EV_STAT_ENABLE
2096 2897
2097# ifdef _WIN32 2898# ifdef _WIN32
2098# undef lstat 2899# undef lstat
2099# define lstat(a,b) _stati64 (a,b) 2900# define lstat(a,b) _stati64 (a,b)
2100# endif 2901# endif
2101 2902
2102#define DEF_STAT_INTERVAL 5.0074891 2903#define DEF_STAT_INTERVAL 5.0074891
2904#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2103#define MIN_STAT_INTERVAL 0.1074891 2905#define MIN_STAT_INTERVAL 0.1074891
2104 2906
2105static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2907static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2106 2908
2107#if EV_USE_INOTIFY 2909#if EV_USE_INOTIFY
2108# define EV_INOTIFY_BUFSIZE 8192 2910
2911/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2912# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2109 2913
2110static void noinline 2914static void noinline
2111infy_add (EV_P_ ev_stat *w) 2915infy_add (EV_P_ ev_stat *w)
2112{ 2916{
2113 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2917 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2114 2918
2115 if (w->wd < 0) 2919 if (w->wd >= 0)
2920 {
2921 struct statfs sfs;
2922
2923 /* now local changes will be tracked by inotify, but remote changes won't */
2924 /* unless the filesystem is known to be local, we therefore still poll */
2925 /* also do poll on <2.6.25, but with normal frequency */
2926
2927 if (!fs_2625)
2928 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2929 else if (!statfs (w->path, &sfs)
2930 && (sfs.f_type == 0x1373 /* devfs */
2931 || sfs.f_type == 0xEF53 /* ext2/3 */
2932 || sfs.f_type == 0x3153464a /* jfs */
2933 || sfs.f_type == 0x52654973 /* reiser3 */
2934 || sfs.f_type == 0x01021994 /* tempfs */
2935 || sfs.f_type == 0x58465342 /* xfs */))
2936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2937 else
2938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2116 { 2939 }
2117 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2940 else
2941 {
2942 /* can't use inotify, continue to stat */
2943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2118 2944
2119 /* monitor some parent directory for speedup hints */ 2945 /* if path is not there, monitor some parent directory for speedup hints */
2120 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2121 /* but an efficiency issue only */ 2947 /* but an efficiency issue only */
2122 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2123 { 2949 {
2124 char path [4096]; 2950 char path [4096];
2125 strcpy (path, w->path); 2951 strcpy (path, w->path);
2129 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2130 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2131 2957
2132 char *pend = strrchr (path, '/'); 2958 char *pend = strrchr (path, '/');
2133 2959
2134 if (!pend) 2960 if (!pend || pend == path)
2135 break; /* whoops, no '/', complain to your admin */ 2961 break;
2136 2962
2137 *pend = 0; 2963 *pend = 0;
2138 w->wd = inotify_add_watch (fs_fd, path, mask); 2964 w->wd = inotify_add_watch (fs_fd, path, mask);
2139 } 2965 }
2140 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2141 } 2967 }
2142 } 2968 }
2143 else
2144 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2145 2969
2146 if (w->wd >= 0) 2970 if (w->wd >= 0)
2147 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2972
2973 /* now re-arm timer, if required */
2974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2975 ev_timer_again (EV_A_ &w->timer);
2976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2148} 2977}
2149 2978
2150static void noinline 2979static void noinline
2151infy_del (EV_P_ ev_stat *w) 2980infy_del (EV_P_ ev_stat *w)
2152{ 2981{
2155 2984
2156 if (wd < 0) 2985 if (wd < 0)
2157 return; 2986 return;
2158 2987
2159 w->wd = -2; 2988 w->wd = -2;
2160 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2161 wlist_del (&fs_hash [slot].head, (WL)w); 2990 wlist_del (&fs_hash [slot].head, (WL)w);
2162 2991
2163 /* remove this watcher, if others are watching it, they will rearm */ 2992 /* remove this watcher, if others are watching it, they will rearm */
2164 inotify_rm_watch (fs_fd, wd); 2993 inotify_rm_watch (fs_fd, wd);
2165} 2994}
2166 2995
2167static void noinline 2996static void noinline
2168infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2169{ 2998{
2170 if (slot < 0) 2999 if (slot < 0)
2171 /* overflow, need to check for all hahs slots */ 3000 /* overflow, need to check for all hash slots */
2172 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2173 infy_wd (EV_A_ slot, wd, ev); 3002 infy_wd (EV_A_ slot, wd, ev);
2174 else 3003 else
2175 { 3004 {
2176 WL w_; 3005 WL w_;
2177 3006
2178 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2179 { 3008 {
2180 ev_stat *w = (ev_stat *)w_; 3009 ev_stat *w = (ev_stat *)w_;
2181 w_ = w_->next; /* lets us remove this watcher and all before it */ 3010 w_ = w_->next; /* lets us remove this watcher and all before it */
2182 3011
2183 if (w->wd == wd || wd == -1) 3012 if (w->wd == wd || wd == -1)
2184 { 3013 {
2185 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2186 { 3015 {
3016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2187 w->wd = -1; 3017 w->wd = -1;
2188 infy_add (EV_A_ w); /* re-add, no matter what */ 3018 infy_add (EV_A_ w); /* re-add, no matter what */
2189 } 3019 }
2190 3020
2191 stat_timer_cb (EV_A_ &w->timer, 0); 3021 stat_timer_cb (EV_A_ &w->timer, 0);
2196 3026
2197static void 3027static void
2198infy_cb (EV_P_ ev_io *w, int revents) 3028infy_cb (EV_P_ ev_io *w, int revents)
2199{ 3029{
2200 char buf [EV_INOTIFY_BUFSIZE]; 3030 char buf [EV_INOTIFY_BUFSIZE];
2201 struct inotify_event *ev = (struct inotify_event *)buf;
2202 int ofs; 3031 int ofs;
2203 int len = read (fs_fd, buf, sizeof (buf)); 3032 int len = read (fs_fd, buf, sizeof (buf));
2204 3033
2205 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3034 for (ofs = 0; ofs < len; )
3035 {
3036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2206 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3038 ofs += sizeof (struct inotify_event) + ev->len;
3039 }
2207} 3040}
2208 3041
2209void inline_size 3042inline_size unsigned int
3043ev_linux_version (void)
3044{
3045 struct utsname buf;
3046 unsigned int v;
3047 int i;
3048 char *p = buf.release;
3049
3050 if (uname (&buf))
3051 return 0;
3052
3053 for (i = 3+1; --i; )
3054 {
3055 unsigned int c = 0;
3056
3057 for (;;)
3058 {
3059 if (*p >= '0' && *p <= '9')
3060 c = c * 10 + *p++ - '0';
3061 else
3062 {
3063 p += *p == '.';
3064 break;
3065 }
3066 }
3067
3068 v = (v << 8) | c;
3069 }
3070
3071 return v;
3072}
3073
3074inline_size void
3075ev_check_2625 (EV_P)
3076{
3077 /* kernels < 2.6.25 are borked
3078 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3079 */
3080 if (ev_linux_version () < 0x020619)
3081 return;
3082
3083 fs_2625 = 1;
3084}
3085
3086inline_size int
3087infy_newfd (void)
3088{
3089#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3090 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3091 if (fd >= 0)
3092 return fd;
3093#endif
3094 return inotify_init ();
3095}
3096
3097inline_size void
2210infy_init (EV_P) 3098infy_init (EV_P)
2211{ 3099{
2212 if (fs_fd != -2) 3100 if (fs_fd != -2)
2213 return; 3101 return;
2214 3102
3103 fs_fd = -1;
3104
3105 ev_check_2625 (EV_A);
3106
2215 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
2216 3108
2217 if (fs_fd >= 0) 3109 if (fs_fd >= 0)
2218 { 3110 {
3111 fd_intern (fs_fd);
2219 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3112 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2220 ev_set_priority (&fs_w, EV_MAXPRI); 3113 ev_set_priority (&fs_w, EV_MAXPRI);
2221 ev_io_start (EV_A_ &fs_w); 3114 ev_io_start (EV_A_ &fs_w);
3115 ev_unref (EV_A);
2222 } 3116 }
2223} 3117}
2224 3118
2225void inline_size 3119inline_size void
2226infy_fork (EV_P) 3120infy_fork (EV_P)
2227{ 3121{
2228 int slot; 3122 int slot;
2229 3123
2230 if (fs_fd < 0) 3124 if (fs_fd < 0)
2231 return; 3125 return;
2232 3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &fs_w);
2233 close (fs_fd); 3129 close (fs_fd);
2234 fs_fd = inotify_init (); 3130 fs_fd = infy_newfd ();
2235 3131
3132 if (fs_fd >= 0)
3133 {
3134 fd_intern (fs_fd);
3135 ev_io_set (&fs_w, fs_fd, EV_READ);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
3138 }
3139
2236 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3140 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2237 { 3141 {
2238 WL w_ = fs_hash [slot].head; 3142 WL w_ = fs_hash [slot].head;
2239 fs_hash [slot].head = 0; 3143 fs_hash [slot].head = 0;
2240 3144
2241 while (w_) 3145 while (w_)
2246 w->wd = -1; 3150 w->wd = -1;
2247 3151
2248 if (fs_fd >= 0) 3152 if (fs_fd >= 0)
2249 infy_add (EV_A_ w); /* re-add, no matter what */ 3153 infy_add (EV_A_ w); /* re-add, no matter what */
2250 else 3154 else
3155 {
3156 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3157 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2251 ev_timer_start (EV_A_ &w->timer); 3158 ev_timer_again (EV_A_ &w->timer);
3159 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3160 }
2252 } 3161 }
2253
2254 } 3162 }
2255} 3163}
2256 3164
3165#endif
3166
3167#ifdef _WIN32
3168# define EV_LSTAT(p,b) _stati64 (p, b)
3169#else
3170# define EV_LSTAT(p,b) lstat (p, b)
2257#endif 3171#endif
2258 3172
2259void 3173void
2260ev_stat_stat (EV_P_ ev_stat *w) 3174ev_stat_stat (EV_P_ ev_stat *w)
2261{ 3175{
2268static void noinline 3182static void noinline
2269stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3183stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2270{ 3184{
2271 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3185 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2272 3186
2273 /* we copy this here each the time so that */ 3187 ev_statdata prev = w->attr;
2274 /* prev has the old value when the callback gets invoked */
2275 w->prev = w->attr;
2276 ev_stat_stat (EV_A_ w); 3188 ev_stat_stat (EV_A_ w);
2277 3189
2278 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3190 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2279 if ( 3191 if (
2280 w->prev.st_dev != w->attr.st_dev 3192 prev.st_dev != w->attr.st_dev
2281 || w->prev.st_ino != w->attr.st_ino 3193 || prev.st_ino != w->attr.st_ino
2282 || w->prev.st_mode != w->attr.st_mode 3194 || prev.st_mode != w->attr.st_mode
2283 || w->prev.st_nlink != w->attr.st_nlink 3195 || prev.st_nlink != w->attr.st_nlink
2284 || w->prev.st_uid != w->attr.st_uid 3196 || prev.st_uid != w->attr.st_uid
2285 || w->prev.st_gid != w->attr.st_gid 3197 || prev.st_gid != w->attr.st_gid
2286 || w->prev.st_rdev != w->attr.st_rdev 3198 || prev.st_rdev != w->attr.st_rdev
2287 || w->prev.st_size != w->attr.st_size 3199 || prev.st_size != w->attr.st_size
2288 || w->prev.st_atime != w->attr.st_atime 3200 || prev.st_atime != w->attr.st_atime
2289 || w->prev.st_mtime != w->attr.st_mtime 3201 || prev.st_mtime != w->attr.st_mtime
2290 || w->prev.st_ctime != w->attr.st_ctime 3202 || prev.st_ctime != w->attr.st_ctime
2291 ) { 3203 ) {
3204 /* we only update w->prev on actual differences */
3205 /* in case we test more often than invoke the callback, */
3206 /* to ensure that prev is always different to attr */
3207 w->prev = prev;
3208
2292 #if EV_USE_INOTIFY 3209 #if EV_USE_INOTIFY
3210 if (fs_fd >= 0)
3211 {
2293 infy_del (EV_A_ w); 3212 infy_del (EV_A_ w);
2294 infy_add (EV_A_ w); 3213 infy_add (EV_A_ w);
2295 ev_stat_stat (EV_A_ w); /* avoid race... */ 3214 ev_stat_stat (EV_A_ w); /* avoid race... */
3215 }
2296 #endif 3216 #endif
2297 3217
2298 ev_feed_event (EV_A_ w, EV_STAT); 3218 ev_feed_event (EV_A_ w, EV_STAT);
2299 } 3219 }
2300} 3220}
2303ev_stat_start (EV_P_ ev_stat *w) 3223ev_stat_start (EV_P_ ev_stat *w)
2304{ 3224{
2305 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
2306 return; 3226 return;
2307 3227
2308 /* since we use memcmp, we need to clear any padding data etc. */
2309 memset (&w->prev, 0, sizeof (ev_statdata));
2310 memset (&w->attr, 0, sizeof (ev_statdata));
2311
2312 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
2313 3229
3230 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2314 if (w->interval < MIN_STAT_INTERVAL) 3231 w->interval = MIN_STAT_INTERVAL;
2315 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2316 3232
2317 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3233 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2318 ev_set_priority (&w->timer, ev_priority (w)); 3234 ev_set_priority (&w->timer, ev_priority (w));
2319 3235
2320#if EV_USE_INOTIFY 3236#if EV_USE_INOTIFY
2321 infy_init (EV_A); 3237 infy_init (EV_A);
2322 3238
2323 if (fs_fd >= 0) 3239 if (fs_fd >= 0)
2324 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2325 else 3241 else
2326#endif 3242#endif
3243 {
2327 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 ev_unref (EV_A);
3246 }
2328 3247
2329 ev_start (EV_A_ (W)w, 1); 3248 ev_start (EV_A_ (W)w, 1);
3249
3250 EV_FREQUENT_CHECK;
2330} 3251}
2331 3252
2332void 3253void
2333ev_stat_stop (EV_P_ ev_stat *w) 3254ev_stat_stop (EV_P_ ev_stat *w)
2334{ 3255{
2335 clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
2337 return; 3258 return;
2338 3259
3260 EV_FREQUENT_CHECK;
3261
2339#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2340 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2341#endif 3264#endif
3265
3266 if (ev_is_active (&w->timer))
3267 {
3268 ev_ref (EV_A);
2342 ev_timer_stop (EV_A_ &w->timer); 3269 ev_timer_stop (EV_A_ &w->timer);
3270 }
2343 3271
2344 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
2345} 3275}
2346#endif 3276#endif
2347 3277
2348#if EV_IDLE_ENABLE 3278#if EV_IDLE_ENABLE
2349void 3279void
2351{ 3281{
2352 if (expect_false (ev_is_active (w))) 3282 if (expect_false (ev_is_active (w)))
2353 return; 3283 return;
2354 3284
2355 pri_adjust (EV_A_ (W)w); 3285 pri_adjust (EV_A_ (W)w);
3286
3287 EV_FREQUENT_CHECK;
2356 3288
2357 { 3289 {
2358 int active = ++idlecnt [ABSPRI (w)]; 3290 int active = ++idlecnt [ABSPRI (w)];
2359 3291
2360 ++idleall; 3292 ++idleall;
2361 ev_start (EV_A_ (W)w, active); 3293 ev_start (EV_A_ (W)w, active);
2362 3294
2363 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3295 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2364 idles [ABSPRI (w)][active - 1] = w; 3296 idles [ABSPRI (w)][active - 1] = w;
2365 } 3297 }
3298
3299 EV_FREQUENT_CHECK;
2366} 3300}
2367 3301
2368void 3302void
2369ev_idle_stop (EV_P_ ev_idle *w) 3303ev_idle_stop (EV_P_ ev_idle *w)
2370{ 3304{
2371 clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w))) 3306 if (expect_false (!ev_is_active (w)))
2373 return; 3307 return;
2374 3308
3309 EV_FREQUENT_CHECK;
3310
2375 { 3311 {
2376 int active = ev_active (w); 3312 int active = ev_active (w);
2377 3313
2378 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3314 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2379 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3315 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2380 3316
2381 ev_stop (EV_A_ (W)w); 3317 ev_stop (EV_A_ (W)w);
2382 --idleall; 3318 --idleall;
2383 } 3319 }
2384}
2385#endif
2386 3320
3321 EV_FREQUENT_CHECK;
3322}
3323#endif
3324
3325#if EV_PREPARE_ENABLE
2387void 3326void
2388ev_prepare_start (EV_P_ ev_prepare *w) 3327ev_prepare_start (EV_P_ ev_prepare *w)
2389{ 3328{
2390 if (expect_false (ev_is_active (w))) 3329 if (expect_false (ev_is_active (w)))
2391 return; 3330 return;
3331
3332 EV_FREQUENT_CHECK;
2392 3333
2393 ev_start (EV_A_ (W)w, ++preparecnt); 3334 ev_start (EV_A_ (W)w, ++preparecnt);
2394 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3335 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2395 prepares [preparecnt - 1] = w; 3336 prepares [preparecnt - 1] = w;
3337
3338 EV_FREQUENT_CHECK;
2396} 3339}
2397 3340
2398void 3341void
2399ev_prepare_stop (EV_P_ ev_prepare *w) 3342ev_prepare_stop (EV_P_ ev_prepare *w)
2400{ 3343{
2401 clear_pending (EV_A_ (W)w); 3344 clear_pending (EV_A_ (W)w);
2402 if (expect_false (!ev_is_active (w))) 3345 if (expect_false (!ev_is_active (w)))
2403 return; 3346 return;
2404 3347
3348 EV_FREQUENT_CHECK;
3349
2405 { 3350 {
2406 int active = ev_active (w); 3351 int active = ev_active (w);
2407 3352
2408 prepares [active - 1] = prepares [--preparecnt]; 3353 prepares [active - 1] = prepares [--preparecnt];
2409 ev_active (prepares [active - 1]) = active; 3354 ev_active (prepares [active - 1]) = active;
2410 } 3355 }
2411 3356
2412 ev_stop (EV_A_ (W)w); 3357 ev_stop (EV_A_ (W)w);
2413}
2414 3358
3359 EV_FREQUENT_CHECK;
3360}
3361#endif
3362
3363#if EV_CHECK_ENABLE
2415void 3364void
2416ev_check_start (EV_P_ ev_check *w) 3365ev_check_start (EV_P_ ev_check *w)
2417{ 3366{
2418 if (expect_false (ev_is_active (w))) 3367 if (expect_false (ev_is_active (w)))
2419 return; 3368 return;
3369
3370 EV_FREQUENT_CHECK;
2420 3371
2421 ev_start (EV_A_ (W)w, ++checkcnt); 3372 ev_start (EV_A_ (W)w, ++checkcnt);
2422 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3373 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2423 checks [checkcnt - 1] = w; 3374 checks [checkcnt - 1] = w;
3375
3376 EV_FREQUENT_CHECK;
2424} 3377}
2425 3378
2426void 3379void
2427ev_check_stop (EV_P_ ev_check *w) 3380ev_check_stop (EV_P_ ev_check *w)
2428{ 3381{
2429 clear_pending (EV_A_ (W)w); 3382 clear_pending (EV_A_ (W)w);
2430 if (expect_false (!ev_is_active (w))) 3383 if (expect_false (!ev_is_active (w)))
2431 return; 3384 return;
2432 3385
3386 EV_FREQUENT_CHECK;
3387
2433 { 3388 {
2434 int active = ev_active (w); 3389 int active = ev_active (w);
2435 3390
2436 checks [active - 1] = checks [--checkcnt]; 3391 checks [active - 1] = checks [--checkcnt];
2437 ev_active (checks [active - 1]) = active; 3392 ev_active (checks [active - 1]) = active;
2438 } 3393 }
2439 3394
2440 ev_stop (EV_A_ (W)w); 3395 ev_stop (EV_A_ (W)w);
3396
3397 EV_FREQUENT_CHECK;
2441} 3398}
3399#endif
2442 3400
2443#if EV_EMBED_ENABLE 3401#if EV_EMBED_ENABLE
2444void noinline 3402void noinline
2445ev_embed_sweep (EV_P_ ev_embed *w) 3403ev_embed_sweep (EV_P_ ev_embed *w)
2446{ 3404{
2462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3420embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2463{ 3421{
2464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3422 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2465 3423
2466 { 3424 {
2467 struct ev_loop *loop = w->other; 3425 EV_P = w->other;
2468 3426
2469 while (fdchangecnt) 3427 while (fdchangecnt)
2470 { 3428 {
2471 fd_reify (EV_A); 3429 fd_reify (EV_A);
2472 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3430 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2473 } 3431 }
2474 } 3432 }
2475} 3433}
2476 3434
3435static void
3436embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3439
3440 ev_embed_stop (EV_A_ w);
3441
3442 {
3443 EV_P = w->other;
3444
3445 ev_loop_fork (EV_A);
3446 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3447 }
3448
3449 ev_embed_start (EV_A_ w);
3450}
3451
2477#if 0 3452#if 0
2478static void 3453static void
2479embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3454embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2480{ 3455{
2481 ev_idle_stop (EV_A_ idle); 3456 ev_idle_stop (EV_A_ idle);
2487{ 3462{
2488 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
2489 return; 3464 return;
2490 3465
2491 { 3466 {
2492 struct ev_loop *loop = w->other; 3467 EV_P = w->other;
2493 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3468 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2494 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3469 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2495 } 3470 }
3471
3472 EV_FREQUENT_CHECK;
2496 3473
2497 ev_set_priority (&w->io, ev_priority (w)); 3474 ev_set_priority (&w->io, ev_priority (w));
2498 ev_io_start (EV_A_ &w->io); 3475 ev_io_start (EV_A_ &w->io);
2499 3476
2500 ev_prepare_init (&w->prepare, embed_prepare_cb); 3477 ev_prepare_init (&w->prepare, embed_prepare_cb);
2501 ev_set_priority (&w->prepare, EV_MINPRI); 3478 ev_set_priority (&w->prepare, EV_MINPRI);
2502 ev_prepare_start (EV_A_ &w->prepare); 3479 ev_prepare_start (EV_A_ &w->prepare);
2503 3480
3481 ev_fork_init (&w->fork, embed_fork_cb);
3482 ev_fork_start (EV_A_ &w->fork);
3483
2504 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3484 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2505 3485
2506 ev_start (EV_A_ (W)w, 1); 3486 ev_start (EV_A_ (W)w, 1);
3487
3488 EV_FREQUENT_CHECK;
2507} 3489}
2508 3490
2509void 3491void
2510ev_embed_stop (EV_P_ ev_embed *w) 3492ev_embed_stop (EV_P_ ev_embed *w)
2511{ 3493{
2512 clear_pending (EV_A_ (W)w); 3494 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3495 if (expect_false (!ev_is_active (w)))
2514 return; 3496 return;
2515 3497
3498 EV_FREQUENT_CHECK;
3499
2516 ev_io_stop (EV_A_ &w->io); 3500 ev_io_stop (EV_A_ &w->io);
2517 ev_prepare_stop (EV_A_ &w->prepare); 3501 ev_prepare_stop (EV_A_ &w->prepare);
3502 ev_fork_stop (EV_A_ &w->fork);
2518 3503
2519 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2520} 3507}
2521#endif 3508#endif
2522 3509
2523#if EV_FORK_ENABLE 3510#if EV_FORK_ENABLE
2524void 3511void
2525ev_fork_start (EV_P_ ev_fork *w) 3512ev_fork_start (EV_P_ ev_fork *w)
2526{ 3513{
2527 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2528 return; 3515 return;
3516
3517 EV_FREQUENT_CHECK;
2529 3518
2530 ev_start (EV_A_ (W)w, ++forkcnt); 3519 ev_start (EV_A_ (W)w, ++forkcnt);
2531 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3520 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2532 forks [forkcnt - 1] = w; 3521 forks [forkcnt - 1] = w;
3522
3523 EV_FREQUENT_CHECK;
2533} 3524}
2534 3525
2535void 3526void
2536ev_fork_stop (EV_P_ ev_fork *w) 3527ev_fork_stop (EV_P_ ev_fork *w)
2537{ 3528{
2538 clear_pending (EV_A_ (W)w); 3529 clear_pending (EV_A_ (W)w);
2539 if (expect_false (!ev_is_active (w))) 3530 if (expect_false (!ev_is_active (w)))
2540 return; 3531 return;
2541 3532
3533 EV_FREQUENT_CHECK;
3534
2542 { 3535 {
2543 int active = ev_active (w); 3536 int active = ev_active (w);
2544 3537
2545 forks [active - 1] = forks [--forkcnt]; 3538 forks [active - 1] = forks [--forkcnt];
2546 ev_active (forks [active - 1]) = active; 3539 ev_active (forks [active - 1]) = active;
2547 } 3540 }
2548 3541
2549 ev_stop (EV_A_ (W)w); 3542 ev_stop (EV_A_ (W)w);
3543
3544 EV_FREQUENT_CHECK;
2550} 3545}
2551#endif 3546#endif
2552 3547
2553#if EV_ASYNC_ENABLE 3548#if EV_ASYNC_ENABLE
2554void 3549void
2556{ 3551{
2557 if (expect_false (ev_is_active (w))) 3552 if (expect_false (ev_is_active (w)))
2558 return; 3553 return;
2559 3554
2560 evpipe_init (EV_A); 3555 evpipe_init (EV_A);
3556
3557 EV_FREQUENT_CHECK;
2561 3558
2562 ev_start (EV_A_ (W)w, ++asynccnt); 3559 ev_start (EV_A_ (W)w, ++asynccnt);
2563 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2564 asyncs [asynccnt - 1] = w; 3561 asyncs [asynccnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
2565} 3564}
2566 3565
2567void 3566void
2568ev_async_stop (EV_P_ ev_async *w) 3567ev_async_stop (EV_P_ ev_async *w)
2569{ 3568{
2570 clear_pending (EV_A_ (W)w); 3569 clear_pending (EV_A_ (W)w);
2571 if (expect_false (!ev_is_active (w))) 3570 if (expect_false (!ev_is_active (w)))
2572 return; 3571 return;
2573 3572
3573 EV_FREQUENT_CHECK;
3574
2574 { 3575 {
2575 int active = ev_active (w); 3576 int active = ev_active (w);
2576 3577
2577 asyncs [active - 1] = asyncs [--asynccnt]; 3578 asyncs [active - 1] = asyncs [--asynccnt];
2578 ev_active (asyncs [active - 1]) = active; 3579 ev_active (asyncs [active - 1]) = active;
2579 } 3580 }
2580 3581
2581 ev_stop (EV_A_ (W)w); 3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
2582} 3585}
2583 3586
2584void 3587void
2585ev_async_send (EV_P_ ev_async *w) 3588ev_async_send (EV_P_ ev_async *w)
2586{ 3589{
2587 w->sent = 1; 3590 w->sent = 1;
2588 evpipe_write (EV_A_ &gotasync); 3591 evpipe_write (EV_A_ &async_pending);
2589} 3592}
2590#endif 3593#endif
2591 3594
2592/*****************************************************************************/ 3595/*****************************************************************************/
2593 3596
2603once_cb (EV_P_ struct ev_once *once, int revents) 3606once_cb (EV_P_ struct ev_once *once, int revents)
2604{ 3607{
2605 void (*cb)(int revents, void *arg) = once->cb; 3608 void (*cb)(int revents, void *arg) = once->cb;
2606 void *arg = once->arg; 3609 void *arg = once->arg;
2607 3610
2608 ev_io_stop (EV_A_ &once->io); 3611 ev_io_stop (EV_A_ &once->io);
2609 ev_timer_stop (EV_A_ &once->to); 3612 ev_timer_stop (EV_A_ &once->to);
2610 ev_free (once); 3613 ev_free (once);
2611 3614
2612 cb (revents, arg); 3615 cb (revents, arg);
2613} 3616}
2614 3617
2615static void 3618static void
2616once_cb_io (EV_P_ ev_io *w, int revents) 3619once_cb_io (EV_P_ ev_io *w, int revents)
2617{ 3620{
2618 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3622
3623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2619} 3624}
2620 3625
2621static void 3626static void
2622once_cb_to (EV_P_ ev_timer *w, int revents) 3627once_cb_to (EV_P_ ev_timer *w, int revents)
2623{ 3628{
2624 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2625} 3632}
2626 3633
2627void 3634void
2628ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3635ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2629{ 3636{
2630 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3637 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2631 3638
2632 if (expect_false (!once)) 3639 if (expect_false (!once))
2633 { 3640 {
2634 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3641 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2635 return; 3642 return;
2636 } 3643 }
2637 3644
2638 once->cb = cb; 3645 once->cb = cb;
2639 once->arg = arg; 3646 once->arg = arg;
2651 ev_timer_set (&once->to, timeout, 0.); 3658 ev_timer_set (&once->to, timeout, 0.);
2652 ev_timer_start (EV_A_ &once->to); 3659 ev_timer_start (EV_A_ &once->to);
2653 } 3660 }
2654} 3661}
2655 3662
3663/*****************************************************************************/
3664
3665#if EV_WALK_ENABLE
3666void
3667ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3668{
3669 int i, j;
3670 ev_watcher_list *wl, *wn;
3671
3672 if (types & (EV_IO | EV_EMBED))
3673 for (i = 0; i < anfdmax; ++i)
3674 for (wl = anfds [i].head; wl; )
3675 {
3676 wn = wl->next;
3677
3678#if EV_EMBED_ENABLE
3679 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3680 {
3681 if (types & EV_EMBED)
3682 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3683 }
3684 else
3685#endif
3686#if EV_USE_INOTIFY
3687 if (ev_cb ((ev_io *)wl) == infy_cb)
3688 ;
3689 else
3690#endif
3691 if ((ev_io *)wl != &pipe_w)
3692 if (types & EV_IO)
3693 cb (EV_A_ EV_IO, wl);
3694
3695 wl = wn;
3696 }
3697
3698 if (types & (EV_TIMER | EV_STAT))
3699 for (i = timercnt + HEAP0; i-- > HEAP0; )
3700#if EV_STAT_ENABLE
3701 /*TODO: timer is not always active*/
3702 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3703 {
3704 if (types & EV_STAT)
3705 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3706 }
3707 else
3708#endif
3709 if (types & EV_TIMER)
3710 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3711
3712#if EV_PERIODIC_ENABLE
3713 if (types & EV_PERIODIC)
3714 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3715 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3716#endif
3717
3718#if EV_IDLE_ENABLE
3719 if (types & EV_IDLE)
3720 for (j = NUMPRI; i--; )
3721 for (i = idlecnt [j]; i--; )
3722 cb (EV_A_ EV_IDLE, idles [j][i]);
3723#endif
3724
3725#if EV_FORK_ENABLE
3726 if (types & EV_FORK)
3727 for (i = forkcnt; i--; )
3728 if (ev_cb (forks [i]) != embed_fork_cb)
3729 cb (EV_A_ EV_FORK, forks [i]);
3730#endif
3731
3732#if EV_ASYNC_ENABLE
3733 if (types & EV_ASYNC)
3734 for (i = asynccnt; i--; )
3735 cb (EV_A_ EV_ASYNC, asyncs [i]);
3736#endif
3737
3738#if EV_PREPARE_ENABLE
3739 if (types & EV_PREPARE)
3740 for (i = preparecnt; i--; )
3741# if EV_EMBED_ENABLE
3742 if (ev_cb (prepares [i]) != embed_prepare_cb)
3743# endif
3744 cb (EV_A_ EV_PREPARE, prepares [i]);
3745#endif
3746
3747#if EV_CHECK_ENABLE
3748 if (types & EV_CHECK)
3749 for (i = checkcnt; i--; )
3750 cb (EV_A_ EV_CHECK, checks [i]);
3751#endif
3752
3753#if EV_SIGNAL_ENABLE
3754 if (types & EV_SIGNAL)
3755 for (i = 0; i < EV_NSIG - 1; ++i)
3756 for (wl = signals [i].head; wl; )
3757 {
3758 wn = wl->next;
3759 cb (EV_A_ EV_SIGNAL, wl);
3760 wl = wn;
3761 }
3762#endif
3763
3764#if EV_CHILD_ENABLE
3765 if (types & EV_CHILD)
3766 for (i = (EV_PID_HASHSIZE); i--; )
3767 for (wl = childs [i]; wl; )
3768 {
3769 wn = wl->next;
3770 cb (EV_A_ EV_CHILD, wl);
3771 wl = wn;
3772 }
3773#endif
3774/* EV_STAT 0x00001000 /* stat data changed */
3775/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3776}
3777#endif
3778
2656#if EV_MULTIPLICITY 3779#if EV_MULTIPLICITY
2657 #include "ev_wrap.h" 3780 #include "ev_wrap.h"
2658#endif 3781#endif
2659 3782
2660#ifdef __cplusplus 3783#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines