ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.83 by root, Fri Nov 9 21:48:23 2007 UTC vs.
Revision 1.343 by root, Fri Apr 2 21:03:46 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# if HAVE_NANOSLEEP
83# ifndef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
37# endif 89# endif
38 90
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
94# endif
95# else
96# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 97# define EV_USE_SELECT 0
41# endif 98# endif
42 99
43# if HAVE_POLL && HAVE_POLL_H 100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
44# define EV_USE_POLL 1 106# define EV_USE_POLL 0
107# endif
108
109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110# ifndef EV_USE_EPOLL
111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
45# endif 112# endif
46 113# else
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 114# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 115# define EV_USE_EPOLL 0
116# endif
117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
119# ifndef EV_USE_KQUEUE
120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
49# endif 121# endif
50 122# else
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 123# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 124# define EV_USE_KQUEUE 0
125# endif
126
127# if HAVE_PORT_H && HAVE_PORT_CREATE
128# ifndef EV_USE_PORT
129# define EV_USE_PORT EV_FEATURE_BACKENDS
53# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
134# endif
54 135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
55#endif 163#endif
56 164
57#include <math.h> 165#include <math.h>
58#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
59#include <fcntl.h> 168#include <fcntl.h>
60#include <stddef.h> 169#include <stddef.h>
61 170
62#include <stdio.h> 171#include <stdio.h>
63 172
64#include <assert.h> 173#include <assert.h>
65#include <errno.h> 174#include <errno.h>
66#include <sys/types.h> 175#include <sys/types.h>
67#include <time.h> 176#include <time.h>
177#include <limits.h>
68 178
69#include <signal.h> 179#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 180
131#ifdef EV_H 181#ifdef EV_H
132# include EV_H 182# include EV_H
133#else 183#else
134# include "ev.h" 184# include "ev.h"
135#endif 185#endif
136 186
187#ifndef _WIN32
188# include <sys/time.h>
189# include <sys/wait.h>
190# include <unistd.h>
191#else
192# include <io.h>
193# define WIN32_LEAN_AND_MEAN
194# include <windows.h>
195# ifndef EV_SELECT_IS_WINSOCKET
196# define EV_SELECT_IS_WINSOCKET 1
197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* this block tries to deduce configuration from header-defined symbols and defaults */
202
203/* try to deduce the maximum number of signals on this platform */
204#if defined (EV_NSIG)
205/* use what's provided */
206#elif defined (NSIG)
207# define EV_NSIG (NSIG)
208#elif defined(_NSIG)
209# define EV_NSIG (_NSIG)
210#elif defined (SIGMAX)
211# define EV_NSIG (SIGMAX+1)
212#elif defined (SIG_MAX)
213# define EV_NSIG (SIG_MAX+1)
214#elif defined (_SIG_MAX)
215# define EV_NSIG (_SIG_MAX+1)
216#elif defined (MAXSIG)
217# define EV_NSIG (MAXSIG+1)
218#elif defined (MAX_SIG)
219# define EV_NSIG (MAX_SIG+1)
220#elif defined (SIGARRAYSIZE)
221# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
222#elif defined (_sys_nsig)
223# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
224#else
225# error "unable to find value for NSIG, please report"
226/* to make it compile regardless, just remove the above line, */
227/* but consider reporting it, too! :) */
228# define EV_NSIG 65
229#endif
230
231#ifndef EV_USE_CLOCK_SYSCALL
232# if __linux && __GLIBC__ >= 2
233# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
234# else
235# define EV_USE_CLOCK_SYSCALL 0
236# endif
237#endif
238
239#ifndef EV_USE_MONOTONIC
240# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
241# define EV_USE_MONOTONIC EV_FEATURE_OS
242# else
243# define EV_USE_MONOTONIC 0
244# endif
245#endif
246
247#ifndef EV_USE_REALTIME
248# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
249#endif
250
251#ifndef EV_USE_NANOSLEEP
252# if _POSIX_C_SOURCE >= 199309L
253# define EV_USE_NANOSLEEP EV_FEATURE_OS
254# else
255# define EV_USE_NANOSLEEP 0
256# endif
257#endif
258
259#ifndef EV_USE_SELECT
260# define EV_USE_SELECT EV_FEATURE_BACKENDS
261#endif
262
263#ifndef EV_USE_POLL
264# ifdef _WIN32
265# define EV_USE_POLL 0
266# else
267# define EV_USE_POLL EV_FEATURE_BACKENDS
268# endif
269#endif
270
271#ifndef EV_USE_EPOLL
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
273# define EV_USE_EPOLL EV_FEATURE_BACKENDS
274# else
275# define EV_USE_EPOLL 0
276# endif
277#endif
278
279#ifndef EV_USE_KQUEUE
280# define EV_USE_KQUEUE 0
281#endif
282
283#ifndef EV_USE_PORT
284# define EV_USE_PORT 0
285#endif
286
287#ifndef EV_USE_INOTIFY
288# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
289# define EV_USE_INOTIFY EV_FEATURE_OS
290# else
291# define EV_USE_INOTIFY 0
292# endif
293#endif
294
295#ifndef EV_PID_HASHSIZE
296# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
297#endif
298
299#ifndef EV_INOTIFY_HASHSIZE
300# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
301#endif
302
303#ifndef EV_USE_EVENTFD
304# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
305# define EV_USE_EVENTFD EV_FEATURE_OS
306# else
307# define EV_USE_EVENTFD 0
308# endif
309#endif
310
311#ifndef EV_USE_SIGNALFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_SIGNALFD EV_FEATURE_OS
314# else
315# define EV_USE_SIGNALFD 0
316# endif
317#endif
318
319#if 0 /* debugging */
320# define EV_VERIFY 3
321# define EV_USE_4HEAP 1
322# define EV_HEAP_CACHE_AT 1
323#endif
324
325#ifndef EV_VERIFY
326# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
327#endif
328
329#ifndef EV_USE_4HEAP
330# define EV_USE_4HEAP EV_FEATURE_DATA
331#endif
332
333#ifndef EV_HEAP_CACHE_AT
334# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
335#endif
336
337/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
338/* which makes programs even slower. might work on other unices, too. */
339#if EV_USE_CLOCK_SYSCALL
340# include <syscall.h>
341# ifdef SYS_clock_gettime
342# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
343# undef EV_USE_MONOTONIC
344# define EV_USE_MONOTONIC 1
345# else
346# undef EV_USE_CLOCK_SYSCALL
347# define EV_USE_CLOCK_SYSCALL 0
348# endif
349#endif
350
351/* this block fixes any misconfiguration where we know we run into trouble otherwise */
352
353#ifdef _AIX
354/* AIX has a completely broken poll.h header */
355# undef EV_USE_POLL
356# define EV_USE_POLL 0
357#endif
358
359#ifndef CLOCK_MONOTONIC
360# undef EV_USE_MONOTONIC
361# define EV_USE_MONOTONIC 0
362#endif
363
364#ifndef CLOCK_REALTIME
365# undef EV_USE_REALTIME
366# define EV_USE_REALTIME 0
367#endif
368
369#if !EV_STAT_ENABLE
370# undef EV_USE_INOTIFY
371# define EV_USE_INOTIFY 0
372#endif
373
374#if !EV_USE_NANOSLEEP
375# ifndef _WIN32
376# include <sys/select.h>
377# endif
378#endif
379
380#if EV_USE_INOTIFY
381# include <sys/utsname.h>
382# include <sys/statfs.h>
383# include <sys/inotify.h>
384/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
385# ifndef IN_DONT_FOLLOW
386# undef EV_USE_INOTIFY
387# define EV_USE_INOTIFY 0
388# endif
389#endif
390
391#if EV_SELECT_IS_WINSOCKET
392# include <winsock.h>
393#endif
394
395#if EV_USE_EVENTFD
396/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
397# include <stdint.h>
398# ifndef EFD_NONBLOCK
399# define EFD_NONBLOCK O_NONBLOCK
400# endif
401# ifndef EFD_CLOEXEC
402# ifdef O_CLOEXEC
403# define EFD_CLOEXEC O_CLOEXEC
404# else
405# define EFD_CLOEXEC 02000000
406# endif
407# endif
408# ifdef __cplusplus
409extern "C" {
410# endif
411int (eventfd) (unsigned int initval, int flags);
412# ifdef __cplusplus
413}
414# endif
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430# ifdef __cplusplus
431extern "C" {
432# endif
433int signalfd (int fd, const sigset_t *mask, int flags);
434
435struct signalfd_siginfo
436{
437 uint32_t ssi_signo;
438 char pad[128 - sizeof (uint32_t)];
439};
440# ifdef __cplusplus
441}
442# endif
443#endif
444
445
446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
453
454/*
455 * This is used to avoid floating point rounding problems.
456 * It is added to ev_rt_now when scheduling periodics
457 * to ensure progress, time-wise, even when rounding
458 * errors are against us.
459 * This value is good at least till the year 4000.
460 * Better solutions welcome.
461 */
462#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
463
464#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
465#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
466
137#if __GNUC__ >= 3 467#if __GNUC__ >= 4
138# define expect(expr,value) __builtin_expect ((expr),(value)) 468# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 469# define noinline __attribute__ ((noinline))
140#else 470#else
141# define expect(expr,value) (expr) 471# define expect(expr,value) (expr)
142# define inline static 472# define noinline
473# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
474# define inline
475# endif
143#endif 476#endif
144 477
145#define expect_false(expr) expect ((expr) != 0, 0) 478#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 479#define expect_true(expr) expect ((expr) != 0, 1)
480#define inline_size static inline
147 481
482#if EV_FEATURE_CODE
483# define inline_speed static inline
484#else
485# define inline_speed static noinline
486#endif
487
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 488#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
489
490#if EV_MINPRI == EV_MAXPRI
491# define ABSPRI(w) (((W)w), 0)
492#else
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 493# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
494#endif
150 495
496#define EMPTY /* required for microsofts broken pseudo-c compiler */
497#define EMPTY2(a,b) /* used to suppress some warnings */
498
151typedef struct ev_watcher *W; 499typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 500typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 501typedef ev_watcher_time *WT;
154 502
503#define ev_active(w) ((W)(w))->active
504#define ev_at(w) ((WT)(w))->at
505
506#if EV_USE_REALTIME
507/* sig_atomic_t is used to avoid per-thread variables or locking but still */
508/* giving it a reasonably high chance of working on typical architetcures */
509static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
510#endif
511
512#if EV_USE_MONOTONIC
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 513static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
514#endif
156 515
516#ifndef EV_FD_TO_WIN32_HANDLE
517# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
518#endif
519#ifndef EV_WIN32_HANDLE_TO_FD
520# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
521#endif
522#ifndef EV_WIN32_CLOSE_FD
523# define EV_WIN32_CLOSE_FD(fd) close (fd)
524#endif
525
526#ifdef _WIN32
157#include "ev_win32.c" 527# include "ev_win32.c"
528#endif
158 529
159/*****************************************************************************/ 530/*****************************************************************************/
160 531
532#if EV_AVOID_STDIO
533static void noinline
534ev_printerr (const char *msg)
535{
536 write (STDERR_FILENO, msg, strlen (msg));
537}
538#endif
539
161static void (*syserr_cb)(const char *msg); 540static void (*syserr_cb)(const char *msg);
162 541
542void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 543ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 544{
165 syserr_cb = cb; 545 syserr_cb = cb;
166} 546}
167 547
168static void 548static void noinline
169syserr (const char *msg) 549ev_syserr (const char *msg)
170{ 550{
171 if (!msg) 551 if (!msg)
172 msg = "(libev) system error"; 552 msg = "(libev) system error";
173 553
174 if (syserr_cb) 554 if (syserr_cb)
175 syserr_cb (msg); 555 syserr_cb (msg);
176 else 556 else
177 { 557 {
558#if EV_AVOID_STDIO
559 const char *err = strerror (errno);
560
561 ev_printerr (msg);
562 ev_printerr (": ");
563 ev_printerr (err);
564 ev_printerr ("\n");
565#else
178 perror (msg); 566 perror (msg);
567#endif
179 abort (); 568 abort ();
180 } 569 }
181} 570}
182 571
572static void *
573ev_realloc_emul (void *ptr, long size)
574{
575#if __GLIBC__
576 return realloc (ptr, size);
577#else
578 /* some systems, notably openbsd and darwin, fail to properly
579 * implement realloc (x, 0) (as required by both ansi c-89 and
580 * the single unix specification, so work around them here.
581 */
582
583 if (size)
584 return realloc (ptr, size);
585
586 free (ptr);
587 return 0;
588#endif
589}
590
183static void *(*alloc)(void *ptr, long size); 591static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 592
593void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 594ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 595{
187 alloc = cb; 596 alloc = cb;
188} 597}
189 598
190static void * 599inline_speed void *
191ev_realloc (void *ptr, long size) 600ev_realloc (void *ptr, long size)
192{ 601{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 602 ptr = alloc (ptr, size);
194 603
195 if (!ptr && size) 604 if (!ptr && size)
196 { 605 {
606#if EV_AVOID_STDIO
607 ev_printerr ("libev: memory allocation failed, aborting.\n");
608#else
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 609 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
610#endif
198 abort (); 611 abort ();
199 } 612 }
200 613
201 return ptr; 614 return ptr;
202} 615}
204#define ev_malloc(size) ev_realloc (0, (size)) 617#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0) 618#define ev_free(ptr) ev_realloc ((ptr), 0)
206 619
207/*****************************************************************************/ 620/*****************************************************************************/
208 621
622/* set in reify when reification needed */
623#define EV_ANFD_REIFY 1
624
625/* file descriptor info structure */
209typedef struct 626typedef struct
210{ 627{
211 WL head; 628 WL head;
212 unsigned char events; 629 unsigned char events; /* the events watched for */
630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
213 unsigned char reify; 632 unsigned char unused;
633#if EV_USE_EPOLL
634 unsigned int egen; /* generation counter to counter epoll bugs */
635#endif
636#if EV_SELECT_IS_WINSOCKET
637 SOCKET handle;
638#endif
214} ANFD; 639} ANFD;
215 640
641/* stores the pending event set for a given watcher */
216typedef struct 642typedef struct
217{ 643{
218 W w; 644 W w;
219 int events; 645 int events; /* the pending event set for the given watcher */
220} ANPENDING; 646} ANPENDING;
647
648#if EV_USE_INOTIFY
649/* hash table entry per inotify-id */
650typedef struct
651{
652 WL head;
653} ANFS;
654#endif
655
656/* Heap Entry */
657#if EV_HEAP_CACHE_AT
658 /* a heap element */
659 typedef struct {
660 ev_tstamp at;
661 WT w;
662 } ANHE;
663
664 #define ANHE_w(he) (he).w /* access watcher, read-write */
665 #define ANHE_at(he) (he).at /* access cached at, read-only */
666 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
667#else
668 /* a heap element */
669 typedef WT ANHE;
670
671 #define ANHE_w(he) (he)
672 #define ANHE_at(he) (he)->at
673 #define ANHE_at_cache(he)
674#endif
221 675
222#if EV_MULTIPLICITY 676#if EV_MULTIPLICITY
223 677
224 struct ev_loop 678 struct ev_loop
225 { 679 {
680 ev_tstamp ev_rt_now;
681 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 682 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 683 #include "ev_vars.h"
228 #undef VAR 684 #undef VAR
229 }; 685 };
230 #include "ev_wrap.h" 686 #include "ev_wrap.h"
231 687
232 struct ev_loop default_loop_struct; 688 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 689 struct ev_loop *ev_default_loop_ptr;
234 690
235#else 691#else
236 692
693 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 694 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 695 #include "ev_vars.h"
239 #undef VAR 696 #undef VAR
240 697
241 static int default_loop; 698 static int ev_default_loop_ptr;
242 699
243#endif 700#endif
701
702#if EV_FEATURE_API
703# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
704# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
705# define EV_INVOKE_PENDING invoke_cb (EV_A)
706#else
707# define EV_RELEASE_CB (void)0
708# define EV_ACQUIRE_CB (void)0
709# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
710#endif
711
712#define EVUNLOOP_RECURSE 0x80
244 713
245/*****************************************************************************/ 714/*****************************************************************************/
246 715
247inline ev_tstamp 716#ifndef EV_HAVE_EV_TIME
717ev_tstamp
248ev_time (void) 718ev_time (void)
249{ 719{
250#if EV_USE_REALTIME 720#if EV_USE_REALTIME
721 if (expect_true (have_realtime))
722 {
251 struct timespec ts; 723 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 724 clock_gettime (CLOCK_REALTIME, &ts);
253 return ts.tv_sec + ts.tv_nsec * 1e-9; 725 return ts.tv_sec + ts.tv_nsec * 1e-9;
254#else 726 }
727#endif
728
255 struct timeval tv; 729 struct timeval tv;
256 gettimeofday (&tv, 0); 730 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 731 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif
259} 732}
733#endif
260 734
261inline ev_tstamp 735inline_size ev_tstamp
262get_clock (void) 736get_clock (void)
263{ 737{
264#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 739 if (expect_true (have_monotonic))
266 { 740 {
271#endif 745#endif
272 746
273 return ev_time (); 747 return ev_time ();
274} 748}
275 749
750#if EV_MULTIPLICITY
276ev_tstamp 751ev_tstamp
277ev_now (EV_P) 752ev_now (EV_P)
278{ 753{
279 return rt_now; 754 return ev_rt_now;
280} 755}
756#endif
281 757
282#define array_roundsize(type,n) ((n) | 4 & ~3) 758void
759ev_sleep (ev_tstamp delay)
760{
761 if (delay > 0.)
762 {
763#if EV_USE_NANOSLEEP
764 struct timespec ts;
765
766 ts.tv_sec = (time_t)delay;
767 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
768
769 nanosleep (&ts, 0);
770#elif defined(_WIN32)
771 Sleep ((unsigned long)(delay * 1e3));
772#else
773 struct timeval tv;
774
775 tv.tv_sec = (time_t)delay;
776 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
777
778 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
779 /* something not guaranteed by newer posix versions, but guaranteed */
780 /* by older ones */
781 select (0, 0, 0, 0, &tv);
782#endif
783 }
784}
785
786/*****************************************************************************/
787
788#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
789
790/* find a suitable new size for the given array, */
791/* hopefully by rounding to a ncie-to-malloc size */
792inline_size int
793array_nextsize (int elem, int cur, int cnt)
794{
795 int ncur = cur + 1;
796
797 do
798 ncur <<= 1;
799 while (cnt > ncur);
800
801 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
802 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
803 {
804 ncur *= elem;
805 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
806 ncur = ncur - sizeof (void *) * 4;
807 ncur /= elem;
808 }
809
810 return ncur;
811}
812
813static noinline void *
814array_realloc (int elem, void *base, int *cur, int cnt)
815{
816 *cur = array_nextsize (elem, *cur, cnt);
817 return ev_realloc (base, elem * *cur);
818}
819
820#define array_init_zero(base,count) \
821 memset ((void *)(base), 0, sizeof (*(base)) * (count))
283 822
284#define array_needsize(type,base,cur,cnt,init) \ 823#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 824 if (expect_false ((cnt) > (cur))) \
286 { \ 825 { \
287 int newcnt = cur; \ 826 int ocur_ = (cur); \
288 do \ 827 (base) = (type *)array_realloc \
289 { \ 828 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 829 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 830 }
298 831
832#if 0
299#define array_slim(type,stem) \ 833#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 834 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 835 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 836 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 837 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 838 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 839 }
306 840#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 841
312#define array_free(stem, idx) \ 842#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 843 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
314 844
315/*****************************************************************************/ 845/*****************************************************************************/
316 846
317static void 847/* dummy callback for pending events */
318anfds_init (ANFD *base, int count) 848static void noinline
849pendingcb (EV_P_ ev_prepare *w, int revents)
319{ 850{
320 while (count--)
321 {
322 base->head = 0;
323 base->events = EV_NONE;
324 base->reify = 0;
325
326 ++base;
327 }
328} 851}
329 852
330void 853void noinline
331ev_feed_event (EV_P_ void *w, int revents) 854ev_feed_event (EV_P_ void *w, int revents)
332{ 855{
333 W w_ = (W)w; 856 W w_ = (W)w;
857 int pri = ABSPRI (w_);
334 858
335 if (w_->pending) 859 if (expect_false (w_->pending))
860 pendings [pri][w_->pending - 1].events |= revents;
861 else
336 { 862 {
863 w_->pending = ++pendingcnt [pri];
864 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
865 pendings [pri][w_->pending - 1].w = w_;
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 866 pendings [pri][w_->pending - 1].events = revents;
338 return;
339 } 867 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345} 868}
346 869
347static void 870inline_speed void
871feed_reverse (EV_P_ W w)
872{
873 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
874 rfeeds [rfeedcnt++] = w;
875}
876
877inline_size void
878feed_reverse_done (EV_P_ int revents)
879{
880 do
881 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
882 while (rfeedcnt);
883}
884
885inline_speed void
348queue_events (EV_P_ W *events, int eventcnt, int type) 886queue_events (EV_P_ W *events, int eventcnt, int type)
349{ 887{
350 int i; 888 int i;
351 889
352 for (i = 0; i < eventcnt; ++i) 890 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type); 891 ev_feed_event (EV_A_ events [i], type);
354} 892}
355 893
894/*****************************************************************************/
895
356inline void 896inline_speed void
357fd_event (EV_P_ int fd, int revents) 897fd_event_nocheck (EV_P_ int fd, int revents)
358{ 898{
359 ANFD *anfd = anfds + fd; 899 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 900 ev_io *w;
361 901
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 902 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 903 {
364 int ev = w->events & revents; 904 int ev = w->events & revents;
365 905
366 if (ev) 906 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 907 ev_feed_event (EV_A_ (W)w, ev);
368 } 908 }
369} 909}
370 910
911/* do not submit kernel events for fds that have reify set */
912/* because that means they changed while we were polling for new events */
913inline_speed void
914fd_event (EV_P_ int fd, int revents)
915{
916 ANFD *anfd = anfds + fd;
917
918 if (expect_true (!anfd->reify))
919 fd_event_nocheck (EV_A_ fd, revents);
920}
921
371void 922void
372ev_feed_fd_event (EV_P_ int fd, int revents) 923ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 924{
925 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 926 fd_event_nocheck (EV_A_ fd, revents);
375} 927}
376 928
377/*****************************************************************************/ 929/* make sure the external fd watch events are in-sync */
378 930/* with the kernel/libev internal state */
379static void 931inline_size void
380fd_reify (EV_P) 932fd_reify (EV_P)
381{ 933{
382 int i; 934 int i;
383 935
384 for (i = 0; i < fdchangecnt; ++i) 936 for (i = 0; i < fdchangecnt; ++i)
385 { 937 {
386 int fd = fdchanges [i]; 938 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 939 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 940 ev_io *w;
389 941
390 int events = 0; 942 unsigned char events = 0;
391 943
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
393 events |= w->events; 945 events |= (unsigned char)w->events;
394 946
947#if EV_SELECT_IS_WINSOCKET
948 if (events)
949 {
950 unsigned long arg;
951 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
952 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
953 }
954#endif
955
956 {
957 unsigned char o_events = anfd->events;
958 unsigned char o_reify = anfd->reify;
959
395 anfd->reify = 0; 960 anfd->reify = 0;
396
397 method_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events; 961 anfd->events = events;
962
963 if (o_events != events || o_reify & EV__IOFDSET)
964 backend_modify (EV_A_ fd, o_events, events);
965 }
399 } 966 }
400 967
401 fdchangecnt = 0; 968 fdchangecnt = 0;
402} 969}
403 970
404static void 971/* something about the given fd changed */
972inline_size void
405fd_change (EV_P_ int fd) 973fd_change (EV_P_ int fd, int flags)
406{ 974{
407 if (anfds [fd].reify) 975 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 976 anfds [fd].reify |= flags;
411 977
978 if (expect_true (!reify))
979 {
412 ++fdchangecnt; 980 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 981 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 982 fdchanges [fdchangecnt - 1] = fd;
983 }
415} 984}
416 985
417static void 986/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
987inline_speed void
418fd_kill (EV_P_ int fd) 988fd_kill (EV_P_ int fd)
419{ 989{
420 struct ev_io *w; 990 ev_io *w;
421 991
422 while ((w = (struct ev_io *)anfds [fd].head)) 992 while ((w = (ev_io *)anfds [fd].head))
423 { 993 {
424 ev_io_stop (EV_A_ w); 994 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 995 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 996 }
427} 997}
428 998
429static int 999/* check whether the given fd is actually valid, for error recovery */
1000inline_size int
430fd_valid (int fd) 1001fd_valid (int fd)
431{ 1002{
432#ifdef WIN32 1003#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 1004 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
434#else 1005#else
435 return fcntl (fd, F_GETFD) != -1; 1006 return fcntl (fd, F_GETFD) != -1;
436#endif 1007#endif
437} 1008}
438 1009
439/* called on EBADF to verify fds */ 1010/* called on EBADF to verify fds */
440static void 1011static void noinline
441fd_ebadf (EV_P) 1012fd_ebadf (EV_P)
442{ 1013{
443 int fd; 1014 int fd;
444 1015
445 for (fd = 0; fd < anfdmax; ++fd) 1016 for (fd = 0; fd < anfdmax; ++fd)
446 if (anfds [fd].events) 1017 if (anfds [fd].events)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 1018 if (!fd_valid (fd) && errno == EBADF)
448 fd_kill (EV_A_ fd); 1019 fd_kill (EV_A_ fd);
449} 1020}
450 1021
451/* called on ENOMEM in select/poll to kill some fds and retry */ 1022/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 1023static void noinline
453fd_enomem (EV_P) 1024fd_enomem (EV_P)
454{ 1025{
455 int fd; 1026 int fd;
456 1027
457 for (fd = anfdmax; fd--; ) 1028 for (fd = anfdmax; fd--; )
458 if (anfds [fd].events) 1029 if (anfds [fd].events)
459 { 1030 {
460 fd_kill (EV_A_ fd); 1031 fd_kill (EV_A_ fd);
461 return; 1032 break;
462 } 1033 }
463} 1034}
464 1035
465/* usually called after fork if method needs to re-arm all fds from scratch */ 1036/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 1037static void noinline
467fd_rearm_all (EV_P) 1038fd_rearm_all (EV_P)
468{ 1039{
469 int fd; 1040 int fd;
470 1041
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 1042 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 1043 if (anfds [fd].events)
474 { 1044 {
475 anfds [fd].events = 0; 1045 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 1046 anfds [fd].emask = 0;
1047 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
477 } 1048 }
478} 1049}
479 1050
1051/* used to prepare libev internal fd's */
1052/* this is not fork-safe */
1053inline_speed void
1054fd_intern (int fd)
1055{
1056#ifdef _WIN32
1057 unsigned long arg = 1;
1058 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1059#else
1060 fcntl (fd, F_SETFD, FD_CLOEXEC);
1061 fcntl (fd, F_SETFL, O_NONBLOCK);
1062#endif
1063}
1064
480/*****************************************************************************/ 1065/*****************************************************************************/
481 1066
1067/*
1068 * the heap functions want a real array index. array index 0 uis guaranteed to not
1069 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1070 * the branching factor of the d-tree.
1071 */
1072
1073/*
1074 * at the moment we allow libev the luxury of two heaps,
1075 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1076 * which is more cache-efficient.
1077 * the difference is about 5% with 50000+ watchers.
1078 */
1079#if EV_USE_4HEAP
1080
1081#define DHEAP 4
1082#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1083#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1084#define UPHEAP_DONE(p,k) ((p) == (k))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091 ANHE *E = heap + N + HEAP0;
1092
1093 for (;;)
1094 {
1095 ev_tstamp minat;
1096 ANHE *minpos;
1097 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1098
1099 /* find minimum child */
1100 if (expect_true (pos + DHEAP - 1 < E))
1101 {
1102 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1105 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1106 }
1107 else if (pos < E)
1108 {
1109 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1110 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1111 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1112 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1113 }
1114 else
1115 break;
1116
1117 if (ANHE_at (he) <= minat)
1118 break;
1119
1120 heap [k] = *minpos;
1121 ev_active (ANHE_w (*minpos)) = k;
1122
1123 k = minpos - heap;
1124 }
1125
1126 heap [k] = he;
1127 ev_active (ANHE_w (he)) = k;
1128}
1129
1130#else /* 4HEAP */
1131
1132#define HEAP0 1
1133#define HPARENT(k) ((k) >> 1)
1134#define UPHEAP_DONE(p,k) (!(p))
1135
1136/* away from the root */
1137inline_speed void
1138downheap (ANHE *heap, int N, int k)
1139{
1140 ANHE he = heap [k];
1141
1142 for (;;)
1143 {
1144 int c = k << 1;
1145
1146 if (c >= N + HEAP0)
1147 break;
1148
1149 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1150 ? 1 : 0;
1151
1152 if (ANHE_at (he) <= ANHE_at (heap [c]))
1153 break;
1154
1155 heap [k] = heap [c];
1156 ev_active (ANHE_w (heap [k])) = k;
1157
1158 k = c;
1159 }
1160
1161 heap [k] = he;
1162 ev_active (ANHE_w (he)) = k;
1163}
1164#endif
1165
1166/* towards the root */
1167inline_speed void
1168upheap (ANHE *heap, int k)
1169{
1170 ANHE he = heap [k];
1171
1172 for (;;)
1173 {
1174 int p = HPARENT (k);
1175
1176 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1177 break;
1178
1179 heap [k] = heap [p];
1180 ev_active (ANHE_w (heap [k])) = k;
1181 k = p;
1182 }
1183
1184 heap [k] = he;
1185 ev_active (ANHE_w (he)) = k;
1186}
1187
1188/* move an element suitably so it is in a correct place */
1189inline_size void
1190adjustheap (ANHE *heap, int N, int k)
1191{
1192 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1193 upheap (heap, k);
1194 else
1195 downheap (heap, N, k);
1196}
1197
1198/* rebuild the heap: this function is used only once and executed rarely */
1199inline_size void
1200reheap (ANHE *heap, int N)
1201{
1202 int i;
1203
1204 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1205 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1206 for (i = 0; i < N; ++i)
1207 upheap (heap, i + HEAP0);
1208}
1209
1210/*****************************************************************************/
1211
1212/* associate signal watchers to a signal signal */
1213typedef struct
1214{
1215 EV_ATOMIC_T pending;
1216#if EV_MULTIPLICITY
1217 EV_P;
1218#endif
1219 WL head;
1220} ANSIG;
1221
1222static ANSIG signals [EV_NSIG - 1];
1223
1224/*****************************************************************************/
1225
1226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1227
1228static void noinline
1229evpipe_init (EV_P)
1230{
1231 if (!ev_is_active (&pipe_w))
1232 {
1233# if EV_USE_EVENTFD
1234 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1235 if (evfd < 0 && errno == EINVAL)
1236 evfd = eventfd (0, 0);
1237
1238 if (evfd >= 0)
1239 {
1240 evpipe [0] = -1;
1241 fd_intern (evfd); /* doing it twice doesn't hurt */
1242 ev_io_set (&pipe_w, evfd, EV_READ);
1243 }
1244 else
1245# endif
1246 {
1247 while (pipe (evpipe))
1248 ev_syserr ("(libev) error creating signal/async pipe");
1249
1250 fd_intern (evpipe [0]);
1251 fd_intern (evpipe [1]);
1252 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1253 }
1254
1255 ev_io_start (EV_A_ &pipe_w);
1256 ev_unref (EV_A); /* watcher should not keep loop alive */
1257 }
1258}
1259
1260inline_size void
1261evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1262{
1263 if (!*flag)
1264 {
1265 int old_errno = errno; /* save errno because write might clobber it */
1266 char dummy;
1267
1268 *flag = 1;
1269
1270#if EV_USE_EVENTFD
1271 if (evfd >= 0)
1272 {
1273 uint64_t counter = 1;
1274 write (evfd, &counter, sizeof (uint64_t));
1275 }
1276 else
1277#endif
1278 write (evpipe [1], &dummy, 1);
1279
1280 errno = old_errno;
1281 }
1282}
1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
482static void 1286static void
483upheap (WT *heap, int k) 1287pipecb (EV_P_ ev_io *iow, int revents)
484{ 1288{
485 WT w = heap [k]; 1289 int i;
486 1290
487 while (k && heap [k >> 1]->at > w->at) 1291#if EV_USE_EVENTFD
488 { 1292 if (evfd >= 0)
489 heap [k] = heap [k >> 1];
490 ((W)heap [k])->active = k + 1;
491 k >>= 1;
492 } 1293 {
1294 uint64_t counter;
1295 read (evfd, &counter, sizeof (uint64_t));
1296 }
1297 else
1298#endif
1299 {
1300 char dummy;
1301 read (evpipe [0], &dummy, 1);
1302 }
493 1303
494 heap [k] = w; 1304 if (sig_pending)
495 ((W)heap [k])->active = k + 1; 1305 {
1306 sig_pending = 0;
496 1307
1308 for (i = EV_NSIG - 1; i--; )
1309 if (expect_false (signals [i].pending))
1310 ev_feed_signal_event (EV_A_ i + 1);
1311 }
1312
1313#if EV_ASYNC_ENABLE
1314 if (async_pending)
1315 {
1316 async_pending = 0;
1317
1318 for (i = asynccnt; i--; )
1319 if (asyncs [i]->sent)
1320 {
1321 asyncs [i]->sent = 0;
1322 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1323 }
1324 }
1325#endif
497} 1326}
1327
1328/*****************************************************************************/
498 1329
499static void 1330static void
500downheap (WT *heap, int N, int k)
501{
502 WT w = heap [k];
503
504 while (k < (N >> 1))
505 {
506 int j = k << 1;
507
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
509 ++j;
510
511 if (w->at <= heap [j]->at)
512 break;
513
514 heap [k] = heap [j];
515 ((W)heap [k])->active = k + 1;
516 k = j;
517 }
518
519 heap [k] = w;
520 ((W)heap [k])->active = k + 1;
521}
522
523/*****************************************************************************/
524
525typedef struct
526{
527 WL head;
528 sig_atomic_t volatile gotsig;
529} ANSIG;
530
531static ANSIG *signals;
532static int signalmax;
533
534static int sigpipe [2];
535static sig_atomic_t volatile gotsig;
536static struct ev_io sigev;
537
538static void
539signals_init (ANSIG *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->gotsig = 0;
545
546 ++base;
547 }
548}
549
550static void
551sighandler (int signum) 1331ev_sighandler (int signum)
552{ 1332{
553#if WIN32 1333#if EV_MULTIPLICITY
554 signal (signum, sighandler); 1334 EV_P = signals [signum - 1].loop;
555#endif 1335#endif
556 1336
557 signals [signum - 1].gotsig = 1;
558
559 if (!gotsig)
560 {
561 int old_errno = errno;
562 gotsig = 1;
563#ifdef WIN32 1337#ifdef _WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1338 signal (signum, ev_sighandler);
565#else
566 write (sigpipe [1], &signum, 1);
567#endif 1339#endif
568 errno = old_errno;
569 }
570}
571 1340
572void 1341 signals [signum - 1].pending = 1;
1342 evpipe_write (EV_A_ &sig_pending);
1343}
1344
1345void noinline
573ev_feed_signal_event (EV_P_ int signum) 1346ev_feed_signal_event (EV_P_ int signum)
574{ 1347{
575 WL w; 1348 WL w;
576 1349
1350 if (expect_false (signum <= 0 || signum > EV_NSIG))
1351 return;
1352
1353 --signum;
1354
577#if EV_MULTIPLICITY 1355#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1356 /* it is permissible to try to feed a signal to the wrong loop */
579#endif 1357 /* or, likely more useful, feeding a signal nobody is waiting for */
580 1358
581 --signum; 1359 if (expect_false (signals [signum].loop != EV_A))
582
583 if (signum < 0 || signum >= signalmax)
584 return; 1360 return;
1361#endif
585 1362
586 signals [signum].gotsig = 0; 1363 signals [signum].pending = 0;
587 1364
588 for (w = signals [signum].head; w; w = w->next) 1365 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1366 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590} 1367}
591 1368
1369#if EV_USE_SIGNALFD
592static void 1370static void
593sigcb (EV_P_ struct ev_io *iow, int revents) 1371sigfdcb (EV_P_ ev_io *iow, int revents)
594{ 1372{
595 int signum; 1373 struct signalfd_siginfo si[2], *sip; /* these structs are big */
596 1374
597#ifdef WIN32 1375 for (;;)
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1376 {
599#else 1377 ssize_t res = read (sigfd, si, sizeof (si));
600 read (sigpipe [0], &revents, 1);
601#endif
602 gotsig = 0;
603 1378
604 for (signum = signalmax; signum--; ) 1379 /* not ISO-C, as res might be -1, but works with SuS */
605 if (signals [signum].gotsig) 1380 for (sip = si; (char *)sip < (char *)si + res; ++sip)
606 ev_feed_signal_event (EV_A_ signum + 1); 1381 ev_feed_signal_event (EV_A_ sip->ssi_signo);
607}
608 1382
609static void 1383 if (res < (ssize_t)sizeof (si))
610siginit (EV_P) 1384 break;
611{ 1385 }
612#ifndef WIN32
613 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
614 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
615
616 /* rather than sort out wether we really need nb, set it */
617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
619#endif
620
621 ev_io_set (&sigev, sigpipe [0], EV_READ);
622 ev_io_start (EV_A_ &sigev);
623 ev_unref (EV_A); /* child watcher should not keep loop alive */
624} 1386}
1387#endif
1388
1389#endif
625 1390
626/*****************************************************************************/ 1391/*****************************************************************************/
627 1392
628static struct ev_child *childs [PID_HASHSIZE]; 1393#if EV_CHILD_ENABLE
1394static WL childs [EV_PID_HASHSIZE];
629 1395
630#ifndef WIN32
631
632static struct ev_signal childev; 1396static ev_signal childev;
1397
1398#ifndef WIFCONTINUED
1399# define WIFCONTINUED(status) 0
1400#endif
1401
1402/* handle a single child status event */
1403inline_speed void
1404child_reap (EV_P_ int chain, int pid, int status)
1405{
1406 ev_child *w;
1407 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1408
1409 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1410 {
1411 if ((w->pid == pid || !w->pid)
1412 && (!traced || (w->flags & 1)))
1413 {
1414 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1415 w->rpid = pid;
1416 w->rstatus = status;
1417 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1418 }
1419 }
1420}
633 1421
634#ifndef WCONTINUED 1422#ifndef WCONTINUED
635# define WCONTINUED 0 1423# define WCONTINUED 0
636#endif 1424#endif
637 1425
1426/* called on sigchld etc., calls waitpid */
638static void 1427static void
639child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
640{
641 struct ev_child *w;
642
643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
644 if (w->pid == pid || !w->pid)
645 {
646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
647 w->rpid = pid;
648 w->rstatus = status;
649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
650 }
651}
652
653static void
654childcb (EV_P_ struct ev_signal *sw, int revents) 1428childcb (EV_P_ ev_signal *sw, int revents)
655{ 1429{
656 int pid, status; 1430 int pid, status;
657 1431
1432 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1433 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
659 { 1434 if (!WCONTINUED
1435 || errno != EINVAL
1436 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1437 return;
1438
660 /* make sure we are called again until all childs have been reaped */ 1439 /* make sure we are called again until all children have been reaped */
1440 /* we need to do it this way so that the callback gets called before we continue */
661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1441 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
662 1442
663 child_reap (EV_A_ sw, pid, pid, status); 1443 child_reap (EV_A_ pid, pid, status);
1444 if ((EV_PID_HASHSIZE) > 1)
664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1445 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
665 }
666} 1446}
667 1447
668#endif 1448#endif
669 1449
670/*****************************************************************************/ 1450/*****************************************************************************/
671 1451
1452#if EV_USE_PORT
1453# include "ev_port.c"
1454#endif
672#if EV_USE_KQUEUE 1455#if EV_USE_KQUEUE
673# include "ev_kqueue.c" 1456# include "ev_kqueue.c"
674#endif 1457#endif
675#if EV_USE_EPOLL 1458#if EV_USE_EPOLL
676# include "ev_epoll.c" 1459# include "ev_epoll.c"
693{ 1476{
694 return EV_VERSION_MINOR; 1477 return EV_VERSION_MINOR;
695} 1478}
696 1479
697/* return true if we are running with elevated privileges and should ignore env variables */ 1480/* return true if we are running with elevated privileges and should ignore env variables */
698static int 1481int inline_size
699enable_secure (void) 1482enable_secure (void)
700{ 1483{
701#ifdef WIN32 1484#ifdef _WIN32
702 return 0; 1485 return 0;
703#else 1486#else
704 return getuid () != geteuid () 1487 return getuid () != geteuid ()
705 || getgid () != getegid (); 1488 || getgid () != getegid ();
706#endif 1489#endif
707} 1490}
708 1491
709int 1492unsigned int
1493ev_supported_backends (void)
1494{
1495 unsigned int flags = 0;
1496
1497 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1498 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1499 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1500 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1501 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1502
1503 return flags;
1504}
1505
1506unsigned int
1507ev_recommended_backends (void)
1508{
1509 unsigned int flags = ev_supported_backends ();
1510
1511#ifndef __NetBSD__
1512 /* kqueue is borked on everything but netbsd apparently */
1513 /* it usually doesn't work correctly on anything but sockets and pipes */
1514 flags &= ~EVBACKEND_KQUEUE;
1515#endif
1516#ifdef __APPLE__
1517 /* only select works correctly on that "unix-certified" platform */
1518 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1519 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1520#endif
1521#ifdef __FreeBSD__
1522 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1523#endif
1524
1525 return flags;
1526}
1527
1528unsigned int
1529ev_embeddable_backends (void)
1530{
1531 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1532
1533 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1534 /* please fix it and tell me how to detect the fix */
1535 flags &= ~EVBACKEND_EPOLL;
1536
1537 return flags;
1538}
1539
1540unsigned int
1541ev_backend (EV_P)
1542{
1543 return backend;
1544}
1545
1546#if EV_FEATURE_API
1547unsigned int
1548ev_iteration (EV_P)
1549{
1550 return loop_count;
1551}
1552
1553unsigned int
710ev_method (EV_P) 1554ev_depth (EV_P)
711{ 1555{
712 return method; 1556 return loop_depth;
713} 1557}
714 1558
715static void 1559void
716loop_init (EV_P_ int methods) 1560ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
717{ 1561{
718 if (!method) 1562 io_blocktime = interval;
1563}
1564
1565void
1566ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1567{
1568 timeout_blocktime = interval;
1569}
1570
1571void
1572ev_set_userdata (EV_P_ void *data)
1573{
1574 userdata = data;
1575}
1576
1577void *
1578ev_userdata (EV_P)
1579{
1580 return userdata;
1581}
1582
1583void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1584{
1585 invoke_cb = invoke_pending_cb;
1586}
1587
1588void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1589{
1590 release_cb = release;
1591 acquire_cb = acquire;
1592}
1593#endif
1594
1595/* initialise a loop structure, must be zero-initialised */
1596static void noinline
1597loop_init (EV_P_ unsigned int flags)
1598{
1599 if (!backend)
719 { 1600 {
1601#if EV_USE_REALTIME
1602 if (!have_realtime)
1603 {
1604 struct timespec ts;
1605
1606 if (!clock_gettime (CLOCK_REALTIME, &ts))
1607 have_realtime = 1;
1608 }
1609#endif
1610
720#if EV_USE_MONOTONIC 1611#if EV_USE_MONOTONIC
1612 if (!have_monotonic)
1613 {
1614 struct timespec ts;
1615
1616 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1617 have_monotonic = 1;
1618 }
1619#endif
1620
1621 /* pid check not overridable via env */
1622#ifndef _WIN32
1623 if (flags & EVFLAG_FORKCHECK)
1624 curpid = getpid ();
1625#endif
1626
1627 if (!(flags & EVFLAG_NOENV)
1628 && !enable_secure ()
1629 && getenv ("LIBEV_FLAGS"))
1630 flags = atoi (getenv ("LIBEV_FLAGS"));
1631
1632 ev_rt_now = ev_time ();
1633 mn_now = get_clock ();
1634 now_floor = mn_now;
1635 rtmn_diff = ev_rt_now - mn_now;
1636#if EV_FEATURE_API
1637 invoke_cb = ev_invoke_pending;
1638#endif
1639
1640 io_blocktime = 0.;
1641 timeout_blocktime = 0.;
1642 backend = 0;
1643 backend_fd = -1;
1644 sig_pending = 0;
1645#if EV_ASYNC_ENABLE
1646 async_pending = 0;
1647#endif
1648#if EV_USE_INOTIFY
1649 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1650#endif
1651#if EV_USE_SIGNALFD
1652 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1653#endif
1654
1655 if (!(flags & 0x0000ffffU))
1656 flags |= ev_recommended_backends ();
1657
1658#if EV_USE_PORT
1659 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1660#endif
1661#if EV_USE_KQUEUE
1662 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1663#endif
1664#if EV_USE_EPOLL
1665 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1666#endif
1667#if EV_USE_POLL
1668 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1669#endif
1670#if EV_USE_SELECT
1671 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1672#endif
1673
1674 ev_prepare_init (&pending_w, pendingcb);
1675
1676#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1677 ev_init (&pipe_w, pipecb);
1678 ev_set_priority (&pipe_w, EV_MAXPRI);
1679#endif
1680 }
1681}
1682
1683/* free up a loop structure */
1684static void noinline
1685loop_destroy (EV_P)
1686{
1687 int i;
1688
1689 if (ev_is_active (&pipe_w))
1690 {
1691 /*ev_ref (EV_A);*/
1692 /*ev_io_stop (EV_A_ &pipe_w);*/
1693
1694#if EV_USE_EVENTFD
1695 if (evfd >= 0)
1696 close (evfd);
1697#endif
1698
1699 if (evpipe [0] >= 0)
1700 {
1701 EV_WIN32_CLOSE_FD (evpipe [0]);
1702 EV_WIN32_CLOSE_FD (evpipe [1]);
1703 }
1704 }
1705
1706#if EV_USE_SIGNALFD
1707 if (ev_is_active (&sigfd_w))
1708 close (sigfd);
1709#endif
1710
1711#if EV_USE_INOTIFY
1712 if (fs_fd >= 0)
1713 close (fs_fd);
1714#endif
1715
1716 if (backend_fd >= 0)
1717 close (backend_fd);
1718
1719#if EV_USE_PORT
1720 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1721#endif
1722#if EV_USE_KQUEUE
1723 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1724#endif
1725#if EV_USE_EPOLL
1726 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1727#endif
1728#if EV_USE_POLL
1729 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1730#endif
1731#if EV_USE_SELECT
1732 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1733#endif
1734
1735 for (i = NUMPRI; i--; )
1736 {
1737 array_free (pending, [i]);
1738#if EV_IDLE_ENABLE
1739 array_free (idle, [i]);
1740#endif
1741 }
1742
1743 ev_free (anfds); anfds = 0; anfdmax = 0;
1744
1745 /* have to use the microsoft-never-gets-it-right macro */
1746 array_free (rfeed, EMPTY);
1747 array_free (fdchange, EMPTY);
1748 array_free (timer, EMPTY);
1749#if EV_PERIODIC_ENABLE
1750 array_free (periodic, EMPTY);
1751#endif
1752#if EV_FORK_ENABLE
1753 array_free (fork, EMPTY);
1754#endif
1755 array_free (prepare, EMPTY);
1756 array_free (check, EMPTY);
1757#if EV_ASYNC_ENABLE
1758 array_free (async, EMPTY);
1759#endif
1760
1761 backend = 0;
1762}
1763
1764#if EV_USE_INOTIFY
1765inline_size void infy_fork (EV_P);
1766#endif
1767
1768inline_size void
1769loop_fork (EV_P)
1770{
1771#if EV_USE_PORT
1772 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1773#endif
1774#if EV_USE_KQUEUE
1775 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1776#endif
1777#if EV_USE_EPOLL
1778 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1779#endif
1780#if EV_USE_INOTIFY
1781 infy_fork (EV_A);
1782#endif
1783
1784 if (ev_is_active (&pipe_w))
1785 {
1786 /* this "locks" the handlers against writing to the pipe */
1787 /* while we modify the fd vars */
1788 sig_pending = 1;
1789#if EV_ASYNC_ENABLE
1790 async_pending = 1;
1791#endif
1792
1793 ev_ref (EV_A);
1794 ev_io_stop (EV_A_ &pipe_w);
1795
1796#if EV_USE_EVENTFD
1797 if (evfd >= 0)
1798 close (evfd);
1799#endif
1800
1801 if (evpipe [0] >= 0)
1802 {
1803 EV_WIN32_CLOSE_FD (evpipe [0]);
1804 EV_WIN32_CLOSE_FD (evpipe [1]);
1805 }
1806
1807#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1808 evpipe_init (EV_A);
1809 /* now iterate over everything, in case we missed something */
1810 pipecb (EV_A_ &pipe_w, EV_READ);
1811#endif
1812 }
1813
1814 postfork = 0;
1815}
1816
1817#if EV_MULTIPLICITY
1818
1819struct ev_loop *
1820ev_loop_new (unsigned int flags)
1821{
1822 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1823
1824 memset (EV_A, 0, sizeof (struct ev_loop));
1825 loop_init (EV_A_ flags);
1826
1827 if (ev_backend (EV_A))
1828 return EV_A;
1829
1830 return 0;
1831}
1832
1833void
1834ev_loop_destroy (EV_P)
1835{
1836 loop_destroy (EV_A);
1837 ev_free (loop);
1838}
1839
1840void
1841ev_loop_fork (EV_P)
1842{
1843 postfork = 1; /* must be in line with ev_default_fork */
1844}
1845#endif /* multiplicity */
1846
1847#if EV_VERIFY
1848static void noinline
1849verify_watcher (EV_P_ W w)
1850{
1851 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1852
1853 if (w->pending)
1854 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1855}
1856
1857static void noinline
1858verify_heap (EV_P_ ANHE *heap, int N)
1859{
1860 int i;
1861
1862 for (i = HEAP0; i < N + HEAP0; ++i)
1863 {
1864 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1865 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1866 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1867
1868 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1869 }
1870}
1871
1872static void noinline
1873array_verify (EV_P_ W *ws, int cnt)
1874{
1875 while (cnt--)
1876 {
1877 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1878 verify_watcher (EV_A_ ws [cnt]);
1879 }
1880}
1881#endif
1882
1883#if EV_FEATURE_API
1884void
1885ev_verify (EV_P)
1886{
1887#if EV_VERIFY
1888 int i;
1889 WL w;
1890
1891 assert (activecnt >= -1);
1892
1893 assert (fdchangemax >= fdchangecnt);
1894 for (i = 0; i < fdchangecnt; ++i)
1895 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1896
1897 assert (anfdmax >= 0);
1898 for (i = 0; i < anfdmax; ++i)
1899 for (w = anfds [i].head; w; w = w->next)
721 { 1900 {
722 struct timespec ts; 1901 verify_watcher (EV_A_ (W)w);
723 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1902 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
724 have_monotonic = 1; 1903 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
725 } 1904 }
726#endif
727 1905
728 rt_now = ev_time (); 1906 assert (timermax >= timercnt);
729 mn_now = get_clock (); 1907 verify_heap (EV_A_ timers, timercnt);
730 now_floor = mn_now;
731 rtmn_diff = rt_now - mn_now;
732 1908
733 if (methods == EVMETHOD_AUTO) 1909#if EV_PERIODIC_ENABLE
734 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1910 assert (periodicmax >= periodiccnt);
735 methods = atoi (getenv ("LIBEV_METHODS")); 1911 verify_heap (EV_A_ periodics, periodiccnt);
736 else
737 methods = EVMETHOD_ANY;
738
739 method = 0;
740#if EV_USE_WIN32
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
742#endif
743#if EV_USE_KQUEUE
744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
745#endif
746#if EV_USE_EPOLL
747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
748#endif
749#if EV_USE_POLL
750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
751#endif
752#if EV_USE_SELECT
753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
754#endif
755
756 ev_init (&sigev, sigcb);
757 ev_set_priority (&sigev, EV_MAXPRI);
758 }
759}
760
761void
762loop_destroy (EV_P)
763{
764 int i;
765
766#if EV_USE_WIN32
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
771#endif
772#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
774#endif
775#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
777#endif
778#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
780#endif 1912#endif
781 1913
782 for (i = NUMPRI; i--; ) 1914 for (i = NUMPRI; i--; )
783 array_free (pending, [i]); 1915 {
1916 assert (pendingmax [i] >= pendingcnt [i]);
1917#if EV_IDLE_ENABLE
1918 assert (idleall >= 0);
1919 assert (idlemax [i] >= idlecnt [i]);
1920 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1921#endif
1922 }
784 1923
785 /* have to use the microsoft-never-gets-it-right macro */ 1924#if EV_FORK_ENABLE
786 array_free_microshit (fdchange); 1925 assert (forkmax >= forkcnt);
787 array_free_microshit (timer); 1926 array_verify (EV_A_ (W *)forks, forkcnt);
788 array_free_microshit (periodic); 1927#endif
789 array_free_microshit (idle);
790 array_free_microshit (prepare);
791 array_free_microshit (check);
792 1928
793 method = 0; 1929#if EV_ASYNC_ENABLE
794} 1930 assert (asyncmax >= asynccnt);
1931 array_verify (EV_A_ (W *)asyncs, asynccnt);
1932#endif
795 1933
796static void 1934#if EV_PREPARE_ENABLE
797loop_fork (EV_P) 1935 assert (preparemax >= preparecnt);
798{ 1936 array_verify (EV_A_ (W *)prepares, preparecnt);
799#if EV_USE_EPOLL 1937#endif
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1938
1939#if EV_CHECK_ENABLE
1940 assert (checkmax >= checkcnt);
1941 array_verify (EV_A_ (W *)checks, checkcnt);
1942#endif
1943
1944# if 0
1945#if EV_CHILD_ENABLE
1946 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1947 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1948#endif
801#endif 1949# endif
802#if EV_USE_KQUEUE
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
804#endif 1950#endif
805
806 if (ev_is_active (&sigev))
807 {
808 /* default loop */
809
810 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev);
812 close (sigpipe [0]);
813 close (sigpipe [1]);
814
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A);
819 }
820
821 postfork = 0;
822} 1951}
1952#endif
823 1953
824#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
825struct ev_loop * 1955struct ev_loop *
826ev_loop_new (int methods) 1956ev_default_loop_init (unsigned int flags)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif
854
855#if EV_MULTIPLICITY
856struct ev_loop *
857#else 1957#else
858int 1958int
1959ev_default_loop (unsigned int flags)
859#endif 1960#endif
860ev_default_loop (int methods)
861{ 1961{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop) 1962 if (!ev_default_loop_ptr)
867 { 1963 {
868#if EV_MULTIPLICITY 1964#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct; 1965 EV_P = ev_default_loop_ptr = &default_loop_struct;
870#else 1966#else
871 default_loop = 1; 1967 ev_default_loop_ptr = 1;
872#endif 1968#endif
873 1969
874 loop_init (EV_A_ methods); 1970 loop_init (EV_A_ flags);
875 1971
876 if (ev_method (EV_A)) 1972 if (ev_backend (EV_A))
877 { 1973 {
878 siginit (EV_A); 1974#if EV_CHILD_ENABLE
879
880#ifndef WIN32
881 ev_signal_init (&childev, childcb, SIGCHLD); 1975 ev_signal_init (&childev, childcb, SIGCHLD);
882 ev_set_priority (&childev, EV_MAXPRI); 1976 ev_set_priority (&childev, EV_MAXPRI);
883 ev_signal_start (EV_A_ &childev); 1977 ev_signal_start (EV_A_ &childev);
884 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1978 ev_unref (EV_A); /* child watcher should not keep loop alive */
885#endif 1979#endif
886 } 1980 }
887 else 1981 else
888 default_loop = 0; 1982 ev_default_loop_ptr = 0;
889 } 1983 }
890 1984
891 return default_loop; 1985 return ev_default_loop_ptr;
892} 1986}
893 1987
894void 1988void
895ev_default_destroy (void) 1989ev_default_destroy (void)
896{ 1990{
897#if EV_MULTIPLICITY 1991#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop; 1992 EV_P = ev_default_loop_ptr;
899#endif 1993#endif
900 1994
901#ifndef WIN32 1995 ev_default_loop_ptr = 0;
1996
1997#if EV_CHILD_ENABLE
902 ev_ref (EV_A); /* child watcher */ 1998 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev); 1999 ev_signal_stop (EV_A_ &childev);
904#endif 2000#endif
905 2001
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A); 2002 loop_destroy (EV_A);
913} 2003}
914 2004
915void 2005void
916ev_default_fork (void) 2006ev_default_fork (void)
917{ 2007{
918#if EV_MULTIPLICITY 2008#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop; 2009 EV_P = ev_default_loop_ptr;
920#endif 2010#endif
921 2011
922 if (method) 2012 postfork = 1; /* must be in line with ev_loop_fork */
923 postfork = 1;
924} 2013}
925 2014
926/*****************************************************************************/ 2015/*****************************************************************************/
927 2016
928static int 2017void
929any_pending (EV_P) 2018ev_invoke (EV_P_ void *w, int revents)
2019{
2020 EV_CB_INVOKE ((W)w, revents);
2021}
2022
2023unsigned int
2024ev_pending_count (EV_P)
930{ 2025{
931 int pri; 2026 int pri;
2027 unsigned int count = 0;
932 2028
933 for (pri = NUMPRI; pri--; ) 2029 for (pri = NUMPRI; pri--; )
934 if (pendingcnt [pri]) 2030 count += pendingcnt [pri];
935 return 1;
936 2031
937 return 0; 2032 return count;
938} 2033}
939 2034
940static void 2035void noinline
941call_pending (EV_P) 2036ev_invoke_pending (EV_P)
942{ 2037{
943 int pri; 2038 int pri;
944 2039
945 for (pri = NUMPRI; pri--; ) 2040 for (pri = NUMPRI; pri--; )
946 while (pendingcnt [pri]) 2041 while (pendingcnt [pri])
947 { 2042 {
948 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2043 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
949 2044
950 if (p->w) 2045 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
951 { 2046 /* ^ this is no longer true, as pending_w could be here */
2047
952 p->w->pending = 0; 2048 p->w->pending = 0;
953 EV_CB_INVOKE (p->w, p->events); 2049 EV_CB_INVOKE (p->w, p->events);
954 } 2050 EV_FREQUENT_CHECK;
955 } 2051 }
956} 2052}
957 2053
958static void 2054#if EV_IDLE_ENABLE
2055/* make idle watchers pending. this handles the "call-idle */
2056/* only when higher priorities are idle" logic */
2057inline_size void
2058idle_reify (EV_P)
2059{
2060 if (expect_false (idleall))
2061 {
2062 int pri;
2063
2064 for (pri = NUMPRI; pri--; )
2065 {
2066 if (pendingcnt [pri])
2067 break;
2068
2069 if (idlecnt [pri])
2070 {
2071 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2072 break;
2073 }
2074 }
2075 }
2076}
2077#endif
2078
2079/* make timers pending */
2080inline_size void
959timers_reify (EV_P) 2081timers_reify (EV_P)
960{ 2082{
2083 EV_FREQUENT_CHECK;
2084
961 while (timercnt && ((WT)timers [0])->at <= mn_now) 2085 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
962 { 2086 {
963 struct ev_timer *w = timers [0]; 2087 do
964
965 assert (("inactive timer on timer heap detected", ev_is_active (w)));
966
967 /* first reschedule or stop timer */
968 if (w->repeat)
969 { 2088 {
2089 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2090
2091 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2092
2093 /* first reschedule or stop timer */
2094 if (w->repeat)
2095 {
2096 ev_at (w) += w->repeat;
2097 if (ev_at (w) < mn_now)
2098 ev_at (w) = mn_now;
2099
970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2100 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
971 ((WT)w)->at = mn_now + w->repeat; 2101
2102 ANHE_at_cache (timers [HEAP0]);
972 downheap ((WT *)timers, timercnt, 0); 2103 downheap (timers, timercnt, HEAP0);
2104 }
2105 else
2106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2107
2108 EV_FREQUENT_CHECK;
2109 feed_reverse (EV_A_ (W)w);
973 } 2110 }
974 else 2111 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
976 2112
977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2113 feed_reverse_done (EV_A_ EV_TIMER);
978 } 2114 }
979} 2115}
980 2116
981static void 2117#if EV_PERIODIC_ENABLE
2118/* make periodics pending */
2119inline_size void
982periodics_reify (EV_P) 2120periodics_reify (EV_P)
983{ 2121{
2122 EV_FREQUENT_CHECK;
2123
984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
985 { 2125 {
986 struct ev_periodic *w = periodics [0]; 2126 int feed_count = 0;
987 2127
2128 do
2129 {
2130 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2131
988 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2132 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
989 2133
990 /* first reschedule or stop timer */ 2134 /* first reschedule or stop timer */
2135 if (w->reschedule_cb)
2136 {
2137 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2138
2139 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else if (w->interval)
2145 {
2146 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2147 /* if next trigger time is not sufficiently in the future, put it there */
2148 /* this might happen because of floating point inexactness */
2149 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2150 {
2151 ev_at (w) += w->interval;
2152
2153 /* if interval is unreasonably low we might still have a time in the past */
2154 /* so correct this. this will make the periodic very inexact, but the user */
2155 /* has effectively asked to get triggered more often than possible */
2156 if (ev_at (w) < ev_rt_now)
2157 ev_at (w) = ev_rt_now;
2158 }
2159
2160 ANHE_at_cache (periodics [HEAP0]);
2161 downheap (periodics, periodiccnt, HEAP0);
2162 }
2163 else
2164 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2165
2166 EV_FREQUENT_CHECK;
2167 feed_reverse (EV_A_ (W)w);
2168 }
2169 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2170
2171 feed_reverse_done (EV_A_ EV_PERIODIC);
2172 }
2173}
2174
2175/* simply recalculate all periodics */
2176/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2177static void noinline
2178periodics_reschedule (EV_P)
2179{
2180 int i;
2181
2182 /* adjust periodics after time jump */
2183 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2184 {
2185 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2186
991 if (w->reschedule_cb) 2187 if (w->reschedule_cb)
992 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 2188 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
994
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996 downheap ((WT *)periodics, periodiccnt, 0);
997 }
998 else if (w->interval) 2189 else if (w->interval)
999 { 2190 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1002 downheap ((WT *)periodics, periodiccnt, 0);
1003 }
1004 else
1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1006 2191
1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2192 ANHE_at_cache (periodics [i]);
1008 } 2193 }
1009}
1010 2194
1011static void 2195 reheap (periodics, periodiccnt);
1012periodics_reschedule (EV_P) 2196}
2197#endif
2198
2199/* adjust all timers by a given offset */
2200static void noinline
2201timers_reschedule (EV_P_ ev_tstamp adjust)
1013{ 2202{
1014 int i; 2203 int i;
1015 2204
1016 /* adjust periodics after time jump */
1017 for (i = 0; i < periodiccnt; ++i) 2205 for (i = 0; i < timercnt; ++i)
1018 {
1019 struct ev_periodic *w = periodics [i];
1020
1021 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1023 else if (w->interval)
1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1025 } 2206 {
1026 2207 ANHE *he = timers + i + HEAP0;
1027 /* now rebuild the heap */ 2208 ANHE_w (*he)->at += adjust;
1028 for (i = periodiccnt >> 1; i--; ) 2209 ANHE_at_cache (*he);
1029 downheap ((WT *)periodics, periodiccnt, i);
1030}
1031
1032inline int
1033time_update_monotonic (EV_P)
1034{
1035 mn_now = get_clock ();
1036
1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1038 { 2210 }
1039 rt_now = rtmn_diff + mn_now;
1040 return 0;
1041 }
1042 else
1043 {
1044 now_floor = mn_now;
1045 rt_now = ev_time ();
1046 return 1;
1047 }
1048} 2211}
1049 2212
1050static void 2213/* fetch new monotonic and realtime times from the kernel */
1051time_update (EV_P) 2214/* also detect if there was a timejump, and act accordingly */
2215inline_speed void
2216time_update (EV_P_ ev_tstamp max_block)
1052{ 2217{
1053 int i;
1054
1055#if EV_USE_MONOTONIC 2218#if EV_USE_MONOTONIC
1056 if (expect_true (have_monotonic)) 2219 if (expect_true (have_monotonic))
1057 { 2220 {
1058 if (time_update_monotonic (EV_A)) 2221 int i;
2222 ev_tstamp odiff = rtmn_diff;
2223
2224 mn_now = get_clock ();
2225
2226 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2227 /* interpolate in the meantime */
2228 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 { 2229 {
1060 ev_tstamp odiff = rtmn_diff; 2230 ev_rt_now = rtmn_diff + mn_now;
2231 return;
2232 }
1061 2233
2234 now_floor = mn_now;
2235 ev_rt_now = ev_time ();
2236
1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2237 /* loop a few times, before making important decisions.
2238 * on the choice of "4": one iteration isn't enough,
2239 * in case we get preempted during the calls to
2240 * ev_time and get_clock. a second call is almost guaranteed
2241 * to succeed in that case, though. and looping a few more times
2242 * doesn't hurt either as we only do this on time-jumps or
2243 * in the unlikely event of having been preempted here.
2244 */
2245 for (i = 4; --i; )
1063 { 2246 {
1064 rtmn_diff = rt_now - mn_now; 2247 rtmn_diff = ev_rt_now - mn_now;
1065 2248
1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2249 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1067 return; /* all is well */ 2250 return; /* all is well */
1068 2251
1069 rt_now = ev_time (); 2252 ev_rt_now = ev_time ();
1070 mn_now = get_clock (); 2253 mn_now = get_clock ();
1071 now_floor = mn_now; 2254 now_floor = mn_now;
1072 } 2255 }
1073 2256
2257 /* no timer adjustment, as the monotonic clock doesn't jump */
2258 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2259# if EV_PERIODIC_ENABLE
2260 periodics_reschedule (EV_A);
2261# endif
2262 }
2263 else
2264#endif
2265 {
2266 ev_rt_now = ev_time ();
2267
2268 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2269 {
2270 /* adjust timers. this is easy, as the offset is the same for all of them */
2271 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2272#if EV_PERIODIC_ENABLE
1074 periodics_reschedule (EV_A); 2273 periodics_reschedule (EV_A);
1075 /* no timer adjustment, as the monotonic clock doesn't jump */ 2274#endif
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1077 } 2275 }
1078 }
1079 else
1080#endif
1081 {
1082 rt_now = ev_time ();
1083 2276
1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1085 {
1086 periodics_reschedule (EV_A);
1087
1088 /* adjust timers. this is easy, as the offset is the same for all */
1089 for (i = 0; i < timercnt; ++i)
1090 ((WT)timers [i])->at += rt_now - mn_now;
1091 }
1092
1093 mn_now = rt_now; 2277 mn_now = ev_rt_now;
1094 } 2278 }
1095} 2279}
1096
1097void
1098ev_ref (EV_P)
1099{
1100 ++activecnt;
1101}
1102
1103void
1104ev_unref (EV_P)
1105{
1106 --activecnt;
1107}
1108
1109static int loop_done;
1110 2280
1111void 2281void
1112ev_loop (EV_P_ int flags) 2282ev_loop (EV_P_ int flags)
1113{ 2283{
1114 double block; 2284#if EV_FEATURE_API
1115 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2285 ++loop_depth;
2286#endif
2287
2288 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2289
2290 loop_done = EVUNLOOP_CANCEL;
2291
2292 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1116 2293
1117 do 2294 do
1118 { 2295 {
2296#if EV_VERIFY >= 2
2297 ev_verify (EV_A);
2298#endif
2299
2300#ifndef _WIN32
2301 if (expect_false (curpid)) /* penalise the forking check even more */
2302 if (expect_false (getpid () != curpid))
2303 {
2304 curpid = getpid ();
2305 postfork = 1;
2306 }
2307#endif
2308
2309#if EV_FORK_ENABLE
2310 /* we might have forked, so queue fork handlers */
2311 if (expect_false (postfork))
2312 if (forkcnt)
2313 {
2314 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2315 EV_INVOKE_PENDING;
2316 }
2317#endif
2318
2319#if EV_PREPARE_ENABLE
1119 /* queue check watchers (and execute them) */ 2320 /* queue prepare watchers (and execute them) */
1120 if (expect_false (preparecnt)) 2321 if (expect_false (preparecnt))
1121 { 2322 {
1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2323 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1123 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1124 } 2325 }
2326#endif
2327
2328 if (expect_false (loop_done))
2329 break;
1125 2330
1126 /* we might have forked, so reify kernel state if necessary */ 2331 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork)) 2332 if (expect_false (postfork))
1128 loop_fork (EV_A); 2333 loop_fork (EV_A);
1129 2334
1130 /* update fd-related kernel structures */ 2335 /* update fd-related kernel structures */
1131 fd_reify (EV_A); 2336 fd_reify (EV_A);
1132 2337
1133 /* calculate blocking time */ 2338 /* calculate blocking time */
2339 {
2340 ev_tstamp waittime = 0.;
2341 ev_tstamp sleeptime = 0.;
1134 2342
1135 /* we only need this for !monotonic clock or timers, but as we basically 2343 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1136 always have timers, we just calculate it always */
1137#if EV_USE_MONOTONIC
1138 if (expect_true (have_monotonic))
1139 time_update_monotonic (EV_A);
1140 else
1141#endif
1142 { 2344 {
1143 rt_now = ev_time (); 2345 /* remember old timestamp for io_blocktime calculation */
1144 mn_now = rt_now; 2346 ev_tstamp prev_mn_now = mn_now;
1145 }
1146 2347
1147 if (flags & EVLOOP_NONBLOCK || idlecnt) 2348 /* update time to cancel out callback processing overhead */
1148 block = 0.; 2349 time_update (EV_A_ 1e100);
1149 else 2350
1150 {
1151 block = MAX_BLOCKTIME; 2351 waittime = MAX_BLOCKTIME;
1152 2352
1153 if (timercnt) 2353 if (timercnt)
1154 { 2354 {
1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2355 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1156 if (block > to) block = to; 2356 if (waittime > to) waittime = to;
1157 } 2357 }
1158 2358
2359#if EV_PERIODIC_ENABLE
1159 if (periodiccnt) 2360 if (periodiccnt)
1160 { 2361 {
1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2362 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1162 if (block > to) block = to; 2363 if (waittime > to) waittime = to;
1163 } 2364 }
2365#endif
1164 2366
1165 if (block < 0.) block = 0.; 2367 /* don't let timeouts decrease the waittime below timeout_blocktime */
2368 if (expect_false (waittime < timeout_blocktime))
2369 waittime = timeout_blocktime;
2370
2371 /* extra check because io_blocktime is commonly 0 */
2372 if (expect_false (io_blocktime))
2373 {
2374 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2375
2376 if (sleeptime > waittime - backend_fudge)
2377 sleeptime = waittime - backend_fudge;
2378
2379 if (expect_true (sleeptime > 0.))
2380 {
2381 ev_sleep (sleeptime);
2382 waittime -= sleeptime;
2383 }
2384 }
1166 } 2385 }
1167 2386
1168 method_poll (EV_A_ block); 2387#if EV_FEATURE_API
2388 ++loop_count;
2389#endif
2390 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2391 backend_poll (EV_A_ waittime);
2392 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1169 2393
1170 /* update rt_now, do magic */ 2394 /* update ev_rt_now, do magic */
1171 time_update (EV_A); 2395 time_update (EV_A_ waittime + sleeptime);
2396 }
1172 2397
1173 /* queue pending timers and reschedule them */ 2398 /* queue pending timers and reschedule them */
1174 timers_reify (EV_A); /* relative timers called last */ 2399 timers_reify (EV_A); /* relative timers called last */
2400#if EV_PERIODIC_ENABLE
1175 periodics_reify (EV_A); /* absolute timers called first */ 2401 periodics_reify (EV_A); /* absolute timers called first */
2402#endif
1176 2403
2404#if EV_IDLE_ENABLE
1177 /* queue idle watchers unless io or timers are pending */ 2405 /* queue idle watchers unless other events are pending */
1178 if (idlecnt && !any_pending (EV_A)) 2406 idle_reify (EV_A);
1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2407#endif
1180 2408
2409#if EV_CHECK_ENABLE
1181 /* queue check watchers, to be executed first */ 2410 /* queue check watchers, to be executed first */
1182 if (checkcnt) 2411 if (expect_false (checkcnt))
1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2412 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2413#endif
1184 2414
1185 call_pending (EV_A); 2415 EV_INVOKE_PENDING;
1186 } 2416 }
1187 while (activecnt && !loop_done); 2417 while (expect_true (
2418 activecnt
2419 && !loop_done
2420 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2421 ));
1188 2422
1189 if (loop_done != 2) 2423 if (loop_done == EVUNLOOP_ONE)
1190 loop_done = 0; 2424 loop_done = EVUNLOOP_CANCEL;
2425
2426#if EV_FEATURE_API
2427 --loop_depth;
2428#endif
1191} 2429}
1192 2430
1193void 2431void
1194ev_unloop (EV_P_ int how) 2432ev_unloop (EV_P_ int how)
1195{ 2433{
1196 loop_done = how; 2434 loop_done = how;
1197} 2435}
1198 2436
2437void
2438ev_ref (EV_P)
2439{
2440 ++activecnt;
2441}
2442
2443void
2444ev_unref (EV_P)
2445{
2446 --activecnt;
2447}
2448
2449void
2450ev_now_update (EV_P)
2451{
2452 time_update (EV_A_ 1e100);
2453}
2454
2455void
2456ev_suspend (EV_P)
2457{
2458 ev_now_update (EV_A);
2459}
2460
2461void
2462ev_resume (EV_P)
2463{
2464 ev_tstamp mn_prev = mn_now;
2465
2466 ev_now_update (EV_A);
2467 timers_reschedule (EV_A_ mn_now - mn_prev);
2468#if EV_PERIODIC_ENABLE
2469 /* TODO: really do this? */
2470 periodics_reschedule (EV_A);
2471#endif
2472}
2473
1199/*****************************************************************************/ 2474/*****************************************************************************/
2475/* singly-linked list management, used when the expected list length is short */
1200 2476
1201inline void 2477inline_size void
1202wlist_add (WL *head, WL elem) 2478wlist_add (WL *head, WL elem)
1203{ 2479{
1204 elem->next = *head; 2480 elem->next = *head;
1205 *head = elem; 2481 *head = elem;
1206} 2482}
1207 2483
1208inline void 2484inline_size void
1209wlist_del (WL *head, WL elem) 2485wlist_del (WL *head, WL elem)
1210{ 2486{
1211 while (*head) 2487 while (*head)
1212 { 2488 {
1213 if (*head == elem) 2489 if (expect_true (*head == elem))
1214 { 2490 {
1215 *head = elem->next; 2491 *head = elem->next;
1216 return; 2492 break;
1217 } 2493 }
1218 2494
1219 head = &(*head)->next; 2495 head = &(*head)->next;
1220 } 2496 }
1221} 2497}
1222 2498
2499/* internal, faster, version of ev_clear_pending */
1223inline void 2500inline_speed void
1224ev_clear_pending (EV_P_ W w) 2501clear_pending (EV_P_ W w)
1225{ 2502{
1226 if (w->pending) 2503 if (w->pending)
1227 { 2504 {
1228 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2505 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1229 w->pending = 0; 2506 w->pending = 0;
1230 } 2507 }
1231} 2508}
1232 2509
2510int
2511ev_clear_pending (EV_P_ void *w)
2512{
2513 W w_ = (W)w;
2514 int pending = w_->pending;
2515
2516 if (expect_true (pending))
2517 {
2518 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2519 p->w = (W)&pending_w;
2520 w_->pending = 0;
2521 return p->events;
2522 }
2523 else
2524 return 0;
2525}
2526
1233inline void 2527inline_size void
2528pri_adjust (EV_P_ W w)
2529{
2530 int pri = ev_priority (w);
2531 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2532 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2533 ev_set_priority (w, pri);
2534}
2535
2536inline_speed void
1234ev_start (EV_P_ W w, int active) 2537ev_start (EV_P_ W w, int active)
1235{ 2538{
1236 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2539 pri_adjust (EV_A_ w);
1237 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1238
1239 w->active = active; 2540 w->active = active;
1240 ev_ref (EV_A); 2541 ev_ref (EV_A);
1241} 2542}
1242 2543
1243inline void 2544inline_size void
1244ev_stop (EV_P_ W w) 2545ev_stop (EV_P_ W w)
1245{ 2546{
1246 ev_unref (EV_A); 2547 ev_unref (EV_A);
1247 w->active = 0; 2548 w->active = 0;
1248} 2549}
1249 2550
1250/*****************************************************************************/ 2551/*****************************************************************************/
1251 2552
1252void 2553void noinline
1253ev_io_start (EV_P_ struct ev_io *w) 2554ev_io_start (EV_P_ ev_io *w)
1254{ 2555{
1255 int fd = w->fd; 2556 int fd = w->fd;
1256 2557
1257 if (ev_is_active (w)) 2558 if (expect_false (ev_is_active (w)))
1258 return; 2559 return;
1259 2560
1260 assert (("ev_io_start called with negative fd", fd >= 0)); 2561 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2562 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2563
2564 EV_FREQUENT_CHECK;
1261 2565
1262 ev_start (EV_A_ (W)w, 1); 2566 ev_start (EV_A_ (W)w, 1);
1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2567 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1264 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2568 wlist_add (&anfds[fd].head, (WL)w);
1265 2569
1266 fd_change (EV_A_ fd); 2570 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1267} 2571 w->events &= ~EV__IOFDSET;
1268 2572
1269void 2573 EV_FREQUENT_CHECK;
2574}
2575
2576void noinline
1270ev_io_stop (EV_P_ struct ev_io *w) 2577ev_io_stop (EV_P_ ev_io *w)
1271{ 2578{
1272 ev_clear_pending (EV_A_ (W)w); 2579 clear_pending (EV_A_ (W)w);
1273 if (!ev_is_active (w)) 2580 if (expect_false (!ev_is_active (w)))
1274 return; 2581 return;
1275 2582
2583 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2584
2585 EV_FREQUENT_CHECK;
2586
1276 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2587 wlist_del (&anfds[w->fd].head, (WL)w);
1277 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1278 2589
1279 fd_change (EV_A_ w->fd); 2590 fd_change (EV_A_ w->fd, 1);
1280}
1281 2591
1282void 2592 EV_FREQUENT_CHECK;
2593}
2594
2595void noinline
1283ev_timer_start (EV_P_ struct ev_timer *w) 2596ev_timer_start (EV_P_ ev_timer *w)
1284{ 2597{
1285 if (ev_is_active (w)) 2598 if (expect_false (ev_is_active (w)))
1286 return; 2599 return;
1287 2600
1288 ((WT)w)->at += mn_now; 2601 ev_at (w) += mn_now;
1289 2602
1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2603 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1291 2604
2605 EV_FREQUENT_CHECK;
2606
2607 ++timercnt;
1292 ev_start (EV_A_ (W)w, ++timercnt); 2608 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2609 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1294 timers [timercnt - 1] = w; 2610 ANHE_w (timers [ev_active (w)]) = (WT)w;
1295 upheap ((WT *)timers, timercnt - 1); 2611 ANHE_at_cache (timers [ev_active (w)]);
2612 upheap (timers, ev_active (w));
1296 2613
2614 EV_FREQUENT_CHECK;
2615
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2616 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1298} 2617}
1299 2618
1300void 2619void noinline
1301ev_timer_stop (EV_P_ struct ev_timer *w) 2620ev_timer_stop (EV_P_ ev_timer *w)
1302{ 2621{
1303 ev_clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
1304 if (!ev_is_active (w)) 2623 if (expect_false (!ev_is_active (w)))
1305 return; 2624 return;
1306 2625
2626 EV_FREQUENT_CHECK;
2627
2628 {
2629 int active = ev_active (w);
2630
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2631 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1308 2632
1309 if (((W)w)->active < timercnt--) 2633 --timercnt;
2634
2635 if (expect_true (active < timercnt + HEAP0))
1310 { 2636 {
1311 timers [((W)w)->active - 1] = timers [timercnt]; 2637 timers [active] = timers [timercnt + HEAP0];
1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2638 adjustheap (timers, timercnt, active);
1313 } 2639 }
2640 }
1314 2641
1315 ((WT)w)->at = w->repeat; 2642 ev_at (w) -= mn_now;
1316 2643
1317 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
1318}
1319 2645
1320void 2646 EV_FREQUENT_CHECK;
2647}
2648
2649void noinline
1321ev_timer_again (EV_P_ struct ev_timer *w) 2650ev_timer_again (EV_P_ ev_timer *w)
1322{ 2651{
2652 EV_FREQUENT_CHECK;
2653
1323 if (ev_is_active (w)) 2654 if (ev_is_active (w))
1324 { 2655 {
1325 if (w->repeat) 2656 if (w->repeat)
1326 { 2657 {
1327 ((WT)w)->at = mn_now + w->repeat; 2658 ev_at (w) = mn_now + w->repeat;
1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2659 ANHE_at_cache (timers [ev_active (w)]);
2660 adjustheap (timers, timercnt, ev_active (w));
1329 } 2661 }
1330 else 2662 else
1331 ev_timer_stop (EV_A_ w); 2663 ev_timer_stop (EV_A_ w);
1332 } 2664 }
1333 else if (w->repeat) 2665 else if (w->repeat)
2666 {
2667 ev_at (w) = w->repeat;
1334 ev_timer_start (EV_A_ w); 2668 ev_timer_start (EV_A_ w);
1335} 2669 }
1336 2670
1337void 2671 EV_FREQUENT_CHECK;
2672}
2673
2674ev_tstamp
2675ev_timer_remaining (EV_P_ ev_timer *w)
2676{
2677 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2678}
2679
2680#if EV_PERIODIC_ENABLE
2681void noinline
1338ev_periodic_start (EV_P_ struct ev_periodic *w) 2682ev_periodic_start (EV_P_ ev_periodic *w)
1339{ 2683{
1340 if (ev_is_active (w)) 2684 if (expect_false (ev_is_active (w)))
1341 return; 2685 return;
1342 2686
1343 if (w->reschedule_cb) 2687 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1345 else if (w->interval) 2689 else if (w->interval)
1346 { 2690 {
1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2691 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1348 /* this formula differs from the one in periodic_reify because we do not always round up */ 2692 /* this formula differs from the one in periodic_reify because we do not always round up */
1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2693 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 } 2694 }
2695 else
2696 ev_at (w) = w->offset;
1351 2697
2698 EV_FREQUENT_CHECK;
2699
2700 ++periodiccnt;
1352 ev_start (EV_A_ (W)w, ++periodiccnt); 2701 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2702 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1354 periodics [periodiccnt - 1] = w; 2703 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1355 upheap ((WT *)periodics, periodiccnt - 1); 2704 ANHE_at_cache (periodics [ev_active (w)]);
2705 upheap (periodics, ev_active (w));
1356 2706
2707 EV_FREQUENT_CHECK;
2708
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2709 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1358} 2710}
1359 2711
1360void 2712void noinline
1361ev_periodic_stop (EV_P_ struct ev_periodic *w) 2713ev_periodic_stop (EV_P_ ev_periodic *w)
1362{ 2714{
1363 ev_clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
1364 if (!ev_is_active (w)) 2716 if (expect_false (!ev_is_active (w)))
1365 return; 2717 return;
1366 2718
2719 EV_FREQUENT_CHECK;
2720
2721 {
2722 int active = ev_active (w);
2723
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2724 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1368 2725
1369 if (((W)w)->active < periodiccnt--) 2726 --periodiccnt;
2727
2728 if (expect_true (active < periodiccnt + HEAP0))
1370 { 2729 {
1371 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2730 periodics [active] = periodics [periodiccnt + HEAP0];
1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2731 adjustheap (periodics, periodiccnt, active);
1373 } 2732 }
2733 }
1374 2734
1375 ev_stop (EV_A_ (W)w); 2735 ev_stop (EV_A_ (W)w);
1376}
1377 2736
1378void 2737 EV_FREQUENT_CHECK;
2738}
2739
2740void noinline
1379ev_periodic_again (EV_P_ struct ev_periodic *w) 2741ev_periodic_again (EV_P_ ev_periodic *w)
1380{ 2742{
2743 /* TODO: use adjustheap and recalculation */
1381 ev_periodic_stop (EV_A_ w); 2744 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w); 2745 ev_periodic_start (EV_A_ w);
1383} 2746}
1384 2747#endif
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450 2748
1451#ifndef SA_RESTART 2749#ifndef SA_RESTART
1452# define SA_RESTART 0 2750# define SA_RESTART 0
1453#endif 2751#endif
1454 2752
1455void 2753#if EV_SIGNAL_ENABLE
2754
2755void noinline
1456ev_signal_start (EV_P_ struct ev_signal *w) 2756ev_signal_start (EV_P_ ev_signal *w)
1457{ 2757{
2758 if (expect_false (ev_is_active (w)))
2759 return;
2760
2761 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2762
1458#if EV_MULTIPLICITY 2763#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2764 assert (("libev: a signal must not be attached to two different loops",
2765 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2766
2767 signals [w->signum - 1].loop = EV_A;
2768#endif
2769
2770 EV_FREQUENT_CHECK;
2771
2772#if EV_USE_SIGNALFD
2773 if (sigfd == -2)
2774 {
2775 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2776 if (sigfd < 0 && errno == EINVAL)
2777 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2778
2779 if (sigfd >= 0)
2780 {
2781 fd_intern (sigfd); /* doing it twice will not hurt */
2782
2783 sigemptyset (&sigfd_set);
2784
2785 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2786 ev_set_priority (&sigfd_w, EV_MAXPRI);
2787 ev_io_start (EV_A_ &sigfd_w);
2788 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2789 }
2790 }
2791
2792 if (sigfd >= 0)
2793 {
2794 /* TODO: check .head */
2795 sigaddset (&sigfd_set, w->signum);
2796 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2797
2798 signalfd (sigfd, &sigfd_set, 0);
2799 }
2800#endif
2801
2802 ev_start (EV_A_ (W)w, 1);
2803 wlist_add (&signals [w->signum - 1].head, (WL)w);
2804
2805 if (!((WL)w)->next)
2806# if EV_USE_SIGNALFD
2807 if (sigfd < 0) /*TODO*/
1460#endif 2808# endif
1461 if (ev_is_active (w)) 2809 {
2810# ifdef _WIN32
2811 evpipe_init (EV_A);
2812
2813 signal (w->signum, ev_sighandler);
2814# else
2815 struct sigaction sa;
2816
2817 evpipe_init (EV_A);
2818
2819 sa.sa_handler = ev_sighandler;
2820 sigfillset (&sa.sa_mask);
2821 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2822 sigaction (w->signum, &sa, 0);
2823
2824 sigemptyset (&sa.sa_mask);
2825 sigaddset (&sa.sa_mask, w->signum);
2826 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2827#endif
2828 }
2829
2830 EV_FREQUENT_CHECK;
2831}
2832
2833void noinline
2834ev_signal_stop (EV_P_ ev_signal *w)
2835{
2836 clear_pending (EV_A_ (W)w);
2837 if (expect_false (!ev_is_active (w)))
1462 return; 2838 return;
1463 2839
1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2840 EV_FREQUENT_CHECK;
2841
2842 wlist_del (&signals [w->signum - 1].head, (WL)w);
2843 ev_stop (EV_A_ (W)w);
2844
2845 if (!signals [w->signum - 1].head)
2846 {
2847#if EV_MULTIPLICITY
2848 signals [w->signum - 1].loop = 0; /* unattach from signal */
2849#endif
2850#if EV_USE_SIGNALFD
2851 if (sigfd >= 0)
2852 {
2853 sigset_t ss;
2854
2855 sigemptyset (&ss);
2856 sigaddset (&ss, w->signum);
2857 sigdelset (&sigfd_set, w->signum);
2858
2859 signalfd (sigfd, &sigfd_set, 0);
2860 sigprocmask (SIG_UNBLOCK, &ss, 0);
2861 }
2862 else
2863#endif
2864 signal (w->signum, SIG_DFL);
2865 }
2866
2867 EV_FREQUENT_CHECK;
2868}
2869
2870#endif
2871
2872#if EV_CHILD_ENABLE
2873
2874void
2875ev_child_start (EV_P_ ev_child *w)
2876{
2877#if EV_MULTIPLICITY
2878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2879#endif
2880 if (expect_false (ev_is_active (w)))
2881 return;
2882
2883 EV_FREQUENT_CHECK;
1465 2884
1466 ev_start (EV_A_ (W)w, 1); 2885 ev_start (EV_A_ (W)w, 1);
1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1469 2887
1470 if (!((WL)w)->next) 2888 EV_FREQUENT_CHECK;
2889}
2890
2891void
2892ev_child_stop (EV_P_ ev_child *w)
2893{
2894 clear_pending (EV_A_ (W)w);
2895 if (expect_false (!ev_is_active (w)))
2896 return;
2897
2898 EV_FREQUENT_CHECK;
2899
2900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2901 ev_stop (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2904}
2905
2906#endif
2907
2908#if EV_STAT_ENABLE
2909
2910# ifdef _WIN32
2911# undef lstat
2912# define lstat(a,b) _stati64 (a,b)
2913# endif
2914
2915#define DEF_STAT_INTERVAL 5.0074891
2916#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2917#define MIN_STAT_INTERVAL 0.1074891
2918
2919static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2920
2921#if EV_USE_INOTIFY
2922
2923/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2924# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2925
2926static void noinline
2927infy_add (EV_P_ ev_stat *w)
2928{
2929 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2930
2931 if (w->wd >= 0)
2932 {
2933 struct statfs sfs;
2934
2935 /* now local changes will be tracked by inotify, but remote changes won't */
2936 /* unless the filesystem is known to be local, we therefore still poll */
2937 /* also do poll on <2.6.25, but with normal frequency */
2938
2939 if (!fs_2625)
2940 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2941 else if (!statfs (w->path, &sfs)
2942 && (sfs.f_type == 0x1373 /* devfs */
2943 || sfs.f_type == 0xEF53 /* ext2/3 */
2944 || sfs.f_type == 0x3153464a /* jfs */
2945 || sfs.f_type == 0x52654973 /* reiser3 */
2946 || sfs.f_type == 0x01021994 /* tempfs */
2947 || sfs.f_type == 0x58465342 /* xfs */))
2948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2949 else
2950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1471 { 2951 }
1472#if WIN32 2952 else
1473 signal (w->signum, sighandler); 2953 {
2954 /* can't use inotify, continue to stat */
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956
2957 /* if path is not there, monitor some parent directory for speedup hints */
2958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2959 /* but an efficiency issue only */
2960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2961 {
2962 char path [4096];
2963 strcpy (path, w->path);
2964
2965 do
2966 {
2967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2969
2970 char *pend = strrchr (path, '/');
2971
2972 if (!pend || pend == path)
2973 break;
2974
2975 *pend = 0;
2976 w->wd = inotify_add_watch (fs_fd, path, mask);
2977 }
2978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2979 }
2980 }
2981
2982 if (w->wd >= 0)
2983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2984
2985 /* now re-arm timer, if required */
2986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2987 ev_timer_again (EV_A_ &w->timer);
2988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2989}
2990
2991static void noinline
2992infy_del (EV_P_ ev_stat *w)
2993{
2994 int slot;
2995 int wd = w->wd;
2996
2997 if (wd < 0)
2998 return;
2999
3000 w->wd = -2;
3001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3002 wlist_del (&fs_hash [slot].head, (WL)w);
3003
3004 /* remove this watcher, if others are watching it, they will rearm */
3005 inotify_rm_watch (fs_fd, wd);
3006}
3007
3008static void noinline
3009infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3010{
3011 if (slot < 0)
3012 /* overflow, need to check for all hash slots */
3013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3014 infy_wd (EV_A_ slot, wd, ev);
3015 else
3016 {
3017 WL w_;
3018
3019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3020 {
3021 ev_stat *w = (ev_stat *)w_;
3022 w_ = w_->next; /* lets us remove this watcher and all before it */
3023
3024 if (w->wd == wd || wd == -1)
3025 {
3026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3027 {
3028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3029 w->wd = -1;
3030 infy_add (EV_A_ w); /* re-add, no matter what */
3031 }
3032
3033 stat_timer_cb (EV_A_ &w->timer, 0);
3034 }
3035 }
3036 }
3037}
3038
3039static void
3040infy_cb (EV_P_ ev_io *w, int revents)
3041{
3042 char buf [EV_INOTIFY_BUFSIZE];
3043 int ofs;
3044 int len = read (fs_fd, buf, sizeof (buf));
3045
3046 for (ofs = 0; ofs < len; )
3047 {
3048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3050 ofs += sizeof (struct inotify_event) + ev->len;
3051 }
3052}
3053
3054inline_size unsigned int
3055ev_linux_version (void)
3056{
3057 struct utsname buf;
3058 unsigned int v;
3059 int i;
3060 char *p = buf.release;
3061
3062 if (uname (&buf))
3063 return 0;
3064
3065 for (i = 3+1; --i; )
3066 {
3067 unsigned int c = 0;
3068
3069 for (;;)
3070 {
3071 if (*p >= '0' && *p <= '9')
3072 c = c * 10 + *p++ - '0';
3073 else
3074 {
3075 p += *p == '.';
3076 break;
3077 }
3078 }
3079
3080 v = (v << 8) | c;
3081 }
3082
3083 return v;
3084}
3085
3086inline_size void
3087ev_check_2625 (EV_P)
3088{
3089 /* kernels < 2.6.25 are borked
3090 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3091 */
3092 if (ev_linux_version () < 0x020619)
3093 return;
3094
3095 fs_2625 = 1;
3096}
3097
3098inline_size int
3099infy_newfd (void)
3100{
3101#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3102 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3103 if (fd >= 0)
3104 return fd;
3105#endif
3106 return inotify_init ();
3107}
3108
3109inline_size void
3110infy_init (EV_P)
3111{
3112 if (fs_fd != -2)
3113 return;
3114
3115 fs_fd = -1;
3116
3117 ev_check_2625 (EV_A);
3118
3119 fs_fd = infy_newfd ();
3120
3121 if (fs_fd >= 0)
3122 {
3123 fd_intern (fs_fd);
3124 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3125 ev_set_priority (&fs_w, EV_MAXPRI);
3126 ev_io_start (EV_A_ &fs_w);
3127 ev_unref (EV_A);
3128 }
3129}
3130
3131inline_size void
3132infy_fork (EV_P)
3133{
3134 int slot;
3135
3136 if (fs_fd < 0)
3137 return;
3138
3139 ev_ref (EV_A);
3140 ev_io_stop (EV_A_ &fs_w);
3141 close (fs_fd);
3142 fs_fd = infy_newfd ();
3143
3144 if (fs_fd >= 0)
3145 {
3146 fd_intern (fs_fd);
3147 ev_io_set (&fs_w, fs_fd, EV_READ);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151
3152 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3153 {
3154 WL w_ = fs_hash [slot].head;
3155 fs_hash [slot].head = 0;
3156
3157 while (w_)
3158 {
3159 ev_stat *w = (ev_stat *)w_;
3160 w_ = w_->next; /* lets us add this watcher */
3161
3162 w->wd = -1;
3163
3164 if (fs_fd >= 0)
3165 infy_add (EV_A_ w); /* re-add, no matter what */
3166 else
3167 {
3168 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3169 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3170 ev_timer_again (EV_A_ &w->timer);
3171 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3172 }
3173 }
3174 }
3175}
3176
3177#endif
3178
3179#ifdef _WIN32
3180# define EV_LSTAT(p,b) _stati64 (p, b)
1474#else 3181#else
1475 struct sigaction sa; 3182# define EV_LSTAT(p,b) lstat (p, b)
1476 sa.sa_handler = sighandler;
1477 sigfillset (&sa.sa_mask);
1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1479 sigaction (w->signum, &sa, 0);
1480#endif 3183#endif
1481 }
1482}
1483 3184
1484void 3185void
1485ev_signal_stop (EV_P_ struct ev_signal *w) 3186ev_stat_stat (EV_P_ ev_stat *w)
1486{ 3187{
1487 ev_clear_pending (EV_A_ (W)w); 3188 if (lstat (w->path, &w->attr) < 0)
1488 if (!ev_is_active (w)) 3189 w->attr.st_nlink = 0;
3190 else if (!w->attr.st_nlink)
3191 w->attr.st_nlink = 1;
3192}
3193
3194static void noinline
3195stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3196{
3197 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3198
3199 ev_statdata prev = w->attr;
3200 ev_stat_stat (EV_A_ w);
3201
3202 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3203 if (
3204 prev.st_dev != w->attr.st_dev
3205 || prev.st_ino != w->attr.st_ino
3206 || prev.st_mode != w->attr.st_mode
3207 || prev.st_nlink != w->attr.st_nlink
3208 || prev.st_uid != w->attr.st_uid
3209 || prev.st_gid != w->attr.st_gid
3210 || prev.st_rdev != w->attr.st_rdev
3211 || prev.st_size != w->attr.st_size
3212 || prev.st_atime != w->attr.st_atime
3213 || prev.st_mtime != w->attr.st_mtime
3214 || prev.st_ctime != w->attr.st_ctime
3215 ) {
3216 /* we only update w->prev on actual differences */
3217 /* in case we test more often than invoke the callback, */
3218 /* to ensure that prev is always different to attr */
3219 w->prev = prev;
3220
3221 #if EV_USE_INOTIFY
3222 if (fs_fd >= 0)
3223 {
3224 infy_del (EV_A_ w);
3225 infy_add (EV_A_ w);
3226 ev_stat_stat (EV_A_ w); /* avoid race... */
3227 }
3228 #endif
3229
3230 ev_feed_event (EV_A_ w, EV_STAT);
3231 }
3232}
3233
3234void
3235ev_stat_start (EV_P_ ev_stat *w)
3236{
3237 if (expect_false (ev_is_active (w)))
1489 return; 3238 return;
1490 3239
1491 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3240 ev_stat_stat (EV_A_ w);
3241
3242 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3243 w->interval = MIN_STAT_INTERVAL;
3244
3245 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3246 ev_set_priority (&w->timer, ev_priority (w));
3247
3248#if EV_USE_INOTIFY
3249 infy_init (EV_A);
3250
3251 if (fs_fd >= 0)
3252 infy_add (EV_A_ w);
3253 else
3254#endif
3255 {
3256 ev_timer_again (EV_A_ &w->timer);
3257 ev_unref (EV_A);
3258 }
3259
3260 ev_start (EV_A_ (W)w, 1);
3261
3262 EV_FREQUENT_CHECK;
3263}
3264
3265void
3266ev_stat_stop (EV_P_ ev_stat *w)
3267{
3268 clear_pending (EV_A_ (W)w);
3269 if (expect_false (!ev_is_active (w)))
3270 return;
3271
3272 EV_FREQUENT_CHECK;
3273
3274#if EV_USE_INOTIFY
3275 infy_del (EV_A_ w);
3276#endif
3277
3278 if (ev_is_active (&w->timer))
3279 {
3280 ev_ref (EV_A);
3281 ev_timer_stop (EV_A_ &w->timer);
3282 }
3283
1492 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
1493 3285
1494 if (!signals [w->signum - 1].head) 3286 EV_FREQUENT_CHECK;
1495 signal (w->signum, SIG_DFL);
1496} 3287}
3288#endif
1497 3289
3290#if EV_IDLE_ENABLE
1498void 3291void
1499ev_child_start (EV_P_ struct ev_child *w) 3292ev_idle_start (EV_P_ ev_idle *w)
1500{ 3293{
1501#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop));
1503#endif
1504 if (ev_is_active (w)) 3294 if (expect_false (ev_is_active (w)))
1505 return; 3295 return;
1506 3296
3297 pri_adjust (EV_A_ (W)w);
3298
3299 EV_FREQUENT_CHECK;
3300
3301 {
3302 int active = ++idlecnt [ABSPRI (w)];
3303
3304 ++idleall;
3305 ev_start (EV_A_ (W)w, active);
3306
3307 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3308 idles [ABSPRI (w)][active - 1] = w;
3309 }
3310
3311 EV_FREQUENT_CHECK;
3312}
3313
3314void
3315ev_idle_stop (EV_P_ ev_idle *w)
3316{
3317 clear_pending (EV_A_ (W)w);
3318 if (expect_false (!ev_is_active (w)))
3319 return;
3320
3321 EV_FREQUENT_CHECK;
3322
3323 {
3324 int active = ev_active (w);
3325
3326 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3327 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3328
3329 ev_stop (EV_A_ (W)w);
3330 --idleall;
3331 }
3332
3333 EV_FREQUENT_CHECK;
3334}
3335#endif
3336
3337#if EV_PREPARE_ENABLE
3338void
3339ev_prepare_start (EV_P_ ev_prepare *w)
3340{
3341 if (expect_false (ev_is_active (w)))
3342 return;
3343
3344 EV_FREQUENT_CHECK;
3345
3346 ev_start (EV_A_ (W)w, ++preparecnt);
3347 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3348 prepares [preparecnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
3351}
3352
3353void
3354ev_prepare_stop (EV_P_ ev_prepare *w)
3355{
3356 clear_pending (EV_A_ (W)w);
3357 if (expect_false (!ev_is_active (w)))
3358 return;
3359
3360 EV_FREQUENT_CHECK;
3361
3362 {
3363 int active = ev_active (w);
3364
3365 prepares [active - 1] = prepares [--preparecnt];
3366 ev_active (prepares [active - 1]) = active;
3367 }
3368
3369 ev_stop (EV_A_ (W)w);
3370
3371 EV_FREQUENT_CHECK;
3372}
3373#endif
3374
3375#if EV_CHECK_ENABLE
3376void
3377ev_check_start (EV_P_ ev_check *w)
3378{
3379 if (expect_false (ev_is_active (w)))
3380 return;
3381
3382 EV_FREQUENT_CHECK;
3383
3384 ev_start (EV_A_ (W)w, ++checkcnt);
3385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3386 checks [checkcnt - 1] = w;
3387
3388 EV_FREQUENT_CHECK;
3389}
3390
3391void
3392ev_check_stop (EV_P_ ev_check *w)
3393{
3394 clear_pending (EV_A_ (W)w);
3395 if (expect_false (!ev_is_active (w)))
3396 return;
3397
3398 EV_FREQUENT_CHECK;
3399
3400 {
3401 int active = ev_active (w);
3402
3403 checks [active - 1] = checks [--checkcnt];
3404 ev_active (checks [active - 1]) = active;
3405 }
3406
3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
3410}
3411#endif
3412
3413#if EV_EMBED_ENABLE
3414void noinline
3415ev_embed_sweep (EV_P_ ev_embed *w)
3416{
3417 ev_loop (w->other, EVLOOP_NONBLOCK);
3418}
3419
3420static void
3421embed_io_cb (EV_P_ ev_io *io, int revents)
3422{
3423 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3424
3425 if (ev_cb (w))
3426 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3427 else
3428 ev_loop (w->other, EVLOOP_NONBLOCK);
3429}
3430
3431static void
3432embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3433{
3434 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3435
3436 {
3437 EV_P = w->other;
3438
3439 while (fdchangecnt)
3440 {
3441 fd_reify (EV_A);
3442 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3443 }
3444 }
3445}
3446
3447static void
3448embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3449{
3450 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3451
3452 ev_embed_stop (EV_A_ w);
3453
3454 {
3455 EV_P = w->other;
3456
3457 ev_loop_fork (EV_A);
3458 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3459 }
3460
3461 ev_embed_start (EV_A_ w);
3462}
3463
3464#if 0
3465static void
3466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3467{
3468 ev_idle_stop (EV_A_ idle);
3469}
3470#endif
3471
3472void
3473ev_embed_start (EV_P_ ev_embed *w)
3474{
3475 if (expect_false (ev_is_active (w)))
3476 return;
3477
3478 {
3479 EV_P = w->other;
3480 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3482 }
3483
3484 EV_FREQUENT_CHECK;
3485
3486 ev_set_priority (&w->io, ev_priority (w));
3487 ev_io_start (EV_A_ &w->io);
3488
3489 ev_prepare_init (&w->prepare, embed_prepare_cb);
3490 ev_set_priority (&w->prepare, EV_MINPRI);
3491 ev_prepare_start (EV_A_ &w->prepare);
3492
3493 ev_fork_init (&w->fork, embed_fork_cb);
3494 ev_fork_start (EV_A_ &w->fork);
3495
3496 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3497
1507 ev_start (EV_A_ (W)w, 1); 3498 ev_start (EV_A_ (W)w, 1);
1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1509}
1510 3499
3500 EV_FREQUENT_CHECK;
3501}
3502
1511void 3503void
1512ev_child_stop (EV_P_ struct ev_child *w) 3504ev_embed_stop (EV_P_ ev_embed *w)
1513{ 3505{
1514 ev_clear_pending (EV_A_ (W)w); 3506 clear_pending (EV_A_ (W)w);
1515 if (ev_is_active (w)) 3507 if (expect_false (!ev_is_active (w)))
1516 return; 3508 return;
1517 3509
1518 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3510 EV_FREQUENT_CHECK;
3511
3512 ev_io_stop (EV_A_ &w->io);
3513 ev_prepare_stop (EV_A_ &w->prepare);
3514 ev_fork_stop (EV_A_ &w->fork);
3515
1519 ev_stop (EV_A_ (W)w); 3516 ev_stop (EV_A_ (W)w);
3517
3518 EV_FREQUENT_CHECK;
1520} 3519}
3520#endif
3521
3522#if EV_FORK_ENABLE
3523void
3524ev_fork_start (EV_P_ ev_fork *w)
3525{
3526 if (expect_false (ev_is_active (w)))
3527 return;
3528
3529 EV_FREQUENT_CHECK;
3530
3531 ev_start (EV_A_ (W)w, ++forkcnt);
3532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3533 forks [forkcnt - 1] = w;
3534
3535 EV_FREQUENT_CHECK;
3536}
3537
3538void
3539ev_fork_stop (EV_P_ ev_fork *w)
3540{
3541 clear_pending (EV_A_ (W)w);
3542 if (expect_false (!ev_is_active (w)))
3543 return;
3544
3545 EV_FREQUENT_CHECK;
3546
3547 {
3548 int active = ev_active (w);
3549
3550 forks [active - 1] = forks [--forkcnt];
3551 ev_active (forks [active - 1]) = active;
3552 }
3553
3554 ev_stop (EV_A_ (W)w);
3555
3556 EV_FREQUENT_CHECK;
3557}
3558#endif
3559
3560#if EV_ASYNC_ENABLE
3561void
3562ev_async_start (EV_P_ ev_async *w)
3563{
3564 if (expect_false (ev_is_active (w)))
3565 return;
3566
3567 evpipe_init (EV_A);
3568
3569 EV_FREQUENT_CHECK;
3570
3571 ev_start (EV_A_ (W)w, ++asynccnt);
3572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3573 asyncs [asynccnt - 1] = w;
3574
3575 EV_FREQUENT_CHECK;
3576}
3577
3578void
3579ev_async_stop (EV_P_ ev_async *w)
3580{
3581 clear_pending (EV_A_ (W)w);
3582 if (expect_false (!ev_is_active (w)))
3583 return;
3584
3585 EV_FREQUENT_CHECK;
3586
3587 {
3588 int active = ev_active (w);
3589
3590 asyncs [active - 1] = asyncs [--asynccnt];
3591 ev_active (asyncs [active - 1]) = active;
3592 }
3593
3594 ev_stop (EV_A_ (W)w);
3595
3596 EV_FREQUENT_CHECK;
3597}
3598
3599void
3600ev_async_send (EV_P_ ev_async *w)
3601{
3602 w->sent = 1;
3603 evpipe_write (EV_A_ &async_pending);
3604}
3605#endif
1521 3606
1522/*****************************************************************************/ 3607/*****************************************************************************/
1523 3608
1524struct ev_once 3609struct ev_once
1525{ 3610{
1526 struct ev_io io; 3611 ev_io io;
1527 struct ev_timer to; 3612 ev_timer to;
1528 void (*cb)(int revents, void *arg); 3613 void (*cb)(int revents, void *arg);
1529 void *arg; 3614 void *arg;
1530}; 3615};
1531 3616
1532static void 3617static void
1533once_cb (EV_P_ struct ev_once *once, int revents) 3618once_cb (EV_P_ struct ev_once *once, int revents)
1534{ 3619{
1535 void (*cb)(int revents, void *arg) = once->cb; 3620 void (*cb)(int revents, void *arg) = once->cb;
1536 void *arg = once->arg; 3621 void *arg = once->arg;
1537 3622
1538 ev_io_stop (EV_A_ &once->io); 3623 ev_io_stop (EV_A_ &once->io);
1539 ev_timer_stop (EV_A_ &once->to); 3624 ev_timer_stop (EV_A_ &once->to);
1540 ev_free (once); 3625 ev_free (once);
1541 3626
1542 cb (revents, arg); 3627 cb (revents, arg);
1543} 3628}
1544 3629
1545static void 3630static void
1546once_cb_io (EV_P_ struct ev_io *w, int revents) 3631once_cb_io (EV_P_ ev_io *w, int revents)
1547{ 3632{
1548 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3634
3635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1549} 3636}
1550 3637
1551static void 3638static void
1552once_cb_to (EV_P_ struct ev_timer *w, int revents) 3639once_cb_to (EV_P_ ev_timer *w, int revents)
1553{ 3640{
1554 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1555} 3644}
1556 3645
1557void 3646void
1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3647ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1559{ 3648{
1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1561 3650
1562 if (!once) 3651 if (expect_false (!once))
3652 {
1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1564 else 3654 return;
1565 { 3655 }
3656
1566 once->cb = cb; 3657 once->cb = cb;
1567 once->arg = arg; 3658 once->arg = arg;
1568 3659
1569 ev_init (&once->io, once_cb_io); 3660 ev_init (&once->io, once_cb_io);
1570 if (fd >= 0) 3661 if (fd >= 0)
3662 {
3663 ev_io_set (&once->io, fd, events);
3664 ev_io_start (EV_A_ &once->io);
3665 }
3666
3667 ev_init (&once->to, once_cb_to);
3668 if (timeout >= 0.)
3669 {
3670 ev_timer_set (&once->to, timeout, 0.);
3671 ev_timer_start (EV_A_ &once->to);
3672 }
3673}
3674
3675/*****************************************************************************/
3676
3677#if EV_WALK_ENABLE
3678void
3679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3680{
3681 int i, j;
3682 ev_watcher_list *wl, *wn;
3683
3684 if (types & (EV_IO | EV_EMBED))
3685 for (i = 0; i < anfdmax; ++i)
3686 for (wl = anfds [i].head; wl; )
1571 { 3687 {
1572 ev_io_set (&once->io, fd, events); 3688 wn = wl->next;
1573 ev_io_start (EV_A_ &once->io); 3689
3690#if EV_EMBED_ENABLE
3691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3692 {
3693 if (types & EV_EMBED)
3694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3695 }
3696 else
3697#endif
3698#if EV_USE_INOTIFY
3699 if (ev_cb ((ev_io *)wl) == infy_cb)
3700 ;
3701 else
3702#endif
3703 if ((ev_io *)wl != &pipe_w)
3704 if (types & EV_IO)
3705 cb (EV_A_ EV_IO, wl);
3706
3707 wl = wn;
1574 } 3708 }
1575 3709
1576 ev_init (&once->to, once_cb_to); 3710 if (types & (EV_TIMER | EV_STAT))
1577 if (timeout >= 0.) 3711 for (i = timercnt + HEAP0; i-- > HEAP0; )
3712#if EV_STAT_ENABLE
3713 /*TODO: timer is not always active*/
3714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1578 { 3715 {
1579 ev_timer_set (&once->to, timeout, 0.); 3716 if (types & EV_STAT)
1580 ev_timer_start (EV_A_ &once->to); 3717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1581 } 3718 }
1582 } 3719 else
1583} 3720#endif
3721 if (types & EV_TIMER)
3722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1584 3723
3724#if EV_PERIODIC_ENABLE
3725 if (types & EV_PERIODIC)
3726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3728#endif
3729
3730#if EV_IDLE_ENABLE
3731 if (types & EV_IDLE)
3732 for (j = NUMPRI; i--; )
3733 for (i = idlecnt [j]; i--; )
3734 cb (EV_A_ EV_IDLE, idles [j][i]);
3735#endif
3736
3737#if EV_FORK_ENABLE
3738 if (types & EV_FORK)
3739 for (i = forkcnt; i--; )
3740 if (ev_cb (forks [i]) != embed_fork_cb)
3741 cb (EV_A_ EV_FORK, forks [i]);
3742#endif
3743
3744#if EV_ASYNC_ENABLE
3745 if (types & EV_ASYNC)
3746 for (i = asynccnt; i--; )
3747 cb (EV_A_ EV_ASYNC, asyncs [i]);
3748#endif
3749
3750#if EV_PREPARE_ENABLE
3751 if (types & EV_PREPARE)
3752 for (i = preparecnt; i--; )
3753# if EV_EMBED_ENABLE
3754 if (ev_cb (prepares [i]) != embed_prepare_cb)
3755# endif
3756 cb (EV_A_ EV_PREPARE, prepares [i]);
3757#endif
3758
3759#if EV_CHECK_ENABLE
3760 if (types & EV_CHECK)
3761 for (i = checkcnt; i--; )
3762 cb (EV_A_ EV_CHECK, checks [i]);
3763#endif
3764
3765#if EV_SIGNAL_ENABLE
3766 if (types & EV_SIGNAL)
3767 for (i = 0; i < EV_NSIG - 1; ++i)
3768 for (wl = signals [i].head; wl; )
3769 {
3770 wn = wl->next;
3771 cb (EV_A_ EV_SIGNAL, wl);
3772 wl = wn;
3773 }
3774#endif
3775
3776#if EV_CHILD_ENABLE
3777 if (types & EV_CHILD)
3778 for (i = (EV_PID_HASHSIZE); i--; )
3779 for (wl = childs [i]; wl; )
3780 {
3781 wn = wl->next;
3782 cb (EV_A_ EV_CHILD, wl);
3783 wl = wn;
3784 }
3785#endif
3786/* EV_STAT 0x00001000 /* stat data changed */
3787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3788}
3789#endif
3790
3791#if EV_MULTIPLICITY
3792 #include "ev_wrap.h"
3793#endif
3794
3795#ifdef __cplusplus
3796}
3797#endif
3798

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines