ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.343 by root, Fri Apr 2 21:03:46 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
52# endif 79# endif
53# endif 80# endif
54 81
82# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 83# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 85# endif
61# endif
62
63# ifndef EV_USE_POLL
64# if HAVE_POLL && HAVE_POLL_H
65# define EV_USE_POLL 1
66# else 86# else
87# undef EV_USE_NANOSLEEP
67# define EV_USE_POLL 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
68# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
106# define EV_USE_POLL 0
69# endif 107# endif
70 108
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
74# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
77# endif 116# endif
78 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
85# endif 125# endif
86 126
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
90# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
134# endif
135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
93# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
94 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
95#endif 163#endif
96 164
97#include <math.h> 165#include <math.h>
98#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
99#include <fcntl.h> 168#include <fcntl.h>
100#include <stddef.h> 169#include <stddef.h>
101 170
102#include <stdio.h> 171#include <stdio.h>
103 172
104#include <assert.h> 173#include <assert.h>
105#include <errno.h> 174#include <errno.h>
106#include <sys/types.h> 175#include <sys/types.h>
107#include <time.h> 176#include <time.h>
177#include <limits.h>
108 178
109#include <signal.h> 179#include <signal.h>
110 180
181#ifdef EV_H
182# include EV_H
183#else
184# include "ev.h"
185#endif
186
111#ifndef _WIN32 187#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 188# include <sys/time.h>
114# include <sys/wait.h> 189# include <sys/wait.h>
190# include <unistd.h>
115#else 191#else
192# include <io.h>
116# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 194# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
120# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* this block tries to deduce configuration from header-defined symbols and defaults */
202
203/* try to deduce the maximum number of signals on this platform */
204#if defined (EV_NSIG)
205/* use what's provided */
206#elif defined (NSIG)
207# define EV_NSIG (NSIG)
208#elif defined(_NSIG)
209# define EV_NSIG (_NSIG)
210#elif defined (SIGMAX)
211# define EV_NSIG (SIGMAX+1)
212#elif defined (SIG_MAX)
213# define EV_NSIG (SIG_MAX+1)
214#elif defined (_SIG_MAX)
215# define EV_NSIG (_SIG_MAX+1)
216#elif defined (MAXSIG)
217# define EV_NSIG (MAXSIG+1)
218#elif defined (MAX_SIG)
219# define EV_NSIG (MAX_SIG+1)
220#elif defined (SIGARRAYSIZE)
221# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
222#elif defined (_sys_nsig)
223# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
224#else
225# error "unable to find value for NSIG, please report"
226/* to make it compile regardless, just remove the above line, */
227/* but consider reporting it, too! :) */
228# define EV_NSIG 65
229#endif
230
231#ifndef EV_USE_CLOCK_SYSCALL
232# if __linux && __GLIBC__ >= 2
233# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
234# else
235# define EV_USE_CLOCK_SYSCALL 0
121#endif 236# endif
122 237#endif
123/**/
124 238
125#ifndef EV_USE_MONOTONIC 239#ifndef EV_USE_MONOTONIC
240# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
241# define EV_USE_MONOTONIC EV_FEATURE_OS
242# else
126# define EV_USE_MONOTONIC 0 243# define EV_USE_MONOTONIC 0
244# endif
127#endif 245#endif
128 246
129#ifndef EV_USE_REALTIME 247#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 248# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
249#endif
250
251#ifndef EV_USE_NANOSLEEP
252# if _POSIX_C_SOURCE >= 199309L
253# define EV_USE_NANOSLEEP EV_FEATURE_OS
254# else
255# define EV_USE_NANOSLEEP 0
256# endif
131#endif 257#endif
132 258
133#ifndef EV_USE_SELECT 259#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 260# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 261#endif
136 262
137#ifndef EV_USE_POLL 263#ifndef EV_USE_POLL
138# ifdef _WIN32 264# ifdef _WIN32
139# define EV_USE_POLL 0 265# define EV_USE_POLL 0
140# else 266# else
141# define EV_USE_POLL 1 267# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 268# endif
143#endif 269#endif
144 270
145#ifndef EV_USE_EPOLL 271#ifndef EV_USE_EPOLL
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
273# define EV_USE_EPOLL EV_FEATURE_BACKENDS
274# else
146# define EV_USE_EPOLL 0 275# define EV_USE_EPOLL 0
276# endif
147#endif 277#endif
148 278
149#ifndef EV_USE_KQUEUE 279#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 280# define EV_USE_KQUEUE 0
151#endif 281#endif
152 282
153#ifndef EV_USE_PORT 283#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 284# define EV_USE_PORT 0
155#endif 285#endif
156 286
157/**/ 287#ifndef EV_USE_INOTIFY
288# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
289# define EV_USE_INOTIFY EV_FEATURE_OS
290# else
291# define EV_USE_INOTIFY 0
292# endif
293#endif
294
295#ifndef EV_PID_HASHSIZE
296# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
297#endif
298
299#ifndef EV_INOTIFY_HASHSIZE
300# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
301#endif
302
303#ifndef EV_USE_EVENTFD
304# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
305# define EV_USE_EVENTFD EV_FEATURE_OS
306# else
307# define EV_USE_EVENTFD 0
308# endif
309#endif
310
311#ifndef EV_USE_SIGNALFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_SIGNALFD EV_FEATURE_OS
314# else
315# define EV_USE_SIGNALFD 0
316# endif
317#endif
318
319#if 0 /* debugging */
320# define EV_VERIFY 3
321# define EV_USE_4HEAP 1
322# define EV_HEAP_CACHE_AT 1
323#endif
324
325#ifndef EV_VERIFY
326# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
327#endif
328
329#ifndef EV_USE_4HEAP
330# define EV_USE_4HEAP EV_FEATURE_DATA
331#endif
332
333#ifndef EV_HEAP_CACHE_AT
334# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
335#endif
336
337/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
338/* which makes programs even slower. might work on other unices, too. */
339#if EV_USE_CLOCK_SYSCALL
340# include <syscall.h>
341# ifdef SYS_clock_gettime
342# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
343# undef EV_USE_MONOTONIC
344# define EV_USE_MONOTONIC 1
345# else
346# undef EV_USE_CLOCK_SYSCALL
347# define EV_USE_CLOCK_SYSCALL 0
348# endif
349#endif
350
351/* this block fixes any misconfiguration where we know we run into trouble otherwise */
352
353#ifdef _AIX
354/* AIX has a completely broken poll.h header */
355# undef EV_USE_POLL
356# define EV_USE_POLL 0
357#endif
158 358
159#ifndef CLOCK_MONOTONIC 359#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 360# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 361# define EV_USE_MONOTONIC 0
162#endif 362#endif
164#ifndef CLOCK_REALTIME 364#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 365# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 366# define EV_USE_REALTIME 0
167#endif 367#endif
168 368
369#if !EV_STAT_ENABLE
370# undef EV_USE_INOTIFY
371# define EV_USE_INOTIFY 0
372#endif
373
374#if !EV_USE_NANOSLEEP
375# ifndef _WIN32
376# include <sys/select.h>
377# endif
378#endif
379
380#if EV_USE_INOTIFY
381# include <sys/utsname.h>
382# include <sys/statfs.h>
383# include <sys/inotify.h>
384/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
385# ifndef IN_DONT_FOLLOW
386# undef EV_USE_INOTIFY
387# define EV_USE_INOTIFY 0
388# endif
389#endif
390
169#if EV_SELECT_IS_WINSOCKET 391#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 392# include <winsock.h>
171#endif 393#endif
172 394
395#if EV_USE_EVENTFD
396/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
397# include <stdint.h>
398# ifndef EFD_NONBLOCK
399# define EFD_NONBLOCK O_NONBLOCK
400# endif
401# ifndef EFD_CLOEXEC
402# ifdef O_CLOEXEC
403# define EFD_CLOEXEC O_CLOEXEC
404# else
405# define EFD_CLOEXEC 02000000
406# endif
407# endif
408# ifdef __cplusplus
409extern "C" {
410# endif
411int (eventfd) (unsigned int initval, int flags);
412# ifdef __cplusplus
413}
414# endif
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430# ifdef __cplusplus
431extern "C" {
432# endif
433int signalfd (int fd, const sigset_t *mask, int flags);
434
435struct signalfd_siginfo
436{
437 uint32_t ssi_signo;
438 char pad[128 - sizeof (uint32_t)];
439};
440# ifdef __cplusplus
441}
442# endif
443#endif
444
445
173/**/ 446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to avoid floating point rounding problems.
456 * It is added to ev_rt_now when scheduling periodics
457 * to ensure progress, time-wise, even when rounding
458 * errors are against us.
459 * This value is good at least till the year 4000.
460 * Better solutions welcome.
461 */
462#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 463
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 464#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 465#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 466
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 467#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 468# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 469# define noinline __attribute__ ((noinline))
189#else 470#else
190# define expect(expr,value) (expr) 471# define expect(expr,value) (expr)
191# define inline static 472# define noinline
473# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
474# define inline
475# endif
192#endif 476#endif
193 477
194#define expect_false(expr) expect ((expr) != 0, 0) 478#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 479#define expect_true(expr) expect ((expr) != 0, 1)
480#define inline_size static inline
196 481
482#if EV_FEATURE_CODE
483# define inline_speed static inline
484#else
485# define inline_speed static noinline
486#endif
487
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 488#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
489
490#if EV_MINPRI == EV_MAXPRI
491# define ABSPRI(w) (((W)w), 0)
492#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 493# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
494#endif
199 495
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 496#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 497#define EMPTY2(a,b) /* used to suppress some warnings */
202 498
203typedef struct ev_watcher *W; 499typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 500typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 501typedef ev_watcher_time *WT;
206 502
503#define ev_active(w) ((W)(w))->active
504#define ev_at(w) ((WT)(w))->at
505
506#if EV_USE_REALTIME
507/* sig_atomic_t is used to avoid per-thread variables or locking but still */
508/* giving it a reasonably high chance of working on typical architetcures */
509static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
510#endif
511
512#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 513static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
514#endif
515
516#ifndef EV_FD_TO_WIN32_HANDLE
517# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
518#endif
519#ifndef EV_WIN32_HANDLE_TO_FD
520# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
521#endif
522#ifndef EV_WIN32_CLOSE_FD
523# define EV_WIN32_CLOSE_FD(fd) close (fd)
524#endif
208 525
209#ifdef _WIN32 526#ifdef _WIN32
210# include "ev_win32.c" 527# include "ev_win32.c"
211#endif 528#endif
212 529
213/*****************************************************************************/ 530/*****************************************************************************/
214 531
532#if EV_AVOID_STDIO
533static void noinline
534ev_printerr (const char *msg)
535{
536 write (STDERR_FILENO, msg, strlen (msg));
537}
538#endif
539
215static void (*syserr_cb)(const char *msg); 540static void (*syserr_cb)(const char *msg);
216 541
542void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 543ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 544{
219 syserr_cb = cb; 545 syserr_cb = cb;
220} 546}
221 547
222static void 548static void noinline
223syserr (const char *msg) 549ev_syserr (const char *msg)
224{ 550{
225 if (!msg) 551 if (!msg)
226 msg = "(libev) system error"; 552 msg = "(libev) system error";
227 553
228 if (syserr_cb) 554 if (syserr_cb)
229 syserr_cb (msg); 555 syserr_cb (msg);
230 else 556 else
231 { 557 {
558#if EV_AVOID_STDIO
559 const char *err = strerror (errno);
560
561 ev_printerr (msg);
562 ev_printerr (": ");
563 ev_printerr (err);
564 ev_printerr ("\n");
565#else
232 perror (msg); 566 perror (msg);
567#endif
233 abort (); 568 abort ();
234 } 569 }
235} 570}
236 571
572static void *
573ev_realloc_emul (void *ptr, long size)
574{
575#if __GLIBC__
576 return realloc (ptr, size);
577#else
578 /* some systems, notably openbsd and darwin, fail to properly
579 * implement realloc (x, 0) (as required by both ansi c-89 and
580 * the single unix specification, so work around them here.
581 */
582
583 if (size)
584 return realloc (ptr, size);
585
586 free (ptr);
587 return 0;
588#endif
589}
590
237static void *(*alloc)(void *ptr, long size); 591static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 592
593void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 594ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 595{
241 alloc = cb; 596 alloc = cb;
242} 597}
243 598
244static void * 599inline_speed void *
245ev_realloc (void *ptr, long size) 600ev_realloc (void *ptr, long size)
246{ 601{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 602 ptr = alloc (ptr, size);
248 603
249 if (!ptr && size) 604 if (!ptr && size)
250 { 605 {
606#if EV_AVOID_STDIO
607 ev_printerr ("libev: memory allocation failed, aborting.\n");
608#else
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 609 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
610#endif
252 abort (); 611 abort ();
253 } 612 }
254 613
255 return ptr; 614 return ptr;
256} 615}
258#define ev_malloc(size) ev_realloc (0, (size)) 617#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 618#define ev_free(ptr) ev_realloc ((ptr), 0)
260 619
261/*****************************************************************************/ 620/*****************************************************************************/
262 621
622/* set in reify when reification needed */
623#define EV_ANFD_REIFY 1
624
625/* file descriptor info structure */
263typedef struct 626typedef struct
264{ 627{
265 WL head; 628 WL head;
266 unsigned char events; 629 unsigned char events; /* the events watched for */
630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 632 unsigned char unused;
633#if EV_USE_EPOLL
634 unsigned int egen; /* generation counter to counter epoll bugs */
635#endif
268#if EV_SELECT_IS_WINSOCKET 636#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle; 637 SOCKET handle;
270#endif 638#endif
271} ANFD; 639} ANFD;
272 640
641/* stores the pending event set for a given watcher */
273typedef struct 642typedef struct
274{ 643{
275 W w; 644 W w;
276 int events; 645 int events; /* the pending event set for the given watcher */
277} ANPENDING; 646} ANPENDING;
647
648#if EV_USE_INOTIFY
649/* hash table entry per inotify-id */
650typedef struct
651{
652 WL head;
653} ANFS;
654#endif
655
656/* Heap Entry */
657#if EV_HEAP_CACHE_AT
658 /* a heap element */
659 typedef struct {
660 ev_tstamp at;
661 WT w;
662 } ANHE;
663
664 #define ANHE_w(he) (he).w /* access watcher, read-write */
665 #define ANHE_at(he) (he).at /* access cached at, read-only */
666 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
667#else
668 /* a heap element */
669 typedef WT ANHE;
670
671 #define ANHE_w(he) (he)
672 #define ANHE_at(he) (he)->at
673 #define ANHE_at_cache(he)
674#endif
278 675
279#if EV_MULTIPLICITY 676#if EV_MULTIPLICITY
280 677
281 struct ev_loop 678 struct ev_loop
282 { 679 {
300 697
301 static int ev_default_loop_ptr; 698 static int ev_default_loop_ptr;
302 699
303#endif 700#endif
304 701
702#if EV_FEATURE_API
703# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
704# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
705# define EV_INVOKE_PENDING invoke_cb (EV_A)
706#else
707# define EV_RELEASE_CB (void)0
708# define EV_ACQUIRE_CB (void)0
709# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
710#endif
711
712#define EVUNLOOP_RECURSE 0x80
713
305/*****************************************************************************/ 714/*****************************************************************************/
306 715
716#ifndef EV_HAVE_EV_TIME
307ev_tstamp 717ev_tstamp
308ev_time (void) 718ev_time (void)
309{ 719{
310#if EV_USE_REALTIME 720#if EV_USE_REALTIME
721 if (expect_true (have_realtime))
722 {
311 struct timespec ts; 723 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 724 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 725 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 726 }
727#endif
728
315 struct timeval tv; 729 struct timeval tv;
316 gettimeofday (&tv, 0); 730 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 731 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 732}
733#endif
320 734
321inline ev_tstamp 735inline_size ev_tstamp
322get_clock (void) 736get_clock (void)
323{ 737{
324#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 739 if (expect_true (have_monotonic))
326 { 740 {
339{ 753{
340 return ev_rt_now; 754 return ev_rt_now;
341} 755}
342#endif 756#endif
343 757
344#define array_roundsize(type,n) (((n) | 4) & ~3) 758void
759ev_sleep (ev_tstamp delay)
760{
761 if (delay > 0.)
762 {
763#if EV_USE_NANOSLEEP
764 struct timespec ts;
765
766 ts.tv_sec = (time_t)delay;
767 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
768
769 nanosleep (&ts, 0);
770#elif defined(_WIN32)
771 Sleep ((unsigned long)(delay * 1e3));
772#else
773 struct timeval tv;
774
775 tv.tv_sec = (time_t)delay;
776 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
777
778 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
779 /* something not guaranteed by newer posix versions, but guaranteed */
780 /* by older ones */
781 select (0, 0, 0, 0, &tv);
782#endif
783 }
784}
785
786/*****************************************************************************/
787
788#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
789
790/* find a suitable new size for the given array, */
791/* hopefully by rounding to a ncie-to-malloc size */
792inline_size int
793array_nextsize (int elem, int cur, int cnt)
794{
795 int ncur = cur + 1;
796
797 do
798 ncur <<= 1;
799 while (cnt > ncur);
800
801 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
802 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
803 {
804 ncur *= elem;
805 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
806 ncur = ncur - sizeof (void *) * 4;
807 ncur /= elem;
808 }
809
810 return ncur;
811}
812
813static noinline void *
814array_realloc (int elem, void *base, int *cur, int cnt)
815{
816 *cur = array_nextsize (elem, *cur, cnt);
817 return ev_realloc (base, elem * *cur);
818}
819
820#define array_init_zero(base,count) \
821 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 822
346#define array_needsize(type,base,cur,cnt,init) \ 823#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 824 if (expect_false ((cnt) > (cur))) \
348 { \ 825 { \
349 int newcnt = cur; \ 826 int ocur_ = (cur); \
350 do \ 827 (base) = (type *)array_realloc \
351 { \ 828 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 829 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 830 }
360 831
832#if 0
361#define array_slim(type,stem) \ 833#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 834 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 835 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 836 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 837 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 838 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 839 }
840#endif
368 841
369#define array_free(stem, idx) \ 842#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 843 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 844
372/*****************************************************************************/ 845/*****************************************************************************/
373 846
374static void 847/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 848static void noinline
849pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 850{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 851}
386 852
387void 853void noinline
388ev_feed_event (EV_P_ void *w, int revents) 854ev_feed_event (EV_P_ void *w, int revents)
389{ 855{
390 W w_ = (W)w; 856 W w_ = (W)w;
857 int pri = ABSPRI (w_);
391 858
392 if (expect_false (w_->pending)) 859 if (expect_false (w_->pending))
860 pendings [pri][w_->pending - 1].events |= revents;
861 else
393 { 862 {
863 w_->pending = ++pendingcnt [pri];
864 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
865 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 866 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 867 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 868}
403 869
404static void 870inline_speed void
871feed_reverse (EV_P_ W w)
872{
873 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
874 rfeeds [rfeedcnt++] = w;
875}
876
877inline_size void
878feed_reverse_done (EV_P_ int revents)
879{
880 do
881 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
882 while (rfeedcnt);
883}
884
885inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 886queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 887{
407 int i; 888 int i;
408 889
409 for (i = 0; i < eventcnt; ++i) 890 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 891 ev_feed_event (EV_A_ events [i], type);
411} 892}
412 893
894/*****************************************************************************/
895
413inline void 896inline_speed void
414fd_event (EV_P_ int fd, int revents) 897fd_event_nocheck (EV_P_ int fd, int revents)
415{ 898{
416 ANFD *anfd = anfds + fd; 899 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 900 ev_io *w;
418 901
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 902 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 903 {
421 int ev = w->events & revents; 904 int ev = w->events & revents;
422 905
423 if (ev) 906 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 907 ev_feed_event (EV_A_ (W)w, ev);
425 } 908 }
426} 909}
427 910
911/* do not submit kernel events for fds that have reify set */
912/* because that means they changed while we were polling for new events */
913inline_speed void
914fd_event (EV_P_ int fd, int revents)
915{
916 ANFD *anfd = anfds + fd;
917
918 if (expect_true (!anfd->reify))
919 fd_event_nocheck (EV_A_ fd, revents);
920}
921
428void 922void
429ev_feed_fd_event (EV_P_ int fd, int revents) 923ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 924{
925 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 926 fd_event_nocheck (EV_A_ fd, revents);
432} 927}
433 928
434/*****************************************************************************/ 929/* make sure the external fd watch events are in-sync */
435 930/* with the kernel/libev internal state */
436inline void 931inline_size void
437fd_reify (EV_P) 932fd_reify (EV_P)
438{ 933{
439 int i; 934 int i;
440 935
441 for (i = 0; i < fdchangecnt; ++i) 936 for (i = 0; i < fdchangecnt; ++i)
442 { 937 {
443 int fd = fdchanges [i]; 938 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 939 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 940 ev_io *w;
446 941
447 int events = 0; 942 unsigned char events = 0;
448 943
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 945 events |= (unsigned char)w->events;
451 946
452#if EV_SELECT_IS_WINSOCKET 947#if EV_SELECT_IS_WINSOCKET
453 if (events) 948 if (events)
454 { 949 {
455 unsigned long argp; 950 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 951 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 952 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
458 } 953 }
459#endif 954#endif
460 955
956 {
957 unsigned char o_events = anfd->events;
958 unsigned char o_reify = anfd->reify;
959
461 anfd->reify = 0; 960 anfd->reify = 0;
462
463 method_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 961 anfd->events = events;
962
963 if (o_events != events || o_reify & EV__IOFDSET)
964 backend_modify (EV_A_ fd, o_events, events);
965 }
465 } 966 }
466 967
467 fdchangecnt = 0; 968 fdchangecnt = 0;
468} 969}
469 970
470static void 971/* something about the given fd changed */
972inline_size void
471fd_change (EV_P_ int fd) 973fd_change (EV_P_ int fd, int flags)
472{ 974{
473 if (expect_false (anfds [fd].reify)) 975 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 976 anfds [fd].reify |= flags;
477 977
978 if (expect_true (!reify))
979 {
478 ++fdchangecnt; 980 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 981 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 982 fdchanges [fdchangecnt - 1] = fd;
983 }
481} 984}
482 985
483static void 986/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
987inline_speed void
484fd_kill (EV_P_ int fd) 988fd_kill (EV_P_ int fd)
485{ 989{
486 struct ev_io *w; 990 ev_io *w;
487 991
488 while ((w = (struct ev_io *)anfds [fd].head)) 992 while ((w = (ev_io *)anfds [fd].head))
489 { 993 {
490 ev_io_stop (EV_A_ w); 994 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 995 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 996 }
493} 997}
494 998
999/* check whether the given fd is actually valid, for error recovery */
495inline int 1000inline_size int
496fd_valid (int fd) 1001fd_valid (int fd)
497{ 1002{
498#ifdef _WIN32 1003#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 1004 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
500#else 1005#else
501 return fcntl (fd, F_GETFD) != -1; 1006 return fcntl (fd, F_GETFD) != -1;
502#endif 1007#endif
503} 1008}
504 1009
505/* called on EBADF to verify fds */ 1010/* called on EBADF to verify fds */
506static void 1011static void noinline
507fd_ebadf (EV_P) 1012fd_ebadf (EV_P)
508{ 1013{
509 int fd; 1014 int fd;
510 1015
511 for (fd = 0; fd < anfdmax; ++fd) 1016 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 1017 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 1018 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 1019 fd_kill (EV_A_ fd);
515} 1020}
516 1021
517/* called on ENOMEM in select/poll to kill some fds and retry */ 1022/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 1023static void noinline
519fd_enomem (EV_P) 1024fd_enomem (EV_P)
520{ 1025{
521 int fd; 1026 int fd;
522 1027
523 for (fd = anfdmax; fd--; ) 1028 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 1029 if (anfds [fd].events)
525 { 1030 {
526 fd_kill (EV_A_ fd); 1031 fd_kill (EV_A_ fd);
527 return; 1032 break;
528 } 1033 }
529} 1034}
530 1035
531/* usually called after fork if method needs to re-arm all fds from scratch */ 1036/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1037static void noinline
533fd_rearm_all (EV_P) 1038fd_rearm_all (EV_P)
534{ 1039{
535 int fd; 1040 int fd;
536 1041
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1042 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1043 if (anfds [fd].events)
540 { 1044 {
541 anfds [fd].events = 0; 1045 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1046 anfds [fd].emask = 0;
1047 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1048 }
544} 1049}
545 1050
546/*****************************************************************************/ 1051/* used to prepare libev internal fd's */
547 1052/* this is not fork-safe */
548static void
549upheap (WT *heap, int k)
550{
551 WT w = heap [k];
552
553 while (k && heap [k >> 1]->at > w->at)
554 {
555 heap [k] = heap [k >> 1];
556 ((W)heap [k])->active = k + 1;
557 k >>= 1;
558 }
559
560 heap [k] = w;
561 ((W)heap [k])->active = k + 1;
562
563}
564
565static void
566downheap (WT *heap, int N, int k)
567{
568 WT w = heap [k];
569
570 while (k < (N >> 1))
571 {
572 int j = k << 1;
573
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break;
579
580 heap [k] = heap [j];
581 ((W)heap [k])->active = k + 1;
582 k = j;
583 }
584
585 heap [k] = w;
586 ((W)heap [k])->active = k + 1;
587}
588
589inline void 1053inline_speed void
590adjustheap (WT *heap, int N, int k)
591{
592 upheap (heap, k);
593 downheap (heap, N, k);
594}
595
596/*****************************************************************************/
597
598typedef struct
599{
600 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG;
603
604static ANSIG *signals;
605static int signalmax;
606
607static int sigpipe [2];
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610
611static void
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1054fd_intern (int fd)
676{ 1055{
677#ifdef _WIN32 1056#ifdef _WIN32
678 int arg = 1; 1057 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1058 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
680#else 1059#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1060 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1061 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1062#endif
684} 1063}
685 1064
1065/*****************************************************************************/
1066
1067/*
1068 * the heap functions want a real array index. array index 0 uis guaranteed to not
1069 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1070 * the branching factor of the d-tree.
1071 */
1072
1073/*
1074 * at the moment we allow libev the luxury of two heaps,
1075 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1076 * which is more cache-efficient.
1077 * the difference is about 5% with 50000+ watchers.
1078 */
1079#if EV_USE_4HEAP
1080
1081#define DHEAP 4
1082#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1083#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1084#define UPHEAP_DONE(p,k) ((p) == (k))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091 ANHE *E = heap + N + HEAP0;
1092
1093 for (;;)
1094 {
1095 ev_tstamp minat;
1096 ANHE *minpos;
1097 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1098
1099 /* find minimum child */
1100 if (expect_true (pos + DHEAP - 1 < E))
1101 {
1102 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1105 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1106 }
1107 else if (pos < E)
1108 {
1109 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1110 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1111 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1112 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1113 }
1114 else
1115 break;
1116
1117 if (ANHE_at (he) <= minat)
1118 break;
1119
1120 heap [k] = *minpos;
1121 ev_active (ANHE_w (*minpos)) = k;
1122
1123 k = minpos - heap;
1124 }
1125
1126 heap [k] = he;
1127 ev_active (ANHE_w (he)) = k;
1128}
1129
1130#else /* 4HEAP */
1131
1132#define HEAP0 1
1133#define HPARENT(k) ((k) >> 1)
1134#define UPHEAP_DONE(p,k) (!(p))
1135
1136/* away from the root */
1137inline_speed void
1138downheap (ANHE *heap, int N, int k)
1139{
1140 ANHE he = heap [k];
1141
1142 for (;;)
1143 {
1144 int c = k << 1;
1145
1146 if (c >= N + HEAP0)
1147 break;
1148
1149 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1150 ? 1 : 0;
1151
1152 if (ANHE_at (he) <= ANHE_at (heap [c]))
1153 break;
1154
1155 heap [k] = heap [c];
1156 ev_active (ANHE_w (heap [k])) = k;
1157
1158 k = c;
1159 }
1160
1161 heap [k] = he;
1162 ev_active (ANHE_w (he)) = k;
1163}
1164#endif
1165
1166/* towards the root */
1167inline_speed void
1168upheap (ANHE *heap, int k)
1169{
1170 ANHE he = heap [k];
1171
1172 for (;;)
1173 {
1174 int p = HPARENT (k);
1175
1176 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1177 break;
1178
1179 heap [k] = heap [p];
1180 ev_active (ANHE_w (heap [k])) = k;
1181 k = p;
1182 }
1183
1184 heap [k] = he;
1185 ev_active (ANHE_w (he)) = k;
1186}
1187
1188/* move an element suitably so it is in a correct place */
1189inline_size void
1190adjustheap (ANHE *heap, int N, int k)
1191{
1192 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1193 upheap (heap, k);
1194 else
1195 downheap (heap, N, k);
1196}
1197
1198/* rebuild the heap: this function is used only once and executed rarely */
1199inline_size void
1200reheap (ANHE *heap, int N)
1201{
1202 int i;
1203
1204 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1205 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1206 for (i = 0; i < N; ++i)
1207 upheap (heap, i + HEAP0);
1208}
1209
1210/*****************************************************************************/
1211
1212/* associate signal watchers to a signal signal */
1213typedef struct
1214{
1215 EV_ATOMIC_T pending;
1216#if EV_MULTIPLICITY
1217 EV_P;
1218#endif
1219 WL head;
1220} ANSIG;
1221
1222static ANSIG signals [EV_NSIG - 1];
1223
1224/*****************************************************************************/
1225
1226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1227
1228static void noinline
1229evpipe_init (EV_P)
1230{
1231 if (!ev_is_active (&pipe_w))
1232 {
1233# if EV_USE_EVENTFD
1234 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1235 if (evfd < 0 && errno == EINVAL)
1236 evfd = eventfd (0, 0);
1237
1238 if (evfd >= 0)
1239 {
1240 evpipe [0] = -1;
1241 fd_intern (evfd); /* doing it twice doesn't hurt */
1242 ev_io_set (&pipe_w, evfd, EV_READ);
1243 }
1244 else
1245# endif
1246 {
1247 while (pipe (evpipe))
1248 ev_syserr ("(libev) error creating signal/async pipe");
1249
1250 fd_intern (evpipe [0]);
1251 fd_intern (evpipe [1]);
1252 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1253 }
1254
1255 ev_io_start (EV_A_ &pipe_w);
1256 ev_unref (EV_A); /* watcher should not keep loop alive */
1257 }
1258}
1259
1260inline_size void
1261evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1262{
1263 if (!*flag)
1264 {
1265 int old_errno = errno; /* save errno because write might clobber it */
1266 char dummy;
1267
1268 *flag = 1;
1269
1270#if EV_USE_EVENTFD
1271 if (evfd >= 0)
1272 {
1273 uint64_t counter = 1;
1274 write (evfd, &counter, sizeof (uint64_t));
1275 }
1276 else
1277#endif
1278 write (evpipe [1], &dummy, 1);
1279
1280 errno = old_errno;
1281 }
1282}
1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
686static void 1286static void
687siginit (EV_P) 1287pipecb (EV_P_ ev_io *iow, int revents)
688{ 1288{
689 fd_intern (sigpipe [0]); 1289 int i;
690 fd_intern (sigpipe [1]);
691 1290
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1291#if EV_USE_EVENTFD
693 ev_io_start (EV_A_ &sigev); 1292 if (evfd >= 0)
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1293 {
1294 uint64_t counter;
1295 read (evfd, &counter, sizeof (uint64_t));
1296 }
1297 else
1298#endif
1299 {
1300 char dummy;
1301 read (evpipe [0], &dummy, 1);
1302 }
1303
1304 if (sig_pending)
1305 {
1306 sig_pending = 0;
1307
1308 for (i = EV_NSIG - 1; i--; )
1309 if (expect_false (signals [i].pending))
1310 ev_feed_signal_event (EV_A_ i + 1);
1311 }
1312
1313#if EV_ASYNC_ENABLE
1314 if (async_pending)
1315 {
1316 async_pending = 0;
1317
1318 for (i = asynccnt; i--; )
1319 if (asyncs [i]->sent)
1320 {
1321 asyncs [i]->sent = 0;
1322 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1323 }
1324 }
1325#endif
695} 1326}
696 1327
697/*****************************************************************************/ 1328/*****************************************************************************/
698 1329
699static struct ev_child *childs [PID_HASHSIZE]; 1330static void
1331ev_sighandler (int signum)
1332{
1333#if EV_MULTIPLICITY
1334 EV_P = signals [signum - 1].loop;
1335#endif
700 1336
701#ifndef _WIN32 1337#ifdef _WIN32
1338 signal (signum, ev_sighandler);
1339#endif
702 1340
1341 signals [signum - 1].pending = 1;
1342 evpipe_write (EV_A_ &sig_pending);
1343}
1344
1345void noinline
1346ev_feed_signal_event (EV_P_ int signum)
1347{
1348 WL w;
1349
1350 if (expect_false (signum <= 0 || signum > EV_NSIG))
1351 return;
1352
1353 --signum;
1354
1355#if EV_MULTIPLICITY
1356 /* it is permissible to try to feed a signal to the wrong loop */
1357 /* or, likely more useful, feeding a signal nobody is waiting for */
1358
1359 if (expect_false (signals [signum].loop != EV_A))
1360 return;
1361#endif
1362
1363 signals [signum].pending = 0;
1364
1365 for (w = signals [signum].head; w; w = w->next)
1366 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1367}
1368
1369#if EV_USE_SIGNALFD
1370static void
1371sigfdcb (EV_P_ ev_io *iow, int revents)
1372{
1373 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1374
1375 for (;;)
1376 {
1377 ssize_t res = read (sigfd, si, sizeof (si));
1378
1379 /* not ISO-C, as res might be -1, but works with SuS */
1380 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1381 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1382
1383 if (res < (ssize_t)sizeof (si))
1384 break;
1385 }
1386}
1387#endif
1388
1389#endif
1390
1391/*****************************************************************************/
1392
1393#if EV_CHILD_ENABLE
1394static WL childs [EV_PID_HASHSIZE];
1395
703static struct ev_signal childev; 1396static ev_signal childev;
1397
1398#ifndef WIFCONTINUED
1399# define WIFCONTINUED(status) 0
1400#endif
1401
1402/* handle a single child status event */
1403inline_speed void
1404child_reap (EV_P_ int chain, int pid, int status)
1405{
1406 ev_child *w;
1407 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1408
1409 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1410 {
1411 if ((w->pid == pid || !w->pid)
1412 && (!traced || (w->flags & 1)))
1413 {
1414 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1415 w->rpid = pid;
1416 w->rstatus = status;
1417 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1418 }
1419 }
1420}
704 1421
705#ifndef WCONTINUED 1422#ifndef WCONTINUED
706# define WCONTINUED 0 1423# define WCONTINUED 0
707#endif 1424#endif
708 1425
1426/* called on sigchld etc., calls waitpid */
709static void 1427static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1428childcb (EV_P_ ev_signal *sw, int revents)
726{ 1429{
727 int pid, status; 1430 int pid, status;
728 1431
1432 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1433 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1434 if (!WCONTINUED
1435 || errno != EINVAL
1436 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1437 return;
1438
731 /* make sure we are called again until all childs have been reaped */ 1439 /* make sure we are called again until all children have been reaped */
1440 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1441 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1442
734 child_reap (EV_A_ sw, pid, pid, status); 1443 child_reap (EV_A_ pid, pid, status);
1444 if ((EV_PID_HASHSIZE) > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1445 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1446}
738 1447
739#endif 1448#endif
740 1449
741/*****************************************************************************/ 1450/*****************************************************************************/
767{ 1476{
768 return EV_VERSION_MINOR; 1477 return EV_VERSION_MINOR;
769} 1478}
770 1479
771/* return true if we are running with elevated privileges and should ignore env variables */ 1480/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1481int inline_size
773enable_secure (void) 1482enable_secure (void)
774{ 1483{
775#ifdef _WIN32 1484#ifdef _WIN32
776 return 0; 1485 return 0;
777#else 1486#else
781} 1490}
782 1491
783unsigned int 1492unsigned int
784ev_supported_backends (void) 1493ev_supported_backends (void)
785{ 1494{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 1495 unsigned int flags = 0;
792 1496
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1497 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 1498 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 1499 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 1500 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 1502
799 return flags; 1503 return flags;
800} 1504}
801 1505
802unsigned int 1506unsigned int
803ev_backend (EV_P) 1507ev_recommended_backends (void)
804{ 1508{
805 unsigned int flags = ev_recommended_backends (); 1509 unsigned int flags = ev_supported_backends ();
806 1510
807#ifndef __NetBSD__ 1511#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 1512 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1513 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1514 flags &= ~EVBACKEND_KQUEUE;
811#endif 1515#endif
812#ifdef __APPLE__ 1516#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1517 /* only select works correctly on that "unix-certified" platform */
814 flags &= ~EVBACKEND_POLL; 1518 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1519 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1520#endif
1521#ifdef __FreeBSD__
1522 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
815#endif 1523#endif
816 1524
817 return flags; 1525 return flags;
818} 1526}
819 1527
820static void 1528unsigned int
1529ev_embeddable_backends (void)
1530{
1531 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1532
1533 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1534 /* please fix it and tell me how to detect the fix */
1535 flags &= ~EVBACKEND_EPOLL;
1536
1537 return flags;
1538}
1539
1540unsigned int
1541ev_backend (EV_P)
1542{
1543 return backend;
1544}
1545
1546#if EV_FEATURE_API
1547unsigned int
1548ev_iteration (EV_P)
1549{
1550 return loop_count;
1551}
1552
1553unsigned int
1554ev_depth (EV_P)
1555{
1556 return loop_depth;
1557}
1558
1559void
1560ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1561{
1562 io_blocktime = interval;
1563}
1564
1565void
1566ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1567{
1568 timeout_blocktime = interval;
1569}
1570
1571void
1572ev_set_userdata (EV_P_ void *data)
1573{
1574 userdata = data;
1575}
1576
1577void *
1578ev_userdata (EV_P)
1579{
1580 return userdata;
1581}
1582
1583void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1584{
1585 invoke_cb = invoke_pending_cb;
1586}
1587
1588void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1589{
1590 release_cb = release;
1591 acquire_cb = acquire;
1592}
1593#endif
1594
1595/* initialise a loop structure, must be zero-initialised */
1596static void noinline
821loop_init (EV_P_ unsigned int flags) 1597loop_init (EV_P_ unsigned int flags)
822{ 1598{
823 if (!method) 1599 if (!backend)
824 { 1600 {
1601#if EV_USE_REALTIME
1602 if (!have_realtime)
1603 {
1604 struct timespec ts;
1605
1606 if (!clock_gettime (CLOCK_REALTIME, &ts))
1607 have_realtime = 1;
1608 }
1609#endif
1610
825#if EV_USE_MONOTONIC 1611#if EV_USE_MONOTONIC
1612 if (!have_monotonic)
826 { 1613 {
827 struct timespec ts; 1614 struct timespec ts;
1615
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1616 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
829 have_monotonic = 1; 1617 have_monotonic = 1;
830 } 1618 }
831#endif 1619#endif
832 1620
833 ev_rt_now = ev_time (); 1621 /* pid check not overridable via env */
834 mn_now = get_clock (); 1622#ifndef _WIN32
835 now_floor = mn_now; 1623 if (flags & EVFLAG_FORKCHECK)
836 rtmn_diff = ev_rt_now - mn_now; 1624 curpid = getpid ();
1625#endif
837 1626
838 if (!(flags & EVFLAG_NOENV) 1627 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 1628 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 1629 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 1630 flags = atoi (getenv ("LIBEV_FLAGS"));
842 1631
1632 ev_rt_now = ev_time ();
1633 mn_now = get_clock ();
1634 now_floor = mn_now;
1635 rtmn_diff = ev_rt_now - mn_now;
1636#if EV_FEATURE_API
1637 invoke_cb = ev_invoke_pending;
1638#endif
1639
1640 io_blocktime = 0.;
1641 timeout_blocktime = 0.;
1642 backend = 0;
1643 backend_fd = -1;
1644 sig_pending = 0;
1645#if EV_ASYNC_ENABLE
1646 async_pending = 0;
1647#endif
1648#if EV_USE_INOTIFY
1649 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1650#endif
1651#if EV_USE_SIGNALFD
1652 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1653#endif
1654
843 if (!(flags & 0x0000ffffUL)) 1655 if (!(flags & 0x0000ffffU))
844 flags |= ev_recommended_backends (); 1656 flags |= ev_recommended_backends ();
845 1657
846 method = 0;
847#if EV_USE_PORT 1658#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 1660#endif
850#if EV_USE_KQUEUE 1661#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 1663#endif
853#if EV_USE_EPOLL 1664#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 1665 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 1666#endif
856#if EV_USE_POLL 1667#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 1668 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 1669#endif
859#if EV_USE_SELECT 1670#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 1671 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 1672#endif
862 1673
1674 ev_prepare_init (&pending_w, pendingcb);
1675
1676#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
863 ev_init (&sigev, sigcb); 1677 ev_init (&pipe_w, pipecb);
864 ev_set_priority (&sigev, EV_MAXPRI); 1678 ev_set_priority (&pipe_w, EV_MAXPRI);
1679#endif
865 } 1680 }
866} 1681}
867 1682
868static void 1683/* free up a loop structure */
1684static void noinline
869loop_destroy (EV_P) 1685loop_destroy (EV_P)
870{ 1686{
871 int i; 1687 int i;
872 1688
1689 if (ev_is_active (&pipe_w))
1690 {
1691 /*ev_ref (EV_A);*/
1692 /*ev_io_stop (EV_A_ &pipe_w);*/
1693
1694#if EV_USE_EVENTFD
1695 if (evfd >= 0)
1696 close (evfd);
1697#endif
1698
1699 if (evpipe [0] >= 0)
1700 {
1701 EV_WIN32_CLOSE_FD (evpipe [0]);
1702 EV_WIN32_CLOSE_FD (evpipe [1]);
1703 }
1704 }
1705
1706#if EV_USE_SIGNALFD
1707 if (ev_is_active (&sigfd_w))
1708 close (sigfd);
1709#endif
1710
1711#if EV_USE_INOTIFY
1712 if (fs_fd >= 0)
1713 close (fs_fd);
1714#endif
1715
1716 if (backend_fd >= 0)
1717 close (backend_fd);
1718
873#if EV_USE_PORT 1719#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 1720 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 1721#endif
876#if EV_USE_KQUEUE 1722#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1723 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 1724#endif
879#if EV_USE_EPOLL 1725#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 1726 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 1727#endif
882#if EV_USE_POLL 1728#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1729 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1730#endif
885#if EV_USE_SELECT 1731#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1732 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1733#endif
888 1734
889 for (i = NUMPRI; i--; ) 1735 for (i = NUMPRI; i--; )
1736 {
890 array_free (pending, [i]); 1737 array_free (pending, [i]);
1738#if EV_IDLE_ENABLE
1739 array_free (idle, [i]);
1740#endif
1741 }
1742
1743 ev_free (anfds); anfds = 0; anfdmax = 0;
891 1744
892 /* have to use the microsoft-never-gets-it-right macro */ 1745 /* have to use the microsoft-never-gets-it-right macro */
1746 array_free (rfeed, EMPTY);
893 array_free (fdchange, EMPTY0); 1747 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 1748 array_free (timer, EMPTY);
895#if EV_PERIODICS 1749#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1750 array_free (periodic, EMPTY);
897#endif 1751#endif
1752#if EV_FORK_ENABLE
898 array_free (idle, EMPTY0); 1753 array_free (fork, EMPTY);
1754#endif
899 array_free (prepare, EMPTY0); 1755 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 1756 array_free (check, EMPTY);
1757#if EV_ASYNC_ENABLE
1758 array_free (async, EMPTY);
1759#endif
901 1760
902 method = 0; 1761 backend = 0;
903} 1762}
904 1763
905static void 1764#if EV_USE_INOTIFY
1765inline_size void infy_fork (EV_P);
1766#endif
1767
1768inline_size void
906loop_fork (EV_P) 1769loop_fork (EV_P)
907{ 1770{
908#if EV_USE_PORT 1771#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1772 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1773#endif
911#if EV_USE_KQUEUE 1774#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1775 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1776#endif
914#if EV_USE_EPOLL 1777#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1778 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 1779#endif
1780#if EV_USE_INOTIFY
1781 infy_fork (EV_A);
1782#endif
917 1783
918 if (ev_is_active (&sigev)) 1784 if (ev_is_active (&pipe_w))
919 { 1785 {
920 /* default loop */ 1786 /* this "locks" the handlers against writing to the pipe */
1787 /* while we modify the fd vars */
1788 sig_pending = 1;
1789#if EV_ASYNC_ENABLE
1790 async_pending = 1;
1791#endif
921 1792
922 ev_ref (EV_A); 1793 ev_ref (EV_A);
923 ev_io_stop (EV_A_ &sigev); 1794 ev_io_stop (EV_A_ &pipe_w);
924 close (sigpipe [0]);
925 close (sigpipe [1]);
926 1795
927 while (pipe (sigpipe)) 1796#if EV_USE_EVENTFD
928 syserr ("(libev) error creating pipe"); 1797 if (evfd >= 0)
1798 close (evfd);
1799#endif
929 1800
1801 if (evpipe [0] >= 0)
1802 {
1803 EV_WIN32_CLOSE_FD (evpipe [0]);
1804 EV_WIN32_CLOSE_FD (evpipe [1]);
1805 }
1806
1807#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
930 siginit (EV_A); 1808 evpipe_init (EV_A);
1809 /* now iterate over everything, in case we missed something */
1810 pipecb (EV_A_ &pipe_w, EV_READ);
1811#endif
931 } 1812 }
932 1813
933 postfork = 0; 1814 postfork = 0;
934} 1815}
935 1816
936#if EV_MULTIPLICITY 1817#if EV_MULTIPLICITY
1818
937struct ev_loop * 1819struct ev_loop *
938ev_loop_new (unsigned int flags) 1820ev_loop_new (unsigned int flags)
939{ 1821{
940 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1822 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
941 1823
942 memset (loop, 0, sizeof (struct ev_loop)); 1824 memset (EV_A, 0, sizeof (struct ev_loop));
943
944 loop_init (EV_A_ flags); 1825 loop_init (EV_A_ flags);
945 1826
946 if (ev_method (EV_A)) 1827 if (ev_backend (EV_A))
947 return loop; 1828 return EV_A;
948 1829
949 return 0; 1830 return 0;
950} 1831}
951 1832
952void 1833void
957} 1838}
958 1839
959void 1840void
960ev_loop_fork (EV_P) 1841ev_loop_fork (EV_P)
961{ 1842{
962 postfork = 1; 1843 postfork = 1; /* must be in line with ev_default_fork */
963} 1844}
1845#endif /* multiplicity */
964 1846
1847#if EV_VERIFY
1848static void noinline
1849verify_watcher (EV_P_ W w)
1850{
1851 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1852
1853 if (w->pending)
1854 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1855}
1856
1857static void noinline
1858verify_heap (EV_P_ ANHE *heap, int N)
1859{
1860 int i;
1861
1862 for (i = HEAP0; i < N + HEAP0; ++i)
1863 {
1864 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1865 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1866 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1867
1868 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1869 }
1870}
1871
1872static void noinline
1873array_verify (EV_P_ W *ws, int cnt)
1874{
1875 while (cnt--)
1876 {
1877 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1878 verify_watcher (EV_A_ ws [cnt]);
1879 }
1880}
1881#endif
1882
1883#if EV_FEATURE_API
1884void
1885ev_verify (EV_P)
1886{
1887#if EV_VERIFY
1888 int i;
1889 WL w;
1890
1891 assert (activecnt >= -1);
1892
1893 assert (fdchangemax >= fdchangecnt);
1894 for (i = 0; i < fdchangecnt; ++i)
1895 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1896
1897 assert (anfdmax >= 0);
1898 for (i = 0; i < anfdmax; ++i)
1899 for (w = anfds [i].head; w; w = w->next)
1900 {
1901 verify_watcher (EV_A_ (W)w);
1902 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1903 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1904 }
1905
1906 assert (timermax >= timercnt);
1907 verify_heap (EV_A_ timers, timercnt);
1908
1909#if EV_PERIODIC_ENABLE
1910 assert (periodicmax >= periodiccnt);
1911 verify_heap (EV_A_ periodics, periodiccnt);
1912#endif
1913
1914 for (i = NUMPRI; i--; )
1915 {
1916 assert (pendingmax [i] >= pendingcnt [i]);
1917#if EV_IDLE_ENABLE
1918 assert (idleall >= 0);
1919 assert (idlemax [i] >= idlecnt [i]);
1920 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1921#endif
1922 }
1923
1924#if EV_FORK_ENABLE
1925 assert (forkmax >= forkcnt);
1926 array_verify (EV_A_ (W *)forks, forkcnt);
1927#endif
1928
1929#if EV_ASYNC_ENABLE
1930 assert (asyncmax >= asynccnt);
1931 array_verify (EV_A_ (W *)asyncs, asynccnt);
1932#endif
1933
1934#if EV_PREPARE_ENABLE
1935 assert (preparemax >= preparecnt);
1936 array_verify (EV_A_ (W *)prepares, preparecnt);
1937#endif
1938
1939#if EV_CHECK_ENABLE
1940 assert (checkmax >= checkcnt);
1941 array_verify (EV_A_ (W *)checks, checkcnt);
1942#endif
1943
1944# if 0
1945#if EV_CHILD_ENABLE
1946 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1947 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1948#endif
1949# endif
1950#endif
1951}
965#endif 1952#endif
966 1953
967#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
968struct ev_loop * 1955struct ev_loop *
969ev_default_loop_init (unsigned int flags) 1956ev_default_loop_init (unsigned int flags)
970#else 1957#else
971int 1958int
972ev_default_loop (unsigned int flags) 1959ev_default_loop (unsigned int flags)
973#endif 1960#endif
974{ 1961{
975 if (sigpipe [0] == sigpipe [1])
976 if (pipe (sigpipe))
977 return 0;
978
979 if (!ev_default_loop_ptr) 1962 if (!ev_default_loop_ptr)
980 { 1963 {
981#if EV_MULTIPLICITY 1964#if EV_MULTIPLICITY
982 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1965 EV_P = ev_default_loop_ptr = &default_loop_struct;
983#else 1966#else
984 ev_default_loop_ptr = 1; 1967 ev_default_loop_ptr = 1;
985#endif 1968#endif
986 1969
987 loop_init (EV_A_ flags); 1970 loop_init (EV_A_ flags);
988 1971
989 if (ev_method (EV_A)) 1972 if (ev_backend (EV_A))
990 { 1973 {
991 siginit (EV_A); 1974#if EV_CHILD_ENABLE
992
993#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1975 ev_signal_init (&childev, childcb, SIGCHLD);
995 ev_set_priority (&childev, EV_MAXPRI); 1976 ev_set_priority (&childev, EV_MAXPRI);
996 ev_signal_start (EV_A_ &childev); 1977 ev_signal_start (EV_A_ &childev);
997 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1978 ev_unref (EV_A); /* child watcher should not keep loop alive */
998#endif 1979#endif
1006 1987
1007void 1988void
1008ev_default_destroy (void) 1989ev_default_destroy (void)
1009{ 1990{
1010#if EV_MULTIPLICITY 1991#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr; 1992 EV_P = ev_default_loop_ptr;
1012#endif 1993#endif
1013 1994
1014#ifndef _WIN32 1995 ev_default_loop_ptr = 0;
1996
1997#if EV_CHILD_ENABLE
1015 ev_ref (EV_A); /* child watcher */ 1998 ev_ref (EV_A); /* child watcher */
1016 ev_signal_stop (EV_A_ &childev); 1999 ev_signal_stop (EV_A_ &childev);
1017#endif 2000#endif
1018 2001
1019 ev_ref (EV_A); /* signal watcher */
1020 ev_io_stop (EV_A_ &sigev);
1021
1022 close (sigpipe [0]); sigpipe [0] = 0;
1023 close (sigpipe [1]); sigpipe [1] = 0;
1024
1025 loop_destroy (EV_A); 2002 loop_destroy (EV_A);
1026} 2003}
1027 2004
1028void 2005void
1029ev_default_fork (void) 2006ev_default_fork (void)
1030{ 2007{
1031#if EV_MULTIPLICITY 2008#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 2009 EV_P = ev_default_loop_ptr;
1033#endif 2010#endif
1034 2011
1035 if (method) 2012 postfork = 1; /* must be in line with ev_loop_fork */
1036 postfork = 1;
1037} 2013}
1038 2014
1039/*****************************************************************************/ 2015/*****************************************************************************/
1040 2016
1041static int 2017void
1042any_pending (EV_P) 2018ev_invoke (EV_P_ void *w, int revents)
2019{
2020 EV_CB_INVOKE ((W)w, revents);
2021}
2022
2023unsigned int
2024ev_pending_count (EV_P)
1043{ 2025{
1044 int pri; 2026 int pri;
2027 unsigned int count = 0;
1045 2028
1046 for (pri = NUMPRI; pri--; ) 2029 for (pri = NUMPRI; pri--; )
1047 if (pendingcnt [pri]) 2030 count += pendingcnt [pri];
1048 return 1;
1049 2031
1050 return 0; 2032 return count;
1051} 2033}
1052 2034
1053inline void 2035void noinline
1054call_pending (EV_P) 2036ev_invoke_pending (EV_P)
1055{ 2037{
1056 int pri; 2038 int pri;
1057 2039
1058 for (pri = NUMPRI; pri--; ) 2040 for (pri = NUMPRI; pri--; )
1059 while (pendingcnt [pri]) 2041 while (pendingcnt [pri])
1060 { 2042 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2043 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 2044
1063 if (expect_true (p->w)) 2045 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1064 { 2046 /* ^ this is no longer true, as pending_w could be here */
2047
1065 p->w->pending = 0; 2048 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 2049 EV_CB_INVOKE (p->w, p->events);
1067 } 2050 EV_FREQUENT_CHECK;
1068 } 2051 }
1069} 2052}
1070 2053
2054#if EV_IDLE_ENABLE
2055/* make idle watchers pending. this handles the "call-idle */
2056/* only when higher priorities are idle" logic */
1071inline void 2057inline_size void
2058idle_reify (EV_P)
2059{
2060 if (expect_false (idleall))
2061 {
2062 int pri;
2063
2064 for (pri = NUMPRI; pri--; )
2065 {
2066 if (pendingcnt [pri])
2067 break;
2068
2069 if (idlecnt [pri])
2070 {
2071 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2072 break;
2073 }
2074 }
2075 }
2076}
2077#endif
2078
2079/* make timers pending */
2080inline_size void
1072timers_reify (EV_P) 2081timers_reify (EV_P)
1073{ 2082{
2083 EV_FREQUENT_CHECK;
2084
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 2085 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1075 { 2086 {
1076 struct ev_timer *w = timers [0]; 2087 do
1077
1078 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1079
1080 /* first reschedule or stop timer */
1081 if (w->repeat)
1082 { 2088 {
2089 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2090
2091 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2092
2093 /* first reschedule or stop timer */
2094 if (w->repeat)
2095 {
2096 ev_at (w) += w->repeat;
2097 if (ev_at (w) < mn_now)
2098 ev_at (w) = mn_now;
2099
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2100 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 2101
1085 ((WT)w)->at += w->repeat; 2102 ANHE_at_cache (timers [HEAP0]);
1086 if (((WT)w)->at < mn_now)
1087 ((WT)w)->at = mn_now;
1088
1089 downheap ((WT *)timers, timercnt, 0); 2103 downheap (timers, timercnt, HEAP0);
2104 }
2105 else
2106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2107
2108 EV_FREQUENT_CHECK;
2109 feed_reverse (EV_A_ (W)w);
1090 } 2110 }
1091 else 2111 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 2112
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2113 feed_reverse_done (EV_A_ EV_TIMER);
1095 } 2114 }
1096} 2115}
1097 2116
1098#if EV_PERIODICS 2117#if EV_PERIODIC_ENABLE
2118/* make periodics pending */
1099inline void 2119inline_size void
1100periodics_reify (EV_P) 2120periodics_reify (EV_P)
1101{ 2121{
2122 EV_FREQUENT_CHECK;
2123
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1103 { 2125 {
1104 struct ev_periodic *w = periodics [0]; 2126 int feed_count = 0;
1105 2127
2128 do
2129 {
2130 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2131
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2132 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 2133
1108 /* first reschedule or stop timer */ 2134 /* first reschedule or stop timer */
2135 if (w->reschedule_cb)
2136 {
2137 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2138
2139 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else if (w->interval)
2145 {
2146 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2147 /* if next trigger time is not sufficiently in the future, put it there */
2148 /* this might happen because of floating point inexactness */
2149 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2150 {
2151 ev_at (w) += w->interval;
2152
2153 /* if interval is unreasonably low we might still have a time in the past */
2154 /* so correct this. this will make the periodic very inexact, but the user */
2155 /* has effectively asked to get triggered more often than possible */
2156 if (ev_at (w) < ev_rt_now)
2157 ev_at (w) = ev_rt_now;
2158 }
2159
2160 ANHE_at_cache (periodics [HEAP0]);
2161 downheap (periodics, periodiccnt, HEAP0);
2162 }
2163 else
2164 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2165
2166 EV_FREQUENT_CHECK;
2167 feed_reverse (EV_A_ (W)w);
2168 }
2169 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2170
2171 feed_reverse_done (EV_A_ EV_PERIODIC);
2172 }
2173}
2174
2175/* simply recalculate all periodics */
2176/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2177static void noinline
2178periodics_reschedule (EV_P)
2179{
2180 int i;
2181
2182 /* adjust periodics after time jump */
2183 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2184 {
2185 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2186
1109 if (w->reschedule_cb) 2187 if (w->reschedule_cb)
2188 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2189 else if (w->interval)
2190 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2191
2192 ANHE_at_cache (periodics [i]);
2193 }
2194
2195 reheap (periodics, periodiccnt);
2196}
2197#endif
2198
2199/* adjust all timers by a given offset */
2200static void noinline
2201timers_reschedule (EV_P_ ev_tstamp adjust)
2202{
2203 int i;
2204
2205 for (i = 0; i < timercnt; ++i)
2206 {
2207 ANHE *he = timers + i + HEAP0;
2208 ANHE_w (*he)->at += adjust;
2209 ANHE_at_cache (*he);
2210 }
2211}
2212
2213/* fetch new monotonic and realtime times from the kernel */
2214/* also detect if there was a timejump, and act accordingly */
2215inline_speed void
2216time_update (EV_P_ ev_tstamp max_block)
2217{
2218#if EV_USE_MONOTONIC
2219 if (expect_true (have_monotonic))
2220 {
2221 int i;
2222 ev_tstamp odiff = rtmn_diff;
2223
2224 mn_now = get_clock ();
2225
2226 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2227 /* interpolate in the meantime */
2228 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1110 { 2229 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2230 ev_rt_now = rtmn_diff + mn_now;
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2231 return;
1113 downheap ((WT *)periodics, periodiccnt, 0);
1114 } 2232 }
1115 else if (w->interval)
1116 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 }
1121 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 2233
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 }
1126}
1127
1128static void
1129periodics_reschedule (EV_P)
1130{
1131 int i;
1132
1133 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i)
1135 {
1136 struct ev_periodic *w = periodics [i];
1137
1138 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1142 }
1143
1144 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i);
1147}
1148#endif
1149
1150inline int
1151time_update_monotonic (EV_P)
1152{
1153 mn_now = get_clock ();
1154
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 {
1157 ev_rt_now = rtmn_diff + mn_now;
1158 return 0;
1159 }
1160 else
1161 {
1162 now_floor = mn_now; 2234 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 2235 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 2236
1168inline void 2237 /* loop a few times, before making important decisions.
1169time_update (EV_P) 2238 * on the choice of "4": one iteration isn't enough,
1170{ 2239 * in case we get preempted during the calls to
1171 int i; 2240 * ev_time and get_clock. a second call is almost guaranteed
1172 2241 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 2242 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 2243 * in the unlikely event of having been preempted here.
1175 { 2244 */
1176 if (time_update_monotonic (EV_A)) 2245 for (i = 4; --i; )
1177 { 2246 {
1178 ev_tstamp odiff = rtmn_diff;
1179
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1181 {
1182 rtmn_diff = ev_rt_now - mn_now; 2247 rtmn_diff = ev_rt_now - mn_now;
1183 2248
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2249 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1185 return; /* all is well */ 2250 return; /* all is well */
1186 2251
1187 ev_rt_now = ev_time (); 2252 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 2253 mn_now = get_clock ();
1189 now_floor = mn_now; 2254 now_floor = mn_now;
1190 } 2255 }
1191 2256
2257 /* no timer adjustment, as the monotonic clock doesn't jump */
2258 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1192# if EV_PERIODICS 2259# if EV_PERIODIC_ENABLE
2260 periodics_reschedule (EV_A);
2261# endif
2262 }
2263 else
2264#endif
2265 {
2266 ev_rt_now = ev_time ();
2267
2268 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2269 {
2270 /* adjust timers. this is easy, as the offset is the same for all of them */
2271 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2272#if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 2273 periodics_reschedule (EV_A);
1194# endif 2274#endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 } 2275 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */
1211 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 }
1214 2276
1215 mn_now = ev_rt_now; 2277 mn_now = ev_rt_now;
1216 } 2278 }
1217} 2279}
1218 2280
1219void 2281void
1220ev_ref (EV_P)
1221{
1222 ++activecnt;
1223}
1224
1225void
1226ev_unref (EV_P)
1227{
1228 --activecnt;
1229}
1230
1231static int loop_done;
1232
1233void
1234ev_loop (EV_P_ int flags) 2282ev_loop (EV_P_ int flags)
1235{ 2283{
1236 double block; 2284#if EV_FEATURE_API
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2285 ++loop_depth;
2286#endif
1238 2287
1239 while (activecnt) 2288 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2289
2290 loop_done = EVUNLOOP_CANCEL;
2291
2292 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2293
2294 do
1240 { 2295 {
2296#if EV_VERIFY >= 2
2297 ev_verify (EV_A);
2298#endif
2299
2300#ifndef _WIN32
2301 if (expect_false (curpid)) /* penalise the forking check even more */
2302 if (expect_false (getpid () != curpid))
2303 {
2304 curpid = getpid ();
2305 postfork = 1;
2306 }
2307#endif
2308
2309#if EV_FORK_ENABLE
2310 /* we might have forked, so queue fork handlers */
2311 if (expect_false (postfork))
2312 if (forkcnt)
2313 {
2314 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2315 EV_INVOKE_PENDING;
2316 }
2317#endif
2318
2319#if EV_PREPARE_ENABLE
1241 /* queue check watchers (and execute them) */ 2320 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 2321 if (expect_false (preparecnt))
1243 { 2322 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2323 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1246 } 2325 }
2326#endif
2327
2328 if (expect_false (loop_done))
2329 break;
1247 2330
1248 /* we might have forked, so reify kernel state if necessary */ 2331 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 2332 if (expect_false (postfork))
1250 loop_fork (EV_A); 2333 loop_fork (EV_A);
1251 2334
1252 /* update fd-related kernel structures */ 2335 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 2336 fd_reify (EV_A);
1254 2337
1255 /* calculate blocking time */ 2338 /* calculate blocking time */
2339 {
2340 ev_tstamp waittime = 0.;
2341 ev_tstamp sleeptime = 0.;
1256 2342
1257 /* we only need this for !monotonic clock or timers, but as we basically 2343 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1258 always have timers, we just calculate it always */
1259#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A);
1262 else
1263#endif
1264 { 2344 {
1265 ev_rt_now = ev_time (); 2345 /* remember old timestamp for io_blocktime calculation */
1266 mn_now = ev_rt_now; 2346 ev_tstamp prev_mn_now = mn_now;
1267 }
1268 2347
1269 if (flags & EVLOOP_NONBLOCK || idlecnt) 2348 /* update time to cancel out callback processing overhead */
1270 block = 0.; 2349 time_update (EV_A_ 1e100);
1271 else 2350
1272 {
1273 block = MAX_BLOCKTIME; 2351 waittime = MAX_BLOCKTIME;
1274 2352
1275 if (timercnt) 2353 if (timercnt)
1276 { 2354 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2355 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1278 if (block > to) block = to; 2356 if (waittime > to) waittime = to;
1279 } 2357 }
1280 2358
1281#if EV_PERIODICS 2359#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 2360 if (periodiccnt)
1283 { 2361 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2362 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 2363 if (waittime > to) waittime = to;
1286 } 2364 }
1287#endif 2365#endif
1288 2366
1289 if (expect_false (block < 0.)) block = 0.; 2367 /* don't let timeouts decrease the waittime below timeout_blocktime */
2368 if (expect_false (waittime < timeout_blocktime))
2369 waittime = timeout_blocktime;
2370
2371 /* extra check because io_blocktime is commonly 0 */
2372 if (expect_false (io_blocktime))
2373 {
2374 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2375
2376 if (sleeptime > waittime - backend_fudge)
2377 sleeptime = waittime - backend_fudge;
2378
2379 if (expect_true (sleeptime > 0.))
2380 {
2381 ev_sleep (sleeptime);
2382 waittime -= sleeptime;
2383 }
2384 }
1290 } 2385 }
1291 2386
1292 method_poll (EV_A_ block); 2387#if EV_FEATURE_API
2388 ++loop_count;
2389#endif
2390 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2391 backend_poll (EV_A_ waittime);
2392 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1293 2393
1294 /* update ev_rt_now, do magic */ 2394 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 2395 time_update (EV_A_ waittime + sleeptime);
2396 }
1296 2397
1297 /* queue pending timers and reschedule them */ 2398 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 2399 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 2400#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 2401 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 2402#endif
1302 2403
2404#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 2405 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 2406 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2407#endif
1306 2408
2409#if EV_CHECK_ENABLE
1307 /* queue check watchers, to be executed first */ 2410 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 2411 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2412 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2413#endif
1310 2414
1311 call_pending (EV_A); 2415 EV_INVOKE_PENDING;
1312
1313 if (expect_false (loop_done))
1314 break;
1315 } 2416 }
2417 while (expect_true (
2418 activecnt
2419 && !loop_done
2420 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2421 ));
1316 2422
1317 if (loop_done != 2) 2423 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 2424 loop_done = EVUNLOOP_CANCEL;
2425
2426#if EV_FEATURE_API
2427 --loop_depth;
2428#endif
1319} 2429}
1320 2430
1321void 2431void
1322ev_unloop (EV_P_ int how) 2432ev_unloop (EV_P_ int how)
1323{ 2433{
1324 loop_done = how; 2434 loop_done = how;
1325} 2435}
1326 2436
2437void
2438ev_ref (EV_P)
2439{
2440 ++activecnt;
2441}
2442
2443void
2444ev_unref (EV_P)
2445{
2446 --activecnt;
2447}
2448
2449void
2450ev_now_update (EV_P)
2451{
2452 time_update (EV_A_ 1e100);
2453}
2454
2455void
2456ev_suspend (EV_P)
2457{
2458 ev_now_update (EV_A);
2459}
2460
2461void
2462ev_resume (EV_P)
2463{
2464 ev_tstamp mn_prev = mn_now;
2465
2466 ev_now_update (EV_A);
2467 timers_reschedule (EV_A_ mn_now - mn_prev);
2468#if EV_PERIODIC_ENABLE
2469 /* TODO: really do this? */
2470 periodics_reschedule (EV_A);
2471#endif
2472}
2473
1327/*****************************************************************************/ 2474/*****************************************************************************/
2475/* singly-linked list management, used when the expected list length is short */
1328 2476
1329inline void 2477inline_size void
1330wlist_add (WL *head, WL elem) 2478wlist_add (WL *head, WL elem)
1331{ 2479{
1332 elem->next = *head; 2480 elem->next = *head;
1333 *head = elem; 2481 *head = elem;
1334} 2482}
1335 2483
1336inline void 2484inline_size void
1337wlist_del (WL *head, WL elem) 2485wlist_del (WL *head, WL elem)
1338{ 2486{
1339 while (*head) 2487 while (*head)
1340 { 2488 {
1341 if (*head == elem) 2489 if (expect_true (*head == elem))
1342 { 2490 {
1343 *head = elem->next; 2491 *head = elem->next;
1344 return; 2492 break;
1345 } 2493 }
1346 2494
1347 head = &(*head)->next; 2495 head = &(*head)->next;
1348 } 2496 }
1349} 2497}
1350 2498
2499/* internal, faster, version of ev_clear_pending */
1351inline void 2500inline_speed void
1352ev_clear_pending (EV_P_ W w) 2501clear_pending (EV_P_ W w)
1353{ 2502{
1354 if (w->pending) 2503 if (w->pending)
1355 { 2504 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2505 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1357 w->pending = 0; 2506 w->pending = 0;
1358 } 2507 }
1359} 2508}
1360 2509
2510int
2511ev_clear_pending (EV_P_ void *w)
2512{
2513 W w_ = (W)w;
2514 int pending = w_->pending;
2515
2516 if (expect_true (pending))
2517 {
2518 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2519 p->w = (W)&pending_w;
2520 w_->pending = 0;
2521 return p->events;
2522 }
2523 else
2524 return 0;
2525}
2526
1361inline void 2527inline_size void
2528pri_adjust (EV_P_ W w)
2529{
2530 int pri = ev_priority (w);
2531 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2532 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2533 ev_set_priority (w, pri);
2534}
2535
2536inline_speed void
1362ev_start (EV_P_ W w, int active) 2537ev_start (EV_P_ W w, int active)
1363{ 2538{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2539 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 2540 w->active = active;
1368 ev_ref (EV_A); 2541 ev_ref (EV_A);
1369} 2542}
1370 2543
1371inline void 2544inline_size void
1372ev_stop (EV_P_ W w) 2545ev_stop (EV_P_ W w)
1373{ 2546{
1374 ev_unref (EV_A); 2547 ev_unref (EV_A);
1375 w->active = 0; 2548 w->active = 0;
1376} 2549}
1377 2550
1378/*****************************************************************************/ 2551/*****************************************************************************/
1379 2552
1380void 2553void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 2554ev_io_start (EV_P_ ev_io *w)
1382{ 2555{
1383 int fd = w->fd; 2556 int fd = w->fd;
1384 2557
1385 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
1386 return; 2559 return;
1387 2560
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 2561 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2562 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2563
2564 EV_FREQUENT_CHECK;
1389 2565
1390 ev_start (EV_A_ (W)w, 1); 2566 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2567 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2568 wlist_add (&anfds[fd].head, (WL)w);
1393 2569
1394 fd_change (EV_A_ fd); 2570 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1395} 2571 w->events &= ~EV__IOFDSET;
1396 2572
1397void 2573 EV_FREQUENT_CHECK;
2574}
2575
2576void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 2577ev_io_stop (EV_P_ ev_io *w)
1399{ 2578{
1400 ev_clear_pending (EV_A_ (W)w); 2579 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 2580 if (expect_false (!ev_is_active (w)))
1402 return; 2581 return;
1403 2582
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2583 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 2584
2585 EV_FREQUENT_CHECK;
2586
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2587 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1408 2589
1409 fd_change (EV_A_ w->fd); 2590 fd_change (EV_A_ w->fd, 1);
1410}
1411 2591
1412void 2592 EV_FREQUENT_CHECK;
2593}
2594
2595void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 2596ev_timer_start (EV_P_ ev_timer *w)
1414{ 2597{
1415 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1416 return; 2599 return;
1417 2600
1418 ((WT)w)->at += mn_now; 2601 ev_at (w) += mn_now;
1419 2602
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2603 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 2604
2605 EV_FREQUENT_CHECK;
2606
2607 ++timercnt;
1422 ev_start (EV_A_ (W)w, ++timercnt); 2608 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2609 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1424 timers [timercnt - 1] = w; 2610 ANHE_w (timers [ev_active (w)]) = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 2611 ANHE_at_cache (timers [ev_active (w)]);
2612 upheap (timers, ev_active (w));
1426 2613
2614 EV_FREQUENT_CHECK;
2615
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2616 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1428} 2617}
1429 2618
1430void 2619void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 2620ev_timer_stop (EV_P_ ev_timer *w)
1432{ 2621{
1433 ev_clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
1435 return; 2624 return;
1436 2625
2626 EV_FREQUENT_CHECK;
2627
2628 {
2629 int active = ev_active (w);
2630
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2631 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1438 2632
2633 --timercnt;
2634
1439 if (expect_true (((W)w)->active < timercnt--)) 2635 if (expect_true (active < timercnt + HEAP0))
1440 { 2636 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 2637 timers [active] = timers [timercnt + HEAP0];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2638 adjustheap (timers, timercnt, active);
1443 } 2639 }
2640 }
1444 2641
1445 ((WT)w)->at -= mn_now; 2642 ev_at (w) -= mn_now;
1446 2643
1447 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
1448}
1449 2645
1450void 2646 EV_FREQUENT_CHECK;
2647}
2648
2649void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 2650ev_timer_again (EV_P_ ev_timer *w)
1452{ 2651{
2652 EV_FREQUENT_CHECK;
2653
1453 if (ev_is_active (w)) 2654 if (ev_is_active (w))
1454 { 2655 {
1455 if (w->repeat) 2656 if (w->repeat)
1456 { 2657 {
1457 ((WT)w)->at = mn_now + w->repeat; 2658 ev_at (w) = mn_now + w->repeat;
2659 ANHE_at_cache (timers [ev_active (w)]);
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2660 adjustheap (timers, timercnt, ev_active (w));
1459 } 2661 }
1460 else 2662 else
1461 ev_timer_stop (EV_A_ w); 2663 ev_timer_stop (EV_A_ w);
1462 } 2664 }
1463 else if (w->repeat) 2665 else if (w->repeat)
1464 { 2666 {
1465 w->at = w->repeat; 2667 ev_at (w) = w->repeat;
1466 ev_timer_start (EV_A_ w); 2668 ev_timer_start (EV_A_ w);
1467 } 2669 }
1468}
1469 2670
2671 EV_FREQUENT_CHECK;
2672}
2673
2674ev_tstamp
2675ev_timer_remaining (EV_P_ ev_timer *w)
2676{
2677 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2678}
2679
1470#if EV_PERIODICS 2680#if EV_PERIODIC_ENABLE
1471void 2681void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 2682ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 2683{
1474 if (expect_false (ev_is_active (w))) 2684 if (expect_false (ev_is_active (w)))
1475 return; 2685 return;
1476 2686
1477 if (w->reschedule_cb) 2687 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 2689 else if (w->interval)
1480 { 2690 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2691 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 2692 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2693 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1484 } 2694 }
2695 else
2696 ev_at (w) = w->offset;
1485 2697
2698 EV_FREQUENT_CHECK;
2699
2700 ++periodiccnt;
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 2701 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2702 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 2703 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 2704 ANHE_at_cache (periodics [ev_active (w)]);
2705 upheap (periodics, ev_active (w));
1490 2706
2707 EV_FREQUENT_CHECK;
2708
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2709 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1492} 2710}
1493 2711
1494void 2712void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 2713ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 2714{
1497 ev_clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
1499 return; 2717 return;
1500 2718
2719 EV_FREQUENT_CHECK;
2720
2721 {
2722 int active = ev_active (w);
2723
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2724 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1502 2725
2726 --periodiccnt;
2727
1503 if (expect_true (((W)w)->active < periodiccnt--)) 2728 if (expect_true (active < periodiccnt + HEAP0))
1504 { 2729 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2730 periodics [active] = periodics [periodiccnt + HEAP0];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2731 adjustheap (periodics, periodiccnt, active);
1507 } 2732 }
2733 }
1508 2734
1509 ev_stop (EV_A_ (W)w); 2735 ev_stop (EV_A_ (W)w);
1510}
1511 2736
1512void 2737 EV_FREQUENT_CHECK;
2738}
2739
2740void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 2741ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 2742{
1515 /* TODO: use adjustheap and recalculation */ 2743 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 2744 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 2745 ev_periodic_start (EV_A_ w);
1518} 2746}
1519#endif 2747#endif
1520 2748
1521void 2749#ifndef SA_RESTART
1522ev_idle_start (EV_P_ struct ev_idle *w) 2750# define SA_RESTART 0
2751#endif
2752
2753#if EV_SIGNAL_ENABLE
2754
2755void noinline
2756ev_signal_start (EV_P_ ev_signal *w)
1523{ 2757{
1524 if (expect_false (ev_is_active (w))) 2758 if (expect_false (ev_is_active (w)))
1525 return; 2759 return;
1526 2760
2761 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2762
2763#if EV_MULTIPLICITY
2764 assert (("libev: a signal must not be attached to two different loops",
2765 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2766
2767 signals [w->signum - 1].loop = EV_A;
2768#endif
2769
2770 EV_FREQUENT_CHECK;
2771
2772#if EV_USE_SIGNALFD
2773 if (sigfd == -2)
2774 {
2775 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2776 if (sigfd < 0 && errno == EINVAL)
2777 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2778
2779 if (sigfd >= 0)
2780 {
2781 fd_intern (sigfd); /* doing it twice will not hurt */
2782
2783 sigemptyset (&sigfd_set);
2784
2785 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2786 ev_set_priority (&sigfd_w, EV_MAXPRI);
2787 ev_io_start (EV_A_ &sigfd_w);
2788 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2789 }
2790 }
2791
2792 if (sigfd >= 0)
2793 {
2794 /* TODO: check .head */
2795 sigaddset (&sigfd_set, w->signum);
2796 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2797
2798 signalfd (sigfd, &sigfd_set, 0);
2799 }
2800#endif
2801
1527 ev_start (EV_A_ (W)w, ++idlecnt); 2802 ev_start (EV_A_ (W)w, 1);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2803 wlist_add (&signals [w->signum - 1].head, (WL)w);
1529 idles [idlecnt - 1] = w;
1530}
1531 2804
1532void 2805 if (!((WL)w)->next)
1533ev_idle_stop (EV_P_ struct ev_idle *w) 2806# if EV_USE_SIGNALFD
2807 if (sigfd < 0) /*TODO*/
2808# endif
2809 {
2810# ifdef _WIN32
2811 evpipe_init (EV_A);
2812
2813 signal (w->signum, ev_sighandler);
2814# else
2815 struct sigaction sa;
2816
2817 evpipe_init (EV_A);
2818
2819 sa.sa_handler = ev_sighandler;
2820 sigfillset (&sa.sa_mask);
2821 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2822 sigaction (w->signum, &sa, 0);
2823
2824 sigemptyset (&sa.sa_mask);
2825 sigaddset (&sa.sa_mask, w->signum);
2826 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2827#endif
2828 }
2829
2830 EV_FREQUENT_CHECK;
2831}
2832
2833void noinline
2834ev_signal_stop (EV_P_ ev_signal *w)
1534{ 2835{
1535 ev_clear_pending (EV_A_ (W)w); 2836 clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w))) 2837 if (expect_false (!ev_is_active (w)))
1537 return; 2838 return;
1538 2839
1539 idles [((W)w)->active - 1] = idles [--idlecnt]; 2840 EV_FREQUENT_CHECK;
2841
2842 wlist_del (&signals [w->signum - 1].head, (WL)w);
1540 ev_stop (EV_A_ (W)w); 2843 ev_stop (EV_A_ (W)w);
1541}
1542 2844
2845 if (!signals [w->signum - 1].head)
2846 {
2847#if EV_MULTIPLICITY
2848 signals [w->signum - 1].loop = 0; /* unattach from signal */
2849#endif
2850#if EV_USE_SIGNALFD
2851 if (sigfd >= 0)
2852 {
2853 sigset_t ss;
2854
2855 sigemptyset (&ss);
2856 sigaddset (&ss, w->signum);
2857 sigdelset (&sigfd_set, w->signum);
2858
2859 signalfd (sigfd, &sigfd_set, 0);
2860 sigprocmask (SIG_UNBLOCK, &ss, 0);
2861 }
2862 else
2863#endif
2864 signal (w->signum, SIG_DFL);
2865 }
2866
2867 EV_FREQUENT_CHECK;
2868}
2869
2870#endif
2871
2872#if EV_CHILD_ENABLE
2873
1543void 2874void
1544ev_prepare_start (EV_P_ struct ev_prepare *w) 2875ev_child_start (EV_P_ ev_child *w)
1545{ 2876{
2877#if EV_MULTIPLICITY
2878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2879#endif
1546 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
1547 return; 2881 return;
1548 2882
2883 EV_FREQUENT_CHECK;
2884
1549 ev_start (EV_A_ (W)w, ++preparecnt); 2885 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1551 prepares [preparecnt - 1] = w;
1552}
1553 2887
2888 EV_FREQUENT_CHECK;
2889}
2890
1554void 2891void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w) 2892ev_child_stop (EV_P_ ev_child *w)
1556{ 2893{
1557 ev_clear_pending (EV_A_ (W)w); 2894 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 2895 if (expect_false (!ev_is_active (w)))
1559 return; 2896 return;
1560 2897
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2898 EV_FREQUENT_CHECK;
2899
2900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1562 ev_stop (EV_A_ (W)w); 2901 ev_stop (EV_A_ (W)w);
1563}
1564 2902
2903 EV_FREQUENT_CHECK;
2904}
2905
2906#endif
2907
2908#if EV_STAT_ENABLE
2909
2910# ifdef _WIN32
2911# undef lstat
2912# define lstat(a,b) _stati64 (a,b)
2913# endif
2914
2915#define DEF_STAT_INTERVAL 5.0074891
2916#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2917#define MIN_STAT_INTERVAL 0.1074891
2918
2919static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2920
2921#if EV_USE_INOTIFY
2922
2923/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2924# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2925
2926static void noinline
2927infy_add (EV_P_ ev_stat *w)
2928{
2929 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2930
2931 if (w->wd >= 0)
2932 {
2933 struct statfs sfs;
2934
2935 /* now local changes will be tracked by inotify, but remote changes won't */
2936 /* unless the filesystem is known to be local, we therefore still poll */
2937 /* also do poll on <2.6.25, but with normal frequency */
2938
2939 if (!fs_2625)
2940 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2941 else if (!statfs (w->path, &sfs)
2942 && (sfs.f_type == 0x1373 /* devfs */
2943 || sfs.f_type == 0xEF53 /* ext2/3 */
2944 || sfs.f_type == 0x3153464a /* jfs */
2945 || sfs.f_type == 0x52654973 /* reiser3 */
2946 || sfs.f_type == 0x01021994 /* tempfs */
2947 || sfs.f_type == 0x58465342 /* xfs */))
2948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2949 else
2950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2951 }
2952 else
2953 {
2954 /* can't use inotify, continue to stat */
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956
2957 /* if path is not there, monitor some parent directory for speedup hints */
2958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2959 /* but an efficiency issue only */
2960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2961 {
2962 char path [4096];
2963 strcpy (path, w->path);
2964
2965 do
2966 {
2967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2969
2970 char *pend = strrchr (path, '/');
2971
2972 if (!pend || pend == path)
2973 break;
2974
2975 *pend = 0;
2976 w->wd = inotify_add_watch (fs_fd, path, mask);
2977 }
2978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2979 }
2980 }
2981
2982 if (w->wd >= 0)
2983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2984
2985 /* now re-arm timer, if required */
2986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2987 ev_timer_again (EV_A_ &w->timer);
2988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2989}
2990
2991static void noinline
2992infy_del (EV_P_ ev_stat *w)
2993{
2994 int slot;
2995 int wd = w->wd;
2996
2997 if (wd < 0)
2998 return;
2999
3000 w->wd = -2;
3001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3002 wlist_del (&fs_hash [slot].head, (WL)w);
3003
3004 /* remove this watcher, if others are watching it, they will rearm */
3005 inotify_rm_watch (fs_fd, wd);
3006}
3007
3008static void noinline
3009infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3010{
3011 if (slot < 0)
3012 /* overflow, need to check for all hash slots */
3013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3014 infy_wd (EV_A_ slot, wd, ev);
3015 else
3016 {
3017 WL w_;
3018
3019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3020 {
3021 ev_stat *w = (ev_stat *)w_;
3022 w_ = w_->next; /* lets us remove this watcher and all before it */
3023
3024 if (w->wd == wd || wd == -1)
3025 {
3026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3027 {
3028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3029 w->wd = -1;
3030 infy_add (EV_A_ w); /* re-add, no matter what */
3031 }
3032
3033 stat_timer_cb (EV_A_ &w->timer, 0);
3034 }
3035 }
3036 }
3037}
3038
3039static void
3040infy_cb (EV_P_ ev_io *w, int revents)
3041{
3042 char buf [EV_INOTIFY_BUFSIZE];
3043 int ofs;
3044 int len = read (fs_fd, buf, sizeof (buf));
3045
3046 for (ofs = 0; ofs < len; )
3047 {
3048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3050 ofs += sizeof (struct inotify_event) + ev->len;
3051 }
3052}
3053
3054inline_size unsigned int
3055ev_linux_version (void)
3056{
3057 struct utsname buf;
3058 unsigned int v;
3059 int i;
3060 char *p = buf.release;
3061
3062 if (uname (&buf))
3063 return 0;
3064
3065 for (i = 3+1; --i; )
3066 {
3067 unsigned int c = 0;
3068
3069 for (;;)
3070 {
3071 if (*p >= '0' && *p <= '9')
3072 c = c * 10 + *p++ - '0';
3073 else
3074 {
3075 p += *p == '.';
3076 break;
3077 }
3078 }
3079
3080 v = (v << 8) | c;
3081 }
3082
3083 return v;
3084}
3085
3086inline_size void
3087ev_check_2625 (EV_P)
3088{
3089 /* kernels < 2.6.25 are borked
3090 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3091 */
3092 if (ev_linux_version () < 0x020619)
3093 return;
3094
3095 fs_2625 = 1;
3096}
3097
3098inline_size int
3099infy_newfd (void)
3100{
3101#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3102 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3103 if (fd >= 0)
3104 return fd;
3105#endif
3106 return inotify_init ();
3107}
3108
3109inline_size void
3110infy_init (EV_P)
3111{
3112 if (fs_fd != -2)
3113 return;
3114
3115 fs_fd = -1;
3116
3117 ev_check_2625 (EV_A);
3118
3119 fs_fd = infy_newfd ();
3120
3121 if (fs_fd >= 0)
3122 {
3123 fd_intern (fs_fd);
3124 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3125 ev_set_priority (&fs_w, EV_MAXPRI);
3126 ev_io_start (EV_A_ &fs_w);
3127 ev_unref (EV_A);
3128 }
3129}
3130
3131inline_size void
3132infy_fork (EV_P)
3133{
3134 int slot;
3135
3136 if (fs_fd < 0)
3137 return;
3138
3139 ev_ref (EV_A);
3140 ev_io_stop (EV_A_ &fs_w);
3141 close (fs_fd);
3142 fs_fd = infy_newfd ();
3143
3144 if (fs_fd >= 0)
3145 {
3146 fd_intern (fs_fd);
3147 ev_io_set (&fs_w, fs_fd, EV_READ);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151
3152 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3153 {
3154 WL w_ = fs_hash [slot].head;
3155 fs_hash [slot].head = 0;
3156
3157 while (w_)
3158 {
3159 ev_stat *w = (ev_stat *)w_;
3160 w_ = w_->next; /* lets us add this watcher */
3161
3162 w->wd = -1;
3163
3164 if (fs_fd >= 0)
3165 infy_add (EV_A_ w); /* re-add, no matter what */
3166 else
3167 {
3168 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3169 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3170 ev_timer_again (EV_A_ &w->timer);
3171 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3172 }
3173 }
3174 }
3175}
3176
3177#endif
3178
3179#ifdef _WIN32
3180# define EV_LSTAT(p,b) _stati64 (p, b)
3181#else
3182# define EV_LSTAT(p,b) lstat (p, b)
3183#endif
3184
1565void 3185void
1566ev_check_start (EV_P_ struct ev_check *w) 3186ev_stat_stat (EV_P_ ev_stat *w)
3187{
3188 if (lstat (w->path, &w->attr) < 0)
3189 w->attr.st_nlink = 0;
3190 else if (!w->attr.st_nlink)
3191 w->attr.st_nlink = 1;
3192}
3193
3194static void noinline
3195stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3196{
3197 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3198
3199 ev_statdata prev = w->attr;
3200 ev_stat_stat (EV_A_ w);
3201
3202 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3203 if (
3204 prev.st_dev != w->attr.st_dev
3205 || prev.st_ino != w->attr.st_ino
3206 || prev.st_mode != w->attr.st_mode
3207 || prev.st_nlink != w->attr.st_nlink
3208 || prev.st_uid != w->attr.st_uid
3209 || prev.st_gid != w->attr.st_gid
3210 || prev.st_rdev != w->attr.st_rdev
3211 || prev.st_size != w->attr.st_size
3212 || prev.st_atime != w->attr.st_atime
3213 || prev.st_mtime != w->attr.st_mtime
3214 || prev.st_ctime != w->attr.st_ctime
3215 ) {
3216 /* we only update w->prev on actual differences */
3217 /* in case we test more often than invoke the callback, */
3218 /* to ensure that prev is always different to attr */
3219 w->prev = prev;
3220
3221 #if EV_USE_INOTIFY
3222 if (fs_fd >= 0)
3223 {
3224 infy_del (EV_A_ w);
3225 infy_add (EV_A_ w);
3226 ev_stat_stat (EV_A_ w); /* avoid race... */
3227 }
3228 #endif
3229
3230 ev_feed_event (EV_A_ w, EV_STAT);
3231 }
3232}
3233
3234void
3235ev_stat_start (EV_P_ ev_stat *w)
1567{ 3236{
1568 if (expect_false (ev_is_active (w))) 3237 if (expect_false (ev_is_active (w)))
1569 return; 3238 return;
1570 3239
3240 ev_stat_stat (EV_A_ w);
3241
3242 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3243 w->interval = MIN_STAT_INTERVAL;
3244
3245 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3246 ev_set_priority (&w->timer, ev_priority (w));
3247
3248#if EV_USE_INOTIFY
3249 infy_init (EV_A);
3250
3251 if (fs_fd >= 0)
3252 infy_add (EV_A_ w);
3253 else
3254#endif
3255 {
3256 ev_timer_again (EV_A_ &w->timer);
3257 ev_unref (EV_A);
3258 }
3259
1571 ev_start (EV_A_ (W)w, ++checkcnt); 3260 ev_start (EV_A_ (W)w, 1);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575 3261
3262 EV_FREQUENT_CHECK;
3263}
3264
1576void 3265void
1577ev_check_stop (EV_P_ struct ev_check *w) 3266ev_stat_stop (EV_P_ ev_stat *w)
1578{ 3267{
1579 ev_clear_pending (EV_A_ (W)w); 3268 clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w))) 3269 if (expect_false (!ev_is_active (w)))
1581 return; 3270 return;
1582 3271
1583 checks [((W)w)->active - 1] = checks [--checkcnt]; 3272 EV_FREQUENT_CHECK;
3273
3274#if EV_USE_INOTIFY
3275 infy_del (EV_A_ w);
3276#endif
3277
3278 if (ev_is_active (&w->timer))
3279 {
3280 ev_ref (EV_A);
3281 ev_timer_stop (EV_A_ &w->timer);
3282 }
3283
1584 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
1585}
1586 3285
1587#ifndef SA_RESTART 3286 EV_FREQUENT_CHECK;
1588# define SA_RESTART 0 3287}
1589#endif 3288#endif
1590 3289
3290#if EV_IDLE_ENABLE
1591void 3291void
1592ev_signal_start (EV_P_ struct ev_signal *w) 3292ev_idle_start (EV_P_ ev_idle *w)
1593{ 3293{
1594#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif
1597 if (expect_false (ev_is_active (w))) 3294 if (expect_false (ev_is_active (w)))
1598 return; 3295 return;
1599 3296
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3297 pri_adjust (EV_A_ (W)w);
1601 3298
3299 EV_FREQUENT_CHECK;
3300
3301 {
3302 int active = ++idlecnt [ABSPRI (w)];
3303
3304 ++idleall;
1602 ev_start (EV_A_ (W)w, 1); 3305 ev_start (EV_A_ (W)w, active);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1605 3306
1606 if (!((WL)w)->next) 3307 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1607 { 3308 idles [ABSPRI (w)][active - 1] = w;
1608#if _WIN32
1609 signal (w->signum, sighandler);
1610#else
1611 struct sigaction sa;
1612 sa.sa_handler = sighandler;
1613 sigfillset (&sa.sa_mask);
1614 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1615 sigaction (w->signum, &sa, 0);
1616#endif
1617 } 3309 }
1618}
1619 3310
3311 EV_FREQUENT_CHECK;
3312}
3313
1620void 3314void
1621ev_signal_stop (EV_P_ struct ev_signal *w) 3315ev_idle_stop (EV_P_ ev_idle *w)
1622{ 3316{
1623 ev_clear_pending (EV_A_ (W)w); 3317 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 3318 if (expect_false (!ev_is_active (w)))
1625 return; 3319 return;
1626 3320
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3321 EV_FREQUENT_CHECK;
3322
3323 {
3324 int active = ev_active (w);
3325
3326 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3327 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3328
1628 ev_stop (EV_A_ (W)w); 3329 ev_stop (EV_A_ (W)w);
3330 --idleall;
3331 }
1629 3332
1630 if (!signals [w->signum - 1].head) 3333 EV_FREQUENT_CHECK;
1631 signal (w->signum, SIG_DFL);
1632} 3334}
1633
1634void
1635ev_child_start (EV_P_ struct ev_child *w)
1636{
1637#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 3335#endif
3336
3337#if EV_PREPARE_ENABLE
3338void
3339ev_prepare_start (EV_P_ ev_prepare *w)
3340{
1640 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
1641 return; 3342 return;
1642 3343
3344 EV_FREQUENT_CHECK;
3345
1643 ev_start (EV_A_ (W)w, 1); 3346 ev_start (EV_A_ (W)w, ++preparecnt);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3347 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1645} 3348 prepares [preparecnt - 1] = w;
1646 3349
3350 EV_FREQUENT_CHECK;
3351}
3352
1647void 3353void
1648ev_child_stop (EV_P_ struct ev_child *w) 3354ev_prepare_stop (EV_P_ ev_prepare *w)
1649{ 3355{
1650 ev_clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
1652 return; 3358 return;
1653 3359
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3360 EV_FREQUENT_CHECK;
3361
3362 {
3363 int active = ev_active (w);
3364
3365 prepares [active - 1] = prepares [--preparecnt];
3366 ev_active (prepares [active - 1]) = active;
3367 }
3368
1655 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
1656} 3372}
3373#endif
3374
3375#if EV_CHECK_ENABLE
3376void
3377ev_check_start (EV_P_ ev_check *w)
3378{
3379 if (expect_false (ev_is_active (w)))
3380 return;
3381
3382 EV_FREQUENT_CHECK;
3383
3384 ev_start (EV_A_ (W)w, ++checkcnt);
3385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3386 checks [checkcnt - 1] = w;
3387
3388 EV_FREQUENT_CHECK;
3389}
3390
3391void
3392ev_check_stop (EV_P_ ev_check *w)
3393{
3394 clear_pending (EV_A_ (W)w);
3395 if (expect_false (!ev_is_active (w)))
3396 return;
3397
3398 EV_FREQUENT_CHECK;
3399
3400 {
3401 int active = ev_active (w);
3402
3403 checks [active - 1] = checks [--checkcnt];
3404 ev_active (checks [active - 1]) = active;
3405 }
3406
3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
3410}
3411#endif
3412
3413#if EV_EMBED_ENABLE
3414void noinline
3415ev_embed_sweep (EV_P_ ev_embed *w)
3416{
3417 ev_loop (w->other, EVLOOP_NONBLOCK);
3418}
3419
3420static void
3421embed_io_cb (EV_P_ ev_io *io, int revents)
3422{
3423 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3424
3425 if (ev_cb (w))
3426 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3427 else
3428 ev_loop (w->other, EVLOOP_NONBLOCK);
3429}
3430
3431static void
3432embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3433{
3434 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3435
3436 {
3437 EV_P = w->other;
3438
3439 while (fdchangecnt)
3440 {
3441 fd_reify (EV_A);
3442 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3443 }
3444 }
3445}
3446
3447static void
3448embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3449{
3450 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3451
3452 ev_embed_stop (EV_A_ w);
3453
3454 {
3455 EV_P = w->other;
3456
3457 ev_loop_fork (EV_A);
3458 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3459 }
3460
3461 ev_embed_start (EV_A_ w);
3462}
3463
3464#if 0
3465static void
3466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3467{
3468 ev_idle_stop (EV_A_ idle);
3469}
3470#endif
3471
3472void
3473ev_embed_start (EV_P_ ev_embed *w)
3474{
3475 if (expect_false (ev_is_active (w)))
3476 return;
3477
3478 {
3479 EV_P = w->other;
3480 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3482 }
3483
3484 EV_FREQUENT_CHECK;
3485
3486 ev_set_priority (&w->io, ev_priority (w));
3487 ev_io_start (EV_A_ &w->io);
3488
3489 ev_prepare_init (&w->prepare, embed_prepare_cb);
3490 ev_set_priority (&w->prepare, EV_MINPRI);
3491 ev_prepare_start (EV_A_ &w->prepare);
3492
3493 ev_fork_init (&w->fork, embed_fork_cb);
3494 ev_fork_start (EV_A_ &w->fork);
3495
3496 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3497
3498 ev_start (EV_A_ (W)w, 1);
3499
3500 EV_FREQUENT_CHECK;
3501}
3502
3503void
3504ev_embed_stop (EV_P_ ev_embed *w)
3505{
3506 clear_pending (EV_A_ (W)w);
3507 if (expect_false (!ev_is_active (w)))
3508 return;
3509
3510 EV_FREQUENT_CHECK;
3511
3512 ev_io_stop (EV_A_ &w->io);
3513 ev_prepare_stop (EV_A_ &w->prepare);
3514 ev_fork_stop (EV_A_ &w->fork);
3515
3516 ev_stop (EV_A_ (W)w);
3517
3518 EV_FREQUENT_CHECK;
3519}
3520#endif
3521
3522#if EV_FORK_ENABLE
3523void
3524ev_fork_start (EV_P_ ev_fork *w)
3525{
3526 if (expect_false (ev_is_active (w)))
3527 return;
3528
3529 EV_FREQUENT_CHECK;
3530
3531 ev_start (EV_A_ (W)w, ++forkcnt);
3532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3533 forks [forkcnt - 1] = w;
3534
3535 EV_FREQUENT_CHECK;
3536}
3537
3538void
3539ev_fork_stop (EV_P_ ev_fork *w)
3540{
3541 clear_pending (EV_A_ (W)w);
3542 if (expect_false (!ev_is_active (w)))
3543 return;
3544
3545 EV_FREQUENT_CHECK;
3546
3547 {
3548 int active = ev_active (w);
3549
3550 forks [active - 1] = forks [--forkcnt];
3551 ev_active (forks [active - 1]) = active;
3552 }
3553
3554 ev_stop (EV_A_ (W)w);
3555
3556 EV_FREQUENT_CHECK;
3557}
3558#endif
3559
3560#if EV_ASYNC_ENABLE
3561void
3562ev_async_start (EV_P_ ev_async *w)
3563{
3564 if (expect_false (ev_is_active (w)))
3565 return;
3566
3567 evpipe_init (EV_A);
3568
3569 EV_FREQUENT_CHECK;
3570
3571 ev_start (EV_A_ (W)w, ++asynccnt);
3572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3573 asyncs [asynccnt - 1] = w;
3574
3575 EV_FREQUENT_CHECK;
3576}
3577
3578void
3579ev_async_stop (EV_P_ ev_async *w)
3580{
3581 clear_pending (EV_A_ (W)w);
3582 if (expect_false (!ev_is_active (w)))
3583 return;
3584
3585 EV_FREQUENT_CHECK;
3586
3587 {
3588 int active = ev_active (w);
3589
3590 asyncs [active - 1] = asyncs [--asynccnt];
3591 ev_active (asyncs [active - 1]) = active;
3592 }
3593
3594 ev_stop (EV_A_ (W)w);
3595
3596 EV_FREQUENT_CHECK;
3597}
3598
3599void
3600ev_async_send (EV_P_ ev_async *w)
3601{
3602 w->sent = 1;
3603 evpipe_write (EV_A_ &async_pending);
3604}
3605#endif
1657 3606
1658/*****************************************************************************/ 3607/*****************************************************************************/
1659 3608
1660struct ev_once 3609struct ev_once
1661{ 3610{
1662 struct ev_io io; 3611 ev_io io;
1663 struct ev_timer to; 3612 ev_timer to;
1664 void (*cb)(int revents, void *arg); 3613 void (*cb)(int revents, void *arg);
1665 void *arg; 3614 void *arg;
1666}; 3615};
1667 3616
1668static void 3617static void
1669once_cb (EV_P_ struct ev_once *once, int revents) 3618once_cb (EV_P_ struct ev_once *once, int revents)
1670{ 3619{
1671 void (*cb)(int revents, void *arg) = once->cb; 3620 void (*cb)(int revents, void *arg) = once->cb;
1672 void *arg = once->arg; 3621 void *arg = once->arg;
1673 3622
1674 ev_io_stop (EV_A_ &once->io); 3623 ev_io_stop (EV_A_ &once->io);
1675 ev_timer_stop (EV_A_ &once->to); 3624 ev_timer_stop (EV_A_ &once->to);
1676 ev_free (once); 3625 ev_free (once);
1677 3626
1678 cb (revents, arg); 3627 cb (revents, arg);
1679} 3628}
1680 3629
1681static void 3630static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 3631once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 3632{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3634
3635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1685} 3636}
1686 3637
1687static void 3638static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 3639once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 3640{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1691} 3644}
1692 3645
1693void 3646void
1694ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3647ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1695{ 3648{
1696 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1697 3650
1698 if (expect_false (!once)) 3651 if (expect_false (!once))
1699 { 3652 {
1700 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1701 return; 3654 return;
1702 } 3655 }
1703 3656
1704 once->cb = cb; 3657 once->cb = cb;
1705 once->arg = arg; 3658 once->arg = arg;
1717 ev_timer_set (&once->to, timeout, 0.); 3670 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 3671 ev_timer_start (EV_A_ &once->to);
1719 } 3672 }
1720} 3673}
1721 3674
3675/*****************************************************************************/
3676
3677#if EV_WALK_ENABLE
3678void
3679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3680{
3681 int i, j;
3682 ev_watcher_list *wl, *wn;
3683
3684 if (types & (EV_IO | EV_EMBED))
3685 for (i = 0; i < anfdmax; ++i)
3686 for (wl = anfds [i].head; wl; )
3687 {
3688 wn = wl->next;
3689
3690#if EV_EMBED_ENABLE
3691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3692 {
3693 if (types & EV_EMBED)
3694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3695 }
3696 else
3697#endif
3698#if EV_USE_INOTIFY
3699 if (ev_cb ((ev_io *)wl) == infy_cb)
3700 ;
3701 else
3702#endif
3703 if ((ev_io *)wl != &pipe_w)
3704 if (types & EV_IO)
3705 cb (EV_A_ EV_IO, wl);
3706
3707 wl = wn;
3708 }
3709
3710 if (types & (EV_TIMER | EV_STAT))
3711 for (i = timercnt + HEAP0; i-- > HEAP0; )
3712#if EV_STAT_ENABLE
3713 /*TODO: timer is not always active*/
3714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3715 {
3716 if (types & EV_STAT)
3717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3718 }
3719 else
3720#endif
3721 if (types & EV_TIMER)
3722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3723
3724#if EV_PERIODIC_ENABLE
3725 if (types & EV_PERIODIC)
3726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3728#endif
3729
3730#if EV_IDLE_ENABLE
3731 if (types & EV_IDLE)
3732 for (j = NUMPRI; i--; )
3733 for (i = idlecnt [j]; i--; )
3734 cb (EV_A_ EV_IDLE, idles [j][i]);
3735#endif
3736
3737#if EV_FORK_ENABLE
3738 if (types & EV_FORK)
3739 for (i = forkcnt; i--; )
3740 if (ev_cb (forks [i]) != embed_fork_cb)
3741 cb (EV_A_ EV_FORK, forks [i]);
3742#endif
3743
3744#if EV_ASYNC_ENABLE
3745 if (types & EV_ASYNC)
3746 for (i = asynccnt; i--; )
3747 cb (EV_A_ EV_ASYNC, asyncs [i]);
3748#endif
3749
3750#if EV_PREPARE_ENABLE
3751 if (types & EV_PREPARE)
3752 for (i = preparecnt; i--; )
3753# if EV_EMBED_ENABLE
3754 if (ev_cb (prepares [i]) != embed_prepare_cb)
3755# endif
3756 cb (EV_A_ EV_PREPARE, prepares [i]);
3757#endif
3758
3759#if EV_CHECK_ENABLE
3760 if (types & EV_CHECK)
3761 for (i = checkcnt; i--; )
3762 cb (EV_A_ EV_CHECK, checks [i]);
3763#endif
3764
3765#if EV_SIGNAL_ENABLE
3766 if (types & EV_SIGNAL)
3767 for (i = 0; i < EV_NSIG - 1; ++i)
3768 for (wl = signals [i].head; wl; )
3769 {
3770 wn = wl->next;
3771 cb (EV_A_ EV_SIGNAL, wl);
3772 wl = wn;
3773 }
3774#endif
3775
3776#if EV_CHILD_ENABLE
3777 if (types & EV_CHILD)
3778 for (i = (EV_PID_HASHSIZE); i--; )
3779 for (wl = childs [i]; wl; )
3780 {
3781 wn = wl->next;
3782 cb (EV_A_ EV_CHILD, wl);
3783 wl = wn;
3784 }
3785#endif
3786/* EV_STAT 0x00001000 /* stat data changed */
3787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3788}
3789#endif
3790
3791#if EV_MULTIPLICITY
3792 #include "ev_wrap.h"
3793#endif
3794
1722#ifdef __cplusplus 3795#ifdef __cplusplus
1723} 3796}
1724#endif 3797#endif
1725 3798

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines