ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.239 by root, Thu May 8 20:52:13 2008 UTC vs.
Revision 1.343 by root, Fri Apr 2 21:03:46 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else 95# else
96# undef EV_USE_SELECT
80# define EV_USE_SELECT 0 97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
107# endif
108
109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110# ifndef EV_USE_EPOLL
111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
89# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
90# endif 116# endif
91 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
92# ifndef EV_USE_EPOLL 119# ifndef EV_USE_KQUEUE
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
98# endif 125# endif
99 126
100# ifndef EV_USE_KQUEUE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 128# ifndef EV_USE_PORT
102# define EV_USE_KQUEUE 1 129# define EV_USE_PORT EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 130# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else 131# else
132# undef EV_USE_PORT
112# define EV_USE_PORT 0 133# define EV_USE_PORT 0
134# endif
135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
113# endif 139# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 140# else
141# undef EV_USE_INOTIFY
120# define EV_USE_INOTIFY 0 142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
121# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
122# endif 152# endif
123 153
154# if HAVE_EVENTFD
124# ifndef EV_USE_EVENTFD 155# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 156# define EV_USE_EVENTFD EV_FEATURE_OS
127# else
128# define EV_USE_EVENTFD 0
129# endif 157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
130# endif 161# endif
131 162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
165 200
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 201/* this block tries to deduce configuration from header-defined symbols and defaults */
167 202
203/* try to deduce the maximum number of signals on this platform */
204#if defined (EV_NSIG)
205/* use what's provided */
206#elif defined (NSIG)
207# define EV_NSIG (NSIG)
208#elif defined(_NSIG)
209# define EV_NSIG (_NSIG)
210#elif defined (SIGMAX)
211# define EV_NSIG (SIGMAX+1)
212#elif defined (SIG_MAX)
213# define EV_NSIG (SIG_MAX+1)
214#elif defined (_SIG_MAX)
215# define EV_NSIG (_SIG_MAX+1)
216#elif defined (MAXSIG)
217# define EV_NSIG (MAXSIG+1)
218#elif defined (MAX_SIG)
219# define EV_NSIG (MAX_SIG+1)
220#elif defined (SIGARRAYSIZE)
221# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
222#elif defined (_sys_nsig)
223# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
224#else
225# error "unable to find value for NSIG, please report"
226/* to make it compile regardless, just remove the above line, */
227/* but consider reporting it, too! :) */
228# define EV_NSIG 65
229#endif
230
231#ifndef EV_USE_CLOCK_SYSCALL
232# if __linux && __GLIBC__ >= 2
233# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
234# else
235# define EV_USE_CLOCK_SYSCALL 0
236# endif
237#endif
238
168#ifndef EV_USE_MONOTONIC 239#ifndef EV_USE_MONOTONIC
240# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
241# define EV_USE_MONOTONIC EV_FEATURE_OS
242# else
169# define EV_USE_MONOTONIC 0 243# define EV_USE_MONOTONIC 0
244# endif
170#endif 245#endif
171 246
172#ifndef EV_USE_REALTIME 247#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 248# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 249#endif
175 250
176#ifndef EV_USE_NANOSLEEP 251#ifndef EV_USE_NANOSLEEP
252# if _POSIX_C_SOURCE >= 199309L
253# define EV_USE_NANOSLEEP EV_FEATURE_OS
254# else
177# define EV_USE_NANOSLEEP 0 255# define EV_USE_NANOSLEEP 0
256# endif
178#endif 257#endif
179 258
180#ifndef EV_USE_SELECT 259#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 260# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 261#endif
183 262
184#ifndef EV_USE_POLL 263#ifndef EV_USE_POLL
185# ifdef _WIN32 264# ifdef _WIN32
186# define EV_USE_POLL 0 265# define EV_USE_POLL 0
187# else 266# else
188# define EV_USE_POLL 1 267# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 268# endif
190#endif 269#endif
191 270
192#ifndef EV_USE_EPOLL 271#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 273# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 274# else
196# define EV_USE_EPOLL 0 275# define EV_USE_EPOLL 0
197# endif 276# endif
198#endif 277#endif
199 278
205# define EV_USE_PORT 0 284# define EV_USE_PORT 0
206#endif 285#endif
207 286
208#ifndef EV_USE_INOTIFY 287#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 288# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 289# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 290# else
212# define EV_USE_INOTIFY 0 291# define EV_USE_INOTIFY 0
213# endif 292# endif
214#endif 293#endif
215 294
216#ifndef EV_PID_HASHSIZE 295#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 296# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 297#endif
223 298
224#ifndef EV_INOTIFY_HASHSIZE 299#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 300# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 301#endif
231 302
232#ifndef EV_USE_EVENTFD 303#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 304# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 305# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 306# else
236# define EV_USE_EVENTFD 0 307# define EV_USE_EVENTFD 0
237# endif 308# endif
238#endif 309#endif
239 310
311#ifndef EV_USE_SIGNALFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_SIGNALFD EV_FEATURE_OS
314# else
315# define EV_USE_SIGNALFD 0
316# endif
317#endif
318
319#if 0 /* debugging */
320# define EV_VERIFY 3
321# define EV_USE_4HEAP 1
322# define EV_HEAP_CACHE_AT 1
323#endif
324
325#ifndef EV_VERIFY
326# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
327#endif
328
329#ifndef EV_USE_4HEAP
330# define EV_USE_4HEAP EV_FEATURE_DATA
331#endif
332
333#ifndef EV_HEAP_CACHE_AT
334# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
335#endif
336
337/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
338/* which makes programs even slower. might work on other unices, too. */
339#if EV_USE_CLOCK_SYSCALL
340# include <syscall.h>
341# ifdef SYS_clock_gettime
342# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
343# undef EV_USE_MONOTONIC
344# define EV_USE_MONOTONIC 1
345# else
346# undef EV_USE_CLOCK_SYSCALL
347# define EV_USE_CLOCK_SYSCALL 0
348# endif
349#endif
350
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 351/* this block fixes any misconfiguration where we know we run into trouble otherwise */
352
353#ifdef _AIX
354/* AIX has a completely broken poll.h header */
355# undef EV_USE_POLL
356# define EV_USE_POLL 0
357#endif
241 358
242#ifndef CLOCK_MONOTONIC 359#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 360# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 361# define EV_USE_MONOTONIC 0
245#endif 362#endif
259# include <sys/select.h> 376# include <sys/select.h>
260# endif 377# endif
261#endif 378#endif
262 379
263#if EV_USE_INOTIFY 380#if EV_USE_INOTIFY
381# include <sys/utsname.h>
382# include <sys/statfs.h>
264# include <sys/inotify.h> 383# include <sys/inotify.h>
384/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
385# ifndef IN_DONT_FOLLOW
386# undef EV_USE_INOTIFY
387# define EV_USE_INOTIFY 0
388# endif
265#endif 389#endif
266 390
267#if EV_SELECT_IS_WINSOCKET 391#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 392# include <winsock.h>
269#endif 393#endif
270 394
271#if EV_USE_EVENTFD 395#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 396/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 397# include <stdint.h>
398# ifndef EFD_NONBLOCK
399# define EFD_NONBLOCK O_NONBLOCK
400# endif
401# ifndef EFD_CLOEXEC
402# ifdef O_CLOEXEC
403# define EFD_CLOEXEC O_CLOEXEC
404# else
405# define EFD_CLOEXEC 02000000
406# endif
407# endif
274# ifdef __cplusplus 408# ifdef __cplusplus
275extern "C" { 409extern "C" {
276# endif 410# endif
277int eventfd (unsigned int initval, int flags); 411int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 412# ifdef __cplusplus
279} 413}
280# endif 414# endif
281#endif 415#endif
282 416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430# ifdef __cplusplus
431extern "C" {
432# endif
433int signalfd (int fd, const sigset_t *mask, int flags);
434
435struct signalfd_siginfo
436{
437 uint32_t ssi_signo;
438 char pad[128 - sizeof (uint32_t)];
439};
440# ifdef __cplusplus
441}
442# endif
443#endif
444
445
283/**/ 446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
284 453
285/* 454/*
286 * This is used to avoid floating point rounding problems. 455 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 456 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 457 * to ensure progress, time-wise, even when rounding
292 */ 461 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 462#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 463
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 464#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 465#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 466
299#if __GNUC__ >= 4 467#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 468# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 469# define noinline __attribute__ ((noinline))
302#else 470#else
309 477
310#define expect_false(expr) expect ((expr) != 0, 0) 478#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 479#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 480#define inline_size static inline
313 481
314#if EV_MINIMAL 482#if EV_FEATURE_CODE
483# define inline_speed static inline
484#else
315# define inline_speed static noinline 485# define inline_speed static noinline
486#endif
487
488#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
489
490#if EV_MINPRI == EV_MAXPRI
491# define ABSPRI(w) (((W)w), 0)
316#else 492#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 493# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
494#endif
322 495
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 496#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 497#define EMPTY2(a,b) /* used to suppress some warnings */
325 498
326typedef ev_watcher *W; 499typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 501typedef ev_watcher_time *WT;
329 502
330#define ev_active(w) ((W)(w))->active 503#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 504#define ev_at(w) ((WT)(w))->at
332 505
333#if EV_USE_MONOTONIC 506#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 507/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 508/* giving it a reasonably high chance of working on typical architetcures */
509static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
510#endif
511
512#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 513static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
514#endif
515
516#ifndef EV_FD_TO_WIN32_HANDLE
517# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
518#endif
519#ifndef EV_WIN32_HANDLE_TO_FD
520# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
521#endif
522#ifndef EV_WIN32_CLOSE_FD
523# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 524#endif
338 525
339#ifdef _WIN32 526#ifdef _WIN32
340# include "ev_win32.c" 527# include "ev_win32.c"
341#endif 528#endif
342 529
343/*****************************************************************************/ 530/*****************************************************************************/
344 531
532#if EV_AVOID_STDIO
533static void noinline
534ev_printerr (const char *msg)
535{
536 write (STDERR_FILENO, msg, strlen (msg));
537}
538#endif
539
345static void (*syserr_cb)(const char *msg); 540static void (*syserr_cb)(const char *msg);
346 541
347void 542void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 543ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 544{
350 syserr_cb = cb; 545 syserr_cb = cb;
351} 546}
352 547
353static void noinline 548static void noinline
354syserr (const char *msg) 549ev_syserr (const char *msg)
355{ 550{
356 if (!msg) 551 if (!msg)
357 msg = "(libev) system error"; 552 msg = "(libev) system error";
358 553
359 if (syserr_cb) 554 if (syserr_cb)
360 syserr_cb (msg); 555 syserr_cb (msg);
361 else 556 else
362 { 557 {
558#if EV_AVOID_STDIO
559 const char *err = strerror (errno);
560
561 ev_printerr (msg);
562 ev_printerr (": ");
563 ev_printerr (err);
564 ev_printerr ("\n");
565#else
363 perror (msg); 566 perror (msg);
567#endif
364 abort (); 568 abort ();
365 } 569 }
366} 570}
367 571
368static void * 572static void *
369ev_realloc_emul (void *ptr, long size) 573ev_realloc_emul (void *ptr, long size)
370{ 574{
575#if __GLIBC__
576 return realloc (ptr, size);
577#else
371 /* some systems, notably openbsd and darwin, fail to properly 578 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 579 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 580 * the single unix specification, so work around them here.
374 */ 581 */
375 582
376 if (size) 583 if (size)
377 return realloc (ptr, size); 584 return realloc (ptr, size);
378 585
379 free (ptr); 586 free (ptr);
380 return 0; 587 return 0;
588#endif
381} 589}
382 590
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 591static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 592
385void 593void
393{ 601{
394 ptr = alloc (ptr, size); 602 ptr = alloc (ptr, size);
395 603
396 if (!ptr && size) 604 if (!ptr && size)
397 { 605 {
606#if EV_AVOID_STDIO
607 ev_printerr ("libev: memory allocation failed, aborting.\n");
608#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 609 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
610#endif
399 abort (); 611 abort ();
400 } 612 }
401 613
402 return ptr; 614 return ptr;
403} 615}
405#define ev_malloc(size) ev_realloc (0, (size)) 617#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 618#define ev_free(ptr) ev_realloc ((ptr), 0)
407 619
408/*****************************************************************************/ 620/*****************************************************************************/
409 621
622/* set in reify when reification needed */
623#define EV_ANFD_REIFY 1
624
625/* file descriptor info structure */
410typedef struct 626typedef struct
411{ 627{
412 WL head; 628 WL head;
413 unsigned char events; 629 unsigned char events; /* the events watched for */
630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 632 unsigned char unused;
633#if EV_USE_EPOLL
634 unsigned int egen; /* generation counter to counter epoll bugs */
635#endif
415#if EV_SELECT_IS_WINSOCKET 636#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 637 SOCKET handle;
417#endif 638#endif
418} ANFD; 639} ANFD;
419 640
641/* stores the pending event set for a given watcher */
420typedef struct 642typedef struct
421{ 643{
422 W w; 644 W w;
423 int events; 645 int events; /* the pending event set for the given watcher */
424} ANPENDING; 646} ANPENDING;
425 647
426#if EV_USE_INOTIFY 648#if EV_USE_INOTIFY
649/* hash table entry per inotify-id */
427typedef struct 650typedef struct
428{ 651{
429 WL head; 652 WL head;
430} ANFS; 653} ANFS;
654#endif
655
656/* Heap Entry */
657#if EV_HEAP_CACHE_AT
658 /* a heap element */
659 typedef struct {
660 ev_tstamp at;
661 WT w;
662 } ANHE;
663
664 #define ANHE_w(he) (he).w /* access watcher, read-write */
665 #define ANHE_at(he) (he).at /* access cached at, read-only */
666 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
667#else
668 /* a heap element */
669 typedef WT ANHE;
670
671 #define ANHE_w(he) (he)
672 #define ANHE_at(he) (he)->at
673 #define ANHE_at_cache(he)
431#endif 674#endif
432 675
433#if EV_MULTIPLICITY 676#if EV_MULTIPLICITY
434 677
435 struct ev_loop 678 struct ev_loop
454 697
455 static int ev_default_loop_ptr; 698 static int ev_default_loop_ptr;
456 699
457#endif 700#endif
458 701
702#if EV_FEATURE_API
703# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
704# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
705# define EV_INVOKE_PENDING invoke_cb (EV_A)
706#else
707# define EV_RELEASE_CB (void)0
708# define EV_ACQUIRE_CB (void)0
709# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
710#endif
711
712#define EVUNLOOP_RECURSE 0x80
713
459/*****************************************************************************/ 714/*****************************************************************************/
460 715
716#ifndef EV_HAVE_EV_TIME
461ev_tstamp 717ev_tstamp
462ev_time (void) 718ev_time (void)
463{ 719{
464#if EV_USE_REALTIME 720#if EV_USE_REALTIME
721 if (expect_true (have_realtime))
722 {
465 struct timespec ts; 723 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 724 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 725 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 726 }
727#endif
728
469 struct timeval tv; 729 struct timeval tv;
470 gettimeofday (&tv, 0); 730 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 731 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 732}
733#endif
474 734
475ev_tstamp inline_size 735inline_size ev_tstamp
476get_clock (void) 736get_clock (void)
477{ 737{
478#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 739 if (expect_true (have_monotonic))
480 { 740 {
513 struct timeval tv; 773 struct timeval tv;
514 774
515 tv.tv_sec = (time_t)delay; 775 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 776 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 777
778 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
779 /* something not guaranteed by newer posix versions, but guaranteed */
780 /* by older ones */
518 select (0, 0, 0, 0, &tv); 781 select (0, 0, 0, 0, &tv);
519#endif 782#endif
520 } 783 }
521} 784}
522 785
523/*****************************************************************************/ 786/*****************************************************************************/
524 787
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 788#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 789
527int inline_size 790/* find a suitable new size for the given array, */
791/* hopefully by rounding to a ncie-to-malloc size */
792inline_size int
528array_nextsize (int elem, int cur, int cnt) 793array_nextsize (int elem, int cur, int cnt)
529{ 794{
530 int ncur = cur + 1; 795 int ncur = cur + 1;
531 796
532 do 797 do
549array_realloc (int elem, void *base, int *cur, int cnt) 814array_realloc (int elem, void *base, int *cur, int cnt)
550{ 815{
551 *cur = array_nextsize (elem, *cur, cnt); 816 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 817 return ev_realloc (base, elem * *cur);
553} 818}
819
820#define array_init_zero(base,count) \
821 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 822
555#define array_needsize(type,base,cur,cnt,init) \ 823#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 824 if (expect_false ((cnt) > (cur))) \
557 { \ 825 { \
558 int ocur_ = (cur); \ 826 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 838 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 839 }
572#endif 840#endif
573 841
574#define array_free(stem, idx) \ 842#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 843 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 844
577/*****************************************************************************/ 845/*****************************************************************************/
846
847/* dummy callback for pending events */
848static void noinline
849pendingcb (EV_P_ ev_prepare *w, int revents)
850{
851}
578 852
579void noinline 853void noinline
580ev_feed_event (EV_P_ void *w, int revents) 854ev_feed_event (EV_P_ void *w, int revents)
581{ 855{
582 W w_ = (W)w; 856 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 865 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 866 pendings [pri][w_->pending - 1].events = revents;
593 } 867 }
594} 868}
595 869
596void inline_speed 870inline_speed void
871feed_reverse (EV_P_ W w)
872{
873 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
874 rfeeds [rfeedcnt++] = w;
875}
876
877inline_size void
878feed_reverse_done (EV_P_ int revents)
879{
880 do
881 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
882 while (rfeedcnt);
883}
884
885inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 886queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 887{
599 int i; 888 int i;
600 889
601 for (i = 0; i < eventcnt; ++i) 890 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 891 ev_feed_event (EV_A_ events [i], type);
603} 892}
604 893
605/*****************************************************************************/ 894/*****************************************************************************/
606 895
607void inline_size 896inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 897fd_event_nocheck (EV_P_ int fd, int revents)
622{ 898{
623 ANFD *anfd = anfds + fd; 899 ANFD *anfd = anfds + fd;
624 ev_io *w; 900 ev_io *w;
625 901
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 902 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 906 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 907 ev_feed_event (EV_A_ (W)w, ev);
632 } 908 }
633} 909}
634 910
911/* do not submit kernel events for fds that have reify set */
912/* because that means they changed while we were polling for new events */
913inline_speed void
914fd_event (EV_P_ int fd, int revents)
915{
916 ANFD *anfd = anfds + fd;
917
918 if (expect_true (!anfd->reify))
919 fd_event_nocheck (EV_A_ fd, revents);
920}
921
635void 922void
636ev_feed_fd_event (EV_P_ int fd, int revents) 923ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 924{
638 if (fd >= 0 && fd < anfdmax) 925 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 926 fd_event_nocheck (EV_A_ fd, revents);
640} 927}
641 928
642void inline_size 929/* make sure the external fd watch events are in-sync */
930/* with the kernel/libev internal state */
931inline_size void
643fd_reify (EV_P) 932fd_reify (EV_P)
644{ 933{
645 int i; 934 int i;
646 935
647 for (i = 0; i < fdchangecnt; ++i) 936 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 945 events |= (unsigned char)w->events;
657 946
658#if EV_SELECT_IS_WINSOCKET 947#if EV_SELECT_IS_WINSOCKET
659 if (events) 948 if (events)
660 { 949 {
661 unsigned long argp; 950 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 951 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 952 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 953 }
669#endif 954#endif
670 955
671 { 956 {
672 unsigned char o_events = anfd->events; 957 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 958 unsigned char o_reify = anfd->reify;
674 959
675 anfd->reify = 0; 960 anfd->reify = 0;
676 anfd->events = events; 961 anfd->events = events;
677 962
678 if (o_events != events || o_reify & EV_IOFDSET) 963 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 964 backend_modify (EV_A_ fd, o_events, events);
680 } 965 }
681 } 966 }
682 967
683 fdchangecnt = 0; 968 fdchangecnt = 0;
684} 969}
685 970
686void inline_size 971/* something about the given fd changed */
972inline_size void
687fd_change (EV_P_ int fd, int flags) 973fd_change (EV_P_ int fd, int flags)
688{ 974{
689 unsigned char reify = anfds [fd].reify; 975 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 976 anfds [fd].reify |= flags;
691 977
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 981 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 982 fdchanges [fdchangecnt - 1] = fd;
697 } 983 }
698} 984}
699 985
700void inline_speed 986/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
987inline_speed void
701fd_kill (EV_P_ int fd) 988fd_kill (EV_P_ int fd)
702{ 989{
703 ev_io *w; 990 ev_io *w;
704 991
705 while ((w = (ev_io *)anfds [fd].head)) 992 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 994 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 995 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 996 }
710} 997}
711 998
712int inline_size 999/* check whether the given fd is actually valid, for error recovery */
1000inline_size int
713fd_valid (int fd) 1001fd_valid (int fd)
714{ 1002{
715#ifdef _WIN32 1003#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1004 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1005#else
718 return fcntl (fd, F_GETFD) != -1; 1006 return fcntl (fd, F_GETFD) != -1;
719#endif 1007#endif
720} 1008}
721 1009
725{ 1013{
726 int fd; 1014 int fd;
727 1015
728 for (fd = 0; fd < anfdmax; ++fd) 1016 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1017 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1018 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1019 fd_kill (EV_A_ fd);
732} 1020}
733 1021
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1022/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1023static void noinline
739 1027
740 for (fd = anfdmax; fd--; ) 1028 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1029 if (anfds [fd].events)
742 { 1030 {
743 fd_kill (EV_A_ fd); 1031 fd_kill (EV_A_ fd);
744 return; 1032 break;
745 } 1033 }
746} 1034}
747 1035
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1036/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1037static void noinline
753 1041
754 for (fd = 0; fd < anfdmax; ++fd) 1042 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1043 if (anfds [fd].events)
756 { 1044 {
757 anfds [fd].events = 0; 1045 anfds [fd].events = 0;
1046 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1047 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1048 }
760} 1049}
761 1050
1051/* used to prepare libev internal fd's */
1052/* this is not fork-safe */
1053inline_speed void
1054fd_intern (int fd)
1055{
1056#ifdef _WIN32
1057 unsigned long arg = 1;
1058 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1059#else
1060 fcntl (fd, F_SETFD, FD_CLOEXEC);
1061 fcntl (fd, F_SETFL, O_NONBLOCK);
1062#endif
1063}
1064
762/*****************************************************************************/ 1065/*****************************************************************************/
1066
1067/*
1068 * the heap functions want a real array index. array index 0 uis guaranteed to not
1069 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1070 * the branching factor of the d-tree.
1071 */
763 1072
764/* 1073/*
765 * at the moment we allow libev the luxury of two heaps, 1074 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1075 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1076 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1077 * the difference is about 5% with 50000+ watchers.
769 */ 1078 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1079#if EV_USE_4HEAP
772 1080
773#define DHEAP 4 1081#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1082#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1083#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1084#define UPHEAP_DONE(p,k) ((p) == (k))
775 1085
776/* towards the root */ 1086/* away from the root */
777void inline_speed 1087inline_speed void
778upheap (WT *heap, int k) 1088downheap (ANHE *heap, int N, int k)
779{ 1089{
780 WT w = heap [k]; 1090 ANHE he = heap [k];
1091 ANHE *E = heap + N + HEAP0;
781 1092
782 for (;;) 1093 for (;;)
783 { 1094 {
784 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
785
786 if (p == k || heap [p]->at <= w->at)
787 break;
788
789 heap [k] = heap [p];
790 ev_active (heap [k]) = k;
791 k = p;
792 }
793
794 heap [k] = w;
795 ev_active (heap [k]) = k;
796}
797
798/* away from the root */
799void inline_speed
800downheap (WT *heap, int N, int k)
801{
802 WT w = heap [k];
803 WT *E = heap + N + HEAP0;
804
805 for (;;)
806 {
807 ev_tstamp minat; 1095 ev_tstamp minat;
808 WT *minpos; 1096 ANHE *minpos;
809 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1097 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
810 1098
811 // find minimum child 1099 /* find minimum child */
812 if (expect_true (pos + DHEAP - 1 < E)) 1100 if (expect_true (pos + DHEAP - 1 < E))
813 { 1101 {
814 /* fast path */
815 (minpos = pos + 0), (minat = (*minpos)->at); 1102 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1103 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1104 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1105 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1106 }
1107 else if (pos < E)
1108 {
1109 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1110 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1111 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1112 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
819 } 1113 }
820 else 1114 else
821 {
822 /* slow path */
823 if (pos >= E)
824 break;
825 (minpos = pos + 0), (minat = (*minpos)->at);
826 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
827 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
828 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
829 }
830
831 if (w->at <= minat)
832 break; 1115 break;
833 1116
834 ev_active (*minpos) = k; 1117 if (ANHE_at (he) <= minat)
1118 break;
1119
835 heap [k] = *minpos; 1120 heap [k] = *minpos;
1121 ev_active (ANHE_w (*minpos)) = k;
836 1122
837 k = minpos - heap; 1123 k = minpos - heap;
838 } 1124 }
839 1125
840 heap [k] = w; 1126 heap [k] = he;
841 ev_active (heap [k]) = k; 1127 ev_active (ANHE_w (he)) = k;
842} 1128}
843 1129
844#else // 4HEAP 1130#else /* 4HEAP */
845 1131
846#define HEAP0 1 1132#define HEAP0 1
1133#define HPARENT(k) ((k) >> 1)
1134#define UPHEAP_DONE(p,k) (!(p))
847 1135
848/* towards the root */ 1136/* away from the root */
849void inline_speed 1137inline_speed void
850upheap (WT *heap, int k) 1138downheap (ANHE *heap, int N, int k)
851{ 1139{
852 WT w = heap [k]; 1140 ANHE he = heap [k];
853 1141
854 for (;;) 1142 for (;;)
855 { 1143 {
856 int p = k >> 1; 1144 int c = k << 1;
857 1145
858 /* maybe we could use a dummy element at heap [0]? */ 1146 if (c >= N + HEAP0)
859 if (!p || heap [p]->at <= w->at)
860 break; 1147 break;
861 1148
862 heap [k] = heap [p]; 1149 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
863 ev_active (heap [k]) = k; 1150 ? 1 : 0;
864 k = p;
865 }
866 1151
867 heap [k] = w; 1152 if (ANHE_at (he) <= ANHE_at (heap [c]))
868 ev_active (heap [k]) = k;
869}
870
871/* away from the root */
872void inline_speed
873downheap (WT *heap, int N, int k)
874{
875 WT w = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N)
882 break; 1153 break;
883 1154
884 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
885 ? 1 : 0;
886
887 if (w->at <= heap [c]->at)
888 break;
889
890 heap [k] = heap [c]; 1155 heap [k] = heap [c];
891 ((W)heap [k])->active = k; 1156 ev_active (ANHE_w (heap [k])) = k;
892 1157
893 k = c; 1158 k = c;
894 } 1159 }
895 1160
896 heap [k] = w; 1161 heap [k] = he;
1162 ev_active (ANHE_w (he)) = k;
1163}
1164#endif
1165
1166/* towards the root */
1167inline_speed void
1168upheap (ANHE *heap, int k)
1169{
1170 ANHE he = heap [k];
1171
1172 for (;;)
1173 {
1174 int p = HPARENT (k);
1175
1176 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1177 break;
1178
1179 heap [k] = heap [p];
897 ev_active (heap [k]) = k; 1180 ev_active (ANHE_w (heap [k])) = k;
898} 1181 k = p;
899#endif 1182 }
900 1183
901void inline_size 1184 heap [k] = he;
1185 ev_active (ANHE_w (he)) = k;
1186}
1187
1188/* move an element suitably so it is in a correct place */
1189inline_size void
902adjustheap (WT *heap, int N, int k) 1190adjustheap (ANHE *heap, int N, int k)
903{ 1191{
1192 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
904 upheap (heap, k); 1193 upheap (heap, k);
1194 else
905 downheap (heap, N, k); 1195 downheap (heap, N, k);
1196}
1197
1198/* rebuild the heap: this function is used only once and executed rarely */
1199inline_size void
1200reheap (ANHE *heap, int N)
1201{
1202 int i;
1203
1204 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1205 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1206 for (i = 0; i < N; ++i)
1207 upheap (heap, i + HEAP0);
906} 1208}
907 1209
908/*****************************************************************************/ 1210/*****************************************************************************/
909 1211
1212/* associate signal watchers to a signal signal */
910typedef struct 1213typedef struct
911{ 1214{
1215 EV_ATOMIC_T pending;
1216#if EV_MULTIPLICITY
1217 EV_P;
1218#endif
912 WL head; 1219 WL head;
913 EV_ATOMIC_T gotsig;
914} ANSIG; 1220} ANSIG;
915 1221
916static ANSIG *signals; 1222static ANSIG signals [EV_NSIG - 1];
917static int signalmax;
918
919static EV_ATOMIC_T gotsig;
920
921void inline_size
922signals_init (ANSIG *base, int count)
923{
924 while (count--)
925 {
926 base->head = 0;
927 base->gotsig = 0;
928
929 ++base;
930 }
931}
932 1223
933/*****************************************************************************/ 1224/*****************************************************************************/
934 1225
935void inline_speed 1226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
936fd_intern (int fd)
937{
938#ifdef _WIN32
939 int arg = 1;
940 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
941#else
942 fcntl (fd, F_SETFD, FD_CLOEXEC);
943 fcntl (fd, F_SETFL, O_NONBLOCK);
944#endif
945}
946 1227
947static void noinline 1228static void noinline
948evpipe_init (EV_P) 1229evpipe_init (EV_P)
949{ 1230{
950 if (!ev_is_active (&pipeev)) 1231 if (!ev_is_active (&pipe_w))
951 { 1232 {
952#if EV_USE_EVENTFD 1233# if EV_USE_EVENTFD
1234 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1235 if (evfd < 0 && errno == EINVAL)
953 if ((evfd = eventfd (0, 0)) >= 0) 1236 evfd = eventfd (0, 0);
1237
1238 if (evfd >= 0)
954 { 1239 {
955 evpipe [0] = -1; 1240 evpipe [0] = -1;
956 fd_intern (evfd); 1241 fd_intern (evfd); /* doing it twice doesn't hurt */
957 ev_io_set (&pipeev, evfd, EV_READ); 1242 ev_io_set (&pipe_w, evfd, EV_READ);
958 } 1243 }
959 else 1244 else
960#endif 1245# endif
961 { 1246 {
962 while (pipe (evpipe)) 1247 while (pipe (evpipe))
963 syserr ("(libev) error creating signal/async pipe"); 1248 ev_syserr ("(libev) error creating signal/async pipe");
964 1249
965 fd_intern (evpipe [0]); 1250 fd_intern (evpipe [0]);
966 fd_intern (evpipe [1]); 1251 fd_intern (evpipe [1]);
967 ev_io_set (&pipeev, evpipe [0], EV_READ); 1252 ev_io_set (&pipe_w, evpipe [0], EV_READ);
968 } 1253 }
969 1254
970 ev_io_start (EV_A_ &pipeev); 1255 ev_io_start (EV_A_ &pipe_w);
971 ev_unref (EV_A); /* watcher should not keep loop alive */ 1256 ev_unref (EV_A); /* watcher should not keep loop alive */
972 } 1257 }
973} 1258}
974 1259
975void inline_size 1260inline_size void
976evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1261evpipe_write (EV_P_ EV_ATOMIC_T *flag)
977{ 1262{
978 if (!*flag) 1263 if (!*flag)
979 { 1264 {
980 int old_errno = errno; /* save errno because write might clobber it */ 1265 int old_errno = errno; /* save errno because write might clobber it */
1266 char dummy;
981 1267
982 *flag = 1; 1268 *flag = 1;
983 1269
984#if EV_USE_EVENTFD 1270#if EV_USE_EVENTFD
985 if (evfd >= 0) 1271 if (evfd >= 0)
987 uint64_t counter = 1; 1273 uint64_t counter = 1;
988 write (evfd, &counter, sizeof (uint64_t)); 1274 write (evfd, &counter, sizeof (uint64_t));
989 } 1275 }
990 else 1276 else
991#endif 1277#endif
992 write (evpipe [1], &old_errno, 1); 1278 write (evpipe [1], &dummy, 1);
993 1279
994 errno = old_errno; 1280 errno = old_errno;
995 } 1281 }
996} 1282}
997 1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
998static void 1286static void
999pipecb (EV_P_ ev_io *iow, int revents) 1287pipecb (EV_P_ ev_io *iow, int revents)
1000{ 1288{
1289 int i;
1290
1001#if EV_USE_EVENTFD 1291#if EV_USE_EVENTFD
1002 if (evfd >= 0) 1292 if (evfd >= 0)
1003 { 1293 {
1004 uint64_t counter; 1294 uint64_t counter;
1005 read (evfd, &counter, sizeof (uint64_t)); 1295 read (evfd, &counter, sizeof (uint64_t));
1009 { 1299 {
1010 char dummy; 1300 char dummy;
1011 read (evpipe [0], &dummy, 1); 1301 read (evpipe [0], &dummy, 1);
1012 } 1302 }
1013 1303
1014 if (gotsig && ev_is_default_loop (EV_A)) 1304 if (sig_pending)
1015 { 1305 {
1016 int signum; 1306 sig_pending = 0;
1017 gotsig = 0;
1018 1307
1019 for (signum = signalmax; signum--; ) 1308 for (i = EV_NSIG - 1; i--; )
1020 if (signals [signum].gotsig) 1309 if (expect_false (signals [i].pending))
1021 ev_feed_signal_event (EV_A_ signum + 1); 1310 ev_feed_signal_event (EV_A_ i + 1);
1022 } 1311 }
1023 1312
1024#if EV_ASYNC_ENABLE 1313#if EV_ASYNC_ENABLE
1025 if (gotasync) 1314 if (async_pending)
1026 { 1315 {
1027 int i; 1316 async_pending = 0;
1028 gotasync = 0;
1029 1317
1030 for (i = asynccnt; i--; ) 1318 for (i = asynccnt; i--; )
1031 if (asyncs [i]->sent) 1319 if (asyncs [i]->sent)
1032 { 1320 {
1033 asyncs [i]->sent = 0; 1321 asyncs [i]->sent = 0;
1041 1329
1042static void 1330static void
1043ev_sighandler (int signum) 1331ev_sighandler (int signum)
1044{ 1332{
1045#if EV_MULTIPLICITY 1333#if EV_MULTIPLICITY
1046 struct ev_loop *loop = &default_loop_struct; 1334 EV_P = signals [signum - 1].loop;
1047#endif 1335#endif
1048 1336
1049#if _WIN32 1337#ifdef _WIN32
1050 signal (signum, ev_sighandler); 1338 signal (signum, ev_sighandler);
1051#endif 1339#endif
1052 1340
1053 signals [signum - 1].gotsig = 1; 1341 signals [signum - 1].pending = 1;
1054 evpipe_write (EV_A_ &gotsig); 1342 evpipe_write (EV_A_ &sig_pending);
1055} 1343}
1056 1344
1057void noinline 1345void noinline
1058ev_feed_signal_event (EV_P_ int signum) 1346ev_feed_signal_event (EV_P_ int signum)
1059{ 1347{
1060 WL w; 1348 WL w;
1061 1349
1350 if (expect_false (signum <= 0 || signum > EV_NSIG))
1351 return;
1352
1353 --signum;
1354
1062#if EV_MULTIPLICITY 1355#if EV_MULTIPLICITY
1063 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1356 /* it is permissible to try to feed a signal to the wrong loop */
1064#endif 1357 /* or, likely more useful, feeding a signal nobody is waiting for */
1065 1358
1066 --signum; 1359 if (expect_false (signals [signum].loop != EV_A))
1067
1068 if (signum < 0 || signum >= signalmax)
1069 return; 1360 return;
1361#endif
1070 1362
1071 signals [signum].gotsig = 0; 1363 signals [signum].pending = 0;
1072 1364
1073 for (w = signals [signum].head; w; w = w->next) 1365 for (w = signals [signum].head; w; w = w->next)
1074 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1366 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1075} 1367}
1076 1368
1369#if EV_USE_SIGNALFD
1370static void
1371sigfdcb (EV_P_ ev_io *iow, int revents)
1372{
1373 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1374
1375 for (;;)
1376 {
1377 ssize_t res = read (sigfd, si, sizeof (si));
1378
1379 /* not ISO-C, as res might be -1, but works with SuS */
1380 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1381 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1382
1383 if (res < (ssize_t)sizeof (si))
1384 break;
1385 }
1386}
1387#endif
1388
1389#endif
1390
1077/*****************************************************************************/ 1391/*****************************************************************************/
1078 1392
1393#if EV_CHILD_ENABLE
1079static WL childs [EV_PID_HASHSIZE]; 1394static WL childs [EV_PID_HASHSIZE];
1080
1081#ifndef _WIN32
1082 1395
1083static ev_signal childev; 1396static ev_signal childev;
1084 1397
1085#ifndef WIFCONTINUED 1398#ifndef WIFCONTINUED
1086# define WIFCONTINUED(status) 0 1399# define WIFCONTINUED(status) 0
1087#endif 1400#endif
1088 1401
1089void inline_speed 1402/* handle a single child status event */
1403inline_speed void
1090child_reap (EV_P_ int chain, int pid, int status) 1404child_reap (EV_P_ int chain, int pid, int status)
1091{ 1405{
1092 ev_child *w; 1406 ev_child *w;
1093 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1407 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1094 1408
1095 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1409 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1096 { 1410 {
1097 if ((w->pid == pid || !w->pid) 1411 if ((w->pid == pid || !w->pid)
1098 && (!traced || (w->flags & 1))) 1412 && (!traced || (w->flags & 1)))
1099 { 1413 {
1100 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1414 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1107 1421
1108#ifndef WCONTINUED 1422#ifndef WCONTINUED
1109# define WCONTINUED 0 1423# define WCONTINUED 0
1110#endif 1424#endif
1111 1425
1426/* called on sigchld etc., calls waitpid */
1112static void 1427static void
1113childcb (EV_P_ ev_signal *sw, int revents) 1428childcb (EV_P_ ev_signal *sw, int revents)
1114{ 1429{
1115 int pid, status; 1430 int pid, status;
1116 1431
1124 /* make sure we are called again until all children have been reaped */ 1439 /* make sure we are called again until all children have been reaped */
1125 /* we need to do it this way so that the callback gets called before we continue */ 1440 /* we need to do it this way so that the callback gets called before we continue */
1126 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1441 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1127 1442
1128 child_reap (EV_A_ pid, pid, status); 1443 child_reap (EV_A_ pid, pid, status);
1129 if (EV_PID_HASHSIZE > 1) 1444 if ((EV_PID_HASHSIZE) > 1)
1130 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1445 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1131} 1446}
1132 1447
1133#endif 1448#endif
1134 1449
1197 /* kqueue is borked on everything but netbsd apparently */ 1512 /* kqueue is borked on everything but netbsd apparently */
1198 /* it usually doesn't work correctly on anything but sockets and pipes */ 1513 /* it usually doesn't work correctly on anything but sockets and pipes */
1199 flags &= ~EVBACKEND_KQUEUE; 1514 flags &= ~EVBACKEND_KQUEUE;
1200#endif 1515#endif
1201#ifdef __APPLE__ 1516#ifdef __APPLE__
1202 // flags &= ~EVBACKEND_KQUEUE; for documentation 1517 /* only select works correctly on that "unix-certified" platform */
1203 flags &= ~EVBACKEND_POLL; 1518 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1519 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1520#endif
1521#ifdef __FreeBSD__
1522 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1204#endif 1523#endif
1205 1524
1206 return flags; 1525 return flags;
1207} 1526}
1208 1527
1222ev_backend (EV_P) 1541ev_backend (EV_P)
1223{ 1542{
1224 return backend; 1543 return backend;
1225} 1544}
1226 1545
1546#if EV_FEATURE_API
1227unsigned int 1547unsigned int
1228ev_loop_count (EV_P) 1548ev_iteration (EV_P)
1229{ 1549{
1230 return loop_count; 1550 return loop_count;
1231} 1551}
1232 1552
1553unsigned int
1554ev_depth (EV_P)
1555{
1556 return loop_depth;
1557}
1558
1233void 1559void
1234ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1560ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1235{ 1561{
1236 io_blocktime = interval; 1562 io_blocktime = interval;
1237} 1563}
1240ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1566ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1241{ 1567{
1242 timeout_blocktime = interval; 1568 timeout_blocktime = interval;
1243} 1569}
1244 1570
1571void
1572ev_set_userdata (EV_P_ void *data)
1573{
1574 userdata = data;
1575}
1576
1577void *
1578ev_userdata (EV_P)
1579{
1580 return userdata;
1581}
1582
1583void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1584{
1585 invoke_cb = invoke_pending_cb;
1586}
1587
1588void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1589{
1590 release_cb = release;
1591 acquire_cb = acquire;
1592}
1593#endif
1594
1595/* initialise a loop structure, must be zero-initialised */
1245static void noinline 1596static void noinline
1246loop_init (EV_P_ unsigned int flags) 1597loop_init (EV_P_ unsigned int flags)
1247{ 1598{
1248 if (!backend) 1599 if (!backend)
1249 { 1600 {
1601#if EV_USE_REALTIME
1602 if (!have_realtime)
1603 {
1604 struct timespec ts;
1605
1606 if (!clock_gettime (CLOCK_REALTIME, &ts))
1607 have_realtime = 1;
1608 }
1609#endif
1610
1250#if EV_USE_MONOTONIC 1611#if EV_USE_MONOTONIC
1612 if (!have_monotonic)
1251 { 1613 {
1252 struct timespec ts; 1614 struct timespec ts;
1615
1253 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1616 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1254 have_monotonic = 1; 1617 have_monotonic = 1;
1255 } 1618 }
1256#endif 1619#endif
1620
1621 /* pid check not overridable via env */
1622#ifndef _WIN32
1623 if (flags & EVFLAG_FORKCHECK)
1624 curpid = getpid ();
1625#endif
1626
1627 if (!(flags & EVFLAG_NOENV)
1628 && !enable_secure ()
1629 && getenv ("LIBEV_FLAGS"))
1630 flags = atoi (getenv ("LIBEV_FLAGS"));
1257 1631
1258 ev_rt_now = ev_time (); 1632 ev_rt_now = ev_time ();
1259 mn_now = get_clock (); 1633 mn_now = get_clock ();
1260 now_floor = mn_now; 1634 now_floor = mn_now;
1261 rtmn_diff = ev_rt_now - mn_now; 1635 rtmn_diff = ev_rt_now - mn_now;
1636#if EV_FEATURE_API
1637 invoke_cb = ev_invoke_pending;
1638#endif
1262 1639
1263 io_blocktime = 0.; 1640 io_blocktime = 0.;
1264 timeout_blocktime = 0.; 1641 timeout_blocktime = 0.;
1265 backend = 0; 1642 backend = 0;
1266 backend_fd = -1; 1643 backend_fd = -1;
1267 gotasync = 0; 1644 sig_pending = 0;
1645#if EV_ASYNC_ENABLE
1646 async_pending = 0;
1647#endif
1268#if EV_USE_INOTIFY 1648#if EV_USE_INOTIFY
1269 fs_fd = -2; 1649 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1270#endif 1650#endif
1271 1651#if EV_USE_SIGNALFD
1272 /* pid check not overridable via env */ 1652 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1273#ifndef _WIN32
1274 if (flags & EVFLAG_FORKCHECK)
1275 curpid = getpid ();
1276#endif 1653#endif
1277
1278 if (!(flags & EVFLAG_NOENV)
1279 && !enable_secure ()
1280 && getenv ("LIBEV_FLAGS"))
1281 flags = atoi (getenv ("LIBEV_FLAGS"));
1282 1654
1283 if (!(flags & 0x0000ffffU)) 1655 if (!(flags & 0x0000ffffU))
1284 flags |= ev_recommended_backends (); 1656 flags |= ev_recommended_backends ();
1285 1657
1286#if EV_USE_PORT 1658#if EV_USE_PORT
1297#endif 1669#endif
1298#if EV_USE_SELECT 1670#if EV_USE_SELECT
1299 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1671 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1300#endif 1672#endif
1301 1673
1674 ev_prepare_init (&pending_w, pendingcb);
1675
1676#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1302 ev_init (&pipeev, pipecb); 1677 ev_init (&pipe_w, pipecb);
1303 ev_set_priority (&pipeev, EV_MAXPRI); 1678 ev_set_priority (&pipe_w, EV_MAXPRI);
1679#endif
1304 } 1680 }
1305} 1681}
1306 1682
1683/* free up a loop structure */
1307static void noinline 1684static void noinline
1308loop_destroy (EV_P) 1685loop_destroy (EV_P)
1309{ 1686{
1310 int i; 1687 int i;
1311 1688
1312 if (ev_is_active (&pipeev)) 1689 if (ev_is_active (&pipe_w))
1313 { 1690 {
1314 ev_ref (EV_A); /* signal watcher */ 1691 /*ev_ref (EV_A);*/
1315 ev_io_stop (EV_A_ &pipeev); 1692 /*ev_io_stop (EV_A_ &pipe_w);*/
1316 1693
1317#if EV_USE_EVENTFD 1694#if EV_USE_EVENTFD
1318 if (evfd >= 0) 1695 if (evfd >= 0)
1319 close (evfd); 1696 close (evfd);
1320#endif 1697#endif
1321 1698
1322 if (evpipe [0] >= 0) 1699 if (evpipe [0] >= 0)
1323 { 1700 {
1324 close (evpipe [0]); 1701 EV_WIN32_CLOSE_FD (evpipe [0]);
1325 close (evpipe [1]); 1702 EV_WIN32_CLOSE_FD (evpipe [1]);
1326 } 1703 }
1327 } 1704 }
1705
1706#if EV_USE_SIGNALFD
1707 if (ev_is_active (&sigfd_w))
1708 close (sigfd);
1709#endif
1328 1710
1329#if EV_USE_INOTIFY 1711#if EV_USE_INOTIFY
1330 if (fs_fd >= 0) 1712 if (fs_fd >= 0)
1331 close (fs_fd); 1713 close (fs_fd);
1332#endif 1714#endif
1356#if EV_IDLE_ENABLE 1738#if EV_IDLE_ENABLE
1357 array_free (idle, [i]); 1739 array_free (idle, [i]);
1358#endif 1740#endif
1359 } 1741 }
1360 1742
1361 ev_free (anfds); anfdmax = 0; 1743 ev_free (anfds); anfds = 0; anfdmax = 0;
1362 1744
1363 /* have to use the microsoft-never-gets-it-right macro */ 1745 /* have to use the microsoft-never-gets-it-right macro */
1746 array_free (rfeed, EMPTY);
1364 array_free (fdchange, EMPTY); 1747 array_free (fdchange, EMPTY);
1365 array_free (timer, EMPTY); 1748 array_free (timer, EMPTY);
1366#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1367 array_free (periodic, EMPTY); 1750 array_free (periodic, EMPTY);
1368#endif 1751#endif
1377 1760
1378 backend = 0; 1761 backend = 0;
1379} 1762}
1380 1763
1381#if EV_USE_INOTIFY 1764#if EV_USE_INOTIFY
1382void inline_size infy_fork (EV_P); 1765inline_size void infy_fork (EV_P);
1383#endif 1766#endif
1384 1767
1385void inline_size 1768inline_size void
1386loop_fork (EV_P) 1769loop_fork (EV_P)
1387{ 1770{
1388#if EV_USE_PORT 1771#if EV_USE_PORT
1389 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1772 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1390#endif 1773#endif
1396#endif 1779#endif
1397#if EV_USE_INOTIFY 1780#if EV_USE_INOTIFY
1398 infy_fork (EV_A); 1781 infy_fork (EV_A);
1399#endif 1782#endif
1400 1783
1401 if (ev_is_active (&pipeev)) 1784 if (ev_is_active (&pipe_w))
1402 { 1785 {
1403 /* this "locks" the handlers against writing to the pipe */ 1786 /* this "locks" the handlers against writing to the pipe */
1404 /* while we modify the fd vars */ 1787 /* while we modify the fd vars */
1405 gotsig = 1; 1788 sig_pending = 1;
1406#if EV_ASYNC_ENABLE 1789#if EV_ASYNC_ENABLE
1407 gotasync = 1; 1790 async_pending = 1;
1408#endif 1791#endif
1409 1792
1410 ev_ref (EV_A); 1793 ev_ref (EV_A);
1411 ev_io_stop (EV_A_ &pipeev); 1794 ev_io_stop (EV_A_ &pipe_w);
1412 1795
1413#if EV_USE_EVENTFD 1796#if EV_USE_EVENTFD
1414 if (evfd >= 0) 1797 if (evfd >= 0)
1415 close (evfd); 1798 close (evfd);
1416#endif 1799#endif
1417 1800
1418 if (evpipe [0] >= 0) 1801 if (evpipe [0] >= 0)
1419 { 1802 {
1420 close (evpipe [0]); 1803 EV_WIN32_CLOSE_FD (evpipe [0]);
1421 close (evpipe [1]); 1804 EV_WIN32_CLOSE_FD (evpipe [1]);
1422 } 1805 }
1423 1806
1807#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1424 evpipe_init (EV_A); 1808 evpipe_init (EV_A);
1425 /* now iterate over everything, in case we missed something */ 1809 /* now iterate over everything, in case we missed something */
1426 pipecb (EV_A_ &pipeev, EV_READ); 1810 pipecb (EV_A_ &pipe_w, EV_READ);
1811#endif
1427 } 1812 }
1428 1813
1429 postfork = 0; 1814 postfork = 0;
1430} 1815}
1431 1816
1432#if EV_MULTIPLICITY 1817#if EV_MULTIPLICITY
1818
1433struct ev_loop * 1819struct ev_loop *
1434ev_loop_new (unsigned int flags) 1820ev_loop_new (unsigned int flags)
1435{ 1821{
1436 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1822 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1437 1823
1438 memset (loop, 0, sizeof (struct ev_loop)); 1824 memset (EV_A, 0, sizeof (struct ev_loop));
1439
1440 loop_init (EV_A_ flags); 1825 loop_init (EV_A_ flags);
1441 1826
1442 if (ev_backend (EV_A)) 1827 if (ev_backend (EV_A))
1443 return loop; 1828 return EV_A;
1444 1829
1445 return 0; 1830 return 0;
1446} 1831}
1447 1832
1448void 1833void
1454 1839
1455void 1840void
1456ev_loop_fork (EV_P) 1841ev_loop_fork (EV_P)
1457{ 1842{
1458 postfork = 1; /* must be in line with ev_default_fork */ 1843 postfork = 1; /* must be in line with ev_default_fork */
1844}
1845#endif /* multiplicity */
1846
1847#if EV_VERIFY
1848static void noinline
1849verify_watcher (EV_P_ W w)
1850{
1851 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1852
1853 if (w->pending)
1854 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1855}
1856
1857static void noinline
1858verify_heap (EV_P_ ANHE *heap, int N)
1859{
1860 int i;
1861
1862 for (i = HEAP0; i < N + HEAP0; ++i)
1863 {
1864 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1865 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1866 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1867
1868 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1869 }
1870}
1871
1872static void noinline
1873array_verify (EV_P_ W *ws, int cnt)
1874{
1875 while (cnt--)
1876 {
1877 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1878 verify_watcher (EV_A_ ws [cnt]);
1879 }
1880}
1881#endif
1882
1883#if EV_FEATURE_API
1884void
1885ev_verify (EV_P)
1886{
1887#if EV_VERIFY
1888 int i;
1889 WL w;
1890
1891 assert (activecnt >= -1);
1892
1893 assert (fdchangemax >= fdchangecnt);
1894 for (i = 0; i < fdchangecnt; ++i)
1895 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1896
1897 assert (anfdmax >= 0);
1898 for (i = 0; i < anfdmax; ++i)
1899 for (w = anfds [i].head; w; w = w->next)
1900 {
1901 verify_watcher (EV_A_ (W)w);
1902 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1903 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1904 }
1905
1906 assert (timermax >= timercnt);
1907 verify_heap (EV_A_ timers, timercnt);
1908
1909#if EV_PERIODIC_ENABLE
1910 assert (periodicmax >= periodiccnt);
1911 verify_heap (EV_A_ periodics, periodiccnt);
1912#endif
1913
1914 for (i = NUMPRI; i--; )
1915 {
1916 assert (pendingmax [i] >= pendingcnt [i]);
1917#if EV_IDLE_ENABLE
1918 assert (idleall >= 0);
1919 assert (idlemax [i] >= idlecnt [i]);
1920 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1921#endif
1922 }
1923
1924#if EV_FORK_ENABLE
1925 assert (forkmax >= forkcnt);
1926 array_verify (EV_A_ (W *)forks, forkcnt);
1927#endif
1928
1929#if EV_ASYNC_ENABLE
1930 assert (asyncmax >= asynccnt);
1931 array_verify (EV_A_ (W *)asyncs, asynccnt);
1932#endif
1933
1934#if EV_PREPARE_ENABLE
1935 assert (preparemax >= preparecnt);
1936 array_verify (EV_A_ (W *)prepares, preparecnt);
1937#endif
1938
1939#if EV_CHECK_ENABLE
1940 assert (checkmax >= checkcnt);
1941 array_verify (EV_A_ (W *)checks, checkcnt);
1942#endif
1943
1944# if 0
1945#if EV_CHILD_ENABLE
1946 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1947 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1948#endif
1949# endif
1950#endif
1459} 1951}
1460#endif 1952#endif
1461 1953
1462#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
1463struct ev_loop * 1955struct ev_loop *
1468#endif 1960#endif
1469{ 1961{
1470 if (!ev_default_loop_ptr) 1962 if (!ev_default_loop_ptr)
1471 { 1963 {
1472#if EV_MULTIPLICITY 1964#if EV_MULTIPLICITY
1473 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1965 EV_P = ev_default_loop_ptr = &default_loop_struct;
1474#else 1966#else
1475 ev_default_loop_ptr = 1; 1967 ev_default_loop_ptr = 1;
1476#endif 1968#endif
1477 1969
1478 loop_init (EV_A_ flags); 1970 loop_init (EV_A_ flags);
1479 1971
1480 if (ev_backend (EV_A)) 1972 if (ev_backend (EV_A))
1481 { 1973 {
1482#ifndef _WIN32 1974#if EV_CHILD_ENABLE
1483 ev_signal_init (&childev, childcb, SIGCHLD); 1975 ev_signal_init (&childev, childcb, SIGCHLD);
1484 ev_set_priority (&childev, EV_MAXPRI); 1976 ev_set_priority (&childev, EV_MAXPRI);
1485 ev_signal_start (EV_A_ &childev); 1977 ev_signal_start (EV_A_ &childev);
1486 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1978 ev_unref (EV_A); /* child watcher should not keep loop alive */
1487#endif 1979#endif
1495 1987
1496void 1988void
1497ev_default_destroy (void) 1989ev_default_destroy (void)
1498{ 1990{
1499#if EV_MULTIPLICITY 1991#if EV_MULTIPLICITY
1500 struct ev_loop *loop = ev_default_loop_ptr; 1992 EV_P = ev_default_loop_ptr;
1501#endif 1993#endif
1502 1994
1503#ifndef _WIN32 1995 ev_default_loop_ptr = 0;
1996
1997#if EV_CHILD_ENABLE
1504 ev_ref (EV_A); /* child watcher */ 1998 ev_ref (EV_A); /* child watcher */
1505 ev_signal_stop (EV_A_ &childev); 1999 ev_signal_stop (EV_A_ &childev);
1506#endif 2000#endif
1507 2001
1508 loop_destroy (EV_A); 2002 loop_destroy (EV_A);
1510 2004
1511void 2005void
1512ev_default_fork (void) 2006ev_default_fork (void)
1513{ 2007{
1514#if EV_MULTIPLICITY 2008#if EV_MULTIPLICITY
1515 struct ev_loop *loop = ev_default_loop_ptr; 2009 EV_P = ev_default_loop_ptr;
1516#endif 2010#endif
1517 2011
1518 if (backend)
1519 postfork = 1; /* must be in line with ev_loop_fork */ 2012 postfork = 1; /* must be in line with ev_loop_fork */
1520} 2013}
1521 2014
1522/*****************************************************************************/ 2015/*****************************************************************************/
1523 2016
1524void 2017void
1525ev_invoke (EV_P_ void *w, int revents) 2018ev_invoke (EV_P_ void *w, int revents)
1526{ 2019{
1527 EV_CB_INVOKE ((W)w, revents); 2020 EV_CB_INVOKE ((W)w, revents);
1528} 2021}
1529 2022
1530void inline_speed 2023unsigned int
1531call_pending (EV_P) 2024ev_pending_count (EV_P)
2025{
2026 int pri;
2027 unsigned int count = 0;
2028
2029 for (pri = NUMPRI; pri--; )
2030 count += pendingcnt [pri];
2031
2032 return count;
2033}
2034
2035void noinline
2036ev_invoke_pending (EV_P)
1532{ 2037{
1533 int pri; 2038 int pri;
1534 2039
1535 for (pri = NUMPRI; pri--; ) 2040 for (pri = NUMPRI; pri--; )
1536 while (pendingcnt [pri]) 2041 while (pendingcnt [pri])
1537 { 2042 {
1538 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2043 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1539 2044
1540 if (expect_true (p->w))
1541 {
1542 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2045 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2046 /* ^ this is no longer true, as pending_w could be here */
1543 2047
1544 p->w->pending = 0; 2048 p->w->pending = 0;
1545 EV_CB_INVOKE (p->w, p->events); 2049 EV_CB_INVOKE (p->w, p->events);
1546 } 2050 EV_FREQUENT_CHECK;
1547 } 2051 }
1548} 2052}
1549 2053
1550#if EV_IDLE_ENABLE 2054#if EV_IDLE_ENABLE
1551void inline_size 2055/* make idle watchers pending. this handles the "call-idle */
2056/* only when higher priorities are idle" logic */
2057inline_size void
1552idle_reify (EV_P) 2058idle_reify (EV_P)
1553{ 2059{
1554 if (expect_false (idleall)) 2060 if (expect_false (idleall))
1555 { 2061 {
1556 int pri; 2062 int pri;
1568 } 2074 }
1569 } 2075 }
1570} 2076}
1571#endif 2077#endif
1572 2078
1573void inline_size 2079/* make timers pending */
2080inline_size void
1574timers_reify (EV_P) 2081timers_reify (EV_P)
1575{ 2082{
2083 EV_FREQUENT_CHECK;
2084
1576 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2085 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1577 { 2086 {
1578 ev_timer *w = (ev_timer *)timers [HEAP0]; 2087 do
1579
1580 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1581
1582 /* first reschedule or stop timer */
1583 if (w->repeat)
1584 { 2088 {
2089 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2090
2091 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2092
2093 /* first reschedule or stop timer */
2094 if (w->repeat)
2095 {
2096 ev_at (w) += w->repeat;
2097 if (ev_at (w) < mn_now)
2098 ev_at (w) = mn_now;
2099
1585 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2100 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1586 2101
1587 ev_at (w) += w->repeat; 2102 ANHE_at_cache (timers [HEAP0]);
1588 if (ev_at (w) < mn_now)
1589 ev_at (w) = mn_now;
1590
1591 downheap (timers, timercnt, HEAP0); 2103 downheap (timers, timercnt, HEAP0);
2104 }
2105 else
2106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2107
2108 EV_FREQUENT_CHECK;
2109 feed_reverse (EV_A_ (W)w);
1592 } 2110 }
1593 else 2111 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1594 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1595 2112
1596 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2113 feed_reverse_done (EV_A_ EV_TIMER);
1597 } 2114 }
1598} 2115}
1599 2116
1600#if EV_PERIODIC_ENABLE 2117#if EV_PERIODIC_ENABLE
1601void inline_size 2118/* make periodics pending */
2119inline_size void
1602periodics_reify (EV_P) 2120periodics_reify (EV_P)
1603{ 2121{
2122 EV_FREQUENT_CHECK;
2123
1604 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1605 { 2125 {
1606 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2126 int feed_count = 0;
1607 2127
1608 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2128 do
1609
1610 /* first reschedule or stop timer */
1611 if (w->reschedule_cb)
1612 { 2129 {
2130 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2131
2132 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2133
2134 /* first reschedule or stop timer */
2135 if (w->reschedule_cb)
2136 {
1613 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2137 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2138
1614 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2139 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2140
2141 ANHE_at_cache (periodics [HEAP0]);
1615 downheap (periodics, periodiccnt, 1); 2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else if (w->interval)
2145 {
2146 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2147 /* if next trigger time is not sufficiently in the future, put it there */
2148 /* this might happen because of floating point inexactness */
2149 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2150 {
2151 ev_at (w) += w->interval;
2152
2153 /* if interval is unreasonably low we might still have a time in the past */
2154 /* so correct this. this will make the periodic very inexact, but the user */
2155 /* has effectively asked to get triggered more often than possible */
2156 if (ev_at (w) < ev_rt_now)
2157 ev_at (w) = ev_rt_now;
2158 }
2159
2160 ANHE_at_cache (periodics [HEAP0]);
2161 downheap (periodics, periodiccnt, HEAP0);
2162 }
2163 else
2164 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2165
2166 EV_FREQUENT_CHECK;
2167 feed_reverse (EV_A_ (W)w);
1616 } 2168 }
1617 else if (w->interval) 2169 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1618 {
1619 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1621 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1622 downheap (periodics, periodiccnt, HEAP0);
1623 }
1624 else
1625 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2170
1627 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2171 feed_reverse_done (EV_A_ EV_PERIODIC);
1628 } 2172 }
1629} 2173}
1630 2174
2175/* simply recalculate all periodics */
2176/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1631static void noinline 2177static void noinline
1632periodics_reschedule (EV_P) 2178periodics_reschedule (EV_P)
1633{ 2179{
1634 int i; 2180 int i;
1635 2181
1636 /* adjust periodics after time jump */ 2182 /* adjust periodics after time jump */
1637 for (i = 1; i <= periodiccnt; ++i) 2183 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1638 { 2184 {
1639 ev_periodic *w = (ev_periodic *)periodics [i]; 2185 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1640 2186
1641 if (w->reschedule_cb) 2187 if (w->reschedule_cb)
1642 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2188 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1643 else if (w->interval) 2189 else if (w->interval)
1644 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2190 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2191
2192 ANHE_at_cache (periodics [i]);
2193 }
2194
2195 reheap (periodics, periodiccnt);
2196}
2197#endif
2198
2199/* adjust all timers by a given offset */
2200static void noinline
2201timers_reschedule (EV_P_ ev_tstamp adjust)
2202{
2203 int i;
2204
2205 for (i = 0; i < timercnt; ++i)
1645 } 2206 {
1646 2207 ANHE *he = timers + i + HEAP0;
1647 /* now rebuild the heap */ 2208 ANHE_w (*he)->at += adjust;
1648 for (i = periodiccnt >> 1; --i; ) 2209 ANHE_at_cache (*he);
1649 downheap (periodics, periodiccnt, i + HEAP0); 2210 }
1650} 2211}
1651#endif
1652 2212
1653void inline_speed 2213/* fetch new monotonic and realtime times from the kernel */
2214/* also detect if there was a timejump, and act accordingly */
2215inline_speed void
1654time_update (EV_P_ ev_tstamp max_block) 2216time_update (EV_P_ ev_tstamp max_block)
1655{ 2217{
1656 int i;
1657
1658#if EV_USE_MONOTONIC 2218#if EV_USE_MONOTONIC
1659 if (expect_true (have_monotonic)) 2219 if (expect_true (have_monotonic))
1660 { 2220 {
2221 int i;
1661 ev_tstamp odiff = rtmn_diff; 2222 ev_tstamp odiff = rtmn_diff;
1662 2223
1663 mn_now = get_clock (); 2224 mn_now = get_clock ();
1664 2225
1665 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2226 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1691 ev_rt_now = ev_time (); 2252 ev_rt_now = ev_time ();
1692 mn_now = get_clock (); 2253 mn_now = get_clock ();
1693 now_floor = mn_now; 2254 now_floor = mn_now;
1694 } 2255 }
1695 2256
2257 /* no timer adjustment, as the monotonic clock doesn't jump */
2258 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1696# if EV_PERIODIC_ENABLE 2259# if EV_PERIODIC_ENABLE
1697 periodics_reschedule (EV_A); 2260 periodics_reschedule (EV_A);
1698# endif 2261# endif
1699 /* no timer adjustment, as the monotonic clock doesn't jump */
1700 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1701 } 2262 }
1702 else 2263 else
1703#endif 2264#endif
1704 { 2265 {
1705 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1706 2267
1707 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2268 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1708 { 2269 {
2270 /* adjust timers. this is easy, as the offset is the same for all of them */
2271 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1709#if EV_PERIODIC_ENABLE 2272#if EV_PERIODIC_ENABLE
1710 periodics_reschedule (EV_A); 2273 periodics_reschedule (EV_A);
1711#endif 2274#endif
1712 /* adjust timers. this is easy, as the offset is the same for all of them */
1713 for (i = 1; i <= timercnt; ++i)
1714 ev_at (timers [i]) += ev_rt_now - mn_now;
1715 } 2275 }
1716 2276
1717 mn_now = ev_rt_now; 2277 mn_now = ev_rt_now;
1718 } 2278 }
1719} 2279}
1720 2280
1721void 2281void
1722ev_ref (EV_P)
1723{
1724 ++activecnt;
1725}
1726
1727void
1728ev_unref (EV_P)
1729{
1730 --activecnt;
1731}
1732
1733static int loop_done;
1734
1735void
1736ev_loop (EV_P_ int flags) 2282ev_loop (EV_P_ int flags)
1737{ 2283{
2284#if EV_FEATURE_API
2285 ++loop_depth;
2286#endif
2287
2288 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2289
1738 loop_done = EVUNLOOP_CANCEL; 2290 loop_done = EVUNLOOP_CANCEL;
1739 2291
1740 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2292 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1741 2293
1742 do 2294 do
1743 { 2295 {
2296#if EV_VERIFY >= 2
2297 ev_verify (EV_A);
2298#endif
2299
1744#ifndef _WIN32 2300#ifndef _WIN32
1745 if (expect_false (curpid)) /* penalise the forking check even more */ 2301 if (expect_false (curpid)) /* penalise the forking check even more */
1746 if (expect_false (getpid () != curpid)) 2302 if (expect_false (getpid () != curpid))
1747 { 2303 {
1748 curpid = getpid (); 2304 curpid = getpid ();
1754 /* we might have forked, so queue fork handlers */ 2310 /* we might have forked, so queue fork handlers */
1755 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1756 if (forkcnt) 2312 if (forkcnt)
1757 { 2313 {
1758 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2314 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1759 call_pending (EV_A); 2315 EV_INVOKE_PENDING;
1760 } 2316 }
1761#endif 2317#endif
1762 2318
2319#if EV_PREPARE_ENABLE
1763 /* queue prepare watchers (and execute them) */ 2320 /* queue prepare watchers (and execute them) */
1764 if (expect_false (preparecnt)) 2321 if (expect_false (preparecnt))
1765 { 2322 {
1766 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2323 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1767 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1768 } 2325 }
2326#endif
1769 2327
1770 if (expect_false (!activecnt)) 2328 if (expect_false (loop_done))
1771 break; 2329 break;
1772 2330
1773 /* we might have forked, so reify kernel state if necessary */ 2331 /* we might have forked, so reify kernel state if necessary */
1774 if (expect_false (postfork)) 2332 if (expect_false (postfork))
1775 loop_fork (EV_A); 2333 loop_fork (EV_A);
1782 ev_tstamp waittime = 0.; 2340 ev_tstamp waittime = 0.;
1783 ev_tstamp sleeptime = 0.; 2341 ev_tstamp sleeptime = 0.;
1784 2342
1785 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2343 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1786 { 2344 {
2345 /* remember old timestamp for io_blocktime calculation */
2346 ev_tstamp prev_mn_now = mn_now;
2347
1787 /* update time to cancel out callback processing overhead */ 2348 /* update time to cancel out callback processing overhead */
1788 time_update (EV_A_ 1e100); 2349 time_update (EV_A_ 1e100);
1789 2350
1790 waittime = MAX_BLOCKTIME; 2351 waittime = MAX_BLOCKTIME;
1791 2352
1792 if (timercnt) 2353 if (timercnt)
1793 { 2354 {
1794 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2355 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1795 if (waittime > to) waittime = to; 2356 if (waittime > to) waittime = to;
1796 } 2357 }
1797 2358
1798#if EV_PERIODIC_ENABLE 2359#if EV_PERIODIC_ENABLE
1799 if (periodiccnt) 2360 if (periodiccnt)
1800 { 2361 {
1801 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2362 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1802 if (waittime > to) waittime = to; 2363 if (waittime > to) waittime = to;
1803 } 2364 }
1804#endif 2365#endif
1805 2366
2367 /* don't let timeouts decrease the waittime below timeout_blocktime */
1806 if (expect_false (waittime < timeout_blocktime)) 2368 if (expect_false (waittime < timeout_blocktime))
1807 waittime = timeout_blocktime; 2369 waittime = timeout_blocktime;
1808 2370
1809 sleeptime = waittime - backend_fudge; 2371 /* extra check because io_blocktime is commonly 0 */
1810
1811 if (expect_true (sleeptime > io_blocktime)) 2372 if (expect_false (io_blocktime))
1812 sleeptime = io_blocktime;
1813
1814 if (sleeptime)
1815 { 2373 {
2374 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2375
2376 if (sleeptime > waittime - backend_fudge)
2377 sleeptime = waittime - backend_fudge;
2378
2379 if (expect_true (sleeptime > 0.))
2380 {
1816 ev_sleep (sleeptime); 2381 ev_sleep (sleeptime);
1817 waittime -= sleeptime; 2382 waittime -= sleeptime;
2383 }
1818 } 2384 }
1819 } 2385 }
1820 2386
2387#if EV_FEATURE_API
1821 ++loop_count; 2388 ++loop_count;
2389#endif
2390 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1822 backend_poll (EV_A_ waittime); 2391 backend_poll (EV_A_ waittime);
2392 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1823 2393
1824 /* update ev_rt_now, do magic */ 2394 /* update ev_rt_now, do magic */
1825 time_update (EV_A_ waittime + sleeptime); 2395 time_update (EV_A_ waittime + sleeptime);
1826 } 2396 }
1827 2397
1834#if EV_IDLE_ENABLE 2404#if EV_IDLE_ENABLE
1835 /* queue idle watchers unless other events are pending */ 2405 /* queue idle watchers unless other events are pending */
1836 idle_reify (EV_A); 2406 idle_reify (EV_A);
1837#endif 2407#endif
1838 2408
2409#if EV_CHECK_ENABLE
1839 /* queue check watchers, to be executed first */ 2410 /* queue check watchers, to be executed first */
1840 if (expect_false (checkcnt)) 2411 if (expect_false (checkcnt))
1841 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2412 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2413#endif
1842 2414
1843 call_pending (EV_A); 2415 EV_INVOKE_PENDING;
1844 } 2416 }
1845 while (expect_true ( 2417 while (expect_true (
1846 activecnt 2418 activecnt
1847 && !loop_done 2419 && !loop_done
1848 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2420 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1849 )); 2421 ));
1850 2422
1851 if (loop_done == EVUNLOOP_ONE) 2423 if (loop_done == EVUNLOOP_ONE)
1852 loop_done = EVUNLOOP_CANCEL; 2424 loop_done = EVUNLOOP_CANCEL;
2425
2426#if EV_FEATURE_API
2427 --loop_depth;
2428#endif
1853} 2429}
1854 2430
1855void 2431void
1856ev_unloop (EV_P_ int how) 2432ev_unloop (EV_P_ int how)
1857{ 2433{
1858 loop_done = how; 2434 loop_done = how;
1859} 2435}
1860 2436
2437void
2438ev_ref (EV_P)
2439{
2440 ++activecnt;
2441}
2442
2443void
2444ev_unref (EV_P)
2445{
2446 --activecnt;
2447}
2448
2449void
2450ev_now_update (EV_P)
2451{
2452 time_update (EV_A_ 1e100);
2453}
2454
2455void
2456ev_suspend (EV_P)
2457{
2458 ev_now_update (EV_A);
2459}
2460
2461void
2462ev_resume (EV_P)
2463{
2464 ev_tstamp mn_prev = mn_now;
2465
2466 ev_now_update (EV_A);
2467 timers_reschedule (EV_A_ mn_now - mn_prev);
2468#if EV_PERIODIC_ENABLE
2469 /* TODO: really do this? */
2470 periodics_reschedule (EV_A);
2471#endif
2472}
2473
1861/*****************************************************************************/ 2474/*****************************************************************************/
2475/* singly-linked list management, used when the expected list length is short */
1862 2476
1863void inline_size 2477inline_size void
1864wlist_add (WL *head, WL elem) 2478wlist_add (WL *head, WL elem)
1865{ 2479{
1866 elem->next = *head; 2480 elem->next = *head;
1867 *head = elem; 2481 *head = elem;
1868} 2482}
1869 2483
1870void inline_size 2484inline_size void
1871wlist_del (WL *head, WL elem) 2485wlist_del (WL *head, WL elem)
1872{ 2486{
1873 while (*head) 2487 while (*head)
1874 { 2488 {
1875 if (*head == elem) 2489 if (expect_true (*head == elem))
1876 { 2490 {
1877 *head = elem->next; 2491 *head = elem->next;
1878 return; 2492 break;
1879 } 2493 }
1880 2494
1881 head = &(*head)->next; 2495 head = &(*head)->next;
1882 } 2496 }
1883} 2497}
1884 2498
1885void inline_speed 2499/* internal, faster, version of ev_clear_pending */
2500inline_speed void
1886clear_pending (EV_P_ W w) 2501clear_pending (EV_P_ W w)
1887{ 2502{
1888 if (w->pending) 2503 if (w->pending)
1889 { 2504 {
1890 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2505 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1891 w->pending = 0; 2506 w->pending = 0;
1892 } 2507 }
1893} 2508}
1894 2509
1895int 2510int
1899 int pending = w_->pending; 2514 int pending = w_->pending;
1900 2515
1901 if (expect_true (pending)) 2516 if (expect_true (pending))
1902 { 2517 {
1903 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2518 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2519 p->w = (W)&pending_w;
1904 w_->pending = 0; 2520 w_->pending = 0;
1905 p->w = 0;
1906 return p->events; 2521 return p->events;
1907 } 2522 }
1908 else 2523 else
1909 return 0; 2524 return 0;
1910} 2525}
1911 2526
1912void inline_size 2527inline_size void
1913pri_adjust (EV_P_ W w) 2528pri_adjust (EV_P_ W w)
1914{ 2529{
1915 int pri = w->priority; 2530 int pri = ev_priority (w);
1916 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2531 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1917 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2532 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1918 w->priority = pri; 2533 ev_set_priority (w, pri);
1919} 2534}
1920 2535
1921void inline_speed 2536inline_speed void
1922ev_start (EV_P_ W w, int active) 2537ev_start (EV_P_ W w, int active)
1923{ 2538{
1924 pri_adjust (EV_A_ w); 2539 pri_adjust (EV_A_ w);
1925 w->active = active; 2540 w->active = active;
1926 ev_ref (EV_A); 2541 ev_ref (EV_A);
1927} 2542}
1928 2543
1929void inline_size 2544inline_size void
1930ev_stop (EV_P_ W w) 2545ev_stop (EV_P_ W w)
1931{ 2546{
1932 ev_unref (EV_A); 2547 ev_unref (EV_A);
1933 w->active = 0; 2548 w->active = 0;
1934} 2549}
1941 int fd = w->fd; 2556 int fd = w->fd;
1942 2557
1943 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
1944 return; 2559 return;
1945 2560
1946 assert (("ev_io_start called with negative fd", fd >= 0)); 2561 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2562 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2563
2564 EV_FREQUENT_CHECK;
1947 2565
1948 ev_start (EV_A_ (W)w, 1); 2566 ev_start (EV_A_ (W)w, 1);
1949 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2567 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1950 wlist_add (&anfds[fd].head, (WL)w); 2568 wlist_add (&anfds[fd].head, (WL)w);
1951 2569
1952 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2570 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1953 w->events &= ~EV_IOFDSET; 2571 w->events &= ~EV__IOFDSET;
2572
2573 EV_FREQUENT_CHECK;
1954} 2574}
1955 2575
1956void noinline 2576void noinline
1957ev_io_stop (EV_P_ ev_io *w) 2577ev_io_stop (EV_P_ ev_io *w)
1958{ 2578{
1959 clear_pending (EV_A_ (W)w); 2579 clear_pending (EV_A_ (W)w);
1960 if (expect_false (!ev_is_active (w))) 2580 if (expect_false (!ev_is_active (w)))
1961 return; 2581 return;
1962 2582
1963 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2583 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2584
2585 EV_FREQUENT_CHECK;
1964 2586
1965 wlist_del (&anfds[w->fd].head, (WL)w); 2587 wlist_del (&anfds[w->fd].head, (WL)w);
1966 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1967 2589
1968 fd_change (EV_A_ w->fd, 1); 2590 fd_change (EV_A_ w->fd, 1);
2591
2592 EV_FREQUENT_CHECK;
1969} 2593}
1970 2594
1971void noinline 2595void noinline
1972ev_timer_start (EV_P_ ev_timer *w) 2596ev_timer_start (EV_P_ ev_timer *w)
1973{ 2597{
1974 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1975 return; 2599 return;
1976 2600
1977 ev_at (w) += mn_now; 2601 ev_at (w) += mn_now;
1978 2602
1979 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2603 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1980 2604
2605 EV_FREQUENT_CHECK;
2606
2607 ++timercnt;
1981 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2608 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1982 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2609 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1983 timers [ev_active (w)] = (WT)w; 2610 ANHE_w (timers [ev_active (w)]) = (WT)w;
2611 ANHE_at_cache (timers [ev_active (w)]);
1984 upheap (timers, ev_active (w)); 2612 upheap (timers, ev_active (w));
1985 2613
2614 EV_FREQUENT_CHECK;
2615
1986 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2616 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1987} 2617}
1988 2618
1989void noinline 2619void noinline
1990ev_timer_stop (EV_P_ ev_timer *w) 2620ev_timer_stop (EV_P_ ev_timer *w)
1991{ 2621{
1992 clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
1994 return; 2624 return;
1995 2625
2626 EV_FREQUENT_CHECK;
2627
1996 { 2628 {
1997 int active = ev_active (w); 2629 int active = ev_active (w);
1998 2630
1999 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2631 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2000 2632
2633 --timercnt;
2634
2001 if (expect_true (active < timercnt + HEAP0 - 1)) 2635 if (expect_true (active < timercnt + HEAP0))
2002 { 2636 {
2003 timers [active] = timers [timercnt + HEAP0 - 1]; 2637 timers [active] = timers [timercnt + HEAP0];
2004 adjustheap (timers, timercnt, active); 2638 adjustheap (timers, timercnt, active);
2005 } 2639 }
2006
2007 --timercnt;
2008 } 2640 }
2009 2641
2010 ev_at (w) -= mn_now; 2642 ev_at (w) -= mn_now;
2011 2643
2012 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
2645
2646 EV_FREQUENT_CHECK;
2013} 2647}
2014 2648
2015void noinline 2649void noinline
2016ev_timer_again (EV_P_ ev_timer *w) 2650ev_timer_again (EV_P_ ev_timer *w)
2017{ 2651{
2652 EV_FREQUENT_CHECK;
2653
2018 if (ev_is_active (w)) 2654 if (ev_is_active (w))
2019 { 2655 {
2020 if (w->repeat) 2656 if (w->repeat)
2021 { 2657 {
2022 ev_at (w) = mn_now + w->repeat; 2658 ev_at (w) = mn_now + w->repeat;
2659 ANHE_at_cache (timers [ev_active (w)]);
2023 adjustheap (timers, timercnt, ev_active (w)); 2660 adjustheap (timers, timercnt, ev_active (w));
2024 } 2661 }
2025 else 2662 else
2026 ev_timer_stop (EV_A_ w); 2663 ev_timer_stop (EV_A_ w);
2027 } 2664 }
2028 else if (w->repeat) 2665 else if (w->repeat)
2029 { 2666 {
2030 ev_at (w) = w->repeat; 2667 ev_at (w) = w->repeat;
2031 ev_timer_start (EV_A_ w); 2668 ev_timer_start (EV_A_ w);
2032 } 2669 }
2670
2671 EV_FREQUENT_CHECK;
2672}
2673
2674ev_tstamp
2675ev_timer_remaining (EV_P_ ev_timer *w)
2676{
2677 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2033} 2678}
2034 2679
2035#if EV_PERIODIC_ENABLE 2680#if EV_PERIODIC_ENABLE
2036void noinline 2681void noinline
2037ev_periodic_start (EV_P_ ev_periodic *w) 2682ev_periodic_start (EV_P_ ev_periodic *w)
2041 2686
2042 if (w->reschedule_cb) 2687 if (w->reschedule_cb)
2043 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2044 else if (w->interval) 2689 else if (w->interval)
2045 { 2690 {
2046 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2691 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2047 /* this formula differs from the one in periodic_reify because we do not always round up */ 2692 /* this formula differs from the one in periodic_reify because we do not always round up */
2048 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2693 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2049 } 2694 }
2050 else 2695 else
2051 ev_at (w) = w->offset; 2696 ev_at (w) = w->offset;
2052 2697
2698 EV_FREQUENT_CHECK;
2699
2700 ++periodiccnt;
2053 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2701 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2054 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2702 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2055 periodics [ev_active (w)] = (WT)w; 2703 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2704 ANHE_at_cache (periodics [ev_active (w)]);
2056 upheap (periodics, ev_active (w)); 2705 upheap (periodics, ev_active (w));
2057 2706
2707 EV_FREQUENT_CHECK;
2708
2058 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2709 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2059} 2710}
2060 2711
2061void noinline 2712void noinline
2062ev_periodic_stop (EV_P_ ev_periodic *w) 2713ev_periodic_stop (EV_P_ ev_periodic *w)
2063{ 2714{
2064 clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
2066 return; 2717 return;
2067 2718
2719 EV_FREQUENT_CHECK;
2720
2068 { 2721 {
2069 int active = ev_active (w); 2722 int active = ev_active (w);
2070 2723
2071 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2724 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2072 2725
2726 --periodiccnt;
2727
2073 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2728 if (expect_true (active < periodiccnt + HEAP0))
2074 { 2729 {
2075 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2730 periodics [active] = periodics [periodiccnt + HEAP0];
2076 adjustheap (periodics, periodiccnt, active); 2731 adjustheap (periodics, periodiccnt, active);
2077 } 2732 }
2078
2079 --periodiccnt;
2080 } 2733 }
2081 2734
2082 ev_stop (EV_A_ (W)w); 2735 ev_stop (EV_A_ (W)w);
2736
2737 EV_FREQUENT_CHECK;
2083} 2738}
2084 2739
2085void noinline 2740void noinline
2086ev_periodic_again (EV_P_ ev_periodic *w) 2741ev_periodic_again (EV_P_ ev_periodic *w)
2087{ 2742{
2093 2748
2094#ifndef SA_RESTART 2749#ifndef SA_RESTART
2095# define SA_RESTART 0 2750# define SA_RESTART 0
2096#endif 2751#endif
2097 2752
2753#if EV_SIGNAL_ENABLE
2754
2098void noinline 2755void noinline
2099ev_signal_start (EV_P_ ev_signal *w) 2756ev_signal_start (EV_P_ ev_signal *w)
2100{ 2757{
2101#if EV_MULTIPLICITY
2102 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2103#endif
2104 if (expect_false (ev_is_active (w))) 2758 if (expect_false (ev_is_active (w)))
2105 return; 2759 return;
2106 2760
2107 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2761 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2108 2762
2109 evpipe_init (EV_A); 2763#if EV_MULTIPLICITY
2764 assert (("libev: a signal must not be attached to two different loops",
2765 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2110 2766
2767 signals [w->signum - 1].loop = EV_A;
2768#endif
2769
2770 EV_FREQUENT_CHECK;
2771
2772#if EV_USE_SIGNALFD
2773 if (sigfd == -2)
2111 { 2774 {
2112#ifndef _WIN32 2775 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2113 sigset_t full, prev; 2776 if (sigfd < 0 && errno == EINVAL)
2114 sigfillset (&full); 2777 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2115 sigprocmask (SIG_SETMASK, &full, &prev);
2116#endif
2117 2778
2118 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2779 if (sigfd >= 0)
2780 {
2781 fd_intern (sigfd); /* doing it twice will not hurt */
2119 2782
2120#ifndef _WIN32 2783 sigemptyset (&sigfd_set);
2121 sigprocmask (SIG_SETMASK, &prev, 0); 2784
2122#endif 2785 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2786 ev_set_priority (&sigfd_w, EV_MAXPRI);
2787 ev_io_start (EV_A_ &sigfd_w);
2788 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2789 }
2123 } 2790 }
2791
2792 if (sigfd >= 0)
2793 {
2794 /* TODO: check .head */
2795 sigaddset (&sigfd_set, w->signum);
2796 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2797
2798 signalfd (sigfd, &sigfd_set, 0);
2799 }
2800#endif
2124 2801
2125 ev_start (EV_A_ (W)w, 1); 2802 ev_start (EV_A_ (W)w, 1);
2126 wlist_add (&signals [w->signum - 1].head, (WL)w); 2803 wlist_add (&signals [w->signum - 1].head, (WL)w);
2127 2804
2128 if (!((WL)w)->next) 2805 if (!((WL)w)->next)
2806# if EV_USE_SIGNALFD
2807 if (sigfd < 0) /*TODO*/
2808# endif
2129 { 2809 {
2130#if _WIN32 2810# ifdef _WIN32
2811 evpipe_init (EV_A);
2812
2131 signal (w->signum, ev_sighandler); 2813 signal (w->signum, ev_sighandler);
2132#else 2814# else
2133 struct sigaction sa; 2815 struct sigaction sa;
2816
2817 evpipe_init (EV_A);
2818
2134 sa.sa_handler = ev_sighandler; 2819 sa.sa_handler = ev_sighandler;
2135 sigfillset (&sa.sa_mask); 2820 sigfillset (&sa.sa_mask);
2136 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2821 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2137 sigaction (w->signum, &sa, 0); 2822 sigaction (w->signum, &sa, 0);
2823
2824 sigemptyset (&sa.sa_mask);
2825 sigaddset (&sa.sa_mask, w->signum);
2826 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2138#endif 2827#endif
2139 } 2828 }
2829
2830 EV_FREQUENT_CHECK;
2140} 2831}
2141 2832
2142void noinline 2833void noinline
2143ev_signal_stop (EV_P_ ev_signal *w) 2834ev_signal_stop (EV_P_ ev_signal *w)
2144{ 2835{
2145 clear_pending (EV_A_ (W)w); 2836 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 2837 if (expect_false (!ev_is_active (w)))
2147 return; 2838 return;
2148 2839
2840 EV_FREQUENT_CHECK;
2841
2149 wlist_del (&signals [w->signum - 1].head, (WL)w); 2842 wlist_del (&signals [w->signum - 1].head, (WL)w);
2150 ev_stop (EV_A_ (W)w); 2843 ev_stop (EV_A_ (W)w);
2151 2844
2152 if (!signals [w->signum - 1].head) 2845 if (!signals [w->signum - 1].head)
2846 {
2847#if EV_MULTIPLICITY
2848 signals [w->signum - 1].loop = 0; /* unattach from signal */
2849#endif
2850#if EV_USE_SIGNALFD
2851 if (sigfd >= 0)
2852 {
2853 sigset_t ss;
2854
2855 sigemptyset (&ss);
2856 sigaddset (&ss, w->signum);
2857 sigdelset (&sigfd_set, w->signum);
2858
2859 signalfd (sigfd, &sigfd_set, 0);
2860 sigprocmask (SIG_UNBLOCK, &ss, 0);
2861 }
2862 else
2863#endif
2153 signal (w->signum, SIG_DFL); 2864 signal (w->signum, SIG_DFL);
2865 }
2866
2867 EV_FREQUENT_CHECK;
2154} 2868}
2869
2870#endif
2871
2872#if EV_CHILD_ENABLE
2155 2873
2156void 2874void
2157ev_child_start (EV_P_ ev_child *w) 2875ev_child_start (EV_P_ ev_child *w)
2158{ 2876{
2159#if EV_MULTIPLICITY 2877#if EV_MULTIPLICITY
2160 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2161#endif 2879#endif
2162 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2163 return; 2881 return;
2164 2882
2883 EV_FREQUENT_CHECK;
2884
2165 ev_start (EV_A_ (W)w, 1); 2885 ev_start (EV_A_ (W)w, 1);
2166 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2887
2888 EV_FREQUENT_CHECK;
2167} 2889}
2168 2890
2169void 2891void
2170ev_child_stop (EV_P_ ev_child *w) 2892ev_child_stop (EV_P_ ev_child *w)
2171{ 2893{
2172 clear_pending (EV_A_ (W)w); 2894 clear_pending (EV_A_ (W)w);
2173 if (expect_false (!ev_is_active (w))) 2895 if (expect_false (!ev_is_active (w)))
2174 return; 2896 return;
2175 2897
2898 EV_FREQUENT_CHECK;
2899
2176 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2177 ev_stop (EV_A_ (W)w); 2901 ev_stop (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2178} 2904}
2905
2906#endif
2179 2907
2180#if EV_STAT_ENABLE 2908#if EV_STAT_ENABLE
2181 2909
2182# ifdef _WIN32 2910# ifdef _WIN32
2183# undef lstat 2911# undef lstat
2184# define lstat(a,b) _stati64 (a,b) 2912# define lstat(a,b) _stati64 (a,b)
2185# endif 2913# endif
2186 2914
2187#define DEF_STAT_INTERVAL 5.0074891 2915#define DEF_STAT_INTERVAL 5.0074891
2916#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2188#define MIN_STAT_INTERVAL 0.1074891 2917#define MIN_STAT_INTERVAL 0.1074891
2189 2918
2190static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2919static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2191 2920
2192#if EV_USE_INOTIFY 2921#if EV_USE_INOTIFY
2193# define EV_INOTIFY_BUFSIZE 8192 2922
2923/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2924# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2194 2925
2195static void noinline 2926static void noinline
2196infy_add (EV_P_ ev_stat *w) 2927infy_add (EV_P_ ev_stat *w)
2197{ 2928{
2198 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2929 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2199 2930
2200 if (w->wd < 0) 2931 if (w->wd >= 0)
2932 {
2933 struct statfs sfs;
2934
2935 /* now local changes will be tracked by inotify, but remote changes won't */
2936 /* unless the filesystem is known to be local, we therefore still poll */
2937 /* also do poll on <2.6.25, but with normal frequency */
2938
2939 if (!fs_2625)
2940 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2941 else if (!statfs (w->path, &sfs)
2942 && (sfs.f_type == 0x1373 /* devfs */
2943 || sfs.f_type == 0xEF53 /* ext2/3 */
2944 || sfs.f_type == 0x3153464a /* jfs */
2945 || sfs.f_type == 0x52654973 /* reiser3 */
2946 || sfs.f_type == 0x01021994 /* tempfs */
2947 || sfs.f_type == 0x58465342 /* xfs */))
2948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2949 else
2950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2201 { 2951 }
2202 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2952 else
2953 {
2954 /* can't use inotify, continue to stat */
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2203 2956
2204 /* monitor some parent directory for speedup hints */ 2957 /* if path is not there, monitor some parent directory for speedup hints */
2205 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2206 /* but an efficiency issue only */ 2959 /* but an efficiency issue only */
2207 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2208 { 2961 {
2209 char path [4096]; 2962 char path [4096];
2210 strcpy (path, w->path); 2963 strcpy (path, w->path);
2214 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2215 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2216 2969
2217 char *pend = strrchr (path, '/'); 2970 char *pend = strrchr (path, '/');
2218 2971
2219 if (!pend) 2972 if (!pend || pend == path)
2220 break; /* whoops, no '/', complain to your admin */ 2973 break;
2221 2974
2222 *pend = 0; 2975 *pend = 0;
2223 w->wd = inotify_add_watch (fs_fd, path, mask); 2976 w->wd = inotify_add_watch (fs_fd, path, mask);
2224 } 2977 }
2225 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2226 } 2979 }
2227 } 2980 }
2228 else
2229 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2230 2981
2231 if (w->wd >= 0) 2982 if (w->wd >= 0)
2232 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2984
2985 /* now re-arm timer, if required */
2986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2987 ev_timer_again (EV_A_ &w->timer);
2988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2233} 2989}
2234 2990
2235static void noinline 2991static void noinline
2236infy_del (EV_P_ ev_stat *w) 2992infy_del (EV_P_ ev_stat *w)
2237{ 2993{
2240 2996
2241 if (wd < 0) 2997 if (wd < 0)
2242 return; 2998 return;
2243 2999
2244 w->wd = -2; 3000 w->wd = -2;
2245 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2246 wlist_del (&fs_hash [slot].head, (WL)w); 3002 wlist_del (&fs_hash [slot].head, (WL)w);
2247 3003
2248 /* remove this watcher, if others are watching it, they will rearm */ 3004 /* remove this watcher, if others are watching it, they will rearm */
2249 inotify_rm_watch (fs_fd, wd); 3005 inotify_rm_watch (fs_fd, wd);
2250} 3006}
2251 3007
2252static void noinline 3008static void noinline
2253infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3009infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2254{ 3010{
2255 if (slot < 0) 3011 if (slot < 0)
2256 /* overflow, need to check for all hahs slots */ 3012 /* overflow, need to check for all hash slots */
2257 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2258 infy_wd (EV_A_ slot, wd, ev); 3014 infy_wd (EV_A_ slot, wd, ev);
2259 else 3015 else
2260 { 3016 {
2261 WL w_; 3017 WL w_;
2262 3018
2263 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2264 { 3020 {
2265 ev_stat *w = (ev_stat *)w_; 3021 ev_stat *w = (ev_stat *)w_;
2266 w_ = w_->next; /* lets us remove this watcher and all before it */ 3022 w_ = w_->next; /* lets us remove this watcher and all before it */
2267 3023
2268 if (w->wd == wd || wd == -1) 3024 if (w->wd == wd || wd == -1)
2269 { 3025 {
2270 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2271 { 3027 {
3028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2272 w->wd = -1; 3029 w->wd = -1;
2273 infy_add (EV_A_ w); /* re-add, no matter what */ 3030 infy_add (EV_A_ w); /* re-add, no matter what */
2274 } 3031 }
2275 3032
2276 stat_timer_cb (EV_A_ &w->timer, 0); 3033 stat_timer_cb (EV_A_ &w->timer, 0);
2281 3038
2282static void 3039static void
2283infy_cb (EV_P_ ev_io *w, int revents) 3040infy_cb (EV_P_ ev_io *w, int revents)
2284{ 3041{
2285 char buf [EV_INOTIFY_BUFSIZE]; 3042 char buf [EV_INOTIFY_BUFSIZE];
2286 struct inotify_event *ev = (struct inotify_event *)buf;
2287 int ofs; 3043 int ofs;
2288 int len = read (fs_fd, buf, sizeof (buf)); 3044 int len = read (fs_fd, buf, sizeof (buf));
2289 3045
2290 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3046 for (ofs = 0; ofs < len; )
3047 {
3048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2291 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3050 ofs += sizeof (struct inotify_event) + ev->len;
3051 }
2292} 3052}
2293 3053
2294void inline_size 3054inline_size unsigned int
3055ev_linux_version (void)
3056{
3057 struct utsname buf;
3058 unsigned int v;
3059 int i;
3060 char *p = buf.release;
3061
3062 if (uname (&buf))
3063 return 0;
3064
3065 for (i = 3+1; --i; )
3066 {
3067 unsigned int c = 0;
3068
3069 for (;;)
3070 {
3071 if (*p >= '0' && *p <= '9')
3072 c = c * 10 + *p++ - '0';
3073 else
3074 {
3075 p += *p == '.';
3076 break;
3077 }
3078 }
3079
3080 v = (v << 8) | c;
3081 }
3082
3083 return v;
3084}
3085
3086inline_size void
3087ev_check_2625 (EV_P)
3088{
3089 /* kernels < 2.6.25 are borked
3090 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3091 */
3092 if (ev_linux_version () < 0x020619)
3093 return;
3094
3095 fs_2625 = 1;
3096}
3097
3098inline_size int
3099infy_newfd (void)
3100{
3101#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3102 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3103 if (fd >= 0)
3104 return fd;
3105#endif
3106 return inotify_init ();
3107}
3108
3109inline_size void
2295infy_init (EV_P) 3110infy_init (EV_P)
2296{ 3111{
2297 if (fs_fd != -2) 3112 if (fs_fd != -2)
2298 return; 3113 return;
2299 3114
3115 fs_fd = -1;
3116
3117 ev_check_2625 (EV_A);
3118
2300 fs_fd = inotify_init (); 3119 fs_fd = infy_newfd ();
2301 3120
2302 if (fs_fd >= 0) 3121 if (fs_fd >= 0)
2303 { 3122 {
3123 fd_intern (fs_fd);
2304 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3124 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2305 ev_set_priority (&fs_w, EV_MAXPRI); 3125 ev_set_priority (&fs_w, EV_MAXPRI);
2306 ev_io_start (EV_A_ &fs_w); 3126 ev_io_start (EV_A_ &fs_w);
3127 ev_unref (EV_A);
2307 } 3128 }
2308} 3129}
2309 3130
2310void inline_size 3131inline_size void
2311infy_fork (EV_P) 3132infy_fork (EV_P)
2312{ 3133{
2313 int slot; 3134 int slot;
2314 3135
2315 if (fs_fd < 0) 3136 if (fs_fd < 0)
2316 return; 3137 return;
2317 3138
3139 ev_ref (EV_A);
3140 ev_io_stop (EV_A_ &fs_w);
2318 close (fs_fd); 3141 close (fs_fd);
2319 fs_fd = inotify_init (); 3142 fs_fd = infy_newfd ();
2320 3143
3144 if (fs_fd >= 0)
3145 {
3146 fd_intern (fs_fd);
3147 ev_io_set (&fs_w, fs_fd, EV_READ);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151
2321 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3152 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2322 { 3153 {
2323 WL w_ = fs_hash [slot].head; 3154 WL w_ = fs_hash [slot].head;
2324 fs_hash [slot].head = 0; 3155 fs_hash [slot].head = 0;
2325 3156
2326 while (w_) 3157 while (w_)
2331 w->wd = -1; 3162 w->wd = -1;
2332 3163
2333 if (fs_fd >= 0) 3164 if (fs_fd >= 0)
2334 infy_add (EV_A_ w); /* re-add, no matter what */ 3165 infy_add (EV_A_ w); /* re-add, no matter what */
2335 else 3166 else
3167 {
3168 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3169 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2336 ev_timer_start (EV_A_ &w->timer); 3170 ev_timer_again (EV_A_ &w->timer);
3171 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3172 }
2337 } 3173 }
2338
2339 } 3174 }
2340} 3175}
2341 3176
3177#endif
3178
3179#ifdef _WIN32
3180# define EV_LSTAT(p,b) _stati64 (p, b)
3181#else
3182# define EV_LSTAT(p,b) lstat (p, b)
2342#endif 3183#endif
2343 3184
2344void 3185void
2345ev_stat_stat (EV_P_ ev_stat *w) 3186ev_stat_stat (EV_P_ ev_stat *w)
2346{ 3187{
2353static void noinline 3194static void noinline
2354stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3195stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2355{ 3196{
2356 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3197 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2357 3198
2358 /* we copy this here each the time so that */ 3199 ev_statdata prev = w->attr;
2359 /* prev has the old value when the callback gets invoked */
2360 w->prev = w->attr;
2361 ev_stat_stat (EV_A_ w); 3200 ev_stat_stat (EV_A_ w);
2362 3201
2363 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3202 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2364 if ( 3203 if (
2365 w->prev.st_dev != w->attr.st_dev 3204 prev.st_dev != w->attr.st_dev
2366 || w->prev.st_ino != w->attr.st_ino 3205 || prev.st_ino != w->attr.st_ino
2367 || w->prev.st_mode != w->attr.st_mode 3206 || prev.st_mode != w->attr.st_mode
2368 || w->prev.st_nlink != w->attr.st_nlink 3207 || prev.st_nlink != w->attr.st_nlink
2369 || w->prev.st_uid != w->attr.st_uid 3208 || prev.st_uid != w->attr.st_uid
2370 || w->prev.st_gid != w->attr.st_gid 3209 || prev.st_gid != w->attr.st_gid
2371 || w->prev.st_rdev != w->attr.st_rdev 3210 || prev.st_rdev != w->attr.st_rdev
2372 || w->prev.st_size != w->attr.st_size 3211 || prev.st_size != w->attr.st_size
2373 || w->prev.st_atime != w->attr.st_atime 3212 || prev.st_atime != w->attr.st_atime
2374 || w->prev.st_mtime != w->attr.st_mtime 3213 || prev.st_mtime != w->attr.st_mtime
2375 || w->prev.st_ctime != w->attr.st_ctime 3214 || prev.st_ctime != w->attr.st_ctime
2376 ) { 3215 ) {
3216 /* we only update w->prev on actual differences */
3217 /* in case we test more often than invoke the callback, */
3218 /* to ensure that prev is always different to attr */
3219 w->prev = prev;
3220
2377 #if EV_USE_INOTIFY 3221 #if EV_USE_INOTIFY
3222 if (fs_fd >= 0)
3223 {
2378 infy_del (EV_A_ w); 3224 infy_del (EV_A_ w);
2379 infy_add (EV_A_ w); 3225 infy_add (EV_A_ w);
2380 ev_stat_stat (EV_A_ w); /* avoid race... */ 3226 ev_stat_stat (EV_A_ w); /* avoid race... */
3227 }
2381 #endif 3228 #endif
2382 3229
2383 ev_feed_event (EV_A_ w, EV_STAT); 3230 ev_feed_event (EV_A_ w, EV_STAT);
2384 } 3231 }
2385} 3232}
2388ev_stat_start (EV_P_ ev_stat *w) 3235ev_stat_start (EV_P_ ev_stat *w)
2389{ 3236{
2390 if (expect_false (ev_is_active (w))) 3237 if (expect_false (ev_is_active (w)))
2391 return; 3238 return;
2392 3239
2393 /* since we use memcmp, we need to clear any padding data etc. */
2394 memset (&w->prev, 0, sizeof (ev_statdata));
2395 memset (&w->attr, 0, sizeof (ev_statdata));
2396
2397 ev_stat_stat (EV_A_ w); 3240 ev_stat_stat (EV_A_ w);
2398 3241
3242 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2399 if (w->interval < MIN_STAT_INTERVAL) 3243 w->interval = MIN_STAT_INTERVAL;
2400 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2401 3244
2402 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3245 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2403 ev_set_priority (&w->timer, ev_priority (w)); 3246 ev_set_priority (&w->timer, ev_priority (w));
2404 3247
2405#if EV_USE_INOTIFY 3248#if EV_USE_INOTIFY
2406 infy_init (EV_A); 3249 infy_init (EV_A);
2407 3250
2408 if (fs_fd >= 0) 3251 if (fs_fd >= 0)
2409 infy_add (EV_A_ w); 3252 infy_add (EV_A_ w);
2410 else 3253 else
2411#endif 3254#endif
3255 {
2412 ev_timer_start (EV_A_ &w->timer); 3256 ev_timer_again (EV_A_ &w->timer);
3257 ev_unref (EV_A);
3258 }
2413 3259
2414 ev_start (EV_A_ (W)w, 1); 3260 ev_start (EV_A_ (W)w, 1);
3261
3262 EV_FREQUENT_CHECK;
2415} 3263}
2416 3264
2417void 3265void
2418ev_stat_stop (EV_P_ ev_stat *w) 3266ev_stat_stop (EV_P_ ev_stat *w)
2419{ 3267{
2420 clear_pending (EV_A_ (W)w); 3268 clear_pending (EV_A_ (W)w);
2421 if (expect_false (!ev_is_active (w))) 3269 if (expect_false (!ev_is_active (w)))
2422 return; 3270 return;
2423 3271
3272 EV_FREQUENT_CHECK;
3273
2424#if EV_USE_INOTIFY 3274#if EV_USE_INOTIFY
2425 infy_del (EV_A_ w); 3275 infy_del (EV_A_ w);
2426#endif 3276#endif
3277
3278 if (ev_is_active (&w->timer))
3279 {
3280 ev_ref (EV_A);
2427 ev_timer_stop (EV_A_ &w->timer); 3281 ev_timer_stop (EV_A_ &w->timer);
3282 }
2428 3283
2429 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
2430} 3287}
2431#endif 3288#endif
2432 3289
2433#if EV_IDLE_ENABLE 3290#if EV_IDLE_ENABLE
2434void 3291void
2436{ 3293{
2437 if (expect_false (ev_is_active (w))) 3294 if (expect_false (ev_is_active (w)))
2438 return; 3295 return;
2439 3296
2440 pri_adjust (EV_A_ (W)w); 3297 pri_adjust (EV_A_ (W)w);
3298
3299 EV_FREQUENT_CHECK;
2441 3300
2442 { 3301 {
2443 int active = ++idlecnt [ABSPRI (w)]; 3302 int active = ++idlecnt [ABSPRI (w)];
2444 3303
2445 ++idleall; 3304 ++idleall;
2446 ev_start (EV_A_ (W)w, active); 3305 ev_start (EV_A_ (W)w, active);
2447 3306
2448 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3307 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2449 idles [ABSPRI (w)][active - 1] = w; 3308 idles [ABSPRI (w)][active - 1] = w;
2450 } 3309 }
3310
3311 EV_FREQUENT_CHECK;
2451} 3312}
2452 3313
2453void 3314void
2454ev_idle_stop (EV_P_ ev_idle *w) 3315ev_idle_stop (EV_P_ ev_idle *w)
2455{ 3316{
2456 clear_pending (EV_A_ (W)w); 3317 clear_pending (EV_A_ (W)w);
2457 if (expect_false (!ev_is_active (w))) 3318 if (expect_false (!ev_is_active (w)))
2458 return; 3319 return;
2459 3320
3321 EV_FREQUENT_CHECK;
3322
2460 { 3323 {
2461 int active = ev_active (w); 3324 int active = ev_active (w);
2462 3325
2463 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3326 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2464 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3327 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2465 3328
2466 ev_stop (EV_A_ (W)w); 3329 ev_stop (EV_A_ (W)w);
2467 --idleall; 3330 --idleall;
2468 } 3331 }
2469}
2470#endif
2471 3332
3333 EV_FREQUENT_CHECK;
3334}
3335#endif
3336
3337#if EV_PREPARE_ENABLE
2472void 3338void
2473ev_prepare_start (EV_P_ ev_prepare *w) 3339ev_prepare_start (EV_P_ ev_prepare *w)
2474{ 3340{
2475 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2476 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2477 3345
2478 ev_start (EV_A_ (W)w, ++preparecnt); 3346 ev_start (EV_A_ (W)w, ++preparecnt);
2479 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3347 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2480 prepares [preparecnt - 1] = w; 3348 prepares [preparecnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2481} 3351}
2482 3352
2483void 3353void
2484ev_prepare_stop (EV_P_ ev_prepare *w) 3354ev_prepare_stop (EV_P_ ev_prepare *w)
2485{ 3355{
2486 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2487 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2488 return; 3358 return;
2489 3359
3360 EV_FREQUENT_CHECK;
3361
2490 { 3362 {
2491 int active = ev_active (w); 3363 int active = ev_active (w);
2492 3364
2493 prepares [active - 1] = prepares [--preparecnt]; 3365 prepares [active - 1] = prepares [--preparecnt];
2494 ev_active (prepares [active - 1]) = active; 3366 ev_active (prepares [active - 1]) = active;
2495 } 3367 }
2496 3368
2497 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
2498}
2499 3370
3371 EV_FREQUENT_CHECK;
3372}
3373#endif
3374
3375#if EV_CHECK_ENABLE
2500void 3376void
2501ev_check_start (EV_P_ ev_check *w) 3377ev_check_start (EV_P_ ev_check *w)
2502{ 3378{
2503 if (expect_false (ev_is_active (w))) 3379 if (expect_false (ev_is_active (w)))
2504 return; 3380 return;
3381
3382 EV_FREQUENT_CHECK;
2505 3383
2506 ev_start (EV_A_ (W)w, ++checkcnt); 3384 ev_start (EV_A_ (W)w, ++checkcnt);
2507 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2508 checks [checkcnt - 1] = w; 3386 checks [checkcnt - 1] = w;
3387
3388 EV_FREQUENT_CHECK;
2509} 3389}
2510 3390
2511void 3391void
2512ev_check_stop (EV_P_ ev_check *w) 3392ev_check_stop (EV_P_ ev_check *w)
2513{ 3393{
2514 clear_pending (EV_A_ (W)w); 3394 clear_pending (EV_A_ (W)w);
2515 if (expect_false (!ev_is_active (w))) 3395 if (expect_false (!ev_is_active (w)))
2516 return; 3396 return;
2517 3397
3398 EV_FREQUENT_CHECK;
3399
2518 { 3400 {
2519 int active = ev_active (w); 3401 int active = ev_active (w);
2520 3402
2521 checks [active - 1] = checks [--checkcnt]; 3403 checks [active - 1] = checks [--checkcnt];
2522 ev_active (checks [active - 1]) = active; 3404 ev_active (checks [active - 1]) = active;
2523 } 3405 }
2524 3406
2525 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
2526} 3410}
3411#endif
2527 3412
2528#if EV_EMBED_ENABLE 3413#if EV_EMBED_ENABLE
2529void noinline 3414void noinline
2530ev_embed_sweep (EV_P_ ev_embed *w) 3415ev_embed_sweep (EV_P_ ev_embed *w)
2531{ 3416{
2547embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3432embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2548{ 3433{
2549 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3434 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2550 3435
2551 { 3436 {
2552 struct ev_loop *loop = w->other; 3437 EV_P = w->other;
2553 3438
2554 while (fdchangecnt) 3439 while (fdchangecnt)
2555 { 3440 {
2556 fd_reify (EV_A); 3441 fd_reify (EV_A);
2557 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3442 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2558 } 3443 }
2559 } 3444 }
2560} 3445}
2561 3446
3447static void
3448embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3449{
3450 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3451
3452 ev_embed_stop (EV_A_ w);
3453
3454 {
3455 EV_P = w->other;
3456
3457 ev_loop_fork (EV_A);
3458 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3459 }
3460
3461 ev_embed_start (EV_A_ w);
3462}
3463
2562#if 0 3464#if 0
2563static void 3465static void
2564embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2565{ 3467{
2566 ev_idle_stop (EV_A_ idle); 3468 ev_idle_stop (EV_A_ idle);
2572{ 3474{
2573 if (expect_false (ev_is_active (w))) 3475 if (expect_false (ev_is_active (w)))
2574 return; 3476 return;
2575 3477
2576 { 3478 {
2577 struct ev_loop *loop = w->other; 3479 EV_P = w->other;
2578 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3480 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2579 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2580 } 3482 }
3483
3484 EV_FREQUENT_CHECK;
2581 3485
2582 ev_set_priority (&w->io, ev_priority (w)); 3486 ev_set_priority (&w->io, ev_priority (w));
2583 ev_io_start (EV_A_ &w->io); 3487 ev_io_start (EV_A_ &w->io);
2584 3488
2585 ev_prepare_init (&w->prepare, embed_prepare_cb); 3489 ev_prepare_init (&w->prepare, embed_prepare_cb);
2586 ev_set_priority (&w->prepare, EV_MINPRI); 3490 ev_set_priority (&w->prepare, EV_MINPRI);
2587 ev_prepare_start (EV_A_ &w->prepare); 3491 ev_prepare_start (EV_A_ &w->prepare);
2588 3492
3493 ev_fork_init (&w->fork, embed_fork_cb);
3494 ev_fork_start (EV_A_ &w->fork);
3495
2589 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3496 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2590 3497
2591 ev_start (EV_A_ (W)w, 1); 3498 ev_start (EV_A_ (W)w, 1);
3499
3500 EV_FREQUENT_CHECK;
2592} 3501}
2593 3502
2594void 3503void
2595ev_embed_stop (EV_P_ ev_embed *w) 3504ev_embed_stop (EV_P_ ev_embed *w)
2596{ 3505{
2597 clear_pending (EV_A_ (W)w); 3506 clear_pending (EV_A_ (W)w);
2598 if (expect_false (!ev_is_active (w))) 3507 if (expect_false (!ev_is_active (w)))
2599 return; 3508 return;
2600 3509
3510 EV_FREQUENT_CHECK;
3511
2601 ev_io_stop (EV_A_ &w->io); 3512 ev_io_stop (EV_A_ &w->io);
2602 ev_prepare_stop (EV_A_ &w->prepare); 3513 ev_prepare_stop (EV_A_ &w->prepare);
3514 ev_fork_stop (EV_A_ &w->fork);
2603 3515
2604 ev_stop (EV_A_ (W)w); 3516 ev_stop (EV_A_ (W)w);
3517
3518 EV_FREQUENT_CHECK;
2605} 3519}
2606#endif 3520#endif
2607 3521
2608#if EV_FORK_ENABLE 3522#if EV_FORK_ENABLE
2609void 3523void
2610ev_fork_start (EV_P_ ev_fork *w) 3524ev_fork_start (EV_P_ ev_fork *w)
2611{ 3525{
2612 if (expect_false (ev_is_active (w))) 3526 if (expect_false (ev_is_active (w)))
2613 return; 3527 return;
3528
3529 EV_FREQUENT_CHECK;
2614 3530
2615 ev_start (EV_A_ (W)w, ++forkcnt); 3531 ev_start (EV_A_ (W)w, ++forkcnt);
2616 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2617 forks [forkcnt - 1] = w; 3533 forks [forkcnt - 1] = w;
3534
3535 EV_FREQUENT_CHECK;
2618} 3536}
2619 3537
2620void 3538void
2621ev_fork_stop (EV_P_ ev_fork *w) 3539ev_fork_stop (EV_P_ ev_fork *w)
2622{ 3540{
2623 clear_pending (EV_A_ (W)w); 3541 clear_pending (EV_A_ (W)w);
2624 if (expect_false (!ev_is_active (w))) 3542 if (expect_false (!ev_is_active (w)))
2625 return; 3543 return;
2626 3544
3545 EV_FREQUENT_CHECK;
3546
2627 { 3547 {
2628 int active = ev_active (w); 3548 int active = ev_active (w);
2629 3549
2630 forks [active - 1] = forks [--forkcnt]; 3550 forks [active - 1] = forks [--forkcnt];
2631 ev_active (forks [active - 1]) = active; 3551 ev_active (forks [active - 1]) = active;
2632 } 3552 }
2633 3553
2634 ev_stop (EV_A_ (W)w); 3554 ev_stop (EV_A_ (W)w);
3555
3556 EV_FREQUENT_CHECK;
2635} 3557}
2636#endif 3558#endif
2637 3559
2638#if EV_ASYNC_ENABLE 3560#if EV_ASYNC_ENABLE
2639void 3561void
2641{ 3563{
2642 if (expect_false (ev_is_active (w))) 3564 if (expect_false (ev_is_active (w)))
2643 return; 3565 return;
2644 3566
2645 evpipe_init (EV_A); 3567 evpipe_init (EV_A);
3568
3569 EV_FREQUENT_CHECK;
2646 3570
2647 ev_start (EV_A_ (W)w, ++asynccnt); 3571 ev_start (EV_A_ (W)w, ++asynccnt);
2648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2649 asyncs [asynccnt - 1] = w; 3573 asyncs [asynccnt - 1] = w;
3574
3575 EV_FREQUENT_CHECK;
2650} 3576}
2651 3577
2652void 3578void
2653ev_async_stop (EV_P_ ev_async *w) 3579ev_async_stop (EV_P_ ev_async *w)
2654{ 3580{
2655 clear_pending (EV_A_ (W)w); 3581 clear_pending (EV_A_ (W)w);
2656 if (expect_false (!ev_is_active (w))) 3582 if (expect_false (!ev_is_active (w)))
2657 return; 3583 return;
2658 3584
3585 EV_FREQUENT_CHECK;
3586
2659 { 3587 {
2660 int active = ev_active (w); 3588 int active = ev_active (w);
2661 3589
2662 asyncs [active - 1] = asyncs [--asynccnt]; 3590 asyncs [active - 1] = asyncs [--asynccnt];
2663 ev_active (asyncs [active - 1]) = active; 3591 ev_active (asyncs [active - 1]) = active;
2664 } 3592 }
2665 3593
2666 ev_stop (EV_A_ (W)w); 3594 ev_stop (EV_A_ (W)w);
3595
3596 EV_FREQUENT_CHECK;
2667} 3597}
2668 3598
2669void 3599void
2670ev_async_send (EV_P_ ev_async *w) 3600ev_async_send (EV_P_ ev_async *w)
2671{ 3601{
2672 w->sent = 1; 3602 w->sent = 1;
2673 evpipe_write (EV_A_ &gotasync); 3603 evpipe_write (EV_A_ &async_pending);
2674} 3604}
2675#endif 3605#endif
2676 3606
2677/*****************************************************************************/ 3607/*****************************************************************************/
2678 3608
2688once_cb (EV_P_ struct ev_once *once, int revents) 3618once_cb (EV_P_ struct ev_once *once, int revents)
2689{ 3619{
2690 void (*cb)(int revents, void *arg) = once->cb; 3620 void (*cb)(int revents, void *arg) = once->cb;
2691 void *arg = once->arg; 3621 void *arg = once->arg;
2692 3622
2693 ev_io_stop (EV_A_ &once->io); 3623 ev_io_stop (EV_A_ &once->io);
2694 ev_timer_stop (EV_A_ &once->to); 3624 ev_timer_stop (EV_A_ &once->to);
2695 ev_free (once); 3625 ev_free (once);
2696 3626
2697 cb (revents, arg); 3627 cb (revents, arg);
2698} 3628}
2699 3629
2700static void 3630static void
2701once_cb_io (EV_P_ ev_io *w, int revents) 3631once_cb_io (EV_P_ ev_io *w, int revents)
2702{ 3632{
2703 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3634
3635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2704} 3636}
2705 3637
2706static void 3638static void
2707once_cb_to (EV_P_ ev_timer *w, int revents) 3639once_cb_to (EV_P_ ev_timer *w, int revents)
2708{ 3640{
2709 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2710} 3644}
2711 3645
2712void 3646void
2713ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3647ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2714{ 3648{
2715 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2716 3650
2717 if (expect_false (!once)) 3651 if (expect_false (!once))
2718 { 3652 {
2719 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2720 return; 3654 return;
2721 } 3655 }
2722 3656
2723 once->cb = cb; 3657 once->cb = cb;
2724 once->arg = arg; 3658 once->arg = arg;
2736 ev_timer_set (&once->to, timeout, 0.); 3670 ev_timer_set (&once->to, timeout, 0.);
2737 ev_timer_start (EV_A_ &once->to); 3671 ev_timer_start (EV_A_ &once->to);
2738 } 3672 }
2739} 3673}
2740 3674
3675/*****************************************************************************/
3676
3677#if EV_WALK_ENABLE
3678void
3679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3680{
3681 int i, j;
3682 ev_watcher_list *wl, *wn;
3683
3684 if (types & (EV_IO | EV_EMBED))
3685 for (i = 0; i < anfdmax; ++i)
3686 for (wl = anfds [i].head; wl; )
3687 {
3688 wn = wl->next;
3689
3690#if EV_EMBED_ENABLE
3691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3692 {
3693 if (types & EV_EMBED)
3694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3695 }
3696 else
3697#endif
3698#if EV_USE_INOTIFY
3699 if (ev_cb ((ev_io *)wl) == infy_cb)
3700 ;
3701 else
3702#endif
3703 if ((ev_io *)wl != &pipe_w)
3704 if (types & EV_IO)
3705 cb (EV_A_ EV_IO, wl);
3706
3707 wl = wn;
3708 }
3709
3710 if (types & (EV_TIMER | EV_STAT))
3711 for (i = timercnt + HEAP0; i-- > HEAP0; )
3712#if EV_STAT_ENABLE
3713 /*TODO: timer is not always active*/
3714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3715 {
3716 if (types & EV_STAT)
3717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3718 }
3719 else
3720#endif
3721 if (types & EV_TIMER)
3722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3723
3724#if EV_PERIODIC_ENABLE
3725 if (types & EV_PERIODIC)
3726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3728#endif
3729
3730#if EV_IDLE_ENABLE
3731 if (types & EV_IDLE)
3732 for (j = NUMPRI; i--; )
3733 for (i = idlecnt [j]; i--; )
3734 cb (EV_A_ EV_IDLE, idles [j][i]);
3735#endif
3736
3737#if EV_FORK_ENABLE
3738 if (types & EV_FORK)
3739 for (i = forkcnt; i--; )
3740 if (ev_cb (forks [i]) != embed_fork_cb)
3741 cb (EV_A_ EV_FORK, forks [i]);
3742#endif
3743
3744#if EV_ASYNC_ENABLE
3745 if (types & EV_ASYNC)
3746 for (i = asynccnt; i--; )
3747 cb (EV_A_ EV_ASYNC, asyncs [i]);
3748#endif
3749
3750#if EV_PREPARE_ENABLE
3751 if (types & EV_PREPARE)
3752 for (i = preparecnt; i--; )
3753# if EV_EMBED_ENABLE
3754 if (ev_cb (prepares [i]) != embed_prepare_cb)
3755# endif
3756 cb (EV_A_ EV_PREPARE, prepares [i]);
3757#endif
3758
3759#if EV_CHECK_ENABLE
3760 if (types & EV_CHECK)
3761 for (i = checkcnt; i--; )
3762 cb (EV_A_ EV_CHECK, checks [i]);
3763#endif
3764
3765#if EV_SIGNAL_ENABLE
3766 if (types & EV_SIGNAL)
3767 for (i = 0; i < EV_NSIG - 1; ++i)
3768 for (wl = signals [i].head; wl; )
3769 {
3770 wn = wl->next;
3771 cb (EV_A_ EV_SIGNAL, wl);
3772 wl = wn;
3773 }
3774#endif
3775
3776#if EV_CHILD_ENABLE
3777 if (types & EV_CHILD)
3778 for (i = (EV_PID_HASHSIZE); i--; )
3779 for (wl = childs [i]; wl; )
3780 {
3781 wn = wl->next;
3782 cb (EV_A_ EV_CHILD, wl);
3783 wl = wn;
3784 }
3785#endif
3786/* EV_STAT 0x00001000 /* stat data changed */
3787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3788}
3789#endif
3790
2741#if EV_MULTIPLICITY 3791#if EV_MULTIPLICITY
2742 #include "ev_wrap.h" 3792 #include "ev_wrap.h"
2743#endif 3793#endif
2744 3794
2745#ifdef __cplusplus 3795#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines