ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.341 by root, Tue Mar 16 20:48:29 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
65# endif 79# endif
66# endif 80# endif
67 81
68# ifndef EV_USE_NANOSLEEP 82# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP 83# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
71# else 85# else
72# define EV_USE_NANOSLEEP 0 86# define EV_USE_NANOSLEEP 0
73# endif 87# endif
74# endif 88# endif
75 89
76# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1 92# define EV_USE_SELECT EV_FEATURE_BACKENDS
79# else 93# else
80# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
81# endif 95# endif
82# endif 96# endif
83 97
84# ifndef EV_USE_POLL 98# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1 100# define EV_USE_POLL EV_FEATURE_BACKENDS
87# else 101# else
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif 103# endif
90# endif 104# endif
91 105
92# ifndef EV_USE_EPOLL 106# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# else 109# else
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
107 121
108# ifndef EV_USE_PORT 122# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# define EV_USE_PORT EV_FEATURE_BACKENDS
111# else 125# else
112# define EV_USE_PORT 0 126# define EV_USE_PORT 0
113# endif 127# endif
114# endif 128# endif
115 129
116# ifndef EV_USE_INOTIFY 130# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 132# define EV_USE_INOTIFY EV_FEATURE_OS
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD EV_FEATURE_OS
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD EV_FEATURE_OS
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
168#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
169# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
170#endif 236#endif
171 237
172#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 240#endif
175 241
176#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
177# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
178#endif 248#endif
179 249
180#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 252#endif
183 253
184#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
185# ifdef _WIN32 255# ifdef _WIN32
186# define EV_USE_POLL 0 256# define EV_USE_POLL 0
187# else 257# else
188# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 259# endif
190#endif 260#endif
191 261
192#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 265# else
196# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
197# endif 267# endif
198#endif 268#endif
199 269
205# define EV_USE_PORT 0 275# define EV_USE_PORT 0
206#endif 276#endif
207 277
208#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 280# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 281# else
212# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
213# endif 283# endif
214#endif 284#endif
215 285
216#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 288#endif
223 289
224#ifndef EV_INOTIFY_HASHSIZE 290#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 292#endif
231 293
232#ifndef EV_USE_EVENTFD 294#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 296# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 297# else
236# define EV_USE_EVENTFD 0 298# define EV_USE_EVENTFD 0
237# endif 299# endif
238#endif 300#endif
239 301
302#ifndef EV_USE_SIGNALFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_SIGNALFD EV_FEATURE_OS
305# else
306# define EV_USE_SIGNALFD 0
307# endif
308#endif
309
310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
241 349
242#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
245#endif 353#endif
259# include <sys/select.h> 367# include <sys/select.h>
260# endif 368# endif
261#endif 369#endif
262 370
263#if EV_USE_INOTIFY 371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
264# include <sys/inotify.h> 374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
265#endif 380#endif
266 381
267#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 383# include <winsock.h>
269#endif 384#endif
270 385
271#if EV_USE_EVENTFD 386#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
391# endif
392# ifndef EFD_CLOEXEC
393# ifdef O_CLOEXEC
394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
398# endif
274# ifdef __cplusplus 399# ifdef __cplusplus
275extern "C" { 400extern "C" {
276# endif 401# endif
277int eventfd (unsigned int initval, int flags); 402int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 403# ifdef __cplusplus
279} 404}
280# endif 405# endif
281#endif 406#endif
282 407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
436
283/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
284 444
285/* 445/*
286 * This is used to avoid floating point rounding problems. 446 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 447 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 448 * to ensure progress, time-wise, even when rounding
292 */ 452 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 454
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 457
299#if __GNUC__ >= 4 458#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
302#else 461#else
309 468
310#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 471#define inline_size static inline
313 472
314#if EV_MINIMAL 473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
315# define inline_speed static noinline 476# define inline_speed static noinline
477#endif
478
479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
316#else 483#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
322 486
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
325 489
326typedef ev_watcher *W; 490typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
329 493
330#define ev_active(w) ((W)(w))->active 494#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 495#define ev_at(w) ((WT)(w))->at
332 496
333#if EV_USE_MONOTONIC 497#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 515#endif
338 516
339#ifdef _WIN32 517#ifdef _WIN32
340# include "ev_win32.c" 518# include "ev_win32.c"
341#endif 519#endif
342 520
343/*****************************************************************************/ 521/*****************************************************************************/
344 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
345static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
346 532
347void 533void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 535{
350 syserr_cb = cb; 536 syserr_cb = cb;
351} 537}
352 538
353static void noinline 539static void noinline
354syserr (const char *msg) 540ev_syserr (const char *msg)
355{ 541{
356 if (!msg) 542 if (!msg)
357 msg = "(libev) system error"; 543 msg = "(libev) system error";
358 544
359 if (syserr_cb) 545 if (syserr_cb)
360 syserr_cb (msg); 546 syserr_cb (msg);
361 else 547 else
362 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
363 perror (msg); 557 perror (msg);
558#endif
364 abort (); 559 abort ();
365 } 560 }
366} 561}
367 562
368static void * 563static void *
369ev_realloc_emul (void *ptr, long size) 564ev_realloc_emul (void *ptr, long size)
370{ 565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
371 /* some systems, notably openbsd and darwin, fail to properly 569 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 570 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 571 * the single unix specification, so work around them here.
374 */ 572 */
375 573
376 if (size) 574 if (size)
377 return realloc (ptr, size); 575 return realloc (ptr, size);
378 576
379 free (ptr); 577 free (ptr);
380 return 0; 578 return 0;
579#endif
381} 580}
382 581
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 583
385void 584void
393{ 592{
394 ptr = alloc (ptr, size); 593 ptr = alloc (ptr, size);
395 594
396 if (!ptr && size) 595 if (!ptr && size)
397 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
399 abort (); 602 abort ();
400 } 603 }
401 604
402 return ptr; 605 return ptr;
403} 606}
405#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
407 610
408/*****************************************************************************/ 611/*****************************************************************************/
409 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
410typedef struct 617typedef struct
411{ 618{
412 WL head; 619 WL head;
413 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
415#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 628 SOCKET handle;
417#endif 629#endif
418} ANFD; 630} ANFD;
419 631
632/* stores the pending event set for a given watcher */
420typedef struct 633typedef struct
421{ 634{
422 W w; 635 W w;
423 int events; 636 int events; /* the pending event set for the given watcher */
424} ANPENDING; 637} ANPENDING;
425 638
426#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
427typedef struct 641typedef struct
428{ 642{
429 WL head; 643 WL head;
430} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
431#endif 665#endif
432 666
433#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
434 668
435 struct ev_loop 669 struct ev_loop
454 688
455 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
456 690
457#endif 691#endif
458 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
459/*****************************************************************************/ 705/*****************************************************************************/
460 706
707#ifndef EV_HAVE_EV_TIME
461ev_tstamp 708ev_tstamp
462ev_time (void) 709ev_time (void)
463{ 710{
464#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
465 struct timespec ts; 714 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 717 }
718#endif
719
469 struct timeval tv; 720 struct timeval tv;
470 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 723}
724#endif
474 725
475ev_tstamp inline_size 726inline_size ev_tstamp
476get_clock (void) 727get_clock (void)
477{ 728{
478#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
480 { 731 {
513 struct timeval tv; 764 struct timeval tv;
514 765
515 tv.tv_sec = (time_t)delay; 766 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
518 select (0, 0, 0, 0, &tv); 772 select (0, 0, 0, 0, &tv);
519#endif 773#endif
520 } 774 }
521} 775}
522 776
523/*****************************************************************************/ 777/*****************************************************************************/
524 778
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 780
527int inline_size 781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
528array_nextsize (int elem, int cur, int cnt) 784array_nextsize (int elem, int cur, int cnt)
529{ 785{
530 int ncur = cur + 1; 786 int ncur = cur + 1;
531 787
532 do 788 do
549array_realloc (int elem, void *base, int *cur, int cnt) 805array_realloc (int elem, void *base, int *cur, int cnt)
550{ 806{
551 *cur = array_nextsize (elem, *cur, cnt); 807 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 808 return ev_realloc (base, elem * *cur);
553} 809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 813
555#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 815 if (expect_false ((cnt) > (cur))) \
557 { \ 816 { \
558 int ocur_ = (cur); \ 817 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 830 }
572#endif 831#endif
573 832
574#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 835
577/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
578 843
579void noinline 844void noinline
580ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
581{ 846{
582 W w_ = (W)w; 847 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 856 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 857 pendings [pri][w_->pending - 1].events = revents;
593 } 858 }
594} 859}
595 860
596void inline_speed 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 878{
599 int i; 879 int i;
600 880
601 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
603} 883}
604 884
605/*****************************************************************************/ 885/*****************************************************************************/
606 886
607void inline_size 887inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
622{ 889{
623 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
624 ev_io *w; 891 ev_io *w;
625 892
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 897 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
632 } 899 }
633} 900}
634 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
635void 913void
636ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 915{
638 if (fd >= 0 && fd < anfdmax) 916 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
640} 918}
641 919
642void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
643fd_reify (EV_P) 923fd_reify (EV_P)
644{ 924{
645 int i; 925 int i;
646 926
647 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 936 events |= (unsigned char)w->events;
657 937
658#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
659 if (events) 939 if (events)
660 { 940 {
661 unsigned long argp; 941 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 944 }
669#endif 945#endif
670 946
671 { 947 {
672 unsigned char o_events = anfd->events; 948 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 949 unsigned char o_reify = anfd->reify;
674 950
675 anfd->reify = 0; 951 anfd->reify = 0;
676 anfd->events = events; 952 anfd->events = events;
677 953
678 if (o_events != events || o_reify & EV_IOFDSET) 954 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 955 backend_modify (EV_A_ fd, o_events, events);
680 } 956 }
681 } 957 }
682 958
683 fdchangecnt = 0; 959 fdchangecnt = 0;
684} 960}
685 961
686void inline_size 962/* something about the given fd changed */
963inline_size void
687fd_change (EV_P_ int fd, int flags) 964fd_change (EV_P_ int fd, int flags)
688{ 965{
689 unsigned char reify = anfds [fd].reify; 966 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 967 anfds [fd].reify |= flags;
691 968
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
697 } 974 }
698} 975}
699 976
700void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
701fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
702{ 980{
703 ev_io *w; 981 ev_io *w;
704 982
705 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 987 }
710} 988}
711 989
712int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
713fd_valid (int fd) 992fd_valid (int fd)
714{ 993{
715#ifdef _WIN32 994#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 996#else
718 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
719#endif 998#endif
720} 999}
721 1000
725{ 1004{
726 int fd; 1005 int fd;
727 1006
728 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1008 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
732} 1011}
733 1012
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1014static void noinline
739 1018
740 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1020 if (anfds [fd].events)
742 { 1021 {
743 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
744 return; 1023 break;
745 } 1024 }
746} 1025}
747 1026
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1028static void noinline
753 1032
754 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1034 if (anfds [fd].events)
756 { 1035 {
757 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
1037 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1039 }
760} 1040}
761 1041
1042/* used to prepare libev internal fd's */
1043/* this is not fork-safe */
1044inline_speed void
1045fd_intern (int fd)
1046{
1047#ifdef _WIN32
1048 unsigned long arg = 1;
1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1050#else
1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
1052 fcntl (fd, F_SETFL, O_NONBLOCK);
1053#endif
1054}
1055
762/*****************************************************************************/ 1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
763 1063
764/* 1064/*
765 * at the moment we allow libev the luxury of two heaps, 1065 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1067 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1068 * the difference is about 5% with 50000+ watchers.
769 */ 1069 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1070#if EV_USE_4HEAP
772 1071
1072#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
774 1076
775/* towards the root */ 1077/* away from the root */
776void inline_speed 1078inline_speed void
777upheap (WT *heap, int k) 1079downheap (ANHE *heap, int N, int k)
778{ 1080{
779 WT w = heap [k]; 1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
780 1083
781 for (;;) 1084 for (;;)
782 { 1085 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 1086 ev_tstamp minat;
807 WT *minpos; 1087 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 1089
810 // find minimum child 1090 /* find minimum child */
811 if (expect_true (pos +3 < E)) 1091 if (expect_true (pos + DHEAP - 1 < E))
812 { 1092 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 1104 }
818 else 1105 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 1106 break;
831 1107
832 ev_active (*minpos) = k; 1108 if (ANHE_at (he) <= minat)
1109 break;
1110
833 heap [k] = *minpos; 1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
834 1113
835 k = minpos - heap; 1114 k = minpos - heap;
836 } 1115 }
837 1116
838 heap [k] = w; 1117 heap [k] = he;
839 ev_active (heap [k]) = k; 1118 ev_active (ANHE_w (he)) = k;
840} 1119}
841 1120
842#else // 4HEAP 1121#else /* 4HEAP */
843 1122
844#define HEAP0 1 1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
845 1126
846/* towards the root */ 1127/* away from the root */
847void inline_speed 1128inline_speed void
848upheap (WT *heap, int k) 1129downheap (ANHE *heap, int N, int k)
849{ 1130{
850 WT w = heap [k]; 1131 ANHE he = heap [k];
851 1132
852 for (;;) 1133 for (;;)
853 { 1134 {
854 int p = k >> 1; 1135 int c = k << 1;
855 1136
856 /* maybe we could use a dummy element at heap [0]? */ 1137 if (c >= N + HEAP0)
857 if (!p || heap [p]->at <= w->at)
858 break; 1138 break;
859 1139
860 heap [k] = heap [p]; 1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 1141 ? 1 : 0;
862 k = p;
863 }
864 1142
865 heap [k] = w; 1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 1144 break;
881 1145
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 1146 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 1147 ev_active (ANHE_w (heap [k])) = k;
890 1148
891 k = c; 1149 k = c;
892 } 1150 }
893 1151
894 heap [k] = w; 1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1171 ev_active (ANHE_w (heap [k])) = k;
896} 1172 k = p;
897#endif 1173 }
898 1174
899void inline_size 1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
900adjustheap (WT *heap, int N, int k) 1181adjustheap (ANHE *heap, int N, int k)
901{ 1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
902 upheap (heap, k); 1184 upheap (heap, k);
1185 else
903 downheap (heap, N, k); 1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
904} 1199}
905 1200
906/*****************************************************************************/ 1201/*****************************************************************************/
907 1202
1203/* associate signal watchers to a signal signal */
908typedef struct 1204typedef struct
909{ 1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
910 WL head; 1210 WL head;
911 EV_ATOMIC_T gotsig;
912} ANSIG; 1211} ANSIG;
913 1212
914static ANSIG *signals; 1213static ANSIG signals [EV_NSIG - 1];
915static int signalmax;
916
917static EV_ATOMIC_T gotsig;
918
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930 1214
931/*****************************************************************************/ 1215/*****************************************************************************/
932 1216
933void inline_speed 1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
934fd_intern (int fd)
935{
936#ifdef _WIN32
937 int arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif
943}
944 1218
945static void noinline 1219static void noinline
946evpipe_init (EV_P) 1220evpipe_init (EV_P)
947{ 1221{
948 if (!ev_is_active (&pipeev)) 1222 if (!ev_is_active (&pipe_w))
949 { 1223 {
950#if EV_USE_EVENTFD 1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
951 if ((evfd = eventfd (0, 0)) >= 0) 1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
952 { 1230 {
953 evpipe [0] = -1; 1231 evpipe [0] = -1;
954 fd_intern (evfd); 1232 fd_intern (evfd); /* doing it twice doesn't hurt */
955 ev_io_set (&pipeev, evfd, EV_READ); 1233 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1234 }
957 else 1235 else
958#endif 1236# endif
959 { 1237 {
960 while (pipe (evpipe)) 1238 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1239 ev_syserr ("(libev) error creating signal/async pipe");
962 1240
963 fd_intern (evpipe [0]); 1241 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1242 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1244 }
967 1245
968 ev_io_start (EV_A_ &pipeev); 1246 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1248 }
971} 1249}
972 1250
973void inline_size 1251inline_size void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1253{
976 if (!*flag) 1254 if (!*flag)
977 { 1255 {
978 int old_errno = errno; /* save errno because write might clobber it */ 1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
979 1258
980 *flag = 1; 1259 *flag = 1;
981 1260
982#if EV_USE_EVENTFD 1261#if EV_USE_EVENTFD
983 if (evfd >= 0) 1262 if (evfd >= 0)
985 uint64_t counter = 1; 1264 uint64_t counter = 1;
986 write (evfd, &counter, sizeof (uint64_t)); 1265 write (evfd, &counter, sizeof (uint64_t));
987 } 1266 }
988 else 1267 else
989#endif 1268#endif
990 write (evpipe [1], &old_errno, 1); 1269 write (evpipe [1], &dummy, 1);
991 1270
992 errno = old_errno; 1271 errno = old_errno;
993 } 1272 }
994} 1273}
995 1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
996static void 1277static void
997pipecb (EV_P_ ev_io *iow, int revents) 1278pipecb (EV_P_ ev_io *iow, int revents)
998{ 1279{
1280 int i;
1281
999#if EV_USE_EVENTFD 1282#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1283 if (evfd >= 0)
1001 { 1284 {
1002 uint64_t counter; 1285 uint64_t counter;
1003 read (evfd, &counter, sizeof (uint64_t)); 1286 read (evfd, &counter, sizeof (uint64_t));
1007 { 1290 {
1008 char dummy; 1291 char dummy;
1009 read (evpipe [0], &dummy, 1); 1292 read (evpipe [0], &dummy, 1);
1010 } 1293 }
1011 1294
1012 if (gotsig && ev_is_default_loop (EV_A)) 1295 if (sig_pending)
1013 { 1296 {
1014 int signum; 1297 sig_pending = 0;
1015 gotsig = 0;
1016 1298
1017 for (signum = signalmax; signum--; ) 1299 for (i = EV_NSIG - 1; i--; )
1018 if (signals [signum].gotsig) 1300 if (expect_false (signals [i].pending))
1019 ev_feed_signal_event (EV_A_ signum + 1); 1301 ev_feed_signal_event (EV_A_ i + 1);
1020 } 1302 }
1021 1303
1022#if EV_ASYNC_ENABLE 1304#if EV_ASYNC_ENABLE
1023 if (gotasync) 1305 if (async_pending)
1024 { 1306 {
1025 int i; 1307 async_pending = 0;
1026 gotasync = 0;
1027 1308
1028 for (i = asynccnt; i--; ) 1309 for (i = asynccnt; i--; )
1029 if (asyncs [i]->sent) 1310 if (asyncs [i]->sent)
1030 { 1311 {
1031 asyncs [i]->sent = 0; 1312 asyncs [i]->sent = 0;
1039 1320
1040static void 1321static void
1041ev_sighandler (int signum) 1322ev_sighandler (int signum)
1042{ 1323{
1043#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
1044 struct ev_loop *loop = &default_loop_struct; 1325 EV_P = signals [signum - 1].loop;
1045#endif 1326#endif
1046 1327
1047#if _WIN32 1328#ifdef _WIN32
1048 signal (signum, ev_sighandler); 1329 signal (signum, ev_sighandler);
1049#endif 1330#endif
1050 1331
1051 signals [signum - 1].gotsig = 1; 1332 signals [signum - 1].pending = 1;
1052 evpipe_write (EV_A_ &gotsig); 1333 evpipe_write (EV_A_ &sig_pending);
1053} 1334}
1054 1335
1055void noinline 1336void noinline
1056ev_feed_signal_event (EV_P_ int signum) 1337ev_feed_signal_event (EV_P_ int signum)
1057{ 1338{
1058 WL w; 1339 WL w;
1059 1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1060#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1347 /* it is permissible to try to feed a signal to the wrong loop */
1062#endif 1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1063 1349
1064 --signum; 1350 if (expect_false (signals [signum].loop != EV_A))
1065
1066 if (signum < 0 || signum >= signalmax)
1067 return; 1351 return;
1352#endif
1068 1353
1069 signals [signum].gotsig = 0; 1354 signals [signum].pending = 0;
1070 1355
1071 for (w = signals [signum].head; w; w = w->next) 1356 for (w = signals [signum].head; w; w = w->next)
1072 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1073} 1358}
1074 1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
1075/*****************************************************************************/ 1382/*****************************************************************************/
1076 1383
1384#if EV_CHILD_ENABLE
1077static WL childs [EV_PID_HASHSIZE]; 1385static WL childs [EV_PID_HASHSIZE];
1078
1079#ifndef _WIN32
1080 1386
1081static ev_signal childev; 1387static ev_signal childev;
1082 1388
1083#ifndef WIFCONTINUED 1389#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 1390# define WIFCONTINUED(status) 0
1085#endif 1391#endif
1086 1392
1087void inline_speed 1393/* handle a single child status event */
1394inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
1089{ 1396{
1090 ev_child *w; 1397 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 1399
1093 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1094 { 1401 {
1095 if ((w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1096 && (!traced || (w->flags & 1))) 1403 && (!traced || (w->flags & 1)))
1097 { 1404 {
1098 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1105 1412
1106#ifndef WCONTINUED 1413#ifndef WCONTINUED
1107# define WCONTINUED 0 1414# define WCONTINUED 0
1108#endif 1415#endif
1109 1416
1417/* called on sigchld etc., calls waitpid */
1110static void 1418static void
1111childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
1112{ 1420{
1113 int pid, status; 1421 int pid, status;
1114 1422
1122 /* make sure we are called again until all children have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
1123 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
1124 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1125 1433
1126 child_reap (EV_A_ pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
1127 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
1128 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1129} 1437}
1130 1438
1131#endif 1439#endif
1132 1440
1195 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
1198#endif 1506#endif
1199#ifdef __APPLE__ 1507#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1202#endif 1511#endif
1203 1512
1204 return flags; 1513 return flags;
1205} 1514}
1206 1515
1220ev_backend (EV_P) 1529ev_backend (EV_P)
1221{ 1530{
1222 return backend; 1531 return backend;
1223} 1532}
1224 1533
1534#if EV_FEATURE_API
1225unsigned int 1535unsigned int
1226ev_loop_count (EV_P) 1536ev_iteration (EV_P)
1227{ 1537{
1228 return loop_count; 1538 return loop_count;
1229} 1539}
1230 1540
1541unsigned int
1542ev_depth (EV_P)
1543{
1544 return loop_depth;
1545}
1546
1231void 1547void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1548ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{ 1549{
1234 io_blocktime = interval; 1550 io_blocktime = interval;
1235} 1551}
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1554ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{ 1555{
1240 timeout_blocktime = interval; 1556 timeout_blocktime = interval;
1241} 1557}
1242 1558
1559void
1560ev_set_userdata (EV_P_ void *data)
1561{
1562 userdata = data;
1563}
1564
1565void *
1566ev_userdata (EV_P)
1567{
1568 return userdata;
1569}
1570
1571void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1572{
1573 invoke_cb = invoke_pending_cb;
1574}
1575
1576void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1577{
1578 release_cb = release;
1579 acquire_cb = acquire;
1580}
1581#endif
1582
1583/* initialise a loop structure, must be zero-initialised */
1243static void noinline 1584static void noinline
1244loop_init (EV_P_ unsigned int flags) 1585loop_init (EV_P_ unsigned int flags)
1245{ 1586{
1246 if (!backend) 1587 if (!backend)
1247 { 1588 {
1589#if EV_USE_REALTIME
1590 if (!have_realtime)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_REALTIME, &ts))
1595 have_realtime = 1;
1596 }
1597#endif
1598
1248#if EV_USE_MONOTONIC 1599#if EV_USE_MONOTONIC
1600 if (!have_monotonic)
1249 { 1601 {
1250 struct timespec ts; 1602 struct timespec ts;
1603
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 1605 have_monotonic = 1;
1253 } 1606 }
1254#endif 1607#endif
1608
1609 /* pid check not overridable via env */
1610#ifndef _WIN32
1611 if (flags & EVFLAG_FORKCHECK)
1612 curpid = getpid ();
1613#endif
1614
1615 if (!(flags & EVFLAG_NOENV)
1616 && !enable_secure ()
1617 && getenv ("LIBEV_FLAGS"))
1618 flags = atoi (getenv ("LIBEV_FLAGS"));
1255 1619
1256 ev_rt_now = ev_time (); 1620 ev_rt_now = ev_time ();
1257 mn_now = get_clock (); 1621 mn_now = get_clock ();
1258 now_floor = mn_now; 1622 now_floor = mn_now;
1259 rtmn_diff = ev_rt_now - mn_now; 1623 rtmn_diff = ev_rt_now - mn_now;
1624#if EV_FEATURE_API
1625 invoke_cb = ev_invoke_pending;
1626#endif
1260 1627
1261 io_blocktime = 0.; 1628 io_blocktime = 0.;
1262 timeout_blocktime = 0.; 1629 timeout_blocktime = 0.;
1263 backend = 0; 1630 backend = 0;
1264 backend_fd = -1; 1631 backend_fd = -1;
1265 gotasync = 0; 1632 sig_pending = 0;
1633#if EV_ASYNC_ENABLE
1634 async_pending = 0;
1635#endif
1266#if EV_USE_INOTIFY 1636#if EV_USE_INOTIFY
1267 fs_fd = -2; 1637 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1268#endif 1638#endif
1269 1639#if EV_USE_SIGNALFD
1270 /* pid check not overridable via env */ 1640 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1271#ifndef _WIN32
1272 if (flags & EVFLAG_FORKCHECK)
1273 curpid = getpid ();
1274#endif 1641#endif
1275
1276 if (!(flags & EVFLAG_NOENV)
1277 && !enable_secure ()
1278 && getenv ("LIBEV_FLAGS"))
1279 flags = atoi (getenv ("LIBEV_FLAGS"));
1280 1642
1281 if (!(flags & 0x0000ffffU)) 1643 if (!(flags & 0x0000ffffU))
1282 flags |= ev_recommended_backends (); 1644 flags |= ev_recommended_backends ();
1283 1645
1284#if EV_USE_PORT 1646#if EV_USE_PORT
1295#endif 1657#endif
1296#if EV_USE_SELECT 1658#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 1660#endif
1299 1661
1662 ev_prepare_init (&pending_w, pendingcb);
1663
1664#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1300 ev_init (&pipeev, pipecb); 1665 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 1666 ev_set_priority (&pipe_w, EV_MAXPRI);
1667#endif
1302 } 1668 }
1303} 1669}
1304 1670
1671/* free up a loop structure */
1305static void noinline 1672static void noinline
1306loop_destroy (EV_P) 1673loop_destroy (EV_P)
1307{ 1674{
1308 int i; 1675 int i;
1309 1676
1310 if (ev_is_active (&pipeev)) 1677 if (ev_is_active (&pipe_w))
1311 { 1678 {
1312 ev_ref (EV_A); /* signal watcher */ 1679 /*ev_ref (EV_A);*/
1313 ev_io_stop (EV_A_ &pipeev); 1680 /*ev_io_stop (EV_A_ &pipe_w);*/
1314 1681
1315#if EV_USE_EVENTFD 1682#if EV_USE_EVENTFD
1316 if (evfd >= 0) 1683 if (evfd >= 0)
1317 close (evfd); 1684 close (evfd);
1318#endif 1685#endif
1319 1686
1320 if (evpipe [0] >= 0) 1687 if (evpipe [0] >= 0)
1321 { 1688 {
1322 close (evpipe [0]); 1689 EV_WIN32_CLOSE_FD (evpipe [0]);
1323 close (evpipe [1]); 1690 EV_WIN32_CLOSE_FD (evpipe [1]);
1324 } 1691 }
1325 } 1692 }
1693
1694#if EV_USE_SIGNALFD
1695 if (ev_is_active (&sigfd_w))
1696 close (sigfd);
1697#endif
1326 1698
1327#if EV_USE_INOTIFY 1699#if EV_USE_INOTIFY
1328 if (fs_fd >= 0) 1700 if (fs_fd >= 0)
1329 close (fs_fd); 1701 close (fs_fd);
1330#endif 1702#endif
1354#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1355 array_free (idle, [i]); 1727 array_free (idle, [i]);
1356#endif 1728#endif
1357 } 1729 }
1358 1730
1359 ev_free (anfds); anfdmax = 0; 1731 ev_free (anfds); anfds = 0; anfdmax = 0;
1360 1732
1361 /* have to use the microsoft-never-gets-it-right macro */ 1733 /* have to use the microsoft-never-gets-it-right macro */
1734 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 1735 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 1736 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 1737#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 1738 array_free (periodic, EMPTY);
1366#endif 1739#endif
1375 1748
1376 backend = 0; 1749 backend = 0;
1377} 1750}
1378 1751
1379#if EV_USE_INOTIFY 1752#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 1753inline_size void infy_fork (EV_P);
1381#endif 1754#endif
1382 1755
1383void inline_size 1756inline_size void
1384loop_fork (EV_P) 1757loop_fork (EV_P)
1385{ 1758{
1386#if EV_USE_PORT 1759#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1760 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 1761#endif
1394#endif 1767#endif
1395#if EV_USE_INOTIFY 1768#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 1769 infy_fork (EV_A);
1397#endif 1770#endif
1398 1771
1399 if (ev_is_active (&pipeev)) 1772 if (ev_is_active (&pipe_w))
1400 { 1773 {
1401 /* this "locks" the handlers against writing to the pipe */ 1774 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */ 1775 /* while we modify the fd vars */
1403 gotsig = 1; 1776 sig_pending = 1;
1404#if EV_ASYNC_ENABLE 1777#if EV_ASYNC_ENABLE
1405 gotasync = 1; 1778 async_pending = 1;
1406#endif 1779#endif
1407 1780
1408 ev_ref (EV_A); 1781 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 1782 ev_io_stop (EV_A_ &pipe_w);
1410 1783
1411#if EV_USE_EVENTFD 1784#if EV_USE_EVENTFD
1412 if (evfd >= 0) 1785 if (evfd >= 0)
1413 close (evfd); 1786 close (evfd);
1414#endif 1787#endif
1415 1788
1416 if (evpipe [0] >= 0) 1789 if (evpipe [0] >= 0)
1417 { 1790 {
1418 close (evpipe [0]); 1791 EV_WIN32_CLOSE_FD (evpipe [0]);
1419 close (evpipe [1]); 1792 EV_WIN32_CLOSE_FD (evpipe [1]);
1420 } 1793 }
1421 1794
1795#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1422 evpipe_init (EV_A); 1796 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 1797 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 1798 pipecb (EV_A_ &pipe_w, EV_READ);
1799#endif
1425 } 1800 }
1426 1801
1427 postfork = 0; 1802 postfork = 0;
1428} 1803}
1429 1804
1430#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1806
1431struct ev_loop * 1807struct ev_loop *
1432ev_loop_new (unsigned int flags) 1808ev_loop_new (unsigned int flags)
1433{ 1809{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1810 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1811
1436 memset (loop, 0, sizeof (struct ev_loop)); 1812 memset (EV_A, 0, sizeof (struct ev_loop));
1437
1438 loop_init (EV_A_ flags); 1813 loop_init (EV_A_ flags);
1439 1814
1440 if (ev_backend (EV_A)) 1815 if (ev_backend (EV_A))
1441 return loop; 1816 return EV_A;
1442 1817
1443 return 0; 1818 return 0;
1444} 1819}
1445 1820
1446void 1821void
1452 1827
1453void 1828void
1454ev_loop_fork (EV_P) 1829ev_loop_fork (EV_P)
1455{ 1830{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1831 postfork = 1; /* must be in line with ev_default_fork */
1832}
1833#endif /* multiplicity */
1834
1835#if EV_VERIFY
1836static void noinline
1837verify_watcher (EV_P_ W w)
1838{
1839 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1840
1841 if (w->pending)
1842 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1843}
1844
1845static void noinline
1846verify_heap (EV_P_ ANHE *heap, int N)
1847{
1848 int i;
1849
1850 for (i = HEAP0; i < N + HEAP0; ++i)
1851 {
1852 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1853 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1854 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1855
1856 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1857 }
1858}
1859
1860static void noinline
1861array_verify (EV_P_ W *ws, int cnt)
1862{
1863 while (cnt--)
1864 {
1865 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1866 verify_watcher (EV_A_ ws [cnt]);
1867 }
1868}
1869#endif
1870
1871#if EV_FEATURE_API
1872void
1873ev_verify (EV_P)
1874{
1875#if EV_VERIFY
1876 int i;
1877 WL w;
1878
1879 assert (activecnt >= -1);
1880
1881 assert (fdchangemax >= fdchangecnt);
1882 for (i = 0; i < fdchangecnt; ++i)
1883 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1884
1885 assert (anfdmax >= 0);
1886 for (i = 0; i < anfdmax; ++i)
1887 for (w = anfds [i].head; w; w = w->next)
1888 {
1889 verify_watcher (EV_A_ (W)w);
1890 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1891 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1892 }
1893
1894 assert (timermax >= timercnt);
1895 verify_heap (EV_A_ timers, timercnt);
1896
1897#if EV_PERIODIC_ENABLE
1898 assert (periodicmax >= periodiccnt);
1899 verify_heap (EV_A_ periodics, periodiccnt);
1900#endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 assert (pendingmax [i] >= pendingcnt [i]);
1905#if EV_IDLE_ENABLE
1906 assert (idleall >= 0);
1907 assert (idlemax [i] >= idlecnt [i]);
1908 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1909#endif
1910 }
1911
1912#if EV_FORK_ENABLE
1913 assert (forkmax >= forkcnt);
1914 array_verify (EV_A_ (W *)forks, forkcnt);
1915#endif
1916
1917#if EV_ASYNC_ENABLE
1918 assert (asyncmax >= asynccnt);
1919 array_verify (EV_A_ (W *)asyncs, asynccnt);
1920#endif
1921
1922#if EV_PREPARE_ENABLE
1923 assert (preparemax >= preparecnt);
1924 array_verify (EV_A_ (W *)prepares, preparecnt);
1925#endif
1926
1927#if EV_CHECK_ENABLE
1928 assert (checkmax >= checkcnt);
1929 array_verify (EV_A_ (W *)checks, checkcnt);
1930#endif
1931
1932# if 0
1933#if EV_CHILD_ENABLE
1934 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1935 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1936#endif
1937# endif
1938#endif
1457} 1939}
1458#endif 1940#endif
1459 1941
1460#if EV_MULTIPLICITY 1942#if EV_MULTIPLICITY
1461struct ev_loop * 1943struct ev_loop *
1466#endif 1948#endif
1467{ 1949{
1468 if (!ev_default_loop_ptr) 1950 if (!ev_default_loop_ptr)
1469 { 1951 {
1470#if EV_MULTIPLICITY 1952#if EV_MULTIPLICITY
1471 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1953 EV_P = ev_default_loop_ptr = &default_loop_struct;
1472#else 1954#else
1473 ev_default_loop_ptr = 1; 1955 ev_default_loop_ptr = 1;
1474#endif 1956#endif
1475 1957
1476 loop_init (EV_A_ flags); 1958 loop_init (EV_A_ flags);
1477 1959
1478 if (ev_backend (EV_A)) 1960 if (ev_backend (EV_A))
1479 { 1961 {
1480#ifndef _WIN32 1962#if EV_CHILD_ENABLE
1481 ev_signal_init (&childev, childcb, SIGCHLD); 1963 ev_signal_init (&childev, childcb, SIGCHLD);
1482 ev_set_priority (&childev, EV_MAXPRI); 1964 ev_set_priority (&childev, EV_MAXPRI);
1483 ev_signal_start (EV_A_ &childev); 1965 ev_signal_start (EV_A_ &childev);
1484 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1966 ev_unref (EV_A); /* child watcher should not keep loop alive */
1485#endif 1967#endif
1493 1975
1494void 1976void
1495ev_default_destroy (void) 1977ev_default_destroy (void)
1496{ 1978{
1497#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr; 1980 EV_P = ev_default_loop_ptr;
1499#endif 1981#endif
1500 1982
1501#ifndef _WIN32 1983 ev_default_loop_ptr = 0;
1984
1985#if EV_CHILD_ENABLE
1502 ev_ref (EV_A); /* child watcher */ 1986 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev); 1987 ev_signal_stop (EV_A_ &childev);
1504#endif 1988#endif
1505 1989
1506 loop_destroy (EV_A); 1990 loop_destroy (EV_A);
1508 1992
1509void 1993void
1510ev_default_fork (void) 1994ev_default_fork (void)
1511{ 1995{
1512#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr; 1997 EV_P = ev_default_loop_ptr;
1514#endif 1998#endif
1515 1999
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 2000 postfork = 1; /* must be in line with ev_loop_fork */
1518} 2001}
1519 2002
1520/*****************************************************************************/ 2003/*****************************************************************************/
1521 2004
1522void 2005void
1523ev_invoke (EV_P_ void *w, int revents) 2006ev_invoke (EV_P_ void *w, int revents)
1524{ 2007{
1525 EV_CB_INVOKE ((W)w, revents); 2008 EV_CB_INVOKE ((W)w, revents);
1526} 2009}
1527 2010
1528void inline_speed 2011unsigned int
1529call_pending (EV_P) 2012ev_pending_count (EV_P)
2013{
2014 int pri;
2015 unsigned int count = 0;
2016
2017 for (pri = NUMPRI; pri--; )
2018 count += pendingcnt [pri];
2019
2020 return count;
2021}
2022
2023void noinline
2024ev_invoke_pending (EV_P)
1530{ 2025{
1531 int pri; 2026 int pri;
1532 2027
1533 for (pri = NUMPRI; pri--; ) 2028 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 2029 while (pendingcnt [pri])
1535 { 2030 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2031 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 2032
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2033 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2034 /* ^ this is no longer true, as pending_w could be here */
1541 2035
1542 p->w->pending = 0; 2036 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 2037 EV_CB_INVOKE (p->w, p->events);
1544 } 2038 EV_FREQUENT_CHECK;
1545 } 2039 }
1546} 2040}
1547 2041
1548#if EV_IDLE_ENABLE 2042#if EV_IDLE_ENABLE
1549void inline_size 2043/* make idle watchers pending. this handles the "call-idle */
2044/* only when higher priorities are idle" logic */
2045inline_size void
1550idle_reify (EV_P) 2046idle_reify (EV_P)
1551{ 2047{
1552 if (expect_false (idleall)) 2048 if (expect_false (idleall))
1553 { 2049 {
1554 int pri; 2050 int pri;
1566 } 2062 }
1567 } 2063 }
1568} 2064}
1569#endif 2065#endif
1570 2066
1571void inline_size 2067/* make timers pending */
2068inline_size void
1572timers_reify (EV_P) 2069timers_reify (EV_P)
1573{ 2070{
2071 EV_FREQUENT_CHECK;
2072
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2073 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 2074 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 2075 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 2076 {
2077 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->repeat)
2083 {
2084 ev_at (w) += w->repeat;
2085 if (ev_at (w) < mn_now)
2086 ev_at (w) = mn_now;
2087
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2088 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 2089
1585 ev_at (w) += w->repeat; 2090 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 2091 downheap (timers, timercnt, HEAP0);
2092 }
2093 else
2094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2095
2096 EV_FREQUENT_CHECK;
2097 feed_reverse (EV_A_ (W)w);
1590 } 2098 }
1591 else 2099 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 2100
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2101 feed_reverse_done (EV_A_ EV_TIMER);
1595 } 2102 }
1596} 2103}
1597 2104
1598#if EV_PERIODIC_ENABLE 2105#if EV_PERIODIC_ENABLE
1599void inline_size 2106/* make periodics pending */
2107inline_size void
1600periodics_reify (EV_P) 2108periodics_reify (EV_P)
1601{ 2109{
2110 EV_FREQUENT_CHECK;
2111
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2112 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 2113 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2114 int feed_count = 0;
1605 2115
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2116 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 2117 {
2118 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2119
2120 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2121
2122 /* first reschedule or stop timer */
2123 if (w->reschedule_cb)
2124 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2125 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2126
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2127 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2128
2129 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 2130 downheap (periodics, periodiccnt, HEAP0);
2131 }
2132 else if (w->interval)
2133 {
2134 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2135 /* if next trigger time is not sufficiently in the future, put it there */
2136 /* this might happen because of floating point inexactness */
2137 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2138 {
2139 ev_at (w) += w->interval;
2140
2141 /* if interval is unreasonably low we might still have a time in the past */
2142 /* so correct this. this will make the periodic very inexact, but the user */
2143 /* has effectively asked to get triggered more often than possible */
2144 if (ev_at (w) < ev_rt_now)
2145 ev_at (w) = ev_rt_now;
2146 }
2147
2148 ANHE_at_cache (periodics [HEAP0]);
2149 downheap (periodics, periodiccnt, HEAP0);
2150 }
2151 else
2152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2153
2154 EV_FREQUENT_CHECK;
2155 feed_reverse (EV_A_ (W)w);
1614 } 2156 }
1615 else if (w->interval) 2157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 2158
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2159 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 2160 }
1627} 2161}
1628 2162
2163/* simply recalculate all periodics */
2164/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1629static void noinline 2165static void noinline
1630periodics_reschedule (EV_P) 2166periodics_reschedule (EV_P)
1631{ 2167{
1632 int i; 2168 int i;
1633 2169
1634 /* adjust periodics after time jump */ 2170 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 2171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 2172 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 2173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 2174
1639 if (w->reschedule_cb) 2175 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 2177 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2178 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2179
2180 ANHE_at_cache (periodics [i]);
2181 }
2182
2183 reheap (periodics, periodiccnt);
2184}
2185#endif
2186
2187/* adjust all timers by a given offset */
2188static void noinline
2189timers_reschedule (EV_P_ ev_tstamp adjust)
2190{
2191 int i;
2192
2193 for (i = 0; i < timercnt; ++i)
1643 } 2194 {
1644 2195 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 2196 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 2197 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 2198 }
1648} 2199}
1649#endif
1650 2200
1651void inline_speed 2201/* fetch new monotonic and realtime times from the kernel */
2202/* also detect if there was a timejump, and act accordingly */
2203inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 2204time_update (EV_P_ ev_tstamp max_block)
1653{ 2205{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 2206#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 2207 if (expect_true (have_monotonic))
1658 { 2208 {
2209 int i;
1659 ev_tstamp odiff = rtmn_diff; 2210 ev_tstamp odiff = rtmn_diff;
1660 2211
1661 mn_now = get_clock (); 2212 mn_now = get_clock ();
1662 2213
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 ev_rt_now = ev_time (); 2240 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2241 mn_now = get_clock ();
1691 now_floor = mn_now; 2242 now_floor = mn_now;
1692 } 2243 }
1693 2244
2245 /* no timer adjustment, as the monotonic clock doesn't jump */
2246 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2247# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2248 periodics_reschedule (EV_A);
1696# endif 2249# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2250 }
1700 else 2251 else
1701#endif 2252#endif
1702 { 2253 {
1703 ev_rt_now = ev_time (); 2254 ev_rt_now = ev_time ();
1704 2255
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2256 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2257 {
2258 /* adjust timers. this is easy, as the offset is the same for all of them */
2259 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2260#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1709#endif 2262#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2263 }
1714 2264
1715 mn_now = ev_rt_now; 2265 mn_now = ev_rt_now;
1716 } 2266 }
1717} 2267}
1718 2268
1719void 2269void
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2270ev_loop (EV_P_ int flags)
1735{ 2271{
2272#if EV_FEATURE_API
2273 ++loop_depth;
2274#endif
2275
2276 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2277
1736 loop_done = EVUNLOOP_CANCEL; 2278 loop_done = EVUNLOOP_CANCEL;
1737 2279
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2280 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1739 2281
1740 do 2282 do
1741 { 2283 {
2284#if EV_VERIFY >= 2
2285 ev_verify (EV_A);
2286#endif
2287
1742#ifndef _WIN32 2288#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2289 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2290 if (expect_false (getpid () != curpid))
1745 { 2291 {
1746 curpid = getpid (); 2292 curpid = getpid ();
1752 /* we might have forked, so queue fork handlers */ 2298 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork)) 2299 if (expect_false (postfork))
1754 if (forkcnt) 2300 if (forkcnt)
1755 { 2301 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2302 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A); 2303 EV_INVOKE_PENDING;
1758 } 2304 }
1759#endif 2305#endif
1760 2306
2307#if EV_PREPARE_ENABLE
1761 /* queue prepare watchers (and execute them) */ 2308 /* queue prepare watchers (and execute them) */
1762 if (expect_false (preparecnt)) 2309 if (expect_false (preparecnt))
1763 { 2310 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2311 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2312 EV_INVOKE_PENDING;
1766 } 2313 }
2314#endif
1767 2315
1768 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1769 break; 2317 break;
1770 2318
1771 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1773 loop_fork (EV_A); 2321 loop_fork (EV_A);
1780 ev_tstamp waittime = 0.; 2328 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 2329 ev_tstamp sleeptime = 0.;
1782 2330
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1784 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1785 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100); 2337 time_update (EV_A_ 1e100);
1787 2338
1788 waittime = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1789 2340
1790 if (timercnt) 2341 if (timercnt)
1791 { 2342 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 2344 if (waittime > to) waittime = to;
1794 } 2345 }
1795 2346
1796#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 2348 if (periodiccnt)
1798 { 2349 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 2351 if (waittime > to) waittime = to;
1801 } 2352 }
1802#endif 2353#endif
1803 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 2356 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 2357 waittime = timeout_blocktime;
1806 2358
1807 sleeptime = waittime - backend_fudge; 2359 /* extra check because io_blocktime is commonly 0 */
1808
1809 if (expect_true (sleeptime > io_blocktime)) 2360 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
1814 ev_sleep (sleeptime); 2369 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 2370 waittime -= sleeptime;
2371 }
1816 } 2372 }
1817 } 2373 }
1818 2374
2375#if EV_FEATURE_API
1819 ++loop_count; 2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1820 backend_poll (EV_A_ waittime); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1821 2381
1822 /* update ev_rt_now, do magic */ 2382 /* update ev_rt_now, do magic */
1823 time_update (EV_A_ waittime + sleeptime); 2383 time_update (EV_A_ waittime + sleeptime);
1824 } 2384 }
1825 2385
1832#if EV_IDLE_ENABLE 2392#if EV_IDLE_ENABLE
1833 /* queue idle watchers unless other events are pending */ 2393 /* queue idle watchers unless other events are pending */
1834 idle_reify (EV_A); 2394 idle_reify (EV_A);
1835#endif 2395#endif
1836 2396
2397#if EV_CHECK_ENABLE
1837 /* queue check watchers, to be executed first */ 2398 /* queue check watchers, to be executed first */
1838 if (expect_false (checkcnt)) 2399 if (expect_false (checkcnt))
1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2400 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2401#endif
1840 2402
1841 call_pending (EV_A); 2403 EV_INVOKE_PENDING;
1842 } 2404 }
1843 while (expect_true ( 2405 while (expect_true (
1844 activecnt 2406 activecnt
1845 && !loop_done 2407 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2408 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 )); 2409 ));
1848 2410
1849 if (loop_done == EVUNLOOP_ONE) 2411 if (loop_done == EVUNLOOP_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 2412 loop_done = EVUNLOOP_CANCEL;
2413
2414#if EV_FEATURE_API
2415 --loop_depth;
2416#endif
1851} 2417}
1852 2418
1853void 2419void
1854ev_unloop (EV_P_ int how) 2420ev_unloop (EV_P_ int how)
1855{ 2421{
1856 loop_done = how; 2422 loop_done = how;
1857} 2423}
1858 2424
2425void
2426ev_ref (EV_P)
2427{
2428 ++activecnt;
2429}
2430
2431void
2432ev_unref (EV_P)
2433{
2434 --activecnt;
2435}
2436
2437void
2438ev_now_update (EV_P)
2439{
2440 time_update (EV_A_ 1e100);
2441}
2442
2443void
2444ev_suspend (EV_P)
2445{
2446 ev_now_update (EV_A);
2447}
2448
2449void
2450ev_resume (EV_P)
2451{
2452 ev_tstamp mn_prev = mn_now;
2453
2454 ev_now_update (EV_A);
2455 timers_reschedule (EV_A_ mn_now - mn_prev);
2456#if EV_PERIODIC_ENABLE
2457 /* TODO: really do this? */
2458 periodics_reschedule (EV_A);
2459#endif
2460}
2461
1859/*****************************************************************************/ 2462/*****************************************************************************/
2463/* singly-linked list management, used when the expected list length is short */
1860 2464
1861void inline_size 2465inline_size void
1862wlist_add (WL *head, WL elem) 2466wlist_add (WL *head, WL elem)
1863{ 2467{
1864 elem->next = *head; 2468 elem->next = *head;
1865 *head = elem; 2469 *head = elem;
1866} 2470}
1867 2471
1868void inline_size 2472inline_size void
1869wlist_del (WL *head, WL elem) 2473wlist_del (WL *head, WL elem)
1870{ 2474{
1871 while (*head) 2475 while (*head)
1872 { 2476 {
1873 if (*head == elem) 2477 if (expect_true (*head == elem))
1874 { 2478 {
1875 *head = elem->next; 2479 *head = elem->next;
1876 return; 2480 break;
1877 } 2481 }
1878 2482
1879 head = &(*head)->next; 2483 head = &(*head)->next;
1880 } 2484 }
1881} 2485}
1882 2486
1883void inline_speed 2487/* internal, faster, version of ev_clear_pending */
2488inline_speed void
1884clear_pending (EV_P_ W w) 2489clear_pending (EV_P_ W w)
1885{ 2490{
1886 if (w->pending) 2491 if (w->pending)
1887 { 2492 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2493 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 2494 w->pending = 0;
1890 } 2495 }
1891} 2496}
1892 2497
1893int 2498int
1897 int pending = w_->pending; 2502 int pending = w_->pending;
1898 2503
1899 if (expect_true (pending)) 2504 if (expect_true (pending))
1900 { 2505 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2506 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2507 p->w = (W)&pending_w;
1902 w_->pending = 0; 2508 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 2509 return p->events;
1905 } 2510 }
1906 else 2511 else
1907 return 0; 2512 return 0;
1908} 2513}
1909 2514
1910void inline_size 2515inline_size void
1911pri_adjust (EV_P_ W w) 2516pri_adjust (EV_P_ W w)
1912{ 2517{
1913 int pri = w->priority; 2518 int pri = ev_priority (w);
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2519 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2520 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 2521 ev_set_priority (w, pri);
1917} 2522}
1918 2523
1919void inline_speed 2524inline_speed void
1920ev_start (EV_P_ W w, int active) 2525ev_start (EV_P_ W w, int active)
1921{ 2526{
1922 pri_adjust (EV_A_ w); 2527 pri_adjust (EV_A_ w);
1923 w->active = active; 2528 w->active = active;
1924 ev_ref (EV_A); 2529 ev_ref (EV_A);
1925} 2530}
1926 2531
1927void inline_size 2532inline_size void
1928ev_stop (EV_P_ W w) 2533ev_stop (EV_P_ W w)
1929{ 2534{
1930 ev_unref (EV_A); 2535 ev_unref (EV_A);
1931 w->active = 0; 2536 w->active = 0;
1932} 2537}
1939 int fd = w->fd; 2544 int fd = w->fd;
1940 2545
1941 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1942 return; 2547 return;
1943 2548
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2549 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2550 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2551
2552 EV_FREQUENT_CHECK;
1945 2553
1946 ev_start (EV_A_ (W)w, 1); 2554 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2555 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 2556 wlist_add (&anfds[fd].head, (WL)w);
1949 2557
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2558 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1951 w->events &= ~EV_IOFDSET; 2559 w->events &= ~EV__IOFDSET;
2560
2561 EV_FREQUENT_CHECK;
1952} 2562}
1953 2563
1954void noinline 2564void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2565ev_io_stop (EV_P_ ev_io *w)
1956{ 2566{
1957 clear_pending (EV_A_ (W)w); 2567 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2568 if (expect_false (!ev_is_active (w)))
1959 return; 2569 return;
1960 2570
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2571 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2572
2573 EV_FREQUENT_CHECK;
1962 2574
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2575 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2576 ev_stop (EV_A_ (W)w);
1965 2577
1966 fd_change (EV_A_ w->fd, 1); 2578 fd_change (EV_A_ w->fd, 1);
2579
2580 EV_FREQUENT_CHECK;
1967} 2581}
1968 2582
1969void noinline 2583void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2584ev_timer_start (EV_P_ ev_timer *w)
1971{ 2585{
1972 if (expect_false (ev_is_active (w))) 2586 if (expect_false (ev_is_active (w)))
1973 return; 2587 return;
1974 2588
1975 ev_at (w) += mn_now; 2589 ev_at (w) += mn_now;
1976 2590
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2591 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2592
2593 EV_FREQUENT_CHECK;
2594
2595 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2596 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2597 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2598 ANHE_w (timers [ev_active (w)]) = (WT)w;
2599 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2600 upheap (timers, ev_active (w));
1983 2601
2602 EV_FREQUENT_CHECK;
2603
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2604 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2605}
1986 2606
1987void noinline 2607void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2608ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2609{
1990 clear_pending (EV_A_ (W)w); 2610 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2611 if (expect_false (!ev_is_active (w)))
1992 return; 2612 return;
1993 2613
2614 EV_FREQUENT_CHECK;
2615
1994 { 2616 {
1995 int active = ev_active (w); 2617 int active = ev_active (w);
1996 2618
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2619 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2620
2621 --timercnt;
2622
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2623 if (expect_true (active < timercnt + HEAP0))
2000 { 2624 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2625 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2626 adjustheap (timers, timercnt, active);
2003 } 2627 }
2004
2005 --timercnt;
2006 } 2628 }
2007 2629
2008 ev_at (w) -= mn_now; 2630 ev_at (w) -= mn_now;
2009 2631
2010 ev_stop (EV_A_ (W)w); 2632 ev_stop (EV_A_ (W)w);
2633
2634 EV_FREQUENT_CHECK;
2011} 2635}
2012 2636
2013void noinline 2637void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2638ev_timer_again (EV_P_ ev_timer *w)
2015{ 2639{
2640 EV_FREQUENT_CHECK;
2641
2016 if (ev_is_active (w)) 2642 if (ev_is_active (w))
2017 { 2643 {
2018 if (w->repeat) 2644 if (w->repeat)
2019 { 2645 {
2020 ev_at (w) = mn_now + w->repeat; 2646 ev_at (w) = mn_now + w->repeat;
2647 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2648 adjustheap (timers, timercnt, ev_active (w));
2022 } 2649 }
2023 else 2650 else
2024 ev_timer_stop (EV_A_ w); 2651 ev_timer_stop (EV_A_ w);
2025 } 2652 }
2026 else if (w->repeat) 2653 else if (w->repeat)
2027 { 2654 {
2028 ev_at (w) = w->repeat; 2655 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2656 ev_timer_start (EV_A_ w);
2030 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2660}
2661
2662ev_tstamp
2663ev_timer_remaining (EV_P_ ev_timer *w)
2664{
2665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2031} 2666}
2032 2667
2033#if EV_PERIODIC_ENABLE 2668#if EV_PERIODIC_ENABLE
2034void noinline 2669void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2670ev_periodic_start (EV_P_ ev_periodic *w)
2039 2674
2040 if (w->reschedule_cb) 2675 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 2677 else if (w->interval)
2043 { 2678 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 2680 /* this formula differs from the one in periodic_reify because we do not always round up */
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2682 }
2048 else 2683 else
2049 ev_at (w) = w->offset; 2684 ev_at (w) = w->offset;
2050 2685
2686 EV_FREQUENT_CHECK;
2687
2688 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2689 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2690 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2691 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2692 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2693 upheap (periodics, ev_active (w));
2055 2694
2695 EV_FREQUENT_CHECK;
2696
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2697 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2698}
2058 2699
2059void noinline 2700void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2701ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2702{
2062 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2064 return; 2705 return;
2065 2706
2707 EV_FREQUENT_CHECK;
2708
2066 { 2709 {
2067 int active = ev_active (w); 2710 int active = ev_active (w);
2068 2711
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2712 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2713
2714 --periodiccnt;
2715
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2716 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2717 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2718 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2719 adjustheap (periodics, periodiccnt, active);
2075 } 2720 }
2076
2077 --periodiccnt;
2078 } 2721 }
2079 2722
2080 ev_stop (EV_A_ (W)w); 2723 ev_stop (EV_A_ (W)w);
2724
2725 EV_FREQUENT_CHECK;
2081} 2726}
2082 2727
2083void noinline 2728void noinline
2084ev_periodic_again (EV_P_ ev_periodic *w) 2729ev_periodic_again (EV_P_ ev_periodic *w)
2085{ 2730{
2091 2736
2092#ifndef SA_RESTART 2737#ifndef SA_RESTART
2093# define SA_RESTART 0 2738# define SA_RESTART 0
2094#endif 2739#endif
2095 2740
2741#if EV_SIGNAL_ENABLE
2742
2096void noinline 2743void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 2744ev_signal_start (EV_P_ ev_signal *w)
2098{ 2745{
2099#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif
2102 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2103 return; 2747 return;
2104 2748
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2749 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2106 2750
2107 evpipe_init (EV_A); 2751#if EV_MULTIPLICITY
2752 assert (("libev: a signal must not be attached to two different loops",
2753 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2108 2754
2755 signals [w->signum - 1].loop = EV_A;
2756#endif
2757
2758 EV_FREQUENT_CHECK;
2759
2760#if EV_USE_SIGNALFD
2761 if (sigfd == -2)
2109 { 2762 {
2110#ifndef _WIN32 2763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2111 sigset_t full, prev; 2764 if (sigfd < 0 && errno == EINVAL)
2112 sigfillset (&full); 2765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2113 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif
2115 2766
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2767 if (sigfd >= 0)
2768 {
2769 fd_intern (sigfd); /* doing it twice will not hurt */
2117 2770
2118#ifndef _WIN32 2771 sigemptyset (&sigfd_set);
2119 sigprocmask (SIG_SETMASK, &prev, 0); 2772
2120#endif 2773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2774 ev_set_priority (&sigfd_w, EV_MAXPRI);
2775 ev_io_start (EV_A_ &sigfd_w);
2776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2777 }
2121 } 2778 }
2779
2780 if (sigfd >= 0)
2781 {
2782 /* TODO: check .head */
2783 sigaddset (&sigfd_set, w->signum);
2784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2785
2786 signalfd (sigfd, &sigfd_set, 0);
2787 }
2788#endif
2122 2789
2123 ev_start (EV_A_ (W)w, 1); 2790 ev_start (EV_A_ (W)w, 1);
2124 wlist_add (&signals [w->signum - 1].head, (WL)w); 2791 wlist_add (&signals [w->signum - 1].head, (WL)w);
2125 2792
2126 if (!((WL)w)->next) 2793 if (!((WL)w)->next)
2794# if EV_USE_SIGNALFD
2795 if (sigfd < 0) /*TODO*/
2796# endif
2127 { 2797 {
2128#if _WIN32 2798# ifdef _WIN32
2799 evpipe_init (EV_A);
2800
2129 signal (w->signum, ev_sighandler); 2801 signal (w->signum, ev_sighandler);
2130#else 2802# else
2131 struct sigaction sa; 2803 struct sigaction sa;
2804
2805 evpipe_init (EV_A);
2806
2132 sa.sa_handler = ev_sighandler; 2807 sa.sa_handler = ev_sighandler;
2133 sigfillset (&sa.sa_mask); 2808 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2810 sigaction (w->signum, &sa, 0);
2811
2812 sigemptyset (&sa.sa_mask);
2813 sigaddset (&sa.sa_mask, w->signum);
2814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2136#endif 2815#endif
2137 } 2816 }
2817
2818 EV_FREQUENT_CHECK;
2138} 2819}
2139 2820
2140void noinline 2821void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2822ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2823{
2143 clear_pending (EV_A_ (W)w); 2824 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2825 if (expect_false (!ev_is_active (w)))
2145 return; 2826 return;
2146 2827
2828 EV_FREQUENT_CHECK;
2829
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2830 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2831 ev_stop (EV_A_ (W)w);
2149 2832
2150 if (!signals [w->signum - 1].head) 2833 if (!signals [w->signum - 1].head)
2834 {
2835#if EV_MULTIPLICITY
2836 signals [w->signum - 1].loop = 0; /* unattach from signal */
2837#endif
2838#if EV_USE_SIGNALFD
2839 if (sigfd >= 0)
2840 {
2841 sigset_t ss;
2842
2843 sigemptyset (&ss);
2844 sigaddset (&ss, w->signum);
2845 sigdelset (&sigfd_set, w->signum);
2846
2847 signalfd (sigfd, &sigfd_set, 0);
2848 sigprocmask (SIG_UNBLOCK, &ss, 0);
2849 }
2850 else
2851#endif
2151 signal (w->signum, SIG_DFL); 2852 signal (w->signum, SIG_DFL);
2853 }
2854
2855 EV_FREQUENT_CHECK;
2152} 2856}
2857
2858#endif
2859
2860#if EV_CHILD_ENABLE
2153 2861
2154void 2862void
2155ev_child_start (EV_P_ ev_child *w) 2863ev_child_start (EV_P_ ev_child *w)
2156{ 2864{
2157#if EV_MULTIPLICITY 2865#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2866 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2867#endif
2160 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2161 return; 2869 return;
2162 2870
2871 EV_FREQUENT_CHECK;
2872
2163 ev_start (EV_A_ (W)w, 1); 2873 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2874 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2875
2876 EV_FREQUENT_CHECK;
2165} 2877}
2166 2878
2167void 2879void
2168ev_child_stop (EV_P_ ev_child *w) 2880ev_child_stop (EV_P_ ev_child *w)
2169{ 2881{
2170 clear_pending (EV_A_ (W)w); 2882 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2883 if (expect_false (!ev_is_active (w)))
2172 return; 2884 return;
2173 2885
2886 EV_FREQUENT_CHECK;
2887
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2888 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
2176} 2892}
2893
2894#endif
2177 2895
2178#if EV_STAT_ENABLE 2896#if EV_STAT_ENABLE
2179 2897
2180# ifdef _WIN32 2898# ifdef _WIN32
2181# undef lstat 2899# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 2900# define lstat(a,b) _stati64 (a,b)
2183# endif 2901# endif
2184 2902
2185#define DEF_STAT_INTERVAL 5.0074891 2903#define DEF_STAT_INTERVAL 5.0074891
2904#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 2905#define MIN_STAT_INTERVAL 0.1074891
2187 2906
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2907static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 2908
2190#if EV_USE_INOTIFY 2909#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 2910
2911/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2912# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2192 2913
2193static void noinline 2914static void noinline
2194infy_add (EV_P_ ev_stat *w) 2915infy_add (EV_P_ ev_stat *w)
2195{ 2916{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2917 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 2918
2198 if (w->wd < 0) 2919 if (w->wd >= 0)
2920 {
2921 struct statfs sfs;
2922
2923 /* now local changes will be tracked by inotify, but remote changes won't */
2924 /* unless the filesystem is known to be local, we therefore still poll */
2925 /* also do poll on <2.6.25, but with normal frequency */
2926
2927 if (!fs_2625)
2928 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2929 else if (!statfs (w->path, &sfs)
2930 && (sfs.f_type == 0x1373 /* devfs */
2931 || sfs.f_type == 0xEF53 /* ext2/3 */
2932 || sfs.f_type == 0x3153464a /* jfs */
2933 || sfs.f_type == 0x52654973 /* reiser3 */
2934 || sfs.f_type == 0x01021994 /* tempfs */
2935 || sfs.f_type == 0x58465342 /* xfs */))
2936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2937 else
2938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2199 { 2939 }
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2940 else
2941 {
2942 /* can't use inotify, continue to stat */
2943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2201 2944
2202 /* monitor some parent directory for speedup hints */ 2945 /* if path is not there, monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 2947 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 2949 {
2207 char path [4096]; 2950 char path [4096];
2208 strcpy (path, w->path); 2951 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 2957
2215 char *pend = strrchr (path, '/'); 2958 char *pend = strrchr (path, '/');
2216 2959
2217 if (!pend) 2960 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 2961 break;
2219 2962
2220 *pend = 0; 2963 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 2964 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 2965 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 2967 }
2225 } 2968 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 2969
2229 if (w->wd >= 0) 2970 if (w->wd >= 0)
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2972
2973 /* now re-arm timer, if required */
2974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2975 ev_timer_again (EV_A_ &w->timer);
2976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2231} 2977}
2232 2978
2233static void noinline 2979static void noinline
2234infy_del (EV_P_ ev_stat *w) 2980infy_del (EV_P_ ev_stat *w)
2235{ 2981{
2238 2984
2239 if (wd < 0) 2985 if (wd < 0)
2240 return; 2986 return;
2241 2987
2242 w->wd = -2; 2988 w->wd = -2;
2243 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2244 wlist_del (&fs_hash [slot].head, (WL)w); 2990 wlist_del (&fs_hash [slot].head, (WL)w);
2245 2991
2246 /* remove this watcher, if others are watching it, they will rearm */ 2992 /* remove this watcher, if others are watching it, they will rearm */
2247 inotify_rm_watch (fs_fd, wd); 2993 inotify_rm_watch (fs_fd, wd);
2248} 2994}
2249 2995
2250static void noinline 2996static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 2998{
2253 if (slot < 0) 2999 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 3000 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 3002 infy_wd (EV_A_ slot, wd, ev);
2257 else 3003 else
2258 { 3004 {
2259 WL w_; 3005 WL w_;
2260 3006
2261 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2262 { 3008 {
2263 ev_stat *w = (ev_stat *)w_; 3009 ev_stat *w = (ev_stat *)w_;
2264 w_ = w_->next; /* lets us remove this watcher and all before it */ 3010 w_ = w_->next; /* lets us remove this watcher and all before it */
2265 3011
2266 if (w->wd == wd || wd == -1) 3012 if (w->wd == wd || wd == -1)
2267 { 3013 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 3015 {
3016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2270 w->wd = -1; 3017 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 3018 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 3019 }
2273 3020
2274 stat_timer_cb (EV_A_ &w->timer, 0); 3021 stat_timer_cb (EV_A_ &w->timer, 0);
2279 3026
2280static void 3027static void
2281infy_cb (EV_P_ ev_io *w, int revents) 3028infy_cb (EV_P_ ev_io *w, int revents)
2282{ 3029{
2283 char buf [EV_INOTIFY_BUFSIZE]; 3030 char buf [EV_INOTIFY_BUFSIZE];
2284 struct inotify_event *ev = (struct inotify_event *)buf;
2285 int ofs; 3031 int ofs;
2286 int len = read (fs_fd, buf, sizeof (buf)); 3032 int len = read (fs_fd, buf, sizeof (buf));
2287 3033
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3034 for (ofs = 0; ofs < len; )
3035 {
3036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3038 ofs += sizeof (struct inotify_event) + ev->len;
3039 }
2290} 3040}
2291 3041
2292void inline_size 3042inline_size unsigned int
3043ev_linux_version (void)
3044{
3045 struct utsname buf;
3046 unsigned int v;
3047 int i;
3048 char *p = buf.release;
3049
3050 if (uname (&buf))
3051 return 0;
3052
3053 for (i = 3+1; --i; )
3054 {
3055 unsigned int c = 0;
3056
3057 for (;;)
3058 {
3059 if (*p >= '0' && *p <= '9')
3060 c = c * 10 + *p++ - '0';
3061 else
3062 {
3063 p += *p == '.';
3064 break;
3065 }
3066 }
3067
3068 v = (v << 8) | c;
3069 }
3070
3071 return v;
3072}
3073
3074inline_size void
3075ev_check_2625 (EV_P)
3076{
3077 /* kernels < 2.6.25 are borked
3078 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3079 */
3080 if (ev_linux_version () < 0x020619)
3081 return;
3082
3083 fs_2625 = 1;
3084}
3085
3086inline_size int
3087infy_newfd (void)
3088{
3089#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3090 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3091 if (fd >= 0)
3092 return fd;
3093#endif
3094 return inotify_init ();
3095}
3096
3097inline_size void
2293infy_init (EV_P) 3098infy_init (EV_P)
2294{ 3099{
2295 if (fs_fd != -2) 3100 if (fs_fd != -2)
2296 return; 3101 return;
2297 3102
3103 fs_fd = -1;
3104
3105 ev_check_2625 (EV_A);
3106
2298 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
2299 3108
2300 if (fs_fd >= 0) 3109 if (fs_fd >= 0)
2301 { 3110 {
3111 fd_intern (fs_fd);
2302 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3112 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2303 ev_set_priority (&fs_w, EV_MAXPRI); 3113 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 3114 ev_io_start (EV_A_ &fs_w);
3115 ev_unref (EV_A);
2305 } 3116 }
2306} 3117}
2307 3118
2308void inline_size 3119inline_size void
2309infy_fork (EV_P) 3120infy_fork (EV_P)
2310{ 3121{
2311 int slot; 3122 int slot;
2312 3123
2313 if (fs_fd < 0) 3124 if (fs_fd < 0)
2314 return; 3125 return;
2315 3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &fs_w);
2316 close (fs_fd); 3129 close (fs_fd);
2317 fs_fd = inotify_init (); 3130 fs_fd = infy_newfd ();
2318 3131
3132 if (fs_fd >= 0)
3133 {
3134 fd_intern (fs_fd);
3135 ev_io_set (&fs_w, fs_fd, EV_READ);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
3138 }
3139
2319 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3140 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2320 { 3141 {
2321 WL w_ = fs_hash [slot].head; 3142 WL w_ = fs_hash [slot].head;
2322 fs_hash [slot].head = 0; 3143 fs_hash [slot].head = 0;
2323 3144
2324 while (w_) 3145 while (w_)
2329 w->wd = -1; 3150 w->wd = -1;
2330 3151
2331 if (fs_fd >= 0) 3152 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 3153 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 3154 else
3155 {
3156 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3157 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2334 ev_timer_start (EV_A_ &w->timer); 3158 ev_timer_again (EV_A_ &w->timer);
3159 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3160 }
2335 } 3161 }
2336
2337 } 3162 }
2338} 3163}
2339 3164
3165#endif
3166
3167#ifdef _WIN32
3168# define EV_LSTAT(p,b) _stati64 (p, b)
3169#else
3170# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 3171#endif
2341 3172
2342void 3173void
2343ev_stat_stat (EV_P_ ev_stat *w) 3174ev_stat_stat (EV_P_ ev_stat *w)
2344{ 3175{
2351static void noinline 3182static void noinline
2352stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3183stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2353{ 3184{
2354 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3185 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2355 3186
2356 /* we copy this here each the time so that */ 3187 ev_statdata prev = w->attr;
2357 /* prev has the old value when the callback gets invoked */
2358 w->prev = w->attr;
2359 ev_stat_stat (EV_A_ w); 3188 ev_stat_stat (EV_A_ w);
2360 3189
2361 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3190 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2362 if ( 3191 if (
2363 w->prev.st_dev != w->attr.st_dev 3192 prev.st_dev != w->attr.st_dev
2364 || w->prev.st_ino != w->attr.st_ino 3193 || prev.st_ino != w->attr.st_ino
2365 || w->prev.st_mode != w->attr.st_mode 3194 || prev.st_mode != w->attr.st_mode
2366 || w->prev.st_nlink != w->attr.st_nlink 3195 || prev.st_nlink != w->attr.st_nlink
2367 || w->prev.st_uid != w->attr.st_uid 3196 || prev.st_uid != w->attr.st_uid
2368 || w->prev.st_gid != w->attr.st_gid 3197 || prev.st_gid != w->attr.st_gid
2369 || w->prev.st_rdev != w->attr.st_rdev 3198 || prev.st_rdev != w->attr.st_rdev
2370 || w->prev.st_size != w->attr.st_size 3199 || prev.st_size != w->attr.st_size
2371 || w->prev.st_atime != w->attr.st_atime 3200 || prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 3201 || prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 3202 || prev.st_ctime != w->attr.st_ctime
2374 ) { 3203 ) {
3204 /* we only update w->prev on actual differences */
3205 /* in case we test more often than invoke the callback, */
3206 /* to ensure that prev is always different to attr */
3207 w->prev = prev;
3208
2375 #if EV_USE_INOTIFY 3209 #if EV_USE_INOTIFY
3210 if (fs_fd >= 0)
3211 {
2376 infy_del (EV_A_ w); 3212 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 3213 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 3214 ev_stat_stat (EV_A_ w); /* avoid race... */
3215 }
2379 #endif 3216 #endif
2380 3217
2381 ev_feed_event (EV_A_ w, EV_STAT); 3218 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 3219 }
2383} 3220}
2386ev_stat_start (EV_P_ ev_stat *w) 3223ev_stat_start (EV_P_ ev_stat *w)
2387{ 3224{
2388 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
2389 return; 3226 return;
2390 3227
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
2396 3229
3230 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 3231 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 3232
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3233 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 3234 ev_set_priority (&w->timer, ev_priority (w));
2402 3235
2403#if EV_USE_INOTIFY 3236#if EV_USE_INOTIFY
2404 infy_init (EV_A); 3237 infy_init (EV_A);
2405 3238
2406 if (fs_fd >= 0) 3239 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2408 else 3241 else
2409#endif 3242#endif
3243 {
2410 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 ev_unref (EV_A);
3246 }
2411 3247
2412 ev_start (EV_A_ (W)w, 1); 3248 ev_start (EV_A_ (W)w, 1);
3249
3250 EV_FREQUENT_CHECK;
2413} 3251}
2414 3252
2415void 3253void
2416ev_stat_stop (EV_P_ ev_stat *w) 3254ev_stat_stop (EV_P_ ev_stat *w)
2417{ 3255{
2418 clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
2420 return; 3258 return;
2421 3259
3260 EV_FREQUENT_CHECK;
3261
2422#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2424#endif 3264#endif
3265
3266 if (ev_is_active (&w->timer))
3267 {
3268 ev_ref (EV_A);
2425 ev_timer_stop (EV_A_ &w->timer); 3269 ev_timer_stop (EV_A_ &w->timer);
3270 }
2426 3271
2427 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
2428} 3275}
2429#endif 3276#endif
2430 3277
2431#if EV_IDLE_ENABLE 3278#if EV_IDLE_ENABLE
2432void 3279void
2434{ 3281{
2435 if (expect_false (ev_is_active (w))) 3282 if (expect_false (ev_is_active (w)))
2436 return; 3283 return;
2437 3284
2438 pri_adjust (EV_A_ (W)w); 3285 pri_adjust (EV_A_ (W)w);
3286
3287 EV_FREQUENT_CHECK;
2439 3288
2440 { 3289 {
2441 int active = ++idlecnt [ABSPRI (w)]; 3290 int active = ++idlecnt [ABSPRI (w)];
2442 3291
2443 ++idleall; 3292 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 3293 ev_start (EV_A_ (W)w, active);
2445 3294
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3295 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 3296 idles [ABSPRI (w)][active - 1] = w;
2448 } 3297 }
3298
3299 EV_FREQUENT_CHECK;
2449} 3300}
2450 3301
2451void 3302void
2452ev_idle_stop (EV_P_ ev_idle *w) 3303ev_idle_stop (EV_P_ ev_idle *w)
2453{ 3304{
2454 clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3306 if (expect_false (!ev_is_active (w)))
2456 return; 3307 return;
2457 3308
3309 EV_FREQUENT_CHECK;
3310
2458 { 3311 {
2459 int active = ev_active (w); 3312 int active = ev_active (w);
2460 3313
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3314 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3315 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 3316
2464 ev_stop (EV_A_ (W)w); 3317 ev_stop (EV_A_ (W)w);
2465 --idleall; 3318 --idleall;
2466 } 3319 }
2467}
2468#endif
2469 3320
3321 EV_FREQUENT_CHECK;
3322}
3323#endif
3324
3325#if EV_PREPARE_ENABLE
2470void 3326void
2471ev_prepare_start (EV_P_ ev_prepare *w) 3327ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 3328{
2473 if (expect_false (ev_is_active (w))) 3329 if (expect_false (ev_is_active (w)))
2474 return; 3330 return;
3331
3332 EV_FREQUENT_CHECK;
2475 3333
2476 ev_start (EV_A_ (W)w, ++preparecnt); 3334 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3335 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 3336 prepares [preparecnt - 1] = w;
3337
3338 EV_FREQUENT_CHECK;
2479} 3339}
2480 3340
2481void 3341void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 3342ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 3343{
2484 clear_pending (EV_A_ (W)w); 3344 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 3345 if (expect_false (!ev_is_active (w)))
2486 return; 3346 return;
2487 3347
3348 EV_FREQUENT_CHECK;
3349
2488 { 3350 {
2489 int active = ev_active (w); 3351 int active = ev_active (w);
2490 3352
2491 prepares [active - 1] = prepares [--preparecnt]; 3353 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 3354 ev_active (prepares [active - 1]) = active;
2493 } 3355 }
2494 3356
2495 ev_stop (EV_A_ (W)w); 3357 ev_stop (EV_A_ (W)w);
2496}
2497 3358
3359 EV_FREQUENT_CHECK;
3360}
3361#endif
3362
3363#if EV_CHECK_ENABLE
2498void 3364void
2499ev_check_start (EV_P_ ev_check *w) 3365ev_check_start (EV_P_ ev_check *w)
2500{ 3366{
2501 if (expect_false (ev_is_active (w))) 3367 if (expect_false (ev_is_active (w)))
2502 return; 3368 return;
3369
3370 EV_FREQUENT_CHECK;
2503 3371
2504 ev_start (EV_A_ (W)w, ++checkcnt); 3372 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3373 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 3374 checks [checkcnt - 1] = w;
3375
3376 EV_FREQUENT_CHECK;
2507} 3377}
2508 3378
2509void 3379void
2510ev_check_stop (EV_P_ ev_check *w) 3380ev_check_stop (EV_P_ ev_check *w)
2511{ 3381{
2512 clear_pending (EV_A_ (W)w); 3382 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3383 if (expect_false (!ev_is_active (w)))
2514 return; 3384 return;
2515 3385
3386 EV_FREQUENT_CHECK;
3387
2516 { 3388 {
2517 int active = ev_active (w); 3389 int active = ev_active (w);
2518 3390
2519 checks [active - 1] = checks [--checkcnt]; 3391 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 3392 ev_active (checks [active - 1]) = active;
2521 } 3393 }
2522 3394
2523 ev_stop (EV_A_ (W)w); 3395 ev_stop (EV_A_ (W)w);
3396
3397 EV_FREQUENT_CHECK;
2524} 3398}
3399#endif
2525 3400
2526#if EV_EMBED_ENABLE 3401#if EV_EMBED_ENABLE
2527void noinline 3402void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 3403ev_embed_sweep (EV_P_ ev_embed *w)
2529{ 3404{
2545embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3420embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2546{ 3421{
2547 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3422 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2548 3423
2549 { 3424 {
2550 struct ev_loop *loop = w->other; 3425 EV_P = w->other;
2551 3426
2552 while (fdchangecnt) 3427 while (fdchangecnt)
2553 { 3428 {
2554 fd_reify (EV_A); 3429 fd_reify (EV_A);
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3430 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 3431 }
2557 } 3432 }
2558} 3433}
2559 3434
3435static void
3436embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3439
3440 ev_embed_stop (EV_A_ w);
3441
3442 {
3443 EV_P = w->other;
3444
3445 ev_loop_fork (EV_A);
3446 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3447 }
3448
3449 ev_embed_start (EV_A_ w);
3450}
3451
2560#if 0 3452#if 0
2561static void 3453static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3454embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 3455{
2564 ev_idle_stop (EV_A_ idle); 3456 ev_idle_stop (EV_A_ idle);
2570{ 3462{
2571 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
2572 return; 3464 return;
2573 3465
2574 { 3466 {
2575 struct ev_loop *loop = w->other; 3467 EV_P = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3468 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3469 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 3470 }
3471
3472 EV_FREQUENT_CHECK;
2579 3473
2580 ev_set_priority (&w->io, ev_priority (w)); 3474 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 3475 ev_io_start (EV_A_ &w->io);
2582 3476
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 3477 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 3478 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 3479 ev_prepare_start (EV_A_ &w->prepare);
2586 3480
3481 ev_fork_init (&w->fork, embed_fork_cb);
3482 ev_fork_start (EV_A_ &w->fork);
3483
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3484 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 3485
2589 ev_start (EV_A_ (W)w, 1); 3486 ev_start (EV_A_ (W)w, 1);
3487
3488 EV_FREQUENT_CHECK;
2590} 3489}
2591 3490
2592void 3491void
2593ev_embed_stop (EV_P_ ev_embed *w) 3492ev_embed_stop (EV_P_ ev_embed *w)
2594{ 3493{
2595 clear_pending (EV_A_ (W)w); 3494 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 3495 if (expect_false (!ev_is_active (w)))
2597 return; 3496 return;
2598 3497
3498 EV_FREQUENT_CHECK;
3499
2599 ev_io_stop (EV_A_ &w->io); 3500 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 3501 ev_prepare_stop (EV_A_ &w->prepare);
3502 ev_fork_stop (EV_A_ &w->fork);
2601 3503
2602 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2603} 3507}
2604#endif 3508#endif
2605 3509
2606#if EV_FORK_ENABLE 3510#if EV_FORK_ENABLE
2607void 3511void
2608ev_fork_start (EV_P_ ev_fork *w) 3512ev_fork_start (EV_P_ ev_fork *w)
2609{ 3513{
2610 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2611 return; 3515 return;
3516
3517 EV_FREQUENT_CHECK;
2612 3518
2613 ev_start (EV_A_ (W)w, ++forkcnt); 3519 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3520 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 3521 forks [forkcnt - 1] = w;
3522
3523 EV_FREQUENT_CHECK;
2616} 3524}
2617 3525
2618void 3526void
2619ev_fork_stop (EV_P_ ev_fork *w) 3527ev_fork_stop (EV_P_ ev_fork *w)
2620{ 3528{
2621 clear_pending (EV_A_ (W)w); 3529 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 3530 if (expect_false (!ev_is_active (w)))
2623 return; 3531 return;
2624 3532
3533 EV_FREQUENT_CHECK;
3534
2625 { 3535 {
2626 int active = ev_active (w); 3536 int active = ev_active (w);
2627 3537
2628 forks [active - 1] = forks [--forkcnt]; 3538 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 3539 ev_active (forks [active - 1]) = active;
2630 } 3540 }
2631 3541
2632 ev_stop (EV_A_ (W)w); 3542 ev_stop (EV_A_ (W)w);
3543
3544 EV_FREQUENT_CHECK;
2633} 3545}
2634#endif 3546#endif
2635 3547
2636#if EV_ASYNC_ENABLE 3548#if EV_ASYNC_ENABLE
2637void 3549void
2639{ 3551{
2640 if (expect_false (ev_is_active (w))) 3552 if (expect_false (ev_is_active (w)))
2641 return; 3553 return;
2642 3554
2643 evpipe_init (EV_A); 3555 evpipe_init (EV_A);
3556
3557 EV_FREQUENT_CHECK;
2644 3558
2645 ev_start (EV_A_ (W)w, ++asynccnt); 3559 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 3561 asyncs [asynccnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
2648} 3564}
2649 3565
2650void 3566void
2651ev_async_stop (EV_P_ ev_async *w) 3567ev_async_stop (EV_P_ ev_async *w)
2652{ 3568{
2653 clear_pending (EV_A_ (W)w); 3569 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3570 if (expect_false (!ev_is_active (w)))
2655 return; 3571 return;
2656 3572
3573 EV_FREQUENT_CHECK;
3574
2657 { 3575 {
2658 int active = ev_active (w); 3576 int active = ev_active (w);
2659 3577
2660 asyncs [active - 1] = asyncs [--asynccnt]; 3578 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 3579 ev_active (asyncs [active - 1]) = active;
2662 } 3580 }
2663 3581
2664 ev_stop (EV_A_ (W)w); 3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
2665} 3585}
2666 3586
2667void 3587void
2668ev_async_send (EV_P_ ev_async *w) 3588ev_async_send (EV_P_ ev_async *w)
2669{ 3589{
2670 w->sent = 1; 3590 w->sent = 1;
2671 evpipe_write (EV_A_ &gotasync); 3591 evpipe_write (EV_A_ &async_pending);
2672} 3592}
2673#endif 3593#endif
2674 3594
2675/*****************************************************************************/ 3595/*****************************************************************************/
2676 3596
2686once_cb (EV_P_ struct ev_once *once, int revents) 3606once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3607{
2688 void (*cb)(int revents, void *arg) = once->cb; 3608 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3609 void *arg = once->arg;
2690 3610
2691 ev_io_stop (EV_A_ &once->io); 3611 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3612 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3613 ev_free (once);
2694 3614
2695 cb (revents, arg); 3615 cb (revents, arg);
2696} 3616}
2697 3617
2698static void 3618static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3619once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3620{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3622
3623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3624}
2703 3625
2704static void 3626static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3627once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3628{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3632}
2709 3633
2710void 3634void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3635ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3636{
2713 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3637 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2714 3638
2715 if (expect_false (!once)) 3639 if (expect_false (!once))
2716 { 3640 {
2717 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3641 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2718 return; 3642 return;
2719 } 3643 }
2720 3644
2721 once->cb = cb; 3645 once->cb = cb;
2722 once->arg = arg; 3646 once->arg = arg;
2734 ev_timer_set (&once->to, timeout, 0.); 3658 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 3659 ev_timer_start (EV_A_ &once->to);
2736 } 3660 }
2737} 3661}
2738 3662
3663/*****************************************************************************/
3664
3665#if EV_WALK_ENABLE
3666void
3667ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3668{
3669 int i, j;
3670 ev_watcher_list *wl, *wn;
3671
3672 if (types & (EV_IO | EV_EMBED))
3673 for (i = 0; i < anfdmax; ++i)
3674 for (wl = anfds [i].head; wl; )
3675 {
3676 wn = wl->next;
3677
3678#if EV_EMBED_ENABLE
3679 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3680 {
3681 if (types & EV_EMBED)
3682 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3683 }
3684 else
3685#endif
3686#if EV_USE_INOTIFY
3687 if (ev_cb ((ev_io *)wl) == infy_cb)
3688 ;
3689 else
3690#endif
3691 if ((ev_io *)wl != &pipe_w)
3692 if (types & EV_IO)
3693 cb (EV_A_ EV_IO, wl);
3694
3695 wl = wn;
3696 }
3697
3698 if (types & (EV_TIMER | EV_STAT))
3699 for (i = timercnt + HEAP0; i-- > HEAP0; )
3700#if EV_STAT_ENABLE
3701 /*TODO: timer is not always active*/
3702 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3703 {
3704 if (types & EV_STAT)
3705 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3706 }
3707 else
3708#endif
3709 if (types & EV_TIMER)
3710 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3711
3712#if EV_PERIODIC_ENABLE
3713 if (types & EV_PERIODIC)
3714 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3715 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3716#endif
3717
3718#if EV_IDLE_ENABLE
3719 if (types & EV_IDLE)
3720 for (j = NUMPRI; i--; )
3721 for (i = idlecnt [j]; i--; )
3722 cb (EV_A_ EV_IDLE, idles [j][i]);
3723#endif
3724
3725#if EV_FORK_ENABLE
3726 if (types & EV_FORK)
3727 for (i = forkcnt; i--; )
3728 if (ev_cb (forks [i]) != embed_fork_cb)
3729 cb (EV_A_ EV_FORK, forks [i]);
3730#endif
3731
3732#if EV_ASYNC_ENABLE
3733 if (types & EV_ASYNC)
3734 for (i = asynccnt; i--; )
3735 cb (EV_A_ EV_ASYNC, asyncs [i]);
3736#endif
3737
3738#if EV_PREPARE_ENABLE
3739 if (types & EV_PREPARE)
3740 for (i = preparecnt; i--; )
3741# if EV_EMBED_ENABLE
3742 if (ev_cb (prepares [i]) != embed_prepare_cb)
3743# endif
3744 cb (EV_A_ EV_PREPARE, prepares [i]);
3745#endif
3746
3747#if EV_CHECK_ENABLE
3748 if (types & EV_CHECK)
3749 for (i = checkcnt; i--; )
3750 cb (EV_A_ EV_CHECK, checks [i]);
3751#endif
3752
3753#if EV_SIGNAL_ENABLE
3754 if (types & EV_SIGNAL)
3755 for (i = 0; i < EV_NSIG - 1; ++i)
3756 for (wl = signals [i].head; wl; )
3757 {
3758 wn = wl->next;
3759 cb (EV_A_ EV_SIGNAL, wl);
3760 wl = wn;
3761 }
3762#endif
3763
3764#if EV_CHILD_ENABLE
3765 if (types & EV_CHILD)
3766 for (i = (EV_PID_HASHSIZE); i--; )
3767 for (wl = childs [i]; wl; )
3768 {
3769 wn = wl->next;
3770 cb (EV_A_ EV_CHILD, wl);
3771 wl = wn;
3772 }
3773#endif
3774/* EV_STAT 0x00001000 /* stat data changed */
3775/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3776}
3777#endif
3778
2739#if EV_MULTIPLICITY 3779#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 3780 #include "ev_wrap.h"
2741#endif 3781#endif
2742 3782
2743#ifdef __cplusplus 3783#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines