ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.267 by root, Mon Oct 27 11:08:29 2008 UTC vs.
Revision 1.343 by root, Fri Apr 2 21:03:46 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else 95# else
96# undef EV_USE_SELECT
80# define EV_USE_SELECT 0 97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
107# endif
108
109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110# ifndef EV_USE_EPOLL
111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
89# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
90# endif 116# endif
91 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
92# ifndef EV_USE_EPOLL 119# ifndef EV_USE_KQUEUE
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
98# endif 125# endif
99 126
100# ifndef EV_USE_KQUEUE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 128# ifndef EV_USE_PORT
102# define EV_USE_KQUEUE 1 129# define EV_USE_PORT EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 130# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else 131# else
132# undef EV_USE_PORT
112# define EV_USE_PORT 0 133# define EV_USE_PORT 0
134# endif
135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
113# endif 139# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 140# else
141# undef EV_USE_INOTIFY
120# define EV_USE_INOTIFY 0 142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
121# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
122# endif 152# endif
123 153
154# if HAVE_EVENTFD
124# ifndef EV_USE_EVENTFD 155# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 156# define EV_USE_EVENTFD EV_FEATURE_OS
127# else
128# define EV_USE_EVENTFD 0
129# endif 157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
130# endif 161# endif
131 162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
160# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 194# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
164# endif 197# endif
198# undef EV_AVOID_STDIO
165#endif 199#endif
166 200
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 201/* this block tries to deduce configuration from header-defined symbols and defaults */
202
203/* try to deduce the maximum number of signals on this platform */
204#if defined (EV_NSIG)
205/* use what's provided */
206#elif defined (NSIG)
207# define EV_NSIG (NSIG)
208#elif defined(_NSIG)
209# define EV_NSIG (_NSIG)
210#elif defined (SIGMAX)
211# define EV_NSIG (SIGMAX+1)
212#elif defined (SIG_MAX)
213# define EV_NSIG (SIG_MAX+1)
214#elif defined (_SIG_MAX)
215# define EV_NSIG (_SIG_MAX+1)
216#elif defined (MAXSIG)
217# define EV_NSIG (MAXSIG+1)
218#elif defined (MAX_SIG)
219# define EV_NSIG (MAX_SIG+1)
220#elif defined (SIGARRAYSIZE)
221# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
222#elif defined (_sys_nsig)
223# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
224#else
225# error "unable to find value for NSIG, please report"
226/* to make it compile regardless, just remove the above line, */
227/* but consider reporting it, too! :) */
228# define EV_NSIG 65
229#endif
230
231#ifndef EV_USE_CLOCK_SYSCALL
232# if __linux && __GLIBC__ >= 2
233# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
234# else
235# define EV_USE_CLOCK_SYSCALL 0
236# endif
237#endif
168 238
169#ifndef EV_USE_MONOTONIC 239#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 240# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 241# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 242# else
173# define EV_USE_MONOTONIC 0 243# define EV_USE_MONOTONIC 0
174# endif 244# endif
175#endif 245#endif
176 246
177#ifndef EV_USE_REALTIME 247#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 248# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 249#endif
180 250
181#ifndef EV_USE_NANOSLEEP 251#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 252# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 253# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 254# else
185# define EV_USE_NANOSLEEP 0 255# define EV_USE_NANOSLEEP 0
186# endif 256# endif
187#endif 257#endif
188 258
189#ifndef EV_USE_SELECT 259#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 260# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 261#endif
192 262
193#ifndef EV_USE_POLL 263#ifndef EV_USE_POLL
194# ifdef _WIN32 264# ifdef _WIN32
195# define EV_USE_POLL 0 265# define EV_USE_POLL 0
196# else 266# else
197# define EV_USE_POLL 1 267# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 268# endif
199#endif 269#endif
200 270
201#ifndef EV_USE_EPOLL 271#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 273# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 274# else
205# define EV_USE_EPOLL 0 275# define EV_USE_EPOLL 0
206# endif 276# endif
207#endif 277#endif
208 278
214# define EV_USE_PORT 0 284# define EV_USE_PORT 0
215#endif 285#endif
216 286
217#ifndef EV_USE_INOTIFY 287#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 288# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 289# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 290# else
221# define EV_USE_INOTIFY 0 291# define EV_USE_INOTIFY 0
222# endif 292# endif
223#endif 293#endif
224 294
225#ifndef EV_PID_HASHSIZE 295#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 296# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 297#endif
232 298
233#ifndef EV_INOTIFY_HASHSIZE 299#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 300# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 301#endif
240 302
241#ifndef EV_USE_EVENTFD 303#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 304# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 305# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 306# else
245# define EV_USE_EVENTFD 0 307# define EV_USE_EVENTFD 0
308# endif
309#endif
310
311#ifndef EV_USE_SIGNALFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_SIGNALFD EV_FEATURE_OS
314# else
315# define EV_USE_SIGNALFD 0
246# endif 316# endif
247#endif 317#endif
248 318
249#if 0 /* debugging */ 319#if 0 /* debugging */
250# define EV_VERIFY 3 320# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 321# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 322# define EV_HEAP_CACHE_AT 1
253#endif 323#endif
254 324
255#ifndef EV_VERIFY 325#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 326# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 327#endif
258 328
259#ifndef EV_USE_4HEAP 329#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 330# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 331#endif
262 332
263#ifndef EV_HEAP_CACHE_AT 333#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 334# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
335#endif
336
337/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
338/* which makes programs even slower. might work on other unices, too. */
339#if EV_USE_CLOCK_SYSCALL
340# include <syscall.h>
341# ifdef SYS_clock_gettime
342# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
343# undef EV_USE_MONOTONIC
344# define EV_USE_MONOTONIC 1
345# else
346# undef EV_USE_CLOCK_SYSCALL
347# define EV_USE_CLOCK_SYSCALL 0
348# endif
265#endif 349#endif
266 350
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 351/* this block fixes any misconfiguration where we know we run into trouble otherwise */
352
353#ifdef _AIX
354/* AIX has a completely broken poll.h header */
355# undef EV_USE_POLL
356# define EV_USE_POLL 0
357#endif
268 358
269#ifndef CLOCK_MONOTONIC 359#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 360# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 361# define EV_USE_MONOTONIC 0
272#endif 362#endif
287# endif 377# endif
288#endif 378#endif
289 379
290#if EV_USE_INOTIFY 380#if EV_USE_INOTIFY
291# include <sys/utsname.h> 381# include <sys/utsname.h>
382# include <sys/statfs.h>
292# include <sys/inotify.h> 383# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 384/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW 385# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY 386# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0 387# define EV_USE_INOTIFY 0
302#endif 393#endif
303 394
304#if EV_USE_EVENTFD 395#if EV_USE_EVENTFD
305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 396/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h> 397# include <stdint.h>
398# ifndef EFD_NONBLOCK
399# define EFD_NONBLOCK O_NONBLOCK
400# endif
401# ifndef EFD_CLOEXEC
402# ifdef O_CLOEXEC
403# define EFD_CLOEXEC O_CLOEXEC
404# else
405# define EFD_CLOEXEC 02000000
406# endif
407# endif
307# ifdef __cplusplus 408# ifdef __cplusplus
308extern "C" { 409extern "C" {
309# endif 410# endif
310int eventfd (unsigned int initval, int flags); 411int (eventfd) (unsigned int initval, int flags);
311# ifdef __cplusplus 412# ifdef __cplusplus
312} 413}
313# endif 414# endif
314#endif 415#endif
315 416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430# ifdef __cplusplus
431extern "C" {
432# endif
433int signalfd (int fd, const sigset_t *mask, int flags);
434
435struct signalfd_siginfo
436{
437 uint32_t ssi_signo;
438 char pad[128 - sizeof (uint32_t)];
439};
440# ifdef __cplusplus
441}
442# endif
443#endif
444
445
316/**/ 446/**/
317 447
318#if EV_VERIFY >= 3 448#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 449# define EV_FREQUENT_CHECK ev_verify (EV_A)
320#else 450#else
321# define EV_FREQUENT_CHECK do { } while (0) 451# define EV_FREQUENT_CHECK do { } while (0)
322#endif 452#endif
323 453
324/* 454/*
331 */ 461 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 462#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
333 463
334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 464#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 465#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
337 466
338#if __GNUC__ >= 4 467#if __GNUC__ >= 4
339# define expect(expr,value) __builtin_expect ((expr),(value)) 468# define expect(expr,value) __builtin_expect ((expr),(value))
340# define noinline __attribute__ ((noinline)) 469# define noinline __attribute__ ((noinline))
341#else 470#else
348 477
349#define expect_false(expr) expect ((expr) != 0, 0) 478#define expect_false(expr) expect ((expr) != 0, 0)
350#define expect_true(expr) expect ((expr) != 0, 1) 479#define expect_true(expr) expect ((expr) != 0, 1)
351#define inline_size static inline 480#define inline_size static inline
352 481
353#if EV_MINIMAL 482#if EV_FEATURE_CODE
483# define inline_speed static inline
484#else
354# define inline_speed static noinline 485# define inline_speed static noinline
486#endif
487
488#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
489
490#if EV_MINPRI == EV_MAXPRI
491# define ABSPRI(w) (((W)w), 0)
355#else 492#else
356# define inline_speed static inline
357#endif
358
359#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
360#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 493# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
494#endif
361 495
362#define EMPTY /* required for microsofts broken pseudo-c compiler */ 496#define EMPTY /* required for microsofts broken pseudo-c compiler */
363#define EMPTY2(a,b) /* used to suppress some warnings */ 497#define EMPTY2(a,b) /* used to suppress some warnings */
364 498
365typedef ev_watcher *W; 499typedef ev_watcher *W;
367typedef ev_watcher_time *WT; 501typedef ev_watcher_time *WT;
368 502
369#define ev_active(w) ((W)(w))->active 503#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at 504#define ev_at(w) ((WT)(w))->at
371 505
372#if EV_USE_MONOTONIC 506#if EV_USE_REALTIME
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 507/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */ 508/* giving it a reasonably high chance of working on typical architetcures */
509static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
510#endif
511
512#if EV_USE_MONOTONIC
375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 513static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
514#endif
515
516#ifndef EV_FD_TO_WIN32_HANDLE
517# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
518#endif
519#ifndef EV_WIN32_HANDLE_TO_FD
520# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
521#endif
522#ifndef EV_WIN32_CLOSE_FD
523# define EV_WIN32_CLOSE_FD(fd) close (fd)
376#endif 524#endif
377 525
378#ifdef _WIN32 526#ifdef _WIN32
379# include "ev_win32.c" 527# include "ev_win32.c"
380#endif 528#endif
381 529
382/*****************************************************************************/ 530/*****************************************************************************/
383 531
532#if EV_AVOID_STDIO
533static void noinline
534ev_printerr (const char *msg)
535{
536 write (STDERR_FILENO, msg, strlen (msg));
537}
538#endif
539
384static void (*syserr_cb)(const char *msg); 540static void (*syserr_cb)(const char *msg);
385 541
386void 542void
387ev_set_syserr_cb (void (*cb)(const char *msg)) 543ev_set_syserr_cb (void (*cb)(const char *msg))
388{ 544{
389 syserr_cb = cb; 545 syserr_cb = cb;
390} 546}
391 547
392static void noinline 548static void noinline
393syserr (const char *msg) 549ev_syserr (const char *msg)
394{ 550{
395 if (!msg) 551 if (!msg)
396 msg = "(libev) system error"; 552 msg = "(libev) system error";
397 553
398 if (syserr_cb) 554 if (syserr_cb)
399 syserr_cb (msg); 555 syserr_cb (msg);
400 else 556 else
401 { 557 {
558#if EV_AVOID_STDIO
559 const char *err = strerror (errno);
560
561 ev_printerr (msg);
562 ev_printerr (": ");
563 ev_printerr (err);
564 ev_printerr ("\n");
565#else
402 perror (msg); 566 perror (msg);
567#endif
403 abort (); 568 abort ();
404 } 569 }
405} 570}
406 571
407static void * 572static void *
408ev_realloc_emul (void *ptr, long size) 573ev_realloc_emul (void *ptr, long size)
409{ 574{
575#if __GLIBC__
576 return realloc (ptr, size);
577#else
410 /* some systems, notably openbsd and darwin, fail to properly 578 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and 579 * implement realloc (x, 0) (as required by both ansi c-89 and
412 * the single unix specification, so work around them here. 580 * the single unix specification, so work around them here.
413 */ 581 */
414 582
415 if (size) 583 if (size)
416 return realloc (ptr, size); 584 return realloc (ptr, size);
417 585
418 free (ptr); 586 free (ptr);
419 return 0; 587 return 0;
588#endif
420} 589}
421 590
422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 591static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
423 592
424void 593void
432{ 601{
433 ptr = alloc (ptr, size); 602 ptr = alloc (ptr, size);
434 603
435 if (!ptr && size) 604 if (!ptr && size)
436 { 605 {
606#if EV_AVOID_STDIO
607 ev_printerr ("libev: memory allocation failed, aborting.\n");
608#else
437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 609 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
610#endif
438 abort (); 611 abort ();
439 } 612 }
440 613
441 return ptr; 614 return ptr;
442} 615}
444#define ev_malloc(size) ev_realloc (0, (size)) 617#define ev_malloc(size) ev_realloc (0, (size))
445#define ev_free(ptr) ev_realloc ((ptr), 0) 618#define ev_free(ptr) ev_realloc ((ptr), 0)
446 619
447/*****************************************************************************/ 620/*****************************************************************************/
448 621
622/* set in reify when reification needed */
623#define EV_ANFD_REIFY 1
624
625/* file descriptor info structure */
449typedef struct 626typedef struct
450{ 627{
451 WL head; 628 WL head;
452 unsigned char events; 629 unsigned char events; /* the events watched for */
453 unsigned char reify; 630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
632 unsigned char unused;
633#if EV_USE_EPOLL
455 unsigned char egen; /* generation counter to counter epoll bugs */ 634 unsigned int egen; /* generation counter to counter epoll bugs */
635#endif
456#if EV_SELECT_IS_WINSOCKET 636#if EV_SELECT_IS_WINSOCKET
457 SOCKET handle; 637 SOCKET handle;
458#endif 638#endif
459} ANFD; 639} ANFD;
460 640
641/* stores the pending event set for a given watcher */
461typedef struct 642typedef struct
462{ 643{
463 W w; 644 W w;
464 int events; 645 int events; /* the pending event set for the given watcher */
465} ANPENDING; 646} ANPENDING;
466 647
467#if EV_USE_INOTIFY 648#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */ 649/* hash table entry per inotify-id */
469typedef struct 650typedef struct
472} ANFS; 653} ANFS;
473#endif 654#endif
474 655
475/* Heap Entry */ 656/* Heap Entry */
476#if EV_HEAP_CACHE_AT 657#if EV_HEAP_CACHE_AT
658 /* a heap element */
477 typedef struct { 659 typedef struct {
478 ev_tstamp at; 660 ev_tstamp at;
479 WT w; 661 WT w;
480 } ANHE; 662 } ANHE;
481 663
482 #define ANHE_w(he) (he).w /* access watcher, read-write */ 664 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */ 665 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 666 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else 667#else
668 /* a heap element */
486 typedef WT ANHE; 669 typedef WT ANHE;
487 670
488 #define ANHE_w(he) (he) 671 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at 672 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he) 673 #define ANHE_at_cache(he)
514 697
515 static int ev_default_loop_ptr; 698 static int ev_default_loop_ptr;
516 699
517#endif 700#endif
518 701
702#if EV_FEATURE_API
703# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
704# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
705# define EV_INVOKE_PENDING invoke_cb (EV_A)
706#else
707# define EV_RELEASE_CB (void)0
708# define EV_ACQUIRE_CB (void)0
709# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
710#endif
711
712#define EVUNLOOP_RECURSE 0x80
713
519/*****************************************************************************/ 714/*****************************************************************************/
520 715
716#ifndef EV_HAVE_EV_TIME
521ev_tstamp 717ev_tstamp
522ev_time (void) 718ev_time (void)
523{ 719{
524#if EV_USE_REALTIME 720#if EV_USE_REALTIME
721 if (expect_true (have_realtime))
722 {
525 struct timespec ts; 723 struct timespec ts;
526 clock_gettime (CLOCK_REALTIME, &ts); 724 clock_gettime (CLOCK_REALTIME, &ts);
527 return ts.tv_sec + ts.tv_nsec * 1e-9; 725 return ts.tv_sec + ts.tv_nsec * 1e-9;
528#else 726 }
727#endif
728
529 struct timeval tv; 729 struct timeval tv;
530 gettimeofday (&tv, 0); 730 gettimeofday (&tv, 0);
531 return tv.tv_sec + tv.tv_usec * 1e-6; 731 return tv.tv_sec + tv.tv_usec * 1e-6;
532#endif
533} 732}
733#endif
534 734
535ev_tstamp inline_size 735inline_size ev_tstamp
536get_clock (void) 736get_clock (void)
537{ 737{
538#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
539 if (expect_true (have_monotonic)) 739 if (expect_true (have_monotonic))
540 { 740 {
574 774
575 tv.tv_sec = (time_t)delay; 775 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 776 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577 777
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 778 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 779 /* something not guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */ 780 /* by older ones */
581 select (0, 0, 0, 0, &tv); 781 select (0, 0, 0, 0, &tv);
582#endif 782#endif
583 } 783 }
584} 784}
585 785
586/*****************************************************************************/ 786/*****************************************************************************/
587 787
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 788#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589 789
590int inline_size 790/* find a suitable new size for the given array, */
791/* hopefully by rounding to a ncie-to-malloc size */
792inline_size int
591array_nextsize (int elem, int cur, int cnt) 793array_nextsize (int elem, int cur, int cnt)
592{ 794{
593 int ncur = cur + 1; 795 int ncur = cur + 1;
594 796
595 do 797 do
636 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 838 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
637 } 839 }
638#endif 840#endif
639 841
640#define array_free(stem, idx) \ 842#define array_free(stem, idx) \
641 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 843 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
642 844
643/*****************************************************************************/ 845/*****************************************************************************/
846
847/* dummy callback for pending events */
848static void noinline
849pendingcb (EV_P_ ev_prepare *w, int revents)
850{
851}
644 852
645void noinline 853void noinline
646ev_feed_event (EV_P_ void *w, int revents) 854ev_feed_event (EV_P_ void *w, int revents)
647{ 855{
648 W w_ = (W)w; 856 W w_ = (W)w;
657 pendings [pri][w_->pending - 1].w = w_; 865 pendings [pri][w_->pending - 1].w = w_;
658 pendings [pri][w_->pending - 1].events = revents; 866 pendings [pri][w_->pending - 1].events = revents;
659 } 867 }
660} 868}
661 869
662void inline_speed 870inline_speed void
871feed_reverse (EV_P_ W w)
872{
873 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
874 rfeeds [rfeedcnt++] = w;
875}
876
877inline_size void
878feed_reverse_done (EV_P_ int revents)
879{
880 do
881 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
882 while (rfeedcnt);
883}
884
885inline_speed void
663queue_events (EV_P_ W *events, int eventcnt, int type) 886queue_events (EV_P_ W *events, int eventcnt, int type)
664{ 887{
665 int i; 888 int i;
666 889
667 for (i = 0; i < eventcnt; ++i) 890 for (i = 0; i < eventcnt; ++i)
668 ev_feed_event (EV_A_ events [i], type); 891 ev_feed_event (EV_A_ events [i], type);
669} 892}
670 893
671/*****************************************************************************/ 894/*****************************************************************************/
672 895
673void inline_speed 896inline_speed void
674fd_event (EV_P_ int fd, int revents) 897fd_event_nocheck (EV_P_ int fd, int revents)
675{ 898{
676 ANFD *anfd = anfds + fd; 899 ANFD *anfd = anfds + fd;
677 ev_io *w; 900 ev_io *w;
678 901
679 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 902 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
683 if (ev) 906 if (ev)
684 ev_feed_event (EV_A_ (W)w, ev); 907 ev_feed_event (EV_A_ (W)w, ev);
685 } 908 }
686} 909}
687 910
911/* do not submit kernel events for fds that have reify set */
912/* because that means they changed while we were polling for new events */
913inline_speed void
914fd_event (EV_P_ int fd, int revents)
915{
916 ANFD *anfd = anfds + fd;
917
918 if (expect_true (!anfd->reify))
919 fd_event_nocheck (EV_A_ fd, revents);
920}
921
688void 922void
689ev_feed_fd_event (EV_P_ int fd, int revents) 923ev_feed_fd_event (EV_P_ int fd, int revents)
690{ 924{
691 if (fd >= 0 && fd < anfdmax) 925 if (fd >= 0 && fd < anfdmax)
692 fd_event (EV_A_ fd, revents); 926 fd_event_nocheck (EV_A_ fd, revents);
693} 927}
694 928
695void inline_size 929/* make sure the external fd watch events are in-sync */
930/* with the kernel/libev internal state */
931inline_size void
696fd_reify (EV_P) 932fd_reify (EV_P)
697{ 933{
698 int i; 934 int i;
699 935
700 for (i = 0; i < fdchangecnt; ++i) 936 for (i = 0; i < fdchangecnt; ++i)
710 946
711#if EV_SELECT_IS_WINSOCKET 947#if EV_SELECT_IS_WINSOCKET
712 if (events) 948 if (events)
713 { 949 {
714 unsigned long arg; 950 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 951 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
718 anfd->handle = _get_osfhandle (fd);
719 #endif
720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 952 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
721 } 953 }
722#endif 954#endif
723 955
724 { 956 {
725 unsigned char o_events = anfd->events; 957 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify; 958 unsigned char o_reify = anfd->reify;
727 959
728 anfd->reify = 0; 960 anfd->reify = 0;
729 anfd->events = events; 961 anfd->events = events;
730 962
731 if (o_events != events || o_reify & EV_IOFDSET) 963 if (o_events != events || o_reify & EV__IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events); 964 backend_modify (EV_A_ fd, o_events, events);
733 } 965 }
734 } 966 }
735 967
736 fdchangecnt = 0; 968 fdchangecnt = 0;
737} 969}
738 970
739void inline_size 971/* something about the given fd changed */
972inline_size void
740fd_change (EV_P_ int fd, int flags) 973fd_change (EV_P_ int fd, int flags)
741{ 974{
742 unsigned char reify = anfds [fd].reify; 975 unsigned char reify = anfds [fd].reify;
743 anfds [fd].reify |= flags; 976 anfds [fd].reify |= flags;
744 977
748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 981 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
749 fdchanges [fdchangecnt - 1] = fd; 982 fdchanges [fdchangecnt - 1] = fd;
750 } 983 }
751} 984}
752 985
753void inline_speed 986/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
987inline_speed void
754fd_kill (EV_P_ int fd) 988fd_kill (EV_P_ int fd)
755{ 989{
756 ev_io *w; 990 ev_io *w;
757 991
758 while ((w = (ev_io *)anfds [fd].head)) 992 while ((w = (ev_io *)anfds [fd].head))
760 ev_io_stop (EV_A_ w); 994 ev_io_stop (EV_A_ w);
761 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 995 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
762 } 996 }
763} 997}
764 998
765int inline_size 999/* check whether the given fd is actually valid, for error recovery */
1000inline_size int
766fd_valid (int fd) 1001fd_valid (int fd)
767{ 1002{
768#ifdef _WIN32 1003#ifdef _WIN32
769 return _get_osfhandle (fd) != -1; 1004 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
770#else 1005#else
771 return fcntl (fd, F_GETFD) != -1; 1006 return fcntl (fd, F_GETFD) != -1;
772#endif 1007#endif
773} 1008}
774 1009
792 1027
793 for (fd = anfdmax; fd--; ) 1028 for (fd = anfdmax; fd--; )
794 if (anfds [fd].events) 1029 if (anfds [fd].events)
795 { 1030 {
796 fd_kill (EV_A_ fd); 1031 fd_kill (EV_A_ fd);
797 return; 1032 break;
798 } 1033 }
799} 1034}
800 1035
801/* usually called after fork if backend needs to re-arm all fds from scratch */ 1036/* usually called after fork if backend needs to re-arm all fds from scratch */
802static void noinline 1037static void noinline
806 1041
807 for (fd = 0; fd < anfdmax; ++fd) 1042 for (fd = 0; fd < anfdmax; ++fd)
808 if (anfds [fd].events) 1043 if (anfds [fd].events)
809 { 1044 {
810 anfds [fd].events = 0; 1045 anfds [fd].events = 0;
1046 anfds [fd].emask = 0;
811 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1047 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
812 } 1048 }
1049}
1050
1051/* used to prepare libev internal fd's */
1052/* this is not fork-safe */
1053inline_speed void
1054fd_intern (int fd)
1055{
1056#ifdef _WIN32
1057 unsigned long arg = 1;
1058 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1059#else
1060 fcntl (fd, F_SETFD, FD_CLOEXEC);
1061 fcntl (fd, F_SETFL, O_NONBLOCK);
1062#endif
813} 1063}
814 1064
815/*****************************************************************************/ 1065/*****************************************************************************/
816 1066
817/* 1067/*
832#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1082#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1083#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k)) 1084#define UPHEAP_DONE(p,k) ((p) == (k))
835 1085
836/* away from the root */ 1086/* away from the root */
837void inline_speed 1087inline_speed void
838downheap (ANHE *heap, int N, int k) 1088downheap (ANHE *heap, int N, int k)
839{ 1089{
840 ANHE he = heap [k]; 1090 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0; 1091 ANHE *E = heap + N + HEAP0;
842 1092
882#define HEAP0 1 1132#define HEAP0 1
883#define HPARENT(k) ((k) >> 1) 1133#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p)) 1134#define UPHEAP_DONE(p,k) (!(p))
885 1135
886/* away from the root */ 1136/* away from the root */
887void inline_speed 1137inline_speed void
888downheap (ANHE *heap, int N, int k) 1138downheap (ANHE *heap, int N, int k)
889{ 1139{
890 ANHE he = heap [k]; 1140 ANHE he = heap [k];
891 1141
892 for (;;) 1142 for (;;)
893 { 1143 {
894 int c = k << 1; 1144 int c = k << 1;
895 1145
896 if (c > N + HEAP0 - 1) 1146 if (c >= N + HEAP0)
897 break; 1147 break;
898 1148
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1149 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0; 1150 ? 1 : 0;
901 1151
912 ev_active (ANHE_w (he)) = k; 1162 ev_active (ANHE_w (he)) = k;
913} 1163}
914#endif 1164#endif
915 1165
916/* towards the root */ 1166/* towards the root */
917void inline_speed 1167inline_speed void
918upheap (ANHE *heap, int k) 1168upheap (ANHE *heap, int k)
919{ 1169{
920 ANHE he = heap [k]; 1170 ANHE he = heap [k];
921 1171
922 for (;;) 1172 for (;;)
933 1183
934 heap [k] = he; 1184 heap [k] = he;
935 ev_active (ANHE_w (he)) = k; 1185 ev_active (ANHE_w (he)) = k;
936} 1186}
937 1187
938void inline_size 1188/* move an element suitably so it is in a correct place */
1189inline_size void
939adjustheap (ANHE *heap, int N, int k) 1190adjustheap (ANHE *heap, int N, int k)
940{ 1191{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1192 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
942 upheap (heap, k); 1193 upheap (heap, k);
943 else 1194 else
944 downheap (heap, N, k); 1195 downheap (heap, N, k);
945} 1196}
946 1197
947/* rebuild the heap: this function is used only once and executed rarely */ 1198/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size 1199inline_size void
949reheap (ANHE *heap, int N) 1200reheap (ANHE *heap, int N)
950{ 1201{
951 int i; 1202 int i;
952 1203
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1204 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 upheap (heap, i + HEAP0); 1207 upheap (heap, i + HEAP0);
957} 1208}
958 1209
959/*****************************************************************************/ 1210/*****************************************************************************/
960 1211
1212/* associate signal watchers to a signal signal */
961typedef struct 1213typedef struct
962{ 1214{
1215 EV_ATOMIC_T pending;
1216#if EV_MULTIPLICITY
1217 EV_P;
1218#endif
963 WL head; 1219 WL head;
964 EV_ATOMIC_T gotsig;
965} ANSIG; 1220} ANSIG;
966 1221
967static ANSIG *signals; 1222static ANSIG signals [EV_NSIG - 1];
968static int signalmax;
969
970static EV_ATOMIC_T gotsig;
971 1223
972/*****************************************************************************/ 1224/*****************************************************************************/
973 1225
974void inline_speed 1226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975fd_intern (int fd)
976{
977#ifdef _WIN32
978 unsigned long arg = 1;
979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
980#else
981 fcntl (fd, F_SETFD, FD_CLOEXEC);
982 fcntl (fd, F_SETFL, O_NONBLOCK);
983#endif
984}
985 1227
986static void noinline 1228static void noinline
987evpipe_init (EV_P) 1229evpipe_init (EV_P)
988{ 1230{
989 if (!ev_is_active (&pipeev)) 1231 if (!ev_is_active (&pipe_w))
990 { 1232 {
991#if EV_USE_EVENTFD 1233# if EV_USE_EVENTFD
1234 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1235 if (evfd < 0 && errno == EINVAL)
992 if ((evfd = eventfd (0, 0)) >= 0) 1236 evfd = eventfd (0, 0);
1237
1238 if (evfd >= 0)
993 { 1239 {
994 evpipe [0] = -1; 1240 evpipe [0] = -1;
995 fd_intern (evfd); 1241 fd_intern (evfd); /* doing it twice doesn't hurt */
996 ev_io_set (&pipeev, evfd, EV_READ); 1242 ev_io_set (&pipe_w, evfd, EV_READ);
997 } 1243 }
998 else 1244 else
999#endif 1245# endif
1000 { 1246 {
1001 while (pipe (evpipe)) 1247 while (pipe (evpipe))
1002 syserr ("(libev) error creating signal/async pipe"); 1248 ev_syserr ("(libev) error creating signal/async pipe");
1003 1249
1004 fd_intern (evpipe [0]); 1250 fd_intern (evpipe [0]);
1005 fd_intern (evpipe [1]); 1251 fd_intern (evpipe [1]);
1006 ev_io_set (&pipeev, evpipe [0], EV_READ); 1252 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1007 } 1253 }
1008 1254
1009 ev_io_start (EV_A_ &pipeev); 1255 ev_io_start (EV_A_ &pipe_w);
1010 ev_unref (EV_A); /* watcher should not keep loop alive */ 1256 ev_unref (EV_A); /* watcher should not keep loop alive */
1011 } 1257 }
1012} 1258}
1013 1259
1014void inline_size 1260inline_size void
1015evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1261evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1016{ 1262{
1017 if (!*flag) 1263 if (!*flag)
1018 { 1264 {
1019 int old_errno = errno; /* save errno because write might clobber it */ 1265 int old_errno = errno; /* save errno because write might clobber it */
1266 char dummy;
1020 1267
1021 *flag = 1; 1268 *flag = 1;
1022 1269
1023#if EV_USE_EVENTFD 1270#if EV_USE_EVENTFD
1024 if (evfd >= 0) 1271 if (evfd >= 0)
1026 uint64_t counter = 1; 1273 uint64_t counter = 1;
1027 write (evfd, &counter, sizeof (uint64_t)); 1274 write (evfd, &counter, sizeof (uint64_t));
1028 } 1275 }
1029 else 1276 else
1030#endif 1277#endif
1031 write (evpipe [1], &old_errno, 1); 1278 write (evpipe [1], &dummy, 1);
1032 1279
1033 errno = old_errno; 1280 errno = old_errno;
1034 } 1281 }
1035} 1282}
1036 1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
1037static void 1286static void
1038pipecb (EV_P_ ev_io *iow, int revents) 1287pipecb (EV_P_ ev_io *iow, int revents)
1039{ 1288{
1289 int i;
1290
1040#if EV_USE_EVENTFD 1291#if EV_USE_EVENTFD
1041 if (evfd >= 0) 1292 if (evfd >= 0)
1042 { 1293 {
1043 uint64_t counter; 1294 uint64_t counter;
1044 read (evfd, &counter, sizeof (uint64_t)); 1295 read (evfd, &counter, sizeof (uint64_t));
1048 { 1299 {
1049 char dummy; 1300 char dummy;
1050 read (evpipe [0], &dummy, 1); 1301 read (evpipe [0], &dummy, 1);
1051 } 1302 }
1052 1303
1053 if (gotsig && ev_is_default_loop (EV_A)) 1304 if (sig_pending)
1054 { 1305 {
1055 int signum; 1306 sig_pending = 0;
1056 gotsig = 0;
1057 1307
1058 for (signum = signalmax; signum--; ) 1308 for (i = EV_NSIG - 1; i--; )
1059 if (signals [signum].gotsig) 1309 if (expect_false (signals [i].pending))
1060 ev_feed_signal_event (EV_A_ signum + 1); 1310 ev_feed_signal_event (EV_A_ i + 1);
1061 } 1311 }
1062 1312
1063#if EV_ASYNC_ENABLE 1313#if EV_ASYNC_ENABLE
1064 if (gotasync) 1314 if (async_pending)
1065 { 1315 {
1066 int i; 1316 async_pending = 0;
1067 gotasync = 0;
1068 1317
1069 for (i = asynccnt; i--; ) 1318 for (i = asynccnt; i--; )
1070 if (asyncs [i]->sent) 1319 if (asyncs [i]->sent)
1071 { 1320 {
1072 asyncs [i]->sent = 0; 1321 asyncs [i]->sent = 0;
1080 1329
1081static void 1330static void
1082ev_sighandler (int signum) 1331ev_sighandler (int signum)
1083{ 1332{
1084#if EV_MULTIPLICITY 1333#if EV_MULTIPLICITY
1085 struct ev_loop *loop = &default_loop_struct; 1334 EV_P = signals [signum - 1].loop;
1086#endif 1335#endif
1087 1336
1088#if _WIN32 1337#ifdef _WIN32
1089 signal (signum, ev_sighandler); 1338 signal (signum, ev_sighandler);
1090#endif 1339#endif
1091 1340
1092 signals [signum - 1].gotsig = 1; 1341 signals [signum - 1].pending = 1;
1093 evpipe_write (EV_A_ &gotsig); 1342 evpipe_write (EV_A_ &sig_pending);
1094} 1343}
1095 1344
1096void noinline 1345void noinline
1097ev_feed_signal_event (EV_P_ int signum) 1346ev_feed_signal_event (EV_P_ int signum)
1098{ 1347{
1099 WL w; 1348 WL w;
1100 1349
1350 if (expect_false (signum <= 0 || signum > EV_NSIG))
1351 return;
1352
1353 --signum;
1354
1101#if EV_MULTIPLICITY 1355#if EV_MULTIPLICITY
1102 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1356 /* it is permissible to try to feed a signal to the wrong loop */
1103#endif 1357 /* or, likely more useful, feeding a signal nobody is waiting for */
1104 1358
1105 --signum; 1359 if (expect_false (signals [signum].loop != EV_A))
1106
1107 if (signum < 0 || signum >= signalmax)
1108 return; 1360 return;
1361#endif
1109 1362
1110 signals [signum].gotsig = 0; 1363 signals [signum].pending = 0;
1111 1364
1112 for (w = signals [signum].head; w; w = w->next) 1365 for (w = signals [signum].head; w; w = w->next)
1113 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1366 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1114} 1367}
1115 1368
1369#if EV_USE_SIGNALFD
1370static void
1371sigfdcb (EV_P_ ev_io *iow, int revents)
1372{
1373 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1374
1375 for (;;)
1376 {
1377 ssize_t res = read (sigfd, si, sizeof (si));
1378
1379 /* not ISO-C, as res might be -1, but works with SuS */
1380 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1381 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1382
1383 if (res < (ssize_t)sizeof (si))
1384 break;
1385 }
1386}
1387#endif
1388
1389#endif
1390
1116/*****************************************************************************/ 1391/*****************************************************************************/
1117 1392
1393#if EV_CHILD_ENABLE
1118static WL childs [EV_PID_HASHSIZE]; 1394static WL childs [EV_PID_HASHSIZE];
1119
1120#ifndef _WIN32
1121 1395
1122static ev_signal childev; 1396static ev_signal childev;
1123 1397
1124#ifndef WIFCONTINUED 1398#ifndef WIFCONTINUED
1125# define WIFCONTINUED(status) 0 1399# define WIFCONTINUED(status) 0
1126#endif 1400#endif
1127 1401
1128void inline_speed 1402/* handle a single child status event */
1403inline_speed void
1129child_reap (EV_P_ int chain, int pid, int status) 1404child_reap (EV_P_ int chain, int pid, int status)
1130{ 1405{
1131 ev_child *w; 1406 ev_child *w;
1132 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1407 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1133 1408
1134 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1409 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1135 { 1410 {
1136 if ((w->pid == pid || !w->pid) 1411 if ((w->pid == pid || !w->pid)
1137 && (!traced || (w->flags & 1))) 1412 && (!traced || (w->flags & 1)))
1138 { 1413 {
1139 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1414 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1146 1421
1147#ifndef WCONTINUED 1422#ifndef WCONTINUED
1148# define WCONTINUED 0 1423# define WCONTINUED 0
1149#endif 1424#endif
1150 1425
1426/* called on sigchld etc., calls waitpid */
1151static void 1427static void
1152childcb (EV_P_ ev_signal *sw, int revents) 1428childcb (EV_P_ ev_signal *sw, int revents)
1153{ 1429{
1154 int pid, status; 1430 int pid, status;
1155 1431
1163 /* make sure we are called again until all children have been reaped */ 1439 /* make sure we are called again until all children have been reaped */
1164 /* we need to do it this way so that the callback gets called before we continue */ 1440 /* we need to do it this way so that the callback gets called before we continue */
1165 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1441 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1166 1442
1167 child_reap (EV_A_ pid, pid, status); 1443 child_reap (EV_A_ pid, pid, status);
1168 if (EV_PID_HASHSIZE > 1) 1444 if ((EV_PID_HASHSIZE) > 1)
1169 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1445 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1170} 1446}
1171 1447
1172#endif 1448#endif
1173 1449
1236 /* kqueue is borked on everything but netbsd apparently */ 1512 /* kqueue is borked on everything but netbsd apparently */
1237 /* it usually doesn't work correctly on anything but sockets and pipes */ 1513 /* it usually doesn't work correctly on anything but sockets and pipes */
1238 flags &= ~EVBACKEND_KQUEUE; 1514 flags &= ~EVBACKEND_KQUEUE;
1239#endif 1515#endif
1240#ifdef __APPLE__ 1516#ifdef __APPLE__
1241 // flags &= ~EVBACKEND_KQUEUE; for documentation 1517 /* only select works correctly on that "unix-certified" platform */
1242 flags &= ~EVBACKEND_POLL; 1518 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1519 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1520#endif
1521#ifdef __FreeBSD__
1522 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1243#endif 1523#endif
1244 1524
1245 return flags; 1525 return flags;
1246} 1526}
1247 1527
1261ev_backend (EV_P) 1541ev_backend (EV_P)
1262{ 1542{
1263 return backend; 1543 return backend;
1264} 1544}
1265 1545
1546#if EV_FEATURE_API
1266unsigned int 1547unsigned int
1267ev_loop_count (EV_P) 1548ev_iteration (EV_P)
1268{ 1549{
1269 return loop_count; 1550 return loop_count;
1270} 1551}
1271 1552
1553unsigned int
1554ev_depth (EV_P)
1555{
1556 return loop_depth;
1557}
1558
1272void 1559void
1273ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1560ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1274{ 1561{
1275 io_blocktime = interval; 1562 io_blocktime = interval;
1276} 1563}
1279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1566ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1280{ 1567{
1281 timeout_blocktime = interval; 1568 timeout_blocktime = interval;
1282} 1569}
1283 1570
1571void
1572ev_set_userdata (EV_P_ void *data)
1573{
1574 userdata = data;
1575}
1576
1577void *
1578ev_userdata (EV_P)
1579{
1580 return userdata;
1581}
1582
1583void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1584{
1585 invoke_cb = invoke_pending_cb;
1586}
1587
1588void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1589{
1590 release_cb = release;
1591 acquire_cb = acquire;
1592}
1593#endif
1594
1595/* initialise a loop structure, must be zero-initialised */
1284static void noinline 1596static void noinline
1285loop_init (EV_P_ unsigned int flags) 1597loop_init (EV_P_ unsigned int flags)
1286{ 1598{
1287 if (!backend) 1599 if (!backend)
1288 { 1600 {
1601#if EV_USE_REALTIME
1602 if (!have_realtime)
1603 {
1604 struct timespec ts;
1605
1606 if (!clock_gettime (CLOCK_REALTIME, &ts))
1607 have_realtime = 1;
1608 }
1609#endif
1610
1289#if EV_USE_MONOTONIC 1611#if EV_USE_MONOTONIC
1612 if (!have_monotonic)
1290 { 1613 {
1291 struct timespec ts; 1614 struct timespec ts;
1615
1292 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1616 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1293 have_monotonic = 1; 1617 have_monotonic = 1;
1294 } 1618 }
1295#endif 1619#endif
1620
1621 /* pid check not overridable via env */
1622#ifndef _WIN32
1623 if (flags & EVFLAG_FORKCHECK)
1624 curpid = getpid ();
1625#endif
1626
1627 if (!(flags & EVFLAG_NOENV)
1628 && !enable_secure ()
1629 && getenv ("LIBEV_FLAGS"))
1630 flags = atoi (getenv ("LIBEV_FLAGS"));
1296 1631
1297 ev_rt_now = ev_time (); 1632 ev_rt_now = ev_time ();
1298 mn_now = get_clock (); 1633 mn_now = get_clock ();
1299 now_floor = mn_now; 1634 now_floor = mn_now;
1300 rtmn_diff = ev_rt_now - mn_now; 1635 rtmn_diff = ev_rt_now - mn_now;
1636#if EV_FEATURE_API
1637 invoke_cb = ev_invoke_pending;
1638#endif
1301 1639
1302 io_blocktime = 0.; 1640 io_blocktime = 0.;
1303 timeout_blocktime = 0.; 1641 timeout_blocktime = 0.;
1304 backend = 0; 1642 backend = 0;
1305 backend_fd = -1; 1643 backend_fd = -1;
1306 gotasync = 0; 1644 sig_pending = 0;
1645#if EV_ASYNC_ENABLE
1646 async_pending = 0;
1647#endif
1307#if EV_USE_INOTIFY 1648#if EV_USE_INOTIFY
1308 fs_fd = -2; 1649 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1309#endif 1650#endif
1310 1651#if EV_USE_SIGNALFD
1311 /* pid check not overridable via env */ 1652 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1312#ifndef _WIN32
1313 if (flags & EVFLAG_FORKCHECK)
1314 curpid = getpid ();
1315#endif 1653#endif
1316
1317 if (!(flags & EVFLAG_NOENV)
1318 && !enable_secure ()
1319 && getenv ("LIBEV_FLAGS"))
1320 flags = atoi (getenv ("LIBEV_FLAGS"));
1321 1654
1322 if (!(flags & 0x0000ffffU)) 1655 if (!(flags & 0x0000ffffU))
1323 flags |= ev_recommended_backends (); 1656 flags |= ev_recommended_backends ();
1324 1657
1325#if EV_USE_PORT 1658#if EV_USE_PORT
1336#endif 1669#endif
1337#if EV_USE_SELECT 1670#if EV_USE_SELECT
1338 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1671 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1339#endif 1672#endif
1340 1673
1674 ev_prepare_init (&pending_w, pendingcb);
1675
1676#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1341 ev_init (&pipeev, pipecb); 1677 ev_init (&pipe_w, pipecb);
1342 ev_set_priority (&pipeev, EV_MAXPRI); 1678 ev_set_priority (&pipe_w, EV_MAXPRI);
1679#endif
1343 } 1680 }
1344} 1681}
1345 1682
1683/* free up a loop structure */
1346static void noinline 1684static void noinline
1347loop_destroy (EV_P) 1685loop_destroy (EV_P)
1348{ 1686{
1349 int i; 1687 int i;
1350 1688
1351 if (ev_is_active (&pipeev)) 1689 if (ev_is_active (&pipe_w))
1352 { 1690 {
1353 ev_ref (EV_A); /* signal watcher */ 1691 /*ev_ref (EV_A);*/
1354 ev_io_stop (EV_A_ &pipeev); 1692 /*ev_io_stop (EV_A_ &pipe_w);*/
1355 1693
1356#if EV_USE_EVENTFD 1694#if EV_USE_EVENTFD
1357 if (evfd >= 0) 1695 if (evfd >= 0)
1358 close (evfd); 1696 close (evfd);
1359#endif 1697#endif
1360 1698
1361 if (evpipe [0] >= 0) 1699 if (evpipe [0] >= 0)
1362 { 1700 {
1363 close (evpipe [0]); 1701 EV_WIN32_CLOSE_FD (evpipe [0]);
1364 close (evpipe [1]); 1702 EV_WIN32_CLOSE_FD (evpipe [1]);
1365 } 1703 }
1366 } 1704 }
1705
1706#if EV_USE_SIGNALFD
1707 if (ev_is_active (&sigfd_w))
1708 close (sigfd);
1709#endif
1367 1710
1368#if EV_USE_INOTIFY 1711#if EV_USE_INOTIFY
1369 if (fs_fd >= 0) 1712 if (fs_fd >= 0)
1370 close (fs_fd); 1713 close (fs_fd);
1371#endif 1714#endif
1395#if EV_IDLE_ENABLE 1738#if EV_IDLE_ENABLE
1396 array_free (idle, [i]); 1739 array_free (idle, [i]);
1397#endif 1740#endif
1398 } 1741 }
1399 1742
1400 ev_free (anfds); anfdmax = 0; 1743 ev_free (anfds); anfds = 0; anfdmax = 0;
1401 1744
1402 /* have to use the microsoft-never-gets-it-right macro */ 1745 /* have to use the microsoft-never-gets-it-right macro */
1746 array_free (rfeed, EMPTY);
1403 array_free (fdchange, EMPTY); 1747 array_free (fdchange, EMPTY);
1404 array_free (timer, EMPTY); 1748 array_free (timer, EMPTY);
1405#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1406 array_free (periodic, EMPTY); 1750 array_free (periodic, EMPTY);
1407#endif 1751#endif
1416 1760
1417 backend = 0; 1761 backend = 0;
1418} 1762}
1419 1763
1420#if EV_USE_INOTIFY 1764#if EV_USE_INOTIFY
1421void inline_size infy_fork (EV_P); 1765inline_size void infy_fork (EV_P);
1422#endif 1766#endif
1423 1767
1424void inline_size 1768inline_size void
1425loop_fork (EV_P) 1769loop_fork (EV_P)
1426{ 1770{
1427#if EV_USE_PORT 1771#if EV_USE_PORT
1428 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1772 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1429#endif 1773#endif
1435#endif 1779#endif
1436#if EV_USE_INOTIFY 1780#if EV_USE_INOTIFY
1437 infy_fork (EV_A); 1781 infy_fork (EV_A);
1438#endif 1782#endif
1439 1783
1440 if (ev_is_active (&pipeev)) 1784 if (ev_is_active (&pipe_w))
1441 { 1785 {
1442 /* this "locks" the handlers against writing to the pipe */ 1786 /* this "locks" the handlers against writing to the pipe */
1443 /* while we modify the fd vars */ 1787 /* while we modify the fd vars */
1444 gotsig = 1; 1788 sig_pending = 1;
1445#if EV_ASYNC_ENABLE 1789#if EV_ASYNC_ENABLE
1446 gotasync = 1; 1790 async_pending = 1;
1447#endif 1791#endif
1448 1792
1449 ev_ref (EV_A); 1793 ev_ref (EV_A);
1450 ev_io_stop (EV_A_ &pipeev); 1794 ev_io_stop (EV_A_ &pipe_w);
1451 1795
1452#if EV_USE_EVENTFD 1796#if EV_USE_EVENTFD
1453 if (evfd >= 0) 1797 if (evfd >= 0)
1454 close (evfd); 1798 close (evfd);
1455#endif 1799#endif
1456 1800
1457 if (evpipe [0] >= 0) 1801 if (evpipe [0] >= 0)
1458 { 1802 {
1459 close (evpipe [0]); 1803 EV_WIN32_CLOSE_FD (evpipe [0]);
1460 close (evpipe [1]); 1804 EV_WIN32_CLOSE_FD (evpipe [1]);
1461 } 1805 }
1462 1806
1807#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1463 evpipe_init (EV_A); 1808 evpipe_init (EV_A);
1464 /* now iterate over everything, in case we missed something */ 1809 /* now iterate over everything, in case we missed something */
1465 pipecb (EV_A_ &pipeev, EV_READ); 1810 pipecb (EV_A_ &pipe_w, EV_READ);
1811#endif
1466 } 1812 }
1467 1813
1468 postfork = 0; 1814 postfork = 0;
1469} 1815}
1470 1816
1471#if EV_MULTIPLICITY 1817#if EV_MULTIPLICITY
1472 1818
1473struct ev_loop * 1819struct ev_loop *
1474ev_loop_new (unsigned int flags) 1820ev_loop_new (unsigned int flags)
1475{ 1821{
1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1822 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1477 1823
1478 memset (loop, 0, sizeof (struct ev_loop)); 1824 memset (EV_A, 0, sizeof (struct ev_loop));
1479
1480 loop_init (EV_A_ flags); 1825 loop_init (EV_A_ flags);
1481 1826
1482 if (ev_backend (EV_A)) 1827 if (ev_backend (EV_A))
1483 return loop; 1828 return EV_A;
1484 1829
1485 return 0; 1830 return 0;
1486} 1831}
1487 1832
1488void 1833void
1495void 1840void
1496ev_loop_fork (EV_P) 1841ev_loop_fork (EV_P)
1497{ 1842{
1498 postfork = 1; /* must be in line with ev_default_fork */ 1843 postfork = 1; /* must be in line with ev_default_fork */
1499} 1844}
1845#endif /* multiplicity */
1500 1846
1501#if EV_VERIFY 1847#if EV_VERIFY
1502static void noinline 1848static void noinline
1503verify_watcher (EV_P_ W w) 1849verify_watcher (EV_P_ W w)
1504{ 1850{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1851 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506 1852
1507 if (w->pending) 1853 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1854 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509} 1855}
1510 1856
1511static void noinline 1857static void noinline
1512verify_heap (EV_P_ ANHE *heap, int N) 1858verify_heap (EV_P_ ANHE *heap, int N)
1513{ 1859{
1514 int i; 1860 int i;
1515 1861
1516 for (i = HEAP0; i < N + HEAP0; ++i) 1862 for (i = HEAP0; i < N + HEAP0; ++i)
1517 { 1863 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1864 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1865 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1866 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521 1867
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1868 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 } 1869 }
1524} 1870}
1525 1871
1526static void noinline 1872static void noinline
1527array_verify (EV_P_ W *ws, int cnt) 1873array_verify (EV_P_ W *ws, int cnt)
1528{ 1874{
1529 while (cnt--) 1875 while (cnt--)
1530 { 1876 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1877 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]); 1878 verify_watcher (EV_A_ ws [cnt]);
1533 } 1879 }
1534} 1880}
1535#endif 1881#endif
1536 1882
1883#if EV_FEATURE_API
1537void 1884void
1538ev_loop_verify (EV_P) 1885ev_verify (EV_P)
1539{ 1886{
1540#if EV_VERIFY 1887#if EV_VERIFY
1541 int i; 1888 int i;
1542 WL w; 1889 WL w;
1543 1890
1544 assert (activecnt >= -1); 1891 assert (activecnt >= -1);
1545 1892
1546 assert (fdchangemax >= fdchangecnt); 1893 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i) 1894 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1895 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1549 1896
1550 assert (anfdmax >= 0); 1897 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i) 1898 for (i = 0; i < anfdmax; ++i)
1552 for (w = anfds [i].head; w; w = w->next) 1899 for (w = anfds [i].head; w; w = w->next)
1553 { 1900 {
1554 verify_watcher (EV_A_ (W)w); 1901 verify_watcher (EV_A_ (W)w);
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1902 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1903 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 } 1904 }
1558 1905
1559 assert (timermax >= timercnt); 1906 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt); 1907 verify_heap (EV_A_ timers, timercnt);
1561 1908
1582#if EV_ASYNC_ENABLE 1929#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt); 1930 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt); 1931 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif 1932#endif
1586 1933
1934#if EV_PREPARE_ENABLE
1587 assert (preparemax >= preparecnt); 1935 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt); 1936 array_verify (EV_A_ (W *)prepares, preparecnt);
1937#endif
1589 1938
1939#if EV_CHECK_ENABLE
1590 assert (checkmax >= checkcnt); 1940 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt); 1941 array_verify (EV_A_ (W *)checks, checkcnt);
1942#endif
1592 1943
1593# if 0 1944# if 0
1945#if EV_CHILD_ENABLE
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1946 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1947 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1596# endif 1948#endif
1597#endif 1949# endif
1950#endif
1598} 1951}
1599 1952#endif
1600#endif /* multiplicity */
1601 1953
1602#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
1603struct ev_loop * 1955struct ev_loop *
1604ev_default_loop_init (unsigned int flags) 1956ev_default_loop_init (unsigned int flags)
1605#else 1957#else
1608#endif 1960#endif
1609{ 1961{
1610 if (!ev_default_loop_ptr) 1962 if (!ev_default_loop_ptr)
1611 { 1963 {
1612#if EV_MULTIPLICITY 1964#if EV_MULTIPLICITY
1613 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1965 EV_P = ev_default_loop_ptr = &default_loop_struct;
1614#else 1966#else
1615 ev_default_loop_ptr = 1; 1967 ev_default_loop_ptr = 1;
1616#endif 1968#endif
1617 1969
1618 loop_init (EV_A_ flags); 1970 loop_init (EV_A_ flags);
1619 1971
1620 if (ev_backend (EV_A)) 1972 if (ev_backend (EV_A))
1621 { 1973 {
1622#ifndef _WIN32 1974#if EV_CHILD_ENABLE
1623 ev_signal_init (&childev, childcb, SIGCHLD); 1975 ev_signal_init (&childev, childcb, SIGCHLD);
1624 ev_set_priority (&childev, EV_MAXPRI); 1976 ev_set_priority (&childev, EV_MAXPRI);
1625 ev_signal_start (EV_A_ &childev); 1977 ev_signal_start (EV_A_ &childev);
1626 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1978 ev_unref (EV_A); /* child watcher should not keep loop alive */
1627#endif 1979#endif
1635 1987
1636void 1988void
1637ev_default_destroy (void) 1989ev_default_destroy (void)
1638{ 1990{
1639#if EV_MULTIPLICITY 1991#if EV_MULTIPLICITY
1640 struct ev_loop *loop = ev_default_loop_ptr; 1992 EV_P = ev_default_loop_ptr;
1641#endif 1993#endif
1642 1994
1643 ev_default_loop_ptr = 0; 1995 ev_default_loop_ptr = 0;
1644 1996
1645#ifndef _WIN32 1997#if EV_CHILD_ENABLE
1646 ev_ref (EV_A); /* child watcher */ 1998 ev_ref (EV_A); /* child watcher */
1647 ev_signal_stop (EV_A_ &childev); 1999 ev_signal_stop (EV_A_ &childev);
1648#endif 2000#endif
1649 2001
1650 loop_destroy (EV_A); 2002 loop_destroy (EV_A);
1652 2004
1653void 2005void
1654ev_default_fork (void) 2006ev_default_fork (void)
1655{ 2007{
1656#if EV_MULTIPLICITY 2008#if EV_MULTIPLICITY
1657 struct ev_loop *loop = ev_default_loop_ptr; 2009 EV_P = ev_default_loop_ptr;
1658#endif 2010#endif
1659 2011
1660 if (backend)
1661 postfork = 1; /* must be in line with ev_loop_fork */ 2012 postfork = 1; /* must be in line with ev_loop_fork */
1662} 2013}
1663 2014
1664/*****************************************************************************/ 2015/*****************************************************************************/
1665 2016
1666void 2017void
1667ev_invoke (EV_P_ void *w, int revents) 2018ev_invoke (EV_P_ void *w, int revents)
1668{ 2019{
1669 EV_CB_INVOKE ((W)w, revents); 2020 EV_CB_INVOKE ((W)w, revents);
1670} 2021}
1671 2022
1672void inline_speed 2023unsigned int
1673call_pending (EV_P) 2024ev_pending_count (EV_P)
2025{
2026 int pri;
2027 unsigned int count = 0;
2028
2029 for (pri = NUMPRI; pri--; )
2030 count += pendingcnt [pri];
2031
2032 return count;
2033}
2034
2035void noinline
2036ev_invoke_pending (EV_P)
1674{ 2037{
1675 int pri; 2038 int pri;
1676 2039
1677 for (pri = NUMPRI; pri--; ) 2040 for (pri = NUMPRI; pri--; )
1678 while (pendingcnt [pri]) 2041 while (pendingcnt [pri])
1679 { 2042 {
1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2043 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1681 2044
1682 if (expect_true (p->w))
1683 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2045 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2046 /* ^ this is no longer true, as pending_w could be here */
1685 2047
1686 p->w->pending = 0; 2048 p->w->pending = 0;
1687 EV_CB_INVOKE (p->w, p->events); 2049 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK; 2050 EV_FREQUENT_CHECK;
1689 }
1690 } 2051 }
1691} 2052}
1692 2053
1693#if EV_IDLE_ENABLE 2054#if EV_IDLE_ENABLE
1694void inline_size 2055/* make idle watchers pending. this handles the "call-idle */
2056/* only when higher priorities are idle" logic */
2057inline_size void
1695idle_reify (EV_P) 2058idle_reify (EV_P)
1696{ 2059{
1697 if (expect_false (idleall)) 2060 if (expect_false (idleall))
1698 { 2061 {
1699 int pri; 2062 int pri;
1711 } 2074 }
1712 } 2075 }
1713} 2076}
1714#endif 2077#endif
1715 2078
1716void inline_size 2079/* make timers pending */
2080inline_size void
1717timers_reify (EV_P) 2081timers_reify (EV_P)
1718{ 2082{
1719 EV_FREQUENT_CHECK; 2083 EV_FREQUENT_CHECK;
1720 2084
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2085 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 { 2086 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2087 do
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 { 2088 {
2089 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2090
2091 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2092
2093 /* first reschedule or stop timer */
2094 if (w->repeat)
2095 {
1730 ev_at (w) += w->repeat; 2096 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now) 2097 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now; 2098 ev_at (w) = mn_now;
1733 2099
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2100 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735 2101
1736 ANHE_at_cache (timers [HEAP0]); 2102 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0); 2103 downheap (timers, timercnt, HEAP0);
2104 }
2105 else
2106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2107
2108 EV_FREQUENT_CHECK;
2109 feed_reverse (EV_A_ (W)w);
1738 } 2110 }
1739 else 2111 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741 2112
1742 EV_FREQUENT_CHECK; 2113 feed_reverse_done (EV_A_ EV_TIMER);
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 } 2114 }
1745} 2115}
1746 2116
1747#if EV_PERIODIC_ENABLE 2117#if EV_PERIODIC_ENABLE
1748void inline_size 2118/* make periodics pending */
2119inline_size void
1749periodics_reify (EV_P) 2120periodics_reify (EV_P)
1750{ 2121{
1751 EV_FREQUENT_CHECK; 2122 EV_FREQUENT_CHECK;
1752 2123
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 { 2125 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2126 int feed_count = 0;
1756 2127
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2128 do
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 { 2129 {
2130 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2131
2132 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2133
2134 /* first reschedule or stop timer */
2135 if (w->reschedule_cb)
2136 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2137 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763 2138
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2139 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765 2140
1766 ANHE_at_cache (periodics [HEAP0]); 2141 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0); 2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else if (w->interval)
2145 {
2146 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2147 /* if next trigger time is not sufficiently in the future, put it there */
2148 /* this might happen because of floating point inexactness */
2149 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2150 {
2151 ev_at (w) += w->interval;
2152
2153 /* if interval is unreasonably low we might still have a time in the past */
2154 /* so correct this. this will make the periodic very inexact, but the user */
2155 /* has effectively asked to get triggered more often than possible */
2156 if (ev_at (w) < ev_rt_now)
2157 ev_at (w) = ev_rt_now;
2158 }
2159
2160 ANHE_at_cache (periodics [HEAP0]);
2161 downheap (periodics, periodiccnt, HEAP0);
2162 }
2163 else
2164 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2165
2166 EV_FREQUENT_CHECK;
2167 feed_reverse (EV_A_ (W)w);
1768 } 2168 }
1769 else if (w->interval) 2169 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777 2170
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2171 feed_reverse_done (EV_A_ EV_PERIODIC);
1793 } 2172 }
1794} 2173}
1795 2174
2175/* simply recalculate all periodics */
2176/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1796static void noinline 2177static void noinline
1797periodics_reschedule (EV_P) 2178periodics_reschedule (EV_P)
1798{ 2179{
1799 int i; 2180 int i;
1800 2181
1813 2194
1814 reheap (periodics, periodiccnt); 2195 reheap (periodics, periodiccnt);
1815} 2196}
1816#endif 2197#endif
1817 2198
1818void inline_speed 2199/* adjust all timers by a given offset */
2200static void noinline
2201timers_reschedule (EV_P_ ev_tstamp adjust)
2202{
2203 int i;
2204
2205 for (i = 0; i < timercnt; ++i)
2206 {
2207 ANHE *he = timers + i + HEAP0;
2208 ANHE_w (*he)->at += adjust;
2209 ANHE_at_cache (*he);
2210 }
2211}
2212
2213/* fetch new monotonic and realtime times from the kernel */
2214/* also detect if there was a timejump, and act accordingly */
2215inline_speed void
1819time_update (EV_P_ ev_tstamp max_block) 2216time_update (EV_P_ ev_tstamp max_block)
1820{ 2217{
1821 int i;
1822
1823#if EV_USE_MONOTONIC 2218#if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic)) 2219 if (expect_true (have_monotonic))
1825 { 2220 {
2221 int i;
1826 ev_tstamp odiff = rtmn_diff; 2222 ev_tstamp odiff = rtmn_diff;
1827 2223
1828 mn_now = get_clock (); 2224 mn_now = get_clock ();
1829 2225
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2226 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1856 ev_rt_now = ev_time (); 2252 ev_rt_now = ev_time ();
1857 mn_now = get_clock (); 2253 mn_now = get_clock ();
1858 now_floor = mn_now; 2254 now_floor = mn_now;
1859 } 2255 }
1860 2256
2257 /* no timer adjustment, as the monotonic clock doesn't jump */
2258 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1861# if EV_PERIODIC_ENABLE 2259# if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A); 2260 periodics_reschedule (EV_A);
1863# endif 2261# endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 } 2262 }
1867 else 2263 else
1868#endif 2264#endif
1869 { 2265 {
1870 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1871 2267
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2268 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 { 2269 {
2270 /* adjust timers. this is easy, as the offset is the same for all of them */
2271 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1874#if EV_PERIODIC_ENABLE 2272#if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A); 2273 periodics_reschedule (EV_A);
1876#endif 2274#endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1884 } 2275 }
1885 2276
1886 mn_now = ev_rt_now; 2277 mn_now = ev_rt_now;
1887 } 2278 }
1888} 2279}
1889 2280
1890void 2281void
1891ev_ref (EV_P)
1892{
1893 ++activecnt;
1894}
1895
1896void
1897ev_unref (EV_P)
1898{
1899 --activecnt;
1900}
1901
1902void
1903ev_now_update (EV_P)
1904{
1905 time_update (EV_A_ 1e100);
1906}
1907
1908static int loop_done;
1909
1910void
1911ev_loop (EV_P_ int flags) 2282ev_loop (EV_P_ int flags)
1912{ 2283{
2284#if EV_FEATURE_API
2285 ++loop_depth;
2286#endif
2287
2288 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2289
1913 loop_done = EVUNLOOP_CANCEL; 2290 loop_done = EVUNLOOP_CANCEL;
1914 2291
1915 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2292 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1916 2293
1917 do 2294 do
1918 { 2295 {
1919#if EV_VERIFY >= 2 2296#if EV_VERIFY >= 2
1920 ev_loop_verify (EV_A); 2297 ev_verify (EV_A);
1921#endif 2298#endif
1922 2299
1923#ifndef _WIN32 2300#ifndef _WIN32
1924 if (expect_false (curpid)) /* penalise the forking check even more */ 2301 if (expect_false (curpid)) /* penalise the forking check even more */
1925 if (expect_false (getpid () != curpid)) 2302 if (expect_false (getpid () != curpid))
1933 /* we might have forked, so queue fork handlers */ 2310 /* we might have forked, so queue fork handlers */
1934 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1935 if (forkcnt) 2312 if (forkcnt)
1936 { 2313 {
1937 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2314 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1938 call_pending (EV_A); 2315 EV_INVOKE_PENDING;
1939 } 2316 }
1940#endif 2317#endif
1941 2318
2319#if EV_PREPARE_ENABLE
1942 /* queue prepare watchers (and execute them) */ 2320 /* queue prepare watchers (and execute them) */
1943 if (expect_false (preparecnt)) 2321 if (expect_false (preparecnt))
1944 { 2322 {
1945 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2323 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1946 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1947 } 2325 }
2326#endif
1948 2327
1949 if (expect_false (!activecnt)) 2328 if (expect_false (loop_done))
1950 break; 2329 break;
1951 2330
1952 /* we might have forked, so reify kernel state if necessary */ 2331 /* we might have forked, so reify kernel state if necessary */
1953 if (expect_false (postfork)) 2332 if (expect_false (postfork))
1954 loop_fork (EV_A); 2333 loop_fork (EV_A);
1961 ev_tstamp waittime = 0.; 2340 ev_tstamp waittime = 0.;
1962 ev_tstamp sleeptime = 0.; 2341 ev_tstamp sleeptime = 0.;
1963 2342
1964 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2343 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1965 { 2344 {
2345 /* remember old timestamp for io_blocktime calculation */
2346 ev_tstamp prev_mn_now = mn_now;
2347
1966 /* update time to cancel out callback processing overhead */ 2348 /* update time to cancel out callback processing overhead */
1967 time_update (EV_A_ 1e100); 2349 time_update (EV_A_ 1e100);
1968 2350
1969 waittime = MAX_BLOCKTIME; 2351 waittime = MAX_BLOCKTIME;
1970 2352
1980 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2362 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1981 if (waittime > to) waittime = to; 2363 if (waittime > to) waittime = to;
1982 } 2364 }
1983#endif 2365#endif
1984 2366
2367 /* don't let timeouts decrease the waittime below timeout_blocktime */
1985 if (expect_false (waittime < timeout_blocktime)) 2368 if (expect_false (waittime < timeout_blocktime))
1986 waittime = timeout_blocktime; 2369 waittime = timeout_blocktime;
1987 2370
1988 sleeptime = waittime - backend_fudge; 2371 /* extra check because io_blocktime is commonly 0 */
1989
1990 if (expect_true (sleeptime > io_blocktime)) 2372 if (expect_false (io_blocktime))
1991 sleeptime = io_blocktime;
1992
1993 if (sleeptime)
1994 { 2373 {
2374 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2375
2376 if (sleeptime > waittime - backend_fudge)
2377 sleeptime = waittime - backend_fudge;
2378
2379 if (expect_true (sleeptime > 0.))
2380 {
1995 ev_sleep (sleeptime); 2381 ev_sleep (sleeptime);
1996 waittime -= sleeptime; 2382 waittime -= sleeptime;
2383 }
1997 } 2384 }
1998 } 2385 }
1999 2386
2387#if EV_FEATURE_API
2000 ++loop_count; 2388 ++loop_count;
2389#endif
2390 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2001 backend_poll (EV_A_ waittime); 2391 backend_poll (EV_A_ waittime);
2392 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2002 2393
2003 /* update ev_rt_now, do magic */ 2394 /* update ev_rt_now, do magic */
2004 time_update (EV_A_ waittime + sleeptime); 2395 time_update (EV_A_ waittime + sleeptime);
2005 } 2396 }
2006 2397
2013#if EV_IDLE_ENABLE 2404#if EV_IDLE_ENABLE
2014 /* queue idle watchers unless other events are pending */ 2405 /* queue idle watchers unless other events are pending */
2015 idle_reify (EV_A); 2406 idle_reify (EV_A);
2016#endif 2407#endif
2017 2408
2409#if EV_CHECK_ENABLE
2018 /* queue check watchers, to be executed first */ 2410 /* queue check watchers, to be executed first */
2019 if (expect_false (checkcnt)) 2411 if (expect_false (checkcnt))
2020 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2412 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2413#endif
2021 2414
2022 call_pending (EV_A); 2415 EV_INVOKE_PENDING;
2023 } 2416 }
2024 while (expect_true ( 2417 while (expect_true (
2025 activecnt 2418 activecnt
2026 && !loop_done 2419 && !loop_done
2027 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2420 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2028 )); 2421 ));
2029 2422
2030 if (loop_done == EVUNLOOP_ONE) 2423 if (loop_done == EVUNLOOP_ONE)
2031 loop_done = EVUNLOOP_CANCEL; 2424 loop_done = EVUNLOOP_CANCEL;
2425
2426#if EV_FEATURE_API
2427 --loop_depth;
2428#endif
2032} 2429}
2033 2430
2034void 2431void
2035ev_unloop (EV_P_ int how) 2432ev_unloop (EV_P_ int how)
2036{ 2433{
2037 loop_done = how; 2434 loop_done = how;
2038} 2435}
2039 2436
2437void
2438ev_ref (EV_P)
2439{
2440 ++activecnt;
2441}
2442
2443void
2444ev_unref (EV_P)
2445{
2446 --activecnt;
2447}
2448
2449void
2450ev_now_update (EV_P)
2451{
2452 time_update (EV_A_ 1e100);
2453}
2454
2455void
2456ev_suspend (EV_P)
2457{
2458 ev_now_update (EV_A);
2459}
2460
2461void
2462ev_resume (EV_P)
2463{
2464 ev_tstamp mn_prev = mn_now;
2465
2466 ev_now_update (EV_A);
2467 timers_reschedule (EV_A_ mn_now - mn_prev);
2468#if EV_PERIODIC_ENABLE
2469 /* TODO: really do this? */
2470 periodics_reschedule (EV_A);
2471#endif
2472}
2473
2040/*****************************************************************************/ 2474/*****************************************************************************/
2475/* singly-linked list management, used when the expected list length is short */
2041 2476
2042void inline_size 2477inline_size void
2043wlist_add (WL *head, WL elem) 2478wlist_add (WL *head, WL elem)
2044{ 2479{
2045 elem->next = *head; 2480 elem->next = *head;
2046 *head = elem; 2481 *head = elem;
2047} 2482}
2048 2483
2049void inline_size 2484inline_size void
2050wlist_del (WL *head, WL elem) 2485wlist_del (WL *head, WL elem)
2051{ 2486{
2052 while (*head) 2487 while (*head)
2053 { 2488 {
2054 if (*head == elem) 2489 if (expect_true (*head == elem))
2055 { 2490 {
2056 *head = elem->next; 2491 *head = elem->next;
2057 return; 2492 break;
2058 } 2493 }
2059 2494
2060 head = &(*head)->next; 2495 head = &(*head)->next;
2061 } 2496 }
2062} 2497}
2063 2498
2064void inline_speed 2499/* internal, faster, version of ev_clear_pending */
2500inline_speed void
2065clear_pending (EV_P_ W w) 2501clear_pending (EV_P_ W w)
2066{ 2502{
2067 if (w->pending) 2503 if (w->pending)
2068 { 2504 {
2069 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2505 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2070 w->pending = 0; 2506 w->pending = 0;
2071 } 2507 }
2072} 2508}
2073 2509
2074int 2510int
2078 int pending = w_->pending; 2514 int pending = w_->pending;
2079 2515
2080 if (expect_true (pending)) 2516 if (expect_true (pending))
2081 { 2517 {
2082 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2518 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2519 p->w = (W)&pending_w;
2083 w_->pending = 0; 2520 w_->pending = 0;
2084 p->w = 0;
2085 return p->events; 2521 return p->events;
2086 } 2522 }
2087 else 2523 else
2088 return 0; 2524 return 0;
2089} 2525}
2090 2526
2091void inline_size 2527inline_size void
2092pri_adjust (EV_P_ W w) 2528pri_adjust (EV_P_ W w)
2093{ 2529{
2094 int pri = w->priority; 2530 int pri = ev_priority (w);
2095 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2531 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2096 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2532 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2097 w->priority = pri; 2533 ev_set_priority (w, pri);
2098} 2534}
2099 2535
2100void inline_speed 2536inline_speed void
2101ev_start (EV_P_ W w, int active) 2537ev_start (EV_P_ W w, int active)
2102{ 2538{
2103 pri_adjust (EV_A_ w); 2539 pri_adjust (EV_A_ w);
2104 w->active = active; 2540 w->active = active;
2105 ev_ref (EV_A); 2541 ev_ref (EV_A);
2106} 2542}
2107 2543
2108void inline_size 2544inline_size void
2109ev_stop (EV_P_ W w) 2545ev_stop (EV_P_ W w)
2110{ 2546{
2111 ev_unref (EV_A); 2547 ev_unref (EV_A);
2112 w->active = 0; 2548 w->active = 0;
2113} 2549}
2120 int fd = w->fd; 2556 int fd = w->fd;
2121 2557
2122 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
2123 return; 2559 return;
2124 2560
2125 assert (("ev_io_start called with negative fd", fd >= 0)); 2561 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2126 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2562 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2127 2563
2128 EV_FREQUENT_CHECK; 2564 EV_FREQUENT_CHECK;
2129 2565
2130 ev_start (EV_A_ (W)w, 1); 2566 ev_start (EV_A_ (W)w, 1);
2131 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2567 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2132 wlist_add (&anfds[fd].head, (WL)w); 2568 wlist_add (&anfds[fd].head, (WL)w);
2133 2569
2134 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2570 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2135 w->events &= ~EV_IOFDSET; 2571 w->events &= ~EV__IOFDSET;
2136 2572
2137 EV_FREQUENT_CHECK; 2573 EV_FREQUENT_CHECK;
2138} 2574}
2139 2575
2140void noinline 2576void noinline
2142{ 2578{
2143 clear_pending (EV_A_ (W)w); 2579 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2580 if (expect_false (!ev_is_active (w)))
2145 return; 2581 return;
2146 2582
2147 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2583 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2148 2584
2149 EV_FREQUENT_CHECK; 2585 EV_FREQUENT_CHECK;
2150 2586
2151 wlist_del (&anfds[w->fd].head, (WL)w); 2587 wlist_del (&anfds[w->fd].head, (WL)w);
2152 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
2162 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
2163 return; 2599 return;
2164 2600
2165 ev_at (w) += mn_now; 2601 ev_at (w) += mn_now;
2166 2602
2167 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2603 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2168 2604
2169 EV_FREQUENT_CHECK; 2605 EV_FREQUENT_CHECK;
2170 2606
2171 ++timercnt; 2607 ++timercnt;
2172 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2608 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2175 ANHE_at_cache (timers [ev_active (w)]); 2611 ANHE_at_cache (timers [ev_active (w)]);
2176 upheap (timers, ev_active (w)); 2612 upheap (timers, ev_active (w));
2177 2613
2178 EV_FREQUENT_CHECK; 2614 EV_FREQUENT_CHECK;
2179 2615
2180 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2616 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2181} 2617}
2182 2618
2183void noinline 2619void noinline
2184ev_timer_stop (EV_P_ ev_timer *w) 2620ev_timer_stop (EV_P_ ev_timer *w)
2185{ 2621{
2190 EV_FREQUENT_CHECK; 2626 EV_FREQUENT_CHECK;
2191 2627
2192 { 2628 {
2193 int active = ev_active (w); 2629 int active = ev_active (w);
2194 2630
2195 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2631 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2196 2632
2197 --timercnt; 2633 --timercnt;
2198 2634
2199 if (expect_true (active < timercnt + HEAP0)) 2635 if (expect_true (active < timercnt + HEAP0))
2200 { 2636 {
2201 timers [active] = timers [timercnt + HEAP0]; 2637 timers [active] = timers [timercnt + HEAP0];
2202 adjustheap (timers, timercnt, active); 2638 adjustheap (timers, timercnt, active);
2203 } 2639 }
2204 } 2640 }
2205 2641
2206 EV_FREQUENT_CHECK;
2207
2208 ev_at (w) -= mn_now; 2642 ev_at (w) -= mn_now;
2209 2643
2210 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
2645
2646 EV_FREQUENT_CHECK;
2211} 2647}
2212 2648
2213void noinline 2649void noinline
2214ev_timer_again (EV_P_ ev_timer *w) 2650ev_timer_again (EV_P_ ev_timer *w)
2215{ 2651{
2233 } 2669 }
2234 2670
2235 EV_FREQUENT_CHECK; 2671 EV_FREQUENT_CHECK;
2236} 2672}
2237 2673
2674ev_tstamp
2675ev_timer_remaining (EV_P_ ev_timer *w)
2676{
2677 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2678}
2679
2238#if EV_PERIODIC_ENABLE 2680#if EV_PERIODIC_ENABLE
2239void noinline 2681void noinline
2240ev_periodic_start (EV_P_ ev_periodic *w) 2682ev_periodic_start (EV_P_ ev_periodic *w)
2241{ 2683{
2242 if (expect_false (ev_is_active (w))) 2684 if (expect_false (ev_is_active (w)))
2244 2686
2245 if (w->reschedule_cb) 2687 if (w->reschedule_cb)
2246 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2247 else if (w->interval) 2689 else if (w->interval)
2248 { 2690 {
2249 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2691 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2250 /* this formula differs from the one in periodic_reify because we do not always round up */ 2692 /* this formula differs from the one in periodic_reify because we do not always round up */
2251 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2693 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2252 } 2694 }
2253 else 2695 else
2254 ev_at (w) = w->offset; 2696 ev_at (w) = w->offset;
2262 ANHE_at_cache (periodics [ev_active (w)]); 2704 ANHE_at_cache (periodics [ev_active (w)]);
2263 upheap (periodics, ev_active (w)); 2705 upheap (periodics, ev_active (w));
2264 2706
2265 EV_FREQUENT_CHECK; 2707 EV_FREQUENT_CHECK;
2266 2708
2267 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2709 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2268} 2710}
2269 2711
2270void noinline 2712void noinline
2271ev_periodic_stop (EV_P_ ev_periodic *w) 2713ev_periodic_stop (EV_P_ ev_periodic *w)
2272{ 2714{
2277 EV_FREQUENT_CHECK; 2719 EV_FREQUENT_CHECK;
2278 2720
2279 { 2721 {
2280 int active = ev_active (w); 2722 int active = ev_active (w);
2281 2723
2282 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2724 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2283 2725
2284 --periodiccnt; 2726 --periodiccnt;
2285 2727
2286 if (expect_true (active < periodiccnt + HEAP0)) 2728 if (expect_true (active < periodiccnt + HEAP0))
2287 { 2729 {
2288 periodics [active] = periodics [periodiccnt + HEAP0]; 2730 periodics [active] = periodics [periodiccnt + HEAP0];
2289 adjustheap (periodics, periodiccnt, active); 2731 adjustheap (periodics, periodiccnt, active);
2290 } 2732 }
2291 } 2733 }
2292 2734
2293 EV_FREQUENT_CHECK;
2294
2295 ev_stop (EV_A_ (W)w); 2735 ev_stop (EV_A_ (W)w);
2736
2737 EV_FREQUENT_CHECK;
2296} 2738}
2297 2739
2298void noinline 2740void noinline
2299ev_periodic_again (EV_P_ ev_periodic *w) 2741ev_periodic_again (EV_P_ ev_periodic *w)
2300{ 2742{
2306 2748
2307#ifndef SA_RESTART 2749#ifndef SA_RESTART
2308# define SA_RESTART 0 2750# define SA_RESTART 0
2309#endif 2751#endif
2310 2752
2753#if EV_SIGNAL_ENABLE
2754
2311void noinline 2755void noinline
2312ev_signal_start (EV_P_ ev_signal *w) 2756ev_signal_start (EV_P_ ev_signal *w)
2313{ 2757{
2314#if EV_MULTIPLICITY
2315 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2316#endif
2317 if (expect_false (ev_is_active (w))) 2758 if (expect_false (ev_is_active (w)))
2318 return; 2759 return;
2319 2760
2320 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2761 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2321 2762
2322 evpipe_init (EV_A); 2763#if EV_MULTIPLICITY
2764 assert (("libev: a signal must not be attached to two different loops",
2765 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2323 2766
2324 EV_FREQUENT_CHECK; 2767 signals [w->signum - 1].loop = EV_A;
2768#endif
2325 2769
2770 EV_FREQUENT_CHECK;
2771
2772#if EV_USE_SIGNALFD
2773 if (sigfd == -2)
2326 { 2774 {
2327#ifndef _WIN32 2775 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2328 sigset_t full, prev; 2776 if (sigfd < 0 && errno == EINVAL)
2329 sigfillset (&full); 2777 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2330 sigprocmask (SIG_SETMASK, &full, &prev);
2331#endif
2332 2778
2333 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2779 if (sigfd >= 0)
2780 {
2781 fd_intern (sigfd); /* doing it twice will not hurt */
2334 2782
2335#ifndef _WIN32 2783 sigemptyset (&sigfd_set);
2336 sigprocmask (SIG_SETMASK, &prev, 0); 2784
2337#endif 2785 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2786 ev_set_priority (&sigfd_w, EV_MAXPRI);
2787 ev_io_start (EV_A_ &sigfd_w);
2788 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2789 }
2338 } 2790 }
2791
2792 if (sigfd >= 0)
2793 {
2794 /* TODO: check .head */
2795 sigaddset (&sigfd_set, w->signum);
2796 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2797
2798 signalfd (sigfd, &sigfd_set, 0);
2799 }
2800#endif
2339 2801
2340 ev_start (EV_A_ (W)w, 1); 2802 ev_start (EV_A_ (W)w, 1);
2341 wlist_add (&signals [w->signum - 1].head, (WL)w); 2803 wlist_add (&signals [w->signum - 1].head, (WL)w);
2342 2804
2343 if (!((WL)w)->next) 2805 if (!((WL)w)->next)
2806# if EV_USE_SIGNALFD
2807 if (sigfd < 0) /*TODO*/
2808# endif
2344 { 2809 {
2345#if _WIN32 2810# ifdef _WIN32
2811 evpipe_init (EV_A);
2812
2346 signal (w->signum, ev_sighandler); 2813 signal (w->signum, ev_sighandler);
2347#else 2814# else
2348 struct sigaction sa; 2815 struct sigaction sa;
2816
2817 evpipe_init (EV_A);
2818
2349 sa.sa_handler = ev_sighandler; 2819 sa.sa_handler = ev_sighandler;
2350 sigfillset (&sa.sa_mask); 2820 sigfillset (&sa.sa_mask);
2351 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2821 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2352 sigaction (w->signum, &sa, 0); 2822 sigaction (w->signum, &sa, 0);
2823
2824 sigemptyset (&sa.sa_mask);
2825 sigaddset (&sa.sa_mask, w->signum);
2826 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2353#endif 2827#endif
2354 } 2828 }
2355 2829
2356 EV_FREQUENT_CHECK; 2830 EV_FREQUENT_CHECK;
2357} 2831}
2358 2832
2359void noinline 2833void noinline
2367 2841
2368 wlist_del (&signals [w->signum - 1].head, (WL)w); 2842 wlist_del (&signals [w->signum - 1].head, (WL)w);
2369 ev_stop (EV_A_ (W)w); 2843 ev_stop (EV_A_ (W)w);
2370 2844
2371 if (!signals [w->signum - 1].head) 2845 if (!signals [w->signum - 1].head)
2846 {
2847#if EV_MULTIPLICITY
2848 signals [w->signum - 1].loop = 0; /* unattach from signal */
2849#endif
2850#if EV_USE_SIGNALFD
2851 if (sigfd >= 0)
2852 {
2853 sigset_t ss;
2854
2855 sigemptyset (&ss);
2856 sigaddset (&ss, w->signum);
2857 sigdelset (&sigfd_set, w->signum);
2858
2859 signalfd (sigfd, &sigfd_set, 0);
2860 sigprocmask (SIG_UNBLOCK, &ss, 0);
2861 }
2862 else
2863#endif
2372 signal (w->signum, SIG_DFL); 2864 signal (w->signum, SIG_DFL);
2865 }
2373 2866
2374 EV_FREQUENT_CHECK; 2867 EV_FREQUENT_CHECK;
2375} 2868}
2869
2870#endif
2871
2872#if EV_CHILD_ENABLE
2376 2873
2377void 2874void
2378ev_child_start (EV_P_ ev_child *w) 2875ev_child_start (EV_P_ ev_child *w)
2379{ 2876{
2380#if EV_MULTIPLICITY 2877#if EV_MULTIPLICITY
2381 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2382#endif 2879#endif
2383 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2384 return; 2881 return;
2385 2882
2386 EV_FREQUENT_CHECK; 2883 EV_FREQUENT_CHECK;
2387 2884
2388 ev_start (EV_A_ (W)w, 1); 2885 ev_start (EV_A_ (W)w, 1);
2389 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2390 2887
2391 EV_FREQUENT_CHECK; 2888 EV_FREQUENT_CHECK;
2392} 2889}
2393 2890
2394void 2891void
2398 if (expect_false (!ev_is_active (w))) 2895 if (expect_false (!ev_is_active (w)))
2399 return; 2896 return;
2400 2897
2401 EV_FREQUENT_CHECK; 2898 EV_FREQUENT_CHECK;
2402 2899
2403 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2404 ev_stop (EV_A_ (W)w); 2901 ev_stop (EV_A_ (W)w);
2405 2902
2406 EV_FREQUENT_CHECK; 2903 EV_FREQUENT_CHECK;
2407} 2904}
2905
2906#endif
2408 2907
2409#if EV_STAT_ENABLE 2908#if EV_STAT_ENABLE
2410 2909
2411# ifdef _WIN32 2910# ifdef _WIN32
2412# undef lstat 2911# undef lstat
2413# define lstat(a,b) _stati64 (a,b) 2912# define lstat(a,b) _stati64 (a,b)
2414# endif 2913# endif
2415 2914
2416#define DEF_STAT_INTERVAL 5.0074891 2915#define DEF_STAT_INTERVAL 5.0074891
2916#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2417#define MIN_STAT_INTERVAL 0.1074891 2917#define MIN_STAT_INTERVAL 0.1074891
2418 2918
2419static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2919static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2420 2920
2421#if EV_USE_INOTIFY 2921#if EV_USE_INOTIFY
2422# define EV_INOTIFY_BUFSIZE 8192 2922
2923/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2924# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2423 2925
2424static void noinline 2926static void noinline
2425infy_add (EV_P_ ev_stat *w) 2927infy_add (EV_P_ ev_stat *w)
2426{ 2928{
2427 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2929 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2428 2930
2429 if (w->wd < 0) 2931 if (w->wd >= 0)
2932 {
2933 struct statfs sfs;
2934
2935 /* now local changes will be tracked by inotify, but remote changes won't */
2936 /* unless the filesystem is known to be local, we therefore still poll */
2937 /* also do poll on <2.6.25, but with normal frequency */
2938
2939 if (!fs_2625)
2940 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2941 else if (!statfs (w->path, &sfs)
2942 && (sfs.f_type == 0x1373 /* devfs */
2943 || sfs.f_type == 0xEF53 /* ext2/3 */
2944 || sfs.f_type == 0x3153464a /* jfs */
2945 || sfs.f_type == 0x52654973 /* reiser3 */
2946 || sfs.f_type == 0x01021994 /* tempfs */
2947 || sfs.f_type == 0x58465342 /* xfs */))
2948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2949 else
2950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2430 { 2951 }
2431 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2952 else
2953 {
2954 /* can't use inotify, continue to stat */
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2432 2956
2433 /* monitor some parent directory for speedup hints */ 2957 /* if path is not there, monitor some parent directory for speedup hints */
2434 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2435 /* but an efficiency issue only */ 2959 /* but an efficiency issue only */
2436 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2437 { 2961 {
2438 char path [4096]; 2962 char path [4096];
2439 strcpy (path, w->path); 2963 strcpy (path, w->path);
2443 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2444 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2445 2969
2446 char *pend = strrchr (path, '/'); 2970 char *pend = strrchr (path, '/');
2447 2971
2448 if (!pend) 2972 if (!pend || pend == path)
2449 break; /* whoops, no '/', complain to your admin */ 2973 break;
2450 2974
2451 *pend = 0; 2975 *pend = 0;
2452 w->wd = inotify_add_watch (fs_fd, path, mask); 2976 w->wd = inotify_add_watch (fs_fd, path, mask);
2453 } 2977 }
2454 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2455 } 2979 }
2456 } 2980 }
2457 else
2458 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2459 2981
2460 if (w->wd >= 0) 2982 if (w->wd >= 0)
2461 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2984
2985 /* now re-arm timer, if required */
2986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2987 ev_timer_again (EV_A_ &w->timer);
2988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2462} 2989}
2463 2990
2464static void noinline 2991static void noinline
2465infy_del (EV_P_ ev_stat *w) 2992infy_del (EV_P_ ev_stat *w)
2466{ 2993{
2469 2996
2470 if (wd < 0) 2997 if (wd < 0)
2471 return; 2998 return;
2472 2999
2473 w->wd = -2; 3000 w->wd = -2;
2474 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2475 wlist_del (&fs_hash [slot].head, (WL)w); 3002 wlist_del (&fs_hash [slot].head, (WL)w);
2476 3003
2477 /* remove this watcher, if others are watching it, they will rearm */ 3004 /* remove this watcher, if others are watching it, they will rearm */
2478 inotify_rm_watch (fs_fd, wd); 3005 inotify_rm_watch (fs_fd, wd);
2479} 3006}
2481static void noinline 3008static void noinline
2482infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3009infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2483{ 3010{
2484 if (slot < 0) 3011 if (slot < 0)
2485 /* overflow, need to check for all hash slots */ 3012 /* overflow, need to check for all hash slots */
2486 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2487 infy_wd (EV_A_ slot, wd, ev); 3014 infy_wd (EV_A_ slot, wd, ev);
2488 else 3015 else
2489 { 3016 {
2490 WL w_; 3017 WL w_;
2491 3018
2492 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2493 { 3020 {
2494 ev_stat *w = (ev_stat *)w_; 3021 ev_stat *w = (ev_stat *)w_;
2495 w_ = w_->next; /* lets us remove this watcher and all before it */ 3022 w_ = w_->next; /* lets us remove this watcher and all before it */
2496 3023
2497 if (w->wd == wd || wd == -1) 3024 if (w->wd == wd || wd == -1)
2498 { 3025 {
2499 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2500 { 3027 {
3028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2501 w->wd = -1; 3029 w->wd = -1;
2502 infy_add (EV_A_ w); /* re-add, no matter what */ 3030 infy_add (EV_A_ w); /* re-add, no matter what */
2503 } 3031 }
2504 3032
2505 stat_timer_cb (EV_A_ &w->timer, 0); 3033 stat_timer_cb (EV_A_ &w->timer, 0);
2510 3038
2511static void 3039static void
2512infy_cb (EV_P_ ev_io *w, int revents) 3040infy_cb (EV_P_ ev_io *w, int revents)
2513{ 3041{
2514 char buf [EV_INOTIFY_BUFSIZE]; 3042 char buf [EV_INOTIFY_BUFSIZE];
2515 struct inotify_event *ev = (struct inotify_event *)buf;
2516 int ofs; 3043 int ofs;
2517 int len = read (fs_fd, buf, sizeof (buf)); 3044 int len = read (fs_fd, buf, sizeof (buf));
2518 3045
2519 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3046 for (ofs = 0; ofs < len; )
3047 {
3048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2520 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3050 ofs += sizeof (struct inotify_event) + ev->len;
3051 }
2521} 3052}
2522 3053
2523void inline_size 3054inline_size unsigned int
2524infy_init (EV_P) 3055ev_linux_version (void)
2525{ 3056{
2526 if (fs_fd != -2) 3057 struct utsname buf;
3058 unsigned int v;
3059 int i;
3060 char *p = buf.release;
3061
3062 if (uname (&buf))
2527 return; 3063 return 0;
2528 3064
3065 for (i = 3+1; --i; )
3066 {
3067 unsigned int c = 0;
3068
3069 for (;;)
3070 {
3071 if (*p >= '0' && *p <= '9')
3072 c = c * 10 + *p++ - '0';
3073 else
3074 {
3075 p += *p == '.';
3076 break;
3077 }
3078 }
3079
3080 v = (v << 8) | c;
3081 }
3082
3083 return v;
3084}
3085
3086inline_size void
3087ev_check_2625 (EV_P)
3088{
2529 /* kernels < 2.6.25 are borked 3089 /* kernels < 2.6.25 are borked
2530 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3090 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2531 */ 3091 */
2532 { 3092 if (ev_linux_version () < 0x020619)
2533 struct utsname buf; 3093 return;
2534 int major, minor, micro;
2535 3094
3095 fs_2625 = 1;
3096}
3097
3098inline_size int
3099infy_newfd (void)
3100{
3101#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3102 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3103 if (fd >= 0)
3104 return fd;
3105#endif
3106 return inotify_init ();
3107}
3108
3109inline_size void
3110infy_init (EV_P)
3111{
3112 if (fs_fd != -2)
3113 return;
3114
2536 fs_fd = -1; 3115 fs_fd = -1;
2537 3116
2538 if (uname (&buf)) 3117 ev_check_2625 (EV_A);
2539 return;
2540 3118
2541 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2542 return;
2543
2544 if (major < 2
2545 || (major == 2 && minor < 6)
2546 || (major == 2 && minor == 6 && micro < 25))
2547 return;
2548 }
2549
2550 fs_fd = inotify_init (); 3119 fs_fd = infy_newfd ();
2551 3120
2552 if (fs_fd >= 0) 3121 if (fs_fd >= 0)
2553 { 3122 {
3123 fd_intern (fs_fd);
2554 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3124 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2555 ev_set_priority (&fs_w, EV_MAXPRI); 3125 ev_set_priority (&fs_w, EV_MAXPRI);
2556 ev_io_start (EV_A_ &fs_w); 3126 ev_io_start (EV_A_ &fs_w);
3127 ev_unref (EV_A);
2557 } 3128 }
2558} 3129}
2559 3130
2560void inline_size 3131inline_size void
2561infy_fork (EV_P) 3132infy_fork (EV_P)
2562{ 3133{
2563 int slot; 3134 int slot;
2564 3135
2565 if (fs_fd < 0) 3136 if (fs_fd < 0)
2566 return; 3137 return;
2567 3138
3139 ev_ref (EV_A);
3140 ev_io_stop (EV_A_ &fs_w);
2568 close (fs_fd); 3141 close (fs_fd);
2569 fs_fd = inotify_init (); 3142 fs_fd = infy_newfd ();
2570 3143
3144 if (fs_fd >= 0)
3145 {
3146 fd_intern (fs_fd);
3147 ev_io_set (&fs_w, fs_fd, EV_READ);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151
2571 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3152 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2572 { 3153 {
2573 WL w_ = fs_hash [slot].head; 3154 WL w_ = fs_hash [slot].head;
2574 fs_hash [slot].head = 0; 3155 fs_hash [slot].head = 0;
2575 3156
2576 while (w_) 3157 while (w_)
2581 w->wd = -1; 3162 w->wd = -1;
2582 3163
2583 if (fs_fd >= 0) 3164 if (fs_fd >= 0)
2584 infy_add (EV_A_ w); /* re-add, no matter what */ 3165 infy_add (EV_A_ w); /* re-add, no matter what */
2585 else 3166 else
3167 {
3168 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3169 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2586 ev_timer_start (EV_A_ &w->timer); 3170 ev_timer_again (EV_A_ &w->timer);
3171 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3172 }
2587 } 3173 }
2588 } 3174 }
2589} 3175}
2590 3176
2591#endif 3177#endif
2608static void noinline 3194static void noinline
2609stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3195stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2610{ 3196{
2611 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3197 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2612 3198
2613 /* we copy this here each the time so that */ 3199 ev_statdata prev = w->attr;
2614 /* prev has the old value when the callback gets invoked */
2615 w->prev = w->attr;
2616 ev_stat_stat (EV_A_ w); 3200 ev_stat_stat (EV_A_ w);
2617 3201
2618 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3202 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2619 if ( 3203 if (
2620 w->prev.st_dev != w->attr.st_dev 3204 prev.st_dev != w->attr.st_dev
2621 || w->prev.st_ino != w->attr.st_ino 3205 || prev.st_ino != w->attr.st_ino
2622 || w->prev.st_mode != w->attr.st_mode 3206 || prev.st_mode != w->attr.st_mode
2623 || w->prev.st_nlink != w->attr.st_nlink 3207 || prev.st_nlink != w->attr.st_nlink
2624 || w->prev.st_uid != w->attr.st_uid 3208 || prev.st_uid != w->attr.st_uid
2625 || w->prev.st_gid != w->attr.st_gid 3209 || prev.st_gid != w->attr.st_gid
2626 || w->prev.st_rdev != w->attr.st_rdev 3210 || prev.st_rdev != w->attr.st_rdev
2627 || w->prev.st_size != w->attr.st_size 3211 || prev.st_size != w->attr.st_size
2628 || w->prev.st_atime != w->attr.st_atime 3212 || prev.st_atime != w->attr.st_atime
2629 || w->prev.st_mtime != w->attr.st_mtime 3213 || prev.st_mtime != w->attr.st_mtime
2630 || w->prev.st_ctime != w->attr.st_ctime 3214 || prev.st_ctime != w->attr.st_ctime
2631 ) { 3215 ) {
3216 /* we only update w->prev on actual differences */
3217 /* in case we test more often than invoke the callback, */
3218 /* to ensure that prev is always different to attr */
3219 w->prev = prev;
3220
2632 #if EV_USE_INOTIFY 3221 #if EV_USE_INOTIFY
2633 if (fs_fd >= 0) 3222 if (fs_fd >= 0)
2634 { 3223 {
2635 infy_del (EV_A_ w); 3224 infy_del (EV_A_ w);
2636 infy_add (EV_A_ w); 3225 infy_add (EV_A_ w);
2646ev_stat_start (EV_P_ ev_stat *w) 3235ev_stat_start (EV_P_ ev_stat *w)
2647{ 3236{
2648 if (expect_false (ev_is_active (w))) 3237 if (expect_false (ev_is_active (w)))
2649 return; 3238 return;
2650 3239
2651 /* since we use memcmp, we need to clear any padding data etc. */
2652 memset (&w->prev, 0, sizeof (ev_statdata));
2653 memset (&w->attr, 0, sizeof (ev_statdata));
2654
2655 ev_stat_stat (EV_A_ w); 3240 ev_stat_stat (EV_A_ w);
2656 3241
3242 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2657 if (w->interval < MIN_STAT_INTERVAL) 3243 w->interval = MIN_STAT_INTERVAL;
2658 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2659 3244
2660 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3245 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2661 ev_set_priority (&w->timer, ev_priority (w)); 3246 ev_set_priority (&w->timer, ev_priority (w));
2662 3247
2663#if EV_USE_INOTIFY 3248#if EV_USE_INOTIFY
2664 infy_init (EV_A); 3249 infy_init (EV_A);
2665 3250
2666 if (fs_fd >= 0) 3251 if (fs_fd >= 0)
2667 infy_add (EV_A_ w); 3252 infy_add (EV_A_ w);
2668 else 3253 else
2669#endif 3254#endif
3255 {
2670 ev_timer_start (EV_A_ &w->timer); 3256 ev_timer_again (EV_A_ &w->timer);
3257 ev_unref (EV_A);
3258 }
2671 3259
2672 ev_start (EV_A_ (W)w, 1); 3260 ev_start (EV_A_ (W)w, 1);
2673 3261
2674 EV_FREQUENT_CHECK; 3262 EV_FREQUENT_CHECK;
2675} 3263}
2684 EV_FREQUENT_CHECK; 3272 EV_FREQUENT_CHECK;
2685 3273
2686#if EV_USE_INOTIFY 3274#if EV_USE_INOTIFY
2687 infy_del (EV_A_ w); 3275 infy_del (EV_A_ w);
2688#endif 3276#endif
3277
3278 if (ev_is_active (&w->timer))
3279 {
3280 ev_ref (EV_A);
2689 ev_timer_stop (EV_A_ &w->timer); 3281 ev_timer_stop (EV_A_ &w->timer);
3282 }
2690 3283
2691 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
2692 3285
2693 EV_FREQUENT_CHECK; 3286 EV_FREQUENT_CHECK;
2694} 3287}
2739 3332
2740 EV_FREQUENT_CHECK; 3333 EV_FREQUENT_CHECK;
2741} 3334}
2742#endif 3335#endif
2743 3336
3337#if EV_PREPARE_ENABLE
2744void 3338void
2745ev_prepare_start (EV_P_ ev_prepare *w) 3339ev_prepare_start (EV_P_ ev_prepare *w)
2746{ 3340{
2747 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2748 return; 3342 return;
2774 3368
2775 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
2776 3370
2777 EV_FREQUENT_CHECK; 3371 EV_FREQUENT_CHECK;
2778} 3372}
3373#endif
2779 3374
3375#if EV_CHECK_ENABLE
2780void 3376void
2781ev_check_start (EV_P_ ev_check *w) 3377ev_check_start (EV_P_ ev_check *w)
2782{ 3378{
2783 if (expect_false (ev_is_active (w))) 3379 if (expect_false (ev_is_active (w)))
2784 return; 3380 return;
2810 3406
2811 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
2812 3408
2813 EV_FREQUENT_CHECK; 3409 EV_FREQUENT_CHECK;
2814} 3410}
3411#endif
2815 3412
2816#if EV_EMBED_ENABLE 3413#if EV_EMBED_ENABLE
2817void noinline 3414void noinline
2818ev_embed_sweep (EV_P_ ev_embed *w) 3415ev_embed_sweep (EV_P_ ev_embed *w)
2819{ 3416{
2835embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3432embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2836{ 3433{
2837 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3434 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2838 3435
2839 { 3436 {
2840 struct ev_loop *loop = w->other; 3437 EV_P = w->other;
2841 3438
2842 while (fdchangecnt) 3439 while (fdchangecnt)
2843 { 3440 {
2844 fd_reify (EV_A); 3441 fd_reify (EV_A);
2845 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3442 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2850static void 3447static void
2851embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3448embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2852{ 3449{
2853 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3450 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2854 3451
3452 ev_embed_stop (EV_A_ w);
3453
2855 { 3454 {
2856 struct ev_loop *loop = w->other; 3455 EV_P = w->other;
2857 3456
2858 ev_loop_fork (EV_A); 3457 ev_loop_fork (EV_A);
3458 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2859 } 3459 }
3460
3461 ev_embed_start (EV_A_ w);
2860} 3462}
2861 3463
2862#if 0 3464#if 0
2863static void 3465static void
2864embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2872{ 3474{
2873 if (expect_false (ev_is_active (w))) 3475 if (expect_false (ev_is_active (w)))
2874 return; 3476 return;
2875 3477
2876 { 3478 {
2877 struct ev_loop *loop = w->other; 3479 EV_P = w->other;
2878 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3480 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2879 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2880 } 3482 }
2881 3483
2882 EV_FREQUENT_CHECK; 3484 EV_FREQUENT_CHECK;
2883 3485
2909 3511
2910 ev_io_stop (EV_A_ &w->io); 3512 ev_io_stop (EV_A_ &w->io);
2911 ev_prepare_stop (EV_A_ &w->prepare); 3513 ev_prepare_stop (EV_A_ &w->prepare);
2912 ev_fork_stop (EV_A_ &w->fork); 3514 ev_fork_stop (EV_A_ &w->fork);
2913 3515
3516 ev_stop (EV_A_ (W)w);
3517
2914 EV_FREQUENT_CHECK; 3518 EV_FREQUENT_CHECK;
2915} 3519}
2916#endif 3520#endif
2917 3521
2918#if EV_FORK_ENABLE 3522#if EV_FORK_ENABLE
2994 3598
2995void 3599void
2996ev_async_send (EV_P_ ev_async *w) 3600ev_async_send (EV_P_ ev_async *w)
2997{ 3601{
2998 w->sent = 1; 3602 w->sent = 1;
2999 evpipe_write (EV_A_ &gotasync); 3603 evpipe_write (EV_A_ &async_pending);
3000} 3604}
3001#endif 3605#endif
3002 3606
3003/*****************************************************************************/ 3607/*****************************************************************************/
3004 3608
3044{ 3648{
3045 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3046 3650
3047 if (expect_false (!once)) 3651 if (expect_false (!once))
3048 { 3652 {
3049 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3050 return; 3654 return;
3051 } 3655 }
3052 3656
3053 once->cb = cb; 3657 once->cb = cb;
3054 once->arg = arg; 3658 once->arg = arg;
3066 ev_timer_set (&once->to, timeout, 0.); 3670 ev_timer_set (&once->to, timeout, 0.);
3067 ev_timer_start (EV_A_ &once->to); 3671 ev_timer_start (EV_A_ &once->to);
3068 } 3672 }
3069} 3673}
3070 3674
3675/*****************************************************************************/
3676
3677#if EV_WALK_ENABLE
3678void
3679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3680{
3681 int i, j;
3682 ev_watcher_list *wl, *wn;
3683
3684 if (types & (EV_IO | EV_EMBED))
3685 for (i = 0; i < anfdmax; ++i)
3686 for (wl = anfds [i].head; wl; )
3687 {
3688 wn = wl->next;
3689
3690#if EV_EMBED_ENABLE
3691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3692 {
3693 if (types & EV_EMBED)
3694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3695 }
3696 else
3697#endif
3698#if EV_USE_INOTIFY
3699 if (ev_cb ((ev_io *)wl) == infy_cb)
3700 ;
3701 else
3702#endif
3703 if ((ev_io *)wl != &pipe_w)
3704 if (types & EV_IO)
3705 cb (EV_A_ EV_IO, wl);
3706
3707 wl = wn;
3708 }
3709
3710 if (types & (EV_TIMER | EV_STAT))
3711 for (i = timercnt + HEAP0; i-- > HEAP0; )
3712#if EV_STAT_ENABLE
3713 /*TODO: timer is not always active*/
3714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3715 {
3716 if (types & EV_STAT)
3717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3718 }
3719 else
3720#endif
3721 if (types & EV_TIMER)
3722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3723
3724#if EV_PERIODIC_ENABLE
3725 if (types & EV_PERIODIC)
3726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3728#endif
3729
3730#if EV_IDLE_ENABLE
3731 if (types & EV_IDLE)
3732 for (j = NUMPRI; i--; )
3733 for (i = idlecnt [j]; i--; )
3734 cb (EV_A_ EV_IDLE, idles [j][i]);
3735#endif
3736
3737#if EV_FORK_ENABLE
3738 if (types & EV_FORK)
3739 for (i = forkcnt; i--; )
3740 if (ev_cb (forks [i]) != embed_fork_cb)
3741 cb (EV_A_ EV_FORK, forks [i]);
3742#endif
3743
3744#if EV_ASYNC_ENABLE
3745 if (types & EV_ASYNC)
3746 for (i = asynccnt; i--; )
3747 cb (EV_A_ EV_ASYNC, asyncs [i]);
3748#endif
3749
3750#if EV_PREPARE_ENABLE
3751 if (types & EV_PREPARE)
3752 for (i = preparecnt; i--; )
3753# if EV_EMBED_ENABLE
3754 if (ev_cb (prepares [i]) != embed_prepare_cb)
3755# endif
3756 cb (EV_A_ EV_PREPARE, prepares [i]);
3757#endif
3758
3759#if EV_CHECK_ENABLE
3760 if (types & EV_CHECK)
3761 for (i = checkcnt; i--; )
3762 cb (EV_A_ EV_CHECK, checks [i]);
3763#endif
3764
3765#if EV_SIGNAL_ENABLE
3766 if (types & EV_SIGNAL)
3767 for (i = 0; i < EV_NSIG - 1; ++i)
3768 for (wl = signals [i].head; wl; )
3769 {
3770 wn = wl->next;
3771 cb (EV_A_ EV_SIGNAL, wl);
3772 wl = wn;
3773 }
3774#endif
3775
3776#if EV_CHILD_ENABLE
3777 if (types & EV_CHILD)
3778 for (i = (EV_PID_HASHSIZE); i--; )
3779 for (wl = childs [i]; wl; )
3780 {
3781 wn = wl->next;
3782 cb (EV_A_ EV_CHILD, wl);
3783 wl = wn;
3784 }
3785#endif
3786/* EV_STAT 0x00001000 /* stat data changed */
3787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3788}
3789#endif
3790
3071#if EV_MULTIPLICITY 3791#if EV_MULTIPLICITY
3072 #include "ev_wrap.h" 3792 #include "ev_wrap.h"
3073#endif 3793#endif
3074 3794
3075#ifdef __cplusplus 3795#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines