ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.161 by root, Sat Dec 1 23:43:45 2007 UTC vs.
Revision 1.343 by root, Fri Apr 2 21:03:46 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 83# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 85# endif
65# endif
66
67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1
70# else 86# else
87# undef EV_USE_NANOSLEEP
71# define EV_USE_POLL 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
106# define EV_USE_POLL 0
73# endif 107# endif
74 108
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
78# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
81# endif 116# endif
82 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
89# endif 125# endif
90 126
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
94# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
97# endif 134# endif
98 135
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
105# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
106 153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
107#endif 163#endif
108 164
109#include <math.h> 165#include <math.h>
110#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
111#include <fcntl.h> 168#include <fcntl.h>
112#include <stddef.h> 169#include <stddef.h>
113 170
114#include <stdio.h> 171#include <stdio.h>
115 172
116#include <assert.h> 173#include <assert.h>
117#include <errno.h> 174#include <errno.h>
118#include <sys/types.h> 175#include <sys/types.h>
119#include <time.h> 176#include <time.h>
177#include <limits.h>
120 178
121#include <signal.h> 179#include <signal.h>
122 180
123#ifdef EV_H 181#ifdef EV_H
124# include EV_H 182# include EV_H
129#ifndef _WIN32 187#ifndef _WIN32
130# include <sys/time.h> 188# include <sys/time.h>
131# include <sys/wait.h> 189# include <sys/wait.h>
132# include <unistd.h> 190# include <unistd.h>
133#else 191#else
192# include <io.h>
134# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 194# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
138# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* this block tries to deduce configuration from header-defined symbols and defaults */
202
203/* try to deduce the maximum number of signals on this platform */
204#if defined (EV_NSIG)
205/* use what's provided */
206#elif defined (NSIG)
207# define EV_NSIG (NSIG)
208#elif defined(_NSIG)
209# define EV_NSIG (_NSIG)
210#elif defined (SIGMAX)
211# define EV_NSIG (SIGMAX+1)
212#elif defined (SIG_MAX)
213# define EV_NSIG (SIG_MAX+1)
214#elif defined (_SIG_MAX)
215# define EV_NSIG (_SIG_MAX+1)
216#elif defined (MAXSIG)
217# define EV_NSIG (MAXSIG+1)
218#elif defined (MAX_SIG)
219# define EV_NSIG (MAX_SIG+1)
220#elif defined (SIGARRAYSIZE)
221# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
222#elif defined (_sys_nsig)
223# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
224#else
225# error "unable to find value for NSIG, please report"
226/* to make it compile regardless, just remove the above line, */
227/* but consider reporting it, too! :) */
228# define EV_NSIG 65
229#endif
230
231#ifndef EV_USE_CLOCK_SYSCALL
232# if __linux && __GLIBC__ >= 2
233# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
234# else
235# define EV_USE_CLOCK_SYSCALL 0
139#endif 236# endif
140 237#endif
141/**/
142 238
143#ifndef EV_USE_MONOTONIC 239#ifndef EV_USE_MONOTONIC
240# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
241# define EV_USE_MONOTONIC EV_FEATURE_OS
242# else
144# define EV_USE_MONOTONIC 0 243# define EV_USE_MONOTONIC 0
244# endif
145#endif 245#endif
146 246
147#ifndef EV_USE_REALTIME 247#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 248# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
249#endif
250
251#ifndef EV_USE_NANOSLEEP
252# if _POSIX_C_SOURCE >= 199309L
253# define EV_USE_NANOSLEEP EV_FEATURE_OS
254# else
255# define EV_USE_NANOSLEEP 0
256# endif
149#endif 257#endif
150 258
151#ifndef EV_USE_SELECT 259#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 260# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 261#endif
154 262
155#ifndef EV_USE_POLL 263#ifndef EV_USE_POLL
156# ifdef _WIN32 264# ifdef _WIN32
157# define EV_USE_POLL 0 265# define EV_USE_POLL 0
158# else 266# else
159# define EV_USE_POLL 1 267# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 268# endif
161#endif 269#endif
162 270
163#ifndef EV_USE_EPOLL 271#ifndef EV_USE_EPOLL
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
273# define EV_USE_EPOLL EV_FEATURE_BACKENDS
274# else
164# define EV_USE_EPOLL 0 275# define EV_USE_EPOLL 0
276# endif
165#endif 277#endif
166 278
167#ifndef EV_USE_KQUEUE 279#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 280# define EV_USE_KQUEUE 0
169#endif 281#endif
171#ifndef EV_USE_PORT 283#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 284# define EV_USE_PORT 0
173#endif 285#endif
174 286
175#ifndef EV_USE_INOTIFY 287#ifndef EV_USE_INOTIFY
288# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
289# define EV_USE_INOTIFY EV_FEATURE_OS
290# else
176# define EV_USE_INOTIFY 0 291# define EV_USE_INOTIFY 0
292# endif
177#endif 293#endif
178 294
179#ifndef EV_PID_HASHSIZE 295#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 296# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 297#endif
298
299#ifndef EV_INOTIFY_HASHSIZE
300# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
301#endif
302
303#ifndef EV_USE_EVENTFD
304# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
305# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 306# else
183# define EV_PID_HASHSIZE 16 307# define EV_USE_EVENTFD 0
184# endif
185#endif 308# endif
309#endif
186 310
187#ifndef EV_INOTIFY_HASHSIZE 311#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 313# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 314# else
191# define EV_INOTIFY_HASHSIZE 16 315# define EV_USE_SIGNALFD 0
192# endif
193#endif 316# endif
317#endif
194 318
195/**/ 319#if 0 /* debugging */
320# define EV_VERIFY 3
321# define EV_USE_4HEAP 1
322# define EV_HEAP_CACHE_AT 1
323#endif
324
325#ifndef EV_VERIFY
326# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
327#endif
328
329#ifndef EV_USE_4HEAP
330# define EV_USE_4HEAP EV_FEATURE_DATA
331#endif
332
333#ifndef EV_HEAP_CACHE_AT
334# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
335#endif
336
337/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
338/* which makes programs even slower. might work on other unices, too. */
339#if EV_USE_CLOCK_SYSCALL
340# include <syscall.h>
341# ifdef SYS_clock_gettime
342# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
343# undef EV_USE_MONOTONIC
344# define EV_USE_MONOTONIC 1
345# else
346# undef EV_USE_CLOCK_SYSCALL
347# define EV_USE_CLOCK_SYSCALL 0
348# endif
349#endif
350
351/* this block fixes any misconfiguration where we know we run into trouble otherwise */
352
353#ifdef _AIX
354/* AIX has a completely broken poll.h header */
355# undef EV_USE_POLL
356# define EV_USE_POLL 0
357#endif
196 358
197#ifndef CLOCK_MONOTONIC 359#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 360# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 361# define EV_USE_MONOTONIC 0
200#endif 362#endif
202#ifndef CLOCK_REALTIME 364#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 365# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 366# define EV_USE_REALTIME 0
205#endif 367#endif
206 368
369#if !EV_STAT_ENABLE
370# undef EV_USE_INOTIFY
371# define EV_USE_INOTIFY 0
372#endif
373
374#if !EV_USE_NANOSLEEP
375# ifndef _WIN32
376# include <sys/select.h>
377# endif
378#endif
379
380#if EV_USE_INOTIFY
381# include <sys/utsname.h>
382# include <sys/statfs.h>
383# include <sys/inotify.h>
384/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
385# ifndef IN_DONT_FOLLOW
386# undef EV_USE_INOTIFY
387# define EV_USE_INOTIFY 0
388# endif
389#endif
390
207#if EV_SELECT_IS_WINSOCKET 391#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 392# include <winsock.h>
209#endif 393#endif
210 394
211#if !EV_STAT_ENABLE 395#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 396/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
397# include <stdint.h>
398# ifndef EFD_NONBLOCK
399# define EFD_NONBLOCK O_NONBLOCK
213#endif 400# endif
214 401# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 402# ifdef O_CLOEXEC
216# include <sys/inotify.h> 403# define EFD_CLOEXEC O_CLOEXEC
404# else
405# define EFD_CLOEXEC 02000000
406# endif
217#endif 407# endif
408# ifdef __cplusplus
409extern "C" {
410# endif
411int (eventfd) (unsigned int initval, int flags);
412# ifdef __cplusplus
413}
414# endif
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430# ifdef __cplusplus
431extern "C" {
432# endif
433int signalfd (int fd, const sigset_t *mask, int flags);
434
435struct signalfd_siginfo
436{
437 uint32_t ssi_signo;
438 char pad[128 - sizeof (uint32_t)];
439};
440# ifdef __cplusplus
441}
442# endif
443#endif
444
218 445
219/**/ 446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to avoid floating point rounding problems.
456 * It is added to ev_rt_now when scheduling periodics
457 * to ensure progress, time-wise, even when rounding
458 * errors are against us.
459 * This value is good at least till the year 4000.
460 * Better solutions welcome.
461 */
462#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 463
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 464#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 465#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 466
225#if __GNUC__ >= 3 467#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 468# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 469# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 470#else
236# define expect(expr,value) (expr) 471# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 472# define noinline
473# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
474# define inline
475# endif
240#endif 476#endif
241 477
242#define expect_false(expr) expect ((expr) != 0, 0) 478#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 479#define expect_true(expr) expect ((expr) != 0, 1)
480#define inline_size static inline
244 481
482#if EV_FEATURE_CODE
483# define inline_speed static inline
484#else
485# define inline_speed static noinline
486#endif
487
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 488#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
489
490#if EV_MINPRI == EV_MAXPRI
491# define ABSPRI(w) (((W)w), 0)
492#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 493# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
494#endif
247 495
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 496#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 497#define EMPTY2(a,b) /* used to suppress some warnings */
250 498
251typedef ev_watcher *W; 499typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 500typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 501typedef ev_watcher_time *WT;
254 502
503#define ev_active(w) ((W)(w))->active
504#define ev_at(w) ((WT)(w))->at
505
506#if EV_USE_REALTIME
507/* sig_atomic_t is used to avoid per-thread variables or locking but still */
508/* giving it a reasonably high chance of working on typical architetcures */
509static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
510#endif
511
512#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 513static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
514#endif
515
516#ifndef EV_FD_TO_WIN32_HANDLE
517# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
518#endif
519#ifndef EV_WIN32_HANDLE_TO_FD
520# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
521#endif
522#ifndef EV_WIN32_CLOSE_FD
523# define EV_WIN32_CLOSE_FD(fd) close (fd)
524#endif
256 525
257#ifdef _WIN32 526#ifdef _WIN32
258# include "ev_win32.c" 527# include "ev_win32.c"
259#endif 528#endif
260 529
261/*****************************************************************************/ 530/*****************************************************************************/
262 531
532#if EV_AVOID_STDIO
533static void noinline
534ev_printerr (const char *msg)
535{
536 write (STDERR_FILENO, msg, strlen (msg));
537}
538#endif
539
263static void (*syserr_cb)(const char *msg); 540static void (*syserr_cb)(const char *msg);
264 541
265void 542void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 543ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 544{
268 syserr_cb = cb; 545 syserr_cb = cb;
269} 546}
270 547
271static void noinline 548static void noinline
272syserr (const char *msg) 549ev_syserr (const char *msg)
273{ 550{
274 if (!msg) 551 if (!msg)
275 msg = "(libev) system error"; 552 msg = "(libev) system error";
276 553
277 if (syserr_cb) 554 if (syserr_cb)
278 syserr_cb (msg); 555 syserr_cb (msg);
279 else 556 else
280 { 557 {
558#if EV_AVOID_STDIO
559 const char *err = strerror (errno);
560
561 ev_printerr (msg);
562 ev_printerr (": ");
563 ev_printerr (err);
564 ev_printerr ("\n");
565#else
281 perror (msg); 566 perror (msg);
567#endif
282 abort (); 568 abort ();
283 } 569 }
284} 570}
285 571
572static void *
573ev_realloc_emul (void *ptr, long size)
574{
575#if __GLIBC__
576 return realloc (ptr, size);
577#else
578 /* some systems, notably openbsd and darwin, fail to properly
579 * implement realloc (x, 0) (as required by both ansi c-89 and
580 * the single unix specification, so work around them here.
581 */
582
583 if (size)
584 return realloc (ptr, size);
585
586 free (ptr);
587 return 0;
588#endif
589}
590
286static void *(*alloc)(void *ptr, long size); 591static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 592
288void 593void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 594ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 595{
291 alloc = cb; 596 alloc = cb;
292} 597}
293 598
294inline_speed void * 599inline_speed void *
295ev_realloc (void *ptr, long size) 600ev_realloc (void *ptr, long size)
296{ 601{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 602 ptr = alloc (ptr, size);
298 603
299 if (!ptr && size) 604 if (!ptr && size)
300 { 605 {
606#if EV_AVOID_STDIO
607 ev_printerr ("libev: memory allocation failed, aborting.\n");
608#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 609 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
610#endif
302 abort (); 611 abort ();
303 } 612 }
304 613
305 return ptr; 614 return ptr;
306} 615}
308#define ev_malloc(size) ev_realloc (0, (size)) 617#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 618#define ev_free(ptr) ev_realloc ((ptr), 0)
310 619
311/*****************************************************************************/ 620/*****************************************************************************/
312 621
622/* set in reify when reification needed */
623#define EV_ANFD_REIFY 1
624
625/* file descriptor info structure */
313typedef struct 626typedef struct
314{ 627{
315 WL head; 628 WL head;
316 unsigned char events; 629 unsigned char events; /* the events watched for */
630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 632 unsigned char unused;
633#if EV_USE_EPOLL
634 unsigned int egen; /* generation counter to counter epoll bugs */
635#endif
318#if EV_SELECT_IS_WINSOCKET 636#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 637 SOCKET handle;
320#endif 638#endif
321} ANFD; 639} ANFD;
322 640
641/* stores the pending event set for a given watcher */
323typedef struct 642typedef struct
324{ 643{
325 W w; 644 W w;
326 int events; 645 int events; /* the pending event set for the given watcher */
327} ANPENDING; 646} ANPENDING;
328 647
329#if EV_USE_INOTIFY 648#if EV_USE_INOTIFY
649/* hash table entry per inotify-id */
330typedef struct 650typedef struct
331{ 651{
332 WL head; 652 WL head;
333} ANFS; 653} ANFS;
654#endif
655
656/* Heap Entry */
657#if EV_HEAP_CACHE_AT
658 /* a heap element */
659 typedef struct {
660 ev_tstamp at;
661 WT w;
662 } ANHE;
663
664 #define ANHE_w(he) (he).w /* access watcher, read-write */
665 #define ANHE_at(he) (he).at /* access cached at, read-only */
666 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
667#else
668 /* a heap element */
669 typedef WT ANHE;
670
671 #define ANHE_w(he) (he)
672 #define ANHE_at(he) (he)->at
673 #define ANHE_at_cache(he)
334#endif 674#endif
335 675
336#if EV_MULTIPLICITY 676#if EV_MULTIPLICITY
337 677
338 struct ev_loop 678 struct ev_loop
357 697
358 static int ev_default_loop_ptr; 698 static int ev_default_loop_ptr;
359 699
360#endif 700#endif
361 701
702#if EV_FEATURE_API
703# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
704# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
705# define EV_INVOKE_PENDING invoke_cb (EV_A)
706#else
707# define EV_RELEASE_CB (void)0
708# define EV_ACQUIRE_CB (void)0
709# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
710#endif
711
712#define EVUNLOOP_RECURSE 0x80
713
362/*****************************************************************************/ 714/*****************************************************************************/
363 715
716#ifndef EV_HAVE_EV_TIME
364ev_tstamp 717ev_tstamp
365ev_time (void) 718ev_time (void)
366{ 719{
367#if EV_USE_REALTIME 720#if EV_USE_REALTIME
721 if (expect_true (have_realtime))
722 {
368 struct timespec ts; 723 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 724 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 725 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 726 }
727#endif
728
372 struct timeval tv; 729 struct timeval tv;
373 gettimeofday (&tv, 0); 730 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 731 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 732}
733#endif
377 734
378ev_tstamp inline_size 735inline_size ev_tstamp
379get_clock (void) 736get_clock (void)
380{ 737{
381#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 739 if (expect_true (have_monotonic))
383 { 740 {
396{ 753{
397 return ev_rt_now; 754 return ev_rt_now;
398} 755}
399#endif 756#endif
400 757
401#define array_roundsize(type,n) (((n) | 4) & ~3) 758void
759ev_sleep (ev_tstamp delay)
760{
761 if (delay > 0.)
762 {
763#if EV_USE_NANOSLEEP
764 struct timespec ts;
765
766 ts.tv_sec = (time_t)delay;
767 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
768
769 nanosleep (&ts, 0);
770#elif defined(_WIN32)
771 Sleep ((unsigned long)(delay * 1e3));
772#else
773 struct timeval tv;
774
775 tv.tv_sec = (time_t)delay;
776 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
777
778 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
779 /* something not guaranteed by newer posix versions, but guaranteed */
780 /* by older ones */
781 select (0, 0, 0, 0, &tv);
782#endif
783 }
784}
785
786/*****************************************************************************/
787
788#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
789
790/* find a suitable new size for the given array, */
791/* hopefully by rounding to a ncie-to-malloc size */
792inline_size int
793array_nextsize (int elem, int cur, int cnt)
794{
795 int ncur = cur + 1;
796
797 do
798 ncur <<= 1;
799 while (cnt > ncur);
800
801 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
802 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
803 {
804 ncur *= elem;
805 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
806 ncur = ncur - sizeof (void *) * 4;
807 ncur /= elem;
808 }
809
810 return ncur;
811}
812
813static noinline void *
814array_realloc (int elem, void *base, int *cur, int cnt)
815{
816 *cur = array_nextsize (elem, *cur, cnt);
817 return ev_realloc (base, elem * *cur);
818}
819
820#define array_init_zero(base,count) \
821 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 822
403#define array_needsize(type,base,cur,cnt,init) \ 823#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 824 if (expect_false ((cnt) > (cur))) \
405 { \ 825 { \
406 int newcnt = cur; \ 826 int ocur_ = (cur); \
407 do \ 827 (base) = (type *)array_realloc \
408 { \ 828 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 829 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 830 }
417 831
832#if 0
418#define array_slim(type,stem) \ 833#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 834 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 835 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 836 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 837 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 838 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 839 }
840#endif
425 841
426#define array_free(stem, idx) \ 842#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 843 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 844
429/*****************************************************************************/ 845/*****************************************************************************/
846
847/* dummy callback for pending events */
848static void noinline
849pendingcb (EV_P_ ev_prepare *w, int revents)
850{
851}
430 852
431void noinline 853void noinline
432ev_feed_event (EV_P_ void *w, int revents) 854ev_feed_event (EV_P_ void *w, int revents)
433{ 855{
434 W w_ = (W)w; 856 W w_ = (W)w;
857 int pri = ABSPRI (w_);
435 858
436 if (expect_false (w_->pending)) 859 if (expect_false (w_->pending))
860 pendings [pri][w_->pending - 1].events |= revents;
861 else
437 { 862 {
863 w_->pending = ++pendingcnt [pri];
864 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
865 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 866 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 867 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 868}
447 869
448void inline_size 870inline_speed void
871feed_reverse (EV_P_ W w)
872{
873 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
874 rfeeds [rfeedcnt++] = w;
875}
876
877inline_size void
878feed_reverse_done (EV_P_ int revents)
879{
880 do
881 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
882 while (rfeedcnt);
883}
884
885inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 886queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 887{
451 int i; 888 int i;
452 889
453 for (i = 0; i < eventcnt; ++i) 890 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 891 ev_feed_event (EV_A_ events [i], type);
455} 892}
456 893
457/*****************************************************************************/ 894/*****************************************************************************/
458 895
459void inline_size 896inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 897fd_event_nocheck (EV_P_ int fd, int revents)
474{ 898{
475 ANFD *anfd = anfds + fd; 899 ANFD *anfd = anfds + fd;
476 ev_io *w; 900 ev_io *w;
477 901
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 902 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 906 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 907 ev_feed_event (EV_A_ (W)w, ev);
484 } 908 }
485} 909}
486 910
911/* do not submit kernel events for fds that have reify set */
912/* because that means they changed while we were polling for new events */
913inline_speed void
914fd_event (EV_P_ int fd, int revents)
915{
916 ANFD *anfd = anfds + fd;
917
918 if (expect_true (!anfd->reify))
919 fd_event_nocheck (EV_A_ fd, revents);
920}
921
487void 922void
488ev_feed_fd_event (EV_P_ int fd, int revents) 923ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 924{
925 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 926 fd_event_nocheck (EV_A_ fd, revents);
491} 927}
492 928
493void inline_size 929/* make sure the external fd watch events are in-sync */
930/* with the kernel/libev internal state */
931inline_size void
494fd_reify (EV_P) 932fd_reify (EV_P)
495{ 933{
496 int i; 934 int i;
497 935
498 for (i = 0; i < fdchangecnt; ++i) 936 for (i = 0; i < fdchangecnt; ++i)
499 { 937 {
500 int fd = fdchanges [i]; 938 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 939 ANFD *anfd = anfds + fd;
502 ev_io *w; 940 ev_io *w;
503 941
504 int events = 0; 942 unsigned char events = 0;
505 943
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 945 events |= (unsigned char)w->events;
508 946
509#if EV_SELECT_IS_WINSOCKET 947#if EV_SELECT_IS_WINSOCKET
510 if (events) 948 if (events)
511 { 949 {
512 unsigned long argp; 950 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 951 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 952 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 953 }
516#endif 954#endif
517 955
956 {
957 unsigned char o_events = anfd->events;
958 unsigned char o_reify = anfd->reify;
959
518 anfd->reify = 0; 960 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 961 anfd->events = events;
962
963 if (o_events != events || o_reify & EV__IOFDSET)
964 backend_modify (EV_A_ fd, o_events, events);
965 }
522 } 966 }
523 967
524 fdchangecnt = 0; 968 fdchangecnt = 0;
525} 969}
526 970
527void inline_size 971/* something about the given fd changed */
972inline_size void
528fd_change (EV_P_ int fd) 973fd_change (EV_P_ int fd, int flags)
529{ 974{
530 if (expect_false (anfds [fd].reify)) 975 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 976 anfds [fd].reify |= flags;
534 977
978 if (expect_true (!reify))
979 {
535 ++fdchangecnt; 980 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 981 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 982 fdchanges [fdchangecnt - 1] = fd;
983 }
538} 984}
539 985
540void inline_speed 986/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
987inline_speed void
541fd_kill (EV_P_ int fd) 988fd_kill (EV_P_ int fd)
542{ 989{
543 ev_io *w; 990 ev_io *w;
544 991
545 while ((w = (ev_io *)anfds [fd].head)) 992 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 994 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 995 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 996 }
550} 997}
551 998
552int inline_size 999/* check whether the given fd is actually valid, for error recovery */
1000inline_size int
553fd_valid (int fd) 1001fd_valid (int fd)
554{ 1002{
555#ifdef _WIN32 1003#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1004 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1005#else
558 return fcntl (fd, F_GETFD) != -1; 1006 return fcntl (fd, F_GETFD) != -1;
559#endif 1007#endif
560} 1008}
561 1009
565{ 1013{
566 int fd; 1014 int fd;
567 1015
568 for (fd = 0; fd < anfdmax; ++fd) 1016 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1017 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1018 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1019 fd_kill (EV_A_ fd);
572} 1020}
573 1021
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1022/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1023static void noinline
579 1027
580 for (fd = anfdmax; fd--; ) 1028 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1029 if (anfds [fd].events)
582 { 1030 {
583 fd_kill (EV_A_ fd); 1031 fd_kill (EV_A_ fd);
584 return; 1032 break;
585 } 1033 }
586} 1034}
587 1035
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1036/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1037static void noinline
593 1041
594 for (fd = 0; fd < anfdmax; ++fd) 1042 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1043 if (anfds [fd].events)
596 { 1044 {
597 anfds [fd].events = 0; 1045 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1046 anfds [fd].emask = 0;
1047 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1048 }
600} 1049}
601 1050
602/*****************************************************************************/ 1051/* used to prepare libev internal fd's */
603 1052/* this is not fork-safe */
604void inline_speed 1053inline_speed void
605upheap (WT *heap, int k)
606{
607 WT w = heap [k];
608
609 while (k && heap [k >> 1]->at > w->at)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 }
615
616 heap [k] = w;
617 ((W)heap [k])->active = k + 1;
618
619}
620
621void inline_speed
622downheap (WT *heap, int N, int k)
623{
624 WT w = heap [k];
625
626 while (k < (N >> 1))
627 {
628 int j = k << 1;
629
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break;
635
636 heap [k] = heap [j];
637 ((W)heap [k])->active = k + 1;
638 k = j;
639 }
640
641 heap [k] = w;
642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
650}
651
652/*****************************************************************************/
653
654typedef struct
655{
656 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG;
659
660static ANSIG *signals;
661static int signalmax;
662
663static int sigpipe [2];
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666
667void inline_size
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1054fd_intern (int fd)
732{ 1055{
733#ifdef _WIN32 1056#ifdef _WIN32
734 int arg = 1; 1057 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1058 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1059#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1060 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1061 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1062#endif
740} 1063}
741 1064
1065/*****************************************************************************/
1066
1067/*
1068 * the heap functions want a real array index. array index 0 uis guaranteed to not
1069 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1070 * the branching factor of the d-tree.
1071 */
1072
1073/*
1074 * at the moment we allow libev the luxury of two heaps,
1075 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1076 * which is more cache-efficient.
1077 * the difference is about 5% with 50000+ watchers.
1078 */
1079#if EV_USE_4HEAP
1080
1081#define DHEAP 4
1082#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1083#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1084#define UPHEAP_DONE(p,k) ((p) == (k))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091 ANHE *E = heap + N + HEAP0;
1092
1093 for (;;)
1094 {
1095 ev_tstamp minat;
1096 ANHE *minpos;
1097 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1098
1099 /* find minimum child */
1100 if (expect_true (pos + DHEAP - 1 < E))
1101 {
1102 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1105 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1106 }
1107 else if (pos < E)
1108 {
1109 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1110 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1111 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1112 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1113 }
1114 else
1115 break;
1116
1117 if (ANHE_at (he) <= minat)
1118 break;
1119
1120 heap [k] = *minpos;
1121 ev_active (ANHE_w (*minpos)) = k;
1122
1123 k = minpos - heap;
1124 }
1125
1126 heap [k] = he;
1127 ev_active (ANHE_w (he)) = k;
1128}
1129
1130#else /* 4HEAP */
1131
1132#define HEAP0 1
1133#define HPARENT(k) ((k) >> 1)
1134#define UPHEAP_DONE(p,k) (!(p))
1135
1136/* away from the root */
1137inline_speed void
1138downheap (ANHE *heap, int N, int k)
1139{
1140 ANHE he = heap [k];
1141
1142 for (;;)
1143 {
1144 int c = k << 1;
1145
1146 if (c >= N + HEAP0)
1147 break;
1148
1149 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1150 ? 1 : 0;
1151
1152 if (ANHE_at (he) <= ANHE_at (heap [c]))
1153 break;
1154
1155 heap [k] = heap [c];
1156 ev_active (ANHE_w (heap [k])) = k;
1157
1158 k = c;
1159 }
1160
1161 heap [k] = he;
1162 ev_active (ANHE_w (he)) = k;
1163}
1164#endif
1165
1166/* towards the root */
1167inline_speed void
1168upheap (ANHE *heap, int k)
1169{
1170 ANHE he = heap [k];
1171
1172 for (;;)
1173 {
1174 int p = HPARENT (k);
1175
1176 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1177 break;
1178
1179 heap [k] = heap [p];
1180 ev_active (ANHE_w (heap [k])) = k;
1181 k = p;
1182 }
1183
1184 heap [k] = he;
1185 ev_active (ANHE_w (he)) = k;
1186}
1187
1188/* move an element suitably so it is in a correct place */
1189inline_size void
1190adjustheap (ANHE *heap, int N, int k)
1191{
1192 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1193 upheap (heap, k);
1194 else
1195 downheap (heap, N, k);
1196}
1197
1198/* rebuild the heap: this function is used only once and executed rarely */
1199inline_size void
1200reheap (ANHE *heap, int N)
1201{
1202 int i;
1203
1204 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1205 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1206 for (i = 0; i < N; ++i)
1207 upheap (heap, i + HEAP0);
1208}
1209
1210/*****************************************************************************/
1211
1212/* associate signal watchers to a signal signal */
1213typedef struct
1214{
1215 EV_ATOMIC_T pending;
1216#if EV_MULTIPLICITY
1217 EV_P;
1218#endif
1219 WL head;
1220} ANSIG;
1221
1222static ANSIG signals [EV_NSIG - 1];
1223
1224/*****************************************************************************/
1225
1226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1227
742static void noinline 1228static void noinline
743siginit (EV_P) 1229evpipe_init (EV_P)
744{ 1230{
1231 if (!ev_is_active (&pipe_w))
1232 {
1233# if EV_USE_EVENTFD
1234 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1235 if (evfd < 0 && errno == EINVAL)
1236 evfd = eventfd (0, 0);
1237
1238 if (evfd >= 0)
1239 {
1240 evpipe [0] = -1;
1241 fd_intern (evfd); /* doing it twice doesn't hurt */
1242 ev_io_set (&pipe_w, evfd, EV_READ);
1243 }
1244 else
1245# endif
1246 {
1247 while (pipe (evpipe))
1248 ev_syserr ("(libev) error creating signal/async pipe");
1249
745 fd_intern (sigpipe [0]); 1250 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1251 fd_intern (evpipe [1]);
1252 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1253 }
747 1254
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1255 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1256 ev_unref (EV_A); /* watcher should not keep loop alive */
1257 }
1258}
1259
1260inline_size void
1261evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1262{
1263 if (!*flag)
1264 {
1265 int old_errno = errno; /* save errno because write might clobber it */
1266 char dummy;
1267
1268 *flag = 1;
1269
1270#if EV_USE_EVENTFD
1271 if (evfd >= 0)
1272 {
1273 uint64_t counter = 1;
1274 write (evfd, &counter, sizeof (uint64_t));
1275 }
1276 else
1277#endif
1278 write (evpipe [1], &dummy, 1);
1279
1280 errno = old_errno;
1281 }
1282}
1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
1286static void
1287pipecb (EV_P_ ev_io *iow, int revents)
1288{
1289 int i;
1290
1291#if EV_USE_EVENTFD
1292 if (evfd >= 0)
1293 {
1294 uint64_t counter;
1295 read (evfd, &counter, sizeof (uint64_t));
1296 }
1297 else
1298#endif
1299 {
1300 char dummy;
1301 read (evpipe [0], &dummy, 1);
1302 }
1303
1304 if (sig_pending)
1305 {
1306 sig_pending = 0;
1307
1308 for (i = EV_NSIG - 1; i--; )
1309 if (expect_false (signals [i].pending))
1310 ev_feed_signal_event (EV_A_ i + 1);
1311 }
1312
1313#if EV_ASYNC_ENABLE
1314 if (async_pending)
1315 {
1316 async_pending = 0;
1317
1318 for (i = asynccnt; i--; )
1319 if (asyncs [i]->sent)
1320 {
1321 asyncs [i]->sent = 0;
1322 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1323 }
1324 }
1325#endif
751} 1326}
752 1327
753/*****************************************************************************/ 1328/*****************************************************************************/
754 1329
755static ev_child *childs [EV_PID_HASHSIZE]; 1330static void
1331ev_sighandler (int signum)
1332{
1333#if EV_MULTIPLICITY
1334 EV_P = signals [signum - 1].loop;
1335#endif
756 1336
757#ifndef _WIN32 1337#ifdef _WIN32
1338 signal (signum, ev_sighandler);
1339#endif
1340
1341 signals [signum - 1].pending = 1;
1342 evpipe_write (EV_A_ &sig_pending);
1343}
1344
1345void noinline
1346ev_feed_signal_event (EV_P_ int signum)
1347{
1348 WL w;
1349
1350 if (expect_false (signum <= 0 || signum > EV_NSIG))
1351 return;
1352
1353 --signum;
1354
1355#if EV_MULTIPLICITY
1356 /* it is permissible to try to feed a signal to the wrong loop */
1357 /* or, likely more useful, feeding a signal nobody is waiting for */
1358
1359 if (expect_false (signals [signum].loop != EV_A))
1360 return;
1361#endif
1362
1363 signals [signum].pending = 0;
1364
1365 for (w = signals [signum].head; w; w = w->next)
1366 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1367}
1368
1369#if EV_USE_SIGNALFD
1370static void
1371sigfdcb (EV_P_ ev_io *iow, int revents)
1372{
1373 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1374
1375 for (;;)
1376 {
1377 ssize_t res = read (sigfd, si, sizeof (si));
1378
1379 /* not ISO-C, as res might be -1, but works with SuS */
1380 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1381 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1382
1383 if (res < (ssize_t)sizeof (si))
1384 break;
1385 }
1386}
1387#endif
1388
1389#endif
1390
1391/*****************************************************************************/
1392
1393#if EV_CHILD_ENABLE
1394static WL childs [EV_PID_HASHSIZE];
758 1395
759static ev_signal childev; 1396static ev_signal childev;
760 1397
761void inline_speed 1398#ifndef WIFCONTINUED
1399# define WIFCONTINUED(status) 0
1400#endif
1401
1402/* handle a single child status event */
1403inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1404child_reap (EV_P_ int chain, int pid, int status)
763{ 1405{
764 ev_child *w; 1406 ev_child *w;
1407 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1408
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1409 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1410 {
767 if (w->pid == pid || !w->pid) 1411 if ((w->pid == pid || !w->pid)
1412 && (!traced || (w->flags & 1)))
768 { 1413 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1414 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1415 w->rpid = pid;
771 w->rstatus = status; 1416 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1417 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1418 }
1419 }
774} 1420}
775 1421
776#ifndef WCONTINUED 1422#ifndef WCONTINUED
777# define WCONTINUED 0 1423# define WCONTINUED 0
778#endif 1424#endif
779 1425
1426/* called on sigchld etc., calls waitpid */
780static void 1427static void
781childcb (EV_P_ ev_signal *sw, int revents) 1428childcb (EV_P_ ev_signal *sw, int revents)
782{ 1429{
783 int pid, status; 1430 int pid, status;
784 1431
787 if (!WCONTINUED 1434 if (!WCONTINUED
788 || errno != EINVAL 1435 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1436 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1437 return;
791 1438
792 /* make sure we are called again until all childs have been reaped */ 1439 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1440 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1441 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1442
796 child_reap (EV_A_ sw, pid, pid, status); 1443 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1444 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1445 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1446}
800 1447
801#endif 1448#endif
802 1449
803/*****************************************************************************/ 1450/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1512 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1513 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1514 flags &= ~EVBACKEND_KQUEUE;
868#endif 1515#endif
869#ifdef __APPLE__ 1516#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1517 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1518 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1519 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1520#endif
1521#ifdef __FreeBSD__
1522 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
872#endif 1523#endif
873 1524
874 return flags; 1525 return flags;
875} 1526}
876 1527
877unsigned int 1528unsigned int
878ev_embeddable_backends (void) 1529ev_embeddable_backends (void)
879{ 1530{
880 return EVBACKEND_EPOLL 1531 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1532
882 | EVBACKEND_PORT; 1533 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1534 /* please fix it and tell me how to detect the fix */
1535 flags &= ~EVBACKEND_EPOLL;
1536
1537 return flags;
883} 1538}
884 1539
885unsigned int 1540unsigned int
886ev_backend (EV_P) 1541ev_backend (EV_P)
887{ 1542{
888 return backend; 1543 return backend;
889} 1544}
890 1545
1546#if EV_FEATURE_API
1547unsigned int
1548ev_iteration (EV_P)
1549{
1550 return loop_count;
1551}
1552
1553unsigned int
1554ev_depth (EV_P)
1555{
1556 return loop_depth;
1557}
1558
1559void
1560ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1561{
1562 io_blocktime = interval;
1563}
1564
1565void
1566ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1567{
1568 timeout_blocktime = interval;
1569}
1570
1571void
1572ev_set_userdata (EV_P_ void *data)
1573{
1574 userdata = data;
1575}
1576
1577void *
1578ev_userdata (EV_P)
1579{
1580 return userdata;
1581}
1582
1583void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1584{
1585 invoke_cb = invoke_pending_cb;
1586}
1587
1588void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1589{
1590 release_cb = release;
1591 acquire_cb = acquire;
1592}
1593#endif
1594
1595/* initialise a loop structure, must be zero-initialised */
891static void noinline 1596static void noinline
892loop_init (EV_P_ unsigned int flags) 1597loop_init (EV_P_ unsigned int flags)
893{ 1598{
894 if (!backend) 1599 if (!backend)
895 { 1600 {
1601#if EV_USE_REALTIME
1602 if (!have_realtime)
1603 {
1604 struct timespec ts;
1605
1606 if (!clock_gettime (CLOCK_REALTIME, &ts))
1607 have_realtime = 1;
1608 }
1609#endif
1610
896#if EV_USE_MONOTONIC 1611#if EV_USE_MONOTONIC
1612 if (!have_monotonic)
897 { 1613 {
898 struct timespec ts; 1614 struct timespec ts;
1615
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1616 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1617 have_monotonic = 1;
901 } 1618 }
902#endif 1619#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 1620
909 /* pid check not overridable via env */ 1621 /* pid check not overridable via env */
910#ifndef _WIN32 1622#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1623 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1624 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1627 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1628 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1629 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1630 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1631
1632 ev_rt_now = ev_time ();
1633 mn_now = get_clock ();
1634 now_floor = mn_now;
1635 rtmn_diff = ev_rt_now - mn_now;
1636#if EV_FEATURE_API
1637 invoke_cb = ev_invoke_pending;
1638#endif
1639
1640 io_blocktime = 0.;
1641 timeout_blocktime = 0.;
1642 backend = 0;
1643 backend_fd = -1;
1644 sig_pending = 0;
1645#if EV_ASYNC_ENABLE
1646 async_pending = 0;
1647#endif
1648#if EV_USE_INOTIFY
1649 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1650#endif
1651#if EV_USE_SIGNALFD
1652 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1653#endif
1654
920 if (!(flags & 0x0000ffffUL)) 1655 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1656 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1657
929#if EV_USE_PORT 1658#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1660#endif
932#if EV_USE_KQUEUE 1661#if EV_USE_KQUEUE
940#endif 1669#endif
941#if EV_USE_SELECT 1670#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1671 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1672#endif
944 1673
1674 ev_prepare_init (&pending_w, pendingcb);
1675
1676#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
945 ev_init (&sigev, sigcb); 1677 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1678 ev_set_priority (&pipe_w, EV_MAXPRI);
1679#endif
947 } 1680 }
948} 1681}
949 1682
1683/* free up a loop structure */
950static void noinline 1684static void noinline
951loop_destroy (EV_P) 1685loop_destroy (EV_P)
952{ 1686{
953 int i; 1687 int i;
1688
1689 if (ev_is_active (&pipe_w))
1690 {
1691 /*ev_ref (EV_A);*/
1692 /*ev_io_stop (EV_A_ &pipe_w);*/
1693
1694#if EV_USE_EVENTFD
1695 if (evfd >= 0)
1696 close (evfd);
1697#endif
1698
1699 if (evpipe [0] >= 0)
1700 {
1701 EV_WIN32_CLOSE_FD (evpipe [0]);
1702 EV_WIN32_CLOSE_FD (evpipe [1]);
1703 }
1704 }
1705
1706#if EV_USE_SIGNALFD
1707 if (ev_is_active (&sigfd_w))
1708 close (sigfd);
1709#endif
954 1710
955#if EV_USE_INOTIFY 1711#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1712 if (fs_fd >= 0)
957 close (fs_fd); 1713 close (fs_fd);
958#endif 1714#endif
975#if EV_USE_SELECT 1731#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1732 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1733#endif
978 1734
979 for (i = NUMPRI; i--; ) 1735 for (i = NUMPRI; i--; )
1736 {
980 array_free (pending, [i]); 1737 array_free (pending, [i]);
1738#if EV_IDLE_ENABLE
1739 array_free (idle, [i]);
1740#endif
1741 }
1742
1743 ev_free (anfds); anfds = 0; anfdmax = 0;
981 1744
982 /* have to use the microsoft-never-gets-it-right macro */ 1745 /* have to use the microsoft-never-gets-it-right macro */
1746 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1747 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1748 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1750 array_free (periodic, EMPTY);
987#endif 1751#endif
1752#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1753 array_free (fork, EMPTY);
1754#endif
989 array_free (prepare, EMPTY0); 1755 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1756 array_free (check, EMPTY);
1757#if EV_ASYNC_ENABLE
1758 array_free (async, EMPTY);
1759#endif
991 1760
992 backend = 0; 1761 backend = 0;
993} 1762}
994 1763
1764#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1765inline_size void infy_fork (EV_P);
1766#endif
996 1767
997void inline_size 1768inline_size void
998loop_fork (EV_P) 1769loop_fork (EV_P)
999{ 1770{
1000#if EV_USE_PORT 1771#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1772 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1773#endif
1008#endif 1779#endif
1009#if EV_USE_INOTIFY 1780#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1781 infy_fork (EV_A);
1011#endif 1782#endif
1012 1783
1013 if (ev_is_active (&sigev)) 1784 if (ev_is_active (&pipe_w))
1014 { 1785 {
1015 /* default loop */ 1786 /* this "locks" the handlers against writing to the pipe */
1787 /* while we modify the fd vars */
1788 sig_pending = 1;
1789#if EV_ASYNC_ENABLE
1790 async_pending = 1;
1791#endif
1016 1792
1017 ev_ref (EV_A); 1793 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1794 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 1795
1022 while (pipe (sigpipe)) 1796#if EV_USE_EVENTFD
1023 syserr ("(libev) error creating pipe"); 1797 if (evfd >= 0)
1798 close (evfd);
1799#endif
1024 1800
1801 if (evpipe [0] >= 0)
1802 {
1803 EV_WIN32_CLOSE_FD (evpipe [0]);
1804 EV_WIN32_CLOSE_FD (evpipe [1]);
1805 }
1806
1807#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1025 siginit (EV_A); 1808 evpipe_init (EV_A);
1809 /* now iterate over everything, in case we missed something */
1810 pipecb (EV_A_ &pipe_w, EV_READ);
1811#endif
1026 } 1812 }
1027 1813
1028 postfork = 0; 1814 postfork = 0;
1029} 1815}
1030 1816
1031#if EV_MULTIPLICITY 1817#if EV_MULTIPLICITY
1818
1032struct ev_loop * 1819struct ev_loop *
1033ev_loop_new (unsigned int flags) 1820ev_loop_new (unsigned int flags)
1034{ 1821{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1822 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1823
1037 memset (loop, 0, sizeof (struct ev_loop)); 1824 memset (EV_A, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags); 1825 loop_init (EV_A_ flags);
1040 1826
1041 if (ev_backend (EV_A)) 1827 if (ev_backend (EV_A))
1042 return loop; 1828 return EV_A;
1043 1829
1044 return 0; 1830 return 0;
1045} 1831}
1046 1832
1047void 1833void
1052} 1838}
1053 1839
1054void 1840void
1055ev_loop_fork (EV_P) 1841ev_loop_fork (EV_P)
1056{ 1842{
1057 postfork = 1; 1843 postfork = 1; /* must be in line with ev_default_fork */
1058} 1844}
1845#endif /* multiplicity */
1059 1846
1847#if EV_VERIFY
1848static void noinline
1849verify_watcher (EV_P_ W w)
1850{
1851 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1852
1853 if (w->pending)
1854 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1855}
1856
1857static void noinline
1858verify_heap (EV_P_ ANHE *heap, int N)
1859{
1860 int i;
1861
1862 for (i = HEAP0; i < N + HEAP0; ++i)
1863 {
1864 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1865 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1866 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1867
1868 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1869 }
1870}
1871
1872static void noinline
1873array_verify (EV_P_ W *ws, int cnt)
1874{
1875 while (cnt--)
1876 {
1877 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1878 verify_watcher (EV_A_ ws [cnt]);
1879 }
1880}
1881#endif
1882
1883#if EV_FEATURE_API
1884void
1885ev_verify (EV_P)
1886{
1887#if EV_VERIFY
1888 int i;
1889 WL w;
1890
1891 assert (activecnt >= -1);
1892
1893 assert (fdchangemax >= fdchangecnt);
1894 for (i = 0; i < fdchangecnt; ++i)
1895 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1896
1897 assert (anfdmax >= 0);
1898 for (i = 0; i < anfdmax; ++i)
1899 for (w = anfds [i].head; w; w = w->next)
1900 {
1901 verify_watcher (EV_A_ (W)w);
1902 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1903 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1904 }
1905
1906 assert (timermax >= timercnt);
1907 verify_heap (EV_A_ timers, timercnt);
1908
1909#if EV_PERIODIC_ENABLE
1910 assert (periodicmax >= periodiccnt);
1911 verify_heap (EV_A_ periodics, periodiccnt);
1912#endif
1913
1914 for (i = NUMPRI; i--; )
1915 {
1916 assert (pendingmax [i] >= pendingcnt [i]);
1917#if EV_IDLE_ENABLE
1918 assert (idleall >= 0);
1919 assert (idlemax [i] >= idlecnt [i]);
1920 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1921#endif
1922 }
1923
1924#if EV_FORK_ENABLE
1925 assert (forkmax >= forkcnt);
1926 array_verify (EV_A_ (W *)forks, forkcnt);
1927#endif
1928
1929#if EV_ASYNC_ENABLE
1930 assert (asyncmax >= asynccnt);
1931 array_verify (EV_A_ (W *)asyncs, asynccnt);
1932#endif
1933
1934#if EV_PREPARE_ENABLE
1935 assert (preparemax >= preparecnt);
1936 array_verify (EV_A_ (W *)prepares, preparecnt);
1937#endif
1938
1939#if EV_CHECK_ENABLE
1940 assert (checkmax >= checkcnt);
1941 array_verify (EV_A_ (W *)checks, checkcnt);
1942#endif
1943
1944# if 0
1945#if EV_CHILD_ENABLE
1946 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1947 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1948#endif
1949# endif
1950#endif
1951}
1060#endif 1952#endif
1061 1953
1062#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
1063struct ev_loop * 1955struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1956ev_default_loop_init (unsigned int flags)
1065#else 1957#else
1066int 1958int
1067ev_default_loop (unsigned int flags) 1959ev_default_loop (unsigned int flags)
1068#endif 1960#endif
1069{ 1961{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1962 if (!ev_default_loop_ptr)
1075 { 1963 {
1076#if EV_MULTIPLICITY 1964#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1965 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 1966#else
1079 ev_default_loop_ptr = 1; 1967 ev_default_loop_ptr = 1;
1080#endif 1968#endif
1081 1969
1082 loop_init (EV_A_ flags); 1970 loop_init (EV_A_ flags);
1083 1971
1084 if (ev_backend (EV_A)) 1972 if (ev_backend (EV_A))
1085 { 1973 {
1086 siginit (EV_A); 1974#if EV_CHILD_ENABLE
1087
1088#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1975 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1976 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1977 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1978 ev_unref (EV_A); /* child watcher should not keep loop alive */
1093#endif 1979#endif
1101 1987
1102void 1988void
1103ev_default_destroy (void) 1989ev_default_destroy (void)
1104{ 1990{
1105#if EV_MULTIPLICITY 1991#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 1992 EV_P = ev_default_loop_ptr;
1107#endif 1993#endif
1108 1994
1109#ifndef _WIN32 1995 ev_default_loop_ptr = 0;
1996
1997#if EV_CHILD_ENABLE
1110 ev_ref (EV_A); /* child watcher */ 1998 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 1999 ev_signal_stop (EV_A_ &childev);
1112#endif 2000#endif
1113 2001
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 2002 loop_destroy (EV_A);
1121} 2003}
1122 2004
1123void 2005void
1124ev_default_fork (void) 2006ev_default_fork (void)
1125{ 2007{
1126#if EV_MULTIPLICITY 2008#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 2009 EV_P = ev_default_loop_ptr;
1128#endif 2010#endif
1129 2011
1130 if (backend) 2012 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 2013}
1133 2014
1134/*****************************************************************************/ 2015/*****************************************************************************/
1135 2016
1136int inline_size 2017void
1137any_pending (EV_P) 2018ev_invoke (EV_P_ void *w, int revents)
2019{
2020 EV_CB_INVOKE ((W)w, revents);
2021}
2022
2023unsigned int
2024ev_pending_count (EV_P)
1138{ 2025{
1139 int pri; 2026 int pri;
2027 unsigned int count = 0;
1140 2028
1141 for (pri = NUMPRI; pri--; ) 2029 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 2030 count += pendingcnt [pri];
1143 return 1;
1144 2031
1145 return 0; 2032 return count;
1146} 2033}
1147 2034
1148void inline_speed 2035void noinline
1149call_pending (EV_P) 2036ev_invoke_pending (EV_P)
1150{ 2037{
1151 int pri; 2038 int pri;
1152 2039
1153 for (pri = NUMPRI; pri--; ) 2040 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 2041 while (pendingcnt [pri])
1155 { 2042 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2043 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 2044
1158 if (expect_true (p->w))
1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2045 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2046 /* ^ this is no longer true, as pending_w could be here */
1161 2047
1162 p->w->pending = 0; 2048 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 2049 EV_CB_INVOKE (p->w, p->events);
1164 } 2050 EV_FREQUENT_CHECK;
1165 } 2051 }
1166} 2052}
1167 2053
1168void inline_size 2054#if EV_IDLE_ENABLE
2055/* make idle watchers pending. this handles the "call-idle */
2056/* only when higher priorities are idle" logic */
2057inline_size void
2058idle_reify (EV_P)
2059{
2060 if (expect_false (idleall))
2061 {
2062 int pri;
2063
2064 for (pri = NUMPRI; pri--; )
2065 {
2066 if (pendingcnt [pri])
2067 break;
2068
2069 if (idlecnt [pri])
2070 {
2071 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2072 break;
2073 }
2074 }
2075 }
2076}
2077#endif
2078
2079/* make timers pending */
2080inline_size void
1169timers_reify (EV_P) 2081timers_reify (EV_P)
1170{ 2082{
2083 EV_FREQUENT_CHECK;
2084
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 2085 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 2086 {
1173 ev_timer *w = timers [0]; 2087 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 2088 {
2089 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2090
2091 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2092
2093 /* first reschedule or stop timer */
2094 if (w->repeat)
2095 {
2096 ev_at (w) += w->repeat;
2097 if (ev_at (w) < mn_now)
2098 ev_at (w) = mn_now;
2099
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2100 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 2101
1182 ((WT)w)->at += w->repeat; 2102 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 2103 downheap (timers, timercnt, HEAP0);
2104 }
2105 else
2106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2107
2108 EV_FREQUENT_CHECK;
2109 feed_reverse (EV_A_ (W)w);
1187 } 2110 }
1188 else 2111 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 2112
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2113 feed_reverse_done (EV_A_ EV_TIMER);
1192 } 2114 }
1193} 2115}
1194 2116
1195#if EV_PERIODIC_ENABLE 2117#if EV_PERIODIC_ENABLE
1196void inline_size 2118/* make periodics pending */
2119inline_size void
1197periodics_reify (EV_P) 2120periodics_reify (EV_P)
1198{ 2121{
2122 EV_FREQUENT_CHECK;
2123
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 2125 {
1201 ev_periodic *w = periodics [0]; 2126 int feed_count = 0;
1202 2127
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2128 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 2129 {
2130 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2131
2132 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2133
2134 /* first reschedule or stop timer */
2135 if (w->reschedule_cb)
2136 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2137 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2138
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2139 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2140
2141 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else if (w->interval)
2145 {
2146 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2147 /* if next trigger time is not sufficiently in the future, put it there */
2148 /* this might happen because of floating point inexactness */
2149 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2150 {
2151 ev_at (w) += w->interval;
2152
2153 /* if interval is unreasonably low we might still have a time in the past */
2154 /* so correct this. this will make the periodic very inexact, but the user */
2155 /* has effectively asked to get triggered more often than possible */
2156 if (ev_at (w) < ev_rt_now)
2157 ev_at (w) = ev_rt_now;
2158 }
2159
2160 ANHE_at_cache (periodics [HEAP0]);
2161 downheap (periodics, periodiccnt, HEAP0);
2162 }
2163 else
2164 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2165
2166 EV_FREQUENT_CHECK;
2167 feed_reverse (EV_A_ (W)w);
1211 } 2168 }
1212 else if (w->interval) 2169 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 2170
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2171 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 2172 }
1223} 2173}
1224 2174
2175/* simply recalculate all periodics */
2176/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1225static void noinline 2177static void noinline
1226periodics_reschedule (EV_P) 2178periodics_reschedule (EV_P)
1227{ 2179{
1228 int i; 2180 int i;
1229 2181
1230 /* adjust periodics after time jump */ 2182 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 2183 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 2184 {
1233 ev_periodic *w = periodics [i]; 2185 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 2186
1235 if (w->reschedule_cb) 2187 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2188 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 2189 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2190 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2191
2192 ANHE_at_cache (periodics [i]);
2193 }
2194
2195 reheap (periodics, periodiccnt);
2196}
2197#endif
2198
2199/* adjust all timers by a given offset */
2200static void noinline
2201timers_reschedule (EV_P_ ev_tstamp adjust)
2202{
2203 int i;
2204
2205 for (i = 0; i < timercnt; ++i)
1239 } 2206 {
1240 2207 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 2208 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 2209 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 2210 }
1244} 2211}
1245#endif
1246 2212
1247int inline_size 2213/* fetch new monotonic and realtime times from the kernel */
1248time_update_monotonic (EV_P) 2214/* also detect if there was a timejump, and act accordingly */
2215inline_speed void
2216time_update (EV_P_ ev_tstamp max_block)
1249{ 2217{
2218#if EV_USE_MONOTONIC
2219 if (expect_true (have_monotonic))
2220 {
2221 int i;
2222 ev_tstamp odiff = rtmn_diff;
2223
1250 mn_now = get_clock (); 2224 mn_now = get_clock ();
1251 2225
2226 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2227 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2228 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 2229 {
1254 ev_rt_now = rtmn_diff + mn_now; 2230 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 2231 return;
1256 } 2232 }
1257 else 2233
1258 {
1259 now_floor = mn_now; 2234 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 2235 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 2236
1265void inline_size 2237 /* loop a few times, before making important decisions.
1266time_update (EV_P) 2238 * on the choice of "4": one iteration isn't enough,
1267{ 2239 * in case we get preempted during the calls to
1268 int i; 2240 * ev_time and get_clock. a second call is almost guaranteed
1269 2241 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 2242 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 2243 * in the unlikely event of having been preempted here.
1272 { 2244 */
1273 if (time_update_monotonic (EV_A)) 2245 for (i = 4; --i; )
1274 { 2246 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 2247 rtmn_diff = ev_rt_now - mn_now;
1288 2248
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2249 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 2250 return; /* all is well */
1291 2251
1292 ev_rt_now = ev_time (); 2252 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 2253 mn_now = get_clock ();
1294 now_floor = mn_now; 2254 now_floor = mn_now;
1295 } 2255 }
1296 2256
2257 /* no timer adjustment, as the monotonic clock doesn't jump */
2258 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 2259# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 2260 periodics_reschedule (EV_A);
1299# endif 2261# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 2262 }
1304 else 2263 else
1305#endif 2264#endif
1306 { 2265 {
1307 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1308 2267
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2268 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 2269 {
2270 /* adjust timers. this is easy, as the offset is the same for all of them */
2271 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 2272#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 2273 periodics_reschedule (EV_A);
1313#endif 2274#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 2275 }
1319 2276
1320 mn_now = ev_rt_now; 2277 mn_now = ev_rt_now;
1321 } 2278 }
1322} 2279}
1323 2280
1324void 2281void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 2282ev_loop (EV_P_ int flags)
1340{ 2283{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2284#if EV_FEATURE_API
1342 ? EVUNLOOP_ONE 2285 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 2286#endif
1344 2287
2288 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2289
2290 loop_done = EVUNLOOP_CANCEL;
2291
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2292 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 2293
1347 do 2294 do
1348 { 2295 {
2296#if EV_VERIFY >= 2
2297 ev_verify (EV_A);
2298#endif
2299
1349#ifndef _WIN32 2300#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 2301 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 2302 if (expect_false (getpid () != curpid))
1352 { 2303 {
1353 curpid = getpid (); 2304 curpid = getpid ();
1359 /* we might have forked, so queue fork handlers */ 2310 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1361 if (forkcnt) 2312 if (forkcnt)
1362 { 2313 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2314 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2315 EV_INVOKE_PENDING;
1365 } 2316 }
1366#endif 2317#endif
1367 2318
2319#if EV_PREPARE_ENABLE
1368 /* queue check watchers (and execute them) */ 2320 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2321 if (expect_false (preparecnt))
1370 { 2322 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2323 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1373 } 2325 }
2326#endif
1374 2327
1375 if (expect_false (!activecnt)) 2328 if (expect_false (loop_done))
1376 break; 2329 break;
1377 2330
1378 /* we might have forked, so reify kernel state if necessary */ 2331 /* we might have forked, so reify kernel state if necessary */
1379 if (expect_false (postfork)) 2332 if (expect_false (postfork))
1380 loop_fork (EV_A); 2333 loop_fork (EV_A);
1382 /* update fd-related kernel structures */ 2335 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 2336 fd_reify (EV_A);
1384 2337
1385 /* calculate blocking time */ 2338 /* calculate blocking time */
1386 { 2339 {
1387 ev_tstamp block; 2340 ev_tstamp waittime = 0.;
2341 ev_tstamp sleeptime = 0.;
1388 2342
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2343 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 2344 {
2345 /* remember old timestamp for io_blocktime calculation */
2346 ev_tstamp prev_mn_now = mn_now;
2347
1393 /* update time to cancel out callback processing overhead */ 2348 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 2349 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 2350
1404 block = MAX_BLOCKTIME; 2351 waittime = MAX_BLOCKTIME;
1405 2352
1406 if (timercnt) 2353 if (timercnt)
1407 { 2354 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2355 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 2356 if (waittime > to) waittime = to;
1410 } 2357 }
1411 2358
1412#if EV_PERIODIC_ENABLE 2359#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 2360 if (periodiccnt)
1414 { 2361 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2362 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 2363 if (waittime > to) waittime = to;
1417 } 2364 }
1418#endif 2365#endif
1419 2366
2367 /* don't let timeouts decrease the waittime below timeout_blocktime */
2368 if (expect_false (waittime < timeout_blocktime))
2369 waittime = timeout_blocktime;
2370
2371 /* extra check because io_blocktime is commonly 0 */
1420 if (expect_false (block < 0.)) block = 0.; 2372 if (expect_false (io_blocktime))
2373 {
2374 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2375
2376 if (sleeptime > waittime - backend_fudge)
2377 sleeptime = waittime - backend_fudge;
2378
2379 if (expect_true (sleeptime > 0.))
2380 {
2381 ev_sleep (sleeptime);
2382 waittime -= sleeptime;
2383 }
2384 }
1421 } 2385 }
1422 2386
2387#if EV_FEATURE_API
2388 ++loop_count;
2389#endif
2390 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1423 backend_poll (EV_A_ block); 2391 backend_poll (EV_A_ waittime);
2392 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2393
2394 /* update ev_rt_now, do magic */
2395 time_update (EV_A_ waittime + sleeptime);
1424 } 2396 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 2397
1429 /* queue pending timers and reschedule them */ 2398 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2399 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2400#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2401 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2402#endif
1434 2403
2404#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2405 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2406 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2407#endif
1438 2408
2409#if EV_CHECK_ENABLE
1439 /* queue check watchers, to be executed first */ 2410 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2411 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2412 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2413#endif
1442 2414
1443 call_pending (EV_A); 2415 EV_INVOKE_PENDING;
1444
1445 } 2416 }
1446 while (expect_true (activecnt && !loop_done)); 2417 while (expect_true (
2418 activecnt
2419 && !loop_done
2420 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2421 ));
1447 2422
1448 if (loop_done == EVUNLOOP_ONE) 2423 if (loop_done == EVUNLOOP_ONE)
1449 loop_done = EVUNLOOP_CANCEL; 2424 loop_done = EVUNLOOP_CANCEL;
2425
2426#if EV_FEATURE_API
2427 --loop_depth;
2428#endif
1450} 2429}
1451 2430
1452void 2431void
1453ev_unloop (EV_P_ int how) 2432ev_unloop (EV_P_ int how)
1454{ 2433{
1455 loop_done = how; 2434 loop_done = how;
1456} 2435}
1457 2436
2437void
2438ev_ref (EV_P)
2439{
2440 ++activecnt;
2441}
2442
2443void
2444ev_unref (EV_P)
2445{
2446 --activecnt;
2447}
2448
2449void
2450ev_now_update (EV_P)
2451{
2452 time_update (EV_A_ 1e100);
2453}
2454
2455void
2456ev_suspend (EV_P)
2457{
2458 ev_now_update (EV_A);
2459}
2460
2461void
2462ev_resume (EV_P)
2463{
2464 ev_tstamp mn_prev = mn_now;
2465
2466 ev_now_update (EV_A);
2467 timers_reschedule (EV_A_ mn_now - mn_prev);
2468#if EV_PERIODIC_ENABLE
2469 /* TODO: really do this? */
2470 periodics_reschedule (EV_A);
2471#endif
2472}
2473
1458/*****************************************************************************/ 2474/*****************************************************************************/
2475/* singly-linked list management, used when the expected list length is short */
1459 2476
1460void inline_size 2477inline_size void
1461wlist_add (WL *head, WL elem) 2478wlist_add (WL *head, WL elem)
1462{ 2479{
1463 elem->next = *head; 2480 elem->next = *head;
1464 *head = elem; 2481 *head = elem;
1465} 2482}
1466 2483
1467void inline_size 2484inline_size void
1468wlist_del (WL *head, WL elem) 2485wlist_del (WL *head, WL elem)
1469{ 2486{
1470 while (*head) 2487 while (*head)
1471 { 2488 {
1472 if (*head == elem) 2489 if (expect_true (*head == elem))
1473 { 2490 {
1474 *head = elem->next; 2491 *head = elem->next;
1475 return; 2492 break;
1476 } 2493 }
1477 2494
1478 head = &(*head)->next; 2495 head = &(*head)->next;
1479 } 2496 }
1480} 2497}
1481 2498
1482void inline_speed 2499/* internal, faster, version of ev_clear_pending */
2500inline_speed void
1483ev_clear_pending (EV_P_ W w) 2501clear_pending (EV_P_ W w)
1484{ 2502{
1485 if (w->pending) 2503 if (w->pending)
1486 { 2504 {
1487 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2505 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1488 w->pending = 0; 2506 w->pending = 0;
1489 } 2507 }
1490} 2508}
1491 2509
1492void inline_speed 2510int
2511ev_clear_pending (EV_P_ void *w)
2512{
2513 W w_ = (W)w;
2514 int pending = w_->pending;
2515
2516 if (expect_true (pending))
2517 {
2518 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2519 p->w = (W)&pending_w;
2520 w_->pending = 0;
2521 return p->events;
2522 }
2523 else
2524 return 0;
2525}
2526
2527inline_size void
2528pri_adjust (EV_P_ W w)
2529{
2530 int pri = ev_priority (w);
2531 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2532 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2533 ev_set_priority (w, pri);
2534}
2535
2536inline_speed void
1493ev_start (EV_P_ W w, int active) 2537ev_start (EV_P_ W w, int active)
1494{ 2538{
1495 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2539 pri_adjust (EV_A_ w);
1496 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1497
1498 w->active = active; 2540 w->active = active;
1499 ev_ref (EV_A); 2541 ev_ref (EV_A);
1500} 2542}
1501 2543
1502void inline_size 2544inline_size void
1503ev_stop (EV_P_ W w) 2545ev_stop (EV_P_ W w)
1504{ 2546{
1505 ev_unref (EV_A); 2547 ev_unref (EV_A);
1506 w->active = 0; 2548 w->active = 0;
1507} 2549}
1508 2550
1509/*****************************************************************************/ 2551/*****************************************************************************/
1510 2552
1511void 2553void noinline
1512ev_io_start (EV_P_ ev_io *w) 2554ev_io_start (EV_P_ ev_io *w)
1513{ 2555{
1514 int fd = w->fd; 2556 int fd = w->fd;
1515 2557
1516 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
1517 return; 2559 return;
1518 2560
1519 assert (("ev_io_start called with negative fd", fd >= 0)); 2561 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2562 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2563
2564 EV_FREQUENT_CHECK;
1520 2565
1521 ev_start (EV_A_ (W)w, 1); 2566 ev_start (EV_A_ (W)w, 1);
1522 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2567 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1523 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2568 wlist_add (&anfds[fd].head, (WL)w);
1524 2569
1525 fd_change (EV_A_ fd); 2570 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1526} 2571 w->events &= ~EV__IOFDSET;
1527 2572
1528void 2573 EV_FREQUENT_CHECK;
2574}
2575
2576void noinline
1529ev_io_stop (EV_P_ ev_io *w) 2577ev_io_stop (EV_P_ ev_io *w)
1530{ 2578{
1531 ev_clear_pending (EV_A_ (W)w); 2579 clear_pending (EV_A_ (W)w);
1532 if (expect_false (!ev_is_active (w))) 2580 if (expect_false (!ev_is_active (w)))
1533 return; 2581 return;
1534 2582
1535 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2583 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1536 2584
2585 EV_FREQUENT_CHECK;
2586
1537 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2587 wlist_del (&anfds[w->fd].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1539 2589
1540 fd_change (EV_A_ w->fd); 2590 fd_change (EV_A_ w->fd, 1);
1541}
1542 2591
1543void 2592 EV_FREQUENT_CHECK;
2593}
2594
2595void noinline
1544ev_timer_start (EV_P_ ev_timer *w) 2596ev_timer_start (EV_P_ ev_timer *w)
1545{ 2597{
1546 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1547 return; 2599 return;
1548 2600
1549 ((WT)w)->at += mn_now; 2601 ev_at (w) += mn_now;
1550 2602
1551 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2603 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1552 2604
2605 EV_FREQUENT_CHECK;
2606
2607 ++timercnt;
1553 ev_start (EV_A_ (W)w, ++timercnt); 2608 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1554 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2609 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1555 timers [timercnt - 1] = w; 2610 ANHE_w (timers [ev_active (w)]) = (WT)w;
1556 upheap ((WT *)timers, timercnt - 1); 2611 ANHE_at_cache (timers [ev_active (w)]);
2612 upheap (timers, ev_active (w));
1557 2613
2614 EV_FREQUENT_CHECK;
2615
1558 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2616 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1559} 2617}
1560 2618
1561void 2619void noinline
1562ev_timer_stop (EV_P_ ev_timer *w) 2620ev_timer_stop (EV_P_ ev_timer *w)
1563{ 2621{
1564 ev_clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
1565 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
1566 return; 2624 return;
1567 2625
1568 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2626 EV_FREQUENT_CHECK;
1569 2627
1570 { 2628 {
1571 int active = ((W)w)->active; 2629 int active = ev_active (w);
1572 2630
2631 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2632
2633 --timercnt;
2634
1573 if (expect_true (--active < --timercnt)) 2635 if (expect_true (active < timercnt + HEAP0))
1574 { 2636 {
1575 timers [active] = timers [timercnt]; 2637 timers [active] = timers [timercnt + HEAP0];
1576 adjustheap ((WT *)timers, timercnt, active); 2638 adjustheap (timers, timercnt, active);
1577 } 2639 }
1578 } 2640 }
1579 2641
1580 ((WT)w)->at -= mn_now; 2642 ev_at (w) -= mn_now;
1581 2643
1582 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
1583}
1584 2645
1585void 2646 EV_FREQUENT_CHECK;
2647}
2648
2649void noinline
1586ev_timer_again (EV_P_ ev_timer *w) 2650ev_timer_again (EV_P_ ev_timer *w)
1587{ 2651{
2652 EV_FREQUENT_CHECK;
2653
1588 if (ev_is_active (w)) 2654 if (ev_is_active (w))
1589 { 2655 {
1590 if (w->repeat) 2656 if (w->repeat)
1591 { 2657 {
1592 ((WT)w)->at = mn_now + w->repeat; 2658 ev_at (w) = mn_now + w->repeat;
2659 ANHE_at_cache (timers [ev_active (w)]);
1593 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2660 adjustheap (timers, timercnt, ev_active (w));
1594 } 2661 }
1595 else 2662 else
1596 ev_timer_stop (EV_A_ w); 2663 ev_timer_stop (EV_A_ w);
1597 } 2664 }
1598 else if (w->repeat) 2665 else if (w->repeat)
1599 { 2666 {
1600 w->at = w->repeat; 2667 ev_at (w) = w->repeat;
1601 ev_timer_start (EV_A_ w); 2668 ev_timer_start (EV_A_ w);
1602 } 2669 }
2670
2671 EV_FREQUENT_CHECK;
2672}
2673
2674ev_tstamp
2675ev_timer_remaining (EV_P_ ev_timer *w)
2676{
2677 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1603} 2678}
1604 2679
1605#if EV_PERIODIC_ENABLE 2680#if EV_PERIODIC_ENABLE
1606void 2681void noinline
1607ev_periodic_start (EV_P_ ev_periodic *w) 2682ev_periodic_start (EV_P_ ev_periodic *w)
1608{ 2683{
1609 if (expect_false (ev_is_active (w))) 2684 if (expect_false (ev_is_active (w)))
1610 return; 2685 return;
1611 2686
1612 if (w->reschedule_cb) 2687 if (w->reschedule_cb)
1613 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1614 else if (w->interval) 2689 else if (w->interval)
1615 { 2690 {
1616 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2691 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1617 /* this formula differs from the one in periodic_reify because we do not always round up */ 2692 /* this formula differs from the one in periodic_reify because we do not always round up */
1618 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2693 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 } 2694 }
2695 else
2696 ev_at (w) = w->offset;
1620 2697
2698 EV_FREQUENT_CHECK;
2699
2700 ++periodiccnt;
1621 ev_start (EV_A_ (W)w, ++periodiccnt); 2701 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1622 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2702 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1623 periodics [periodiccnt - 1] = w; 2703 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)periodics, periodiccnt - 1); 2704 ANHE_at_cache (periodics [ev_active (w)]);
2705 upheap (periodics, ev_active (w));
1625 2706
2707 EV_FREQUENT_CHECK;
2708
1626 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2709 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1627} 2710}
1628 2711
1629void 2712void noinline
1630ev_periodic_stop (EV_P_ ev_periodic *w) 2713ev_periodic_stop (EV_P_ ev_periodic *w)
1631{ 2714{
1632 ev_clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
1634 return; 2717 return;
1635 2718
1636 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2719 EV_FREQUENT_CHECK;
1637 2720
1638 { 2721 {
1639 int active = ((W)w)->active; 2722 int active = ev_active (w);
1640 2723
2724 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2725
2726 --periodiccnt;
2727
1641 if (expect_true (--active < --periodiccnt)) 2728 if (expect_true (active < periodiccnt + HEAP0))
1642 { 2729 {
1643 periodics [active] = periodics [periodiccnt]; 2730 periodics [active] = periodics [periodiccnt + HEAP0];
1644 adjustheap ((WT *)periodics, periodiccnt, active); 2731 adjustheap (periodics, periodiccnt, active);
1645 } 2732 }
1646 } 2733 }
1647 2734
1648 ev_stop (EV_A_ (W)w); 2735 ev_stop (EV_A_ (W)w);
1649}
1650 2736
1651void 2737 EV_FREQUENT_CHECK;
2738}
2739
2740void noinline
1652ev_periodic_again (EV_P_ ev_periodic *w) 2741ev_periodic_again (EV_P_ ev_periodic *w)
1653{ 2742{
1654 /* TODO: use adjustheap and recalculation */ 2743 /* TODO: use adjustheap and recalculation */
1655 ev_periodic_stop (EV_A_ w); 2744 ev_periodic_stop (EV_A_ w);
1656 ev_periodic_start (EV_A_ w); 2745 ev_periodic_start (EV_A_ w);
1659 2748
1660#ifndef SA_RESTART 2749#ifndef SA_RESTART
1661# define SA_RESTART 0 2750# define SA_RESTART 0
1662#endif 2751#endif
1663 2752
1664void 2753#if EV_SIGNAL_ENABLE
2754
2755void noinline
1665ev_signal_start (EV_P_ ev_signal *w) 2756ev_signal_start (EV_P_ ev_signal *w)
1666{ 2757{
1667#if EV_MULTIPLICITY
1668 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1669#endif
1670 if (expect_false (ev_is_active (w))) 2758 if (expect_false (ev_is_active (w)))
1671 return; 2759 return;
1672 2760
1673 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2761 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2762
2763#if EV_MULTIPLICITY
2764 assert (("libev: a signal must not be attached to two different loops",
2765 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2766
2767 signals [w->signum - 1].loop = EV_A;
2768#endif
2769
2770 EV_FREQUENT_CHECK;
2771
2772#if EV_USE_SIGNALFD
2773 if (sigfd == -2)
2774 {
2775 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2776 if (sigfd < 0 && errno == EINVAL)
2777 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2778
2779 if (sigfd >= 0)
2780 {
2781 fd_intern (sigfd); /* doing it twice will not hurt */
2782
2783 sigemptyset (&sigfd_set);
2784
2785 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2786 ev_set_priority (&sigfd_w, EV_MAXPRI);
2787 ev_io_start (EV_A_ &sigfd_w);
2788 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2789 }
2790 }
2791
2792 if (sigfd >= 0)
2793 {
2794 /* TODO: check .head */
2795 sigaddset (&sigfd_set, w->signum);
2796 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2797
2798 signalfd (sigfd, &sigfd_set, 0);
2799 }
2800#endif
1674 2801
1675 ev_start (EV_A_ (W)w, 1); 2802 ev_start (EV_A_ (W)w, 1);
1676 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1677 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2803 wlist_add (&signals [w->signum - 1].head, (WL)w);
1678 2804
1679 if (!((WL)w)->next) 2805 if (!((WL)w)->next)
2806# if EV_USE_SIGNALFD
2807 if (sigfd < 0) /*TODO*/
2808# endif
1680 { 2809 {
1681#if _WIN32 2810# ifdef _WIN32
2811 evpipe_init (EV_A);
2812
1682 signal (w->signum, sighandler); 2813 signal (w->signum, ev_sighandler);
1683#else 2814# else
1684 struct sigaction sa; 2815 struct sigaction sa;
2816
2817 evpipe_init (EV_A);
2818
1685 sa.sa_handler = sighandler; 2819 sa.sa_handler = ev_sighandler;
1686 sigfillset (&sa.sa_mask); 2820 sigfillset (&sa.sa_mask);
1687 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2821 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1688 sigaction (w->signum, &sa, 0); 2822 sigaction (w->signum, &sa, 0);
2823
2824 sigemptyset (&sa.sa_mask);
2825 sigaddset (&sa.sa_mask, w->signum);
2826 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1689#endif 2827#endif
1690 } 2828 }
1691}
1692 2829
1693void 2830 EV_FREQUENT_CHECK;
2831}
2832
2833void noinline
1694ev_signal_stop (EV_P_ ev_signal *w) 2834ev_signal_stop (EV_P_ ev_signal *w)
1695{ 2835{
1696 ev_clear_pending (EV_A_ (W)w); 2836 clear_pending (EV_A_ (W)w);
1697 if (expect_false (!ev_is_active (w))) 2837 if (expect_false (!ev_is_active (w)))
1698 return; 2838 return;
1699 2839
2840 EV_FREQUENT_CHECK;
2841
1700 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2842 wlist_del (&signals [w->signum - 1].head, (WL)w);
1701 ev_stop (EV_A_ (W)w); 2843 ev_stop (EV_A_ (W)w);
1702 2844
1703 if (!signals [w->signum - 1].head) 2845 if (!signals [w->signum - 1].head)
2846 {
2847#if EV_MULTIPLICITY
2848 signals [w->signum - 1].loop = 0; /* unattach from signal */
2849#endif
2850#if EV_USE_SIGNALFD
2851 if (sigfd >= 0)
2852 {
2853 sigset_t ss;
2854
2855 sigemptyset (&ss);
2856 sigaddset (&ss, w->signum);
2857 sigdelset (&sigfd_set, w->signum);
2858
2859 signalfd (sigfd, &sigfd_set, 0);
2860 sigprocmask (SIG_UNBLOCK, &ss, 0);
2861 }
2862 else
2863#endif
1704 signal (w->signum, SIG_DFL); 2864 signal (w->signum, SIG_DFL);
2865 }
2866
2867 EV_FREQUENT_CHECK;
1705} 2868}
2869
2870#endif
2871
2872#if EV_CHILD_ENABLE
1706 2873
1707void 2874void
1708ev_child_start (EV_P_ ev_child *w) 2875ev_child_start (EV_P_ ev_child *w)
1709{ 2876{
1710#if EV_MULTIPLICITY 2877#if EV_MULTIPLICITY
1711 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1712#endif 2879#endif
1713 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
1714 return; 2881 return;
1715 2882
2883 EV_FREQUENT_CHECK;
2884
1716 ev_start (EV_A_ (W)w, 1); 2885 ev_start (EV_A_ (W)w, 1);
1717 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2887
2888 EV_FREQUENT_CHECK;
1718} 2889}
1719 2890
1720void 2891void
1721ev_child_stop (EV_P_ ev_child *w) 2892ev_child_stop (EV_P_ ev_child *w)
1722{ 2893{
1723 ev_clear_pending (EV_A_ (W)w); 2894 clear_pending (EV_A_ (W)w);
1724 if (expect_false (!ev_is_active (w))) 2895 if (expect_false (!ev_is_active (w)))
1725 return; 2896 return;
1726 2897
2898 EV_FREQUENT_CHECK;
2899
1727 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1728 ev_stop (EV_A_ (W)w); 2901 ev_stop (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
1729} 2904}
2905
2906#endif
1730 2907
1731#if EV_STAT_ENABLE 2908#if EV_STAT_ENABLE
1732 2909
1733# ifdef _WIN32 2910# ifdef _WIN32
1734# undef lstat 2911# undef lstat
1735# define lstat(a,b) _stati64 (a,b) 2912# define lstat(a,b) _stati64 (a,b)
1736# endif 2913# endif
1737 2914
1738#define DEF_STAT_INTERVAL 5.0074891 2915#define DEF_STAT_INTERVAL 5.0074891
2916#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1739#define MIN_STAT_INTERVAL 0.1074891 2917#define MIN_STAT_INTERVAL 0.1074891
1740 2918
1741static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2919static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1742 2920
1743#if EV_USE_INOTIFY 2921#if EV_USE_INOTIFY
1744# define EV_INOTIFY_BUFSIZE 8192 2922
2923/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2924# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1745 2925
1746static void noinline 2926static void noinline
1747infy_add (EV_P_ ev_stat *w) 2927infy_add (EV_P_ ev_stat *w)
1748{ 2928{
1749 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2929 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1750 2930
1751 if (w->wd < 0) 2931 if (w->wd >= 0)
2932 {
2933 struct statfs sfs;
2934
2935 /* now local changes will be tracked by inotify, but remote changes won't */
2936 /* unless the filesystem is known to be local, we therefore still poll */
2937 /* also do poll on <2.6.25, but with normal frequency */
2938
2939 if (!fs_2625)
2940 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2941 else if (!statfs (w->path, &sfs)
2942 && (sfs.f_type == 0x1373 /* devfs */
2943 || sfs.f_type == 0xEF53 /* ext2/3 */
2944 || sfs.f_type == 0x3153464a /* jfs */
2945 || sfs.f_type == 0x52654973 /* reiser3 */
2946 || sfs.f_type == 0x01021994 /* tempfs */
2947 || sfs.f_type == 0x58465342 /* xfs */))
2948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2949 else
2950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1752 { 2951 }
1753 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2952 else
2953 {
2954 /* can't use inotify, continue to stat */
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1754 2956
1755 /* monitor some parent directory for speedup hints */ 2957 /* if path is not there, monitor some parent directory for speedup hints */
2958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2959 /* but an efficiency issue only */
1756 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1757 { 2961 {
1758 char path [4096]; 2962 char path [4096];
1759 strcpy (path, w->path); 2963 strcpy (path, w->path);
1760 2964
1763 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1764 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1765 2969
1766 char *pend = strrchr (path, '/'); 2970 char *pend = strrchr (path, '/');
1767 2971
1768 if (!pend) 2972 if (!pend || pend == path)
1769 break; /* whoops, no '/', complain to your admin */ 2973 break;
1770 2974
1771 *pend = 0; 2975 *pend = 0;
1772 w->wd = inotify_add_watch (fs_fd, path, mask); 2976 w->wd = inotify_add_watch (fs_fd, path, mask);
1773 } 2977 }
1774 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1775 } 2979 }
1776 } 2980 }
1777 else
1778 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1779 2981
1780 if (w->wd >= 0) 2982 if (w->wd >= 0)
1781 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2984
2985 /* now re-arm timer, if required */
2986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2987 ev_timer_again (EV_A_ &w->timer);
2988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1782} 2989}
1783 2990
1784static void noinline 2991static void noinline
1785infy_del (EV_P_ ev_stat *w) 2992infy_del (EV_P_ ev_stat *w)
1786{ 2993{
1789 2996
1790 if (wd < 0) 2997 if (wd < 0)
1791 return; 2998 return;
1792 2999
1793 w->wd = -2; 3000 w->wd = -2;
1794 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1795 wlist_del (&fs_hash [slot].head, (WL)w); 3002 wlist_del (&fs_hash [slot].head, (WL)w);
1796 3003
1797 /* remove this watcher, if others are watching it, they will rearm */ 3004 /* remove this watcher, if others are watching it, they will rearm */
1798 inotify_rm_watch (fs_fd, wd); 3005 inotify_rm_watch (fs_fd, wd);
1799} 3006}
1800 3007
1801static void noinline 3008static void noinline
1802infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3009infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1803{ 3010{
1804 if (slot < 0) 3011 if (slot < 0)
1805 /* overflow, need to check for all hahs slots */ 3012 /* overflow, need to check for all hash slots */
1806 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1807 infy_wd (EV_A_ slot, wd, ev); 3014 infy_wd (EV_A_ slot, wd, ev);
1808 else 3015 else
1809 { 3016 {
1810 WL w_; 3017 WL w_;
1811 3018
1812 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1813 { 3020 {
1814 ev_stat *w = (ev_stat *)w_; 3021 ev_stat *w = (ev_stat *)w_;
1815 w_ = w_->next; /* lets us remove this watcher and all before it */ 3022 w_ = w_->next; /* lets us remove this watcher and all before it */
1816 3023
1817 if (w->wd == wd || wd == -1) 3024 if (w->wd == wd || wd == -1)
1818 { 3025 {
1819 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1820 { 3027 {
3028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1821 w->wd = -1; 3029 w->wd = -1;
1822 infy_add (EV_A_ w); /* re-add, no matter what */ 3030 infy_add (EV_A_ w); /* re-add, no matter what */
1823 } 3031 }
1824 3032
1825 stat_timer_cb (EV_A_ &w->timer, 0); 3033 stat_timer_cb (EV_A_ &w->timer, 0);
1830 3038
1831static void 3039static void
1832infy_cb (EV_P_ ev_io *w, int revents) 3040infy_cb (EV_P_ ev_io *w, int revents)
1833{ 3041{
1834 char buf [EV_INOTIFY_BUFSIZE]; 3042 char buf [EV_INOTIFY_BUFSIZE];
1835 struct inotify_event *ev = (struct inotify_event *)buf;
1836 int ofs; 3043 int ofs;
1837 int len = read (fs_fd, buf, sizeof (buf)); 3044 int len = read (fs_fd, buf, sizeof (buf));
1838 3045
1839 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3046 for (ofs = 0; ofs < len; )
3047 {
3048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1840 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3050 ofs += sizeof (struct inotify_event) + ev->len;
3051 }
1841} 3052}
1842 3053
1843void inline_size 3054inline_size unsigned int
3055ev_linux_version (void)
3056{
3057 struct utsname buf;
3058 unsigned int v;
3059 int i;
3060 char *p = buf.release;
3061
3062 if (uname (&buf))
3063 return 0;
3064
3065 for (i = 3+1; --i; )
3066 {
3067 unsigned int c = 0;
3068
3069 for (;;)
3070 {
3071 if (*p >= '0' && *p <= '9')
3072 c = c * 10 + *p++ - '0';
3073 else
3074 {
3075 p += *p == '.';
3076 break;
3077 }
3078 }
3079
3080 v = (v << 8) | c;
3081 }
3082
3083 return v;
3084}
3085
3086inline_size void
3087ev_check_2625 (EV_P)
3088{
3089 /* kernels < 2.6.25 are borked
3090 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3091 */
3092 if (ev_linux_version () < 0x020619)
3093 return;
3094
3095 fs_2625 = 1;
3096}
3097
3098inline_size int
3099infy_newfd (void)
3100{
3101#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3102 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3103 if (fd >= 0)
3104 return fd;
3105#endif
3106 return inotify_init ();
3107}
3108
3109inline_size void
1844infy_init (EV_P) 3110infy_init (EV_P)
1845{ 3111{
1846 if (fs_fd != -2) 3112 if (fs_fd != -2)
1847 return; 3113 return;
1848 3114
3115 fs_fd = -1;
3116
3117 ev_check_2625 (EV_A);
3118
1849 fs_fd = inotify_init (); 3119 fs_fd = infy_newfd ();
1850 3120
1851 if (fs_fd >= 0) 3121 if (fs_fd >= 0)
1852 { 3122 {
3123 fd_intern (fs_fd);
1853 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3124 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1854 ev_set_priority (&fs_w, EV_MAXPRI); 3125 ev_set_priority (&fs_w, EV_MAXPRI);
1855 ev_io_start (EV_A_ &fs_w); 3126 ev_io_start (EV_A_ &fs_w);
3127 ev_unref (EV_A);
1856 } 3128 }
1857} 3129}
1858 3130
1859void inline_size 3131inline_size void
1860infy_fork (EV_P) 3132infy_fork (EV_P)
1861{ 3133{
1862 int slot; 3134 int slot;
1863 3135
1864 if (fs_fd < 0) 3136 if (fs_fd < 0)
1865 return; 3137 return;
1866 3138
3139 ev_ref (EV_A);
3140 ev_io_stop (EV_A_ &fs_w);
1867 close (fs_fd); 3141 close (fs_fd);
1868 fs_fd = inotify_init (); 3142 fs_fd = infy_newfd ();
1869 3143
3144 if (fs_fd >= 0)
3145 {
3146 fd_intern (fs_fd);
3147 ev_io_set (&fs_w, fs_fd, EV_READ);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151
1870 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3152 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1871 { 3153 {
1872 WL w_ = fs_hash [slot].head; 3154 WL w_ = fs_hash [slot].head;
1873 fs_hash [slot].head = 0; 3155 fs_hash [slot].head = 0;
1874 3156
1875 while (w_) 3157 while (w_)
1880 w->wd = -1; 3162 w->wd = -1;
1881 3163
1882 if (fs_fd >= 0) 3164 if (fs_fd >= 0)
1883 infy_add (EV_A_ w); /* re-add, no matter what */ 3165 infy_add (EV_A_ w); /* re-add, no matter what */
1884 else 3166 else
3167 {
3168 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3169 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1885 ev_timer_start (EV_A_ &w->timer); 3170 ev_timer_again (EV_A_ &w->timer);
3171 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3172 }
1886 } 3173 }
1887
1888 } 3174 }
1889} 3175}
1890 3176
3177#endif
3178
3179#ifdef _WIN32
3180# define EV_LSTAT(p,b) _stati64 (p, b)
3181#else
3182# define EV_LSTAT(p,b) lstat (p, b)
1891#endif 3183#endif
1892 3184
1893void 3185void
1894ev_stat_stat (EV_P_ ev_stat *w) 3186ev_stat_stat (EV_P_ ev_stat *w)
1895{ 3187{
1902static void noinline 3194static void noinline
1903stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3195stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1904{ 3196{
1905 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3197 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1906 3198
1907 /* we copy this here each the time so that */ 3199 ev_statdata prev = w->attr;
1908 /* prev has the old value when the callback gets invoked */
1909 w->prev = w->attr;
1910 ev_stat_stat (EV_A_ w); 3200 ev_stat_stat (EV_A_ w);
1911 3201
1912 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3202 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1913 if ( 3203 if (
1914 w->prev.st_dev != w->attr.st_dev 3204 prev.st_dev != w->attr.st_dev
1915 || w->prev.st_ino != w->attr.st_ino 3205 || prev.st_ino != w->attr.st_ino
1916 || w->prev.st_mode != w->attr.st_mode 3206 || prev.st_mode != w->attr.st_mode
1917 || w->prev.st_nlink != w->attr.st_nlink 3207 || prev.st_nlink != w->attr.st_nlink
1918 || w->prev.st_uid != w->attr.st_uid 3208 || prev.st_uid != w->attr.st_uid
1919 || w->prev.st_gid != w->attr.st_gid 3209 || prev.st_gid != w->attr.st_gid
1920 || w->prev.st_rdev != w->attr.st_rdev 3210 || prev.st_rdev != w->attr.st_rdev
1921 || w->prev.st_size != w->attr.st_size 3211 || prev.st_size != w->attr.st_size
1922 || w->prev.st_atime != w->attr.st_atime 3212 || prev.st_atime != w->attr.st_atime
1923 || w->prev.st_mtime != w->attr.st_mtime 3213 || prev.st_mtime != w->attr.st_mtime
1924 || w->prev.st_ctime != w->attr.st_ctime 3214 || prev.st_ctime != w->attr.st_ctime
1925 ) { 3215 ) {
3216 /* we only update w->prev on actual differences */
3217 /* in case we test more often than invoke the callback, */
3218 /* to ensure that prev is always different to attr */
3219 w->prev = prev;
3220
1926 #if EV_USE_INOTIFY 3221 #if EV_USE_INOTIFY
3222 if (fs_fd >= 0)
3223 {
1927 infy_del (EV_A_ w); 3224 infy_del (EV_A_ w);
1928 infy_add (EV_A_ w); 3225 infy_add (EV_A_ w);
1929 ev_stat_stat (EV_A_ w); /* avoid race... */ 3226 ev_stat_stat (EV_A_ w); /* avoid race... */
3227 }
1930 #endif 3228 #endif
1931 3229
1932 ev_feed_event (EV_A_ w, EV_STAT); 3230 ev_feed_event (EV_A_ w, EV_STAT);
1933 } 3231 }
1934} 3232}
1937ev_stat_start (EV_P_ ev_stat *w) 3235ev_stat_start (EV_P_ ev_stat *w)
1938{ 3236{
1939 if (expect_false (ev_is_active (w))) 3237 if (expect_false (ev_is_active (w)))
1940 return; 3238 return;
1941 3239
1942 /* since we use memcmp, we need to clear any padding data etc. */
1943 memset (&w->prev, 0, sizeof (ev_statdata));
1944 memset (&w->attr, 0, sizeof (ev_statdata));
1945
1946 ev_stat_stat (EV_A_ w); 3240 ev_stat_stat (EV_A_ w);
1947 3241
3242 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1948 if (w->interval < MIN_STAT_INTERVAL) 3243 w->interval = MIN_STAT_INTERVAL;
1949 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1950 3244
1951 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3245 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1952 ev_set_priority (&w->timer, ev_priority (w)); 3246 ev_set_priority (&w->timer, ev_priority (w));
1953 3247
1954#if EV_USE_INOTIFY 3248#if EV_USE_INOTIFY
1955 infy_init (EV_A); 3249 infy_init (EV_A);
1956 3250
1957 if (fs_fd >= 0) 3251 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); 3252 infy_add (EV_A_ w);
1959 else 3253 else
1960#endif 3254#endif
3255 {
1961 ev_timer_start (EV_A_ &w->timer); 3256 ev_timer_again (EV_A_ &w->timer);
3257 ev_unref (EV_A);
3258 }
1962 3259
1963 ev_start (EV_A_ (W)w, 1); 3260 ev_start (EV_A_ (W)w, 1);
3261
3262 EV_FREQUENT_CHECK;
1964} 3263}
1965 3264
1966void 3265void
1967ev_stat_stop (EV_P_ ev_stat *w) 3266ev_stat_stop (EV_P_ ev_stat *w)
1968{ 3267{
1969 ev_clear_pending (EV_A_ (W)w); 3268 clear_pending (EV_A_ (W)w);
1970 if (expect_false (!ev_is_active (w))) 3269 if (expect_false (!ev_is_active (w)))
1971 return; 3270 return;
1972 3271
3272 EV_FREQUENT_CHECK;
3273
1973#if EV_USE_INOTIFY 3274#if EV_USE_INOTIFY
1974 infy_del (EV_A_ w); 3275 infy_del (EV_A_ w);
1975#endif 3276#endif
3277
3278 if (ev_is_active (&w->timer))
3279 {
3280 ev_ref (EV_A);
1976 ev_timer_stop (EV_A_ &w->timer); 3281 ev_timer_stop (EV_A_ &w->timer);
3282 }
1977 3283
1978 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
1979}
1980#endif
1981 3285
3286 EV_FREQUENT_CHECK;
3287}
3288#endif
3289
3290#if EV_IDLE_ENABLE
1982void 3291void
1983ev_idle_start (EV_P_ ev_idle *w) 3292ev_idle_start (EV_P_ ev_idle *w)
1984{ 3293{
1985 if (expect_false (ev_is_active (w))) 3294 if (expect_false (ev_is_active (w)))
1986 return; 3295 return;
1987 3296
3297 pri_adjust (EV_A_ (W)w);
3298
3299 EV_FREQUENT_CHECK;
3300
3301 {
3302 int active = ++idlecnt [ABSPRI (w)];
3303
3304 ++idleall;
1988 ev_start (EV_A_ (W)w, ++idlecnt); 3305 ev_start (EV_A_ (W)w, active);
3306
1989 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3307 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1990 idles [idlecnt - 1] = w; 3308 idles [ABSPRI (w)][active - 1] = w;
3309 }
3310
3311 EV_FREQUENT_CHECK;
1991} 3312}
1992 3313
1993void 3314void
1994ev_idle_stop (EV_P_ ev_idle *w) 3315ev_idle_stop (EV_P_ ev_idle *w)
1995{ 3316{
1996 ev_clear_pending (EV_A_ (W)w); 3317 clear_pending (EV_A_ (W)w);
1997 if (expect_false (!ev_is_active (w))) 3318 if (expect_false (!ev_is_active (w)))
1998 return; 3319 return;
1999 3320
3321 EV_FREQUENT_CHECK;
3322
2000 { 3323 {
2001 int active = ((W)w)->active; 3324 int active = ev_active (w);
2002 idles [active - 1] = idles [--idlecnt]; 3325
2003 ((W)idles [active - 1])->active = active; 3326 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3327 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3328
3329 ev_stop (EV_A_ (W)w);
3330 --idleall;
2004 } 3331 }
2005 3332
2006 ev_stop (EV_A_ (W)w); 3333 EV_FREQUENT_CHECK;
2007} 3334}
3335#endif
2008 3336
3337#if EV_PREPARE_ENABLE
2009void 3338void
2010ev_prepare_start (EV_P_ ev_prepare *w) 3339ev_prepare_start (EV_P_ ev_prepare *w)
2011{ 3340{
2012 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2013 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2014 3345
2015 ev_start (EV_A_ (W)w, ++preparecnt); 3346 ev_start (EV_A_ (W)w, ++preparecnt);
2016 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3347 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2017 prepares [preparecnt - 1] = w; 3348 prepares [preparecnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2018} 3351}
2019 3352
2020void 3353void
2021ev_prepare_stop (EV_P_ ev_prepare *w) 3354ev_prepare_stop (EV_P_ ev_prepare *w)
2022{ 3355{
2023 ev_clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2024 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2025 return; 3358 return;
2026 3359
3360 EV_FREQUENT_CHECK;
3361
2027 { 3362 {
2028 int active = ((W)w)->active; 3363 int active = ev_active (w);
3364
2029 prepares [active - 1] = prepares [--preparecnt]; 3365 prepares [active - 1] = prepares [--preparecnt];
2030 ((W)prepares [active - 1])->active = active; 3366 ev_active (prepares [active - 1]) = active;
2031 } 3367 }
2032 3368
2033 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
2034}
2035 3370
3371 EV_FREQUENT_CHECK;
3372}
3373#endif
3374
3375#if EV_CHECK_ENABLE
2036void 3376void
2037ev_check_start (EV_P_ ev_check *w) 3377ev_check_start (EV_P_ ev_check *w)
2038{ 3378{
2039 if (expect_false (ev_is_active (w))) 3379 if (expect_false (ev_is_active (w)))
2040 return; 3380 return;
3381
3382 EV_FREQUENT_CHECK;
2041 3383
2042 ev_start (EV_A_ (W)w, ++checkcnt); 3384 ev_start (EV_A_ (W)w, ++checkcnt);
2043 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2044 checks [checkcnt - 1] = w; 3386 checks [checkcnt - 1] = w;
3387
3388 EV_FREQUENT_CHECK;
2045} 3389}
2046 3390
2047void 3391void
2048ev_check_stop (EV_P_ ev_check *w) 3392ev_check_stop (EV_P_ ev_check *w)
2049{ 3393{
2050 ev_clear_pending (EV_A_ (W)w); 3394 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 3395 if (expect_false (!ev_is_active (w)))
2052 return; 3396 return;
2053 3397
3398 EV_FREQUENT_CHECK;
3399
2054 { 3400 {
2055 int active = ((W)w)->active; 3401 int active = ev_active (w);
3402
2056 checks [active - 1] = checks [--checkcnt]; 3403 checks [active - 1] = checks [--checkcnt];
2057 ((W)checks [active - 1])->active = active; 3404 ev_active (checks [active - 1]) = active;
2058 } 3405 }
2059 3406
2060 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
2061} 3410}
3411#endif
2062 3412
2063#if EV_EMBED_ENABLE 3413#if EV_EMBED_ENABLE
2064void noinline 3414void noinline
2065ev_embed_sweep (EV_P_ ev_embed *w) 3415ev_embed_sweep (EV_P_ ev_embed *w)
2066{ 3416{
2067 ev_loop (w->loop, EVLOOP_NONBLOCK); 3417 ev_loop (w->other, EVLOOP_NONBLOCK);
2068} 3418}
2069 3419
2070static void 3420static void
2071embed_cb (EV_P_ ev_io *io, int revents) 3421embed_io_cb (EV_P_ ev_io *io, int revents)
2072{ 3422{
2073 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3423 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2074 3424
2075 if (ev_cb (w)) 3425 if (ev_cb (w))
2076 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3426 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2077 else 3427 else
2078 ev_embed_sweep (loop, w); 3428 ev_loop (w->other, EVLOOP_NONBLOCK);
2079} 3429}
3430
3431static void
3432embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3433{
3434 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3435
3436 {
3437 EV_P = w->other;
3438
3439 while (fdchangecnt)
3440 {
3441 fd_reify (EV_A);
3442 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3443 }
3444 }
3445}
3446
3447static void
3448embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3449{
3450 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3451
3452 ev_embed_stop (EV_A_ w);
3453
3454 {
3455 EV_P = w->other;
3456
3457 ev_loop_fork (EV_A);
3458 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3459 }
3460
3461 ev_embed_start (EV_A_ w);
3462}
3463
3464#if 0
3465static void
3466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3467{
3468 ev_idle_stop (EV_A_ idle);
3469}
3470#endif
2080 3471
2081void 3472void
2082ev_embed_start (EV_P_ ev_embed *w) 3473ev_embed_start (EV_P_ ev_embed *w)
2083{ 3474{
2084 if (expect_false (ev_is_active (w))) 3475 if (expect_false (ev_is_active (w)))
2085 return; 3476 return;
2086 3477
2087 { 3478 {
2088 struct ev_loop *loop = w->loop; 3479 EV_P = w->other;
2089 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3480 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2090 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2091 } 3482 }
3483
3484 EV_FREQUENT_CHECK;
2092 3485
2093 ev_set_priority (&w->io, ev_priority (w)); 3486 ev_set_priority (&w->io, ev_priority (w));
2094 ev_io_start (EV_A_ &w->io); 3487 ev_io_start (EV_A_ &w->io);
2095 3488
3489 ev_prepare_init (&w->prepare, embed_prepare_cb);
3490 ev_set_priority (&w->prepare, EV_MINPRI);
3491 ev_prepare_start (EV_A_ &w->prepare);
3492
3493 ev_fork_init (&w->fork, embed_fork_cb);
3494 ev_fork_start (EV_A_ &w->fork);
3495
3496 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3497
2096 ev_start (EV_A_ (W)w, 1); 3498 ev_start (EV_A_ (W)w, 1);
3499
3500 EV_FREQUENT_CHECK;
2097} 3501}
2098 3502
2099void 3503void
2100ev_embed_stop (EV_P_ ev_embed *w) 3504ev_embed_stop (EV_P_ ev_embed *w)
2101{ 3505{
2102 ev_clear_pending (EV_A_ (W)w); 3506 clear_pending (EV_A_ (W)w);
2103 if (expect_false (!ev_is_active (w))) 3507 if (expect_false (!ev_is_active (w)))
2104 return; 3508 return;
2105 3509
3510 EV_FREQUENT_CHECK;
3511
2106 ev_io_stop (EV_A_ &w->io); 3512 ev_io_stop (EV_A_ &w->io);
3513 ev_prepare_stop (EV_A_ &w->prepare);
3514 ev_fork_stop (EV_A_ &w->fork);
2107 3515
2108 ev_stop (EV_A_ (W)w); 3516 ev_stop (EV_A_ (W)w);
3517
3518 EV_FREQUENT_CHECK;
2109} 3519}
2110#endif 3520#endif
2111 3521
2112#if EV_FORK_ENABLE 3522#if EV_FORK_ENABLE
2113void 3523void
2114ev_fork_start (EV_P_ ev_fork *w) 3524ev_fork_start (EV_P_ ev_fork *w)
2115{ 3525{
2116 if (expect_false (ev_is_active (w))) 3526 if (expect_false (ev_is_active (w)))
2117 return; 3527 return;
3528
3529 EV_FREQUENT_CHECK;
2118 3530
2119 ev_start (EV_A_ (W)w, ++forkcnt); 3531 ev_start (EV_A_ (W)w, ++forkcnt);
2120 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2121 forks [forkcnt - 1] = w; 3533 forks [forkcnt - 1] = w;
3534
3535 EV_FREQUENT_CHECK;
2122} 3536}
2123 3537
2124void 3538void
2125ev_fork_stop (EV_P_ ev_fork *w) 3539ev_fork_stop (EV_P_ ev_fork *w)
2126{ 3540{
2127 ev_clear_pending (EV_A_ (W)w); 3541 clear_pending (EV_A_ (W)w);
2128 if (expect_false (!ev_is_active (w))) 3542 if (expect_false (!ev_is_active (w)))
2129 return; 3543 return;
2130 3544
3545 EV_FREQUENT_CHECK;
3546
2131 { 3547 {
2132 int active = ((W)w)->active; 3548 int active = ev_active (w);
3549
2133 forks [active - 1] = forks [--forkcnt]; 3550 forks [active - 1] = forks [--forkcnt];
2134 ((W)forks [active - 1])->active = active; 3551 ev_active (forks [active - 1]) = active;
2135 } 3552 }
2136 3553
2137 ev_stop (EV_A_ (W)w); 3554 ev_stop (EV_A_ (W)w);
3555
3556 EV_FREQUENT_CHECK;
3557}
3558#endif
3559
3560#if EV_ASYNC_ENABLE
3561void
3562ev_async_start (EV_P_ ev_async *w)
3563{
3564 if (expect_false (ev_is_active (w)))
3565 return;
3566
3567 evpipe_init (EV_A);
3568
3569 EV_FREQUENT_CHECK;
3570
3571 ev_start (EV_A_ (W)w, ++asynccnt);
3572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3573 asyncs [asynccnt - 1] = w;
3574
3575 EV_FREQUENT_CHECK;
3576}
3577
3578void
3579ev_async_stop (EV_P_ ev_async *w)
3580{
3581 clear_pending (EV_A_ (W)w);
3582 if (expect_false (!ev_is_active (w)))
3583 return;
3584
3585 EV_FREQUENT_CHECK;
3586
3587 {
3588 int active = ev_active (w);
3589
3590 asyncs [active - 1] = asyncs [--asynccnt];
3591 ev_active (asyncs [active - 1]) = active;
3592 }
3593
3594 ev_stop (EV_A_ (W)w);
3595
3596 EV_FREQUENT_CHECK;
3597}
3598
3599void
3600ev_async_send (EV_P_ ev_async *w)
3601{
3602 w->sent = 1;
3603 evpipe_write (EV_A_ &async_pending);
2138} 3604}
2139#endif 3605#endif
2140 3606
2141/*****************************************************************************/ 3607/*****************************************************************************/
2142 3608
2152once_cb (EV_P_ struct ev_once *once, int revents) 3618once_cb (EV_P_ struct ev_once *once, int revents)
2153{ 3619{
2154 void (*cb)(int revents, void *arg) = once->cb; 3620 void (*cb)(int revents, void *arg) = once->cb;
2155 void *arg = once->arg; 3621 void *arg = once->arg;
2156 3622
2157 ev_io_stop (EV_A_ &once->io); 3623 ev_io_stop (EV_A_ &once->io);
2158 ev_timer_stop (EV_A_ &once->to); 3624 ev_timer_stop (EV_A_ &once->to);
2159 ev_free (once); 3625 ev_free (once);
2160 3626
2161 cb (revents, arg); 3627 cb (revents, arg);
2162} 3628}
2163 3629
2164static void 3630static void
2165once_cb_io (EV_P_ ev_io *w, int revents) 3631once_cb_io (EV_P_ ev_io *w, int revents)
2166{ 3632{
2167 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3634
3635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2168} 3636}
2169 3637
2170static void 3638static void
2171once_cb_to (EV_P_ ev_timer *w, int revents) 3639once_cb_to (EV_P_ ev_timer *w, int revents)
2172{ 3640{
2173 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2174} 3644}
2175 3645
2176void 3646void
2177ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3647ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2178{ 3648{
2179 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2180 3650
2181 if (expect_false (!once)) 3651 if (expect_false (!once))
2182 { 3652 {
2183 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2184 return; 3654 return;
2185 } 3655 }
2186 3656
2187 once->cb = cb; 3657 once->cb = cb;
2188 once->arg = arg; 3658 once->arg = arg;
2200 ev_timer_set (&once->to, timeout, 0.); 3670 ev_timer_set (&once->to, timeout, 0.);
2201 ev_timer_start (EV_A_ &once->to); 3671 ev_timer_start (EV_A_ &once->to);
2202 } 3672 }
2203} 3673}
2204 3674
3675/*****************************************************************************/
3676
3677#if EV_WALK_ENABLE
3678void
3679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3680{
3681 int i, j;
3682 ev_watcher_list *wl, *wn;
3683
3684 if (types & (EV_IO | EV_EMBED))
3685 for (i = 0; i < anfdmax; ++i)
3686 for (wl = anfds [i].head; wl; )
3687 {
3688 wn = wl->next;
3689
3690#if EV_EMBED_ENABLE
3691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3692 {
3693 if (types & EV_EMBED)
3694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3695 }
3696 else
3697#endif
3698#if EV_USE_INOTIFY
3699 if (ev_cb ((ev_io *)wl) == infy_cb)
3700 ;
3701 else
3702#endif
3703 if ((ev_io *)wl != &pipe_w)
3704 if (types & EV_IO)
3705 cb (EV_A_ EV_IO, wl);
3706
3707 wl = wn;
3708 }
3709
3710 if (types & (EV_TIMER | EV_STAT))
3711 for (i = timercnt + HEAP0; i-- > HEAP0; )
3712#if EV_STAT_ENABLE
3713 /*TODO: timer is not always active*/
3714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3715 {
3716 if (types & EV_STAT)
3717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3718 }
3719 else
3720#endif
3721 if (types & EV_TIMER)
3722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3723
3724#if EV_PERIODIC_ENABLE
3725 if (types & EV_PERIODIC)
3726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3728#endif
3729
3730#if EV_IDLE_ENABLE
3731 if (types & EV_IDLE)
3732 for (j = NUMPRI; i--; )
3733 for (i = idlecnt [j]; i--; )
3734 cb (EV_A_ EV_IDLE, idles [j][i]);
3735#endif
3736
3737#if EV_FORK_ENABLE
3738 if (types & EV_FORK)
3739 for (i = forkcnt; i--; )
3740 if (ev_cb (forks [i]) != embed_fork_cb)
3741 cb (EV_A_ EV_FORK, forks [i]);
3742#endif
3743
3744#if EV_ASYNC_ENABLE
3745 if (types & EV_ASYNC)
3746 for (i = asynccnt; i--; )
3747 cb (EV_A_ EV_ASYNC, asyncs [i]);
3748#endif
3749
3750#if EV_PREPARE_ENABLE
3751 if (types & EV_PREPARE)
3752 for (i = preparecnt; i--; )
3753# if EV_EMBED_ENABLE
3754 if (ev_cb (prepares [i]) != embed_prepare_cb)
3755# endif
3756 cb (EV_A_ EV_PREPARE, prepares [i]);
3757#endif
3758
3759#if EV_CHECK_ENABLE
3760 if (types & EV_CHECK)
3761 for (i = checkcnt; i--; )
3762 cb (EV_A_ EV_CHECK, checks [i]);
3763#endif
3764
3765#if EV_SIGNAL_ENABLE
3766 if (types & EV_SIGNAL)
3767 for (i = 0; i < EV_NSIG - 1; ++i)
3768 for (wl = signals [i].head; wl; )
3769 {
3770 wn = wl->next;
3771 cb (EV_A_ EV_SIGNAL, wl);
3772 wl = wn;
3773 }
3774#endif
3775
3776#if EV_CHILD_ENABLE
3777 if (types & EV_CHILD)
3778 for (i = (EV_PID_HASHSIZE); i--; )
3779 for (wl = childs [i]; wl; )
3780 {
3781 wn = wl->next;
3782 cb (EV_A_ EV_CHILD, wl);
3783 wl = wn;
3784 }
3785#endif
3786/* EV_STAT 0x00001000 /* stat data changed */
3787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3788}
3789#endif
3790
3791#if EV_MULTIPLICITY
3792 #include "ev_wrap.h"
3793#endif
3794
2205#ifdef __cplusplus 3795#ifdef __cplusplus
2206} 3796}
2207#endif 3797#endif
2208 3798

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines