ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.229 by root, Fri May 2 08:08:45 2008 UTC vs.
Revision 1.342 by root, Mon Mar 29 12:40:57 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
65# endif 79# endif
66# endif 80# endif
67 81
68# ifndef EV_USE_NANOSLEEP 82# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP 83# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
71# else 85# else
72# define EV_USE_NANOSLEEP 0 86# define EV_USE_NANOSLEEP 0
73# endif 87# endif
74# endif 88# endif
75 89
76# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1 92# define EV_USE_SELECT EV_FEATURE_BACKENDS
79# else 93# else
80# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
81# endif 95# endif
82# endif 96# endif
83 97
84# ifndef EV_USE_POLL 98# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1 100# define EV_USE_POLL EV_FEATURE_BACKENDS
87# else 101# else
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif 103# endif
90# endif 104# endif
91 105
92# ifndef EV_USE_EPOLL 106# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# else 109# else
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
107 121
108# ifndef EV_USE_PORT 122# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# define EV_USE_PORT EV_FEATURE_BACKENDS
111# else 125# else
112# define EV_USE_PORT 0 126# define EV_USE_PORT 0
113# endif 127# endif
114# endif 128# endif
115 129
116# ifndef EV_USE_INOTIFY 130# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 132# define EV_USE_INOTIFY EV_FEATURE_OS
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD EV_FEATURE_OS
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD EV_FEATURE_OS
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
168#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
169# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
170#endif 236#endif
171 237
172#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 240#endif
175 241
176#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
177# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
178#endif 248#endif
179 249
180#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 252#endif
183 253
184#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
185# ifdef _WIN32 255# ifdef _WIN32
186# define EV_USE_POLL 0 256# define EV_USE_POLL 0
187# else 257# else
188# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 259# endif
190#endif 260#endif
191 261
192#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 265# else
196# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
197# endif 267# endif
198#endif 268#endif
199 269
205# define EV_USE_PORT 0 275# define EV_USE_PORT 0
206#endif 276#endif
207 277
208#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 280# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 281# else
212# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
213# endif 283# endif
214#endif 284#endif
215 285
216#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 288#endif
223 289
224#ifndef EV_INOTIFY_HASHSIZE 290#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 292#endif
231 293
232#ifndef EV_USE_EVENTFD 294#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 296# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 297# else
236# define EV_USE_EVENTFD 0 298# define EV_USE_EVENTFD 0
237# endif 299# endif
238#endif 300#endif
239 301
302#ifndef EV_USE_SIGNALFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_SIGNALFD EV_FEATURE_OS
305# else
306# define EV_USE_SIGNALFD 0
307# endif
308#endif
309
310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
241 349
242#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
245#endif 353#endif
259# include <sys/select.h> 367# include <sys/select.h>
260# endif 368# endif
261#endif 369#endif
262 370
263#if EV_USE_INOTIFY 371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
264# include <sys/inotify.h> 374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
265#endif 380#endif
266 381
267#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 383# include <winsock.h>
269#endif 384#endif
270 385
271#if EV_USE_EVENTFD 386#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
391# endif
392# ifndef EFD_CLOEXEC
393# ifdef O_CLOEXEC
394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
398# endif
274# ifdef __cplusplus 399# ifdef __cplusplus
275extern "C" { 400extern "C" {
276# endif 401# endif
277int eventfd (unsigned int initval, int flags); 402int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 403# ifdef __cplusplus
279} 404}
280# endif 405# endif
281#endif 406#endif
282 407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
436
283/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
284 444
285/* 445/*
286 * This is used to avoid floating point rounding problems. 446 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 447 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 448 * to ensure progress, time-wise, even when rounding
292 */ 452 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 454
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 457
299#if __GNUC__ >= 4 458#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
302#else 461#else
309 468
310#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 471#define inline_size static inline
313 472
314#if EV_MINIMAL 473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
315# define inline_speed static noinline 476# define inline_speed static noinline
477#endif
478
479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
316#else 483#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
322 486
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
325 489
326typedef ev_watcher *W; 490typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
329 493
330#define ev_active(w) ((W)(w))->active 494#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 495#define ev_at(w) ((WT)(w))->at
332 496
333#if EV_USE_MONOTONIC 497#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 515#endif
338 516
339#ifdef _WIN32 517#ifdef _WIN32
340# include "ev_win32.c" 518# include "ev_win32.c"
341#endif 519#endif
342 520
343/*****************************************************************************/ 521/*****************************************************************************/
344 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
345static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
346 532
347void 533void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 535{
350 syserr_cb = cb; 536 syserr_cb = cb;
351} 537}
352 538
353static void noinline 539static void noinline
354syserr (const char *msg) 540ev_syserr (const char *msg)
355{ 541{
356 if (!msg) 542 if (!msg)
357 msg = "(libev) system error"; 543 msg = "(libev) system error";
358 544
359 if (syserr_cb) 545 if (syserr_cb)
360 syserr_cb (msg); 546 syserr_cb (msg);
361 else 547 else
362 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
363 perror (msg); 557 perror (msg);
558#endif
364 abort (); 559 abort ();
365 } 560 }
366} 561}
367 562
368static void * 563static void *
369ev_realloc_emul (void *ptr, long size) 564ev_realloc_emul (void *ptr, long size)
370{ 565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
371 /* some systems, notably openbsd and darwin, fail to properly 569 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 570 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 571 * the single unix specification, so work around them here.
374 */ 572 */
375 573
376 if (size) 574 if (size)
377 return realloc (ptr, size); 575 return realloc (ptr, size);
378 576
379 free (ptr); 577 free (ptr);
380 return 0; 578 return 0;
579#endif
381} 580}
382 581
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 583
385void 584void
393{ 592{
394 ptr = alloc (ptr, size); 593 ptr = alloc (ptr, size);
395 594
396 if (!ptr && size) 595 if (!ptr && size)
397 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
399 abort (); 602 abort ();
400 } 603 }
401 604
402 return ptr; 605 return ptr;
403} 606}
405#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
407 610
408/*****************************************************************************/ 611/*****************************************************************************/
409 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
410typedef struct 617typedef struct
411{ 618{
412 WL head; 619 WL head;
413 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
415#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 628 SOCKET handle;
417#endif 629#endif
418} ANFD; 630} ANFD;
419 631
632/* stores the pending event set for a given watcher */
420typedef struct 633typedef struct
421{ 634{
422 W w; 635 W w;
423 int events; 636 int events; /* the pending event set for the given watcher */
424} ANPENDING; 637} ANPENDING;
425 638
426#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
427typedef struct 641typedef struct
428{ 642{
429 WL head; 643 WL head;
430} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
431#endif 665#endif
432 666
433#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
434 668
435 struct ev_loop 669 struct ev_loop
454 688
455 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
456 690
457#endif 691#endif
458 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
459/*****************************************************************************/ 705/*****************************************************************************/
460 706
707#ifndef EV_HAVE_EV_TIME
461ev_tstamp 708ev_tstamp
462ev_time (void) 709ev_time (void)
463{ 710{
464#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
465 struct timespec ts; 714 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 717 }
718#endif
719
469 struct timeval tv; 720 struct timeval tv;
470 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 723}
724#endif
474 725
475ev_tstamp inline_size 726inline_size ev_tstamp
476get_clock (void) 727get_clock (void)
477{ 728{
478#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
480 { 731 {
513 struct timeval tv; 764 struct timeval tv;
514 765
515 tv.tv_sec = (time_t)delay; 766 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
518 select (0, 0, 0, 0, &tv); 772 select (0, 0, 0, 0, &tv);
519#endif 773#endif
520 } 774 }
521} 775}
522 776
523/*****************************************************************************/ 777/*****************************************************************************/
524 778
525int inline_size 779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
526array_nextsize (int elem, int cur, int cnt) 784array_nextsize (int elem, int cur, int cnt)
527{ 785{
528 int ncur = cur + 1; 786 int ncur = cur + 1;
529 787
530 do 788 do
531 ncur <<= 1; 789 ncur <<= 1;
532 while (cnt > ncur); 790 while (cnt > ncur);
533 791
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096) 793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 794 {
537 ncur *= elem; 795 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 797 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 798 ncur /= elem;
541 } 799 }
542 800
543 return ncur; 801 return ncur;
547array_realloc (int elem, void *base, int *cur, int cnt) 805array_realloc (int elem, void *base, int *cur, int cnt)
548{ 806{
549 *cur = array_nextsize (elem, *cur, cnt); 807 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur); 808 return ev_realloc (base, elem * *cur);
551} 809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
552 813
553#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \ 815 if (expect_false ((cnt) > (cur))) \
555 { \ 816 { \
556 int ocur_ = (cur); \ 817 int ocur_ = (cur); \
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 } 830 }
570#endif 831#endif
571 832
572#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
574 835
575/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
576 843
577void noinline 844void noinline
578ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
579{ 846{
580 W w_ = (W)w; 847 W w_ = (W)w;
589 pendings [pri][w_->pending - 1].w = w_; 856 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents; 857 pendings [pri][w_->pending - 1].events = revents;
591 } 858 }
592} 859}
593 860
594void inline_speed 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
595queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
596{ 878{
597 int i; 879 int i;
598 880
599 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
601} 883}
602 884
603/*****************************************************************************/ 885/*****************************************************************************/
604 886
605void inline_size 887inline_speed void
606anfds_init (ANFD *base, int count)
607{
608 while (count--)
609 {
610 base->head = 0;
611 base->events = EV_NONE;
612 base->reify = 0;
613
614 ++base;
615 }
616}
617
618void inline_speed
619fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
620{ 889{
621 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
622 ev_io *w; 891 ev_io *w;
623 892
624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
628 if (ev) 897 if (ev)
629 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
630 } 899 }
631} 900}
632 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
633void 913void
634ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
635{ 915{
636 if (fd >= 0 && fd < anfdmax) 916 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
638} 918}
639 919
640void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
641fd_reify (EV_P) 923fd_reify (EV_P)
642{ 924{
643 int i; 925 int i;
644 926
645 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
654 events |= (unsigned char)w->events; 936 events |= (unsigned char)w->events;
655 937
656#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
657 if (events) 939 if (events)
658 { 940 {
659 unsigned long argp; 941 unsigned long arg;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
663 anfd->handle = _get_osfhandle (fd);
664 #endif
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
666 } 944 }
667#endif 945#endif
668 946
669 { 947 {
670 unsigned char o_events = anfd->events; 948 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify; 949 unsigned char o_reify = anfd->reify;
672 950
673 anfd->reify = 0; 951 anfd->reify = 0;
674 anfd->events = events; 952 anfd->events = events;
675 953
676 if (o_events != events || o_reify & EV_IOFDSET) 954 if (o_events != events || o_reify & EV__IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events); 955 backend_modify (EV_A_ fd, o_events, events);
678 } 956 }
679 } 957 }
680 958
681 fdchangecnt = 0; 959 fdchangecnt = 0;
682} 960}
683 961
684void inline_size 962/* something about the given fd changed */
963inline_size void
685fd_change (EV_P_ int fd, int flags) 964fd_change (EV_P_ int fd, int flags)
686{ 965{
687 unsigned char reify = anfds [fd].reify; 966 unsigned char reify = anfds [fd].reify;
688 anfds [fd].reify |= flags; 967 anfds [fd].reify |= flags;
689 968
693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
694 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
695 } 974 }
696} 975}
697 976
698void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
699fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
700{ 980{
701 ev_io *w; 981 ev_io *w;
702 982
703 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
705 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
707 } 987 }
708} 988}
709 989
710int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
711fd_valid (int fd) 992fd_valid (int fd)
712{ 993{
713#ifdef _WIN32 994#ifdef _WIN32
714 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
715#else 996#else
716 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
717#endif 998#endif
718} 999}
719 1000
723{ 1004{
724 int fd; 1005 int fd;
725 1006
726 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
727 if (anfds [fd].events) 1008 if (anfds [fd].events)
728 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
729 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
730} 1011}
731 1012
732/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
733static void noinline 1014static void noinline
737 1018
738 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
739 if (anfds [fd].events) 1020 if (anfds [fd].events)
740 { 1021 {
741 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
742 return; 1023 break;
743 } 1024 }
744} 1025}
745 1026
746/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
747static void noinline 1028static void noinline
751 1032
752 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
753 if (anfds [fd].events) 1034 if (anfds [fd].events)
754 { 1035 {
755 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
1037 anfds [fd].emask = 0;
756 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
757 } 1039 }
758} 1040}
759 1041
760/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
761 1043/* this is not fork-safe */
762/* towards the root */ 1044inline_speed void
763void inline_speed
764upheap (WT *heap, int k)
765{
766 WT w = heap [k];
767
768 for (;;)
769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
776 heap [k] = heap [p];
777 ((W)heap [k])->active = k;
778 k = p;
779 }
780
781 heap [k] = w;
782 ((W)heap [k])->active = k;
783}
784
785/* away from the root */
786void inline_speed
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ((W)heap [k])->active = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ((W)heap [k])->active = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k)
816{
817 upheap (heap, k);
818 downheap (heap, N, k);
819}
820
821/*****************************************************************************/
822
823typedef struct
824{
825 WL head;
826 EV_ATOMIC_T gotsig;
827} ANSIG;
828
829static ANSIG *signals;
830static int signalmax;
831
832static EV_ATOMIC_T gotsig;
833
834void inline_size
835signals_init (ANSIG *base, int count)
836{
837 while (count--)
838 {
839 base->head = 0;
840 base->gotsig = 0;
841
842 ++base;
843 }
844}
845
846/*****************************************************************************/
847
848void inline_speed
849fd_intern (int fd) 1045fd_intern (int fd)
850{ 1046{
851#ifdef _WIN32 1047#ifdef _WIN32
852 int arg = 1; 1048 unsigned long arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
854#else 1050#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif 1053#endif
858} 1054}
859 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
860static void noinline 1219static void noinline
861evpipe_init (EV_P) 1220evpipe_init (EV_P)
862{ 1221{
863 if (!ev_is_active (&pipeev)) 1222 if (!ev_is_active (&pipe_w))
864 { 1223 {
865#if EV_USE_EVENTFD 1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
866 if ((evfd = eventfd (0, 0)) >= 0) 1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
867 { 1230 {
868 evpipe [0] = -1; 1231 evpipe [0] = -1;
869 fd_intern (evfd); 1232 fd_intern (evfd); /* doing it twice doesn't hurt */
870 ev_io_set (&pipeev, evfd, EV_READ); 1233 ev_io_set (&pipe_w, evfd, EV_READ);
871 } 1234 }
872 else 1235 else
873#endif 1236# endif
874 { 1237 {
875 while (pipe (evpipe)) 1238 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe"); 1239 ev_syserr ("(libev) error creating signal/async pipe");
877 1240
878 fd_intern (evpipe [0]); 1241 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]); 1242 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ); 1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
881 } 1244 }
882 1245
883 ev_io_start (EV_A_ &pipeev); 1246 ev_io_start (EV_A_ &pipe_w);
884 ev_unref (EV_A); /* watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
885 } 1248 }
886} 1249}
887 1250
888void inline_size 1251inline_size void
889evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{ 1253{
891 if (!*flag) 1254 if (!*flag)
892 { 1255 {
893 int old_errno = errno; /* save errno because write might clobber it */ 1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
894 1258
895 *flag = 1; 1259 *flag = 1;
896 1260
897#if EV_USE_EVENTFD 1261#if EV_USE_EVENTFD
898 if (evfd >= 0) 1262 if (evfd >= 0)
900 uint64_t counter = 1; 1264 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t)); 1265 write (evfd, &counter, sizeof (uint64_t));
902 } 1266 }
903 else 1267 else
904#endif 1268#endif
905 write (evpipe [1], &old_errno, 1); 1269 write (evpipe [1], &dummy, 1);
906 1270
907 errno = old_errno; 1271 errno = old_errno;
908 } 1272 }
909} 1273}
910 1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
911static void 1277static void
912pipecb (EV_P_ ev_io *iow, int revents) 1278pipecb (EV_P_ ev_io *iow, int revents)
913{ 1279{
1280 int i;
1281
914#if EV_USE_EVENTFD 1282#if EV_USE_EVENTFD
915 if (evfd >= 0) 1283 if (evfd >= 0)
916 { 1284 {
917 uint64_t counter = 1; 1285 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1286 read (evfd, &counter, sizeof (uint64_t));
919 } 1287 }
920 else 1288 else
921#endif 1289#endif
922 { 1290 {
923 char dummy; 1291 char dummy;
924 read (evpipe [0], &dummy, 1); 1292 read (evpipe [0], &dummy, 1);
925 } 1293 }
926 1294
927 if (gotsig && ev_is_default_loop (EV_A)) 1295 if (sig_pending)
928 { 1296 {
929 int signum; 1297 sig_pending = 0;
930 gotsig = 0;
931 1298
932 for (signum = signalmax; signum--; ) 1299 for (i = EV_NSIG - 1; i--; )
933 if (signals [signum].gotsig) 1300 if (expect_false (signals [i].pending))
934 ev_feed_signal_event (EV_A_ signum + 1); 1301 ev_feed_signal_event (EV_A_ i + 1);
935 } 1302 }
936 1303
937#if EV_ASYNC_ENABLE 1304#if EV_ASYNC_ENABLE
938 if (gotasync) 1305 if (async_pending)
939 { 1306 {
940 int i; 1307 async_pending = 0;
941 gotasync = 0;
942 1308
943 for (i = asynccnt; i--; ) 1309 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent) 1310 if (asyncs [i]->sent)
945 { 1311 {
946 asyncs [i]->sent = 0; 1312 asyncs [i]->sent = 0;
954 1320
955static void 1321static void
956ev_sighandler (int signum) 1322ev_sighandler (int signum)
957{ 1323{
958#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct; 1325 EV_P = signals [signum - 1].loop;
960#endif 1326#endif
961 1327
962#if _WIN32 1328#ifdef _WIN32
963 signal (signum, ev_sighandler); 1329 signal (signum, ev_sighandler);
964#endif 1330#endif
965 1331
966 signals [signum - 1].gotsig = 1; 1332 signals [signum - 1].pending = 1;
967 evpipe_write (EV_A_ &gotsig); 1333 evpipe_write (EV_A_ &sig_pending);
968} 1334}
969 1335
970void noinline 1336void noinline
971ev_feed_signal_event (EV_P_ int signum) 1337ev_feed_signal_event (EV_P_ int signum)
972{ 1338{
973 WL w; 1339 WL w;
974 1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
975#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1347 /* it is permissible to try to feed a signal to the wrong loop */
977#endif 1348 /* or, likely more useful, feeding a signal nobody is waiting for */
978 1349
979 --signum; 1350 if (expect_false (signals [signum].loop != EV_A))
980
981 if (signum < 0 || signum >= signalmax)
982 return; 1351 return;
1352#endif
983 1353
984 signals [signum].gotsig = 0; 1354 signals [signum].pending = 0;
985 1355
986 for (w = signals [signum].head; w; w = w->next) 1356 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988} 1358}
989 1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
990/*****************************************************************************/ 1382/*****************************************************************************/
991 1383
1384#if EV_CHILD_ENABLE
992static WL childs [EV_PID_HASHSIZE]; 1385static WL childs [EV_PID_HASHSIZE];
993
994#ifndef _WIN32
995 1386
996static ev_signal childev; 1387static ev_signal childev;
997 1388
998#ifndef WIFCONTINUED 1389#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0 1390# define WIFCONTINUED(status) 0
1000#endif 1391#endif
1001 1392
1002void inline_speed 1393/* handle a single child status event */
1394inline_speed void
1003child_reap (EV_P_ int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
1004{ 1396{
1005 ev_child *w; 1397 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007 1399
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 { 1401 {
1010 if ((w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1))) 1403 && (!traced || (w->flags & 1)))
1012 { 1404 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1020 1412
1021#ifndef WCONTINUED 1413#ifndef WCONTINUED
1022# define WCONTINUED 0 1414# define WCONTINUED 0
1023#endif 1415#endif
1024 1416
1417/* called on sigchld etc., calls waitpid */
1025static void 1418static void
1026childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
1027{ 1420{
1028 int pid, status; 1421 int pid, status;
1029 1422
1037 /* make sure we are called again until all children have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1040 1433
1041 child_reap (EV_A_ pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1044} 1437}
1045 1438
1046#endif 1439#endif
1047 1440
1110 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
1113#endif 1506#endif
1114#ifdef __APPLE__ 1507#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
1116 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1511#endif
1512#ifdef __FreeBSD__
1513 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1117#endif 1514#endif
1118 1515
1119 return flags; 1516 return flags;
1120} 1517}
1121 1518
1135ev_backend (EV_P) 1532ev_backend (EV_P)
1136{ 1533{
1137 return backend; 1534 return backend;
1138} 1535}
1139 1536
1537#if EV_FEATURE_API
1140unsigned int 1538unsigned int
1141ev_loop_count (EV_P) 1539ev_iteration (EV_P)
1142{ 1540{
1143 return loop_count; 1541 return loop_count;
1144} 1542}
1145 1543
1544unsigned int
1545ev_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1146void 1550void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1552{
1149 io_blocktime = interval; 1553 io_blocktime = interval;
1150} 1554}
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{ 1558{
1155 timeout_blocktime = interval; 1559 timeout_blocktime = interval;
1156} 1560}
1157 1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
1158static void noinline 1587static void noinline
1159loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
1160{ 1589{
1161 if (!backend) 1590 if (!backend)
1162 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
1163#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
1164 { 1604 {
1165 struct timespec ts; 1605 struct timespec ts;
1606
1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1167 have_monotonic = 1; 1608 have_monotonic = 1;
1168 } 1609 }
1169#endif 1610#endif
1611
1612 /* pid check not overridable via env */
1613#ifndef _WIN32
1614 if (flags & EVFLAG_FORKCHECK)
1615 curpid = getpid ();
1616#endif
1617
1618 if (!(flags & EVFLAG_NOENV)
1619 && !enable_secure ()
1620 && getenv ("LIBEV_FLAGS"))
1621 flags = atoi (getenv ("LIBEV_FLAGS"));
1170 1622
1171 ev_rt_now = ev_time (); 1623 ev_rt_now = ev_time ();
1172 mn_now = get_clock (); 1624 mn_now = get_clock ();
1173 now_floor = mn_now; 1625 now_floor = mn_now;
1174 rtmn_diff = ev_rt_now - mn_now; 1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_FEATURE_API
1628 invoke_cb = ev_invoke_pending;
1629#endif
1175 1630
1176 io_blocktime = 0.; 1631 io_blocktime = 0.;
1177 timeout_blocktime = 0.; 1632 timeout_blocktime = 0.;
1178 backend = 0; 1633 backend = 0;
1179 backend_fd = -1; 1634 backend_fd = -1;
1180 gotasync = 0; 1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1181#if EV_USE_INOTIFY 1639#if EV_USE_INOTIFY
1182 fs_fd = -2; 1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1183#endif 1641#endif
1184 1642#if EV_USE_SIGNALFD
1185 /* pid check not overridable via env */ 1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif 1644#endif
1190
1191 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS"))
1194 flags = atoi (getenv ("LIBEV_FLAGS"));
1195 1645
1196 if (!(flags & 0x0000ffffU)) 1646 if (!(flags & 0x0000ffffU))
1197 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
1198 1648
1199#if EV_USE_PORT 1649#if EV_USE_PORT
1210#endif 1660#endif
1211#if EV_USE_SELECT 1661#if EV_USE_SELECT
1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1213#endif 1663#endif
1214 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1667#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1215 ev_init (&pipeev, pipecb); 1668 ev_init (&pipe_w, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI); 1669 ev_set_priority (&pipe_w, EV_MAXPRI);
1670#endif
1217 } 1671 }
1218} 1672}
1219 1673
1674/* free up a loop structure */
1220static void noinline 1675static void noinline
1221loop_destroy (EV_P) 1676loop_destroy (EV_P)
1222{ 1677{
1223 int i; 1678 int i;
1224 1679
1225 if (ev_is_active (&pipeev)) 1680 if (ev_is_active (&pipe_w))
1226 { 1681 {
1227 ev_ref (EV_A); /* signal watcher */ 1682 /*ev_ref (EV_A);*/
1228 ev_io_stop (EV_A_ &pipeev); 1683 /*ev_io_stop (EV_A_ &pipe_w);*/
1229 1684
1230#if EV_USE_EVENTFD 1685#if EV_USE_EVENTFD
1231 if (evfd >= 0) 1686 if (evfd >= 0)
1232 close (evfd); 1687 close (evfd);
1233#endif 1688#endif
1234 1689
1235 if (evpipe [0] >= 0) 1690 if (evpipe [0] >= 0)
1236 { 1691 {
1237 close (evpipe [0]); 1692 EV_WIN32_CLOSE_FD (evpipe [0]);
1238 close (evpipe [1]); 1693 EV_WIN32_CLOSE_FD (evpipe [1]);
1239 } 1694 }
1240 } 1695 }
1696
1697#if EV_USE_SIGNALFD
1698 if (ev_is_active (&sigfd_w))
1699 close (sigfd);
1700#endif
1241 1701
1242#if EV_USE_INOTIFY 1702#if EV_USE_INOTIFY
1243 if (fs_fd >= 0) 1703 if (fs_fd >= 0)
1244 close (fs_fd); 1704 close (fs_fd);
1245#endif 1705#endif
1269#if EV_IDLE_ENABLE 1729#if EV_IDLE_ENABLE
1270 array_free (idle, [i]); 1730 array_free (idle, [i]);
1271#endif 1731#endif
1272 } 1732 }
1273 1733
1274 ev_free (anfds); anfdmax = 0; 1734 ev_free (anfds); anfds = 0; anfdmax = 0;
1275 1735
1276 /* have to use the microsoft-never-gets-it-right macro */ 1736 /* have to use the microsoft-never-gets-it-right macro */
1737 array_free (rfeed, EMPTY);
1277 array_free (fdchange, EMPTY); 1738 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY); 1739 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE 1740#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY); 1741 array_free (periodic, EMPTY);
1281#endif 1742#endif
1290 1751
1291 backend = 0; 1752 backend = 0;
1292} 1753}
1293 1754
1294#if EV_USE_INOTIFY 1755#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P); 1756inline_size void infy_fork (EV_P);
1296#endif 1757#endif
1297 1758
1298void inline_size 1759inline_size void
1299loop_fork (EV_P) 1760loop_fork (EV_P)
1300{ 1761{
1301#if EV_USE_PORT 1762#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1763 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif 1764#endif
1309#endif 1770#endif
1310#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
1311 infy_fork (EV_A); 1772 infy_fork (EV_A);
1312#endif 1773#endif
1313 1774
1314 if (ev_is_active (&pipeev)) 1775 if (ev_is_active (&pipe_w))
1315 { 1776 {
1316 /* this "locks" the handlers against writing to the pipe */ 1777 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */ 1778 /* while we modify the fd vars */
1318 gotsig = 1; 1779 sig_pending = 1;
1319#if EV_ASYNC_ENABLE 1780#if EV_ASYNC_ENABLE
1320 gotasync = 1; 1781 async_pending = 1;
1321#endif 1782#endif
1322 1783
1323 ev_ref (EV_A); 1784 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev); 1785 ev_io_stop (EV_A_ &pipe_w);
1325 1786
1326#if EV_USE_EVENTFD 1787#if EV_USE_EVENTFD
1327 if (evfd >= 0) 1788 if (evfd >= 0)
1328 close (evfd); 1789 close (evfd);
1329#endif 1790#endif
1330 1791
1331 if (evpipe [0] >= 0) 1792 if (evpipe [0] >= 0)
1332 { 1793 {
1333 close (evpipe [0]); 1794 EV_WIN32_CLOSE_FD (evpipe [0]);
1334 close (evpipe [1]); 1795 EV_WIN32_CLOSE_FD (evpipe [1]);
1335 } 1796 }
1336 1797
1798#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1337 evpipe_init (EV_A); 1799 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */ 1800 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ); 1801 pipecb (EV_A_ &pipe_w, EV_READ);
1802#endif
1340 } 1803 }
1341 1804
1342 postfork = 0; 1805 postfork = 0;
1343} 1806}
1344 1807
1345#if EV_MULTIPLICITY 1808#if EV_MULTIPLICITY
1809
1346struct ev_loop * 1810struct ev_loop *
1347ev_loop_new (unsigned int flags) 1811ev_loop_new (unsigned int flags)
1348{ 1812{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1813 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350 1814
1351 memset (loop, 0, sizeof (struct ev_loop)); 1815 memset (EV_A, 0, sizeof (struct ev_loop));
1352
1353 loop_init (EV_A_ flags); 1816 loop_init (EV_A_ flags);
1354 1817
1355 if (ev_backend (EV_A)) 1818 if (ev_backend (EV_A))
1356 return loop; 1819 return EV_A;
1357 1820
1358 return 0; 1821 return 0;
1359} 1822}
1360 1823
1361void 1824void
1368void 1831void
1369ev_loop_fork (EV_P) 1832ev_loop_fork (EV_P)
1370{ 1833{
1371 postfork = 1; /* must be in line with ev_default_fork */ 1834 postfork = 1; /* must be in line with ev_default_fork */
1372} 1835}
1836#endif /* multiplicity */
1373 1837
1838#if EV_VERIFY
1839static void noinline
1840verify_watcher (EV_P_ W w)
1841{
1842 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1843
1844 if (w->pending)
1845 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1846}
1847
1848static void noinline
1849verify_heap (EV_P_ ANHE *heap, int N)
1850{
1851 int i;
1852
1853 for (i = HEAP0; i < N + HEAP0; ++i)
1854 {
1855 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1856 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1857 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1858
1859 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1860 }
1861}
1862
1863static void noinline
1864array_verify (EV_P_ W *ws, int cnt)
1865{
1866 while (cnt--)
1867 {
1868 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1869 verify_watcher (EV_A_ ws [cnt]);
1870 }
1871}
1872#endif
1873
1874#if EV_FEATURE_API
1875void
1876ev_verify (EV_P)
1877{
1878#if EV_VERIFY
1879 int i;
1880 WL w;
1881
1882 assert (activecnt >= -1);
1883
1884 assert (fdchangemax >= fdchangecnt);
1885 for (i = 0; i < fdchangecnt; ++i)
1886 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1887
1888 assert (anfdmax >= 0);
1889 for (i = 0; i < anfdmax; ++i)
1890 for (w = anfds [i].head; w; w = w->next)
1891 {
1892 verify_watcher (EV_A_ (W)w);
1893 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1894 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1895 }
1896
1897 assert (timermax >= timercnt);
1898 verify_heap (EV_A_ timers, timercnt);
1899
1900#if EV_PERIODIC_ENABLE
1901 assert (periodicmax >= periodiccnt);
1902 verify_heap (EV_A_ periodics, periodiccnt);
1903#endif
1904
1905 for (i = NUMPRI; i--; )
1906 {
1907 assert (pendingmax [i] >= pendingcnt [i]);
1908#if EV_IDLE_ENABLE
1909 assert (idleall >= 0);
1910 assert (idlemax [i] >= idlecnt [i]);
1911 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1912#endif
1913 }
1914
1915#if EV_FORK_ENABLE
1916 assert (forkmax >= forkcnt);
1917 array_verify (EV_A_ (W *)forks, forkcnt);
1918#endif
1919
1920#if EV_ASYNC_ENABLE
1921 assert (asyncmax >= asynccnt);
1922 array_verify (EV_A_ (W *)asyncs, asynccnt);
1923#endif
1924
1925#if EV_PREPARE_ENABLE
1926 assert (preparemax >= preparecnt);
1927 array_verify (EV_A_ (W *)prepares, preparecnt);
1928#endif
1929
1930#if EV_CHECK_ENABLE
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933#endif
1934
1935# if 0
1936#if EV_CHILD_ENABLE
1937 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1938 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1939#endif
1940# endif
1941#endif
1942}
1374#endif 1943#endif
1375 1944
1376#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1377struct ev_loop * 1946struct ev_loop *
1378ev_default_loop_init (unsigned int flags) 1947ev_default_loop_init (unsigned int flags)
1382#endif 1951#endif
1383{ 1952{
1384 if (!ev_default_loop_ptr) 1953 if (!ev_default_loop_ptr)
1385 { 1954 {
1386#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1956 EV_P = ev_default_loop_ptr = &default_loop_struct;
1388#else 1957#else
1389 ev_default_loop_ptr = 1; 1958 ev_default_loop_ptr = 1;
1390#endif 1959#endif
1391 1960
1392 loop_init (EV_A_ flags); 1961 loop_init (EV_A_ flags);
1393 1962
1394 if (ev_backend (EV_A)) 1963 if (ev_backend (EV_A))
1395 { 1964 {
1396#ifndef _WIN32 1965#if EV_CHILD_ENABLE
1397 ev_signal_init (&childev, childcb, SIGCHLD); 1966 ev_signal_init (&childev, childcb, SIGCHLD);
1398 ev_set_priority (&childev, EV_MAXPRI); 1967 ev_set_priority (&childev, EV_MAXPRI);
1399 ev_signal_start (EV_A_ &childev); 1968 ev_signal_start (EV_A_ &childev);
1400 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1969 ev_unref (EV_A); /* child watcher should not keep loop alive */
1401#endif 1970#endif
1409 1978
1410void 1979void
1411ev_default_destroy (void) 1980ev_default_destroy (void)
1412{ 1981{
1413#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1414 struct ev_loop *loop = ev_default_loop_ptr; 1983 EV_P = ev_default_loop_ptr;
1415#endif 1984#endif
1416 1985
1417#ifndef _WIN32 1986 ev_default_loop_ptr = 0;
1987
1988#if EV_CHILD_ENABLE
1418 ev_ref (EV_A); /* child watcher */ 1989 ev_ref (EV_A); /* child watcher */
1419 ev_signal_stop (EV_A_ &childev); 1990 ev_signal_stop (EV_A_ &childev);
1420#endif 1991#endif
1421 1992
1422 loop_destroy (EV_A); 1993 loop_destroy (EV_A);
1424 1995
1425void 1996void
1426ev_default_fork (void) 1997ev_default_fork (void)
1427{ 1998{
1428#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
1429 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
1430#endif 2001#endif
1431 2002
1432 if (backend)
1433 postfork = 1; /* must be in line with ev_loop_fork */ 2003 postfork = 1; /* must be in line with ev_loop_fork */
1434} 2004}
1435 2005
1436/*****************************************************************************/ 2006/*****************************************************************************/
1437 2007
1438void 2008void
1439ev_invoke (EV_P_ void *w, int revents) 2009ev_invoke (EV_P_ void *w, int revents)
1440{ 2010{
1441 EV_CB_INVOKE ((W)w, revents); 2011 EV_CB_INVOKE ((W)w, revents);
1442} 2012}
1443 2013
1444void inline_speed 2014unsigned int
1445call_pending (EV_P) 2015ev_pending_count (EV_P)
2016{
2017 int pri;
2018 unsigned int count = 0;
2019
2020 for (pri = NUMPRI; pri--; )
2021 count += pendingcnt [pri];
2022
2023 return count;
2024}
2025
2026void noinline
2027ev_invoke_pending (EV_P)
1446{ 2028{
1447 int pri; 2029 int pri;
1448 2030
1449 for (pri = NUMPRI; pri--; ) 2031 for (pri = NUMPRI; pri--; )
1450 while (pendingcnt [pri]) 2032 while (pendingcnt [pri])
1451 { 2033 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2034 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1453 2035
1454 if (expect_true (p->w))
1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2036 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2037 /* ^ this is no longer true, as pending_w could be here */
1457 2038
1458 p->w->pending = 0; 2039 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 2040 EV_CB_INVOKE (p->w, p->events);
1460 } 2041 EV_FREQUENT_CHECK;
1461 } 2042 }
1462} 2043}
1463 2044
1464void inline_size
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE 2045#if EV_IDLE_ENABLE
1545void inline_size 2046/* make idle watchers pending. this handles the "call-idle */
2047/* only when higher priorities are idle" logic */
2048inline_size void
1546idle_reify (EV_P) 2049idle_reify (EV_P)
1547{ 2050{
1548 if (expect_false (idleall)) 2051 if (expect_false (idleall))
1549 { 2052 {
1550 int pri; 2053 int pri;
1562 } 2065 }
1563 } 2066 }
1564} 2067}
1565#endif 2068#endif
1566 2069
1567void inline_speed 2070/* make timers pending */
2071inline_size void
2072timers_reify (EV_P)
2073{
2074 EV_FREQUENT_CHECK;
2075
2076 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2077 {
2078 do
2079 {
2080 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2081
2082 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2083
2084 /* first reschedule or stop timer */
2085 if (w->repeat)
2086 {
2087 ev_at (w) += w->repeat;
2088 if (ev_at (w) < mn_now)
2089 ev_at (w) = mn_now;
2090
2091 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2092
2093 ANHE_at_cache (timers [HEAP0]);
2094 downheap (timers, timercnt, HEAP0);
2095 }
2096 else
2097 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2098
2099 EV_FREQUENT_CHECK;
2100 feed_reverse (EV_A_ (W)w);
2101 }
2102 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2103
2104 feed_reverse_done (EV_A_ EV_TIMER);
2105 }
2106}
2107
2108#if EV_PERIODIC_ENABLE
2109/* make periodics pending */
2110inline_size void
2111periodics_reify (EV_P)
2112{
2113 EV_FREQUENT_CHECK;
2114
2115 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2116 {
2117 int feed_count = 0;
2118
2119 do
2120 {
2121 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2122
2123 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2124
2125 /* first reschedule or stop timer */
2126 if (w->reschedule_cb)
2127 {
2128 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2129
2130 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2131
2132 ANHE_at_cache (periodics [HEAP0]);
2133 downheap (periodics, periodiccnt, HEAP0);
2134 }
2135 else if (w->interval)
2136 {
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138 /* if next trigger time is not sufficiently in the future, put it there */
2139 /* this might happen because of floating point inexactness */
2140 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2141 {
2142 ev_at (w) += w->interval;
2143
2144 /* if interval is unreasonably low we might still have a time in the past */
2145 /* so correct this. this will make the periodic very inexact, but the user */
2146 /* has effectively asked to get triggered more often than possible */
2147 if (ev_at (w) < ev_rt_now)
2148 ev_at (w) = ev_rt_now;
2149 }
2150
2151 ANHE_at_cache (periodics [HEAP0]);
2152 downheap (periodics, periodiccnt, HEAP0);
2153 }
2154 else
2155 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2156
2157 EV_FREQUENT_CHECK;
2158 feed_reverse (EV_A_ (W)w);
2159 }
2160 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2161
2162 feed_reverse_done (EV_A_ EV_PERIODIC);
2163 }
2164}
2165
2166/* simply recalculate all periodics */
2167/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2168static void noinline
2169periodics_reschedule (EV_P)
2170{
2171 int i;
2172
2173 /* adjust periodics after time jump */
2174 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2175 {
2176 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2177
2178 if (w->reschedule_cb)
2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180 else if (w->interval)
2181 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2182
2183 ANHE_at_cache (periodics [i]);
2184 }
2185
2186 reheap (periodics, periodiccnt);
2187}
2188#endif
2189
2190/* adjust all timers by a given offset */
2191static void noinline
2192timers_reschedule (EV_P_ ev_tstamp adjust)
2193{
2194 int i;
2195
2196 for (i = 0; i < timercnt; ++i)
2197 {
2198 ANHE *he = timers + i + HEAP0;
2199 ANHE_w (*he)->at += adjust;
2200 ANHE_at_cache (*he);
2201 }
2202}
2203
2204/* fetch new monotonic and realtime times from the kernel */
2205/* also detect if there was a timejump, and act accordingly */
2206inline_speed void
1568time_update (EV_P_ ev_tstamp max_block) 2207time_update (EV_P_ ev_tstamp max_block)
1569{ 2208{
1570 int i;
1571
1572#if EV_USE_MONOTONIC 2209#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic)) 2210 if (expect_true (have_monotonic))
1574 { 2211 {
2212 int i;
1575 ev_tstamp odiff = rtmn_diff; 2213 ev_tstamp odiff = rtmn_diff;
1576 2214
1577 mn_now = get_clock (); 2215 mn_now = get_clock ();
1578 2216
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2217 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1597 */ 2235 */
1598 for (i = 4; --i; ) 2236 for (i = 4; --i; )
1599 { 2237 {
1600 rtmn_diff = ev_rt_now - mn_now; 2238 rtmn_diff = ev_rt_now - mn_now;
1601 2239
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2240 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 2241 return; /* all is well */
1604 2242
1605 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 2244 mn_now = get_clock ();
1607 now_floor = mn_now; 2245 now_floor = mn_now;
1608 } 2246 }
1609 2247
2248 /* no timer adjustment, as the monotonic clock doesn't jump */
2249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1610# if EV_PERIODIC_ENABLE 2250# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A); 2251 periodics_reschedule (EV_A);
1612# endif 2252# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 } 2253 }
1616 else 2254 else
1617#endif 2255#endif
1618 { 2256 {
1619 ev_rt_now = ev_time (); 2257 ev_rt_now = ev_time ();
1620 2258
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 { 2260 {
2261 /* adjust timers. this is easy, as the offset is the same for all of them */
2262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1623#if EV_PERIODIC_ENABLE 2263#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 2264 periodics_reschedule (EV_A);
1625#endif 2265#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1629 } 2266 }
1630 2267
1631 mn_now = ev_rt_now; 2268 mn_now = ev_rt_now;
1632 } 2269 }
1633} 2270}
1634 2271
1635void 2272void
1636ev_ref (EV_P)
1637{
1638 ++activecnt;
1639}
1640
1641void
1642ev_unref (EV_P)
1643{
1644 --activecnt;
1645}
1646
1647static int loop_done;
1648
1649void
1650ev_loop (EV_P_ int flags) 2273ev_loop (EV_P_ int flags)
1651{ 2274{
2275#if EV_FEATURE_API
2276 ++loop_depth;
2277#endif
2278
2279 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2280
1652 loop_done = EVUNLOOP_CANCEL; 2281 loop_done = EVUNLOOP_CANCEL;
1653 2282
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1655 2284
1656 do 2285 do
1657 { 2286 {
2287#if EV_VERIFY >= 2
2288 ev_verify (EV_A);
2289#endif
2290
1658#ifndef _WIN32 2291#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */ 2292 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid)) 2293 if (expect_false (getpid () != curpid))
1661 { 2294 {
1662 curpid = getpid (); 2295 curpid = getpid ();
1668 /* we might have forked, so queue fork handlers */ 2301 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork)) 2302 if (expect_false (postfork))
1670 if (forkcnt) 2303 if (forkcnt)
1671 { 2304 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A); 2306 EV_INVOKE_PENDING;
1674 } 2307 }
1675#endif 2308#endif
1676 2309
2310#if EV_PREPARE_ENABLE
1677 /* queue prepare watchers (and execute them) */ 2311 /* queue prepare watchers (and execute them) */
1678 if (expect_false (preparecnt)) 2312 if (expect_false (preparecnt))
1679 { 2313 {
1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1681 call_pending (EV_A); 2315 EV_INVOKE_PENDING;
1682 } 2316 }
2317#endif
1683 2318
1684 if (expect_false (!activecnt)) 2319 if (expect_false (loop_done))
1685 break; 2320 break;
1686 2321
1687 /* we might have forked, so reify kernel state if necessary */ 2322 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1689 loop_fork (EV_A); 2324 loop_fork (EV_A);
1696 ev_tstamp waittime = 0.; 2331 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.; 2332 ev_tstamp sleeptime = 0.;
1698 2333
1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2334 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1700 { 2335 {
2336 /* remember old timestamp for io_blocktime calculation */
2337 ev_tstamp prev_mn_now = mn_now;
2338
1701 /* update time to cancel out callback processing overhead */ 2339 /* update time to cancel out callback processing overhead */
1702 time_update (EV_A_ 1e100); 2340 time_update (EV_A_ 1e100);
1703 2341
1704 waittime = MAX_BLOCKTIME; 2342 waittime = MAX_BLOCKTIME;
1705 2343
1706 if (timercnt) 2344 if (timercnt)
1707 { 2345 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2346 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1709 if (waittime > to) waittime = to; 2347 if (waittime > to) waittime = to;
1710 } 2348 }
1711 2349
1712#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 2351 if (periodiccnt)
1714 { 2352 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2353 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1716 if (waittime > to) waittime = to; 2354 if (waittime > to) waittime = to;
1717 } 2355 }
1718#endif 2356#endif
1719 2357
2358 /* don't let timeouts decrease the waittime below timeout_blocktime */
1720 if (expect_false (waittime < timeout_blocktime)) 2359 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime; 2360 waittime = timeout_blocktime;
1722 2361
1723 sleeptime = waittime - backend_fudge; 2362 /* extra check because io_blocktime is commonly 0 */
1724
1725 if (expect_true (sleeptime > io_blocktime)) 2363 if (expect_false (io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 { 2364 {
2365 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2366
2367 if (sleeptime > waittime - backend_fudge)
2368 sleeptime = waittime - backend_fudge;
2369
2370 if (expect_true (sleeptime > 0.))
2371 {
1730 ev_sleep (sleeptime); 2372 ev_sleep (sleeptime);
1731 waittime -= sleeptime; 2373 waittime -= sleeptime;
2374 }
1732 } 2375 }
1733 } 2376 }
1734 2377
2378#if EV_FEATURE_API
1735 ++loop_count; 2379 ++loop_count;
2380#endif
2381 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1736 backend_poll (EV_A_ waittime); 2382 backend_poll (EV_A_ waittime);
2383 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1737 2384
1738 /* update ev_rt_now, do magic */ 2385 /* update ev_rt_now, do magic */
1739 time_update (EV_A_ waittime + sleeptime); 2386 time_update (EV_A_ waittime + sleeptime);
1740 } 2387 }
1741 2388
1748#if EV_IDLE_ENABLE 2395#if EV_IDLE_ENABLE
1749 /* queue idle watchers unless other events are pending */ 2396 /* queue idle watchers unless other events are pending */
1750 idle_reify (EV_A); 2397 idle_reify (EV_A);
1751#endif 2398#endif
1752 2399
2400#if EV_CHECK_ENABLE
1753 /* queue check watchers, to be executed first */ 2401 /* queue check watchers, to be executed first */
1754 if (expect_false (checkcnt)) 2402 if (expect_false (checkcnt))
1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2403 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2404#endif
1756 2405
1757 call_pending (EV_A); 2406 EV_INVOKE_PENDING;
1758 } 2407 }
1759 while (expect_true ( 2408 while (expect_true (
1760 activecnt 2409 activecnt
1761 && !loop_done 2410 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2411 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 )); 2412 ));
1764 2413
1765 if (loop_done == EVUNLOOP_ONE) 2414 if (loop_done == EVUNLOOP_ONE)
1766 loop_done = EVUNLOOP_CANCEL; 2415 loop_done = EVUNLOOP_CANCEL;
2416
2417#if EV_FEATURE_API
2418 --loop_depth;
2419#endif
1767} 2420}
1768 2421
1769void 2422void
1770ev_unloop (EV_P_ int how) 2423ev_unloop (EV_P_ int how)
1771{ 2424{
1772 loop_done = how; 2425 loop_done = how;
1773} 2426}
1774 2427
2428void
2429ev_ref (EV_P)
2430{
2431 ++activecnt;
2432}
2433
2434void
2435ev_unref (EV_P)
2436{
2437 --activecnt;
2438}
2439
2440void
2441ev_now_update (EV_P)
2442{
2443 time_update (EV_A_ 1e100);
2444}
2445
2446void
2447ev_suspend (EV_P)
2448{
2449 ev_now_update (EV_A);
2450}
2451
2452void
2453ev_resume (EV_P)
2454{
2455 ev_tstamp mn_prev = mn_now;
2456
2457 ev_now_update (EV_A);
2458 timers_reschedule (EV_A_ mn_now - mn_prev);
2459#if EV_PERIODIC_ENABLE
2460 /* TODO: really do this? */
2461 periodics_reschedule (EV_A);
2462#endif
2463}
2464
1775/*****************************************************************************/ 2465/*****************************************************************************/
2466/* singly-linked list management, used when the expected list length is short */
1776 2467
1777void inline_size 2468inline_size void
1778wlist_add (WL *head, WL elem) 2469wlist_add (WL *head, WL elem)
1779{ 2470{
1780 elem->next = *head; 2471 elem->next = *head;
1781 *head = elem; 2472 *head = elem;
1782} 2473}
1783 2474
1784void inline_size 2475inline_size void
1785wlist_del (WL *head, WL elem) 2476wlist_del (WL *head, WL elem)
1786{ 2477{
1787 while (*head) 2478 while (*head)
1788 { 2479 {
1789 if (*head == elem) 2480 if (expect_true (*head == elem))
1790 { 2481 {
1791 *head = elem->next; 2482 *head = elem->next;
1792 return; 2483 break;
1793 } 2484 }
1794 2485
1795 head = &(*head)->next; 2486 head = &(*head)->next;
1796 } 2487 }
1797} 2488}
1798 2489
1799void inline_speed 2490/* internal, faster, version of ev_clear_pending */
2491inline_speed void
1800clear_pending (EV_P_ W w) 2492clear_pending (EV_P_ W w)
1801{ 2493{
1802 if (w->pending) 2494 if (w->pending)
1803 { 2495 {
1804 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2496 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1805 w->pending = 0; 2497 w->pending = 0;
1806 } 2498 }
1807} 2499}
1808 2500
1809int 2501int
1813 int pending = w_->pending; 2505 int pending = w_->pending;
1814 2506
1815 if (expect_true (pending)) 2507 if (expect_true (pending))
1816 { 2508 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2509 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2510 p->w = (W)&pending_w;
1818 w_->pending = 0; 2511 w_->pending = 0;
1819 p->w = 0;
1820 return p->events; 2512 return p->events;
1821 } 2513 }
1822 else 2514 else
1823 return 0; 2515 return 0;
1824} 2516}
1825 2517
1826void inline_size 2518inline_size void
1827pri_adjust (EV_P_ W w) 2519pri_adjust (EV_P_ W w)
1828{ 2520{
1829 int pri = w->priority; 2521 int pri = ev_priority (w);
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2522 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2523 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri; 2524 ev_set_priority (w, pri);
1833} 2525}
1834 2526
1835void inline_speed 2527inline_speed void
1836ev_start (EV_P_ W w, int active) 2528ev_start (EV_P_ W w, int active)
1837{ 2529{
1838 pri_adjust (EV_A_ w); 2530 pri_adjust (EV_A_ w);
1839 w->active = active; 2531 w->active = active;
1840 ev_ref (EV_A); 2532 ev_ref (EV_A);
1841} 2533}
1842 2534
1843void inline_size 2535inline_size void
1844ev_stop (EV_P_ W w) 2536ev_stop (EV_P_ W w)
1845{ 2537{
1846 ev_unref (EV_A); 2538 ev_unref (EV_A);
1847 w->active = 0; 2539 w->active = 0;
1848} 2540}
1855 int fd = w->fd; 2547 int fd = w->fd;
1856 2548
1857 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
1858 return; 2550 return;
1859 2551
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 2552 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2553 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2554
2555 EV_FREQUENT_CHECK;
1861 2556
1862 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2558 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1864 wlist_add (&anfds[fd].head, (WL)w); 2559 wlist_add (&anfds[fd].head, (WL)w);
1865 2560
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2561 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1867 w->events &= ~EV_IOFDSET; 2562 w->events &= ~EV__IOFDSET;
2563
2564 EV_FREQUENT_CHECK;
1868} 2565}
1869 2566
1870void noinline 2567void noinline
1871ev_io_stop (EV_P_ ev_io *w) 2568ev_io_stop (EV_P_ ev_io *w)
1872{ 2569{
1873 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
1875 return; 2572 return;
1876 2573
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2574 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2575
2576 EV_FREQUENT_CHECK;
1878 2577
1879 wlist_del (&anfds[w->fd].head, (WL)w); 2578 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
1881 2580
1882 fd_change (EV_A_ w->fd, 1); 2581 fd_change (EV_A_ w->fd, 1);
2582
2583 EV_FREQUENT_CHECK;
1883} 2584}
1884 2585
1885void noinline 2586void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 2587ev_timer_start (EV_P_ ev_timer *w)
1887{ 2588{
1888 if (expect_false (ev_is_active (w))) 2589 if (expect_false (ev_is_active (w)))
1889 return; 2590 return;
1890 2591
1891 ev_at (w) += mn_now; 2592 ev_at (w) += mn_now;
1892 2593
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2594 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 2595
2596 EV_FREQUENT_CHECK;
2597
2598 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 2599 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2600 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 2601 ANHE_w (timers [ev_active (w)]) = (WT)w;
2602 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 2603 upheap (timers, ev_active (w));
1899 2604
2605 EV_FREQUENT_CHECK;
2606
1900 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2607 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 2608}
1902 2609
1903void noinline 2610void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 2611ev_timer_stop (EV_P_ ev_timer *w)
1905{ 2612{
1906 clear_pending (EV_A_ (W)w); 2613 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 2614 if (expect_false (!ev_is_active (w)))
1908 return; 2615 return;
1909 2616
1910 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2617 EV_FREQUENT_CHECK;
1911 2618
1912 { 2619 {
1913 int active = ((W)w)->active; 2620 int active = ev_active (w);
1914 2621
2622 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2623
2624 --timercnt;
2625
1915 if (expect_true (active < timercnt)) 2626 if (expect_true (active < timercnt + HEAP0))
1916 { 2627 {
1917 timers [active] = timers [timercnt]; 2628 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 2629 adjustheap (timers, timercnt, active);
1919 } 2630 }
1920
1921 --timercnt;
1922 } 2631 }
1923 2632
1924 ev_at (w) -= mn_now; 2633 ev_at (w) -= mn_now;
1925 2634
1926 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
2636
2637 EV_FREQUENT_CHECK;
1927} 2638}
1928 2639
1929void noinline 2640void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 2641ev_timer_again (EV_P_ ev_timer *w)
1931{ 2642{
2643 EV_FREQUENT_CHECK;
2644
1932 if (ev_is_active (w)) 2645 if (ev_is_active (w))
1933 { 2646 {
1934 if (w->repeat) 2647 if (w->repeat)
1935 { 2648 {
1936 ev_at (w) = mn_now + w->repeat; 2649 ev_at (w) = mn_now + w->repeat;
2650 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ((W)w)->active); 2651 adjustheap (timers, timercnt, ev_active (w));
1938 } 2652 }
1939 else 2653 else
1940 ev_timer_stop (EV_A_ w); 2654 ev_timer_stop (EV_A_ w);
1941 } 2655 }
1942 else if (w->repeat) 2656 else if (w->repeat)
1943 { 2657 {
1944 ev_at (w) = w->repeat; 2658 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 2659 ev_timer_start (EV_A_ w);
1946 } 2660 }
2661
2662 EV_FREQUENT_CHECK;
2663}
2664
2665ev_tstamp
2666ev_timer_remaining (EV_P_ ev_timer *w)
2667{
2668 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1947} 2669}
1948 2670
1949#if EV_PERIODIC_ENABLE 2671#if EV_PERIODIC_ENABLE
1950void noinline 2672void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 2673ev_periodic_start (EV_P_ ev_periodic *w)
1955 2677
1956 if (w->reschedule_cb) 2678 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval) 2680 else if (w->interval)
1959 { 2681 {
1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2682 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1961 /* this formula differs from the one in periodic_reify because we do not always round up */ 2683 /* this formula differs from the one in periodic_reify because we do not always round up */
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2684 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 2685 }
1964 else 2686 else
1965 ev_at (w) = w->offset; 2687 ev_at (w) = w->offset;
1966 2688
2689 EV_FREQUENT_CHECK;
2690
2691 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 2692 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2693 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 2694 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 2695 ANHE_at_cache (periodics [ev_active (w)]);
2696 upheap (periodics, ev_active (w));
1971 2697
2698 EV_FREQUENT_CHECK;
2699
1972 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2700 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 2701}
1974 2702
1975void noinline 2703void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 2704ev_periodic_stop (EV_P_ ev_periodic *w)
1977{ 2705{
1978 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
1980 return; 2708 return;
1981 2709
1982 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2710 EV_FREQUENT_CHECK;
1983 2711
1984 { 2712 {
1985 int active = ((W)w)->active; 2713 int active = ev_active (w);
1986 2714
2715 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2716
2717 --periodiccnt;
2718
1987 if (expect_true (active < periodiccnt)) 2719 if (expect_true (active < periodiccnt + HEAP0))
1988 { 2720 {
1989 periodics [active] = periodics [periodiccnt]; 2721 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 2722 adjustheap (periodics, periodiccnt, active);
1991 } 2723 }
1992
1993 --periodiccnt;
1994 } 2724 }
1995 2725
1996 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2727
2728 EV_FREQUENT_CHECK;
1997} 2729}
1998 2730
1999void noinline 2731void noinline
2000ev_periodic_again (EV_P_ ev_periodic *w) 2732ev_periodic_again (EV_P_ ev_periodic *w)
2001{ 2733{
2007 2739
2008#ifndef SA_RESTART 2740#ifndef SA_RESTART
2009# define SA_RESTART 0 2741# define SA_RESTART 0
2010#endif 2742#endif
2011 2743
2744#if EV_SIGNAL_ENABLE
2745
2012void noinline 2746void noinline
2013ev_signal_start (EV_P_ ev_signal *w) 2747ev_signal_start (EV_P_ ev_signal *w)
2014{ 2748{
2015#if EV_MULTIPLICITY
2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2017#endif
2018 if (expect_false (ev_is_active (w))) 2749 if (expect_false (ev_is_active (w)))
2019 return; 2750 return;
2020 2751
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2752 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2022 2753
2023 evpipe_init (EV_A); 2754#if EV_MULTIPLICITY
2755 assert (("libev: a signal must not be attached to two different loops",
2756 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2024 2757
2758 signals [w->signum - 1].loop = EV_A;
2759#endif
2760
2761 EV_FREQUENT_CHECK;
2762
2763#if EV_USE_SIGNALFD
2764 if (sigfd == -2)
2025 { 2765 {
2026#ifndef _WIN32 2766 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2027 sigset_t full, prev; 2767 if (sigfd < 0 && errno == EINVAL)
2028 sigfillset (&full); 2768 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031 2769
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2770 if (sigfd >= 0)
2771 {
2772 fd_intern (sigfd); /* doing it twice will not hurt */
2033 2773
2034#ifndef _WIN32 2774 sigemptyset (&sigfd_set);
2035 sigprocmask (SIG_SETMASK, &prev, 0); 2775
2036#endif 2776 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2777 ev_set_priority (&sigfd_w, EV_MAXPRI);
2778 ev_io_start (EV_A_ &sigfd_w);
2779 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2780 }
2037 } 2781 }
2782
2783 if (sigfd >= 0)
2784 {
2785 /* TODO: check .head */
2786 sigaddset (&sigfd_set, w->signum);
2787 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2788
2789 signalfd (sigfd, &sigfd_set, 0);
2790 }
2791#endif
2038 2792
2039 ev_start (EV_A_ (W)w, 1); 2793 ev_start (EV_A_ (W)w, 1);
2040 wlist_add (&signals [w->signum - 1].head, (WL)w); 2794 wlist_add (&signals [w->signum - 1].head, (WL)w);
2041 2795
2042 if (!((WL)w)->next) 2796 if (!((WL)w)->next)
2797# if EV_USE_SIGNALFD
2798 if (sigfd < 0) /*TODO*/
2799# endif
2043 { 2800 {
2044#if _WIN32 2801# ifdef _WIN32
2802 evpipe_init (EV_A);
2803
2045 signal (w->signum, ev_sighandler); 2804 signal (w->signum, ev_sighandler);
2046#else 2805# else
2047 struct sigaction sa; 2806 struct sigaction sa;
2807
2808 evpipe_init (EV_A);
2809
2048 sa.sa_handler = ev_sighandler; 2810 sa.sa_handler = ev_sighandler;
2049 sigfillset (&sa.sa_mask); 2811 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2812 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 2813 sigaction (w->signum, &sa, 0);
2814
2815 sigemptyset (&sa.sa_mask);
2816 sigaddset (&sa.sa_mask, w->signum);
2817 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2052#endif 2818#endif
2053 } 2819 }
2820
2821 EV_FREQUENT_CHECK;
2054} 2822}
2055 2823
2056void noinline 2824void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 2825ev_signal_stop (EV_P_ ev_signal *w)
2058{ 2826{
2059 clear_pending (EV_A_ (W)w); 2827 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2828 if (expect_false (!ev_is_active (w)))
2061 return; 2829 return;
2062 2830
2831 EV_FREQUENT_CHECK;
2832
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 2833 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 2834 ev_stop (EV_A_ (W)w);
2065 2835
2066 if (!signals [w->signum - 1].head) 2836 if (!signals [w->signum - 1].head)
2837 {
2838#if EV_MULTIPLICITY
2839 signals [w->signum - 1].loop = 0; /* unattach from signal */
2840#endif
2841#if EV_USE_SIGNALFD
2842 if (sigfd >= 0)
2843 {
2844 sigset_t ss;
2845
2846 sigemptyset (&ss);
2847 sigaddset (&ss, w->signum);
2848 sigdelset (&sigfd_set, w->signum);
2849
2850 signalfd (sigfd, &sigfd_set, 0);
2851 sigprocmask (SIG_UNBLOCK, &ss, 0);
2852 }
2853 else
2854#endif
2067 signal (w->signum, SIG_DFL); 2855 signal (w->signum, SIG_DFL);
2856 }
2857
2858 EV_FREQUENT_CHECK;
2068} 2859}
2860
2861#endif
2862
2863#if EV_CHILD_ENABLE
2069 2864
2070void 2865void
2071ev_child_start (EV_P_ ev_child *w) 2866ev_child_start (EV_P_ ev_child *w)
2072{ 2867{
2073#if EV_MULTIPLICITY 2868#if EV_MULTIPLICITY
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2869 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 2870#endif
2076 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2077 return; 2872 return;
2078 2873
2874 EV_FREQUENT_CHECK;
2875
2079 ev_start (EV_A_ (W)w, 1); 2876 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2877 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2878
2879 EV_FREQUENT_CHECK;
2081} 2880}
2082 2881
2083void 2882void
2084ev_child_stop (EV_P_ ev_child *w) 2883ev_child_stop (EV_P_ ev_child *w)
2085{ 2884{
2086 clear_pending (EV_A_ (W)w); 2885 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2886 if (expect_false (!ev_is_active (w)))
2088 return; 2887 return;
2089 2888
2889 EV_FREQUENT_CHECK;
2890
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2891 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 2892 ev_stop (EV_A_ (W)w);
2893
2894 EV_FREQUENT_CHECK;
2092} 2895}
2896
2897#endif
2093 2898
2094#if EV_STAT_ENABLE 2899#if EV_STAT_ENABLE
2095 2900
2096# ifdef _WIN32 2901# ifdef _WIN32
2097# undef lstat 2902# undef lstat
2098# define lstat(a,b) _stati64 (a,b) 2903# define lstat(a,b) _stati64 (a,b)
2099# endif 2904# endif
2100 2905
2101#define DEF_STAT_INTERVAL 5.0074891 2906#define DEF_STAT_INTERVAL 5.0074891
2907#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2102#define MIN_STAT_INTERVAL 0.1074891 2908#define MIN_STAT_INTERVAL 0.1074891
2103 2909
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2910static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105 2911
2106#if EV_USE_INOTIFY 2912#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192 2913
2914/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2915# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2108 2916
2109static void noinline 2917static void noinline
2110infy_add (EV_P_ ev_stat *w) 2918infy_add (EV_P_ ev_stat *w)
2111{ 2919{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2920 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113 2921
2114 if (w->wd < 0) 2922 if (w->wd >= 0)
2923 {
2924 struct statfs sfs;
2925
2926 /* now local changes will be tracked by inotify, but remote changes won't */
2927 /* unless the filesystem is known to be local, we therefore still poll */
2928 /* also do poll on <2.6.25, but with normal frequency */
2929
2930 if (!fs_2625)
2931 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2932 else if (!statfs (w->path, &sfs)
2933 && (sfs.f_type == 0x1373 /* devfs */
2934 || sfs.f_type == 0xEF53 /* ext2/3 */
2935 || sfs.f_type == 0x3153464a /* jfs */
2936 || sfs.f_type == 0x52654973 /* reiser3 */
2937 || sfs.f_type == 0x01021994 /* tempfs */
2938 || sfs.f_type == 0x58465342 /* xfs */))
2939 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2940 else
2941 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2115 { 2942 }
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2943 else
2944 {
2945 /* can't use inotify, continue to stat */
2946 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2117 2947
2118 /* monitor some parent directory for speedup hints */ 2948 /* if path is not there, monitor some parent directory for speedup hints */
2949 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2950 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 2952 {
2121 char path [4096]; 2953 char path [4096];
2122 strcpy (path, w->path); 2954 strcpy (path, w->path);
2123 2955
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128 2960
2129 char *pend = strrchr (path, '/'); 2961 char *pend = strrchr (path, '/');
2130 2962
2131 if (!pend) 2963 if (!pend || pend == path)
2132 break; /* whoops, no '/', complain to your admin */ 2964 break;
2133 2965
2134 *pend = 0; 2966 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask); 2967 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 } 2968 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 } 2970 }
2139 } 2971 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142 2972
2143 if (w->wd >= 0) 2973 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2974 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2975
2976 /* now re-arm timer, if required */
2977 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2978 ev_timer_again (EV_A_ &w->timer);
2979 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2145} 2980}
2146 2981
2147static void noinline 2982static void noinline
2148infy_del (EV_P_ ev_stat *w) 2983infy_del (EV_P_ ev_stat *w)
2149{ 2984{
2152 2987
2153 if (wd < 0) 2988 if (wd < 0)
2154 return; 2989 return;
2155 2990
2156 w->wd = -2; 2991 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2992 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w); 2993 wlist_del (&fs_hash [slot].head, (WL)w);
2159 2994
2160 /* remove this watcher, if others are watching it, they will rearm */ 2995 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd); 2996 inotify_rm_watch (fs_fd, wd);
2162} 2997}
2163 2998
2164static void noinline 2999static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3000infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{ 3001{
2167 if (slot < 0) 3002 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */ 3003 /* overflow, need to check for all hash slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3004 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2170 infy_wd (EV_A_ slot, wd, ev); 3005 infy_wd (EV_A_ slot, wd, ev);
2171 else 3006 else
2172 { 3007 {
2173 WL w_; 3008 WL w_;
2174 3009
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3010 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2176 { 3011 {
2177 ev_stat *w = (ev_stat *)w_; 3012 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */ 3013 w_ = w_->next; /* lets us remove this watcher and all before it */
2179 3014
2180 if (w->wd == wd || wd == -1) 3015 if (w->wd == wd || wd == -1)
2181 { 3016 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3017 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 { 3018 {
3019 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2184 w->wd = -1; 3020 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */ 3021 infy_add (EV_A_ w); /* re-add, no matter what */
2186 } 3022 }
2187 3023
2188 stat_timer_cb (EV_A_ &w->timer, 0); 3024 stat_timer_cb (EV_A_ &w->timer, 0);
2193 3029
2194static void 3030static void
2195infy_cb (EV_P_ ev_io *w, int revents) 3031infy_cb (EV_P_ ev_io *w, int revents)
2196{ 3032{
2197 char buf [EV_INOTIFY_BUFSIZE]; 3033 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs; 3034 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf)); 3035 int len = read (fs_fd, buf, sizeof (buf));
2201 3036
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3037 for (ofs = 0; ofs < len; )
3038 {
3039 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3040 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3041 ofs += sizeof (struct inotify_event) + ev->len;
3042 }
2204} 3043}
2205 3044
2206void inline_size 3045inline_size unsigned int
3046ev_linux_version (void)
3047{
3048 struct utsname buf;
3049 unsigned int v;
3050 int i;
3051 char *p = buf.release;
3052
3053 if (uname (&buf))
3054 return 0;
3055
3056 for (i = 3+1; --i; )
3057 {
3058 unsigned int c = 0;
3059
3060 for (;;)
3061 {
3062 if (*p >= '0' && *p <= '9')
3063 c = c * 10 + *p++ - '0';
3064 else
3065 {
3066 p += *p == '.';
3067 break;
3068 }
3069 }
3070
3071 v = (v << 8) | c;
3072 }
3073
3074 return v;
3075}
3076
3077inline_size void
3078ev_check_2625 (EV_P)
3079{
3080 /* kernels < 2.6.25 are borked
3081 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3082 */
3083 if (ev_linux_version () < 0x020619)
3084 return;
3085
3086 fs_2625 = 1;
3087}
3088
3089inline_size int
3090infy_newfd (void)
3091{
3092#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3093 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3094 if (fd >= 0)
3095 return fd;
3096#endif
3097 return inotify_init ();
3098}
3099
3100inline_size void
2207infy_init (EV_P) 3101infy_init (EV_P)
2208{ 3102{
2209 if (fs_fd != -2) 3103 if (fs_fd != -2)
2210 return; 3104 return;
2211 3105
3106 fs_fd = -1;
3107
3108 ev_check_2625 (EV_A);
3109
2212 fs_fd = inotify_init (); 3110 fs_fd = infy_newfd ();
2213 3111
2214 if (fs_fd >= 0) 3112 if (fs_fd >= 0)
2215 { 3113 {
3114 fd_intern (fs_fd);
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3115 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI); 3116 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w); 3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
2219 } 3119 }
2220} 3120}
2221 3121
2222void inline_size 3122inline_size void
2223infy_fork (EV_P) 3123infy_fork (EV_P)
2224{ 3124{
2225 int slot; 3125 int slot;
2226 3126
2227 if (fs_fd < 0) 3127 if (fs_fd < 0)
2228 return; 3128 return;
2229 3129
3130 ev_ref (EV_A);
3131 ev_io_stop (EV_A_ &fs_w);
2230 close (fs_fd); 3132 close (fs_fd);
2231 fs_fd = inotify_init (); 3133 fs_fd = infy_newfd ();
2232 3134
3135 if (fs_fd >= 0)
3136 {
3137 fd_intern (fs_fd);
3138 ev_io_set (&fs_w, fs_fd, EV_READ);
3139 ev_io_start (EV_A_ &fs_w);
3140 ev_unref (EV_A);
3141 }
3142
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3143 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2234 { 3144 {
2235 WL w_ = fs_hash [slot].head; 3145 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0; 3146 fs_hash [slot].head = 0;
2237 3147
2238 while (w_) 3148 while (w_)
2243 w->wd = -1; 3153 w->wd = -1;
2244 3154
2245 if (fs_fd >= 0) 3155 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */ 3156 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else 3157 else
3158 {
3159 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3160 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2248 ev_timer_start (EV_A_ &w->timer); 3161 ev_timer_again (EV_A_ &w->timer);
3162 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3163 }
2249 } 3164 }
2250
2251 } 3165 }
2252} 3166}
2253 3167
3168#endif
3169
3170#ifdef _WIN32
3171# define EV_LSTAT(p,b) _stati64 (p, b)
3172#else
3173# define EV_LSTAT(p,b) lstat (p, b)
2254#endif 3174#endif
2255 3175
2256void 3176void
2257ev_stat_stat (EV_P_ ev_stat *w) 3177ev_stat_stat (EV_P_ ev_stat *w)
2258{ 3178{
2265static void noinline 3185static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3186stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{ 3187{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3188 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269 3189
2270 /* we copy this here each the time so that */ 3190 ev_statdata prev = w->attr;
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w); 3191 ev_stat_stat (EV_A_ w);
2274 3192
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3193 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if ( 3194 if (
2277 w->prev.st_dev != w->attr.st_dev 3195 prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino 3196 || prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode 3197 || prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink 3198 || prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid 3199 || prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid 3200 || prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev 3201 || prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size 3202 || prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime 3203 || prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime 3204 || prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime 3205 || prev.st_ctime != w->attr.st_ctime
2288 ) { 3206 ) {
3207 /* we only update w->prev on actual differences */
3208 /* in case we test more often than invoke the callback, */
3209 /* to ensure that prev is always different to attr */
3210 w->prev = prev;
3211
2289 #if EV_USE_INOTIFY 3212 #if EV_USE_INOTIFY
3213 if (fs_fd >= 0)
3214 {
2290 infy_del (EV_A_ w); 3215 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w); 3216 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */ 3217 ev_stat_stat (EV_A_ w); /* avoid race... */
3218 }
2293 #endif 3219 #endif
2294 3220
2295 ev_feed_event (EV_A_ w, EV_STAT); 3221 ev_feed_event (EV_A_ w, EV_STAT);
2296 } 3222 }
2297} 3223}
2300ev_stat_start (EV_P_ ev_stat *w) 3226ev_stat_start (EV_P_ ev_stat *w)
2301{ 3227{
2302 if (expect_false (ev_is_active (w))) 3228 if (expect_false (ev_is_active (w)))
2303 return; 3229 return;
2304 3230
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w); 3231 ev_stat_stat (EV_A_ w);
2310 3232
3233 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2311 if (w->interval < MIN_STAT_INTERVAL) 3234 w->interval = MIN_STAT_INTERVAL;
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313 3235
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3236 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2315 ev_set_priority (&w->timer, ev_priority (w)); 3237 ev_set_priority (&w->timer, ev_priority (w));
2316 3238
2317#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2318 infy_init (EV_A); 3240 infy_init (EV_A);
2319 3241
2320 if (fs_fd >= 0) 3242 if (fs_fd >= 0)
2321 infy_add (EV_A_ w); 3243 infy_add (EV_A_ w);
2322 else 3244 else
2323#endif 3245#endif
3246 {
2324 ev_timer_start (EV_A_ &w->timer); 3247 ev_timer_again (EV_A_ &w->timer);
3248 ev_unref (EV_A);
3249 }
2325 3250
2326 ev_start (EV_A_ (W)w, 1); 3251 ev_start (EV_A_ (W)w, 1);
3252
3253 EV_FREQUENT_CHECK;
2327} 3254}
2328 3255
2329void 3256void
2330ev_stat_stop (EV_P_ ev_stat *w) 3257ev_stat_stop (EV_P_ ev_stat *w)
2331{ 3258{
2332 clear_pending (EV_A_ (W)w); 3259 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 3260 if (expect_false (!ev_is_active (w)))
2334 return; 3261 return;
2335 3262
3263 EV_FREQUENT_CHECK;
3264
2336#if EV_USE_INOTIFY 3265#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 3266 infy_del (EV_A_ w);
2338#endif 3267#endif
3268
3269 if (ev_is_active (&w->timer))
3270 {
3271 ev_ref (EV_A);
2339 ev_timer_stop (EV_A_ &w->timer); 3272 ev_timer_stop (EV_A_ &w->timer);
3273 }
2340 3274
2341 ev_stop (EV_A_ (W)w); 3275 ev_stop (EV_A_ (W)w);
3276
3277 EV_FREQUENT_CHECK;
2342} 3278}
2343#endif 3279#endif
2344 3280
2345#if EV_IDLE_ENABLE 3281#if EV_IDLE_ENABLE
2346void 3282void
2348{ 3284{
2349 if (expect_false (ev_is_active (w))) 3285 if (expect_false (ev_is_active (w)))
2350 return; 3286 return;
2351 3287
2352 pri_adjust (EV_A_ (W)w); 3288 pri_adjust (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2353 3291
2354 { 3292 {
2355 int active = ++idlecnt [ABSPRI (w)]; 3293 int active = ++idlecnt [ABSPRI (w)];
2356 3294
2357 ++idleall; 3295 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 3296 ev_start (EV_A_ (W)w, active);
2359 3297
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3298 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 3299 idles [ABSPRI (w)][active - 1] = w;
2362 } 3300 }
3301
3302 EV_FREQUENT_CHECK;
2363} 3303}
2364 3304
2365void 3305void
2366ev_idle_stop (EV_P_ ev_idle *w) 3306ev_idle_stop (EV_P_ ev_idle *w)
2367{ 3307{
2368 clear_pending (EV_A_ (W)w); 3308 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 3309 if (expect_false (!ev_is_active (w)))
2370 return; 3310 return;
2371 3311
3312 EV_FREQUENT_CHECK;
3313
2372 { 3314 {
2373 int active = ((W)w)->active; 3315 int active = ev_active (w);
2374 3316
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3317 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3318 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 3319
2378 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
2379 --idleall; 3321 --idleall;
2380 } 3322 }
2381}
2382#endif
2383 3323
3324 EV_FREQUENT_CHECK;
3325}
3326#endif
3327
3328#if EV_PREPARE_ENABLE
2384void 3329void
2385ev_prepare_start (EV_P_ ev_prepare *w) 3330ev_prepare_start (EV_P_ ev_prepare *w)
2386{ 3331{
2387 if (expect_false (ev_is_active (w))) 3332 if (expect_false (ev_is_active (w)))
2388 return; 3333 return;
3334
3335 EV_FREQUENT_CHECK;
2389 3336
2390 ev_start (EV_A_ (W)w, ++preparecnt); 3337 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3338 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 3339 prepares [preparecnt - 1] = w;
3340
3341 EV_FREQUENT_CHECK;
2393} 3342}
2394 3343
2395void 3344void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 3345ev_prepare_stop (EV_P_ ev_prepare *w)
2397{ 3346{
2398 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2400 return; 3349 return;
2401 3350
3351 EV_FREQUENT_CHECK;
3352
2402 { 3353 {
2403 int active = ((W)w)->active; 3354 int active = ev_active (w);
3355
2404 prepares [active - 1] = prepares [--preparecnt]; 3356 prepares [active - 1] = prepares [--preparecnt];
2405 ((W)prepares [active - 1])->active = active; 3357 ev_active (prepares [active - 1]) = active;
2406 } 3358 }
2407 3359
2408 ev_stop (EV_A_ (W)w); 3360 ev_stop (EV_A_ (W)w);
2409}
2410 3361
3362 EV_FREQUENT_CHECK;
3363}
3364#endif
3365
3366#if EV_CHECK_ENABLE
2411void 3367void
2412ev_check_start (EV_P_ ev_check *w) 3368ev_check_start (EV_P_ ev_check *w)
2413{ 3369{
2414 if (expect_false (ev_is_active (w))) 3370 if (expect_false (ev_is_active (w)))
2415 return; 3371 return;
3372
3373 EV_FREQUENT_CHECK;
2416 3374
2417 ev_start (EV_A_ (W)w, ++checkcnt); 3375 ev_start (EV_A_ (W)w, ++checkcnt);
2418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3376 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2419 checks [checkcnt - 1] = w; 3377 checks [checkcnt - 1] = w;
3378
3379 EV_FREQUENT_CHECK;
2420} 3380}
2421 3381
2422void 3382void
2423ev_check_stop (EV_P_ ev_check *w) 3383ev_check_stop (EV_P_ ev_check *w)
2424{ 3384{
2425 clear_pending (EV_A_ (W)w); 3385 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 3386 if (expect_false (!ev_is_active (w)))
2427 return; 3387 return;
2428 3388
3389 EV_FREQUENT_CHECK;
3390
2429 { 3391 {
2430 int active = ((W)w)->active; 3392 int active = ev_active (w);
3393
2431 checks [active - 1] = checks [--checkcnt]; 3394 checks [active - 1] = checks [--checkcnt];
2432 ((W)checks [active - 1])->active = active; 3395 ev_active (checks [active - 1]) = active;
2433 } 3396 }
2434 3397
2435 ev_stop (EV_A_ (W)w); 3398 ev_stop (EV_A_ (W)w);
3399
3400 EV_FREQUENT_CHECK;
2436} 3401}
3402#endif
2437 3403
2438#if EV_EMBED_ENABLE 3404#if EV_EMBED_ENABLE
2439void noinline 3405void noinline
2440ev_embed_sweep (EV_P_ ev_embed *w) 3406ev_embed_sweep (EV_P_ ev_embed *w)
2441{ 3407{
2457embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2458{ 3424{
2459 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2460 3426
2461 { 3427 {
2462 struct ev_loop *loop = w->other; 3428 EV_P = w->other;
2463 3429
2464 while (fdchangecnt) 3430 while (fdchangecnt)
2465 { 3431 {
2466 fd_reify (EV_A); 3432 fd_reify (EV_A);
2467 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3433 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2468 } 3434 }
2469 } 3435 }
2470} 3436}
2471 3437
3438static void
3439embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3440{
3441 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3442
3443 ev_embed_stop (EV_A_ w);
3444
3445 {
3446 EV_P = w->other;
3447
3448 ev_loop_fork (EV_A);
3449 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3450 }
3451
3452 ev_embed_start (EV_A_ w);
3453}
3454
2472#if 0 3455#if 0
2473static void 3456static void
2474embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3457embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2475{ 3458{
2476 ev_idle_stop (EV_A_ idle); 3459 ev_idle_stop (EV_A_ idle);
2482{ 3465{
2483 if (expect_false (ev_is_active (w))) 3466 if (expect_false (ev_is_active (w)))
2484 return; 3467 return;
2485 3468
2486 { 3469 {
2487 struct ev_loop *loop = w->other; 3470 EV_P = w->other;
2488 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3471 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3472 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2490 } 3473 }
3474
3475 EV_FREQUENT_CHECK;
2491 3476
2492 ev_set_priority (&w->io, ev_priority (w)); 3477 ev_set_priority (&w->io, ev_priority (w));
2493 ev_io_start (EV_A_ &w->io); 3478 ev_io_start (EV_A_ &w->io);
2494 3479
2495 ev_prepare_init (&w->prepare, embed_prepare_cb); 3480 ev_prepare_init (&w->prepare, embed_prepare_cb);
2496 ev_set_priority (&w->prepare, EV_MINPRI); 3481 ev_set_priority (&w->prepare, EV_MINPRI);
2497 ev_prepare_start (EV_A_ &w->prepare); 3482 ev_prepare_start (EV_A_ &w->prepare);
2498 3483
3484 ev_fork_init (&w->fork, embed_fork_cb);
3485 ev_fork_start (EV_A_ &w->fork);
3486
2499 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2500 3488
2501 ev_start (EV_A_ (W)w, 1); 3489 ev_start (EV_A_ (W)w, 1);
3490
3491 EV_FREQUENT_CHECK;
2502} 3492}
2503 3493
2504void 3494void
2505ev_embed_stop (EV_P_ ev_embed *w) 3495ev_embed_stop (EV_P_ ev_embed *w)
2506{ 3496{
2507 clear_pending (EV_A_ (W)w); 3497 clear_pending (EV_A_ (W)w);
2508 if (expect_false (!ev_is_active (w))) 3498 if (expect_false (!ev_is_active (w)))
2509 return; 3499 return;
2510 3500
3501 EV_FREQUENT_CHECK;
3502
2511 ev_io_stop (EV_A_ &w->io); 3503 ev_io_stop (EV_A_ &w->io);
2512 ev_prepare_stop (EV_A_ &w->prepare); 3504 ev_prepare_stop (EV_A_ &w->prepare);
3505 ev_fork_stop (EV_A_ &w->fork);
2513 3506
2514 ev_stop (EV_A_ (W)w); 3507 ev_stop (EV_A_ (W)w);
3508
3509 EV_FREQUENT_CHECK;
2515} 3510}
2516#endif 3511#endif
2517 3512
2518#if EV_FORK_ENABLE 3513#if EV_FORK_ENABLE
2519void 3514void
2520ev_fork_start (EV_P_ ev_fork *w) 3515ev_fork_start (EV_P_ ev_fork *w)
2521{ 3516{
2522 if (expect_false (ev_is_active (w))) 3517 if (expect_false (ev_is_active (w)))
2523 return; 3518 return;
3519
3520 EV_FREQUENT_CHECK;
2524 3521
2525 ev_start (EV_A_ (W)w, ++forkcnt); 3522 ev_start (EV_A_ (W)w, ++forkcnt);
2526 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3523 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2527 forks [forkcnt - 1] = w; 3524 forks [forkcnt - 1] = w;
3525
3526 EV_FREQUENT_CHECK;
2528} 3527}
2529 3528
2530void 3529void
2531ev_fork_stop (EV_P_ ev_fork *w) 3530ev_fork_stop (EV_P_ ev_fork *w)
2532{ 3531{
2533 clear_pending (EV_A_ (W)w); 3532 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3533 if (expect_false (!ev_is_active (w)))
2535 return; 3534 return;
2536 3535
3536 EV_FREQUENT_CHECK;
3537
2537 { 3538 {
2538 int active = ((W)w)->active; 3539 int active = ev_active (w);
3540
2539 forks [active - 1] = forks [--forkcnt]; 3541 forks [active - 1] = forks [--forkcnt];
2540 ((W)forks [active - 1])->active = active; 3542 ev_active (forks [active - 1]) = active;
2541 } 3543 }
2542 3544
2543 ev_stop (EV_A_ (W)w); 3545 ev_stop (EV_A_ (W)w);
3546
3547 EV_FREQUENT_CHECK;
2544} 3548}
2545#endif 3549#endif
2546 3550
2547#if EV_ASYNC_ENABLE 3551#if EV_ASYNC_ENABLE
2548void 3552void
2550{ 3554{
2551 if (expect_false (ev_is_active (w))) 3555 if (expect_false (ev_is_active (w)))
2552 return; 3556 return;
2553 3557
2554 evpipe_init (EV_A); 3558 evpipe_init (EV_A);
3559
3560 EV_FREQUENT_CHECK;
2555 3561
2556 ev_start (EV_A_ (W)w, ++asynccnt); 3562 ev_start (EV_A_ (W)w, ++asynccnt);
2557 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3563 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2558 asyncs [asynccnt - 1] = w; 3564 asyncs [asynccnt - 1] = w;
3565
3566 EV_FREQUENT_CHECK;
2559} 3567}
2560 3568
2561void 3569void
2562ev_async_stop (EV_P_ ev_async *w) 3570ev_async_stop (EV_P_ ev_async *w)
2563{ 3571{
2564 clear_pending (EV_A_ (W)w); 3572 clear_pending (EV_A_ (W)w);
2565 if (expect_false (!ev_is_active (w))) 3573 if (expect_false (!ev_is_active (w)))
2566 return; 3574 return;
2567 3575
3576 EV_FREQUENT_CHECK;
3577
2568 { 3578 {
2569 int active = ((W)w)->active; 3579 int active = ev_active (w);
3580
2570 asyncs [active - 1] = asyncs [--asynccnt]; 3581 asyncs [active - 1] = asyncs [--asynccnt];
2571 ((W)asyncs [active - 1])->active = active; 3582 ev_active (asyncs [active - 1]) = active;
2572 } 3583 }
2573 3584
2574 ev_stop (EV_A_ (W)w); 3585 ev_stop (EV_A_ (W)w);
3586
3587 EV_FREQUENT_CHECK;
2575} 3588}
2576 3589
2577void 3590void
2578ev_async_send (EV_P_ ev_async *w) 3591ev_async_send (EV_P_ ev_async *w)
2579{ 3592{
2580 w->sent = 1; 3593 w->sent = 1;
2581 evpipe_write (EV_A_ &gotasync); 3594 evpipe_write (EV_A_ &async_pending);
2582} 3595}
2583#endif 3596#endif
2584 3597
2585/*****************************************************************************/ 3598/*****************************************************************************/
2586 3599
2596once_cb (EV_P_ struct ev_once *once, int revents) 3609once_cb (EV_P_ struct ev_once *once, int revents)
2597{ 3610{
2598 void (*cb)(int revents, void *arg) = once->cb; 3611 void (*cb)(int revents, void *arg) = once->cb;
2599 void *arg = once->arg; 3612 void *arg = once->arg;
2600 3613
2601 ev_io_stop (EV_A_ &once->io); 3614 ev_io_stop (EV_A_ &once->io);
2602 ev_timer_stop (EV_A_ &once->to); 3615 ev_timer_stop (EV_A_ &once->to);
2603 ev_free (once); 3616 ev_free (once);
2604 3617
2605 cb (revents, arg); 3618 cb (revents, arg);
2606} 3619}
2607 3620
2608static void 3621static void
2609once_cb_io (EV_P_ ev_io *w, int revents) 3622once_cb_io (EV_P_ ev_io *w, int revents)
2610{ 3623{
2611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3624 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3625
3626 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2612} 3627}
2613 3628
2614static void 3629static void
2615once_cb_to (EV_P_ ev_timer *w, int revents) 3630once_cb_to (EV_P_ ev_timer *w, int revents)
2616{ 3631{
2617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3632 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3633
3634 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2618} 3635}
2619 3636
2620void 3637void
2621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3638ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2622{ 3639{
2623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3640 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2624 3641
2625 if (expect_false (!once)) 3642 if (expect_false (!once))
2626 { 3643 {
2627 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3644 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2628 return; 3645 return;
2629 } 3646 }
2630 3647
2631 once->cb = cb; 3648 once->cb = cb;
2632 once->arg = arg; 3649 once->arg = arg;
2644 ev_timer_set (&once->to, timeout, 0.); 3661 ev_timer_set (&once->to, timeout, 0.);
2645 ev_timer_start (EV_A_ &once->to); 3662 ev_timer_start (EV_A_ &once->to);
2646 } 3663 }
2647} 3664}
2648 3665
3666/*****************************************************************************/
3667
3668#if EV_WALK_ENABLE
3669void
3670ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3671{
3672 int i, j;
3673 ev_watcher_list *wl, *wn;
3674
3675 if (types & (EV_IO | EV_EMBED))
3676 for (i = 0; i < anfdmax; ++i)
3677 for (wl = anfds [i].head; wl; )
3678 {
3679 wn = wl->next;
3680
3681#if EV_EMBED_ENABLE
3682 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3683 {
3684 if (types & EV_EMBED)
3685 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3686 }
3687 else
3688#endif
3689#if EV_USE_INOTIFY
3690 if (ev_cb ((ev_io *)wl) == infy_cb)
3691 ;
3692 else
3693#endif
3694 if ((ev_io *)wl != &pipe_w)
3695 if (types & EV_IO)
3696 cb (EV_A_ EV_IO, wl);
3697
3698 wl = wn;
3699 }
3700
3701 if (types & (EV_TIMER | EV_STAT))
3702 for (i = timercnt + HEAP0; i-- > HEAP0; )
3703#if EV_STAT_ENABLE
3704 /*TODO: timer is not always active*/
3705 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3706 {
3707 if (types & EV_STAT)
3708 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3709 }
3710 else
3711#endif
3712 if (types & EV_TIMER)
3713 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3714
3715#if EV_PERIODIC_ENABLE
3716 if (types & EV_PERIODIC)
3717 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3718 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3719#endif
3720
3721#if EV_IDLE_ENABLE
3722 if (types & EV_IDLE)
3723 for (j = NUMPRI; i--; )
3724 for (i = idlecnt [j]; i--; )
3725 cb (EV_A_ EV_IDLE, idles [j][i]);
3726#endif
3727
3728#if EV_FORK_ENABLE
3729 if (types & EV_FORK)
3730 for (i = forkcnt; i--; )
3731 if (ev_cb (forks [i]) != embed_fork_cb)
3732 cb (EV_A_ EV_FORK, forks [i]);
3733#endif
3734
3735#if EV_ASYNC_ENABLE
3736 if (types & EV_ASYNC)
3737 for (i = asynccnt; i--; )
3738 cb (EV_A_ EV_ASYNC, asyncs [i]);
3739#endif
3740
3741#if EV_PREPARE_ENABLE
3742 if (types & EV_PREPARE)
3743 for (i = preparecnt; i--; )
3744# if EV_EMBED_ENABLE
3745 if (ev_cb (prepares [i]) != embed_prepare_cb)
3746# endif
3747 cb (EV_A_ EV_PREPARE, prepares [i]);
3748#endif
3749
3750#if EV_CHECK_ENABLE
3751 if (types & EV_CHECK)
3752 for (i = checkcnt; i--; )
3753 cb (EV_A_ EV_CHECK, checks [i]);
3754#endif
3755
3756#if EV_SIGNAL_ENABLE
3757 if (types & EV_SIGNAL)
3758 for (i = 0; i < EV_NSIG - 1; ++i)
3759 for (wl = signals [i].head; wl; )
3760 {
3761 wn = wl->next;
3762 cb (EV_A_ EV_SIGNAL, wl);
3763 wl = wn;
3764 }
3765#endif
3766
3767#if EV_CHILD_ENABLE
3768 if (types & EV_CHILD)
3769 for (i = (EV_PID_HASHSIZE); i--; )
3770 for (wl = childs [i]; wl; )
3771 {
3772 wn = wl->next;
3773 cb (EV_A_ EV_CHILD, wl);
3774 wl = wn;
3775 }
3776#endif
3777/* EV_STAT 0x00001000 /* stat data changed */
3778/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3779}
3780#endif
3781
2649#if EV_MULTIPLICITY 3782#if EV_MULTIPLICITY
2650 #include "ev_wrap.h" 3783 #include "ev_wrap.h"
2651#endif 3784#endif
2652 3785
2653#ifdef __cplusplus 3786#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines