ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.149 by root, Tue Nov 27 19:23:31 2007 UTC vs.
Revision 1.345 by sf-exg, Sat Jul 31 22:33:26 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 83# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
65# endif 89# endif
66 90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 92# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 93# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
106# define EV_USE_POLL 0
73# endif 107# endif
74 108
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
78# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
81# endif 116# endif
82 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
89# endif 125# endif
90 126
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
94# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
97# endif 134# endif
98 135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
99#endif 163#endif
100 164
101#include <math.h> 165#include <math.h>
102#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
103#include <fcntl.h> 168#include <fcntl.h>
104#include <stddef.h> 169#include <stddef.h>
105 170
106#include <stdio.h> 171#include <stdio.h>
107 172
108#include <assert.h> 173#include <assert.h>
109#include <errno.h> 174#include <errno.h>
110#include <sys/types.h> 175#include <sys/types.h>
111#include <time.h> 176#include <time.h>
177#include <limits.h>
112 178
113#include <signal.h> 179#include <signal.h>
180
181#ifdef EV_H
182# include EV_H
183#else
184# include "ev.h"
185#endif
114 186
115#ifndef _WIN32 187#ifndef _WIN32
116# include <sys/time.h> 188# include <sys/time.h>
117# include <sys/wait.h> 189# include <sys/wait.h>
118# include <unistd.h> 190# include <unistd.h>
119#else 191#else
192# include <io.h>
120# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 194# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
124# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
125#endif 244# endif
126 245#endif
127/**/
128 246
129#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
130# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
131#endif 253#endif
132 254
133#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
135#endif 265#endif
136 266
137#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 269#endif
140 270
141#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
142# ifdef _WIN32 272# ifdef _WIN32
143# define EV_USE_POLL 0 273# define EV_USE_POLL 0
144# else 274# else
145# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 276# endif
147#endif 277#endif
148 278
149#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
150# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
151#endif 285#endif
152 286
153#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
155#endif 289#endif
156 290
157#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 292# define EV_USE_PORT 0
159#endif 293#endif
160 294
295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
299# define EV_USE_INOTIFY 0
300# endif
301#endif
302
161#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
163# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
164# else 314# else
165# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
166# endif 316# endif
167#endif 317#endif
168 318
169/**/ 319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
170 366
171#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
174#endif 370#endif
176#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
179#endif 375#endif
180 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
181#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 400# include <winsock.h>
183#endif 401#endif
184 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
185/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to avoid floating point rounding problems.
464 * It is added to ev_rt_now when scheduling periodics
465 * to ensure progress, time-wise, even when rounding
466 * errors are against us.
467 * This value is good at least till the year 4000.
468 * Better solutions welcome.
469 */
470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
186 471
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
190 474
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 475#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 478#else
208# define expect(expr,value) (expr) 479# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 480# define noinline
481# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
482# define inline
483# endif
212#endif 484#endif
213 485
214#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
488#define inline_size static inline
216 489
490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
493# define inline_speed static noinline
494#endif
495
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
500#else
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
219 503
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
222 506
223typedef ev_watcher *W; 507typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 508typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
226 510
511#define ev_active(w) ((W)(w))->active
512#define ev_at(w) ((WT)(w))->at
513
514#if EV_USE_REALTIME
515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
520#if EV_USE_MONOTONIC
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
532#endif
228 533
229#ifdef _WIN32 534#ifdef _WIN32
230# include "ev_win32.c" 535# include "ev_win32.c"
231#endif 536#endif
232 537
233/*****************************************************************************/ 538/*****************************************************************************/
234 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
235static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
236 549
237void 550void
238ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
239{ 552{
240 syserr_cb = cb; 553 syserr_cb = cb;
241} 554}
242 555
243static void noinline 556static void noinline
244syserr (const char *msg) 557ev_syserr (const char *msg)
245{ 558{
246 if (!msg) 559 if (!msg)
247 msg = "(libev) system error"; 560 msg = "(libev) system error";
248 561
249 if (syserr_cb) 562 if (syserr_cb)
250 syserr_cb (msg); 563 syserr_cb (msg);
251 else 564 else
252 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
253 perror (msg); 574 perror (msg);
575#endif
254 abort (); 576 abort ();
255 } 577 }
256} 578}
257 579
580static void *
581ev_realloc_emul (void *ptr, long size)
582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596#endif
597}
598
258static void *(*alloc)(void *ptr, long size); 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 600
260void 601void
261ev_set_allocator (void *(*cb)(void *ptr, long size)) 602ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 603{
263 alloc = cb; 604 alloc = cb;
264} 605}
265 606
266static void * 607inline_speed void *
267ev_realloc (void *ptr, long size) 608ev_realloc (void *ptr, long size)
268{ 609{
269 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 610 ptr = alloc (ptr, size);
270 611
271 if (!ptr && size) 612 if (!ptr && size)
272 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
274 abort (); 619 abort ();
275 } 620 }
276 621
277 return ptr; 622 return ptr;
278} 623}
280#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
281#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
282 627
283/*****************************************************************************/ 628/*****************************************************************************/
284 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
285typedef struct 634typedef struct
286{ 635{
287 WL head; 636 WL head;
288 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
289 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
290#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
291 SOCKET handle; 645 SOCKET handle;
292#endif 646#endif
293} ANFD; 647} ANFD;
294 648
649/* stores the pending event set for a given watcher */
295typedef struct 650typedef struct
296{ 651{
297 W w; 652 W w;
298 int events; 653 int events; /* the pending event set for the given watcher */
299} ANPENDING; 654} ANPENDING;
655
656#if EV_USE_INOTIFY
657/* hash table entry per inotify-id */
658typedef struct
659{
660 WL head;
661} ANFS;
662#endif
663
664/* Heap Entry */
665#if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675#else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
682#endif
300 683
301#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
302 685
303 struct ev_loop 686 struct ev_loop
304 { 687 {
322 705
323 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
324 707
325#endif 708#endif
326 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
327/*****************************************************************************/ 722/*****************************************************************************/
328 723
724#ifndef EV_HAVE_EV_TIME
329ev_tstamp 725ev_tstamp
330ev_time (void) 726ev_time (void)
331{ 727{
332#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
333 struct timespec ts; 731 struct timespec ts;
334 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
335 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
336#else 734 }
735#endif
736
337 struct timeval tv; 737 struct timeval tv;
338 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
339 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
340#endif
341} 740}
741#endif
342 742
343ev_tstamp inline_size 743inline_size ev_tstamp
344get_clock (void) 744get_clock (void)
345{ 745{
346#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
347 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
348 { 748 {
361{ 761{
362 return ev_rt_now; 762 return ev_rt_now;
363} 763}
364#endif 764#endif
365 765
366#define array_roundsize(type,n) (((n) | 4) & ~3) 766void
767ev_sleep (ev_tstamp delay)
768{
769 if (delay > 0.)
770 {
771#if EV_USE_NANOSLEEP
772 struct timespec ts;
773
774 ts.tv_sec = (time_t)delay;
775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
776
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 tv.tv_sec = (time_t)delay;
784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
789 select (0, 0, 0, 0, &tv);
790#endif
791 }
792}
793
794/*****************************************************************************/
795
796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
801array_nextsize (int elem, int cur, int cnt)
802{
803 int ncur = cur + 1;
804
805 do
806 ncur <<= 1;
807 while (cnt > ncur);
808
809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
811 {
812 ncur *= elem;
813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
814 ncur = ncur - sizeof (void *) * 4;
815 ncur /= elem;
816 }
817
818 return ncur;
819}
820
821static noinline void *
822array_realloc (int elem, void *base, int *cur, int cnt)
823{
824 *cur = array_nextsize (elem, *cur, cnt);
825 return ev_realloc (base, elem * *cur);
826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
367 830
368#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 832 if (expect_false ((cnt) > (cur))) \
370 { \ 833 { \
371 int newcnt = cur; \ 834 int ocur_ = (cur); \
372 do \ 835 (base) = (type *)array_realloc \
373 { \ 836 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 837 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 838 }
382 839
840#if 0
383#define array_slim(type,stem) \ 841#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 842 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 843 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 844 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 845 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 847 }
848#endif
390 849
391#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
393 852
394/*****************************************************************************/ 853/*****************************************************************************/
854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
395 860
396void noinline 861void noinline
397ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
398{ 863{
399 W w_ = (W)w; 864 W w_ = (W)w;
865 int pri = ABSPRI (w_);
400 866
401 if (expect_false (w_->pending)) 867 if (expect_false (w_->pending))
868 pendings [pri][w_->pending - 1].events |= revents;
869 else
402 { 870 {
871 w_->pending = ++pendingcnt [pri];
872 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
873 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 874 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 875 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 876}
412 877
413void inline_size 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
414queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 895{
416 int i; 896 int i;
417 897
418 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
420} 900}
421 901
422/*****************************************************************************/ 902/*****************************************************************************/
423 903
424void inline_size 904inline_speed void
425anfds_init (ANFD *base, int count)
426{
427 while (count--)
428 {
429 base->head = 0;
430 base->events = EV_NONE;
431 base->reify = 0;
432
433 ++base;
434 }
435}
436
437void inline_speed
438fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
439{ 906{
440 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
441 ev_io *w; 908 ev_io *w;
442 909
443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
447 if (ev) 914 if (ev)
448 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
449 } 916 }
450} 917}
451 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
452void 930void
453ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 932{
933 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
456} 935}
457 936
458void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
459fd_reify (EV_P) 940fd_reify (EV_P)
460{ 941{
461 int i; 942 int i;
462 943
463 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
464 { 945 {
465 int fd = fdchanges [i]; 946 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 947 ANFD *anfd = anfds + fd;
467 ev_io *w; 948 ev_io *w;
468 949
469 int events = 0; 950 unsigned char events = 0;
470 951
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 953 events |= (unsigned char)w->events;
473 954
474#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
475 if (events) 956 if (events)
476 { 957 {
477 unsigned long argp; 958 unsigned long arg;
478 anfd->handle = _get_osfhandle (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
480 } 961 }
481#endif 962#endif
482 963
964 {
965 unsigned char o_events = anfd->events;
966 unsigned char o_reify = anfd->reify;
967
483 anfd->reify = 0; 968 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 969 anfd->events = events;
970
971 if (o_events != events || o_reify & EV__IOFDSET)
972 backend_modify (EV_A_ fd, o_events, events);
973 }
487 } 974 }
488 975
489 fdchangecnt = 0; 976 fdchangecnt = 0;
490} 977}
491 978
492void inline_size 979/* something about the given fd changed */
980inline_size void
493fd_change (EV_P_ int fd) 981fd_change (EV_P_ int fd, int flags)
494{ 982{
495 if (expect_false (anfds [fd].reify)) 983 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 984 anfds [fd].reify |= flags;
499 985
986 if (expect_true (!reify))
987 {
500 ++fdchangecnt; 988 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
991 }
503} 992}
504 993
505void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
506fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
507{ 997{
508 ev_io *w; 998 ev_io *w;
509 999
510 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
512 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
514 } 1004 }
515} 1005}
516 1006
517int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
518fd_valid (int fd) 1009fd_valid (int fd)
519{ 1010{
520#ifdef _WIN32 1011#ifdef _WIN32
521 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
522#else 1013#else
523 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
524#endif 1015#endif
525} 1016}
526 1017
530{ 1021{
531 int fd; 1022 int fd;
532 1023
533 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
534 if (anfds [fd].events) 1025 if (anfds [fd].events)
535 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
536 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
537} 1028}
538 1029
539/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
540static void noinline 1031static void noinline
544 1035
545 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
546 if (anfds [fd].events) 1037 if (anfds [fd].events)
547 { 1038 {
548 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
549 return; 1040 break;
550 } 1041 }
551} 1042}
552 1043
553/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
554static void noinline 1045static void noinline
555fd_rearm_all (EV_P) 1046fd_rearm_all (EV_P)
556{ 1047{
557 int fd; 1048 int fd;
558 1049
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 1051 if (anfds [fd].events)
562 { 1052 {
563 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 1054 anfds [fd].emask = 0;
1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
565 } 1056 }
566} 1057}
567 1058
568/*****************************************************************************/ 1059/* used to prepare libev internal fd's */
569 1060/* this is not fork-safe */
570void inline_speed 1061inline_speed void
571upheap (WT *heap, int k)
572{
573 WT w = heap [k];
574
575 while (k && heap [k >> 1]->at > w->at)
576 {
577 heap [k] = heap [k >> 1];
578 ((W)heap [k])->active = k + 1;
579 k >>= 1;
580 }
581
582 heap [k] = w;
583 ((W)heap [k])->active = k + 1;
584
585}
586
587void inline_speed
588downheap (WT *heap, int N, int k)
589{
590 WT w = heap [k];
591
592 while (k < (N >> 1))
593 {
594 int j = k << 1;
595
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break;
601
602 heap [k] = heap [j];
603 ((W)heap [k])->active = k + 1;
604 k = j;
605 }
606
607 heap [k] = w;
608 ((W)heap [k])->active = k + 1;
609}
610
611void inline_size
612adjustheap (WT *heap, int N, int k)
613{
614 upheap (heap, k);
615 downheap (heap, N, k);
616}
617
618/*****************************************************************************/
619
620typedef struct
621{
622 WL head;
623 sig_atomic_t volatile gotsig;
624} ANSIG;
625
626static ANSIG *signals;
627static int signalmax;
628
629static int sigpipe [2];
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632
633void inline_size
634signals_init (ANSIG *base, int count)
635{
636 while (count--)
637 {
638 base->head = 0;
639 base->gotsig = 0;
640
641 ++base;
642 }
643}
644
645static void
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size
697fd_intern (int fd) 1062fd_intern (int fd)
698{ 1063{
699#ifdef _WIN32 1064#ifdef _WIN32
700 int arg = 1; 1065 unsigned long arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
702#else 1067#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC); 1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 1069 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 1070#endif
706} 1071}
707 1072
1073/*****************************************************************************/
1074
1075/*
1076 * the heap functions want a real array index. array index 0 is guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081/*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087#if EV_USE_4HEAP
1088
1089#define DHEAP 4
1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092#define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138#else /* 4HEAP */
1139
1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
1143
1144/* away from the root */
1145inline_speed void
1146downheap (ANHE *heap, int N, int k)
1147{
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171}
1172#endif
1173
1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
1198adjustheap (ANHE *heap, int N, int k)
1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216}
1217
1218/*****************************************************************************/
1219
1220/* associate signal watchers to a signal signal */
1221typedef struct
1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1227 WL head;
1228} ANSIG;
1229
1230static ANSIG signals [EV_NSIG - 1];
1231
1232/*****************************************************************************/
1233
1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
708static void noinline 1236static void noinline
709siginit (EV_P) 1237evpipe_init (EV_P)
710{ 1238{
1239 if (!ev_is_active (&pipe_w))
1240 {
1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253# endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
711 fd_intern (sigpipe [0]); 1258 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
713 1262
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 1263 ev_io_start (EV_A_ &pipe_w);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266}
1267
1268inline_size void
1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270{
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278#if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285#endif
1286 write (evpipe [1], &dummy, 1);
1287
1288 errno = old_errno;
1289 }
1290}
1291
1292/* called whenever the libev signal pipe */
1293/* got some events (signal, async) */
1294static void
1295pipecb (EV_P_ ev_io *iow, int revents)
1296{
1297 int i;
1298
1299#if EV_USE_EVENTFD
1300 if (evfd >= 0)
1301 {
1302 uint64_t counter;
1303 read (evfd, &counter, sizeof (uint64_t));
1304 }
1305 else
1306#endif
1307 {
1308 char dummy;
1309 read (evpipe [0], &dummy, 1);
1310 }
1311
1312 if (sig_pending)
1313 {
1314 sig_pending = 0;
1315
1316 for (i = EV_NSIG - 1; i--; )
1317 if (expect_false (signals [i].pending))
1318 ev_feed_signal_event (EV_A_ i + 1);
1319 }
1320
1321#if EV_ASYNC_ENABLE
1322 if (async_pending)
1323 {
1324 async_pending = 0;
1325
1326 for (i = asynccnt; i--; )
1327 if (asyncs [i]->sent)
1328 {
1329 asyncs [i]->sent = 0;
1330 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1331 }
1332 }
1333#endif
717} 1334}
718 1335
719/*****************************************************************************/ 1336/*****************************************************************************/
720 1337
721static ev_child *childs [EV_PID_HASHSIZE]; 1338static void
1339ev_sighandler (int signum)
1340{
1341#if EV_MULTIPLICITY
1342 EV_P = signals [signum - 1].loop;
1343#endif
722 1344
723#ifndef _WIN32 1345#ifdef _WIN32
1346 signal (signum, ev_sighandler);
1347#endif
1348
1349 signals [signum - 1].pending = 1;
1350 evpipe_write (EV_A_ &sig_pending);
1351}
1352
1353void noinline
1354ev_feed_signal_event (EV_P_ int signum)
1355{
1356 WL w;
1357
1358 if (expect_false (signum <= 0 || signum > EV_NSIG))
1359 return;
1360
1361 --signum;
1362
1363#if EV_MULTIPLICITY
1364 /* it is permissible to try to feed a signal to the wrong loop */
1365 /* or, likely more useful, feeding a signal nobody is waiting for */
1366
1367 if (expect_false (signals [signum].loop != EV_A))
1368 return;
1369#endif
1370
1371 signals [signum].pending = 0;
1372
1373 for (w = signals [signum].head; w; w = w->next)
1374 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1375}
1376
1377#if EV_USE_SIGNALFD
1378static void
1379sigfdcb (EV_P_ ev_io *iow, int revents)
1380{
1381 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1382
1383 for (;;)
1384 {
1385 ssize_t res = read (sigfd, si, sizeof (si));
1386
1387 /* not ISO-C, as res might be -1, but works with SuS */
1388 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1389 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1390
1391 if (res < (ssize_t)sizeof (si))
1392 break;
1393 }
1394}
1395#endif
1396
1397#endif
1398
1399/*****************************************************************************/
1400
1401#if EV_CHILD_ENABLE
1402static WL childs [EV_PID_HASHSIZE];
724 1403
725static ev_signal childev; 1404static ev_signal childev;
726 1405
727void inline_speed 1406#ifndef WIFCONTINUED
1407# define WIFCONTINUED(status) 0
1408#endif
1409
1410/* handle a single child status event */
1411inline_speed void
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1412child_reap (EV_P_ int chain, int pid, int status)
729{ 1413{
730 ev_child *w; 1414 ev_child *w;
1415 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1416
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1417 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1418 {
733 if (w->pid == pid || !w->pid) 1419 if ((w->pid == pid || !w->pid)
1420 && (!traced || (w->flags & 1)))
734 { 1421 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1422 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1423 w->rpid = pid;
737 w->rstatus = status; 1424 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1425 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1426 }
1427 }
740} 1428}
741 1429
742#ifndef WCONTINUED 1430#ifndef WCONTINUED
743# define WCONTINUED 0 1431# define WCONTINUED 0
744#endif 1432#endif
745 1433
1434/* called on sigchld etc., calls waitpid */
746static void 1435static void
747childcb (EV_P_ ev_signal *sw, int revents) 1436childcb (EV_P_ ev_signal *sw, int revents)
748{ 1437{
749 int pid, status; 1438 int pid, status;
750 1439
753 if (!WCONTINUED 1442 if (!WCONTINUED
754 || errno != EINVAL 1443 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1444 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 1445 return;
757 1446
758 /* make sure we are called again until all childs have been reaped */ 1447 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 1448 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1449 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 1450
762 child_reap (EV_A_ sw, pid, pid, status); 1451 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 1452 if ((EV_PID_HASHSIZE) > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1453 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 1454}
766 1455
767#endif 1456#endif
768 1457
769/*****************************************************************************/ 1458/*****************************************************************************/
831 /* kqueue is borked on everything but netbsd apparently */ 1520 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */ 1521 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE; 1522 flags &= ~EVBACKEND_KQUEUE;
834#endif 1523#endif
835#ifdef __APPLE__ 1524#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation 1525 /* only select works correctly on that "unix-certified" platform */
837 flags &= ~EVBACKEND_POLL; 1526 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1527 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1528#endif
1529#ifdef __FreeBSD__
1530 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
838#endif 1531#endif
839 1532
840 return flags; 1533 return flags;
841} 1534}
842 1535
843unsigned int 1536unsigned int
844ev_embeddable_backends (void) 1537ev_embeddable_backends (void)
845{ 1538{
846 return EVBACKEND_EPOLL 1539 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1540
848 | EVBACKEND_PORT; 1541 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1542 /* please fix it and tell me how to detect the fix */
1543 flags &= ~EVBACKEND_EPOLL;
1544
1545 return flags;
849} 1546}
850 1547
851unsigned int 1548unsigned int
852ev_backend (EV_P) 1549ev_backend (EV_P)
853{ 1550{
854 return backend; 1551 return backend;
855} 1552}
856 1553
857static void 1554#if EV_FEATURE_API
1555unsigned int
1556ev_iteration (EV_P)
1557{
1558 return loop_count;
1559}
1560
1561unsigned int
1562ev_depth (EV_P)
1563{
1564 return loop_depth;
1565}
1566
1567void
1568ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1569{
1570 io_blocktime = interval;
1571}
1572
1573void
1574ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1575{
1576 timeout_blocktime = interval;
1577}
1578
1579void
1580ev_set_userdata (EV_P_ void *data)
1581{
1582 userdata = data;
1583}
1584
1585void *
1586ev_userdata (EV_P)
1587{
1588 return userdata;
1589}
1590
1591void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1592{
1593 invoke_cb = invoke_pending_cb;
1594}
1595
1596void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1597{
1598 release_cb = release;
1599 acquire_cb = acquire;
1600}
1601#endif
1602
1603/* initialise a loop structure, must be zero-initialised */
1604static void noinline
858loop_init (EV_P_ unsigned int flags) 1605loop_init (EV_P_ unsigned int flags)
859{ 1606{
860 if (!backend) 1607 if (!backend)
861 { 1608 {
1609#if EV_USE_REALTIME
1610 if (!have_realtime)
1611 {
1612 struct timespec ts;
1613
1614 if (!clock_gettime (CLOCK_REALTIME, &ts))
1615 have_realtime = 1;
1616 }
1617#endif
1618
862#if EV_USE_MONOTONIC 1619#if EV_USE_MONOTONIC
1620 if (!have_monotonic)
863 { 1621 {
864 struct timespec ts; 1622 struct timespec ts;
1623
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1624 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1625 have_monotonic = 1;
867 } 1626 }
868#endif 1627#endif
869 1628
870 ev_rt_now = ev_time (); 1629 /* pid check not overridable via env */
871 mn_now = get_clock (); 1630#ifndef _WIN32
872 now_floor = mn_now; 1631 if (flags & EVFLAG_FORKCHECK)
873 rtmn_diff = ev_rt_now - mn_now; 1632 curpid = getpid ();
1633#endif
874 1634
875 if (!(flags & EVFLAG_NOENV) 1635 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1636 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1637 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1638 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1639
1640 ev_rt_now = ev_time ();
1641 mn_now = get_clock ();
1642 now_floor = mn_now;
1643 rtmn_diff = ev_rt_now - mn_now;
1644#if EV_FEATURE_API
1645 invoke_cb = ev_invoke_pending;
1646#endif
1647
1648 io_blocktime = 0.;
1649 timeout_blocktime = 0.;
1650 backend = 0;
1651 backend_fd = -1;
1652 sig_pending = 0;
1653#if EV_ASYNC_ENABLE
1654 async_pending = 0;
1655#endif
1656#if EV_USE_INOTIFY
1657 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1658#endif
1659#if EV_USE_SIGNALFD
1660 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1661#endif
1662
880 if (!(flags & 0x0000ffffUL)) 1663 if (!(flags & 0x0000ffffU))
881 flags |= ev_recommended_backends (); 1664 flags |= ev_recommended_backends ();
882 1665
883 backend = 0;
884#if EV_USE_PORT 1666#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1668#endif
887#if EV_USE_KQUEUE 1669#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1670 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1677#endif
896#if EV_USE_SELECT 1678#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1679 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1680#endif
899 1681
1682 ev_prepare_init (&pending_w, pendingcb);
1683
1684#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
900 ev_init (&sigev, sigcb); 1685 ev_init (&pipe_w, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1686 ev_set_priority (&pipe_w, EV_MAXPRI);
1687#endif
902 } 1688 }
903} 1689}
904 1690
905static void 1691/* free up a loop structure */
1692static void noinline
906loop_destroy (EV_P) 1693loop_destroy (EV_P)
907{ 1694{
908 int i; 1695 int i;
1696
1697 if (ev_is_active (&pipe_w))
1698 {
1699 /*ev_ref (EV_A);*/
1700 /*ev_io_stop (EV_A_ &pipe_w);*/
1701
1702#if EV_USE_EVENTFD
1703 if (evfd >= 0)
1704 close (evfd);
1705#endif
1706
1707 if (evpipe [0] >= 0)
1708 {
1709 EV_WIN32_CLOSE_FD (evpipe [0]);
1710 EV_WIN32_CLOSE_FD (evpipe [1]);
1711 }
1712 }
1713
1714#if EV_USE_SIGNALFD
1715 if (ev_is_active (&sigfd_w))
1716 close (sigfd);
1717#endif
1718
1719#if EV_USE_INOTIFY
1720 if (fs_fd >= 0)
1721 close (fs_fd);
1722#endif
1723
1724 if (backend_fd >= 0)
1725 close (backend_fd);
909 1726
910#if EV_USE_PORT 1727#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1729#endif
913#if EV_USE_KQUEUE 1730#if EV_USE_KQUEUE
922#if EV_USE_SELECT 1739#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1740 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1741#endif
925 1742
926 for (i = NUMPRI; i--; ) 1743 for (i = NUMPRI; i--; )
1744 {
927 array_free (pending, [i]); 1745 array_free (pending, [i]);
1746#if EV_IDLE_ENABLE
1747 array_free (idle, [i]);
1748#endif
1749 }
1750
1751 ev_free (anfds); anfds = 0; anfdmax = 0;
928 1752
929 /* have to use the microsoft-never-gets-it-right macro */ 1753 /* have to use the microsoft-never-gets-it-right macro */
1754 array_free (rfeed, EMPTY);
930 array_free (fdchange, EMPTY0); 1755 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1756 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1757#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1758 array_free (periodic, EMPTY);
934#endif 1759#endif
1760#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1761 array_free (fork, EMPTY);
1762#endif
936 array_free (prepare, EMPTY0); 1763 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1764 array_free (check, EMPTY);
1765#if EV_ASYNC_ENABLE
1766 array_free (async, EMPTY);
1767#endif
938 1768
939 backend = 0; 1769 backend = 0;
940} 1770}
941 1771
942static void 1772#if EV_USE_INOTIFY
1773inline_size void infy_fork (EV_P);
1774#endif
1775
1776inline_size void
943loop_fork (EV_P) 1777loop_fork (EV_P)
944{ 1778{
945#if EV_USE_PORT 1779#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1780 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 1781#endif
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1783 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1784#endif
951#if EV_USE_EPOLL 1785#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1786 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1787#endif
1788#if EV_USE_INOTIFY
1789 infy_fork (EV_A);
1790#endif
954 1791
955 if (ev_is_active (&sigev)) 1792 if (ev_is_active (&pipe_w))
956 { 1793 {
957 /* default loop */ 1794 /* this "locks" the handlers against writing to the pipe */
1795 /* while we modify the fd vars */
1796 sig_pending = 1;
1797#if EV_ASYNC_ENABLE
1798 async_pending = 1;
1799#endif
958 1800
959 ev_ref (EV_A); 1801 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1802 ev_io_stop (EV_A_ &pipe_w);
961 close (sigpipe [0]);
962 close (sigpipe [1]);
963 1803
964 while (pipe (sigpipe)) 1804#if EV_USE_EVENTFD
965 syserr ("(libev) error creating pipe"); 1805 if (evfd >= 0)
1806 close (evfd);
1807#endif
966 1808
1809 if (evpipe [0] >= 0)
1810 {
1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1813 }
1814
1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
967 siginit (EV_A); 1816 evpipe_init (EV_A);
1817 /* now iterate over everything, in case we missed something */
1818 pipecb (EV_A_ &pipe_w, EV_READ);
1819#endif
968 } 1820 }
969 1821
970 postfork = 0; 1822 postfork = 0;
971} 1823}
972 1824
973#if EV_MULTIPLICITY 1825#if EV_MULTIPLICITY
1826
974struct ev_loop * 1827struct ev_loop *
975ev_loop_new (unsigned int flags) 1828ev_loop_new (unsigned int flags)
976{ 1829{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1830 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978 1831
979 memset (loop, 0, sizeof (struct ev_loop)); 1832 memset (EV_A, 0, sizeof (struct ev_loop));
980
981 loop_init (EV_A_ flags); 1833 loop_init (EV_A_ flags);
982 1834
983 if (ev_backend (EV_A)) 1835 if (ev_backend (EV_A))
984 return loop; 1836 return EV_A;
985 1837
986 return 0; 1838 return 0;
987} 1839}
988 1840
989void 1841void
994} 1846}
995 1847
996void 1848void
997ev_loop_fork (EV_P) 1849ev_loop_fork (EV_P)
998{ 1850{
999 postfork = 1; 1851 postfork = 1; /* must be in line with ev_default_fork */
1000} 1852}
1853#endif /* multiplicity */
1001 1854
1855#if EV_VERIFY
1856static void noinline
1857verify_watcher (EV_P_ W w)
1858{
1859 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1860
1861 if (w->pending)
1862 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1863}
1864
1865static void noinline
1866verify_heap (EV_P_ ANHE *heap, int N)
1867{
1868 int i;
1869
1870 for (i = HEAP0; i < N + HEAP0; ++i)
1871 {
1872 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1873 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1874 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1875
1876 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1877 }
1878}
1879
1880static void noinline
1881array_verify (EV_P_ W *ws, int cnt)
1882{
1883 while (cnt--)
1884 {
1885 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1886 verify_watcher (EV_A_ ws [cnt]);
1887 }
1888}
1889#endif
1890
1891#if EV_FEATURE_API
1892void
1893ev_verify (EV_P)
1894{
1895#if EV_VERIFY
1896 int i;
1897 WL w;
1898
1899 assert (activecnt >= -1);
1900
1901 assert (fdchangemax >= fdchangecnt);
1902 for (i = 0; i < fdchangecnt; ++i)
1903 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1904
1905 assert (anfdmax >= 0);
1906 for (i = 0; i < anfdmax; ++i)
1907 for (w = anfds [i].head; w; w = w->next)
1908 {
1909 verify_watcher (EV_A_ (W)w);
1910 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1911 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1912 }
1913
1914 assert (timermax >= timercnt);
1915 verify_heap (EV_A_ timers, timercnt);
1916
1917#if EV_PERIODIC_ENABLE
1918 assert (periodicmax >= periodiccnt);
1919 verify_heap (EV_A_ periodics, periodiccnt);
1920#endif
1921
1922 for (i = NUMPRI; i--; )
1923 {
1924 assert (pendingmax [i] >= pendingcnt [i]);
1925#if EV_IDLE_ENABLE
1926 assert (idleall >= 0);
1927 assert (idlemax [i] >= idlecnt [i]);
1928 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1929#endif
1930 }
1931
1932#if EV_FORK_ENABLE
1933 assert (forkmax >= forkcnt);
1934 array_verify (EV_A_ (W *)forks, forkcnt);
1935#endif
1936
1937#if EV_ASYNC_ENABLE
1938 assert (asyncmax >= asynccnt);
1939 array_verify (EV_A_ (W *)asyncs, asynccnt);
1940#endif
1941
1942#if EV_PREPARE_ENABLE
1943 assert (preparemax >= preparecnt);
1944 array_verify (EV_A_ (W *)prepares, preparecnt);
1945#endif
1946
1947#if EV_CHECK_ENABLE
1948 assert (checkmax >= checkcnt);
1949 array_verify (EV_A_ (W *)checks, checkcnt);
1950#endif
1951
1952# if 0
1953#if EV_CHILD_ENABLE
1954 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1955 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1956#endif
1957# endif
1958#endif
1959}
1002#endif 1960#endif
1003 1961
1004#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1005struct ev_loop * 1963struct ev_loop *
1006ev_default_loop_init (unsigned int flags) 1964ev_default_loop_init (unsigned int flags)
1007#else 1965#else
1008int 1966int
1009ev_default_loop (unsigned int flags) 1967ev_default_loop (unsigned int flags)
1010#endif 1968#endif
1011{ 1969{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 1970 if (!ev_default_loop_ptr)
1017 { 1971 {
1018#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1973 EV_P = ev_default_loop_ptr = &default_loop_struct;
1020#else 1974#else
1021 ev_default_loop_ptr = 1; 1975 ev_default_loop_ptr = 1;
1022#endif 1976#endif
1023 1977
1024 loop_init (EV_A_ flags); 1978 loop_init (EV_A_ flags);
1025 1979
1026 if (ev_backend (EV_A)) 1980 if (ev_backend (EV_A))
1027 { 1981 {
1028 siginit (EV_A); 1982#if EV_CHILD_ENABLE
1029
1030#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 1983 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 1984 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 1985 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1986 ev_unref (EV_A); /* child watcher should not keep loop alive */
1035#endif 1987#endif
1043 1995
1044void 1996void
1045ev_default_destroy (void) 1997ev_default_destroy (void)
1046{ 1998{
1047#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
1048 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
1049#endif 2001#endif
1050 2002
1051#ifndef _WIN32 2003 ev_default_loop_ptr = 0;
2004
2005#if EV_CHILD_ENABLE
1052 ev_ref (EV_A); /* child watcher */ 2006 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev); 2007 ev_signal_stop (EV_A_ &childev);
1054#endif 2008#endif
1055 2009
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A); 2010 loop_destroy (EV_A);
1063} 2011}
1064 2012
1065void 2013void
1066ev_default_fork (void) 2014ev_default_fork (void)
1067{ 2015{
1068#if EV_MULTIPLICITY 2016#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr; 2017 EV_P = ev_default_loop_ptr;
1070#endif 2018#endif
1071 2019
1072 if (backend) 2020 postfork = 1; /* must be in line with ev_loop_fork */
1073 postfork = 1;
1074} 2021}
1075 2022
1076/*****************************************************************************/ 2023/*****************************************************************************/
1077 2024
1078int inline_size 2025void
1079any_pending (EV_P) 2026ev_invoke (EV_P_ void *w, int revents)
2027{
2028 EV_CB_INVOKE ((W)w, revents);
2029}
2030
2031unsigned int
2032ev_pending_count (EV_P)
1080{ 2033{
1081 int pri; 2034 int pri;
2035 unsigned int count = 0;
1082 2036
1083 for (pri = NUMPRI; pri--; ) 2037 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri]) 2038 count += pendingcnt [pri];
1085 return 1;
1086 2039
1087 return 0; 2040 return count;
1088} 2041}
1089 2042
1090void inline_speed 2043void noinline
1091call_pending (EV_P) 2044ev_invoke_pending (EV_P)
1092{ 2045{
1093 int pri; 2046 int pri;
1094 2047
1095 for (pri = NUMPRI; pri--; ) 2048 for (pri = NUMPRI; pri--; )
1096 while (pendingcnt [pri]) 2049 while (pendingcnt [pri])
1097 { 2050 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2051 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099 2052
1100 if (expect_true (p->w))
1101 {
1102 assert (("non-pending watcher on pending list", p->w->pending)); 2053 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2054 /* ^ this is no longer true, as pending_w could be here */
1103 2055
1104 p->w->pending = 0; 2056 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 2057 EV_CB_INVOKE (p->w, p->events);
1106 } 2058 EV_FREQUENT_CHECK;
1107 } 2059 }
1108} 2060}
1109 2061
1110void inline_size 2062#if EV_IDLE_ENABLE
2063/* make idle watchers pending. this handles the "call-idle */
2064/* only when higher priorities are idle" logic */
2065inline_size void
2066idle_reify (EV_P)
2067{
2068 if (expect_false (idleall))
2069 {
2070 int pri;
2071
2072 for (pri = NUMPRI; pri--; )
2073 {
2074 if (pendingcnt [pri])
2075 break;
2076
2077 if (idlecnt [pri])
2078 {
2079 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2080 break;
2081 }
2082 }
2083 }
2084}
2085#endif
2086
2087/* make timers pending */
2088inline_size void
1111timers_reify (EV_P) 2089timers_reify (EV_P)
1112{ 2090{
2091 EV_FREQUENT_CHECK;
2092
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 2093 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 2094 {
1115 ev_timer *w = timers [0]; 2095 do
1116
1117 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1118
1119 /* first reschedule or stop timer */
1120 if (w->repeat)
1121 { 2096 {
2097 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2098
2099 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2100
2101 /* first reschedule or stop timer */
2102 if (w->repeat)
2103 {
2104 ev_at (w) += w->repeat;
2105 if (ev_at (w) < mn_now)
2106 ev_at (w) = mn_now;
2107
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2108 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 2109
1124 ((WT)w)->at += w->repeat; 2110 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 2111 downheap (timers, timercnt, HEAP0);
2112 }
2113 else
2114 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2115
2116 EV_FREQUENT_CHECK;
2117 feed_reverse (EV_A_ (W)w);
1129 } 2118 }
1130 else 2119 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 2120
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2121 feed_reverse_done (EV_A_ EV_TIMER);
1134 } 2122 }
1135} 2123}
1136 2124
1137#if EV_PERIODIC_ENABLE 2125#if EV_PERIODIC_ENABLE
1138void inline_size 2126/* make periodics pending */
2127inline_size void
1139periodics_reify (EV_P) 2128periodics_reify (EV_P)
1140{ 2129{
2130 EV_FREQUENT_CHECK;
2131
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2132 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 2133 {
1143 ev_periodic *w = periodics [0]; 2134 int feed_count = 0;
1144 2135
1145 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2136 do
1146
1147 /* first reschedule or stop timer */
1148 if (w->reschedule_cb)
1149 { 2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2139
2140 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2141
2142 /* first reschedule or stop timer */
2143 if (w->reschedule_cb)
2144 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2145 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2146
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2147 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2148
2149 ANHE_at_cache (periodics [HEAP0]);
1152 downheap ((WT *)periodics, periodiccnt, 0); 2150 downheap (periodics, periodiccnt, HEAP0);
2151 }
2152 else if (w->interval)
2153 {
2154 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2155 /* if next trigger time is not sufficiently in the future, put it there */
2156 /* this might happen because of floating point inexactness */
2157 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2158 {
2159 ev_at (w) += w->interval;
2160
2161 /* if interval is unreasonably low we might still have a time in the past */
2162 /* so correct this. this will make the periodic very inexact, but the user */
2163 /* has effectively asked to get triggered more often than possible */
2164 if (ev_at (w) < ev_rt_now)
2165 ev_at (w) = ev_rt_now;
2166 }
2167
2168 ANHE_at_cache (periodics [HEAP0]);
2169 downheap (periodics, periodiccnt, HEAP0);
2170 }
2171 else
2172 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2173
2174 EV_FREQUENT_CHECK;
2175 feed_reverse (EV_A_ (W)w);
1153 } 2176 }
1154 else if (w->interval) 2177 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1155 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0);
1159 }
1160 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 2178
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2179 feed_reverse_done (EV_A_ EV_PERIODIC);
1164 } 2180 }
1165} 2181}
1166 2182
2183/* simply recalculate all periodics */
2184/* TODO: maybe ensure that at least one event happens when jumping forward? */
1167static void noinline 2185static void noinline
1168periodics_reschedule (EV_P) 2186periodics_reschedule (EV_P)
1169{ 2187{
1170 int i; 2188 int i;
1171 2189
1172 /* adjust periodics after time jump */ 2190 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 2191 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1174 { 2192 {
1175 ev_periodic *w = periodics [i]; 2193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1176 2194
1177 if (w->reschedule_cb) 2195 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2196 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 2197 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2198 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2199
2200 ANHE_at_cache (periodics [i]);
2201 }
2202
2203 reheap (periodics, periodiccnt);
2204}
2205#endif
2206
2207/* adjust all timers by a given offset */
2208static void noinline
2209timers_reschedule (EV_P_ ev_tstamp adjust)
2210{
2211 int i;
2212
2213 for (i = 0; i < timercnt; ++i)
1181 } 2214 {
1182 2215 ANHE *he = timers + i + HEAP0;
1183 /* now rebuild the heap */ 2216 ANHE_w (*he)->at += adjust;
1184 for (i = periodiccnt >> 1; i--; ) 2217 ANHE_at_cache (*he);
1185 downheap ((WT *)periodics, periodiccnt, i); 2218 }
1186} 2219}
1187#endif
1188 2220
1189int inline_size 2221/* fetch new monotonic and realtime times from the kernel */
1190time_update_monotonic (EV_P) 2222/* also detect if there was a timejump, and act accordingly */
2223inline_speed void
2224time_update (EV_P_ ev_tstamp max_block)
1191{ 2225{
2226#if EV_USE_MONOTONIC
2227 if (expect_true (have_monotonic))
2228 {
2229 int i;
2230 ev_tstamp odiff = rtmn_diff;
2231
1192 mn_now = get_clock (); 2232 mn_now = get_clock ();
1193 2233
2234 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2235 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2236 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 2237 {
1196 ev_rt_now = rtmn_diff + mn_now; 2238 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 2239 return;
1198 } 2240 }
1199 else 2241
1200 {
1201 now_floor = mn_now; 2242 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 2244
1207void inline_size 2245 /* loop a few times, before making important decisions.
1208time_update (EV_P) 2246 * on the choice of "4": one iteration isn't enough,
1209{ 2247 * in case we get preempted during the calls to
1210 int i; 2248 * ev_time and get_clock. a second call is almost guaranteed
1211 2249 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 2250 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 2251 * in the unlikely event of having been preempted here.
1214 { 2252 */
1215 if (time_update_monotonic (EV_A)) 2253 for (i = 4; --i; )
1216 { 2254 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 2255 rtmn_diff = ev_rt_now - mn_now;
1230 2256
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2257 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 2258 return; /* all is well */
1233 2259
1234 ev_rt_now = ev_time (); 2260 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 2261 mn_now = get_clock ();
1236 now_floor = mn_now; 2262 now_floor = mn_now;
1237 } 2263 }
1238 2264
2265 /* no timer adjustment, as the monotonic clock doesn't jump */
2266 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1239# if EV_PERIODIC_ENABLE 2267# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 2268 periodics_reschedule (EV_A);
1241# endif 2269# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 2270 }
1246 else 2271 else
1247#endif 2272#endif
1248 { 2273 {
1249 ev_rt_now = ev_time (); 2274 ev_rt_now = ev_time ();
1250 2275
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2276 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 2277 {
2278 /* adjust timers. this is easy, as the offset is the same for all of them */
2279 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1253#if EV_PERIODIC_ENABLE 2280#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 2281 periodics_reschedule (EV_A);
1255#endif 2282#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */
1258 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 2283 }
1261 2284
1262 mn_now = ev_rt_now; 2285 mn_now = ev_rt_now;
1263 } 2286 }
1264} 2287}
1265 2288
1266void 2289void
1267ev_ref (EV_P)
1268{
1269 ++activecnt;
1270}
1271
1272void
1273ev_unref (EV_P)
1274{
1275 --activecnt;
1276}
1277
1278static int loop_done;
1279
1280void
1281ev_loop (EV_P_ int flags) 2290ev_loop (EV_P_ int flags)
1282{ 2291{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2292#if EV_FEATURE_API
1284 ? EVUNLOOP_ONE 2293 ++loop_depth;
1285 : EVUNLOOP_CANCEL; 2294#endif
1286 2295
1287 while (activecnt) 2296 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2297
2298 loop_done = EVUNLOOP_CANCEL;
2299
2300 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2301
2302 do
1288 { 2303 {
1289 /* we might have forked, so reify kernel state if necessary */ 2304#if EV_VERIFY >= 2
2305 ev_verify (EV_A);
2306#endif
2307
2308#ifndef _WIN32
2309 if (expect_false (curpid)) /* penalise the forking check even more */
2310 if (expect_false (getpid () != curpid))
2311 {
2312 curpid = getpid ();
2313 postfork = 1;
2314 }
2315#endif
2316
1290 #if EV_FORK_ENABLE 2317#if EV_FORK_ENABLE
2318 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 2319 if (expect_false (postfork))
1292 if (forkcnt) 2320 if (forkcnt)
1293 { 2321 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2322 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 2323 EV_INVOKE_PENDING;
1296 } 2324 }
1297 #endif 2325#endif
1298 2326
2327#if EV_PREPARE_ENABLE
1299 /* queue check watchers (and execute them) */ 2328 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 2329 if (expect_false (preparecnt))
1301 { 2330 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2331 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 2332 EV_INVOKE_PENDING;
1304 } 2333 }
2334#endif
2335
2336 if (expect_false (loop_done))
2337 break;
1305 2338
1306 /* we might have forked, so reify kernel state if necessary */ 2339 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 2340 if (expect_false (postfork))
1308 loop_fork (EV_A); 2341 loop_fork (EV_A);
1309 2342
1310 /* update fd-related kernel structures */ 2343 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 2344 fd_reify (EV_A);
1312 2345
1313 /* calculate blocking time */ 2346 /* calculate blocking time */
1314 { 2347 {
1315 double block; 2348 ev_tstamp waittime = 0.;
2349 ev_tstamp sleeptime = 0.;
1316 2350
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 2351 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 2352 {
2353 /* remember old timestamp for io_blocktime calculation */
2354 ev_tstamp prev_mn_now = mn_now;
2355
1321 /* update time to cancel out callback processing overhead */ 2356 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 2357 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 2358
1332 block = MAX_BLOCKTIME; 2359 waittime = MAX_BLOCKTIME;
1333 2360
1334 if (timercnt) 2361 if (timercnt)
1335 { 2362 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2363 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1337 if (block > to) block = to; 2364 if (waittime > to) waittime = to;
1338 } 2365 }
1339 2366
1340#if EV_PERIODIC_ENABLE 2367#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 2368 if (periodiccnt)
1342 { 2369 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2370 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 2371 if (waittime > to) waittime = to;
1345 } 2372 }
1346#endif 2373#endif
1347 2374
2375 /* don't let timeouts decrease the waittime below timeout_blocktime */
2376 if (expect_false (waittime < timeout_blocktime))
2377 waittime = timeout_blocktime;
2378
2379 /* extra check because io_blocktime is commonly 0 */
1348 if (expect_false (block < 0.)) block = 0.; 2380 if (expect_false (io_blocktime))
2381 {
2382 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2383
2384 if (sleeptime > waittime - backend_fudge)
2385 sleeptime = waittime - backend_fudge;
2386
2387 if (expect_true (sleeptime > 0.))
2388 {
2389 ev_sleep (sleeptime);
2390 waittime -= sleeptime;
2391 }
2392 }
1349 } 2393 }
1350 2394
2395#if EV_FEATURE_API
2396 ++loop_count;
2397#endif
2398 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1351 backend_poll (EV_A_ block); 2399 backend_poll (EV_A_ waittime);
2400 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2401
2402 /* update ev_rt_now, do magic */
2403 time_update (EV_A_ waittime + sleeptime);
1352 } 2404 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 2405
1357 /* queue pending timers and reschedule them */ 2406 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 2407 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 2408#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 2409 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 2410#endif
1362 2411
2412#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 2413 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 2414 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2415#endif
1366 2416
2417#if EV_CHECK_ENABLE
1367 /* queue check watchers, to be executed first */ 2418 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 2419 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2420 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2421#endif
1370 2422
1371 call_pending (EV_A); 2423 EV_INVOKE_PENDING;
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 2424 }
2425 while (expect_true (
2426 activecnt
2427 && !loop_done
2428 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2429 ));
1376 2430
1377 if (loop_done == EVUNLOOP_ONE) 2431 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 2432 loop_done = EVUNLOOP_CANCEL;
2433
2434#if EV_FEATURE_API
2435 --loop_depth;
2436#endif
1379} 2437}
1380 2438
1381void 2439void
1382ev_unloop (EV_P_ int how) 2440ev_unloop (EV_P_ int how)
1383{ 2441{
1384 loop_done = how; 2442 loop_done = how;
1385} 2443}
1386 2444
2445void
2446ev_ref (EV_P)
2447{
2448 ++activecnt;
2449}
2450
2451void
2452ev_unref (EV_P)
2453{
2454 --activecnt;
2455}
2456
2457void
2458ev_now_update (EV_P)
2459{
2460 time_update (EV_A_ 1e100);
2461}
2462
2463void
2464ev_suspend (EV_P)
2465{
2466 ev_now_update (EV_A);
2467}
2468
2469void
2470ev_resume (EV_P)
2471{
2472 ev_tstamp mn_prev = mn_now;
2473
2474 ev_now_update (EV_A);
2475 timers_reschedule (EV_A_ mn_now - mn_prev);
2476#if EV_PERIODIC_ENABLE
2477 /* TODO: really do this? */
2478 periodics_reschedule (EV_A);
2479#endif
2480}
2481
1387/*****************************************************************************/ 2482/*****************************************************************************/
2483/* singly-linked list management, used when the expected list length is short */
1388 2484
1389void inline_size 2485inline_size void
1390wlist_add (WL *head, WL elem) 2486wlist_add (WL *head, WL elem)
1391{ 2487{
1392 elem->next = *head; 2488 elem->next = *head;
1393 *head = elem; 2489 *head = elem;
1394} 2490}
1395 2491
1396void inline_size 2492inline_size void
1397wlist_del (WL *head, WL elem) 2493wlist_del (WL *head, WL elem)
1398{ 2494{
1399 while (*head) 2495 while (*head)
1400 { 2496 {
1401 if (*head == elem) 2497 if (expect_true (*head == elem))
1402 { 2498 {
1403 *head = elem->next; 2499 *head = elem->next;
1404 return; 2500 break;
1405 } 2501 }
1406 2502
1407 head = &(*head)->next; 2503 head = &(*head)->next;
1408 } 2504 }
1409} 2505}
1410 2506
1411void inline_speed 2507/* internal, faster, version of ev_clear_pending */
2508inline_speed void
1412ev_clear_pending (EV_P_ W w) 2509clear_pending (EV_P_ W w)
1413{ 2510{
1414 if (w->pending) 2511 if (w->pending)
1415 { 2512 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2513 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1417 w->pending = 0; 2514 w->pending = 0;
1418 } 2515 }
1419} 2516}
1420 2517
1421void inline_speed 2518int
2519ev_clear_pending (EV_P_ void *w)
2520{
2521 W w_ = (W)w;
2522 int pending = w_->pending;
2523
2524 if (expect_true (pending))
2525 {
2526 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2527 p->w = (W)&pending_w;
2528 w_->pending = 0;
2529 return p->events;
2530 }
2531 else
2532 return 0;
2533}
2534
2535inline_size void
2536pri_adjust (EV_P_ W w)
2537{
2538 int pri = ev_priority (w);
2539 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2540 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2541 ev_set_priority (w, pri);
2542}
2543
2544inline_speed void
1422ev_start (EV_P_ W w, int active) 2545ev_start (EV_P_ W w, int active)
1423{ 2546{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2547 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 2548 w->active = active;
1428 ev_ref (EV_A); 2549 ev_ref (EV_A);
1429} 2550}
1430 2551
1431void inline_size 2552inline_size void
1432ev_stop (EV_P_ W w) 2553ev_stop (EV_P_ W w)
1433{ 2554{
1434 ev_unref (EV_A); 2555 ev_unref (EV_A);
1435 w->active = 0; 2556 w->active = 0;
1436} 2557}
1437 2558
1438/*****************************************************************************/ 2559/*****************************************************************************/
1439 2560
1440void 2561void noinline
1441ev_io_start (EV_P_ ev_io *w) 2562ev_io_start (EV_P_ ev_io *w)
1442{ 2563{
1443 int fd = w->fd; 2564 int fd = w->fd;
1444 2565
1445 if (expect_false (ev_is_active (w))) 2566 if (expect_false (ev_is_active (w)))
1446 return; 2567 return;
1447 2568
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 2569 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2570 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2571
2572 EV_FREQUENT_CHECK;
1449 2573
1450 ev_start (EV_A_ (W)w, 1); 2574 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2575 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2576 wlist_add (&anfds[fd].head, (WL)w);
1453 2577
1454 fd_change (EV_A_ fd); 2578 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1455} 2579 w->events &= ~EV__IOFDSET;
1456 2580
1457void 2581 EV_FREQUENT_CHECK;
2582}
2583
2584void noinline
1458ev_io_stop (EV_P_ ev_io *w) 2585ev_io_stop (EV_P_ ev_io *w)
1459{ 2586{
1460 ev_clear_pending (EV_A_ (W)w); 2587 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2588 if (expect_false (!ev_is_active (w)))
1462 return; 2589 return;
1463 2590
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2591 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 2592
2593 EV_FREQUENT_CHECK;
2594
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2595 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1468 2597
1469 fd_change (EV_A_ w->fd); 2598 fd_change (EV_A_ w->fd, 1);
1470}
1471 2599
1472void 2600 EV_FREQUENT_CHECK;
2601}
2602
2603void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 2604ev_timer_start (EV_P_ ev_timer *w)
1474{ 2605{
1475 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
1476 return; 2607 return;
1477 2608
1478 ((WT)w)->at += mn_now; 2609 ev_at (w) += mn_now;
1479 2610
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2611 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 2612
2613 EV_FREQUENT_CHECK;
2614
2615 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 2616 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2617 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 2618 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 2619 ANHE_at_cache (timers [ev_active (w)]);
2620 upheap (timers, ev_active (w));
1486 2621
2622 EV_FREQUENT_CHECK;
2623
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2624 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 2625}
1489 2626
1490void 2627void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 2628ev_timer_stop (EV_P_ ev_timer *w)
1492{ 2629{
1493 ev_clear_pending (EV_A_ (W)w); 2630 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 2631 if (expect_false (!ev_is_active (w)))
1495 return; 2632 return;
1496 2633
2634 EV_FREQUENT_CHECK;
2635
2636 {
2637 int active = ev_active (w);
2638
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2639 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1498 2640
2641 --timercnt;
2642
1499 if (expect_true (((W)w)->active < timercnt--)) 2643 if (expect_true (active < timercnt + HEAP0))
1500 { 2644 {
1501 timers [((W)w)->active - 1] = timers [timercnt]; 2645 timers [active] = timers [timercnt + HEAP0];
1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2646 adjustheap (timers, timercnt, active);
1503 } 2647 }
2648 }
1504 2649
1505 ((WT)w)->at -= mn_now; 2650 ev_at (w) -= mn_now;
1506 2651
1507 ev_stop (EV_A_ (W)w); 2652 ev_stop (EV_A_ (W)w);
1508}
1509 2653
1510void 2654 EV_FREQUENT_CHECK;
2655}
2656
2657void noinline
1511ev_timer_again (EV_P_ ev_timer *w) 2658ev_timer_again (EV_P_ ev_timer *w)
1512{ 2659{
2660 EV_FREQUENT_CHECK;
2661
1513 if (ev_is_active (w)) 2662 if (ev_is_active (w))
1514 { 2663 {
1515 if (w->repeat) 2664 if (w->repeat)
1516 { 2665 {
1517 ((WT)w)->at = mn_now + w->repeat; 2666 ev_at (w) = mn_now + w->repeat;
2667 ANHE_at_cache (timers [ev_active (w)]);
1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2668 adjustheap (timers, timercnt, ev_active (w));
1519 } 2669 }
1520 else 2670 else
1521 ev_timer_stop (EV_A_ w); 2671 ev_timer_stop (EV_A_ w);
1522 } 2672 }
1523 else if (w->repeat) 2673 else if (w->repeat)
1524 { 2674 {
1525 w->at = w->repeat; 2675 ev_at (w) = w->repeat;
1526 ev_timer_start (EV_A_ w); 2676 ev_timer_start (EV_A_ w);
1527 } 2677 }
2678
2679 EV_FREQUENT_CHECK;
2680}
2681
2682ev_tstamp
2683ev_timer_remaining (EV_P_ ev_timer *w)
2684{
2685 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1528} 2686}
1529 2687
1530#if EV_PERIODIC_ENABLE 2688#if EV_PERIODIC_ENABLE
1531void 2689void noinline
1532ev_periodic_start (EV_P_ ev_periodic *w) 2690ev_periodic_start (EV_P_ ev_periodic *w)
1533{ 2691{
1534 if (expect_false (ev_is_active (w))) 2692 if (expect_false (ev_is_active (w)))
1535 return; 2693 return;
1536 2694
1537 if (w->reschedule_cb) 2695 if (w->reschedule_cb)
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2696 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval) 2697 else if (w->interval)
1540 { 2698 {
1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2699 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1542 /* this formula differs from the one in periodic_reify because we do not always round up */ 2700 /* this formula differs from the one in periodic_reify because we do not always round up */
1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2701 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1544 } 2702 }
2703 else
2704 ev_at (w) = w->offset;
1545 2705
2706 EV_FREQUENT_CHECK;
2707
2708 ++periodiccnt;
1546 ev_start (EV_A_ (W)w, ++periodiccnt); 2709 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2710 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1548 periodics [periodiccnt - 1] = w; 2711 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1549 upheap ((WT *)periodics, periodiccnt - 1); 2712 ANHE_at_cache (periodics [ev_active (w)]);
2713 upheap (periodics, ev_active (w));
1550 2714
2715 EV_FREQUENT_CHECK;
2716
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2717 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1552} 2718}
1553 2719
1554void 2720void noinline
1555ev_periodic_stop (EV_P_ ev_periodic *w) 2721ev_periodic_stop (EV_P_ ev_periodic *w)
1556{ 2722{
1557 ev_clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
1559 return; 2725 return;
1560 2726
2727 EV_FREQUENT_CHECK;
2728
2729 {
2730 int active = ev_active (w);
2731
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2732 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1562 2733
2734 --periodiccnt;
2735
1563 if (expect_true (((W)w)->active < periodiccnt--)) 2736 if (expect_true (active < periodiccnt + HEAP0))
1564 { 2737 {
1565 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2738 periodics [active] = periodics [periodiccnt + HEAP0];
1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2739 adjustheap (periodics, periodiccnt, active);
1567 } 2740 }
2741 }
1568 2742
1569 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
1570}
1571 2744
1572void 2745 EV_FREQUENT_CHECK;
2746}
2747
2748void noinline
1573ev_periodic_again (EV_P_ ev_periodic *w) 2749ev_periodic_again (EV_P_ ev_periodic *w)
1574{ 2750{
1575 /* TODO: use adjustheap and recalculation */ 2751 /* TODO: use adjustheap and recalculation */
1576 ev_periodic_stop (EV_A_ w); 2752 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w); 2753 ev_periodic_start (EV_A_ w);
1580 2756
1581#ifndef SA_RESTART 2757#ifndef SA_RESTART
1582# define SA_RESTART 0 2758# define SA_RESTART 0
1583#endif 2759#endif
1584 2760
1585void 2761#if EV_SIGNAL_ENABLE
2762
2763void noinline
1586ev_signal_start (EV_P_ ev_signal *w) 2764ev_signal_start (EV_P_ ev_signal *w)
1587{ 2765{
1588#if EV_MULTIPLICITY
1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1590#endif
1591 if (expect_false (ev_is_active (w))) 2766 if (expect_false (ev_is_active (w)))
1592 return; 2767 return;
1593 2768
1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2769 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2770
2771#if EV_MULTIPLICITY
2772 assert (("libev: a signal must not be attached to two different loops",
2773 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2774
2775 signals [w->signum - 1].loop = EV_A;
2776#endif
2777
2778 EV_FREQUENT_CHECK;
2779
2780#if EV_USE_SIGNALFD
2781 if (sigfd == -2)
2782 {
2783 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2784 if (sigfd < 0 && errno == EINVAL)
2785 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2786
2787 if (sigfd >= 0)
2788 {
2789 fd_intern (sigfd); /* doing it twice will not hurt */
2790
2791 sigemptyset (&sigfd_set);
2792
2793 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2794 ev_set_priority (&sigfd_w, EV_MAXPRI);
2795 ev_io_start (EV_A_ &sigfd_w);
2796 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2797 }
2798 }
2799
2800 if (sigfd >= 0)
2801 {
2802 /* TODO: check .head */
2803 sigaddset (&sigfd_set, w->signum);
2804 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2805
2806 signalfd (sigfd, &sigfd_set, 0);
2807 }
2808#endif
1595 2809
1596 ev_start (EV_A_ (W)w, 1); 2810 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2811 wlist_add (&signals [w->signum - 1].head, (WL)w);
1599 2812
1600 if (!((WL)w)->next) 2813 if (!((WL)w)->next)
2814# if EV_USE_SIGNALFD
2815 if (sigfd < 0) /*TODO*/
2816# endif
1601 { 2817 {
1602#if _WIN32 2818# ifdef _WIN32
2819 evpipe_init (EV_A);
2820
1603 signal (w->signum, sighandler); 2821 signal (w->signum, ev_sighandler);
1604#else 2822# else
1605 struct sigaction sa; 2823 struct sigaction sa;
2824
2825 evpipe_init (EV_A);
2826
1606 sa.sa_handler = sighandler; 2827 sa.sa_handler = ev_sighandler;
1607 sigfillset (&sa.sa_mask); 2828 sigfillset (&sa.sa_mask);
1608 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2829 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1609 sigaction (w->signum, &sa, 0); 2830 sigaction (w->signum, &sa, 0);
2831
2832 sigemptyset (&sa.sa_mask);
2833 sigaddset (&sa.sa_mask, w->signum);
2834 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1610#endif 2835#endif
1611 } 2836 }
1612}
1613 2837
1614void 2838 EV_FREQUENT_CHECK;
2839}
2840
2841void noinline
1615ev_signal_stop (EV_P_ ev_signal *w) 2842ev_signal_stop (EV_P_ ev_signal *w)
1616{ 2843{
1617 ev_clear_pending (EV_A_ (W)w); 2844 clear_pending (EV_A_ (W)w);
1618 if (expect_false (!ev_is_active (w))) 2845 if (expect_false (!ev_is_active (w)))
1619 return; 2846 return;
1620 2847
2848 EV_FREQUENT_CHECK;
2849
1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2850 wlist_del (&signals [w->signum - 1].head, (WL)w);
1622 ev_stop (EV_A_ (W)w); 2851 ev_stop (EV_A_ (W)w);
1623 2852
1624 if (!signals [w->signum - 1].head) 2853 if (!signals [w->signum - 1].head)
2854 {
2855#if EV_MULTIPLICITY
2856 signals [w->signum - 1].loop = 0; /* unattach from signal */
2857#endif
2858#if EV_USE_SIGNALFD
2859 if (sigfd >= 0)
2860 {
2861 sigset_t ss;
2862
2863 sigemptyset (&ss);
2864 sigaddset (&ss, w->signum);
2865 sigdelset (&sigfd_set, w->signum);
2866
2867 signalfd (sigfd, &sigfd_set, 0);
2868 sigprocmask (SIG_UNBLOCK, &ss, 0);
2869 }
2870 else
2871#endif
1625 signal (w->signum, SIG_DFL); 2872 signal (w->signum, SIG_DFL);
2873 }
2874
2875 EV_FREQUENT_CHECK;
1626} 2876}
2877
2878#endif
2879
2880#if EV_CHILD_ENABLE
1627 2881
1628void 2882void
1629ev_child_start (EV_P_ ev_child *w) 2883ev_child_start (EV_P_ ev_child *w)
1630{ 2884{
1631#if EV_MULTIPLICITY 2885#if EV_MULTIPLICITY
1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2886 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1633#endif 2887#endif
1634 if (expect_false (ev_is_active (w))) 2888 if (expect_false (ev_is_active (w)))
1635 return; 2889 return;
1636 2890
2891 EV_FREQUENT_CHECK;
2892
1637 ev_start (EV_A_ (W)w, 1); 2893 ev_start (EV_A_ (W)w, 1);
1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2894 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2895
2896 EV_FREQUENT_CHECK;
1639} 2897}
1640 2898
1641void 2899void
1642ev_child_stop (EV_P_ ev_child *w) 2900ev_child_stop (EV_P_ ev_child *w)
1643{ 2901{
1644 ev_clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
1646 return; 2904 return;
1647 2905
2906 EV_FREQUENT_CHECK;
2907
1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2908 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1649 ev_stop (EV_A_ (W)w); 2909 ev_stop (EV_A_ (W)w);
2910
2911 EV_FREQUENT_CHECK;
1650} 2912}
2913
2914#endif
1651 2915
1652#if EV_STAT_ENABLE 2916#if EV_STAT_ENABLE
1653 2917
1654# ifdef _WIN32 2918# ifdef _WIN32
1655# undef lstat 2919# undef lstat
1656# define lstat(a,b) _stati64 (a,b) 2920# define lstat(a,b) _stati64 (a,b)
1657# endif 2921# endif
1658 2922
1659#define DEF_STAT_INTERVAL 5.0074891 2923#define DEF_STAT_INTERVAL 5.0074891
2924#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1660#define MIN_STAT_INTERVAL 0.1074891 2925#define MIN_STAT_INTERVAL 0.1074891
2926
2927static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2928
2929#if EV_USE_INOTIFY
2930
2931/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2932# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2933
2934static void noinline
2935infy_add (EV_P_ ev_stat *w)
2936{
2937 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2938
2939 if (w->wd >= 0)
2940 {
2941 struct statfs sfs;
2942
2943 /* now local changes will be tracked by inotify, but remote changes won't */
2944 /* unless the filesystem is known to be local, we therefore still poll */
2945 /* also do poll on <2.6.25, but with normal frequency */
2946
2947 if (!fs_2625)
2948 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2949 else if (!statfs (w->path, &sfs)
2950 && (sfs.f_type == 0x1373 /* devfs */
2951 || sfs.f_type == 0xEF53 /* ext2/3 */
2952 || sfs.f_type == 0x3153464a /* jfs */
2953 || sfs.f_type == 0x52654973 /* reiser3 */
2954 || sfs.f_type == 0x01021994 /* tempfs */
2955 || sfs.f_type == 0x58465342 /* xfs */))
2956 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2957 else
2958 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2959 }
2960 else
2961 {
2962 /* can't use inotify, continue to stat */
2963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2964
2965 /* if path is not there, monitor some parent directory for speedup hints */
2966 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2967 /* but an efficiency issue only */
2968 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2969 {
2970 char path [4096];
2971 strcpy (path, w->path);
2972
2973 do
2974 {
2975 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2976 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2977
2978 char *pend = strrchr (path, '/');
2979
2980 if (!pend || pend == path)
2981 break;
2982
2983 *pend = 0;
2984 w->wd = inotify_add_watch (fs_fd, path, mask);
2985 }
2986 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2987 }
2988 }
2989
2990 if (w->wd >= 0)
2991 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2992
2993 /* now re-arm timer, if required */
2994 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2995 ev_timer_again (EV_A_ &w->timer);
2996 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2997}
2998
2999static void noinline
3000infy_del (EV_P_ ev_stat *w)
3001{
3002 int slot;
3003 int wd = w->wd;
3004
3005 if (wd < 0)
3006 return;
3007
3008 w->wd = -2;
3009 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3010 wlist_del (&fs_hash [slot].head, (WL)w);
3011
3012 /* remove this watcher, if others are watching it, they will rearm */
3013 inotify_rm_watch (fs_fd, wd);
3014}
3015
3016static void noinline
3017infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3018{
3019 if (slot < 0)
3020 /* overflow, need to check for all hash slots */
3021 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3022 infy_wd (EV_A_ slot, wd, ev);
3023 else
3024 {
3025 WL w_;
3026
3027 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3028 {
3029 ev_stat *w = (ev_stat *)w_;
3030 w_ = w_->next; /* lets us remove this watcher and all before it */
3031
3032 if (w->wd == wd || wd == -1)
3033 {
3034 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3035 {
3036 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3037 w->wd = -1;
3038 infy_add (EV_A_ w); /* re-add, no matter what */
3039 }
3040
3041 stat_timer_cb (EV_A_ &w->timer, 0);
3042 }
3043 }
3044 }
3045}
3046
3047static void
3048infy_cb (EV_P_ ev_io *w, int revents)
3049{
3050 char buf [EV_INOTIFY_BUFSIZE];
3051 int ofs;
3052 int len = read (fs_fd, buf, sizeof (buf));
3053
3054 for (ofs = 0; ofs < len; )
3055 {
3056 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3057 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3058 ofs += sizeof (struct inotify_event) + ev->len;
3059 }
3060}
3061
3062inline_size unsigned int
3063ev_linux_version (void)
3064{
3065 struct utsname buf;
3066 unsigned int v;
3067 int i;
3068 char *p = buf.release;
3069
3070 if (uname (&buf))
3071 return 0;
3072
3073 for (i = 3+1; --i; )
3074 {
3075 unsigned int c = 0;
3076
3077 for (;;)
3078 {
3079 if (*p >= '0' && *p <= '9')
3080 c = c * 10 + *p++ - '0';
3081 else
3082 {
3083 p += *p == '.';
3084 break;
3085 }
3086 }
3087
3088 v = (v << 8) | c;
3089 }
3090
3091 return v;
3092}
3093
3094inline_size void
3095ev_check_2625 (EV_P)
3096{
3097 /* kernels < 2.6.25 are borked
3098 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3099 */
3100 if (ev_linux_version () < 0x020619)
3101 return;
3102
3103 fs_2625 = 1;
3104}
3105
3106inline_size int
3107infy_newfd (void)
3108{
3109#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3110 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3111 if (fd >= 0)
3112 return fd;
3113#endif
3114 return inotify_init ();
3115}
3116
3117inline_size void
3118infy_init (EV_P)
3119{
3120 if (fs_fd != -2)
3121 return;
3122
3123 fs_fd = -1;
3124
3125 ev_check_2625 (EV_A);
3126
3127 fs_fd = infy_newfd ();
3128
3129 if (fs_fd >= 0)
3130 {
3131 fd_intern (fs_fd);
3132 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3133 ev_set_priority (&fs_w, EV_MAXPRI);
3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
3136 }
3137}
3138
3139inline_size void
3140infy_fork (EV_P)
3141{
3142 int slot;
3143
3144 if (fs_fd < 0)
3145 return;
3146
3147 ev_ref (EV_A);
3148 ev_io_stop (EV_A_ &fs_w);
3149 close (fs_fd);
3150 fs_fd = infy_newfd ();
3151
3152 if (fs_fd >= 0)
3153 {
3154 fd_intern (fs_fd);
3155 ev_io_set (&fs_w, fs_fd, EV_READ);
3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
3158 }
3159
3160 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3161 {
3162 WL w_ = fs_hash [slot].head;
3163 fs_hash [slot].head = 0;
3164
3165 while (w_)
3166 {
3167 ev_stat *w = (ev_stat *)w_;
3168 w_ = w_->next; /* lets us add this watcher */
3169
3170 w->wd = -1;
3171
3172 if (fs_fd >= 0)
3173 infy_add (EV_A_ w); /* re-add, no matter what */
3174 else
3175 {
3176 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3177 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3178 ev_timer_again (EV_A_ &w->timer);
3179 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3180 }
3181 }
3182 }
3183}
3184
3185#endif
3186
3187#ifdef _WIN32
3188# define EV_LSTAT(p,b) _stati64 (p, b)
3189#else
3190# define EV_LSTAT(p,b) lstat (p, b)
3191#endif
1661 3192
1662void 3193void
1663ev_stat_stat (EV_P_ ev_stat *w) 3194ev_stat_stat (EV_P_ ev_stat *w)
1664{ 3195{
1665 if (lstat (w->path, &w->attr) < 0) 3196 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0; 3197 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink) 3198 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1; 3199 w->attr.st_nlink = 1;
1669} 3200}
1670 3201
1671static void 3202static void noinline
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3203stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{ 3204{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3205 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675 3206
1676 /* we copy this here each the time so that */ 3207 ev_statdata prev = w->attr;
1677 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w); 3208 ev_stat_stat (EV_A_ w);
1680 3209
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3210 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3211 if (
3212 prev.st_dev != w->attr.st_dev
3213 || prev.st_ino != w->attr.st_ino
3214 || prev.st_mode != w->attr.st_mode
3215 || prev.st_nlink != w->attr.st_nlink
3216 || prev.st_uid != w->attr.st_uid
3217 || prev.st_gid != w->attr.st_gid
3218 || prev.st_rdev != w->attr.st_rdev
3219 || prev.st_size != w->attr.st_size
3220 || prev.st_atime != w->attr.st_atime
3221 || prev.st_mtime != w->attr.st_mtime
3222 || prev.st_ctime != w->attr.st_ctime
3223 ) {
3224 /* we only update w->prev on actual differences */
3225 /* in case we test more often than invoke the callback, */
3226 /* to ensure that prev is always different to attr */
3227 w->prev = prev;
3228
3229 #if EV_USE_INOTIFY
3230 if (fs_fd >= 0)
3231 {
3232 infy_del (EV_A_ w);
3233 infy_add (EV_A_ w);
3234 ev_stat_stat (EV_A_ w); /* avoid race... */
3235 }
3236 #endif
3237
1682 ev_feed_event (EV_A_ w, EV_STAT); 3238 ev_feed_event (EV_A_ w, EV_STAT);
3239 }
1683} 3240}
1684 3241
1685void 3242void
1686ev_stat_start (EV_P_ ev_stat *w) 3243ev_stat_start (EV_P_ ev_stat *w)
1687{ 3244{
1688 if (expect_false (ev_is_active (w))) 3245 if (expect_false (ev_is_active (w)))
1689 return; 3246 return;
1690 3247
1691 /* since we use memcmp, we need to clear any padding data etc. */
1692 memset (&w->prev, 0, sizeof (ev_statdata));
1693 memset (&w->attr, 0, sizeof (ev_statdata));
1694
1695 ev_stat_stat (EV_A_ w); 3248 ev_stat_stat (EV_A_ w);
1696 3249
3250 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1697 if (w->interval < MIN_STAT_INTERVAL) 3251 w->interval = MIN_STAT_INTERVAL;
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699 3252
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3253 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1701 ev_set_priority (&w->timer, ev_priority (w)); 3254 ev_set_priority (&w->timer, ev_priority (w));
3255
3256#if EV_USE_INOTIFY
3257 infy_init (EV_A);
3258
3259 if (fs_fd >= 0)
3260 infy_add (EV_A_ w);
3261 else
3262#endif
3263 {
1702 ev_timer_start (EV_A_ &w->timer); 3264 ev_timer_again (EV_A_ &w->timer);
3265 ev_unref (EV_A);
3266 }
1703 3267
1704 ev_start (EV_A_ (W)w, 1); 3268 ev_start (EV_A_ (W)w, 1);
3269
3270 EV_FREQUENT_CHECK;
1705} 3271}
1706 3272
1707void 3273void
1708ev_stat_stop (EV_P_ ev_stat *w) 3274ev_stat_stop (EV_P_ ev_stat *w)
1709{ 3275{
1710 ev_clear_pending (EV_A_ (W)w); 3276 clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w))) 3277 if (expect_false (!ev_is_active (w)))
1712 return; 3278 return;
1713 3279
3280 EV_FREQUENT_CHECK;
3281
3282#if EV_USE_INOTIFY
3283 infy_del (EV_A_ w);
3284#endif
3285
3286 if (ev_is_active (&w->timer))
3287 {
3288 ev_ref (EV_A);
1714 ev_timer_stop (EV_A_ &w->timer); 3289 ev_timer_stop (EV_A_ &w->timer);
3290 }
1715 3291
1716 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719 3293
3294 EV_FREQUENT_CHECK;
3295}
3296#endif
3297
3298#if EV_IDLE_ENABLE
1720void 3299void
1721ev_idle_start (EV_P_ ev_idle *w) 3300ev_idle_start (EV_P_ ev_idle *w)
1722{ 3301{
1723 if (expect_false (ev_is_active (w))) 3302 if (expect_false (ev_is_active (w)))
1724 return; 3303 return;
1725 3304
3305 pri_adjust (EV_A_ (W)w);
3306
3307 EV_FREQUENT_CHECK;
3308
3309 {
3310 int active = ++idlecnt [ABSPRI (w)];
3311
3312 ++idleall;
1726 ev_start (EV_A_ (W)w, ++idlecnt); 3313 ev_start (EV_A_ (W)w, active);
3314
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3315 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1728 idles [idlecnt - 1] = w; 3316 idles [ABSPRI (w)][active - 1] = w;
3317 }
3318
3319 EV_FREQUENT_CHECK;
1729} 3320}
1730 3321
1731void 3322void
1732ev_idle_stop (EV_P_ ev_idle *w) 3323ev_idle_stop (EV_P_ ev_idle *w)
1733{ 3324{
1734 ev_clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 3326 if (expect_false (!ev_is_active (w)))
1736 return; 3327 return;
1737 3328
3329 EV_FREQUENT_CHECK;
3330
1738 { 3331 {
1739 int active = ((W)w)->active; 3332 int active = ev_active (w);
1740 idles [active - 1] = idles [--idlecnt]; 3333
1741 ((W)idles [active - 1])->active = active; 3334 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3335 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3336
3337 ev_stop (EV_A_ (W)w);
3338 --idleall;
1742 } 3339 }
1743 3340
1744 ev_stop (EV_A_ (W)w); 3341 EV_FREQUENT_CHECK;
1745} 3342}
3343#endif
1746 3344
3345#if EV_PREPARE_ENABLE
1747void 3346void
1748ev_prepare_start (EV_P_ ev_prepare *w) 3347ev_prepare_start (EV_P_ ev_prepare *w)
1749{ 3348{
1750 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
1751 return; 3350 return;
3351
3352 EV_FREQUENT_CHECK;
1752 3353
1753 ev_start (EV_A_ (W)w, ++preparecnt); 3354 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3355 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w; 3356 prepares [preparecnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
1756} 3359}
1757 3360
1758void 3361void
1759ev_prepare_stop (EV_P_ ev_prepare *w) 3362ev_prepare_stop (EV_P_ ev_prepare *w)
1760{ 3363{
1761 ev_clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
1763 return; 3366 return;
1764 3367
3368 EV_FREQUENT_CHECK;
3369
1765 { 3370 {
1766 int active = ((W)w)->active; 3371 int active = ev_active (w);
3372
1767 prepares [active - 1] = prepares [--preparecnt]; 3373 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active; 3374 ev_active (prepares [active - 1]) = active;
1769 } 3375 }
1770 3376
1771 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
1772}
1773 3378
3379 EV_FREQUENT_CHECK;
3380}
3381#endif
3382
3383#if EV_CHECK_ENABLE
1774void 3384void
1775ev_check_start (EV_P_ ev_check *w) 3385ev_check_start (EV_P_ ev_check *w)
1776{ 3386{
1777 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
1778 return; 3388 return;
3389
3390 EV_FREQUENT_CHECK;
1779 3391
1780 ev_start (EV_A_ (W)w, ++checkcnt); 3392 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3393 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w; 3394 checks [checkcnt - 1] = w;
3395
3396 EV_FREQUENT_CHECK;
1783} 3397}
1784 3398
1785void 3399void
1786ev_check_stop (EV_P_ ev_check *w) 3400ev_check_stop (EV_P_ ev_check *w)
1787{ 3401{
1788 ev_clear_pending (EV_A_ (W)w); 3402 clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w))) 3403 if (expect_false (!ev_is_active (w)))
1790 return; 3404 return;
1791 3405
3406 EV_FREQUENT_CHECK;
3407
1792 { 3408 {
1793 int active = ((W)w)->active; 3409 int active = ev_active (w);
3410
1794 checks [active - 1] = checks [--checkcnt]; 3411 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active; 3412 ev_active (checks [active - 1]) = active;
1796 } 3413 }
1797 3414
1798 ev_stop (EV_A_ (W)w); 3415 ev_stop (EV_A_ (W)w);
3416
3417 EV_FREQUENT_CHECK;
1799} 3418}
3419#endif
1800 3420
1801#if EV_EMBED_ENABLE 3421#if EV_EMBED_ENABLE
1802void noinline 3422void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w) 3423ev_embed_sweep (EV_P_ ev_embed *w)
1804{ 3424{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK); 3425 ev_loop (w->other, EVLOOP_NONBLOCK);
1806} 3426}
1807 3427
1808static void 3428static void
1809embed_cb (EV_P_ ev_io *io, int revents) 3429embed_io_cb (EV_P_ ev_io *io, int revents)
1810{ 3430{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3431 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812 3432
1813 if (ev_cb (w)) 3433 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3434 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else 3435 else
1816 ev_embed_sweep (loop, w); 3436 ev_loop (w->other, EVLOOP_NONBLOCK);
1817} 3437}
3438
3439static void
3440embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3441{
3442 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3443
3444 {
3445 EV_P = w->other;
3446
3447 while (fdchangecnt)
3448 {
3449 fd_reify (EV_A);
3450 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3451 }
3452 }
3453}
3454
3455static void
3456embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3457{
3458 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3459
3460 ev_embed_stop (EV_A_ w);
3461
3462 {
3463 EV_P = w->other;
3464
3465 ev_loop_fork (EV_A);
3466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3467 }
3468
3469 ev_embed_start (EV_A_ w);
3470}
3471
3472#if 0
3473static void
3474embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3475{
3476 ev_idle_stop (EV_A_ idle);
3477}
3478#endif
1818 3479
1819void 3480void
1820ev_embed_start (EV_P_ ev_embed *w) 3481ev_embed_start (EV_P_ ev_embed *w)
1821{ 3482{
1822 if (expect_false (ev_is_active (w))) 3483 if (expect_false (ev_is_active (w)))
1823 return; 3484 return;
1824 3485
1825 { 3486 {
1826 struct ev_loop *loop = w->loop; 3487 EV_P = w->other;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3488 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1829 } 3490 }
3491
3492 EV_FREQUENT_CHECK;
1830 3493
1831 ev_set_priority (&w->io, ev_priority (w)); 3494 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io); 3495 ev_io_start (EV_A_ &w->io);
1833 3496
3497 ev_prepare_init (&w->prepare, embed_prepare_cb);
3498 ev_set_priority (&w->prepare, EV_MINPRI);
3499 ev_prepare_start (EV_A_ &w->prepare);
3500
3501 ev_fork_init (&w->fork, embed_fork_cb);
3502 ev_fork_start (EV_A_ &w->fork);
3503
3504 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3505
1834 ev_start (EV_A_ (W)w, 1); 3506 ev_start (EV_A_ (W)w, 1);
3507
3508 EV_FREQUENT_CHECK;
1835} 3509}
1836 3510
1837void 3511void
1838ev_embed_stop (EV_P_ ev_embed *w) 3512ev_embed_stop (EV_P_ ev_embed *w)
1839{ 3513{
1840 ev_clear_pending (EV_A_ (W)w); 3514 clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w))) 3515 if (expect_false (!ev_is_active (w)))
1842 return; 3516 return;
1843 3517
3518 EV_FREQUENT_CHECK;
3519
1844 ev_io_stop (EV_A_ &w->io); 3520 ev_io_stop (EV_A_ &w->io);
3521 ev_prepare_stop (EV_A_ &w->prepare);
3522 ev_fork_stop (EV_A_ &w->fork);
1845 3523
1846 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
3525
3526 EV_FREQUENT_CHECK;
1847} 3527}
1848#endif 3528#endif
1849 3529
1850#if EV_FORK_ENABLE 3530#if EV_FORK_ENABLE
1851void 3531void
1852ev_fork_start (EV_P_ ev_fork *w) 3532ev_fork_start (EV_P_ ev_fork *w)
1853{ 3533{
1854 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
1855 return; 3535 return;
3536
3537 EV_FREQUENT_CHECK;
1856 3538
1857 ev_start (EV_A_ (W)w, ++forkcnt); 3539 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3540 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w; 3541 forks [forkcnt - 1] = w;
3542
3543 EV_FREQUENT_CHECK;
1860} 3544}
1861 3545
1862void 3546void
1863ev_fork_stop (EV_P_ ev_fork *w) 3547ev_fork_stop (EV_P_ ev_fork *w)
1864{ 3548{
1865 ev_clear_pending (EV_A_ (W)w); 3549 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 3550 if (expect_false (!ev_is_active (w)))
1867 return; 3551 return;
1868 3552
3553 EV_FREQUENT_CHECK;
3554
1869 { 3555 {
1870 int active = ((W)w)->active; 3556 int active = ev_active (w);
3557
1871 forks [active - 1] = forks [--forkcnt]; 3558 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active; 3559 ev_active (forks [active - 1]) = active;
1873 } 3560 }
1874 3561
1875 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
3563
3564 EV_FREQUENT_CHECK;
3565}
3566#endif
3567
3568#if EV_ASYNC_ENABLE
3569void
3570ev_async_start (EV_P_ ev_async *w)
3571{
3572 if (expect_false (ev_is_active (w)))
3573 return;
3574
3575 evpipe_init (EV_A);
3576
3577 EV_FREQUENT_CHECK;
3578
3579 ev_start (EV_A_ (W)w, ++asynccnt);
3580 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3581 asyncs [asynccnt - 1] = w;
3582
3583 EV_FREQUENT_CHECK;
3584}
3585
3586void
3587ev_async_stop (EV_P_ ev_async *w)
3588{
3589 clear_pending (EV_A_ (W)w);
3590 if (expect_false (!ev_is_active (w)))
3591 return;
3592
3593 EV_FREQUENT_CHECK;
3594
3595 {
3596 int active = ev_active (w);
3597
3598 asyncs [active - 1] = asyncs [--asynccnt];
3599 ev_active (asyncs [active - 1]) = active;
3600 }
3601
3602 ev_stop (EV_A_ (W)w);
3603
3604 EV_FREQUENT_CHECK;
3605}
3606
3607void
3608ev_async_send (EV_P_ ev_async *w)
3609{
3610 w->sent = 1;
3611 evpipe_write (EV_A_ &async_pending);
1876} 3612}
1877#endif 3613#endif
1878 3614
1879/*****************************************************************************/ 3615/*****************************************************************************/
1880 3616
1890once_cb (EV_P_ struct ev_once *once, int revents) 3626once_cb (EV_P_ struct ev_once *once, int revents)
1891{ 3627{
1892 void (*cb)(int revents, void *arg) = once->cb; 3628 void (*cb)(int revents, void *arg) = once->cb;
1893 void *arg = once->arg; 3629 void *arg = once->arg;
1894 3630
1895 ev_io_stop (EV_A_ &once->io); 3631 ev_io_stop (EV_A_ &once->io);
1896 ev_timer_stop (EV_A_ &once->to); 3632 ev_timer_stop (EV_A_ &once->to);
1897 ev_free (once); 3633 ev_free (once);
1898 3634
1899 cb (revents, arg); 3635 cb (revents, arg);
1900} 3636}
1901 3637
1902static void 3638static void
1903once_cb_io (EV_P_ ev_io *w, int revents) 3639once_cb_io (EV_P_ ev_io *w, int revents)
1904{ 3640{
1905 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1906} 3644}
1907 3645
1908static void 3646static void
1909once_cb_to (EV_P_ ev_timer *w, int revents) 3647once_cb_to (EV_P_ ev_timer *w, int revents)
1910{ 3648{
1911 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3649 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3650
3651 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1912} 3652}
1913 3653
1914void 3654void
1915ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3655ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1916{ 3656{
1917 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3657 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1918 3658
1919 if (expect_false (!once)) 3659 if (expect_false (!once))
1920 { 3660 {
1921 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3661 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1922 return; 3662 return;
1923 } 3663 }
1924 3664
1925 once->cb = cb; 3665 once->cb = cb;
1926 once->arg = arg; 3666 once->arg = arg;
1938 ev_timer_set (&once->to, timeout, 0.); 3678 ev_timer_set (&once->to, timeout, 0.);
1939 ev_timer_start (EV_A_ &once->to); 3679 ev_timer_start (EV_A_ &once->to);
1940 } 3680 }
1941} 3681}
1942 3682
3683/*****************************************************************************/
3684
3685#if EV_WALK_ENABLE
3686void
3687ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3688{
3689 int i, j;
3690 ev_watcher_list *wl, *wn;
3691
3692 if (types & (EV_IO | EV_EMBED))
3693 for (i = 0; i < anfdmax; ++i)
3694 for (wl = anfds [i].head; wl; )
3695 {
3696 wn = wl->next;
3697
3698#if EV_EMBED_ENABLE
3699 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3700 {
3701 if (types & EV_EMBED)
3702 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3703 }
3704 else
3705#endif
3706#if EV_USE_INOTIFY
3707 if (ev_cb ((ev_io *)wl) == infy_cb)
3708 ;
3709 else
3710#endif
3711 if ((ev_io *)wl != &pipe_w)
3712 if (types & EV_IO)
3713 cb (EV_A_ EV_IO, wl);
3714
3715 wl = wn;
3716 }
3717
3718 if (types & (EV_TIMER | EV_STAT))
3719 for (i = timercnt + HEAP0; i-- > HEAP0; )
3720#if EV_STAT_ENABLE
3721 /*TODO: timer is not always active*/
3722 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3723 {
3724 if (types & EV_STAT)
3725 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3726 }
3727 else
3728#endif
3729 if (types & EV_TIMER)
3730 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3731
3732#if EV_PERIODIC_ENABLE
3733 if (types & EV_PERIODIC)
3734 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3735 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3736#endif
3737
3738#if EV_IDLE_ENABLE
3739 if (types & EV_IDLE)
3740 for (j = NUMPRI; i--; )
3741 for (i = idlecnt [j]; i--; )
3742 cb (EV_A_ EV_IDLE, idles [j][i]);
3743#endif
3744
3745#if EV_FORK_ENABLE
3746 if (types & EV_FORK)
3747 for (i = forkcnt; i--; )
3748 if (ev_cb (forks [i]) != embed_fork_cb)
3749 cb (EV_A_ EV_FORK, forks [i]);
3750#endif
3751
3752#if EV_ASYNC_ENABLE
3753 if (types & EV_ASYNC)
3754 for (i = asynccnt; i--; )
3755 cb (EV_A_ EV_ASYNC, asyncs [i]);
3756#endif
3757
3758#if EV_PREPARE_ENABLE
3759 if (types & EV_PREPARE)
3760 for (i = preparecnt; i--; )
3761# if EV_EMBED_ENABLE
3762 if (ev_cb (prepares [i]) != embed_prepare_cb)
3763# endif
3764 cb (EV_A_ EV_PREPARE, prepares [i]);
3765#endif
3766
3767#if EV_CHECK_ENABLE
3768 if (types & EV_CHECK)
3769 for (i = checkcnt; i--; )
3770 cb (EV_A_ EV_CHECK, checks [i]);
3771#endif
3772
3773#if EV_SIGNAL_ENABLE
3774 if (types & EV_SIGNAL)
3775 for (i = 0; i < EV_NSIG - 1; ++i)
3776 for (wl = signals [i].head; wl; )
3777 {
3778 wn = wl->next;
3779 cb (EV_A_ EV_SIGNAL, wl);
3780 wl = wn;
3781 }
3782#endif
3783
3784#if EV_CHILD_ENABLE
3785 if (types & EV_CHILD)
3786 for (i = (EV_PID_HASHSIZE); i--; )
3787 for (wl = childs [i]; wl; )
3788 {
3789 wn = wl->next;
3790 cb (EV_A_ EV_CHILD, wl);
3791 wl = wn;
3792 }
3793#endif
3794/* EV_STAT 0x00001000 /* stat data changed */
3795/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3796}
3797#endif
3798
3799#if EV_MULTIPLICITY
3800 #include "ev_wrap.h"
3801#endif
3802
1943#ifdef __cplusplus 3803#ifdef __cplusplus
1944} 3804}
1945#endif 3805#endif
1946 3806

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines