ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.342 by root, Mon Mar 29 12:40:57 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT EV_FEATURE_BACKENDS
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
64# endif 95# endif
65# endif 96# endif
66 97
67# ifndef EV_USE_POLL 98# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1 100# define EV_USE_POLL EV_FEATURE_BACKENDS
70# else 101# else
71# define EV_USE_POLL 0 102# define EV_USE_POLL 0
72# endif 103# endif
73# endif 104# endif
74 105
75# ifndef EV_USE_EPOLL 106# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL EV_FEATURE_BACKENDS
78# else 109# else
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
90 121
91# ifndef EV_USE_PORT 122# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# define EV_USE_PORT EV_FEATURE_BACKENDS
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
99# ifndef EV_USE_INOTIFY 130# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 132# define EV_USE_INOTIFY EV_FEATURE_OS
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD EV_FEATURE_OS
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD EV_FEATURE_OS
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
139#endif 227# endif
140 228#endif
141/**/
142 229
143#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
144# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
145#endif 236#endif
146 237
147#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
149#endif 248#endif
150 249
151#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 252#endif
154 253
155#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
156# ifdef _WIN32 255# ifdef _WIN32
157# define EV_USE_POLL 0 256# define EV_USE_POLL 0
158# else 257# else
159# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 259# endif
161#endif 260#endif
162 261
163#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
265# else
164# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
165#endif 268#endif
166 269
167#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
169#endif 272#endif
171#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 275# define EV_USE_PORT 0
173#endif 276#endif
174 277
175#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY EV_FEATURE_OS
281# else
176# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
283# endif
177#endif 284#endif
178 285
179#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292#endif
293
294#ifndef EV_USE_EVENTFD
295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
296# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 297# else
183# define EV_PID_HASHSIZE 16 298# define EV_USE_EVENTFD 0
184# endif
185#endif 299# endif
300#endif
186 301
187#ifndef EV_INOTIFY_HASHSIZE 302#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 304# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 305# else
191# define EV_INOTIFY_HASHSIZE 16 306# define EV_USE_SIGNALFD 0
192# endif
193#endif 307# endif
308#endif
194 309
195/**/ 310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
196 349
197#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
200#endif 353#endif
202#ifndef CLOCK_REALTIME 355#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 356# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 357# define EV_USE_REALTIME 0
205#endif 358#endif
206 359
360#if !EV_STAT_ENABLE
361# undef EV_USE_INOTIFY
362# define EV_USE_INOTIFY 0
363#endif
364
365#if !EV_USE_NANOSLEEP
366# ifndef _WIN32
367# include <sys/select.h>
368# endif
369#endif
370
371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
380#endif
381
207#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 383# include <winsock.h>
209#endif 384#endif
210 385
211#if !EV_STAT_ENABLE 386#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
213#endif 391# endif
214 392# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 393# ifdef O_CLOEXEC
216# include <sys/inotify.h> 394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
217#endif 398# endif
399# ifdef __cplusplus
400extern "C" {
401# endif
402int (eventfd) (unsigned int initval, int flags);
403# ifdef __cplusplus
404}
405# endif
406#endif
407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
218 436
219/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
220 444
221/* 445/*
222 * This is used to avoid floating point rounding problems. 446 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 447 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 448 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 449 * errors are against us.
226 * This value is good at least till the year 4000 450 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 451 * Better solutions welcome.
229 */ 452 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 454
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 457
236#if __GNUC__ >= 3 458#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
239#else 461#else
240# define expect(expr,value) (expr) 462# define expect(expr,value) (expr)
241# define noinline 463# define noinline
242# if __STDC_VERSION__ < 199901L 464# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 465# define inline
244# endif 466# endif
245#endif 467#endif
246 468
247#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline 471#define inline_size static inline
250 472
251#if EV_MINIMAL 473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
252# define inline_speed static noinline 476# define inline_speed static noinline
477#endif
478
479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
253#else 483#else
254# define inline_speed static inline
255#endif
256
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
259 486
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
262 489
263typedef ev_watcher *W; 490typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 491typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
266 493
494#define ev_active(w) ((W)(w))->active
495#define ev_at(w) ((WT)(w))->at
496
497#if EV_USE_REALTIME
498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
515#endif
268 516
269#ifdef _WIN32 517#ifdef _WIN32
270# include "ev_win32.c" 518# include "ev_win32.c"
271#endif 519#endif
272 520
273/*****************************************************************************/ 521/*****************************************************************************/
274 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
275static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
276 532
277void 533void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
279{ 535{
280 syserr_cb = cb; 536 syserr_cb = cb;
281} 537}
282 538
283static void noinline 539static void noinline
284syserr (const char *msg) 540ev_syserr (const char *msg)
285{ 541{
286 if (!msg) 542 if (!msg)
287 msg = "(libev) system error"; 543 msg = "(libev) system error";
288 544
289 if (syserr_cb) 545 if (syserr_cb)
290 syserr_cb (msg); 546 syserr_cb (msg);
291 else 547 else
292 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
293 perror (msg); 557 perror (msg);
558#endif
294 abort (); 559 abort ();
295 } 560 }
296} 561}
297 562
563static void *
564ev_realloc_emul (void *ptr, long size)
565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
569 /* some systems, notably openbsd and darwin, fail to properly
570 * implement realloc (x, 0) (as required by both ansi c-89 and
571 * the single unix specification, so work around them here.
572 */
573
574 if (size)
575 return realloc (ptr, size);
576
577 free (ptr);
578 return 0;
579#endif
580}
581
298static void *(*alloc)(void *ptr, long size); 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 583
300void 584void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 585ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 586{
303 alloc = cb; 587 alloc = cb;
304} 588}
305 589
306inline_speed void * 590inline_speed void *
307ev_realloc (void *ptr, long size) 591ev_realloc (void *ptr, long size)
308{ 592{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 593 ptr = alloc (ptr, size);
310 594
311 if (!ptr && size) 595 if (!ptr && size)
312 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
314 abort (); 602 abort ();
315 } 603 }
316 604
317 return ptr; 605 return ptr;
318} 606}
320#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
322 610
323/*****************************************************************************/ 611/*****************************************************************************/
324 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
325typedef struct 617typedef struct
326{ 618{
327 WL head; 619 WL head;
328 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
330#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 628 SOCKET handle;
332#endif 629#endif
333} ANFD; 630} ANFD;
334 631
632/* stores the pending event set for a given watcher */
335typedef struct 633typedef struct
336{ 634{
337 W w; 635 W w;
338 int events; 636 int events; /* the pending event set for the given watcher */
339} ANPENDING; 637} ANPENDING;
340 638
341#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
342typedef struct 641typedef struct
343{ 642{
344 WL head; 643 WL head;
345} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
346#endif 665#endif
347 666
348#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
349 668
350 struct ev_loop 669 struct ev_loop
369 688
370 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
371 690
372#endif 691#endif
373 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
374/*****************************************************************************/ 705/*****************************************************************************/
375 706
707#ifndef EV_HAVE_EV_TIME
376ev_tstamp 708ev_tstamp
377ev_time (void) 709ev_time (void)
378{ 710{
379#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
380 struct timespec ts; 714 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 717 }
718#endif
719
384 struct timeval tv; 720 struct timeval tv;
385 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 723}
724#endif
389 725
390ev_tstamp inline_size 726inline_size ev_tstamp
391get_clock (void) 727get_clock (void)
392{ 728{
393#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
395 { 731 {
408{ 744{
409 return ev_rt_now; 745 return ev_rt_now;
410} 746}
411#endif 747#endif
412 748
413int inline_size 749void
750ev_sleep (ev_tstamp delay)
751{
752 if (delay > 0.)
753 {
754#if EV_USE_NANOSLEEP
755 struct timespec ts;
756
757 ts.tv_sec = (time_t)delay;
758 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
759
760 nanosleep (&ts, 0);
761#elif defined(_WIN32)
762 Sleep ((unsigned long)(delay * 1e3));
763#else
764 struct timeval tv;
765
766 tv.tv_sec = (time_t)delay;
767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
772 select (0, 0, 0, 0, &tv);
773#endif
774 }
775}
776
777/*****************************************************************************/
778
779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
414array_nextsize (int elem, int cur, int cnt) 784array_nextsize (int elem, int cur, int cnt)
415{ 785{
416 int ncur = cur + 1; 786 int ncur = cur + 1;
417 787
418 do 788 do
419 ncur <<= 1; 789 ncur <<= 1;
420 while (cnt > ncur); 790 while (cnt > ncur);
421 791
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 794 {
425 ncur *= elem; 795 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 797 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 798 ncur /= elem;
429 } 799 }
430 800
431 return ncur; 801 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 805array_realloc (int elem, void *base, int *cur, int cnt)
436{ 806{
437 *cur = array_nextsize (elem, *cur, cnt); 807 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 808 return ev_realloc (base, elem * *cur);
439} 809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 813
441#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 815 if (expect_false ((cnt) > (cur))) \
443 { \ 816 { \
444 int ocur_ = (cur); \ 817 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 830 }
458#endif 831#endif
459 832
460#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 835
463/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
464 843
465void noinline 844void noinline
466ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
467{ 846{
468 W w_ = (W)w; 847 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 856 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 857 pendings [pri][w_->pending - 1].events = revents;
479 } 858 }
480} 859}
481 860
482void inline_size 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 878{
485 int i; 879 int i;
486 880
487 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
489} 883}
490 884
491/*****************************************************************************/ 885/*****************************************************************************/
492 886
493void inline_size 887inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
508{ 889{
509 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
510 ev_io *w; 891 ev_io *w;
511 892
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 897 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
518 } 899 }
519} 900}
520 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
521void 913void
522ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
523{ 915{
524 if (fd >= 0 && fd < anfdmax) 916 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
526} 918}
527 919
528void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
529fd_reify (EV_P) 923fd_reify (EV_P)
530{ 924{
531 int i; 925 int i;
532 926
533 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
534 { 928 {
535 int fd = fdchanges [i]; 929 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 930 ANFD *anfd = anfds + fd;
537 ev_io *w; 931 ev_io *w;
538 932
539 int events = 0; 933 unsigned char events = 0;
540 934
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 936 events |= (unsigned char)w->events;
543 937
544#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
545 if (events) 939 if (events)
546 { 940 {
547 unsigned long argp; 941 unsigned long arg;
548 anfd->handle = _get_osfhandle (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 944 }
551#endif 945#endif
552 946
947 {
948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
950
553 anfd->reify = 0; 951 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 952 anfd->events = events;
953
954 if (o_events != events || o_reify & EV__IOFDSET)
955 backend_modify (EV_A_ fd, o_events, events);
956 }
557 } 957 }
558 958
559 fdchangecnt = 0; 959 fdchangecnt = 0;
560} 960}
561 961
562void inline_size 962/* something about the given fd changed */
963inline_size void
563fd_change (EV_P_ int fd) 964fd_change (EV_P_ int fd, int flags)
564{ 965{
565 if (expect_false (anfds [fd].reify)) 966 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 967 anfds [fd].reify |= flags;
569 968
969 if (expect_true (!reify))
970 {
570 ++fdchangecnt; 971 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
974 }
573} 975}
574 976
575void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
576fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
577{ 980{
578 ev_io *w; 981 ev_io *w;
579 982
580 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 987 }
585} 988}
586 989
587int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
588fd_valid (int fd) 992fd_valid (int fd)
589{ 993{
590#ifdef _WIN32 994#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
592#else 996#else
593 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
594#endif 998#endif
595} 999}
596 1000
600{ 1004{
601 int fd; 1005 int fd;
602 1006
603 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 1008 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
607} 1011}
608 1012
609/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 1014static void noinline
614 1018
615 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 1020 if (anfds [fd].events)
617 { 1021 {
618 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
619 return; 1023 break;
620 } 1024 }
621} 1025}
622 1026
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 1028static void noinline
628 1032
629 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 1034 if (anfds [fd].events)
631 { 1035 {
632 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 1037 anfds [fd].emask = 0;
1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 1039 }
635} 1040}
636 1041
637/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
638 1043/* this is not fork-safe */
639void inline_speed 1044inline_speed void
640upheap (WT *heap, int k)
641{
642 WT w = heap [k];
643
644 while (k && heap [k >> 1]->at > w->at)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 }
650
651 heap [k] = w;
652 ((W)heap [k])->active = k + 1;
653
654}
655
656void inline_speed
657downheap (WT *heap, int N, int k)
658{
659 WT w = heap [k];
660
661 while (k < (N >> 1))
662 {
663 int j = k << 1;
664
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break;
670
671 heap [k] = heap [j];
672 ((W)heap [k])->active = k + 1;
673 k = j;
674 }
675
676 heap [k] = w;
677 ((W)heap [k])->active = k + 1;
678}
679
680void inline_size
681adjustheap (WT *heap, int N, int k)
682{
683 upheap (heap, k);
684 downheap (heap, N, k);
685}
686
687/*****************************************************************************/
688
689typedef struct
690{
691 WL head;
692 sig_atomic_t volatile gotsig;
693} ANSIG;
694
695static ANSIG *signals;
696static int signalmax;
697
698static int sigpipe [2];
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701
702void inline_size
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1045fd_intern (int fd)
767{ 1046{
768#ifdef _WIN32 1047#ifdef _WIN32
769 int arg = 1; 1048 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
771#else 1050#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1053#endif
775} 1054}
776 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
777static void noinline 1219static void noinline
778siginit (EV_P) 1220evpipe_init (EV_P)
779{ 1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236# endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
780 fd_intern (sigpipe [0]); 1241 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
782 1245
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1246 ev_io_start (EV_A_ &pipe_w);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &dummy, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
786} 1317}
787 1318
788/*****************************************************************************/ 1319/*****************************************************************************/
789 1320
790static ev_child *childs [EV_PID_HASHSIZE]; 1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
791 1327
792#ifndef _WIN32 1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
1382/*****************************************************************************/
1383
1384#if EV_CHILD_ENABLE
1385static WL childs [EV_PID_HASHSIZE];
793 1386
794static ev_signal childev; 1387static ev_signal childev;
795 1388
796void inline_speed 1389#ifndef WIFCONTINUED
1390# define WIFCONTINUED(status) 0
1391#endif
1392
1393/* handle a single child status event */
1394inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
798{ 1396{
799 ev_child *w; 1397 ev_child *w;
1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1399
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1401 {
802 if (w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1403 && (!traced || (w->flags & 1)))
803 { 1404 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1406 w->rpid = pid;
806 w->rstatus = status; 1407 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1408 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1409 }
1410 }
809} 1411}
810 1412
811#ifndef WCONTINUED 1413#ifndef WCONTINUED
812# define WCONTINUED 0 1414# define WCONTINUED 0
813#endif 1415#endif
814 1416
1417/* called on sigchld etc., calls waitpid */
815static void 1418static void
816childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
817{ 1420{
818 int pid, status; 1421 int pid, status;
819 1422
822 if (!WCONTINUED 1425 if (!WCONTINUED
823 || errno != EINVAL 1426 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1427 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1428 return;
826 1429
827 /* make sure we are called again until all childs have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1433
831 child_reap (EV_A_ sw, pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1437}
835 1438
836#endif 1439#endif
837 1440
838/*****************************************************************************/ 1441/*****************************************************************************/
900 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
903#endif 1506#endif
904#ifdef __APPLE__ 1507#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1511#endif
1512#ifdef __FreeBSD__
1513 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
907#endif 1514#endif
908 1515
909 return flags; 1516 return flags;
910} 1517}
911 1518
912unsigned int 1519unsigned int
913ev_embeddable_backends (void) 1520ev_embeddable_backends (void)
914{ 1521{
915 return EVBACKEND_EPOLL 1522 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1523
917 | EVBACKEND_PORT; 1524 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1525 /* please fix it and tell me how to detect the fix */
1526 flags &= ~EVBACKEND_EPOLL;
1527
1528 return flags;
918} 1529}
919 1530
920unsigned int 1531unsigned int
921ev_backend (EV_P) 1532ev_backend (EV_P)
922{ 1533{
923 return backend; 1534 return backend;
924} 1535}
925 1536
1537#if EV_FEATURE_API
926unsigned int 1538unsigned int
927ev_loop_count (EV_P) 1539ev_iteration (EV_P)
928{ 1540{
929 return loop_count; 1541 return loop_count;
930} 1542}
931 1543
1544unsigned int
1545ev_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1550void
1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1552{
1553 io_blocktime = interval;
1554}
1555
1556void
1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1558{
1559 timeout_blocktime = interval;
1560}
1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
932static void noinline 1587static void noinline
933loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
934{ 1589{
935 if (!backend) 1590 if (!backend)
936 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
937#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
938 { 1604 {
939 struct timespec ts; 1605 struct timespec ts;
1606
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1608 have_monotonic = 1;
942 } 1609 }
943#endif 1610#endif
944
945 ev_rt_now = ev_time ();
946 mn_now = get_clock ();
947 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now;
949 1611
950 /* pid check not overridable via env */ 1612 /* pid check not overridable via env */
951#ifndef _WIN32 1613#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1614 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1615 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1618 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1619 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1620 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1621 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1622
1623 ev_rt_now = ev_time ();
1624 mn_now = get_clock ();
1625 now_floor = mn_now;
1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_FEATURE_API
1628 invoke_cb = ev_invoke_pending;
1629#endif
1630
1631 io_blocktime = 0.;
1632 timeout_blocktime = 0.;
1633 backend = 0;
1634 backend_fd = -1;
1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1639#if EV_USE_INOTIFY
1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1641#endif
1642#if EV_USE_SIGNALFD
1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1644#endif
1645
961 if (!(flags & 0x0000ffffUL)) 1646 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1648
970#if EV_USE_PORT 1649#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1650 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1651#endif
973#if EV_USE_KQUEUE 1652#if EV_USE_KQUEUE
981#endif 1660#endif
982#if EV_USE_SELECT 1661#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1663#endif
985 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1667#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986 ev_init (&sigev, sigcb); 1668 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1669 ev_set_priority (&pipe_w, EV_MAXPRI);
1670#endif
988 } 1671 }
989} 1672}
990 1673
1674/* free up a loop structure */
991static void noinline 1675static void noinline
992loop_destroy (EV_P) 1676loop_destroy (EV_P)
993{ 1677{
994 int i; 1678 int i;
1679
1680 if (ev_is_active (&pipe_w))
1681 {
1682 /*ev_ref (EV_A);*/
1683 /*ev_io_stop (EV_A_ &pipe_w);*/
1684
1685#if EV_USE_EVENTFD
1686 if (evfd >= 0)
1687 close (evfd);
1688#endif
1689
1690 if (evpipe [0] >= 0)
1691 {
1692 EV_WIN32_CLOSE_FD (evpipe [0]);
1693 EV_WIN32_CLOSE_FD (evpipe [1]);
1694 }
1695 }
1696
1697#if EV_USE_SIGNALFD
1698 if (ev_is_active (&sigfd_w))
1699 close (sigfd);
1700#endif
995 1701
996#if EV_USE_INOTIFY 1702#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1703 if (fs_fd >= 0)
998 close (fs_fd); 1704 close (fs_fd);
999#endif 1705#endif
1023#if EV_IDLE_ENABLE 1729#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1730 array_free (idle, [i]);
1025#endif 1731#endif
1026 } 1732 }
1027 1733
1734 ev_free (anfds); anfds = 0; anfdmax = 0;
1735
1028 /* have to use the microsoft-never-gets-it-right macro */ 1736 /* have to use the microsoft-never-gets-it-right macro */
1737 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 1738 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1739 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1740#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1741 array_free (periodic, EMPTY);
1033#endif 1742#endif
1743#if EV_FORK_ENABLE
1744 array_free (fork, EMPTY);
1745#endif
1034 array_free (prepare, EMPTY); 1746 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1747 array_free (check, EMPTY);
1748#if EV_ASYNC_ENABLE
1749 array_free (async, EMPTY);
1750#endif
1036 1751
1037 backend = 0; 1752 backend = 0;
1038} 1753}
1039 1754
1755#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1756inline_size void infy_fork (EV_P);
1757#endif
1041 1758
1042void inline_size 1759inline_size void
1043loop_fork (EV_P) 1760loop_fork (EV_P)
1044{ 1761{
1045#if EV_USE_PORT 1762#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1763 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 1764#endif
1053#endif 1770#endif
1054#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1772 infy_fork (EV_A);
1056#endif 1773#endif
1057 1774
1058 if (ev_is_active (&sigev)) 1775 if (ev_is_active (&pipe_w))
1059 { 1776 {
1060 /* default loop */ 1777 /* this "locks" the handlers against writing to the pipe */
1778 /* while we modify the fd vars */
1779 sig_pending = 1;
1780#if EV_ASYNC_ENABLE
1781 async_pending = 1;
1782#endif
1061 1783
1062 ev_ref (EV_A); 1784 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1785 ev_io_stop (EV_A_ &pipe_w);
1064 close (sigpipe [0]);
1065 close (sigpipe [1]);
1066 1786
1067 while (pipe (sigpipe)) 1787#if EV_USE_EVENTFD
1068 syserr ("(libev) error creating pipe"); 1788 if (evfd >= 0)
1789 close (evfd);
1790#endif
1069 1791
1792 if (evpipe [0] >= 0)
1793 {
1794 EV_WIN32_CLOSE_FD (evpipe [0]);
1795 EV_WIN32_CLOSE_FD (evpipe [1]);
1796 }
1797
1798#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1070 siginit (EV_A); 1799 evpipe_init (EV_A);
1800 /* now iterate over everything, in case we missed something */
1801 pipecb (EV_A_ &pipe_w, EV_READ);
1802#endif
1071 } 1803 }
1072 1804
1073 postfork = 0; 1805 postfork = 0;
1074} 1806}
1075 1807
1076#if EV_MULTIPLICITY 1808#if EV_MULTIPLICITY
1809
1077struct ev_loop * 1810struct ev_loop *
1078ev_loop_new (unsigned int flags) 1811ev_loop_new (unsigned int flags)
1079{ 1812{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1813 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1814
1082 memset (loop, 0, sizeof (struct ev_loop)); 1815 memset (EV_A, 0, sizeof (struct ev_loop));
1083
1084 loop_init (EV_A_ flags); 1816 loop_init (EV_A_ flags);
1085 1817
1086 if (ev_backend (EV_A)) 1818 if (ev_backend (EV_A))
1087 return loop; 1819 return EV_A;
1088 1820
1089 return 0; 1821 return 0;
1090} 1822}
1091 1823
1092void 1824void
1097} 1829}
1098 1830
1099void 1831void
1100ev_loop_fork (EV_P) 1832ev_loop_fork (EV_P)
1101{ 1833{
1102 postfork = 1; 1834 postfork = 1; /* must be in line with ev_default_fork */
1103} 1835}
1836#endif /* multiplicity */
1104 1837
1838#if EV_VERIFY
1839static void noinline
1840verify_watcher (EV_P_ W w)
1841{
1842 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1843
1844 if (w->pending)
1845 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1846}
1847
1848static void noinline
1849verify_heap (EV_P_ ANHE *heap, int N)
1850{
1851 int i;
1852
1853 for (i = HEAP0; i < N + HEAP0; ++i)
1854 {
1855 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1856 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1857 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1858
1859 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1860 }
1861}
1862
1863static void noinline
1864array_verify (EV_P_ W *ws, int cnt)
1865{
1866 while (cnt--)
1867 {
1868 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1869 verify_watcher (EV_A_ ws [cnt]);
1870 }
1871}
1872#endif
1873
1874#if EV_FEATURE_API
1875void
1876ev_verify (EV_P)
1877{
1878#if EV_VERIFY
1879 int i;
1880 WL w;
1881
1882 assert (activecnt >= -1);
1883
1884 assert (fdchangemax >= fdchangecnt);
1885 for (i = 0; i < fdchangecnt; ++i)
1886 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1887
1888 assert (anfdmax >= 0);
1889 for (i = 0; i < anfdmax; ++i)
1890 for (w = anfds [i].head; w; w = w->next)
1891 {
1892 verify_watcher (EV_A_ (W)w);
1893 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1894 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1895 }
1896
1897 assert (timermax >= timercnt);
1898 verify_heap (EV_A_ timers, timercnt);
1899
1900#if EV_PERIODIC_ENABLE
1901 assert (periodicmax >= periodiccnt);
1902 verify_heap (EV_A_ periodics, periodiccnt);
1903#endif
1904
1905 for (i = NUMPRI; i--; )
1906 {
1907 assert (pendingmax [i] >= pendingcnt [i]);
1908#if EV_IDLE_ENABLE
1909 assert (idleall >= 0);
1910 assert (idlemax [i] >= idlecnt [i]);
1911 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1912#endif
1913 }
1914
1915#if EV_FORK_ENABLE
1916 assert (forkmax >= forkcnt);
1917 array_verify (EV_A_ (W *)forks, forkcnt);
1918#endif
1919
1920#if EV_ASYNC_ENABLE
1921 assert (asyncmax >= asynccnt);
1922 array_verify (EV_A_ (W *)asyncs, asynccnt);
1923#endif
1924
1925#if EV_PREPARE_ENABLE
1926 assert (preparemax >= preparecnt);
1927 array_verify (EV_A_ (W *)prepares, preparecnt);
1928#endif
1929
1930#if EV_CHECK_ENABLE
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933#endif
1934
1935# if 0
1936#if EV_CHILD_ENABLE
1937 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1938 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1939#endif
1940# endif
1941#endif
1942}
1105#endif 1943#endif
1106 1944
1107#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1108struct ev_loop * 1946struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1947ev_default_loop_init (unsigned int flags)
1110#else 1948#else
1111int 1949int
1112ev_default_loop (unsigned int flags) 1950ev_default_loop (unsigned int flags)
1113#endif 1951#endif
1114{ 1952{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1953 if (!ev_default_loop_ptr)
1120 { 1954 {
1121#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1956 EV_P = ev_default_loop_ptr = &default_loop_struct;
1123#else 1957#else
1124 ev_default_loop_ptr = 1; 1958 ev_default_loop_ptr = 1;
1125#endif 1959#endif
1126 1960
1127 loop_init (EV_A_ flags); 1961 loop_init (EV_A_ flags);
1128 1962
1129 if (ev_backend (EV_A)) 1963 if (ev_backend (EV_A))
1130 { 1964 {
1131 siginit (EV_A); 1965#if EV_CHILD_ENABLE
1132
1133#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1966 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1967 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1968 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1969 ev_unref (EV_A); /* child watcher should not keep loop alive */
1138#endif 1970#endif
1146 1978
1147void 1979void
1148ev_default_destroy (void) 1980ev_default_destroy (void)
1149{ 1981{
1150#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1983 EV_P = ev_default_loop_ptr;
1152#endif 1984#endif
1153 1985
1154#ifndef _WIN32 1986 ev_default_loop_ptr = 0;
1987
1988#if EV_CHILD_ENABLE
1155 ev_ref (EV_A); /* child watcher */ 1989 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1990 ev_signal_stop (EV_A_ &childev);
1157#endif 1991#endif
1158 1992
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1993 loop_destroy (EV_A);
1166} 1994}
1167 1995
1168void 1996void
1169ev_default_fork (void) 1997ev_default_fork (void)
1170{ 1998{
1171#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
1173#endif 2001#endif
1174 2002
1175 if (backend) 2003 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 2004}
1178 2005
1179/*****************************************************************************/ 2006/*****************************************************************************/
1180 2007
1181void 2008void
1182ev_invoke (EV_P_ void *w, int revents) 2009ev_invoke (EV_P_ void *w, int revents)
1183{ 2010{
1184 EV_CB_INVOKE ((W)w, revents); 2011 EV_CB_INVOKE ((W)w, revents);
1185} 2012}
1186 2013
1187void inline_speed 2014unsigned int
1188call_pending (EV_P) 2015ev_pending_count (EV_P)
2016{
2017 int pri;
2018 unsigned int count = 0;
2019
2020 for (pri = NUMPRI; pri--; )
2021 count += pendingcnt [pri];
2022
2023 return count;
2024}
2025
2026void noinline
2027ev_invoke_pending (EV_P)
1189{ 2028{
1190 int pri; 2029 int pri;
1191 2030
1192 for (pri = NUMPRI; pri--; ) 2031 for (pri = NUMPRI; pri--; )
1193 while (pendingcnt [pri]) 2032 while (pendingcnt [pri])
1194 { 2033 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2034 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1196 2035
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2036 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2037 /* ^ this is no longer true, as pending_w could be here */
1200 2038
1201 p->w->pending = 0; 2039 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 2040 EV_CB_INVOKE (p->w, p->events);
1203 } 2041 EV_FREQUENT_CHECK;
1204 } 2042 }
1205} 2043}
1206 2044
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 2045#if EV_IDLE_ENABLE
1287void inline_size 2046/* make idle watchers pending. this handles the "call-idle */
2047/* only when higher priorities are idle" logic */
2048inline_size void
1288idle_reify (EV_P) 2049idle_reify (EV_P)
1289{ 2050{
1290 if (expect_false (idleall)) 2051 if (expect_false (idleall))
1291 { 2052 {
1292 int pri; 2053 int pri;
1304 } 2065 }
1305 } 2066 }
1306} 2067}
1307#endif 2068#endif
1308 2069
1309int inline_size 2070/* make timers pending */
1310time_update_monotonic (EV_P) 2071inline_size void
2072timers_reify (EV_P)
1311{ 2073{
2074 EV_FREQUENT_CHECK;
2075
2076 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2077 {
2078 do
2079 {
2080 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2081
2082 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2083
2084 /* first reschedule or stop timer */
2085 if (w->repeat)
2086 {
2087 ev_at (w) += w->repeat;
2088 if (ev_at (w) < mn_now)
2089 ev_at (w) = mn_now;
2090
2091 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2092
2093 ANHE_at_cache (timers [HEAP0]);
2094 downheap (timers, timercnt, HEAP0);
2095 }
2096 else
2097 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2098
2099 EV_FREQUENT_CHECK;
2100 feed_reverse (EV_A_ (W)w);
2101 }
2102 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2103
2104 feed_reverse_done (EV_A_ EV_TIMER);
2105 }
2106}
2107
2108#if EV_PERIODIC_ENABLE
2109/* make periodics pending */
2110inline_size void
2111periodics_reify (EV_P)
2112{
2113 EV_FREQUENT_CHECK;
2114
2115 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2116 {
2117 int feed_count = 0;
2118
2119 do
2120 {
2121 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2122
2123 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2124
2125 /* first reschedule or stop timer */
2126 if (w->reschedule_cb)
2127 {
2128 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2129
2130 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2131
2132 ANHE_at_cache (periodics [HEAP0]);
2133 downheap (periodics, periodiccnt, HEAP0);
2134 }
2135 else if (w->interval)
2136 {
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138 /* if next trigger time is not sufficiently in the future, put it there */
2139 /* this might happen because of floating point inexactness */
2140 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2141 {
2142 ev_at (w) += w->interval;
2143
2144 /* if interval is unreasonably low we might still have a time in the past */
2145 /* so correct this. this will make the periodic very inexact, but the user */
2146 /* has effectively asked to get triggered more often than possible */
2147 if (ev_at (w) < ev_rt_now)
2148 ev_at (w) = ev_rt_now;
2149 }
2150
2151 ANHE_at_cache (periodics [HEAP0]);
2152 downheap (periodics, periodiccnt, HEAP0);
2153 }
2154 else
2155 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2156
2157 EV_FREQUENT_CHECK;
2158 feed_reverse (EV_A_ (W)w);
2159 }
2160 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2161
2162 feed_reverse_done (EV_A_ EV_PERIODIC);
2163 }
2164}
2165
2166/* simply recalculate all periodics */
2167/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2168static void noinline
2169periodics_reschedule (EV_P)
2170{
2171 int i;
2172
2173 /* adjust periodics after time jump */
2174 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2175 {
2176 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2177
2178 if (w->reschedule_cb)
2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180 else if (w->interval)
2181 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2182
2183 ANHE_at_cache (periodics [i]);
2184 }
2185
2186 reheap (periodics, periodiccnt);
2187}
2188#endif
2189
2190/* adjust all timers by a given offset */
2191static void noinline
2192timers_reschedule (EV_P_ ev_tstamp adjust)
2193{
2194 int i;
2195
2196 for (i = 0; i < timercnt; ++i)
2197 {
2198 ANHE *he = timers + i + HEAP0;
2199 ANHE_w (*he)->at += adjust;
2200 ANHE_at_cache (*he);
2201 }
2202}
2203
2204/* fetch new monotonic and realtime times from the kernel */
2205/* also detect if there was a timejump, and act accordingly */
2206inline_speed void
2207time_update (EV_P_ ev_tstamp max_block)
2208{
2209#if EV_USE_MONOTONIC
2210 if (expect_true (have_monotonic))
2211 {
2212 int i;
2213 ev_tstamp odiff = rtmn_diff;
2214
1312 mn_now = get_clock (); 2215 mn_now = get_clock ();
1313 2216
2217 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2218 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2219 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2220 {
1316 ev_rt_now = rtmn_diff + mn_now; 2221 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2222 return;
1318 } 2223 }
1319 else 2224
1320 {
1321 now_floor = mn_now; 2225 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2226 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2227
1327void inline_size 2228 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2229 * on the choice of "4": one iteration isn't enough,
1329{ 2230 * in case we get preempted during the calls to
1330 int i; 2231 * ev_time and get_clock. a second call is almost guaranteed
1331 2232 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2233 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2234 * in the unlikely event of having been preempted here.
1334 { 2235 */
1335 if (time_update_monotonic (EV_A)) 2236 for (i = 4; --i; )
1336 { 2237 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2238 rtmn_diff = ev_rt_now - mn_now;
1350 2239
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2240 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2241 return; /* all is well */
1353 2242
1354 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2244 mn_now = get_clock ();
1356 now_floor = mn_now; 2245 now_floor = mn_now;
1357 } 2246 }
1358 2247
2248 /* no timer adjustment, as the monotonic clock doesn't jump */
2249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2250# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2251 periodics_reschedule (EV_A);
1361# endif 2252# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2253 }
1366 else 2254 else
1367#endif 2255#endif
1368 { 2256 {
1369 ev_rt_now = ev_time (); 2257 ev_rt_now = ev_time ();
1370 2258
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2260 {
2261 /* adjust timers. this is easy, as the offset is the same for all of them */
2262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2263#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2264 periodics_reschedule (EV_A);
1375#endif 2265#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2266 }
1381 2267
1382 mn_now = ev_rt_now; 2268 mn_now = ev_rt_now;
1383 } 2269 }
1384} 2270}
1385 2271
1386void 2272void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2273ev_loop (EV_P_ int flags)
1402{ 2274{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2275#if EV_FEATURE_API
1404 ? EVUNLOOP_ONE 2276 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2277#endif
1406 2278
2279 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2280
2281 loop_done = EVUNLOOP_CANCEL;
2282
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2284
1409 do 2285 do
1410 { 2286 {
2287#if EV_VERIFY >= 2
2288 ev_verify (EV_A);
2289#endif
2290
1411#ifndef _WIN32 2291#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2292 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2293 if (expect_false (getpid () != curpid))
1414 { 2294 {
1415 curpid = getpid (); 2295 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2301 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2302 if (expect_false (postfork))
1423 if (forkcnt) 2303 if (forkcnt)
1424 { 2304 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2306 EV_INVOKE_PENDING;
1427 } 2307 }
1428#endif 2308#endif
1429 2309
2310#if EV_PREPARE_ENABLE
1430 /* queue prepare watchers (and execute them) */ 2311 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2312 if (expect_false (preparecnt))
1432 { 2313 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2315 EV_INVOKE_PENDING;
1435 } 2316 }
2317#endif
1436 2318
1437 if (expect_false (!activecnt)) 2319 if (expect_false (loop_done))
1438 break; 2320 break;
1439 2321
1440 /* we might have forked, so reify kernel state if necessary */ 2322 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1442 loop_fork (EV_A); 2324 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2326 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2327 fd_reify (EV_A);
1446 2328
1447 /* calculate blocking time */ 2329 /* calculate blocking time */
1448 { 2330 {
1449 ev_tstamp block; 2331 ev_tstamp waittime = 0.;
2332 ev_tstamp sleeptime = 0.;
1450 2333
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2334 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2335 {
2336 /* remember old timestamp for io_blocktime calculation */
2337 ev_tstamp prev_mn_now = mn_now;
2338
1455 /* update time to cancel out callback processing overhead */ 2339 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 2340 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 2341
1466 block = MAX_BLOCKTIME; 2342 waittime = MAX_BLOCKTIME;
1467 2343
1468 if (timercnt) 2344 if (timercnt)
1469 { 2345 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2346 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 2347 if (waittime > to) waittime = to;
1472 } 2348 }
1473 2349
1474#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 2351 if (periodiccnt)
1476 { 2352 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2353 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 2354 if (waittime > to) waittime = to;
1479 } 2355 }
1480#endif 2356#endif
1481 2357
2358 /* don't let timeouts decrease the waittime below timeout_blocktime */
2359 if (expect_false (waittime < timeout_blocktime))
2360 waittime = timeout_blocktime;
2361
2362 /* extra check because io_blocktime is commonly 0 */
1482 if (expect_false (block < 0.)) block = 0.; 2363 if (expect_false (io_blocktime))
2364 {
2365 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2366
2367 if (sleeptime > waittime - backend_fudge)
2368 sleeptime = waittime - backend_fudge;
2369
2370 if (expect_true (sleeptime > 0.))
2371 {
2372 ev_sleep (sleeptime);
2373 waittime -= sleeptime;
2374 }
2375 }
1483 } 2376 }
1484 2377
2378#if EV_FEATURE_API
1485 ++loop_count; 2379 ++loop_count;
2380#endif
2381 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1486 backend_poll (EV_A_ block); 2382 backend_poll (EV_A_ waittime);
2383 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2384
2385 /* update ev_rt_now, do magic */
2386 time_update (EV_A_ waittime + sleeptime);
1487 } 2387 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2388
1492 /* queue pending timers and reschedule them */ 2389 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2390 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2391#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2392 periodics_reify (EV_A); /* absolute timers called first */
1498#if EV_IDLE_ENABLE 2395#if EV_IDLE_ENABLE
1499 /* queue idle watchers unless other events are pending */ 2396 /* queue idle watchers unless other events are pending */
1500 idle_reify (EV_A); 2397 idle_reify (EV_A);
1501#endif 2398#endif
1502 2399
2400#if EV_CHECK_ENABLE
1503 /* queue check watchers, to be executed first */ 2401 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2402 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2403 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2404#endif
1506 2405
1507 call_pending (EV_A); 2406 EV_INVOKE_PENDING;
1508
1509 } 2407 }
1510 while (expect_true (activecnt && !loop_done)); 2408 while (expect_true (
2409 activecnt
2410 && !loop_done
2411 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2412 ));
1511 2413
1512 if (loop_done == EVUNLOOP_ONE) 2414 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2415 loop_done = EVUNLOOP_CANCEL;
2416
2417#if EV_FEATURE_API
2418 --loop_depth;
2419#endif
1514} 2420}
1515 2421
1516void 2422void
1517ev_unloop (EV_P_ int how) 2423ev_unloop (EV_P_ int how)
1518{ 2424{
1519 loop_done = how; 2425 loop_done = how;
1520} 2426}
1521 2427
2428void
2429ev_ref (EV_P)
2430{
2431 ++activecnt;
2432}
2433
2434void
2435ev_unref (EV_P)
2436{
2437 --activecnt;
2438}
2439
2440void
2441ev_now_update (EV_P)
2442{
2443 time_update (EV_A_ 1e100);
2444}
2445
2446void
2447ev_suspend (EV_P)
2448{
2449 ev_now_update (EV_A);
2450}
2451
2452void
2453ev_resume (EV_P)
2454{
2455 ev_tstamp mn_prev = mn_now;
2456
2457 ev_now_update (EV_A);
2458 timers_reschedule (EV_A_ mn_now - mn_prev);
2459#if EV_PERIODIC_ENABLE
2460 /* TODO: really do this? */
2461 periodics_reschedule (EV_A);
2462#endif
2463}
2464
1522/*****************************************************************************/ 2465/*****************************************************************************/
2466/* singly-linked list management, used when the expected list length is short */
1523 2467
1524void inline_size 2468inline_size void
1525wlist_add (WL *head, WL elem) 2469wlist_add (WL *head, WL elem)
1526{ 2470{
1527 elem->next = *head; 2471 elem->next = *head;
1528 *head = elem; 2472 *head = elem;
1529} 2473}
1530 2474
1531void inline_size 2475inline_size void
1532wlist_del (WL *head, WL elem) 2476wlist_del (WL *head, WL elem)
1533{ 2477{
1534 while (*head) 2478 while (*head)
1535 { 2479 {
1536 if (*head == elem) 2480 if (expect_true (*head == elem))
1537 { 2481 {
1538 *head = elem->next; 2482 *head = elem->next;
1539 return; 2483 break;
1540 } 2484 }
1541 2485
1542 head = &(*head)->next; 2486 head = &(*head)->next;
1543 } 2487 }
1544} 2488}
1545 2489
1546void inline_speed 2490/* internal, faster, version of ev_clear_pending */
2491inline_speed void
1547clear_pending (EV_P_ W w) 2492clear_pending (EV_P_ W w)
1548{ 2493{
1549 if (w->pending) 2494 if (w->pending)
1550 { 2495 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2496 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 2497 w->pending = 0;
1553 } 2498 }
1554} 2499}
1555 2500
1556int 2501int
1560 int pending = w_->pending; 2505 int pending = w_->pending;
1561 2506
1562 if (expect_true (pending)) 2507 if (expect_true (pending))
1563 { 2508 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2509 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2510 p->w = (W)&pending_w;
1565 w_->pending = 0; 2511 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 2512 return p->events;
1568 } 2513 }
1569 else 2514 else
1570 return 0; 2515 return 0;
1571} 2516}
1572 2517
1573void inline_size 2518inline_size void
1574pri_adjust (EV_P_ W w) 2519pri_adjust (EV_P_ W w)
1575{ 2520{
1576 int pri = w->priority; 2521 int pri = ev_priority (w);
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2522 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2523 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 2524 ev_set_priority (w, pri);
1580} 2525}
1581 2526
1582void inline_speed 2527inline_speed void
1583ev_start (EV_P_ W w, int active) 2528ev_start (EV_P_ W w, int active)
1584{ 2529{
1585 pri_adjust (EV_A_ w); 2530 pri_adjust (EV_A_ w);
1586 w->active = active; 2531 w->active = active;
1587 ev_ref (EV_A); 2532 ev_ref (EV_A);
1588} 2533}
1589 2534
1590void inline_size 2535inline_size void
1591ev_stop (EV_P_ W w) 2536ev_stop (EV_P_ W w)
1592{ 2537{
1593 ev_unref (EV_A); 2538 ev_unref (EV_A);
1594 w->active = 0; 2539 w->active = 0;
1595} 2540}
1602 int fd = w->fd; 2547 int fd = w->fd;
1603 2548
1604 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
1605 return; 2550 return;
1606 2551
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2552 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2553 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2554
2555 EV_FREQUENT_CHECK;
1608 2556
1609 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2558 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2559 wlist_add (&anfds[fd].head, (WL)w);
1612 2560
1613 fd_change (EV_A_ fd); 2561 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2562 w->events &= ~EV__IOFDSET;
2563
2564 EV_FREQUENT_CHECK;
1614} 2565}
1615 2566
1616void noinline 2567void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2568ev_io_stop (EV_P_ ev_io *w)
1618{ 2569{
1619 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
1621 return; 2572 return;
1622 2573
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2574 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2575
2576 EV_FREQUENT_CHECK;
2577
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2578 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
1627 2580
1628 fd_change (EV_A_ w->fd); 2581 fd_change (EV_A_ w->fd, 1);
2582
2583 EV_FREQUENT_CHECK;
1629} 2584}
1630 2585
1631void noinline 2586void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2587ev_timer_start (EV_P_ ev_timer *w)
1633{ 2588{
1634 if (expect_false (ev_is_active (w))) 2589 if (expect_false (ev_is_active (w)))
1635 return; 2590 return;
1636 2591
1637 ((WT)w)->at += mn_now; 2592 ev_at (w) += mn_now;
1638 2593
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2594 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2595
2596 EV_FREQUENT_CHECK;
2597
2598 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2599 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2600 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2601 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2602 ANHE_at_cache (timers [ev_active (w)]);
2603 upheap (timers, ev_active (w));
1645 2604
2605 EV_FREQUENT_CHECK;
2606
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2607 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2608}
1648 2609
1649void noinline 2610void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2611ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2612{
1652 clear_pending (EV_A_ (W)w); 2613 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2614 if (expect_false (!ev_is_active (w)))
1654 return; 2615 return;
1655 2616
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2617 EV_FREQUENT_CHECK;
1657 2618
1658 { 2619 {
1659 int active = ((W)w)->active; 2620 int active = ev_active (w);
1660 2621
2622 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2623
2624 --timercnt;
2625
1661 if (expect_true (--active < --timercnt)) 2626 if (expect_true (active < timercnt + HEAP0))
1662 { 2627 {
1663 timers [active] = timers [timercnt]; 2628 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2629 adjustheap (timers, timercnt, active);
1665 } 2630 }
1666 } 2631 }
1667 2632
1668 ((WT)w)->at -= mn_now; 2633 ev_at (w) -= mn_now;
1669 2634
1670 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
2636
2637 EV_FREQUENT_CHECK;
1671} 2638}
1672 2639
1673void noinline 2640void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2641ev_timer_again (EV_P_ ev_timer *w)
1675{ 2642{
2643 EV_FREQUENT_CHECK;
2644
1676 if (ev_is_active (w)) 2645 if (ev_is_active (w))
1677 { 2646 {
1678 if (w->repeat) 2647 if (w->repeat)
1679 { 2648 {
1680 ((WT)w)->at = mn_now + w->repeat; 2649 ev_at (w) = mn_now + w->repeat;
2650 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2651 adjustheap (timers, timercnt, ev_active (w));
1682 } 2652 }
1683 else 2653 else
1684 ev_timer_stop (EV_A_ w); 2654 ev_timer_stop (EV_A_ w);
1685 } 2655 }
1686 else if (w->repeat) 2656 else if (w->repeat)
1687 { 2657 {
1688 w->at = w->repeat; 2658 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2659 ev_timer_start (EV_A_ w);
1690 } 2660 }
2661
2662 EV_FREQUENT_CHECK;
2663}
2664
2665ev_tstamp
2666ev_timer_remaining (EV_P_ ev_timer *w)
2667{
2668 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1691} 2669}
1692 2670
1693#if EV_PERIODIC_ENABLE 2671#if EV_PERIODIC_ENABLE
1694void noinline 2672void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2673ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2674{
1697 if (expect_false (ev_is_active (w))) 2675 if (expect_false (ev_is_active (w)))
1698 return; 2676 return;
1699 2677
1700 if (w->reschedule_cb) 2678 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2680 else if (w->interval)
1703 { 2681 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2682 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2683 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2684 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2685 }
1708 else 2686 else
1709 ((WT)w)->at = w->offset; 2687 ev_at (w) = w->offset;
1710 2688
2689 EV_FREQUENT_CHECK;
2690
2691 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2692 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2693 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2694 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2695 ANHE_at_cache (periodics [ev_active (w)]);
2696 upheap (periodics, ev_active (w));
1715 2697
2698 EV_FREQUENT_CHECK;
2699
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2700 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2701}
1718 2702
1719void noinline 2703void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2704ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2705{
1722 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
1724 return; 2708 return;
1725 2709
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2710 EV_FREQUENT_CHECK;
1727 2711
1728 { 2712 {
1729 int active = ((W)w)->active; 2713 int active = ev_active (w);
1730 2714
2715 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2716
2717 --periodiccnt;
2718
1731 if (expect_true (--active < --periodiccnt)) 2719 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2720 {
1733 periodics [active] = periodics [periodiccnt]; 2721 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2722 adjustheap (periodics, periodiccnt, active);
1735 } 2723 }
1736 } 2724 }
1737 2725
1738 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2727
2728 EV_FREQUENT_CHECK;
1739} 2729}
1740 2730
1741void noinline 2731void noinline
1742ev_periodic_again (EV_P_ ev_periodic *w) 2732ev_periodic_again (EV_P_ ev_periodic *w)
1743{ 2733{
1749 2739
1750#ifndef SA_RESTART 2740#ifndef SA_RESTART
1751# define SA_RESTART 0 2741# define SA_RESTART 0
1752#endif 2742#endif
1753 2743
2744#if EV_SIGNAL_ENABLE
2745
1754void noinline 2746void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 2747ev_signal_start (EV_P_ ev_signal *w)
1756{ 2748{
1757#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif
1760 if (expect_false (ev_is_active (w))) 2749 if (expect_false (ev_is_active (w)))
1761 return; 2750 return;
1762 2751
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2752 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2753
2754#if EV_MULTIPLICITY
2755 assert (("libev: a signal must not be attached to two different loops",
2756 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2757
2758 signals [w->signum - 1].loop = EV_A;
2759#endif
2760
2761 EV_FREQUENT_CHECK;
2762
2763#if EV_USE_SIGNALFD
2764 if (sigfd == -2)
2765 {
2766 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2767 if (sigfd < 0 && errno == EINVAL)
2768 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2769
2770 if (sigfd >= 0)
2771 {
2772 fd_intern (sigfd); /* doing it twice will not hurt */
2773
2774 sigemptyset (&sigfd_set);
2775
2776 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2777 ev_set_priority (&sigfd_w, EV_MAXPRI);
2778 ev_io_start (EV_A_ &sigfd_w);
2779 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2780 }
2781 }
2782
2783 if (sigfd >= 0)
2784 {
2785 /* TODO: check .head */
2786 sigaddset (&sigfd_set, w->signum);
2787 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2788
2789 signalfd (sigfd, &sigfd_set, 0);
2790 }
2791#endif
1764 2792
1765 ev_start (EV_A_ (W)w, 1); 2793 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2794 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2795
1769 if (!((WL)w)->next) 2796 if (!((WL)w)->next)
2797# if EV_USE_SIGNALFD
2798 if (sigfd < 0) /*TODO*/
2799# endif
1770 { 2800 {
1771#if _WIN32 2801# ifdef _WIN32
2802 evpipe_init (EV_A);
2803
1772 signal (w->signum, sighandler); 2804 signal (w->signum, ev_sighandler);
1773#else 2805# else
1774 struct sigaction sa; 2806 struct sigaction sa;
2807
2808 evpipe_init (EV_A);
2809
1775 sa.sa_handler = sighandler; 2810 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2811 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2812 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2813 sigaction (w->signum, &sa, 0);
2814
2815 sigemptyset (&sa.sa_mask);
2816 sigaddset (&sa.sa_mask, w->signum);
2817 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1779#endif 2818#endif
1780 } 2819 }
2820
2821 EV_FREQUENT_CHECK;
1781} 2822}
1782 2823
1783void noinline 2824void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2825ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2826{
1786 clear_pending (EV_A_ (W)w); 2827 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2828 if (expect_false (!ev_is_active (w)))
1788 return; 2829 return;
1789 2830
2831 EV_FREQUENT_CHECK;
2832
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2833 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2834 ev_stop (EV_A_ (W)w);
1792 2835
1793 if (!signals [w->signum - 1].head) 2836 if (!signals [w->signum - 1].head)
2837 {
2838#if EV_MULTIPLICITY
2839 signals [w->signum - 1].loop = 0; /* unattach from signal */
2840#endif
2841#if EV_USE_SIGNALFD
2842 if (sigfd >= 0)
2843 {
2844 sigset_t ss;
2845
2846 sigemptyset (&ss);
2847 sigaddset (&ss, w->signum);
2848 sigdelset (&sigfd_set, w->signum);
2849
2850 signalfd (sigfd, &sigfd_set, 0);
2851 sigprocmask (SIG_UNBLOCK, &ss, 0);
2852 }
2853 else
2854#endif
1794 signal (w->signum, SIG_DFL); 2855 signal (w->signum, SIG_DFL);
2856 }
2857
2858 EV_FREQUENT_CHECK;
1795} 2859}
2860
2861#endif
2862
2863#if EV_CHILD_ENABLE
1796 2864
1797void 2865void
1798ev_child_start (EV_P_ ev_child *w) 2866ev_child_start (EV_P_ ev_child *w)
1799{ 2867{
1800#if EV_MULTIPLICITY 2868#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2869 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2870#endif
1803 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
1804 return; 2872 return;
1805 2873
2874 EV_FREQUENT_CHECK;
2875
1806 ev_start (EV_A_ (W)w, 1); 2876 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2877 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2878
2879 EV_FREQUENT_CHECK;
1808} 2880}
1809 2881
1810void 2882void
1811ev_child_stop (EV_P_ ev_child *w) 2883ev_child_stop (EV_P_ ev_child *w)
1812{ 2884{
1813 clear_pending (EV_A_ (W)w); 2885 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2886 if (expect_false (!ev_is_active (w)))
1815 return; 2887 return;
1816 2888
2889 EV_FREQUENT_CHECK;
2890
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2891 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2892 ev_stop (EV_A_ (W)w);
2893
2894 EV_FREQUENT_CHECK;
1819} 2895}
2896
2897#endif
1820 2898
1821#if EV_STAT_ENABLE 2899#if EV_STAT_ENABLE
1822 2900
1823# ifdef _WIN32 2901# ifdef _WIN32
1824# undef lstat 2902# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2903# define lstat(a,b) _stati64 (a,b)
1826# endif 2904# endif
1827 2905
1828#define DEF_STAT_INTERVAL 5.0074891 2906#define DEF_STAT_INTERVAL 5.0074891
2907#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2908#define MIN_STAT_INTERVAL 0.1074891
1830 2909
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2910static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2911
1833#if EV_USE_INOTIFY 2912#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 2913
2914/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2915# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1835 2916
1836static void noinline 2917static void noinline
1837infy_add (EV_P_ ev_stat *w) 2918infy_add (EV_P_ ev_stat *w)
1838{ 2919{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2920 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 2921
1841 if (w->wd < 0) 2922 if (w->wd >= 0)
2923 {
2924 struct statfs sfs;
2925
2926 /* now local changes will be tracked by inotify, but remote changes won't */
2927 /* unless the filesystem is known to be local, we therefore still poll */
2928 /* also do poll on <2.6.25, but with normal frequency */
2929
2930 if (!fs_2625)
2931 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2932 else if (!statfs (w->path, &sfs)
2933 && (sfs.f_type == 0x1373 /* devfs */
2934 || sfs.f_type == 0xEF53 /* ext2/3 */
2935 || sfs.f_type == 0x3153464a /* jfs */
2936 || sfs.f_type == 0x52654973 /* reiser3 */
2937 || sfs.f_type == 0x01021994 /* tempfs */
2938 || sfs.f_type == 0x58465342 /* xfs */))
2939 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2940 else
2941 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1842 { 2942 }
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2943 else
2944 {
2945 /* can't use inotify, continue to stat */
2946 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1844 2947
1845 /* monitor some parent directory for speedup hints */ 2948 /* if path is not there, monitor some parent directory for speedup hints */
2949 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2950 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2952 {
1848 char path [4096]; 2953 char path [4096];
1849 strcpy (path, w->path); 2954 strcpy (path, w->path);
1850 2955
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 2960
1856 char *pend = strrchr (path, '/'); 2961 char *pend = strrchr (path, '/');
1857 2962
1858 if (!pend) 2963 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 2964 break;
1860 2965
1861 *pend = 0; 2966 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 2967 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 2968 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 2970 }
1866 } 2971 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 2972
1870 if (w->wd >= 0) 2973 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2974 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2975
2976 /* now re-arm timer, if required */
2977 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2978 ev_timer_again (EV_A_ &w->timer);
2979 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1872} 2980}
1873 2981
1874static void noinline 2982static void noinline
1875infy_del (EV_P_ ev_stat *w) 2983infy_del (EV_P_ ev_stat *w)
1876{ 2984{
1879 2987
1880 if (wd < 0) 2988 if (wd < 0)
1881 return; 2989 return;
1882 2990
1883 w->wd = -2; 2991 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2992 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w); 2993 wlist_del (&fs_hash [slot].head, (WL)w);
1886 2994
1887 /* remove this watcher, if others are watching it, they will rearm */ 2995 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd); 2996 inotify_rm_watch (fs_fd, wd);
1889} 2997}
1890 2998
1891static void noinline 2999static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3000infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 3001{
1894 if (slot < 0) 3002 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 3003 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3004 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 3005 infy_wd (EV_A_ slot, wd, ev);
1898 else 3006 else
1899 { 3007 {
1900 WL w_; 3008 WL w_;
1901 3009
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3010 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1903 { 3011 {
1904 ev_stat *w = (ev_stat *)w_; 3012 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */ 3013 w_ = w_->next; /* lets us remove this watcher and all before it */
1906 3014
1907 if (w->wd == wd || wd == -1) 3015 if (w->wd == wd || wd == -1)
1908 { 3016 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3017 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 3018 {
3019 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1911 w->wd = -1; 3020 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 3021 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 3022 }
1914 3023
1915 stat_timer_cb (EV_A_ &w->timer, 0); 3024 stat_timer_cb (EV_A_ &w->timer, 0);
1920 3029
1921static void 3030static void
1922infy_cb (EV_P_ ev_io *w, int revents) 3031infy_cb (EV_P_ ev_io *w, int revents)
1923{ 3032{
1924 char buf [EV_INOTIFY_BUFSIZE]; 3033 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs; 3034 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf)); 3035 int len = read (fs_fd, buf, sizeof (buf));
1928 3036
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3037 for (ofs = 0; ofs < len; )
3038 {
3039 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3040 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3041 ofs += sizeof (struct inotify_event) + ev->len;
3042 }
1931} 3043}
1932 3044
1933void inline_size 3045inline_size unsigned int
3046ev_linux_version (void)
3047{
3048 struct utsname buf;
3049 unsigned int v;
3050 int i;
3051 char *p = buf.release;
3052
3053 if (uname (&buf))
3054 return 0;
3055
3056 for (i = 3+1; --i; )
3057 {
3058 unsigned int c = 0;
3059
3060 for (;;)
3061 {
3062 if (*p >= '0' && *p <= '9')
3063 c = c * 10 + *p++ - '0';
3064 else
3065 {
3066 p += *p == '.';
3067 break;
3068 }
3069 }
3070
3071 v = (v << 8) | c;
3072 }
3073
3074 return v;
3075}
3076
3077inline_size void
3078ev_check_2625 (EV_P)
3079{
3080 /* kernels < 2.6.25 are borked
3081 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3082 */
3083 if (ev_linux_version () < 0x020619)
3084 return;
3085
3086 fs_2625 = 1;
3087}
3088
3089inline_size int
3090infy_newfd (void)
3091{
3092#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3093 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3094 if (fd >= 0)
3095 return fd;
3096#endif
3097 return inotify_init ();
3098}
3099
3100inline_size void
1934infy_init (EV_P) 3101infy_init (EV_P)
1935{ 3102{
1936 if (fs_fd != -2) 3103 if (fs_fd != -2)
1937 return; 3104 return;
1938 3105
3106 fs_fd = -1;
3107
3108 ev_check_2625 (EV_A);
3109
1939 fs_fd = inotify_init (); 3110 fs_fd = infy_newfd ();
1940 3111
1941 if (fs_fd >= 0) 3112 if (fs_fd >= 0)
1942 { 3113 {
3114 fd_intern (fs_fd);
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3115 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI); 3116 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
1946 } 3119 }
1947} 3120}
1948 3121
1949void inline_size 3122inline_size void
1950infy_fork (EV_P) 3123infy_fork (EV_P)
1951{ 3124{
1952 int slot; 3125 int slot;
1953 3126
1954 if (fs_fd < 0) 3127 if (fs_fd < 0)
1955 return; 3128 return;
1956 3129
3130 ev_ref (EV_A);
3131 ev_io_stop (EV_A_ &fs_w);
1957 close (fs_fd); 3132 close (fs_fd);
1958 fs_fd = inotify_init (); 3133 fs_fd = infy_newfd ();
1959 3134
3135 if (fs_fd >= 0)
3136 {
3137 fd_intern (fs_fd);
3138 ev_io_set (&fs_w, fs_fd, EV_READ);
3139 ev_io_start (EV_A_ &fs_w);
3140 ev_unref (EV_A);
3141 }
3142
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3143 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1961 { 3144 {
1962 WL w_ = fs_hash [slot].head; 3145 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0; 3146 fs_hash [slot].head = 0;
1964 3147
1965 while (w_) 3148 while (w_)
1970 w->wd = -1; 3153 w->wd = -1;
1971 3154
1972 if (fs_fd >= 0) 3155 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 3156 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 3157 else
3158 {
3159 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3160 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1975 ev_timer_start (EV_A_ &w->timer); 3161 ev_timer_again (EV_A_ &w->timer);
3162 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3163 }
1976 } 3164 }
1977
1978 } 3165 }
1979} 3166}
1980 3167
3168#endif
3169
3170#ifdef _WIN32
3171# define EV_LSTAT(p,b) _stati64 (p, b)
3172#else
3173# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 3174#endif
1982 3175
1983void 3176void
1984ev_stat_stat (EV_P_ ev_stat *w) 3177ev_stat_stat (EV_P_ ev_stat *w)
1985{ 3178{
1992static void noinline 3185static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3186stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{ 3187{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3188 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996 3189
1997 /* we copy this here each the time so that */ 3190 ev_statdata prev = w->attr;
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w); 3191 ev_stat_stat (EV_A_ w);
2001 3192
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3193 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if ( 3194 if (
2004 w->prev.st_dev != w->attr.st_dev 3195 prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino 3196 || prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode 3197 || prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink 3198 || prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid 3199 || prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid 3200 || prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev 3201 || prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size 3202 || prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime 3203 || prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 3204 || prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 3205 || prev.st_ctime != w->attr.st_ctime
2015 ) { 3206 ) {
3207 /* we only update w->prev on actual differences */
3208 /* in case we test more often than invoke the callback, */
3209 /* to ensure that prev is always different to attr */
3210 w->prev = prev;
3211
2016 #if EV_USE_INOTIFY 3212 #if EV_USE_INOTIFY
3213 if (fs_fd >= 0)
3214 {
2017 infy_del (EV_A_ w); 3215 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 3216 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 3217 ev_stat_stat (EV_A_ w); /* avoid race... */
3218 }
2020 #endif 3219 #endif
2021 3220
2022 ev_feed_event (EV_A_ w, EV_STAT); 3221 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 3222 }
2024} 3223}
2027ev_stat_start (EV_P_ ev_stat *w) 3226ev_stat_start (EV_P_ ev_stat *w)
2028{ 3227{
2029 if (expect_false (ev_is_active (w))) 3228 if (expect_false (ev_is_active (w)))
2030 return; 3229 return;
2031 3230
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 3231 ev_stat_stat (EV_A_ w);
2037 3232
3233 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 3234 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 3235
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3236 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 3237 ev_set_priority (&w->timer, ev_priority (w));
2043 3238
2044#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2045 infy_init (EV_A); 3240 infy_init (EV_A);
2046 3241
2047 if (fs_fd >= 0) 3242 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 3243 infy_add (EV_A_ w);
2049 else 3244 else
2050#endif 3245#endif
3246 {
2051 ev_timer_start (EV_A_ &w->timer); 3247 ev_timer_again (EV_A_ &w->timer);
3248 ev_unref (EV_A);
3249 }
2052 3250
2053 ev_start (EV_A_ (W)w, 1); 3251 ev_start (EV_A_ (W)w, 1);
3252
3253 EV_FREQUENT_CHECK;
2054} 3254}
2055 3255
2056void 3256void
2057ev_stat_stop (EV_P_ ev_stat *w) 3257ev_stat_stop (EV_P_ ev_stat *w)
2058{ 3258{
2059 clear_pending (EV_A_ (W)w); 3259 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3260 if (expect_false (!ev_is_active (w)))
2061 return; 3261 return;
2062 3262
3263 EV_FREQUENT_CHECK;
3264
2063#if EV_USE_INOTIFY 3265#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 3266 infy_del (EV_A_ w);
2065#endif 3267#endif
3268
3269 if (ev_is_active (&w->timer))
3270 {
3271 ev_ref (EV_A);
2066 ev_timer_stop (EV_A_ &w->timer); 3272 ev_timer_stop (EV_A_ &w->timer);
3273 }
2067 3274
2068 ev_stop (EV_A_ (W)w); 3275 ev_stop (EV_A_ (W)w);
3276
3277 EV_FREQUENT_CHECK;
2069} 3278}
2070#endif 3279#endif
2071 3280
2072#if EV_IDLE_ENABLE 3281#if EV_IDLE_ENABLE
2073void 3282void
2075{ 3284{
2076 if (expect_false (ev_is_active (w))) 3285 if (expect_false (ev_is_active (w)))
2077 return; 3286 return;
2078 3287
2079 pri_adjust (EV_A_ (W)w); 3288 pri_adjust (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2080 3291
2081 { 3292 {
2082 int active = ++idlecnt [ABSPRI (w)]; 3293 int active = ++idlecnt [ABSPRI (w)];
2083 3294
2084 ++idleall; 3295 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 3296 ev_start (EV_A_ (W)w, active);
2086 3297
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3298 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 3299 idles [ABSPRI (w)][active - 1] = w;
2089 } 3300 }
3301
3302 EV_FREQUENT_CHECK;
2090} 3303}
2091 3304
2092void 3305void
2093ev_idle_stop (EV_P_ ev_idle *w) 3306ev_idle_stop (EV_P_ ev_idle *w)
2094{ 3307{
2095 clear_pending (EV_A_ (W)w); 3308 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 3309 if (expect_false (!ev_is_active (w)))
2097 return; 3310 return;
2098 3311
3312 EV_FREQUENT_CHECK;
3313
2099 { 3314 {
2100 int active = ((W)w)->active; 3315 int active = ev_active (w);
2101 3316
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3317 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3318 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 3319
2105 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
2106 --idleall; 3321 --idleall;
2107 } 3322 }
2108}
2109#endif
2110 3323
3324 EV_FREQUENT_CHECK;
3325}
3326#endif
3327
3328#if EV_PREPARE_ENABLE
2111void 3329void
2112ev_prepare_start (EV_P_ ev_prepare *w) 3330ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 3331{
2114 if (expect_false (ev_is_active (w))) 3332 if (expect_false (ev_is_active (w)))
2115 return; 3333 return;
3334
3335 EV_FREQUENT_CHECK;
2116 3336
2117 ev_start (EV_A_ (W)w, ++preparecnt); 3337 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3338 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 3339 prepares [preparecnt - 1] = w;
3340
3341 EV_FREQUENT_CHECK;
2120} 3342}
2121 3343
2122void 3344void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 3345ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 3346{
2125 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2127 return; 3349 return;
2128 3350
3351 EV_FREQUENT_CHECK;
3352
2129 { 3353 {
2130 int active = ((W)w)->active; 3354 int active = ev_active (w);
3355
2131 prepares [active - 1] = prepares [--preparecnt]; 3356 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 3357 ev_active (prepares [active - 1]) = active;
2133 } 3358 }
2134 3359
2135 ev_stop (EV_A_ (W)w); 3360 ev_stop (EV_A_ (W)w);
2136}
2137 3361
3362 EV_FREQUENT_CHECK;
3363}
3364#endif
3365
3366#if EV_CHECK_ENABLE
2138void 3367void
2139ev_check_start (EV_P_ ev_check *w) 3368ev_check_start (EV_P_ ev_check *w)
2140{ 3369{
2141 if (expect_false (ev_is_active (w))) 3370 if (expect_false (ev_is_active (w)))
2142 return; 3371 return;
3372
3373 EV_FREQUENT_CHECK;
2143 3374
2144 ev_start (EV_A_ (W)w, ++checkcnt); 3375 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3376 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 3377 checks [checkcnt - 1] = w;
3378
3379 EV_FREQUENT_CHECK;
2147} 3380}
2148 3381
2149void 3382void
2150ev_check_stop (EV_P_ ev_check *w) 3383ev_check_stop (EV_P_ ev_check *w)
2151{ 3384{
2152 clear_pending (EV_A_ (W)w); 3385 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 3386 if (expect_false (!ev_is_active (w)))
2154 return; 3387 return;
2155 3388
3389 EV_FREQUENT_CHECK;
3390
2156 { 3391 {
2157 int active = ((W)w)->active; 3392 int active = ev_active (w);
3393
2158 checks [active - 1] = checks [--checkcnt]; 3394 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 3395 ev_active (checks [active - 1]) = active;
2160 } 3396 }
2161 3397
2162 ev_stop (EV_A_ (W)w); 3398 ev_stop (EV_A_ (W)w);
3399
3400 EV_FREQUENT_CHECK;
2163} 3401}
3402#endif
2164 3403
2165#if EV_EMBED_ENABLE 3404#if EV_EMBED_ENABLE
2166void noinline 3405void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 3406ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 3407{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 3408 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 3409}
2171 3410
2172static void 3411static void
2173embed_cb (EV_P_ ev_io *io, int revents) 3412embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 3413{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3414 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 3415
2177 if (ev_cb (w)) 3416 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3417 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 3418 else
2180 ev_embed_sweep (loop, w); 3419 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 3420}
3421
3422static void
3423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3424{
3425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3426
3427 {
3428 EV_P = w->other;
3429
3430 while (fdchangecnt)
3431 {
3432 fd_reify (EV_A);
3433 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3434 }
3435 }
3436}
3437
3438static void
3439embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3440{
3441 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3442
3443 ev_embed_stop (EV_A_ w);
3444
3445 {
3446 EV_P = w->other;
3447
3448 ev_loop_fork (EV_A);
3449 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3450 }
3451
3452 ev_embed_start (EV_A_ w);
3453}
3454
3455#if 0
3456static void
3457embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3458{
3459 ev_idle_stop (EV_A_ idle);
3460}
3461#endif
2182 3462
2183void 3463void
2184ev_embed_start (EV_P_ ev_embed *w) 3464ev_embed_start (EV_P_ ev_embed *w)
2185{ 3465{
2186 if (expect_false (ev_is_active (w))) 3466 if (expect_false (ev_is_active (w)))
2187 return; 3467 return;
2188 3468
2189 { 3469 {
2190 struct ev_loop *loop = w->loop; 3470 EV_P = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3471 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3472 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 3473 }
3474
3475 EV_FREQUENT_CHECK;
2194 3476
2195 ev_set_priority (&w->io, ev_priority (w)); 3477 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 3478 ev_io_start (EV_A_ &w->io);
2197 3479
3480 ev_prepare_init (&w->prepare, embed_prepare_cb);
3481 ev_set_priority (&w->prepare, EV_MINPRI);
3482 ev_prepare_start (EV_A_ &w->prepare);
3483
3484 ev_fork_init (&w->fork, embed_fork_cb);
3485 ev_fork_start (EV_A_ &w->fork);
3486
3487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3488
2198 ev_start (EV_A_ (W)w, 1); 3489 ev_start (EV_A_ (W)w, 1);
3490
3491 EV_FREQUENT_CHECK;
2199} 3492}
2200 3493
2201void 3494void
2202ev_embed_stop (EV_P_ ev_embed *w) 3495ev_embed_stop (EV_P_ ev_embed *w)
2203{ 3496{
2204 clear_pending (EV_A_ (W)w); 3497 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3498 if (expect_false (!ev_is_active (w)))
2206 return; 3499 return;
2207 3500
3501 EV_FREQUENT_CHECK;
3502
2208 ev_io_stop (EV_A_ &w->io); 3503 ev_io_stop (EV_A_ &w->io);
3504 ev_prepare_stop (EV_A_ &w->prepare);
3505 ev_fork_stop (EV_A_ &w->fork);
2209 3506
2210 ev_stop (EV_A_ (W)w); 3507 ev_stop (EV_A_ (W)w);
3508
3509 EV_FREQUENT_CHECK;
2211} 3510}
2212#endif 3511#endif
2213 3512
2214#if EV_FORK_ENABLE 3513#if EV_FORK_ENABLE
2215void 3514void
2216ev_fork_start (EV_P_ ev_fork *w) 3515ev_fork_start (EV_P_ ev_fork *w)
2217{ 3516{
2218 if (expect_false (ev_is_active (w))) 3517 if (expect_false (ev_is_active (w)))
2219 return; 3518 return;
3519
3520 EV_FREQUENT_CHECK;
2220 3521
2221 ev_start (EV_A_ (W)w, ++forkcnt); 3522 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3523 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 3524 forks [forkcnt - 1] = w;
3525
3526 EV_FREQUENT_CHECK;
2224} 3527}
2225 3528
2226void 3529void
2227ev_fork_stop (EV_P_ ev_fork *w) 3530ev_fork_stop (EV_P_ ev_fork *w)
2228{ 3531{
2229 clear_pending (EV_A_ (W)w); 3532 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 3533 if (expect_false (!ev_is_active (w)))
2231 return; 3534 return;
2232 3535
3536 EV_FREQUENT_CHECK;
3537
2233 { 3538 {
2234 int active = ((W)w)->active; 3539 int active = ev_active (w);
3540
2235 forks [active - 1] = forks [--forkcnt]; 3541 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 3542 ev_active (forks [active - 1]) = active;
2237 } 3543 }
2238 3544
2239 ev_stop (EV_A_ (W)w); 3545 ev_stop (EV_A_ (W)w);
3546
3547 EV_FREQUENT_CHECK;
3548}
3549#endif
3550
3551#if EV_ASYNC_ENABLE
3552void
3553ev_async_start (EV_P_ ev_async *w)
3554{
3555 if (expect_false (ev_is_active (w)))
3556 return;
3557
3558 evpipe_init (EV_A);
3559
3560 EV_FREQUENT_CHECK;
3561
3562 ev_start (EV_A_ (W)w, ++asynccnt);
3563 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3564 asyncs [asynccnt - 1] = w;
3565
3566 EV_FREQUENT_CHECK;
3567}
3568
3569void
3570ev_async_stop (EV_P_ ev_async *w)
3571{
3572 clear_pending (EV_A_ (W)w);
3573 if (expect_false (!ev_is_active (w)))
3574 return;
3575
3576 EV_FREQUENT_CHECK;
3577
3578 {
3579 int active = ev_active (w);
3580
3581 asyncs [active - 1] = asyncs [--asynccnt];
3582 ev_active (asyncs [active - 1]) = active;
3583 }
3584
3585 ev_stop (EV_A_ (W)w);
3586
3587 EV_FREQUENT_CHECK;
3588}
3589
3590void
3591ev_async_send (EV_P_ ev_async *w)
3592{
3593 w->sent = 1;
3594 evpipe_write (EV_A_ &async_pending);
2240} 3595}
2241#endif 3596#endif
2242 3597
2243/*****************************************************************************/ 3598/*****************************************************************************/
2244 3599
2254once_cb (EV_P_ struct ev_once *once, int revents) 3609once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3610{
2256 void (*cb)(int revents, void *arg) = once->cb; 3611 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3612 void *arg = once->arg;
2258 3613
2259 ev_io_stop (EV_A_ &once->io); 3614 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3615 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3616 ev_free (once);
2262 3617
2263 cb (revents, arg); 3618 cb (revents, arg);
2264} 3619}
2265 3620
2266static void 3621static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3622once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3623{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3624 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3625
3626 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3627}
2271 3628
2272static void 3629static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3630once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3631{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3632 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3633
3634 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3635}
2277 3636
2278void 3637void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3638ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3639{
2281 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3640 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2282 3641
2283 if (expect_false (!once)) 3642 if (expect_false (!once))
2284 { 3643 {
2285 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3644 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2286 return; 3645 return;
2287 } 3646 }
2288 3647
2289 once->cb = cb; 3648 once->cb = cb;
2290 once->arg = arg; 3649 once->arg = arg;
2302 ev_timer_set (&once->to, timeout, 0.); 3661 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3662 ev_timer_start (EV_A_ &once->to);
2304 } 3663 }
2305} 3664}
2306 3665
3666/*****************************************************************************/
3667
3668#if EV_WALK_ENABLE
3669void
3670ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3671{
3672 int i, j;
3673 ev_watcher_list *wl, *wn;
3674
3675 if (types & (EV_IO | EV_EMBED))
3676 for (i = 0; i < anfdmax; ++i)
3677 for (wl = anfds [i].head; wl; )
3678 {
3679 wn = wl->next;
3680
3681#if EV_EMBED_ENABLE
3682 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3683 {
3684 if (types & EV_EMBED)
3685 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3686 }
3687 else
3688#endif
3689#if EV_USE_INOTIFY
3690 if (ev_cb ((ev_io *)wl) == infy_cb)
3691 ;
3692 else
3693#endif
3694 if ((ev_io *)wl != &pipe_w)
3695 if (types & EV_IO)
3696 cb (EV_A_ EV_IO, wl);
3697
3698 wl = wn;
3699 }
3700
3701 if (types & (EV_TIMER | EV_STAT))
3702 for (i = timercnt + HEAP0; i-- > HEAP0; )
3703#if EV_STAT_ENABLE
3704 /*TODO: timer is not always active*/
3705 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3706 {
3707 if (types & EV_STAT)
3708 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3709 }
3710 else
3711#endif
3712 if (types & EV_TIMER)
3713 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3714
3715#if EV_PERIODIC_ENABLE
3716 if (types & EV_PERIODIC)
3717 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3718 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3719#endif
3720
3721#if EV_IDLE_ENABLE
3722 if (types & EV_IDLE)
3723 for (j = NUMPRI; i--; )
3724 for (i = idlecnt [j]; i--; )
3725 cb (EV_A_ EV_IDLE, idles [j][i]);
3726#endif
3727
3728#if EV_FORK_ENABLE
3729 if (types & EV_FORK)
3730 for (i = forkcnt; i--; )
3731 if (ev_cb (forks [i]) != embed_fork_cb)
3732 cb (EV_A_ EV_FORK, forks [i]);
3733#endif
3734
3735#if EV_ASYNC_ENABLE
3736 if (types & EV_ASYNC)
3737 for (i = asynccnt; i--; )
3738 cb (EV_A_ EV_ASYNC, asyncs [i]);
3739#endif
3740
3741#if EV_PREPARE_ENABLE
3742 if (types & EV_PREPARE)
3743 for (i = preparecnt; i--; )
3744# if EV_EMBED_ENABLE
3745 if (ev_cb (prepares [i]) != embed_prepare_cb)
3746# endif
3747 cb (EV_A_ EV_PREPARE, prepares [i]);
3748#endif
3749
3750#if EV_CHECK_ENABLE
3751 if (types & EV_CHECK)
3752 for (i = checkcnt; i--; )
3753 cb (EV_A_ EV_CHECK, checks [i]);
3754#endif
3755
3756#if EV_SIGNAL_ENABLE
3757 if (types & EV_SIGNAL)
3758 for (i = 0; i < EV_NSIG - 1; ++i)
3759 for (wl = signals [i].head; wl; )
3760 {
3761 wn = wl->next;
3762 cb (EV_A_ EV_SIGNAL, wl);
3763 wl = wn;
3764 }
3765#endif
3766
3767#if EV_CHILD_ENABLE
3768 if (types & EV_CHILD)
3769 for (i = (EV_PID_HASHSIZE); i--; )
3770 for (wl = childs [i]; wl; )
3771 {
3772 wn = wl->next;
3773 cb (EV_A_ EV_CHILD, wl);
3774 wl = wn;
3775 }
3776#endif
3777/* EV_STAT 0x00001000 /* stat data changed */
3778/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3779}
3780#endif
3781
3782#if EV_MULTIPLICITY
3783 #include "ev_wrap.h"
3784#endif
3785
2307#ifdef __cplusplus 3786#ifdef __cplusplus
2308} 3787}
2309#endif 3788#endif
2310 3789

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines