ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.346 by root, Thu Oct 14 05:07:04 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 83# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
65# endif 89# endif
66 90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 92# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 93# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
106# define EV_USE_POLL 0
73# endif 107# endif
74 108
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
78# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
81# endif 116# endif
82 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
89# endif 125# endif
90 126
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
94# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
97# endif 134# endif
98 135
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
105# endif 143# endif
106 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
107#endif 163#endif
108 164
109#include <math.h> 165#include <math.h>
110#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
111#include <fcntl.h> 168#include <fcntl.h>
112#include <stddef.h> 169#include <stddef.h>
113 170
114#include <stdio.h> 171#include <stdio.h>
115 172
116#include <assert.h> 173#include <assert.h>
117#include <errno.h> 174#include <errno.h>
118#include <sys/types.h> 175#include <sys/types.h>
119#include <time.h> 176#include <time.h>
177#include <limits.h>
120 178
121#include <signal.h> 179#include <signal.h>
122 180
123#ifdef EV_H 181#ifdef EV_H
124# include EV_H 182# include EV_H
129#ifndef _WIN32 187#ifndef _WIN32
130# include <sys/time.h> 188# include <sys/time.h>
131# include <sys/wait.h> 189# include <sys/wait.h>
132# include <unistd.h> 190# include <unistd.h>
133#else 191#else
192# include <io.h>
134# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 194# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
138# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
139#endif 244# endif
140 245#endif
141/**/
142 246
143#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
144# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
145#endif 253#endif
146 254
147#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
149#endif 265#endif
150 266
151#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 269#endif
154 270
155#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
156# ifdef _WIN32 272# ifdef _WIN32
157# define EV_USE_POLL 0 273# define EV_USE_POLL 0
158# else 274# else
159# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 276# endif
161#endif 277#endif
162 278
163#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
164# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
165#endif 285#endif
166 286
167#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
169#endif 289#endif
171#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 292# define EV_USE_PORT 0
173#endif 293#endif
174 294
175#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
176# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
300# endif
177#endif 301#endif
178 302
179#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 314# else
183# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
184# endif 316# endif
185#endif 317#endif
186 318
187#ifndef EV_INOTIFY_HASHSIZE 319#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 321# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 322# else
191# define EV_INOTIFY_HASHSIZE 16 323# define EV_USE_SIGNALFD 0
192# endif 324# endif
193#endif 325#endif
194 326
195/**/ 327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
196 366
197#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
200#endif 370#endif
202#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
205#endif 375#endif
206 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
207#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 400# include <winsock.h>
209#endif 401#endif
210 402
211#if !EV_STAT_ENABLE 403#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
213#endif 408# endif
214 409# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 410# ifdef O_CLOEXEC
216# include <sys/inotify.h> 411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
217#endif 415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
218 453
219/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to avoid floating point rounding problems.
464 * It is added to ev_rt_now when scheduling periodics
465 * to ensure progress, time-wise, even when rounding
466 * errors are against us.
467 * This value is good at least till the year 4000.
468 * Better solutions welcome.
469 */
470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 471
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 474
225#if __GNUC__ >= 3 475#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 478#else
236# define expect(expr,value) (expr) 479# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 480# define noinline
481# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
482# define inline
483# endif
240#endif 484#endif
241 485
242#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
488#define inline_size static inline
244 489
490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
493# define inline_speed static noinline
494#endif
495
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
500#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
247 503
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
250 506
251typedef ev_watcher *W; 507typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 508typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
254 510
511#define ev_active(w) ((W)(w))->active
512#define ev_at(w) ((WT)(w))->at
513
514#if EV_USE_REALTIME
515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
520#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
532#endif
256 533
257#ifdef _WIN32 534#ifdef _WIN32
258# include "ev_win32.c" 535# include "ev_win32.c"
259#endif 536#endif
260 537
261/*****************************************************************************/ 538/*****************************************************************************/
262 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
263static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
264 549
265void 550void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 552{
268 syserr_cb = cb; 553 syserr_cb = cb;
269} 554}
270 555
271static void noinline 556static void noinline
272syserr (const char *msg) 557ev_syserr (const char *msg)
273{ 558{
274 if (!msg) 559 if (!msg)
275 msg = "(libev) system error"; 560 msg = "(libev) system error";
276 561
277 if (syserr_cb) 562 if (syserr_cb)
278 syserr_cb (msg); 563 syserr_cb (msg);
279 else 564 else
280 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
281 perror (msg); 574 perror (msg);
575#endif
282 abort (); 576 abort ();
283 } 577 }
284} 578}
285 579
580static void *
581ev_realloc_emul (void *ptr, long size)
582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596#endif
597}
598
286static void *(*alloc)(void *ptr, size_t size) = realloc; 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 600
288void 601void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 602ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 603{
291 alloc = cb; 604 alloc = cb;
292} 605}
293 606
294inline_speed void * 607inline_speed void *
295ev_realloc (void *ptr, size_t size) 608ev_realloc (void *ptr, long size)
296{ 609{
297 ptr = alloc (ptr, size); 610 ptr = alloc (ptr, size);
298 611
299 if (!ptr && size) 612 if (!ptr && size)
300 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
302 abort (); 619 abort ();
303 } 620 }
304 621
305 return ptr; 622 return ptr;
306} 623}
308#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
310 627
311/*****************************************************************************/ 628/*****************************************************************************/
312 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
313typedef struct 634typedef struct
314{ 635{
315 WL head; 636 WL head;
316 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
318#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 645 SOCKET handle;
320#endif 646#endif
321} ANFD; 647} ANFD;
322 648
649/* stores the pending event set for a given watcher */
323typedef struct 650typedef struct
324{ 651{
325 W w; 652 W w;
326 int events; 653 int events; /* the pending event set for the given watcher */
327} ANPENDING; 654} ANPENDING;
328 655
656#if EV_USE_INOTIFY
657/* hash table entry per inotify-id */
329typedef struct 658typedef struct
330{ 659{
331#if EV_USE_INOTIFY
332 WL head; 660 WL head;
333#endif
334} ANFS; 661} ANFS;
662#endif
663
664/* Heap Entry */
665#if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675#else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
682#endif
335 683
336#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
337 685
338 struct ev_loop 686 struct ev_loop
339 { 687 {
357 705
358 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
359 707
360#endif 708#endif
361 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
362/*****************************************************************************/ 722/*****************************************************************************/
363 723
724#ifndef EV_HAVE_EV_TIME
364ev_tstamp 725ev_tstamp
365ev_time (void) 726ev_time (void)
366{ 727{
367#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
368 struct timespec ts; 731 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 734 }
735#endif
736
372 struct timeval tv; 737 struct timeval tv;
373 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 740}
741#endif
377 742
378ev_tstamp inline_size 743inline_size ev_tstamp
379get_clock (void) 744get_clock (void)
380{ 745{
381#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
383 { 748 {
396{ 761{
397 return ev_rt_now; 762 return ev_rt_now;
398} 763}
399#endif 764#endif
400 765
401#define array_roundsize(type,n) (((n) | 4) & ~3) 766void
767ev_sleep (ev_tstamp delay)
768{
769 if (delay > 0.)
770 {
771#if EV_USE_NANOSLEEP
772 struct timespec ts;
773
774 ts.tv_sec = (time_t)delay;
775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
776
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 tv.tv_sec = (time_t)delay;
784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
789 select (0, 0, 0, 0, &tv);
790#endif
791 }
792}
793
794/*****************************************************************************/
795
796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
801array_nextsize (int elem, int cur, int cnt)
802{
803 int ncur = cur + 1;
804
805 do
806 ncur <<= 1;
807 while (cnt > ncur);
808
809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
811 {
812 ncur *= elem;
813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
814 ncur = ncur - sizeof (void *) * 4;
815 ncur /= elem;
816 }
817
818 return ncur;
819}
820
821static noinline void *
822array_realloc (int elem, void *base, int *cur, int cnt)
823{
824 *cur = array_nextsize (elem, *cur, cnt);
825 return ev_realloc (base, elem * *cur);
826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 830
403#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 832 if (expect_false ((cnt) > (cur))) \
405 { \ 833 { \
406 int newcnt = cur; \ 834 int ocur_ = (cur); \
407 do \ 835 (base) = (type *)array_realloc \
408 { \ 836 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 837 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 838 }
417 839
840#if 0
418#define array_slim(type,stem) \ 841#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 842 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 843 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 844 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 845 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 847 }
848#endif
425 849
426#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 852
429/*****************************************************************************/ 853/*****************************************************************************/
854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
430 860
431void noinline 861void noinline
432ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
433{ 863{
434 W w_ = (W)w; 864 W w_ = (W)w;
865 int pri = ABSPRI (w_);
435 866
436 if (expect_false (w_->pending)) 867 if (expect_false (w_->pending))
868 pendings [pri][w_->pending - 1].events |= revents;
869 else
437 { 870 {
871 w_->pending = ++pendingcnt [pri];
872 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
873 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 874 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 875 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 876}
447 877
448void inline_size 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 895{
451 int i; 896 int i;
452 897
453 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
455} 900}
456 901
457/*****************************************************************************/ 902/*****************************************************************************/
458 903
459void inline_size 904inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
474{ 906{
475 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
476 ev_io *w; 908 ev_io *w;
477 909
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 914 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
484 } 916 }
485} 917}
486 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
487void 930void
488ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 932{
933 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
491} 935}
492 936
493void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
494fd_reify (EV_P) 940fd_reify (EV_P)
495{ 941{
496 int i; 942 int i;
497 943
498 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
499 { 945 {
500 int fd = fdchanges [i]; 946 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 947 ANFD *anfd = anfds + fd;
502 ev_io *w; 948 ev_io *w;
503 949
504 int events = 0; 950 unsigned char events = 0;
505 951
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 953 events |= (unsigned char)w->events;
508 954
509#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
510 if (events) 956 if (events)
511 { 957 {
512 unsigned long argp; 958 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 961 }
516#endif 962#endif
517 963
964 {
965 unsigned char o_events = anfd->events;
966 unsigned char o_reify = anfd->reify;
967
518 anfd->reify = 0; 968 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 969 anfd->events = events;
970
971 if (o_events != events || o_reify & EV__IOFDSET)
972 backend_modify (EV_A_ fd, o_events, events);
973 }
522 } 974 }
523 975
524 fdchangecnt = 0; 976 fdchangecnt = 0;
525} 977}
526 978
527void inline_size 979/* something about the given fd changed */
980inline_size void
528fd_change (EV_P_ int fd) 981fd_change (EV_P_ int fd, int flags)
529{ 982{
530 if (expect_false (anfds [fd].reify)) 983 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 984 anfds [fd].reify |= flags;
534 985
986 if (expect_true (!reify))
987 {
535 ++fdchangecnt; 988 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
991 }
538} 992}
539 993
540void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
541fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
542{ 997{
543 ev_io *w; 998 ev_io *w;
544 999
545 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 1004 }
550} 1005}
551 1006
552int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
553fd_valid (int fd) 1009fd_valid (int fd)
554{ 1010{
555#ifdef _WIN32 1011#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1013#else
558 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
559#endif 1015#endif
560} 1016}
561 1017
565{ 1021{
566 int fd; 1022 int fd;
567 1023
568 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1025 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
572} 1028}
573 1029
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1031static void noinline
579 1035
580 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1037 if (anfds [fd].events)
582 { 1038 {
583 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
584 return; 1040 break;
585 } 1041 }
586} 1042}
587 1043
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1045static void noinline
590fd_rearm_all (EV_P) 1046fd_rearm_all (EV_P)
591{ 1047{
592 int fd; 1048 int fd;
593 1049
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 1051 if (anfds [fd].events)
597 { 1052 {
598 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 1054 anfds [fd].emask = 0;
1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 1056 }
601} 1057}
602 1058
603/*****************************************************************************/ 1059/* used to prepare libev internal fd's */
604 1060/* this is not fork-safe */
605void inline_speed 1061inline_speed void
606upheap (WT *heap, int k)
607{
608 WT w = heap [k];
609
610 while (k && heap [k >> 1]->at > w->at)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 }
616
617 heap [k] = w;
618 ((W)heap [k])->active = k + 1;
619
620}
621
622void inline_speed
623downheap (WT *heap, int N, int k)
624{
625 WT w = heap [k];
626
627 while (k < (N >> 1))
628 {
629 int j = k << 1;
630
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break;
636
637 heap [k] = heap [j];
638 ((W)heap [k])->active = k + 1;
639 k = j;
640 }
641
642 heap [k] = w;
643 ((W)heap [k])->active = k + 1;
644}
645
646void inline_size
647adjustheap (WT *heap, int N, int k)
648{
649 upheap (heap, k);
650 downheap (heap, N, k);
651}
652
653/*****************************************************************************/
654
655typedef struct
656{
657 WL head;
658 sig_atomic_t volatile gotsig;
659} ANSIG;
660
661static ANSIG *signals;
662static int signalmax;
663
664static int sigpipe [2];
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667
668void inline_size
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1062fd_intern (int fd)
733{ 1063{
734#ifdef _WIN32 1064#ifdef _WIN32
735 int arg = 1; 1065 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
737#else 1067#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1069 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1070#endif
741} 1071}
742 1072
1073/*****************************************************************************/
1074
1075/*
1076 * the heap functions want a real array index. array index 0 is guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081/*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087#if EV_USE_4HEAP
1088
1089#define DHEAP 4
1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092#define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138#else /* 4HEAP */
1139
1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
1143
1144/* away from the root */
1145inline_speed void
1146downheap (ANHE *heap, int N, int k)
1147{
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171}
1172#endif
1173
1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
1198adjustheap (ANHE *heap, int N, int k)
1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216}
1217
1218/*****************************************************************************/
1219
1220/* associate signal watchers to a signal signal */
1221typedef struct
1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1227 WL head;
1228} ANSIG;
1229
1230static ANSIG signals [EV_NSIG - 1];
1231
1232/*****************************************************************************/
1233
1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
743static void noinline 1236static void noinline
744siginit (EV_P) 1237evpipe_init (EV_P)
745{ 1238{
1239 if (!ev_is_active (&pipe_w))
1240 {
1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253# endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
746 fd_intern (sigpipe [0]); 1258 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
748 1262
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1263 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266}
1267
1268inline_size void
1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270{
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278#if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285#endif
1286 /* win32 people keep sending patches that change this write() to send() */
1287 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1288 /* so when you think this write should be a send instead, please find out */
1289 /* where your send() is from - it's definitely not the microsoft send, and */
1290 /* tell me. thank you. */
1291 write (evpipe [1], &dummy, 1);
1292
1293 errno = old_errno;
1294 }
1295}
1296
1297/* called whenever the libev signal pipe */
1298/* got some events (signal, async) */
1299static void
1300pipecb (EV_P_ ev_io *iow, int revents)
1301{
1302 int i;
1303
1304#if EV_USE_EVENTFD
1305 if (evfd >= 0)
1306 {
1307 uint64_t counter;
1308 read (evfd, &counter, sizeof (uint64_t));
1309 }
1310 else
1311#endif
1312 {
1313 char dummy;
1314 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1315 read (evpipe [0], &dummy, 1);
1316 }
1317
1318 if (sig_pending)
1319 {
1320 sig_pending = 0;
1321
1322 for (i = EV_NSIG - 1; i--; )
1323 if (expect_false (signals [i].pending))
1324 ev_feed_signal_event (EV_A_ i + 1);
1325 }
1326
1327#if EV_ASYNC_ENABLE
1328 if (async_pending)
1329 {
1330 async_pending = 0;
1331
1332 for (i = asynccnt; i--; )
1333 if (asyncs [i]->sent)
1334 {
1335 asyncs [i]->sent = 0;
1336 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1337 }
1338 }
1339#endif
752} 1340}
753 1341
754/*****************************************************************************/ 1342/*****************************************************************************/
755 1343
756static ev_child *childs [EV_PID_HASHSIZE]; 1344static void
1345ev_sighandler (int signum)
1346{
1347#if EV_MULTIPLICITY
1348 EV_P = signals [signum - 1].loop;
1349#endif
757 1350
758#ifndef _WIN32 1351#ifdef _WIN32
1352 signal (signum, ev_sighandler);
1353#endif
1354
1355 signals [signum - 1].pending = 1;
1356 evpipe_write (EV_A_ &sig_pending);
1357}
1358
1359void noinline
1360ev_feed_signal_event (EV_P_ int signum)
1361{
1362 WL w;
1363
1364 if (expect_false (signum <= 0 || signum > EV_NSIG))
1365 return;
1366
1367 --signum;
1368
1369#if EV_MULTIPLICITY
1370 /* it is permissible to try to feed a signal to the wrong loop */
1371 /* or, likely more useful, feeding a signal nobody is waiting for */
1372
1373 if (expect_false (signals [signum].loop != EV_A))
1374 return;
1375#endif
1376
1377 signals [signum].pending = 0;
1378
1379 for (w = signals [signum].head; w; w = w->next)
1380 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1381}
1382
1383#if EV_USE_SIGNALFD
1384static void
1385sigfdcb (EV_P_ ev_io *iow, int revents)
1386{
1387 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1388
1389 for (;;)
1390 {
1391 ssize_t res = read (sigfd, si, sizeof (si));
1392
1393 /* not ISO-C, as res might be -1, but works with SuS */
1394 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1395 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1396
1397 if (res < (ssize_t)sizeof (si))
1398 break;
1399 }
1400}
1401#endif
1402
1403#endif
1404
1405/*****************************************************************************/
1406
1407#if EV_CHILD_ENABLE
1408static WL childs [EV_PID_HASHSIZE];
759 1409
760static ev_signal childev; 1410static ev_signal childev;
761 1411
762void inline_speed 1412#ifndef WIFCONTINUED
1413# define WIFCONTINUED(status) 0
1414#endif
1415
1416/* handle a single child status event */
1417inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1418child_reap (EV_P_ int chain, int pid, int status)
764{ 1419{
765 ev_child *w; 1420 ev_child *w;
1421 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1422
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1423 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1424 {
768 if (w->pid == pid || !w->pid) 1425 if ((w->pid == pid || !w->pid)
1426 && (!traced || (w->flags & 1)))
769 { 1427 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1428 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1429 w->rpid = pid;
772 w->rstatus = status; 1430 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1431 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1432 }
1433 }
775} 1434}
776 1435
777#ifndef WCONTINUED 1436#ifndef WCONTINUED
778# define WCONTINUED 0 1437# define WCONTINUED 0
779#endif 1438#endif
780 1439
1440/* called on sigchld etc., calls waitpid */
781static void 1441static void
782childcb (EV_P_ ev_signal *sw, int revents) 1442childcb (EV_P_ ev_signal *sw, int revents)
783{ 1443{
784 int pid, status; 1444 int pid, status;
785 1445
788 if (!WCONTINUED 1448 if (!WCONTINUED
789 || errno != EINVAL 1449 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1450 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1451 return;
792 1452
793 /* make sure we are called again until all childs have been reaped */ 1453 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1454 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1455 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1456
797 child_reap (EV_A_ sw, pid, pid, status); 1457 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1458 if ((EV_PID_HASHSIZE) > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1459 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1460}
801 1461
802#endif 1462#endif
803 1463
804/*****************************************************************************/ 1464/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1526 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1527 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1528 flags &= ~EVBACKEND_KQUEUE;
869#endif 1529#endif
870#ifdef __APPLE__ 1530#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1531 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1532 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1533 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1534#endif
1535#ifdef __FreeBSD__
1536 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
873#endif 1537#endif
874 1538
875 return flags; 1539 return flags;
876} 1540}
877 1541
878unsigned int 1542unsigned int
879ev_embeddable_backends (void) 1543ev_embeddable_backends (void)
880{ 1544{
881 return EVBACKEND_EPOLL 1545 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1546
883 | EVBACKEND_PORT; 1547 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1548 /* please fix it and tell me how to detect the fix */
1549 flags &= ~EVBACKEND_EPOLL;
1550
1551 return flags;
884} 1552}
885 1553
886unsigned int 1554unsigned int
887ev_backend (EV_P) 1555ev_backend (EV_P)
888{ 1556{
889 return backend; 1557 return backend;
890} 1558}
891 1559
1560#if EV_FEATURE_API
1561unsigned int
1562ev_iteration (EV_P)
1563{
1564 return loop_count;
1565}
1566
1567unsigned int
1568ev_depth (EV_P)
1569{
1570 return loop_depth;
1571}
1572
1573void
1574ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1575{
1576 io_blocktime = interval;
1577}
1578
1579void
1580ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1581{
1582 timeout_blocktime = interval;
1583}
1584
1585void
1586ev_set_userdata (EV_P_ void *data)
1587{
1588 userdata = data;
1589}
1590
1591void *
1592ev_userdata (EV_P)
1593{
1594 return userdata;
1595}
1596
1597void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1598{
1599 invoke_cb = invoke_pending_cb;
1600}
1601
1602void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1603{
1604 release_cb = release;
1605 acquire_cb = acquire;
1606}
1607#endif
1608
1609/* initialise a loop structure, must be zero-initialised */
892static void noinline 1610static void noinline
893loop_init (EV_P_ unsigned int flags) 1611loop_init (EV_P_ unsigned int flags)
894{ 1612{
895 if (!backend) 1613 if (!backend)
896 { 1614 {
1615#if EV_USE_REALTIME
1616 if (!have_realtime)
1617 {
1618 struct timespec ts;
1619
1620 if (!clock_gettime (CLOCK_REALTIME, &ts))
1621 have_realtime = 1;
1622 }
1623#endif
1624
897#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
1626 if (!have_monotonic)
898 { 1627 {
899 struct timespec ts; 1628 struct timespec ts;
1629
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1630 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1631 have_monotonic = 1;
902 } 1632 }
903#endif 1633#endif
904 1634
905 ev_rt_now = ev_time (); 1635 /* pid check not overridable via env */
906 mn_now = get_clock (); 1636#ifndef _WIN32
907 now_floor = mn_now; 1637 if (flags & EVFLAG_FORKCHECK)
908 rtmn_diff = ev_rt_now - mn_now; 1638 curpid = getpid ();
1639#endif
909 1640
910 if (!(flags & EVFLAG_NOENV) 1641 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1642 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1643 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1644 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1645
1646 ev_rt_now = ev_time ();
1647 mn_now = get_clock ();
1648 now_floor = mn_now;
1649 rtmn_diff = ev_rt_now - mn_now;
1650#if EV_FEATURE_API
1651 invoke_cb = ev_invoke_pending;
1652#endif
1653
1654 io_blocktime = 0.;
1655 timeout_blocktime = 0.;
1656 backend = 0;
1657 backend_fd = -1;
1658 sig_pending = 0;
1659#if EV_ASYNC_ENABLE
1660 async_pending = 0;
1661#endif
1662#if EV_USE_INOTIFY
1663 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1664#endif
1665#if EV_USE_SIGNALFD
1666 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1667#endif
1668
915 if (!(flags & 0x0000ffffUL)) 1669 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1670 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1671
924#if EV_USE_PORT 1672#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1673 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1674#endif
927#if EV_USE_KQUEUE 1675#if EV_USE_KQUEUE
935#endif 1683#endif
936#if EV_USE_SELECT 1684#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1685 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1686#endif
939 1687
1688 ev_prepare_init (&pending_w, pendingcb);
1689
1690#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
940 ev_init (&sigev, sigcb); 1691 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1692 ev_set_priority (&pipe_w, EV_MAXPRI);
1693#endif
942 } 1694 }
943} 1695}
944 1696
1697/* free up a loop structure */
945static void noinline 1698static void noinline
946loop_destroy (EV_P) 1699loop_destroy (EV_P)
947{ 1700{
948 int i; 1701 int i;
1702
1703 if (ev_is_active (&pipe_w))
1704 {
1705 /*ev_ref (EV_A);*/
1706 /*ev_io_stop (EV_A_ &pipe_w);*/
1707
1708#if EV_USE_EVENTFD
1709 if (evfd >= 0)
1710 close (evfd);
1711#endif
1712
1713 if (evpipe [0] >= 0)
1714 {
1715 EV_WIN32_CLOSE_FD (evpipe [0]);
1716 EV_WIN32_CLOSE_FD (evpipe [1]);
1717 }
1718 }
1719
1720#if EV_USE_SIGNALFD
1721 if (ev_is_active (&sigfd_w))
1722 close (sigfd);
1723#endif
949 1724
950#if EV_USE_INOTIFY 1725#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1726 if (fs_fd >= 0)
952 close (fs_fd); 1727 close (fs_fd);
953#endif 1728#endif
970#if EV_USE_SELECT 1745#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1746 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1747#endif
973 1748
974 for (i = NUMPRI; i--; ) 1749 for (i = NUMPRI; i--; )
1750 {
975 array_free (pending, [i]); 1751 array_free (pending, [i]);
1752#if EV_IDLE_ENABLE
1753 array_free (idle, [i]);
1754#endif
1755 }
1756
1757 ev_free (anfds); anfds = 0; anfdmax = 0;
976 1758
977 /* have to use the microsoft-never-gets-it-right macro */ 1759 /* have to use the microsoft-never-gets-it-right macro */
1760 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1761 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1762 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1763#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1764 array_free (periodic, EMPTY);
982#endif 1765#endif
1766#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1767 array_free (fork, EMPTY);
1768#endif
984 array_free (prepare, EMPTY0); 1769 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1770 array_free (check, EMPTY);
1771#if EV_ASYNC_ENABLE
1772 array_free (async, EMPTY);
1773#endif
986 1774
987 backend = 0; 1775 backend = 0;
988} 1776}
989 1777
1778#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1779inline_size void infy_fork (EV_P);
1780#endif
991 1781
992void inline_size 1782inline_size void
993loop_fork (EV_P) 1783loop_fork (EV_P)
994{ 1784{
995#if EV_USE_PORT 1785#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1786 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 1787#endif
1003#endif 1793#endif
1004#if EV_USE_INOTIFY 1794#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1795 infy_fork (EV_A);
1006#endif 1796#endif
1007 1797
1008 if (ev_is_active (&sigev)) 1798 if (ev_is_active (&pipe_w))
1009 { 1799 {
1010 /* default loop */ 1800 /* this "locks" the handlers against writing to the pipe */
1801 /* while we modify the fd vars */
1802 sig_pending = 1;
1803#if EV_ASYNC_ENABLE
1804 async_pending = 1;
1805#endif
1011 1806
1012 ev_ref (EV_A); 1807 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1808 ev_io_stop (EV_A_ &pipe_w);
1014 close (sigpipe [0]);
1015 close (sigpipe [1]);
1016 1809
1017 while (pipe (sigpipe)) 1810#if EV_USE_EVENTFD
1018 syserr ("(libev) error creating pipe"); 1811 if (evfd >= 0)
1812 close (evfd);
1813#endif
1019 1814
1815 if (evpipe [0] >= 0)
1816 {
1817 EV_WIN32_CLOSE_FD (evpipe [0]);
1818 EV_WIN32_CLOSE_FD (evpipe [1]);
1819 }
1820
1821#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1020 siginit (EV_A); 1822 evpipe_init (EV_A);
1823 /* now iterate over everything, in case we missed something */
1824 pipecb (EV_A_ &pipe_w, EV_READ);
1825#endif
1021 } 1826 }
1022 1827
1023 postfork = 0; 1828 postfork = 0;
1024} 1829}
1025 1830
1026#if EV_MULTIPLICITY 1831#if EV_MULTIPLICITY
1832
1027struct ev_loop * 1833struct ev_loop *
1028ev_loop_new (unsigned int flags) 1834ev_loop_new (unsigned int flags)
1029{ 1835{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1836 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1837
1032 memset (loop, 0, sizeof (struct ev_loop)); 1838 memset (EV_A, 0, sizeof (struct ev_loop));
1033
1034 loop_init (EV_A_ flags); 1839 loop_init (EV_A_ flags);
1035 1840
1036 if (ev_backend (EV_A)) 1841 if (ev_backend (EV_A))
1037 return loop; 1842 return EV_A;
1038 1843
1039 return 0; 1844 return 0;
1040} 1845}
1041 1846
1042void 1847void
1047} 1852}
1048 1853
1049void 1854void
1050ev_loop_fork (EV_P) 1855ev_loop_fork (EV_P)
1051{ 1856{
1052 postfork = 1; 1857 postfork = 1; /* must be in line with ev_default_fork */
1053} 1858}
1859#endif /* multiplicity */
1054 1860
1861#if EV_VERIFY
1862static void noinline
1863verify_watcher (EV_P_ W w)
1864{
1865 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1866
1867 if (w->pending)
1868 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1869}
1870
1871static void noinline
1872verify_heap (EV_P_ ANHE *heap, int N)
1873{
1874 int i;
1875
1876 for (i = HEAP0; i < N + HEAP0; ++i)
1877 {
1878 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1879 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1880 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1881
1882 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1883 }
1884}
1885
1886static void noinline
1887array_verify (EV_P_ W *ws, int cnt)
1888{
1889 while (cnt--)
1890 {
1891 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1892 verify_watcher (EV_A_ ws [cnt]);
1893 }
1894}
1895#endif
1896
1897#if EV_FEATURE_API
1898void
1899ev_verify (EV_P)
1900{
1901#if EV_VERIFY
1902 int i;
1903 WL w;
1904
1905 assert (activecnt >= -1);
1906
1907 assert (fdchangemax >= fdchangecnt);
1908 for (i = 0; i < fdchangecnt; ++i)
1909 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1910
1911 assert (anfdmax >= 0);
1912 for (i = 0; i < anfdmax; ++i)
1913 for (w = anfds [i].head; w; w = w->next)
1914 {
1915 verify_watcher (EV_A_ (W)w);
1916 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1917 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1918 }
1919
1920 assert (timermax >= timercnt);
1921 verify_heap (EV_A_ timers, timercnt);
1922
1923#if EV_PERIODIC_ENABLE
1924 assert (periodicmax >= periodiccnt);
1925 verify_heap (EV_A_ periodics, periodiccnt);
1926#endif
1927
1928 for (i = NUMPRI; i--; )
1929 {
1930 assert (pendingmax [i] >= pendingcnt [i]);
1931#if EV_IDLE_ENABLE
1932 assert (idleall >= 0);
1933 assert (idlemax [i] >= idlecnt [i]);
1934 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1935#endif
1936 }
1937
1938#if EV_FORK_ENABLE
1939 assert (forkmax >= forkcnt);
1940 array_verify (EV_A_ (W *)forks, forkcnt);
1941#endif
1942
1943#if EV_ASYNC_ENABLE
1944 assert (asyncmax >= asynccnt);
1945 array_verify (EV_A_ (W *)asyncs, asynccnt);
1946#endif
1947
1948#if EV_PREPARE_ENABLE
1949 assert (preparemax >= preparecnt);
1950 array_verify (EV_A_ (W *)prepares, preparecnt);
1951#endif
1952
1953#if EV_CHECK_ENABLE
1954 assert (checkmax >= checkcnt);
1955 array_verify (EV_A_ (W *)checks, checkcnt);
1956#endif
1957
1958# if 0
1959#if EV_CHILD_ENABLE
1960 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1961 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1962#endif
1963# endif
1964#endif
1965}
1055#endif 1966#endif
1056 1967
1057#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1058struct ev_loop * 1969struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1970ev_default_loop_init (unsigned int flags)
1060#else 1971#else
1061int 1972int
1062ev_default_loop (unsigned int flags) 1973ev_default_loop (unsigned int flags)
1063#endif 1974#endif
1064{ 1975{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1976 if (!ev_default_loop_ptr)
1070 { 1977 {
1071#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1979 EV_P = ev_default_loop_ptr = &default_loop_struct;
1073#else 1980#else
1074 ev_default_loop_ptr = 1; 1981 ev_default_loop_ptr = 1;
1075#endif 1982#endif
1076 1983
1077 loop_init (EV_A_ flags); 1984 loop_init (EV_A_ flags);
1078 1985
1079 if (ev_backend (EV_A)) 1986 if (ev_backend (EV_A))
1080 { 1987 {
1081 siginit (EV_A); 1988#if EV_CHILD_ENABLE
1082
1083#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1989 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1990 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1991 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1992 ev_unref (EV_A); /* child watcher should not keep loop alive */
1088#endif 1993#endif
1096 2001
1097void 2002void
1098ev_default_destroy (void) 2003ev_default_destroy (void)
1099{ 2004{
1100#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 2006 EV_P = ev_default_loop_ptr;
1102#endif 2007#endif
1103 2008
1104#ifndef _WIN32 2009 ev_default_loop_ptr = 0;
2010
2011#if EV_CHILD_ENABLE
1105 ev_ref (EV_A); /* child watcher */ 2012 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 2013 ev_signal_stop (EV_A_ &childev);
1107#endif 2014#endif
1108 2015
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 2016 loop_destroy (EV_A);
1116} 2017}
1117 2018
1118void 2019void
1119ev_default_fork (void) 2020ev_default_fork (void)
1120{ 2021{
1121#if EV_MULTIPLICITY 2022#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 2023 EV_P = ev_default_loop_ptr;
1123#endif 2024#endif
1124 2025
1125 if (backend) 2026 postfork = 1; /* must be in line with ev_loop_fork */
1126 postfork = 1;
1127} 2027}
1128 2028
1129/*****************************************************************************/ 2029/*****************************************************************************/
1130 2030
1131int inline_size 2031void
1132any_pending (EV_P) 2032ev_invoke (EV_P_ void *w, int revents)
2033{
2034 EV_CB_INVOKE ((W)w, revents);
2035}
2036
2037unsigned int
2038ev_pending_count (EV_P)
1133{ 2039{
1134 int pri; 2040 int pri;
2041 unsigned int count = 0;
1135 2042
1136 for (pri = NUMPRI; pri--; ) 2043 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri]) 2044 count += pendingcnt [pri];
1138 return 1;
1139 2045
1140 return 0; 2046 return count;
1141} 2047}
1142 2048
1143void inline_speed 2049void noinline
1144call_pending (EV_P) 2050ev_invoke_pending (EV_P)
1145{ 2051{
1146 int pri; 2052 int pri;
1147 2053
1148 for (pri = NUMPRI; pri--; ) 2054 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 2055 while (pendingcnt [pri])
1150 { 2056 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2057 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 2058
1153 if (expect_true (p->w))
1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2059 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2060 /* ^ this is no longer true, as pending_w could be here */
1156 2061
1157 p->w->pending = 0; 2062 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 2063 EV_CB_INVOKE (p->w, p->events);
1159 } 2064 EV_FREQUENT_CHECK;
1160 } 2065 }
1161} 2066}
1162 2067
1163void inline_size 2068#if EV_IDLE_ENABLE
2069/* make idle watchers pending. this handles the "call-idle */
2070/* only when higher priorities are idle" logic */
2071inline_size void
2072idle_reify (EV_P)
2073{
2074 if (expect_false (idleall))
2075 {
2076 int pri;
2077
2078 for (pri = NUMPRI; pri--; )
2079 {
2080 if (pendingcnt [pri])
2081 break;
2082
2083 if (idlecnt [pri])
2084 {
2085 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2086 break;
2087 }
2088 }
2089 }
2090}
2091#endif
2092
2093/* make timers pending */
2094inline_size void
1164timers_reify (EV_P) 2095timers_reify (EV_P)
1165{ 2096{
2097 EV_FREQUENT_CHECK;
2098
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 2099 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 2100 {
1168 ev_timer *w = timers [0]; 2101 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 2102 {
2103 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2104
2105 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2106
2107 /* first reschedule or stop timer */
2108 if (w->repeat)
2109 {
2110 ev_at (w) += w->repeat;
2111 if (ev_at (w) < mn_now)
2112 ev_at (w) = mn_now;
2113
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2114 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 2115
1177 ((WT)w)->at += w->repeat; 2116 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 2117 downheap (timers, timercnt, HEAP0);
2118 }
2119 else
2120 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2121
2122 EV_FREQUENT_CHECK;
2123 feed_reverse (EV_A_ (W)w);
1182 } 2124 }
1183 else 2125 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 2126
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2127 feed_reverse_done (EV_A_ EV_TIMER);
1187 } 2128 }
1188} 2129}
1189 2130
1190#if EV_PERIODIC_ENABLE 2131#if EV_PERIODIC_ENABLE
1191void inline_size 2132/* make periodics pending */
2133inline_size void
1192periodics_reify (EV_P) 2134periodics_reify (EV_P)
1193{ 2135{
2136 EV_FREQUENT_CHECK;
2137
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2138 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 2139 {
1196 ev_periodic *w = periodics [0]; 2140 int feed_count = 0;
1197 2141
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2142 do
1199
1200 /* first reschedule or stop timer */
1201 if (w->reschedule_cb)
1202 { 2143 {
2144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2145
2146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2147
2148 /* first reschedule or stop timer */
2149 if (w->reschedule_cb)
2150 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2152
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2154
2155 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 2156 downheap (periodics, periodiccnt, HEAP0);
2157 }
2158 else if (w->interval)
2159 {
2160 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2161 /* if next trigger time is not sufficiently in the future, put it there */
2162 /* this might happen because of floating point inexactness */
2163 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2164 {
2165 ev_at (w) += w->interval;
2166
2167 /* if interval is unreasonably low we might still have a time in the past */
2168 /* so correct this. this will make the periodic very inexact, but the user */
2169 /* has effectively asked to get triggered more often than possible */
2170 if (ev_at (w) < ev_rt_now)
2171 ev_at (w) = ev_rt_now;
2172 }
2173
2174 ANHE_at_cache (periodics [HEAP0]);
2175 downheap (periodics, periodiccnt, HEAP0);
2176 }
2177 else
2178 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2179
2180 EV_FREQUENT_CHECK;
2181 feed_reverse (EV_A_ (W)w);
1206 } 2182 }
1207 else if (w->interval) 2183 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 2184
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2185 feed_reverse_done (EV_A_ EV_PERIODIC);
1217 } 2186 }
1218} 2187}
1219 2188
2189/* simply recalculate all periodics */
2190/* TODO: maybe ensure that at least one event happens when jumping forward? */
1220static void noinline 2191static void noinline
1221periodics_reschedule (EV_P) 2192periodics_reschedule (EV_P)
1222{ 2193{
1223 int i; 2194 int i;
1224 2195
1225 /* adjust periodics after time jump */ 2196 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 2197 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 2198 {
1228 ev_periodic *w = periodics [i]; 2199 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 2200
1230 if (w->reschedule_cb) 2201 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2202 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 2203 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2204 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2205
2206 ANHE_at_cache (periodics [i]);
2207 }
2208
2209 reheap (periodics, periodiccnt);
2210}
2211#endif
2212
2213/* adjust all timers by a given offset */
2214static void noinline
2215timers_reschedule (EV_P_ ev_tstamp adjust)
2216{
2217 int i;
2218
2219 for (i = 0; i < timercnt; ++i)
1234 } 2220 {
1235 2221 ANHE *he = timers + i + HEAP0;
1236 /* now rebuild the heap */ 2222 ANHE_w (*he)->at += adjust;
1237 for (i = periodiccnt >> 1; i--; ) 2223 ANHE_at_cache (*he);
1238 downheap ((WT *)periodics, periodiccnt, i); 2224 }
1239} 2225}
1240#endif
1241 2226
1242int inline_size 2227/* fetch new monotonic and realtime times from the kernel */
1243time_update_monotonic (EV_P) 2228/* also detect if there was a timejump, and act accordingly */
2229inline_speed void
2230time_update (EV_P_ ev_tstamp max_block)
1244{ 2231{
2232#if EV_USE_MONOTONIC
2233 if (expect_true (have_monotonic))
2234 {
2235 int i;
2236 ev_tstamp odiff = rtmn_diff;
2237
1245 mn_now = get_clock (); 2238 mn_now = get_clock ();
1246 2239
2240 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2241 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 2243 {
1249 ev_rt_now = rtmn_diff + mn_now; 2244 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 2245 return;
1251 } 2246 }
1252 else 2247
1253 {
1254 now_floor = mn_now; 2248 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 2249 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 2250
1260void inline_size 2251 /* loop a few times, before making important decisions.
1261time_update (EV_P) 2252 * on the choice of "4": one iteration isn't enough,
1262{ 2253 * in case we get preempted during the calls to
1263 int i; 2254 * ev_time and get_clock. a second call is almost guaranteed
1264 2255 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 2256 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 2257 * in the unlikely event of having been preempted here.
1267 { 2258 */
1268 if (time_update_monotonic (EV_A)) 2259 for (i = 4; --i; )
1269 { 2260 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 2261 rtmn_diff = ev_rt_now - mn_now;
1283 2262
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2263 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 2264 return; /* all is well */
1286 2265
1287 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 2267 mn_now = get_clock ();
1289 now_floor = mn_now; 2268 now_floor = mn_now;
1290 } 2269 }
1291 2270
2271 /* no timer adjustment, as the monotonic clock doesn't jump */
2272 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 2273# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 2274 periodics_reschedule (EV_A);
1294# endif 2275# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 2276 }
1299 else 2277 else
1300#endif 2278#endif
1301 { 2279 {
1302 ev_rt_now = ev_time (); 2280 ev_rt_now = ev_time ();
1303 2281
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2282 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 2283 {
2284 /* adjust timers. this is easy, as the offset is the same for all of them */
2285 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 2286#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 2287 periodics_reschedule (EV_A);
1308#endif 2288#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 2289 }
1314 2290
1315 mn_now = ev_rt_now; 2291 mn_now = ev_rt_now;
1316 } 2292 }
1317} 2293}
1318 2294
1319void 2295void
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done;
1332
1333void
1334ev_loop (EV_P_ int flags) 2296ev_loop (EV_P_ int flags)
1335{ 2297{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2298#if EV_FEATURE_API
1337 ? EVUNLOOP_ONE 2299 ++loop_depth;
1338 : EVUNLOOP_CANCEL; 2300#endif
1339 2301
1340 while (activecnt) 2302 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2303
2304 loop_done = EVUNLOOP_CANCEL;
2305
2306 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2307
2308 do
1341 { 2309 {
1342 /* we might have forked, so reify kernel state if necessary */ 2310#if EV_VERIFY >= 2
2311 ev_verify (EV_A);
2312#endif
2313
2314#ifndef _WIN32
2315 if (expect_false (curpid)) /* penalise the forking check even more */
2316 if (expect_false (getpid () != curpid))
2317 {
2318 curpid = getpid ();
2319 postfork = 1;
2320 }
2321#endif
2322
1343 #if EV_FORK_ENABLE 2323#if EV_FORK_ENABLE
2324 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 2325 if (expect_false (postfork))
1345 if (forkcnt) 2326 if (forkcnt)
1346 { 2327 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2328 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1349 } 2330 }
1350 #endif 2331#endif
1351 2332
2333#if EV_PREPARE_ENABLE
1352 /* queue check watchers (and execute them) */ 2334 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 2335 if (expect_false (preparecnt))
1354 { 2336 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2337 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 2338 EV_INVOKE_PENDING;
1357 } 2339 }
2340#endif
2341
2342 if (expect_false (loop_done))
2343 break;
1358 2344
1359 /* we might have forked, so reify kernel state if necessary */ 2345 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 2346 if (expect_false (postfork))
1361 loop_fork (EV_A); 2347 loop_fork (EV_A);
1362 2348
1363 /* update fd-related kernel structures */ 2349 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2350 fd_reify (EV_A);
1365 2351
1366 /* calculate blocking time */ 2352 /* calculate blocking time */
1367 { 2353 {
1368 double block; 2354 ev_tstamp waittime = 0.;
2355 ev_tstamp sleeptime = 0.;
1369 2356
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2357 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 2358 {
2359 /* remember old timestamp for io_blocktime calculation */
2360 ev_tstamp prev_mn_now = mn_now;
2361
1374 /* update time to cancel out callback processing overhead */ 2362 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 2363 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 2364
1385 block = MAX_BLOCKTIME; 2365 waittime = MAX_BLOCKTIME;
1386 2366
1387 if (timercnt) 2367 if (timercnt)
1388 { 2368 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2369 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2370 if (waittime > to) waittime = to;
1391 } 2371 }
1392 2372
1393#if EV_PERIODIC_ENABLE 2373#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2374 if (periodiccnt)
1395 { 2375 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2376 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2377 if (waittime > to) waittime = to;
1398 } 2378 }
1399#endif 2379#endif
1400 2380
2381 /* don't let timeouts decrease the waittime below timeout_blocktime */
2382 if (expect_false (waittime < timeout_blocktime))
2383 waittime = timeout_blocktime;
2384
2385 /* extra check because io_blocktime is commonly 0 */
1401 if (expect_false (block < 0.)) block = 0.; 2386 if (expect_false (io_blocktime))
2387 {
2388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2389
2390 if (sleeptime > waittime - backend_fudge)
2391 sleeptime = waittime - backend_fudge;
2392
2393 if (expect_true (sleeptime > 0.))
2394 {
2395 ev_sleep (sleeptime);
2396 waittime -= sleeptime;
2397 }
2398 }
1402 } 2399 }
1403 2400
2401#if EV_FEATURE_API
2402 ++loop_count;
2403#endif
2404 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1404 backend_poll (EV_A_ block); 2405 backend_poll (EV_A_ waittime);
2406 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2407
2408 /* update ev_rt_now, do magic */
2409 time_update (EV_A_ waittime + sleeptime);
1405 } 2410 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2411
1410 /* queue pending timers and reschedule them */ 2412 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2413 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2414#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2415 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2416#endif
1415 2417
2418#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2419 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2420 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2421#endif
1419 2422
2423#if EV_CHECK_ENABLE
1420 /* queue check watchers, to be executed first */ 2424 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2425 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2427#endif
1423 2428
1424 call_pending (EV_A); 2429 EV_INVOKE_PENDING;
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2430 }
2431 while (expect_true (
2432 activecnt
2433 && !loop_done
2434 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2435 ));
1429 2436
1430 if (loop_done == EVUNLOOP_ONE) 2437 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2438 loop_done = EVUNLOOP_CANCEL;
2439
2440#if EV_FEATURE_API
2441 --loop_depth;
2442#endif
1432} 2443}
1433 2444
1434void 2445void
1435ev_unloop (EV_P_ int how) 2446ev_unloop (EV_P_ int how)
1436{ 2447{
1437 loop_done = how; 2448 loop_done = how;
1438} 2449}
1439 2450
2451void
2452ev_ref (EV_P)
2453{
2454 ++activecnt;
2455}
2456
2457void
2458ev_unref (EV_P)
2459{
2460 --activecnt;
2461}
2462
2463void
2464ev_now_update (EV_P)
2465{
2466 time_update (EV_A_ 1e100);
2467}
2468
2469void
2470ev_suspend (EV_P)
2471{
2472 ev_now_update (EV_A);
2473}
2474
2475void
2476ev_resume (EV_P)
2477{
2478 ev_tstamp mn_prev = mn_now;
2479
2480 ev_now_update (EV_A);
2481 timers_reschedule (EV_A_ mn_now - mn_prev);
2482#if EV_PERIODIC_ENABLE
2483 /* TODO: really do this? */
2484 periodics_reschedule (EV_A);
2485#endif
2486}
2487
1440/*****************************************************************************/ 2488/*****************************************************************************/
2489/* singly-linked list management, used when the expected list length is short */
1441 2490
1442void inline_size 2491inline_size void
1443wlist_add (WL *head, WL elem) 2492wlist_add (WL *head, WL elem)
1444{ 2493{
1445 elem->next = *head; 2494 elem->next = *head;
1446 *head = elem; 2495 *head = elem;
1447} 2496}
1448 2497
1449void inline_size 2498inline_size void
1450wlist_del (WL *head, WL elem) 2499wlist_del (WL *head, WL elem)
1451{ 2500{
1452 while (*head) 2501 while (*head)
1453 { 2502 {
1454 if (*head == elem) 2503 if (expect_true (*head == elem))
1455 { 2504 {
1456 *head = elem->next; 2505 *head = elem->next;
1457 return; 2506 break;
1458 } 2507 }
1459 2508
1460 head = &(*head)->next; 2509 head = &(*head)->next;
1461 } 2510 }
1462} 2511}
1463 2512
1464void inline_speed 2513/* internal, faster, version of ev_clear_pending */
2514inline_speed void
1465ev_clear_pending (EV_P_ W w) 2515clear_pending (EV_P_ W w)
1466{ 2516{
1467 if (w->pending) 2517 if (w->pending)
1468 { 2518 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2519 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 2520 w->pending = 0;
1471 } 2521 }
1472} 2522}
1473 2523
1474void inline_speed 2524int
2525ev_clear_pending (EV_P_ void *w)
2526{
2527 W w_ = (W)w;
2528 int pending = w_->pending;
2529
2530 if (expect_true (pending))
2531 {
2532 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2533 p->w = (W)&pending_w;
2534 w_->pending = 0;
2535 return p->events;
2536 }
2537 else
2538 return 0;
2539}
2540
2541inline_size void
2542pri_adjust (EV_P_ W w)
2543{
2544 int pri = ev_priority (w);
2545 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2546 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2547 ev_set_priority (w, pri);
2548}
2549
2550inline_speed void
1475ev_start (EV_P_ W w, int active) 2551ev_start (EV_P_ W w, int active)
1476{ 2552{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2553 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2554 w->active = active;
1481 ev_ref (EV_A); 2555 ev_ref (EV_A);
1482} 2556}
1483 2557
1484void inline_size 2558inline_size void
1485ev_stop (EV_P_ W w) 2559ev_stop (EV_P_ W w)
1486{ 2560{
1487 ev_unref (EV_A); 2561 ev_unref (EV_A);
1488 w->active = 0; 2562 w->active = 0;
1489} 2563}
1490 2564
1491/*****************************************************************************/ 2565/*****************************************************************************/
1492 2566
1493void 2567void noinline
1494ev_io_start (EV_P_ ev_io *w) 2568ev_io_start (EV_P_ ev_io *w)
1495{ 2569{
1496 int fd = w->fd; 2570 int fd = w->fd;
1497 2571
1498 if (expect_false (ev_is_active (w))) 2572 if (expect_false (ev_is_active (w)))
1499 return; 2573 return;
1500 2574
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2575 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2576 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2577
2578 EV_FREQUENT_CHECK;
1502 2579
1503 ev_start (EV_A_ (W)w, 1); 2580 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2581 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2582 wlist_add (&anfds[fd].head, (WL)w);
1506 2583
1507 fd_change (EV_A_ fd); 2584 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1508} 2585 w->events &= ~EV__IOFDSET;
1509 2586
1510void 2587 EV_FREQUENT_CHECK;
2588}
2589
2590void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2591ev_io_stop (EV_P_ ev_io *w)
1512{ 2592{
1513 ev_clear_pending (EV_A_ (W)w); 2593 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2594 if (expect_false (!ev_is_active (w)))
1515 return; 2595 return;
1516 2596
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2597 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2598
2599 EV_FREQUENT_CHECK;
2600
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2601 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
1521 2603
1522 fd_change (EV_A_ w->fd); 2604 fd_change (EV_A_ w->fd, 1);
1523}
1524 2605
1525void 2606 EV_FREQUENT_CHECK;
2607}
2608
2609void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2610ev_timer_start (EV_P_ ev_timer *w)
1527{ 2611{
1528 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
1529 return; 2613 return;
1530 2614
1531 ((WT)w)->at += mn_now; 2615 ev_at (w) += mn_now;
1532 2616
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2617 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2618
2619 EV_FREQUENT_CHECK;
2620
2621 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2622 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2623 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2624 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2625 ANHE_at_cache (timers [ev_active (w)]);
2626 upheap (timers, ev_active (w));
1539 2627
2628 EV_FREQUENT_CHECK;
2629
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2630 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2631}
1542 2632
1543void 2633void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2634ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2635{
1546 ev_clear_pending (EV_A_ (W)w); 2636 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2637 if (expect_false (!ev_is_active (w)))
1548 return; 2638 return;
1549 2639
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2640 EV_FREQUENT_CHECK;
1551 2641
1552 { 2642 {
1553 int active = ((W)w)->active; 2643 int active = ev_active (w);
1554 2644
2645 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2646
2647 --timercnt;
2648
1555 if (expect_true (--active < --timercnt)) 2649 if (expect_true (active < timercnt + HEAP0))
1556 { 2650 {
1557 timers [active] = timers [timercnt]; 2651 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2652 adjustheap (timers, timercnt, active);
1559 } 2653 }
1560 } 2654 }
1561 2655
1562 ((WT)w)->at -= mn_now; 2656 ev_at (w) -= mn_now;
1563 2657
1564 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
1565}
1566 2659
1567void 2660 EV_FREQUENT_CHECK;
2661}
2662
2663void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2664ev_timer_again (EV_P_ ev_timer *w)
1569{ 2665{
2666 EV_FREQUENT_CHECK;
2667
1570 if (ev_is_active (w)) 2668 if (ev_is_active (w))
1571 { 2669 {
1572 if (w->repeat) 2670 if (w->repeat)
1573 { 2671 {
1574 ((WT)w)->at = mn_now + w->repeat; 2672 ev_at (w) = mn_now + w->repeat;
2673 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2674 adjustheap (timers, timercnt, ev_active (w));
1576 } 2675 }
1577 else 2676 else
1578 ev_timer_stop (EV_A_ w); 2677 ev_timer_stop (EV_A_ w);
1579 } 2678 }
1580 else if (w->repeat) 2679 else if (w->repeat)
1581 { 2680 {
1582 w->at = w->repeat; 2681 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2682 ev_timer_start (EV_A_ w);
1584 } 2683 }
2684
2685 EV_FREQUENT_CHECK;
2686}
2687
2688ev_tstamp
2689ev_timer_remaining (EV_P_ ev_timer *w)
2690{
2691 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1585} 2692}
1586 2693
1587#if EV_PERIODIC_ENABLE 2694#if EV_PERIODIC_ENABLE
1588void 2695void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2696ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2697{
1591 if (expect_false (ev_is_active (w))) 2698 if (expect_false (ev_is_active (w)))
1592 return; 2699 return;
1593 2700
1594 if (w->reschedule_cb) 2701 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2702 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2703 else if (w->interval)
1597 { 2704 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2705 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2706 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2707 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2708 }
2709 else
2710 ev_at (w) = w->offset;
1602 2711
2712 EV_FREQUENT_CHECK;
2713
2714 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2715 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2716 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2717 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2718 ANHE_at_cache (periodics [ev_active (w)]);
2719 upheap (periodics, ev_active (w));
1607 2720
2721 EV_FREQUENT_CHECK;
2722
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2723 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2724}
1610 2725
1611void 2726void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2727ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2728{
1614 ev_clear_pending (EV_A_ (W)w); 2729 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2730 if (expect_false (!ev_is_active (w)))
1616 return; 2731 return;
1617 2732
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2733 EV_FREQUENT_CHECK;
1619 2734
1620 { 2735 {
1621 int active = ((W)w)->active; 2736 int active = ev_active (w);
1622 2737
2738 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2739
2740 --periodiccnt;
2741
1623 if (expect_true (--active < --periodiccnt)) 2742 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2743 {
1625 periodics [active] = periodics [periodiccnt]; 2744 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2745 adjustheap (periodics, periodiccnt, active);
1627 } 2746 }
1628 } 2747 }
1629 2748
1630 ev_stop (EV_A_ (W)w); 2749 ev_stop (EV_A_ (W)w);
1631}
1632 2750
1633void 2751 EV_FREQUENT_CHECK;
2752}
2753
2754void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2755ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2756{
1636 /* TODO: use adjustheap and recalculation */ 2757 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2758 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2759 ev_periodic_start (EV_A_ w);
1641 2762
1642#ifndef SA_RESTART 2763#ifndef SA_RESTART
1643# define SA_RESTART 0 2764# define SA_RESTART 0
1644#endif 2765#endif
1645 2766
1646void 2767#if EV_SIGNAL_ENABLE
2768
2769void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2770ev_signal_start (EV_P_ ev_signal *w)
1648{ 2771{
1649#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif
1652 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
1653 return; 2773 return;
1654 2774
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2775 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2776
2777#if EV_MULTIPLICITY
2778 assert (("libev: a signal must not be attached to two different loops",
2779 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2780
2781 signals [w->signum - 1].loop = EV_A;
2782#endif
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_SIGNALFD
2787 if (sigfd == -2)
2788 {
2789 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2790 if (sigfd < 0 && errno == EINVAL)
2791 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2792
2793 if (sigfd >= 0)
2794 {
2795 fd_intern (sigfd); /* doing it twice will not hurt */
2796
2797 sigemptyset (&sigfd_set);
2798
2799 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2800 ev_set_priority (&sigfd_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &sigfd_w);
2802 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2803 }
2804 }
2805
2806 if (sigfd >= 0)
2807 {
2808 /* TODO: check .head */
2809 sigaddset (&sigfd_set, w->signum);
2810 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2811
2812 signalfd (sigfd, &sigfd_set, 0);
2813 }
2814#endif
1656 2815
1657 ev_start (EV_A_ (W)w, 1); 2816 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2817 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2818
1661 if (!((WL)w)->next) 2819 if (!((WL)w)->next)
2820# if EV_USE_SIGNALFD
2821 if (sigfd < 0) /*TODO*/
2822# endif
1662 { 2823 {
1663#if _WIN32 2824# ifdef _WIN32
2825 evpipe_init (EV_A);
2826
1664 signal (w->signum, sighandler); 2827 signal (w->signum, ev_sighandler);
1665#else 2828# else
1666 struct sigaction sa; 2829 struct sigaction sa;
2830
2831 evpipe_init (EV_A);
2832
1667 sa.sa_handler = sighandler; 2833 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2834 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2835 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2836 sigaction (w->signum, &sa, 0);
2837
2838 sigemptyset (&sa.sa_mask);
2839 sigaddset (&sa.sa_mask, w->signum);
2840 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1671#endif 2841#endif
1672 } 2842 }
1673}
1674 2843
1675void 2844 EV_FREQUENT_CHECK;
2845}
2846
2847void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2848ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2849{
1678 ev_clear_pending (EV_A_ (W)w); 2850 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2851 if (expect_false (!ev_is_active (w)))
1680 return; 2852 return;
1681 2853
2854 EV_FREQUENT_CHECK;
2855
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2856 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
1684 2858
1685 if (!signals [w->signum - 1].head) 2859 if (!signals [w->signum - 1].head)
2860 {
2861#if EV_MULTIPLICITY
2862 signals [w->signum - 1].loop = 0; /* unattach from signal */
2863#endif
2864#if EV_USE_SIGNALFD
2865 if (sigfd >= 0)
2866 {
2867 sigset_t ss;
2868
2869 sigemptyset (&ss);
2870 sigaddset (&ss, w->signum);
2871 sigdelset (&sigfd_set, w->signum);
2872
2873 signalfd (sigfd, &sigfd_set, 0);
2874 sigprocmask (SIG_UNBLOCK, &ss, 0);
2875 }
2876 else
2877#endif
1686 signal (w->signum, SIG_DFL); 2878 signal (w->signum, SIG_DFL);
2879 }
2880
2881 EV_FREQUENT_CHECK;
1687} 2882}
2883
2884#endif
2885
2886#if EV_CHILD_ENABLE
1688 2887
1689void 2888void
1690ev_child_start (EV_P_ ev_child *w) 2889ev_child_start (EV_P_ ev_child *w)
1691{ 2890{
1692#if EV_MULTIPLICITY 2891#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2892 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2893#endif
1695 if (expect_false (ev_is_active (w))) 2894 if (expect_false (ev_is_active (w)))
1696 return; 2895 return;
1697 2896
2897 EV_FREQUENT_CHECK;
2898
1698 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2901
2902 EV_FREQUENT_CHECK;
1700} 2903}
1701 2904
1702void 2905void
1703ev_child_stop (EV_P_ ev_child *w) 2906ev_child_stop (EV_P_ ev_child *w)
1704{ 2907{
1705 ev_clear_pending (EV_A_ (W)w); 2908 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2909 if (expect_false (!ev_is_active (w)))
1707 return; 2910 return;
1708 2911
2912 EV_FREQUENT_CHECK;
2913
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2914 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
1711} 2918}
2919
2920#endif
1712 2921
1713#if EV_STAT_ENABLE 2922#if EV_STAT_ENABLE
1714 2923
1715# ifdef _WIN32 2924# ifdef _WIN32
1716# undef lstat 2925# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2926# define lstat(a,b) _stati64 (a,b)
1718# endif 2927# endif
1719 2928
1720#define DEF_STAT_INTERVAL 5.0074891 2929#define DEF_STAT_INTERVAL 5.0074891
2930#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2931#define MIN_STAT_INTERVAL 0.1074891
1722 2932
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2933static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2934
1725#if EV_USE_INOTIFY 2935#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2936
2937/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2938# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1727 2939
1728static void noinline 2940static void noinline
1729infy_add (EV_P_ ev_stat *w) 2941infy_add (EV_P_ ev_stat *w)
1730{ 2942{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2943 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 2944
1733 if (w->wd < 0) 2945 if (w->wd >= 0)
2946 {
2947 struct statfs sfs;
2948
2949 /* now local changes will be tracked by inotify, but remote changes won't */
2950 /* unless the filesystem is known to be local, we therefore still poll */
2951 /* also do poll on <2.6.25, but with normal frequency */
2952
2953 if (!fs_2625)
2954 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2955 else if (!statfs (w->path, &sfs)
2956 && (sfs.f_type == 0x1373 /* devfs */
2957 || sfs.f_type == 0xEF53 /* ext2/3 */
2958 || sfs.f_type == 0x3153464a /* jfs */
2959 || sfs.f_type == 0x52654973 /* reiser3 */
2960 || sfs.f_type == 0x01021994 /* tempfs */
2961 || sfs.f_type == 0x58465342 /* xfs */))
2962 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2963 else
2964 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1734 { 2965 }
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2966 else
2967 {
2968 /* can't use inotify, continue to stat */
2969 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1736 2970
1737 /* monitor some parent directory for speedup hints */ 2971 /* if path is not there, monitor some parent directory for speedup hints */
2972 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2973 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2974 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2975 {
1740 char path [4096]; 2976 char path [4096];
1741 strcpy (path, w->path); 2977 strcpy (path, w->path);
1742 2978
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2981 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2982 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 2983
1748 char *pend = strrchr (path, '/'); 2984 char *pend = strrchr (path, '/');
1749 2985
1750 if (!pend) 2986 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 2987 break;
1752 2988
1753 *pend = 0; 2989 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 2990 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 2991 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2992 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 2993 }
1758 } 2994 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 2995
1762 if (w->wd >= 0) 2996 if (w->wd >= 0)
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2997 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2998
2999 /* now re-arm timer, if required */
3000 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3001 ev_timer_again (EV_A_ &w->timer);
3002 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1764} 3003}
1765 3004
1766static void noinline 3005static void noinline
1767infy_del (EV_P_ ev_stat *w) 3006infy_del (EV_P_ ev_stat *w)
1768{ 3007{
1771 3010
1772 if (wd < 0) 3011 if (wd < 0)
1773 return; 3012 return;
1774 3013
1775 w->wd = -2; 3014 w->wd = -2;
1776 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3015 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1777 wlist_del (&fs_hash [slot].head, (WL)w); 3016 wlist_del (&fs_hash [slot].head, (WL)w);
1778 3017
1779 /* remove this watcher, if others are watching it, they will rearm */ 3018 /* remove this watcher, if others are watching it, they will rearm */
1780 inotify_rm_watch (fs_fd, wd); 3019 inotify_rm_watch (fs_fd, wd);
1781} 3020}
1782 3021
1783static void noinline 3022static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3023infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 3024{
1786 if (slot < 0) 3025 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 3026 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3027 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 3028 infy_wd (EV_A_ slot, wd, ev);
1790 else 3029 else
1791 { 3030 {
1792 WL w_; 3031 WL w_;
1793 3032
1794 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3033 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1795 { 3034 {
1796 ev_stat *w = (ev_stat *)w_; 3035 ev_stat *w = (ev_stat *)w_;
1797 w_ = w_->next; /* lets us remove this watcher and all before it */ 3036 w_ = w_->next; /* lets us remove this watcher and all before it */
1798 3037
1799 if (w->wd == wd || wd == -1) 3038 if (w->wd == wd || wd == -1)
1800 { 3039 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3040 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 3041 {
3042 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1803 w->wd = -1; 3043 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 3044 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 3045 }
1806 3046
1807 stat_timer_cb (EV_A_ &w->timer, 0); 3047 stat_timer_cb (EV_A_ &w->timer, 0);
1812 3052
1813static void 3053static void
1814infy_cb (EV_P_ ev_io *w, int revents) 3054infy_cb (EV_P_ ev_io *w, int revents)
1815{ 3055{
1816 char buf [EV_INOTIFY_BUFSIZE]; 3056 char buf [EV_INOTIFY_BUFSIZE];
1817 struct inotify_event *ev = (struct inotify_event *)buf;
1818 int ofs; 3057 int ofs;
1819 int len = read (fs_fd, buf, sizeof (buf)); 3058 int len = read (fs_fd, buf, sizeof (buf));
1820 3059
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3060 for (ofs = 0; ofs < len; )
3061 {
3062 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3063 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3064 ofs += sizeof (struct inotify_event) + ev->len;
3065 }
1823} 3066}
1824 3067
1825void inline_size 3068inline_size unsigned int
3069ev_linux_version (void)
3070{
3071 struct utsname buf;
3072 unsigned int v;
3073 int i;
3074 char *p = buf.release;
3075
3076 if (uname (&buf))
3077 return 0;
3078
3079 for (i = 3+1; --i; )
3080 {
3081 unsigned int c = 0;
3082
3083 for (;;)
3084 {
3085 if (*p >= '0' && *p <= '9')
3086 c = c * 10 + *p++ - '0';
3087 else
3088 {
3089 p += *p == '.';
3090 break;
3091 }
3092 }
3093
3094 v = (v << 8) | c;
3095 }
3096
3097 return v;
3098}
3099
3100inline_size void
3101ev_check_2625 (EV_P)
3102{
3103 /* kernels < 2.6.25 are borked
3104 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3105 */
3106 if (ev_linux_version () < 0x020619)
3107 return;
3108
3109 fs_2625 = 1;
3110}
3111
3112inline_size int
3113infy_newfd (void)
3114{
3115#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3116 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3117 if (fd >= 0)
3118 return fd;
3119#endif
3120 return inotify_init ();
3121}
3122
3123inline_size void
1826infy_init (EV_P) 3124infy_init (EV_P)
1827{ 3125{
1828 if (fs_fd != -2) 3126 if (fs_fd != -2)
1829 return; 3127 return;
1830 3128
3129 fs_fd = -1;
3130
3131 ev_check_2625 (EV_A);
3132
1831 fs_fd = inotify_init (); 3133 fs_fd = infy_newfd ();
1832 3134
1833 if (fs_fd >= 0) 3135 if (fs_fd >= 0)
1834 { 3136 {
3137 fd_intern (fs_fd);
1835 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3138 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1836 ev_set_priority (&fs_w, EV_MAXPRI); 3139 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 3140 ev_io_start (EV_A_ &fs_w);
3141 ev_unref (EV_A);
1838 } 3142 }
1839} 3143}
1840 3144
1841void inline_size 3145inline_size void
1842infy_fork (EV_P) 3146infy_fork (EV_P)
1843{ 3147{
1844 int slot; 3148 int slot;
1845 3149
1846 if (fs_fd < 0) 3150 if (fs_fd < 0)
1847 return; 3151 return;
1848 3152
3153 ev_ref (EV_A);
3154 ev_io_stop (EV_A_ &fs_w);
1849 close (fs_fd); 3155 close (fs_fd);
1850 fs_fd = inotify_init (); 3156 fs_fd = infy_newfd ();
1851 3157
3158 if (fs_fd >= 0)
3159 {
3160 fd_intern (fs_fd);
3161 ev_io_set (&fs_w, fs_fd, EV_READ);
3162 ev_io_start (EV_A_ &fs_w);
3163 ev_unref (EV_A);
3164 }
3165
1852 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3166 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1853 { 3167 {
1854 WL w_ = fs_hash [slot].head; 3168 WL w_ = fs_hash [slot].head;
1855 fs_hash [slot].head = 0; 3169 fs_hash [slot].head = 0;
1856 3170
1857 while (w_) 3171 while (w_)
1862 w->wd = -1; 3176 w->wd = -1;
1863 3177
1864 if (fs_fd >= 0) 3178 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 3179 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 3180 else
3181 {
3182 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3183 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1867 ev_timer_start (EV_A_ &w->timer); 3184 ev_timer_again (EV_A_ &w->timer);
3185 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3186 }
1868 } 3187 }
1869
1870 } 3188 }
1871} 3189}
1872 3190
3191#endif
3192
3193#ifdef _WIN32
3194# define EV_LSTAT(p,b) _stati64 (p, b)
3195#else
3196# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 3197#endif
1874 3198
1875void 3199void
1876ev_stat_stat (EV_P_ ev_stat *w) 3200ev_stat_stat (EV_P_ ev_stat *w)
1877{ 3201{
1879 w->attr.st_nlink = 0; 3203 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 3204 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 3205 w->attr.st_nlink = 1;
1882} 3206}
1883 3207
1884void noinline 3208static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3209stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 3210{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3211 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 3212
1889 /* we copy this here each the time so that */ 3213 ev_statdata prev = w->attr;
1890 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 3214 ev_stat_stat (EV_A_ w);
1893 3215
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3216 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3217 if (
3218 prev.st_dev != w->attr.st_dev
3219 || prev.st_ino != w->attr.st_ino
3220 || prev.st_mode != w->attr.st_mode
3221 || prev.st_nlink != w->attr.st_nlink
3222 || prev.st_uid != w->attr.st_uid
3223 || prev.st_gid != w->attr.st_gid
3224 || prev.st_rdev != w->attr.st_rdev
3225 || prev.st_size != w->attr.st_size
3226 || prev.st_atime != w->attr.st_atime
3227 || prev.st_mtime != w->attr.st_mtime
3228 || prev.st_ctime != w->attr.st_ctime
1895 { 3229 ) {
3230 /* we only update w->prev on actual differences */
3231 /* in case we test more often than invoke the callback, */
3232 /* to ensure that prev is always different to attr */
3233 w->prev = prev;
3234
1896 #if EV_USE_INOTIFY 3235 #if EV_USE_INOTIFY
3236 if (fs_fd >= 0)
3237 {
1897 infy_del (EV_A_ w); 3238 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 3239 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 3240 ev_stat_stat (EV_A_ w); /* avoid race... */
3241 }
1900 #endif 3242 #endif
1901 3243
1902 ev_feed_event (EV_A_ w, EV_STAT); 3244 ev_feed_event (EV_A_ w, EV_STAT);
1903 } 3245 }
1904} 3246}
1907ev_stat_start (EV_P_ ev_stat *w) 3249ev_stat_start (EV_P_ ev_stat *w)
1908{ 3250{
1909 if (expect_false (ev_is_active (w))) 3251 if (expect_false (ev_is_active (w)))
1910 return; 3252 return;
1911 3253
1912 /* since we use memcmp, we need to clear any padding data etc. */
1913 memset (&w->prev, 0, sizeof (ev_statdata));
1914 memset (&w->attr, 0, sizeof (ev_statdata));
1915
1916 ev_stat_stat (EV_A_ w); 3254 ev_stat_stat (EV_A_ w);
1917 3255
3256 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1918 if (w->interval < MIN_STAT_INTERVAL) 3257 w->interval = MIN_STAT_INTERVAL;
1919 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1920 3258
1921 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3259 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1922 ev_set_priority (&w->timer, ev_priority (w)); 3260 ev_set_priority (&w->timer, ev_priority (w));
1923 3261
1924#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
1925 infy_init (EV_A); 3263 infy_init (EV_A);
1926 3264
1927 if (fs_fd >= 0) 3265 if (fs_fd >= 0)
1928 infy_add (EV_A_ w); 3266 infy_add (EV_A_ w);
1929 else 3267 else
1930#endif 3268#endif
3269 {
1931 ev_timer_start (EV_A_ &w->timer); 3270 ev_timer_again (EV_A_ &w->timer);
3271 ev_unref (EV_A);
3272 }
1932 3273
1933 ev_start (EV_A_ (W)w, 1); 3274 ev_start (EV_A_ (W)w, 1);
3275
3276 EV_FREQUENT_CHECK;
1934} 3277}
1935 3278
1936void 3279void
1937ev_stat_stop (EV_P_ ev_stat *w) 3280ev_stat_stop (EV_P_ ev_stat *w)
1938{ 3281{
1939 ev_clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
1941 return; 3284 return;
1942 3285
3286 EV_FREQUENT_CHECK;
3287
1943#if EV_USE_INOTIFY 3288#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 3289 infy_del (EV_A_ w);
1945#endif 3290#endif
3291
3292 if (ev_is_active (&w->timer))
3293 {
3294 ev_ref (EV_A);
1946 ev_timer_stop (EV_A_ &w->timer); 3295 ev_timer_stop (EV_A_ &w->timer);
3296 }
1947 3297
1948 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
1949}
1950#endif
1951 3299
3300 EV_FREQUENT_CHECK;
3301}
3302#endif
3303
3304#if EV_IDLE_ENABLE
1952void 3305void
1953ev_idle_start (EV_P_ ev_idle *w) 3306ev_idle_start (EV_P_ ev_idle *w)
1954{ 3307{
1955 if (expect_false (ev_is_active (w))) 3308 if (expect_false (ev_is_active (w)))
1956 return; 3309 return;
1957 3310
3311 pri_adjust (EV_A_ (W)w);
3312
3313 EV_FREQUENT_CHECK;
3314
3315 {
3316 int active = ++idlecnt [ABSPRI (w)];
3317
3318 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 3319 ev_start (EV_A_ (W)w, active);
3320
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3321 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 3322 idles [ABSPRI (w)][active - 1] = w;
3323 }
3324
3325 EV_FREQUENT_CHECK;
1961} 3326}
1962 3327
1963void 3328void
1964ev_idle_stop (EV_P_ ev_idle *w) 3329ev_idle_stop (EV_P_ ev_idle *w)
1965{ 3330{
1966 ev_clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
1968 return; 3333 return;
1969 3334
3335 EV_FREQUENT_CHECK;
3336
1970 { 3337 {
1971 int active = ((W)w)->active; 3338 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 3339
1973 ((W)idles [active - 1])->active = active; 3340 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3341 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3342
3343 ev_stop (EV_A_ (W)w);
3344 --idleall;
1974 } 3345 }
1975 3346
1976 ev_stop (EV_A_ (W)w); 3347 EV_FREQUENT_CHECK;
1977} 3348}
3349#endif
1978 3350
3351#if EV_PREPARE_ENABLE
1979void 3352void
1980ev_prepare_start (EV_P_ ev_prepare *w) 3353ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 3354{
1982 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
1983 return; 3356 return;
3357
3358 EV_FREQUENT_CHECK;
1984 3359
1985 ev_start (EV_A_ (W)w, ++preparecnt); 3360 ev_start (EV_A_ (W)w, ++preparecnt);
1986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3361 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1987 prepares [preparecnt - 1] = w; 3362 prepares [preparecnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
1988} 3365}
1989 3366
1990void 3367void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 3368ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 3369{
1993 ev_clear_pending (EV_A_ (W)w); 3370 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 3371 if (expect_false (!ev_is_active (w)))
1995 return; 3372 return;
1996 3373
3374 EV_FREQUENT_CHECK;
3375
1997 { 3376 {
1998 int active = ((W)w)->active; 3377 int active = ev_active (w);
3378
1999 prepares [active - 1] = prepares [--preparecnt]; 3379 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 3380 ev_active (prepares [active - 1]) = active;
2001 } 3381 }
2002 3382
2003 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
2004}
2005 3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_CHECK_ENABLE
2006void 3390void
2007ev_check_start (EV_P_ ev_check *w) 3391ev_check_start (EV_P_ ev_check *w)
2008{ 3392{
2009 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2010 return; 3394 return;
3395
3396 EV_FREQUENT_CHECK;
2011 3397
2012 ev_start (EV_A_ (W)w, ++checkcnt); 3398 ev_start (EV_A_ (W)w, ++checkcnt);
2013 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3399 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2014 checks [checkcnt - 1] = w; 3400 checks [checkcnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
2015} 3403}
2016 3404
2017void 3405void
2018ev_check_stop (EV_P_ ev_check *w) 3406ev_check_stop (EV_P_ ev_check *w)
2019{ 3407{
2020 ev_clear_pending (EV_A_ (W)w); 3408 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 3409 if (expect_false (!ev_is_active (w)))
2022 return; 3410 return;
2023 3411
3412 EV_FREQUENT_CHECK;
3413
2024 { 3414 {
2025 int active = ((W)w)->active; 3415 int active = ev_active (w);
3416
2026 checks [active - 1] = checks [--checkcnt]; 3417 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 3418 ev_active (checks [active - 1]) = active;
2028 } 3419 }
2029 3420
2030 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
2031} 3424}
3425#endif
2032 3426
2033#if EV_EMBED_ENABLE 3427#if EV_EMBED_ENABLE
2034void noinline 3428void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 3429ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 3430{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 3431 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 3432}
2039 3433
2040static void 3434static void
2041embed_cb (EV_P_ ev_io *io, int revents) 3435embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 3436{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3437 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 3438
2045 if (ev_cb (w)) 3439 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3440 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 3441 else
2048 ev_embed_sweep (loop, w); 3442 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 3443}
3444
3445static void
3446embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3447{
3448 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3449
3450 {
3451 EV_P = w->other;
3452
3453 while (fdchangecnt)
3454 {
3455 fd_reify (EV_A);
3456 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3457 }
3458 }
3459}
3460
3461static void
3462embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3465
3466 ev_embed_stop (EV_A_ w);
3467
3468 {
3469 EV_P = w->other;
3470
3471 ev_loop_fork (EV_A);
3472 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3473 }
3474
3475 ev_embed_start (EV_A_ w);
3476}
3477
3478#if 0
3479static void
3480embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3481{
3482 ev_idle_stop (EV_A_ idle);
3483}
3484#endif
2050 3485
2051void 3486void
2052ev_embed_start (EV_P_ ev_embed *w) 3487ev_embed_start (EV_P_ ev_embed *w)
2053{ 3488{
2054 if (expect_false (ev_is_active (w))) 3489 if (expect_false (ev_is_active (w)))
2055 return; 3490 return;
2056 3491
2057 { 3492 {
2058 struct ev_loop *loop = w->loop; 3493 EV_P = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3494 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 3496 }
3497
3498 EV_FREQUENT_CHECK;
2062 3499
2063 ev_set_priority (&w->io, ev_priority (w)); 3500 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 3501 ev_io_start (EV_A_ &w->io);
2065 3502
3503 ev_prepare_init (&w->prepare, embed_prepare_cb);
3504 ev_set_priority (&w->prepare, EV_MINPRI);
3505 ev_prepare_start (EV_A_ &w->prepare);
3506
3507 ev_fork_init (&w->fork, embed_fork_cb);
3508 ev_fork_start (EV_A_ &w->fork);
3509
3510 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3511
2066 ev_start (EV_A_ (W)w, 1); 3512 ev_start (EV_A_ (W)w, 1);
3513
3514 EV_FREQUENT_CHECK;
2067} 3515}
2068 3516
2069void 3517void
2070ev_embed_stop (EV_P_ ev_embed *w) 3518ev_embed_stop (EV_P_ ev_embed *w)
2071{ 3519{
2072 ev_clear_pending (EV_A_ (W)w); 3520 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 3521 if (expect_false (!ev_is_active (w)))
2074 return; 3522 return;
2075 3523
3524 EV_FREQUENT_CHECK;
3525
2076 ev_io_stop (EV_A_ &w->io); 3526 ev_io_stop (EV_A_ &w->io);
3527 ev_prepare_stop (EV_A_ &w->prepare);
3528 ev_fork_stop (EV_A_ &w->fork);
2077 3529
2078 ev_stop (EV_A_ (W)w); 3530 ev_stop (EV_A_ (W)w);
3531
3532 EV_FREQUENT_CHECK;
2079} 3533}
2080#endif 3534#endif
2081 3535
2082#if EV_FORK_ENABLE 3536#if EV_FORK_ENABLE
2083void 3537void
2084ev_fork_start (EV_P_ ev_fork *w) 3538ev_fork_start (EV_P_ ev_fork *w)
2085{ 3539{
2086 if (expect_false (ev_is_active (w))) 3540 if (expect_false (ev_is_active (w)))
2087 return; 3541 return;
3542
3543 EV_FREQUENT_CHECK;
2088 3544
2089 ev_start (EV_A_ (W)w, ++forkcnt); 3545 ev_start (EV_A_ (W)w, ++forkcnt);
2090 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3546 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2091 forks [forkcnt - 1] = w; 3547 forks [forkcnt - 1] = w;
3548
3549 EV_FREQUENT_CHECK;
2092} 3550}
2093 3551
2094void 3552void
2095ev_fork_stop (EV_P_ ev_fork *w) 3553ev_fork_stop (EV_P_ ev_fork *w)
2096{ 3554{
2097 ev_clear_pending (EV_A_ (W)w); 3555 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 3556 if (expect_false (!ev_is_active (w)))
2099 return; 3557 return;
2100 3558
3559 EV_FREQUENT_CHECK;
3560
2101 { 3561 {
2102 int active = ((W)w)->active; 3562 int active = ev_active (w);
3563
2103 forks [active - 1] = forks [--forkcnt]; 3564 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 3565 ev_active (forks [active - 1]) = active;
2105 } 3566 }
2106 3567
2107 ev_stop (EV_A_ (W)w); 3568 ev_stop (EV_A_ (W)w);
3569
3570 EV_FREQUENT_CHECK;
3571}
3572#endif
3573
3574#if EV_ASYNC_ENABLE
3575void
3576ev_async_start (EV_P_ ev_async *w)
3577{
3578 if (expect_false (ev_is_active (w)))
3579 return;
3580
3581 evpipe_init (EV_A);
3582
3583 EV_FREQUENT_CHECK;
3584
3585 ev_start (EV_A_ (W)w, ++asynccnt);
3586 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3587 asyncs [asynccnt - 1] = w;
3588
3589 EV_FREQUENT_CHECK;
3590}
3591
3592void
3593ev_async_stop (EV_P_ ev_async *w)
3594{
3595 clear_pending (EV_A_ (W)w);
3596 if (expect_false (!ev_is_active (w)))
3597 return;
3598
3599 EV_FREQUENT_CHECK;
3600
3601 {
3602 int active = ev_active (w);
3603
3604 asyncs [active - 1] = asyncs [--asynccnt];
3605 ev_active (asyncs [active - 1]) = active;
3606 }
3607
3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
3611}
3612
3613void
3614ev_async_send (EV_P_ ev_async *w)
3615{
3616 w->sent = 1;
3617 evpipe_write (EV_A_ &async_pending);
2108} 3618}
2109#endif 3619#endif
2110 3620
2111/*****************************************************************************/ 3621/*****************************************************************************/
2112 3622
2122once_cb (EV_P_ struct ev_once *once, int revents) 3632once_cb (EV_P_ struct ev_once *once, int revents)
2123{ 3633{
2124 void (*cb)(int revents, void *arg) = once->cb; 3634 void (*cb)(int revents, void *arg) = once->cb;
2125 void *arg = once->arg; 3635 void *arg = once->arg;
2126 3636
2127 ev_io_stop (EV_A_ &once->io); 3637 ev_io_stop (EV_A_ &once->io);
2128 ev_timer_stop (EV_A_ &once->to); 3638 ev_timer_stop (EV_A_ &once->to);
2129 ev_free (once); 3639 ev_free (once);
2130 3640
2131 cb (revents, arg); 3641 cb (revents, arg);
2132} 3642}
2133 3643
2134static void 3644static void
2135once_cb_io (EV_P_ ev_io *w, int revents) 3645once_cb_io (EV_P_ ev_io *w, int revents)
2136{ 3646{
2137 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3647 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3648
3649 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2138} 3650}
2139 3651
2140static void 3652static void
2141once_cb_to (EV_P_ ev_timer *w, int revents) 3653once_cb_to (EV_P_ ev_timer *w, int revents)
2142{ 3654{
2143 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3655 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3656
3657 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2144} 3658}
2145 3659
2146void 3660void
2147ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3661ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2148{ 3662{
2149 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3663 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2150 3664
2151 if (expect_false (!once)) 3665 if (expect_false (!once))
2152 { 3666 {
2153 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3667 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2154 return; 3668 return;
2155 } 3669 }
2156 3670
2157 once->cb = cb; 3671 once->cb = cb;
2158 once->arg = arg; 3672 once->arg = arg;
2170 ev_timer_set (&once->to, timeout, 0.); 3684 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 3685 ev_timer_start (EV_A_ &once->to);
2172 } 3686 }
2173} 3687}
2174 3688
3689/*****************************************************************************/
3690
3691#if EV_WALK_ENABLE
3692void
3693ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3694{
3695 int i, j;
3696 ev_watcher_list *wl, *wn;
3697
3698 if (types & (EV_IO | EV_EMBED))
3699 for (i = 0; i < anfdmax; ++i)
3700 for (wl = anfds [i].head; wl; )
3701 {
3702 wn = wl->next;
3703
3704#if EV_EMBED_ENABLE
3705 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3706 {
3707 if (types & EV_EMBED)
3708 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3709 }
3710 else
3711#endif
3712#if EV_USE_INOTIFY
3713 if (ev_cb ((ev_io *)wl) == infy_cb)
3714 ;
3715 else
3716#endif
3717 if ((ev_io *)wl != &pipe_w)
3718 if (types & EV_IO)
3719 cb (EV_A_ EV_IO, wl);
3720
3721 wl = wn;
3722 }
3723
3724 if (types & (EV_TIMER | EV_STAT))
3725 for (i = timercnt + HEAP0; i-- > HEAP0; )
3726#if EV_STAT_ENABLE
3727 /*TODO: timer is not always active*/
3728 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3729 {
3730 if (types & EV_STAT)
3731 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3732 }
3733 else
3734#endif
3735 if (types & EV_TIMER)
3736 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3737
3738#if EV_PERIODIC_ENABLE
3739 if (types & EV_PERIODIC)
3740 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3741 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3742#endif
3743
3744#if EV_IDLE_ENABLE
3745 if (types & EV_IDLE)
3746 for (j = NUMPRI; i--; )
3747 for (i = idlecnt [j]; i--; )
3748 cb (EV_A_ EV_IDLE, idles [j][i]);
3749#endif
3750
3751#if EV_FORK_ENABLE
3752 if (types & EV_FORK)
3753 for (i = forkcnt; i--; )
3754 if (ev_cb (forks [i]) != embed_fork_cb)
3755 cb (EV_A_ EV_FORK, forks [i]);
3756#endif
3757
3758#if EV_ASYNC_ENABLE
3759 if (types & EV_ASYNC)
3760 for (i = asynccnt; i--; )
3761 cb (EV_A_ EV_ASYNC, asyncs [i]);
3762#endif
3763
3764#if EV_PREPARE_ENABLE
3765 if (types & EV_PREPARE)
3766 for (i = preparecnt; i--; )
3767# if EV_EMBED_ENABLE
3768 if (ev_cb (prepares [i]) != embed_prepare_cb)
3769# endif
3770 cb (EV_A_ EV_PREPARE, prepares [i]);
3771#endif
3772
3773#if EV_CHECK_ENABLE
3774 if (types & EV_CHECK)
3775 for (i = checkcnt; i--; )
3776 cb (EV_A_ EV_CHECK, checks [i]);
3777#endif
3778
3779#if EV_SIGNAL_ENABLE
3780 if (types & EV_SIGNAL)
3781 for (i = 0; i < EV_NSIG - 1; ++i)
3782 for (wl = signals [i].head; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_SIGNAL, wl);
3786 wl = wn;
3787 }
3788#endif
3789
3790#if EV_CHILD_ENABLE
3791 if (types & EV_CHILD)
3792 for (i = (EV_PID_HASHSIZE); i--; )
3793 for (wl = childs [i]; wl; )
3794 {
3795 wn = wl->next;
3796 cb (EV_A_ EV_CHILD, wl);
3797 wl = wn;
3798 }
3799#endif
3800/* EV_STAT 0x00001000 /* stat data changed */
3801/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3802}
3803#endif
3804
3805#if EV_MULTIPLICITY
3806 #include "ev_wrap.h"
3807#endif
3808
2175#ifdef __cplusplus 3809#ifdef __cplusplus
2176} 3810}
2177#endif 3811#endif
2178 3812

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines