ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.197 by root, Sat Dec 22 15:20:13 2007 UTC vs.
Revision 1.346 by root, Thu Oct 14 05:07:04 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
62# else 86# else
87# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
65# endif 98# endif
66 99
100# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 103# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 104# else
105# undef EV_USE_POLL
79# define EV_USE_POLL 0 106# define EV_USE_POLL 0
80# endif
81# endif 107# endif
82 108
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
86# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
89# endif 116# endif
90 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
97# endif 125# endif
98 126
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
102# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
105# endif 134# endif
106 135
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
113# endif 143# endif
114 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
115#endif 163#endif
116 164
117#include <math.h> 165#include <math.h>
118#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
119#include <fcntl.h> 168#include <fcntl.h>
120#include <stddef.h> 169#include <stddef.h>
121 170
122#include <stdio.h> 171#include <stdio.h>
123 172
124#include <assert.h> 173#include <assert.h>
125#include <errno.h> 174#include <errno.h>
126#include <sys/types.h> 175#include <sys/types.h>
127#include <time.h> 176#include <time.h>
177#include <limits.h>
128 178
129#include <signal.h> 179#include <signal.h>
130 180
131#ifdef EV_H 181#ifdef EV_H
132# include EV_H 182# include EV_H
137#ifndef _WIN32 187#ifndef _WIN32
138# include <sys/time.h> 188# include <sys/time.h>
139# include <sys/wait.h> 189# include <sys/wait.h>
140# include <unistd.h> 190# include <unistd.h>
141#else 191#else
192# include <io.h>
142# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 194# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
146# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
147#endif 244# endif
148 245#endif
149/**/
150 246
151#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
152# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
153#endif 253#endif
154 254
155#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 257#endif
158 258
159#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
160# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
161#endif 265#endif
162 266
163#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 269#endif
166 270
167#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
168# ifdef _WIN32 272# ifdef _WIN32
169# define EV_USE_POLL 0 273# define EV_USE_POLL 0
170# else 274# else
171# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 276# endif
173#endif 277#endif
174 278
175#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
176# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
177#endif 285#endif
178 286
179#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
181#endif 289#endif
183#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 292# define EV_USE_PORT 0
185#endif 293#endif
186 294
187#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
188# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
300# endif
189#endif 301#endif
190 302
191#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 314# else
195# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
196# endif 316# endif
197#endif 317#endif
198 318
199#ifndef EV_INOTIFY_HASHSIZE 319#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 321# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 322# else
203# define EV_INOTIFY_HASHSIZE 16 323# define EV_USE_SIGNALFD 0
204# endif 324# endif
205#endif 325#endif
206 326
207/**/ 327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
208 366
209#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
212#endif 370#endif
226# include <sys/select.h> 384# include <sys/select.h>
227# endif 385# endif
228#endif 386#endif
229 387
230#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
231# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
232#endif 397#endif
233 398
234#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 400# include <winsock.h>
236#endif 401#endif
237 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
238/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
239 461
240/* 462/*
241 * This is used to avoid floating point rounding problems. 463 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 464 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 465 * to ensure progress, time-wise, even when rounding
247 */ 469 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
249 471
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
253 474
254#if __GNUC__ >= 4 475#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
257#else 478#else
258# define expect(expr,value) (expr) 479# define expect(expr,value) (expr)
259# define noinline 480# define noinline
260# if __STDC_VERSION__ < 199901L 481# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 482# define inline
262# endif 483# endif
263#endif 484#endif
264 485
265#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 488#define inline_size static inline
268 489
269#if EV_MINIMAL 490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
270# define inline_speed static noinline 493# define inline_speed static noinline
494#endif
495
496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
271#else 500#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
277 503
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
280 506
281typedef ev_watcher *W; 507typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 508typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
284 510
511#define ev_active(w) ((W)(w))->active
512#define ev_at(w) ((WT)(w))->at
513
514#if EV_USE_REALTIME
285/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
286/* giving it a reasonably high chance of working on typical architetcures */ 516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
520#if EV_USE_MONOTONIC
287static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
532#endif
288 533
289#ifdef _WIN32 534#ifdef _WIN32
290# include "ev_win32.c" 535# include "ev_win32.c"
291#endif 536#endif
292 537
293/*****************************************************************************/ 538/*****************************************************************************/
294 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
295static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
296 549
297void 550void
298ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
299{ 552{
300 syserr_cb = cb; 553 syserr_cb = cb;
301} 554}
302 555
303static void noinline 556static void noinline
304syserr (const char *msg) 557ev_syserr (const char *msg)
305{ 558{
306 if (!msg) 559 if (!msg)
307 msg = "(libev) system error"; 560 msg = "(libev) system error";
308 561
309 if (syserr_cb) 562 if (syserr_cb)
310 syserr_cb (msg); 563 syserr_cb (msg);
311 else 564 else
312 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
313 perror (msg); 574 perror (msg);
575#endif
314 abort (); 576 abort ();
315 } 577 }
316} 578}
317 579
580static void *
581ev_realloc_emul (void *ptr, long size)
582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596#endif
597}
598
318static void *(*alloc)(void *ptr, long size); 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
319 600
320void 601void
321ev_set_allocator (void *(*cb)(void *ptr, long size)) 602ev_set_allocator (void *(*cb)(void *ptr, long size))
322{ 603{
323 alloc = cb; 604 alloc = cb;
324} 605}
325 606
326inline_speed void * 607inline_speed void *
327ev_realloc (void *ptr, long size) 608ev_realloc (void *ptr, long size)
328{ 609{
329 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 610 ptr = alloc (ptr, size);
330 611
331 if (!ptr && size) 612 if (!ptr && size)
332 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
333 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
334 abort (); 619 abort ();
335 } 620 }
336 621
337 return ptr; 622 return ptr;
338} 623}
340#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
341#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
342 627
343/*****************************************************************************/ 628/*****************************************************************************/
344 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
345typedef struct 634typedef struct
346{ 635{
347 WL head; 636 WL head;
348 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
349 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
350#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
351 SOCKET handle; 645 SOCKET handle;
352#endif 646#endif
353} ANFD; 647} ANFD;
354 648
649/* stores the pending event set for a given watcher */
355typedef struct 650typedef struct
356{ 651{
357 W w; 652 W w;
358 int events; 653 int events; /* the pending event set for the given watcher */
359} ANPENDING; 654} ANPENDING;
360 655
361#if EV_USE_INOTIFY 656#if EV_USE_INOTIFY
657/* hash table entry per inotify-id */
362typedef struct 658typedef struct
363{ 659{
364 WL head; 660 WL head;
365} ANFS; 661} ANFS;
662#endif
663
664/* Heap Entry */
665#if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675#else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
366#endif 682#endif
367 683
368#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
369 685
370 struct ev_loop 686 struct ev_loop
389 705
390 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
391 707
392#endif 708#endif
393 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
394/*****************************************************************************/ 722/*****************************************************************************/
395 723
724#ifndef EV_HAVE_EV_TIME
396ev_tstamp 725ev_tstamp
397ev_time (void) 726ev_time (void)
398{ 727{
399#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
400 struct timespec ts; 731 struct timespec ts;
401 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
402 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
403#else 734 }
735#endif
736
404 struct timeval tv; 737 struct timeval tv;
405 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
406 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
407#endif
408} 740}
741#endif
409 742
410ev_tstamp inline_size 743inline_size ev_tstamp
411get_clock (void) 744get_clock (void)
412{ 745{
413#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
414 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
415 { 748 {
441 ts.tv_sec = (time_t)delay; 774 ts.tv_sec = (time_t)delay;
442 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
443 776
444 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
445#elif defined(_WIN32) 778#elif defined(_WIN32)
446 Sleep (delay * 1e3); 779 Sleep ((unsigned long)(delay * 1e3));
447#else 780#else
448 struct timeval tv; 781 struct timeval tv;
449 782
450 tv.tv_sec = (time_t)delay; 783 tv.tv_sec = (time_t)delay;
451 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
452 785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
453 select (0, 0, 0, 0, &tv); 789 select (0, 0, 0, 0, &tv);
454#endif 790#endif
455 } 791 }
456} 792}
457 793
458/*****************************************************************************/ 794/*****************************************************************************/
459 795
460int inline_size 796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
461array_nextsize (int elem, int cur, int cnt) 801array_nextsize (int elem, int cur, int cnt)
462{ 802{
463 int ncur = cur + 1; 803 int ncur = cur + 1;
464 804
465 do 805 do
466 ncur <<= 1; 806 ncur <<= 1;
467 while (cnt > ncur); 807 while (cnt > ncur);
468 808
469 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
470 if (elem * ncur > 4096) 810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
471 { 811 {
472 ncur *= elem; 812 ncur *= elem;
473 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
474 ncur = ncur - sizeof (void *) * 4; 814 ncur = ncur - sizeof (void *) * 4;
475 ncur /= elem; 815 ncur /= elem;
476 } 816 }
477 817
478 return ncur; 818 return ncur;
482array_realloc (int elem, void *base, int *cur, int cnt) 822array_realloc (int elem, void *base, int *cur, int cnt)
483{ 823{
484 *cur = array_nextsize (elem, *cur, cnt); 824 *cur = array_nextsize (elem, *cur, cnt);
485 return ev_realloc (base, elem * *cur); 825 return ev_realloc (base, elem * *cur);
486} 826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
487 830
488#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
489 if (expect_false ((cnt) > (cur))) \ 832 if (expect_false ((cnt) > (cur))) \
490 { \ 833 { \
491 int ocur_ = (cur); \ 834 int ocur_ = (cur); \
503 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
504 } 847 }
505#endif 848#endif
506 849
507#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
508 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
509 852
510/*****************************************************************************/ 853/*****************************************************************************/
854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
511 860
512void noinline 861void noinline
513ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
514{ 863{
515 W w_ = (W)w; 864 W w_ = (W)w;
524 pendings [pri][w_->pending - 1].w = w_; 873 pendings [pri][w_->pending - 1].w = w_;
525 pendings [pri][w_->pending - 1].events = revents; 874 pendings [pri][w_->pending - 1].events = revents;
526 } 875 }
527} 876}
528 877
529void inline_speed 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
530queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
531{ 895{
532 int i; 896 int i;
533 897
534 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
535 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
536} 900}
537 901
538/*****************************************************************************/ 902/*****************************************************************************/
539 903
540void inline_size 904inline_speed void
541anfds_init (ANFD *base, int count)
542{
543 while (count--)
544 {
545 base->head = 0;
546 base->events = EV_NONE;
547 base->reify = 0;
548
549 ++base;
550 }
551}
552
553void inline_speed
554fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
555{ 906{
556 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
557 ev_io *w; 908 ev_io *w;
558 909
559 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
563 if (ev) 914 if (ev)
564 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
565 } 916 }
566} 917}
567 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
568void 930void
569ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
570{ 932{
571 if (fd >= 0 && fd < anfdmax) 933 if (fd >= 0 && fd < anfdmax)
572 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
573} 935}
574 936
575void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
576fd_reify (EV_P) 940fd_reify (EV_P)
577{ 941{
578 int i; 942 int i;
579 943
580 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
589 events |= (unsigned char)w->events; 953 events |= (unsigned char)w->events;
590 954
591#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
592 if (events) 956 if (events)
593 { 957 {
594 unsigned long argp; 958 unsigned long arg;
595 anfd->handle = _get_osfhandle (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
596 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
597 } 961 }
598#endif 962#endif
599 963
600 { 964 {
601 unsigned char o_events = anfd->events; 965 unsigned char o_events = anfd->events;
602 unsigned char o_reify = anfd->reify; 966 unsigned char o_reify = anfd->reify;
603 967
604 anfd->reify = 0; 968 anfd->reify = 0;
605 anfd->events = events; 969 anfd->events = events;
606 970
607 if (o_events != events || o_reify & EV_IOFDSET) 971 if (o_events != events || o_reify & EV__IOFDSET)
608 backend_modify (EV_A_ fd, o_events, events); 972 backend_modify (EV_A_ fd, o_events, events);
609 } 973 }
610 } 974 }
611 975
612 fdchangecnt = 0; 976 fdchangecnt = 0;
613} 977}
614 978
615void inline_size 979/* something about the given fd changed */
980inline_size void
616fd_change (EV_P_ int fd, int flags) 981fd_change (EV_P_ int fd, int flags)
617{ 982{
618 unsigned char reify = anfds [fd].reify; 983 unsigned char reify = anfds [fd].reify;
619 anfds [fd].reify |= flags; 984 anfds [fd].reify |= flags;
620 985
624 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
625 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
626 } 991 }
627} 992}
628 993
629void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
630fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
631{ 997{
632 ev_io *w; 998 ev_io *w;
633 999
634 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
636 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
637 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
638 } 1004 }
639} 1005}
640 1006
641int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
642fd_valid (int fd) 1009fd_valid (int fd)
643{ 1010{
644#ifdef _WIN32 1011#ifdef _WIN32
645 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
646#else 1013#else
647 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
648#endif 1015#endif
649} 1016}
650 1017
654{ 1021{
655 int fd; 1022 int fd;
656 1023
657 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
658 if (anfds [fd].events) 1025 if (anfds [fd].events)
659 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
660 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
661} 1028}
662 1029
663/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
664static void noinline 1031static void noinline
668 1035
669 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
670 if (anfds [fd].events) 1037 if (anfds [fd].events)
671 { 1038 {
672 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
673 return; 1040 break;
674 } 1041 }
675} 1042}
676 1043
677/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
678static void noinline 1045static void noinline
682 1049
683 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
684 if (anfds [fd].events) 1051 if (anfds [fd].events)
685 { 1052 {
686 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
1054 anfds [fd].emask = 0;
687 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
688 } 1056 }
689} 1057}
690 1058
691/*****************************************************************************/ 1059/* used to prepare libev internal fd's */
692 1060/* this is not fork-safe */
693void inline_speed 1061inline_speed void
694upheap (WT *heap, int k)
695{
696 WT w = heap [k];
697
698 while (k)
699 {
700 int p = (k - 1) >> 1;
701
702 if (heap [p]->at <= w->at)
703 break;
704
705 heap [k] = heap [p];
706 ((W)heap [k])->active = k + 1;
707 k = p;
708 }
709
710 heap [k] = w;
711 ((W)heap [k])->active = k + 1;
712}
713
714void inline_speed
715downheap (WT *heap, int N, int k)
716{
717 WT w = heap [k];
718
719 for (;;)
720 {
721 int c = (k << 1) + 1;
722
723 if (c >= N)
724 break;
725
726 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
727 ? 1 : 0;
728
729 if (w->at <= heap [c]->at)
730 break;
731
732 heap [k] = heap [c];
733 ((W)heap [k])->active = k + 1;
734
735 k = c;
736 }
737
738 heap [k] = w;
739 ((W)heap [k])->active = k + 1;
740}
741
742void inline_size
743adjustheap (WT *heap, int N, int k)
744{
745 upheap (heap, k);
746 downheap (heap, N, k);
747}
748
749/*****************************************************************************/
750
751typedef struct
752{
753 WL head;
754 sig_atomic_t volatile gotsig;
755} ANSIG;
756
757static ANSIG *signals;
758static int signalmax;
759
760static int sigpipe [2];
761static sig_atomic_t volatile gotsig;
762static ev_io sigev;
763
764void inline_size
765signals_init (ANSIG *base, int count)
766{
767 while (count--)
768 {
769 base->head = 0;
770 base->gotsig = 0;
771
772 ++base;
773 }
774}
775
776static void
777sighandler (int signum)
778{
779#if _WIN32
780 signal (signum, sighandler);
781#endif
782
783 signals [signum - 1].gotsig = 1;
784
785 if (!gotsig)
786 {
787 int old_errno = errno;
788 gotsig = 1;
789 write (sigpipe [1], &signum, 1);
790 errno = old_errno;
791 }
792}
793
794void noinline
795ev_feed_signal_event (EV_P_ int signum)
796{
797 WL w;
798
799#if EV_MULTIPLICITY
800 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
801#endif
802
803 --signum;
804
805 if (signum < 0 || signum >= signalmax)
806 return;
807
808 signals [signum].gotsig = 0;
809
810 for (w = signals [signum].head; w; w = w->next)
811 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
812}
813
814static void
815sigcb (EV_P_ ev_io *iow, int revents)
816{
817 int signum;
818
819 read (sigpipe [0], &revents, 1);
820 gotsig = 0;
821
822 for (signum = signalmax; signum--; )
823 if (signals [signum].gotsig)
824 ev_feed_signal_event (EV_A_ signum + 1);
825}
826
827void inline_speed
828fd_intern (int fd) 1062fd_intern (int fd)
829{ 1063{
830#ifdef _WIN32 1064#ifdef _WIN32
831 int arg = 1; 1065 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
833#else 1067#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1069 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1070#endif
837} 1071}
838 1072
1073/*****************************************************************************/
1074
1075/*
1076 * the heap functions want a real array index. array index 0 is guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081/*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087#if EV_USE_4HEAP
1088
1089#define DHEAP 4
1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092#define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138#else /* 4HEAP */
1139
1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
1143
1144/* away from the root */
1145inline_speed void
1146downheap (ANHE *heap, int N, int k)
1147{
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171}
1172#endif
1173
1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
1198adjustheap (ANHE *heap, int N, int k)
1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216}
1217
1218/*****************************************************************************/
1219
1220/* associate signal watchers to a signal signal */
1221typedef struct
1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1227 WL head;
1228} ANSIG;
1229
1230static ANSIG signals [EV_NSIG - 1];
1231
1232/*****************************************************************************/
1233
1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
839static void noinline 1236static void noinline
840siginit (EV_P) 1237evpipe_init (EV_P)
841{ 1238{
1239 if (!ev_is_active (&pipe_w))
1240 {
1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253# endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
842 fd_intern (sigpipe [0]); 1258 fd_intern (evpipe [0]);
843 fd_intern (sigpipe [1]); 1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
844 1262
845 ev_io_set (&sigev, sigpipe [0], EV_READ);
846 ev_io_start (EV_A_ &sigev); 1263 ev_io_start (EV_A_ &pipe_w);
847 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266}
1267
1268inline_size void
1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270{
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278#if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285#endif
1286 /* win32 people keep sending patches that change this write() to send() */
1287 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1288 /* so when you think this write should be a send instead, please find out */
1289 /* where your send() is from - it's definitely not the microsoft send, and */
1290 /* tell me. thank you. */
1291 write (evpipe [1], &dummy, 1);
1292
1293 errno = old_errno;
1294 }
1295}
1296
1297/* called whenever the libev signal pipe */
1298/* got some events (signal, async) */
1299static void
1300pipecb (EV_P_ ev_io *iow, int revents)
1301{
1302 int i;
1303
1304#if EV_USE_EVENTFD
1305 if (evfd >= 0)
1306 {
1307 uint64_t counter;
1308 read (evfd, &counter, sizeof (uint64_t));
1309 }
1310 else
1311#endif
1312 {
1313 char dummy;
1314 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1315 read (evpipe [0], &dummy, 1);
1316 }
1317
1318 if (sig_pending)
1319 {
1320 sig_pending = 0;
1321
1322 for (i = EV_NSIG - 1; i--; )
1323 if (expect_false (signals [i].pending))
1324 ev_feed_signal_event (EV_A_ i + 1);
1325 }
1326
1327#if EV_ASYNC_ENABLE
1328 if (async_pending)
1329 {
1330 async_pending = 0;
1331
1332 for (i = asynccnt; i--; )
1333 if (asyncs [i]->sent)
1334 {
1335 asyncs [i]->sent = 0;
1336 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1337 }
1338 }
1339#endif
848} 1340}
849 1341
850/*****************************************************************************/ 1342/*****************************************************************************/
851 1343
1344static void
1345ev_sighandler (int signum)
1346{
1347#if EV_MULTIPLICITY
1348 EV_P = signals [signum - 1].loop;
1349#endif
1350
1351#ifdef _WIN32
1352 signal (signum, ev_sighandler);
1353#endif
1354
1355 signals [signum - 1].pending = 1;
1356 evpipe_write (EV_A_ &sig_pending);
1357}
1358
1359void noinline
1360ev_feed_signal_event (EV_P_ int signum)
1361{
1362 WL w;
1363
1364 if (expect_false (signum <= 0 || signum > EV_NSIG))
1365 return;
1366
1367 --signum;
1368
1369#if EV_MULTIPLICITY
1370 /* it is permissible to try to feed a signal to the wrong loop */
1371 /* or, likely more useful, feeding a signal nobody is waiting for */
1372
1373 if (expect_false (signals [signum].loop != EV_A))
1374 return;
1375#endif
1376
1377 signals [signum].pending = 0;
1378
1379 for (w = signals [signum].head; w; w = w->next)
1380 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1381}
1382
1383#if EV_USE_SIGNALFD
1384static void
1385sigfdcb (EV_P_ ev_io *iow, int revents)
1386{
1387 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1388
1389 for (;;)
1390 {
1391 ssize_t res = read (sigfd, si, sizeof (si));
1392
1393 /* not ISO-C, as res might be -1, but works with SuS */
1394 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1395 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1396
1397 if (res < (ssize_t)sizeof (si))
1398 break;
1399 }
1400}
1401#endif
1402
1403#endif
1404
1405/*****************************************************************************/
1406
1407#if EV_CHILD_ENABLE
852static WL childs [EV_PID_HASHSIZE]; 1408static WL childs [EV_PID_HASHSIZE];
853 1409
854#ifndef _WIN32
855
856static ev_signal childev; 1410static ev_signal childev;
857 1411
858void inline_speed 1412#ifndef WIFCONTINUED
1413# define WIFCONTINUED(status) 0
1414#endif
1415
1416/* handle a single child status event */
1417inline_speed void
859child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1418child_reap (EV_P_ int chain, int pid, int status)
860{ 1419{
861 ev_child *w; 1420 ev_child *w;
1421 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
862 1422
863 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1423 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1424 {
864 if (w->pid == pid || !w->pid) 1425 if ((w->pid == pid || !w->pid)
1426 && (!traced || (w->flags & 1)))
865 { 1427 {
866 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1428 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
867 w->rpid = pid; 1429 w->rpid = pid;
868 w->rstatus = status; 1430 w->rstatus = status;
869 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1431 ev_feed_event (EV_A_ (W)w, EV_CHILD);
870 } 1432 }
1433 }
871} 1434}
872 1435
873#ifndef WCONTINUED 1436#ifndef WCONTINUED
874# define WCONTINUED 0 1437# define WCONTINUED 0
875#endif 1438#endif
876 1439
1440/* called on sigchld etc., calls waitpid */
877static void 1441static void
878childcb (EV_P_ ev_signal *sw, int revents) 1442childcb (EV_P_ ev_signal *sw, int revents)
879{ 1443{
880 int pid, status; 1444 int pid, status;
881 1445
884 if (!WCONTINUED 1448 if (!WCONTINUED
885 || errno != EINVAL 1449 || errno != EINVAL
886 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1450 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
887 return; 1451 return;
888 1452
889 /* make sure we are called again until all childs have been reaped */ 1453 /* make sure we are called again until all children have been reaped */
890 /* we need to do it this way so that the callback gets called before we continue */ 1454 /* we need to do it this way so that the callback gets called before we continue */
891 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1455 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
892 1456
893 child_reap (EV_A_ sw, pid, pid, status); 1457 child_reap (EV_A_ pid, pid, status);
894 if (EV_PID_HASHSIZE > 1) 1458 if ((EV_PID_HASHSIZE) > 1)
895 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1459 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
896} 1460}
897 1461
898#endif 1462#endif
899 1463
900/*****************************************************************************/ 1464/*****************************************************************************/
962 /* kqueue is borked on everything but netbsd apparently */ 1526 /* kqueue is borked on everything but netbsd apparently */
963 /* it usually doesn't work correctly on anything but sockets and pipes */ 1527 /* it usually doesn't work correctly on anything but sockets and pipes */
964 flags &= ~EVBACKEND_KQUEUE; 1528 flags &= ~EVBACKEND_KQUEUE;
965#endif 1529#endif
966#ifdef __APPLE__ 1530#ifdef __APPLE__
967 // flags &= ~EVBACKEND_KQUEUE; for documentation 1531 /* only select works correctly on that "unix-certified" platform */
968 flags &= ~EVBACKEND_POLL; 1532 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1533 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1534#endif
1535#ifdef __FreeBSD__
1536 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
969#endif 1537#endif
970 1538
971 return flags; 1539 return flags;
972} 1540}
973 1541
987ev_backend (EV_P) 1555ev_backend (EV_P)
988{ 1556{
989 return backend; 1557 return backend;
990} 1558}
991 1559
1560#if EV_FEATURE_API
992unsigned int 1561unsigned int
993ev_loop_count (EV_P) 1562ev_iteration (EV_P)
994{ 1563{
995 return loop_count; 1564 return loop_count;
996} 1565}
997 1566
1567unsigned int
1568ev_depth (EV_P)
1569{
1570 return loop_depth;
1571}
1572
998void 1573void
999ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1574ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1575{
1001 io_blocktime = interval; 1576 io_blocktime = interval;
1002} 1577}
1005ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1580ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1006{ 1581{
1007 timeout_blocktime = interval; 1582 timeout_blocktime = interval;
1008} 1583}
1009 1584
1585void
1586ev_set_userdata (EV_P_ void *data)
1587{
1588 userdata = data;
1589}
1590
1591void *
1592ev_userdata (EV_P)
1593{
1594 return userdata;
1595}
1596
1597void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1598{
1599 invoke_cb = invoke_pending_cb;
1600}
1601
1602void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1603{
1604 release_cb = release;
1605 acquire_cb = acquire;
1606}
1607#endif
1608
1609/* initialise a loop structure, must be zero-initialised */
1010static void noinline 1610static void noinline
1011loop_init (EV_P_ unsigned int flags) 1611loop_init (EV_P_ unsigned int flags)
1012{ 1612{
1013 if (!backend) 1613 if (!backend)
1014 { 1614 {
1615#if EV_USE_REALTIME
1616 if (!have_realtime)
1617 {
1618 struct timespec ts;
1619
1620 if (!clock_gettime (CLOCK_REALTIME, &ts))
1621 have_realtime = 1;
1622 }
1623#endif
1624
1015#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
1626 if (!have_monotonic)
1016 { 1627 {
1017 struct timespec ts; 1628 struct timespec ts;
1629
1018 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1630 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1019 have_monotonic = 1; 1631 have_monotonic = 1;
1020 } 1632 }
1021#endif 1633#endif
1022
1023 ev_rt_now = ev_time ();
1024 mn_now = get_clock ();
1025 now_floor = mn_now;
1026 rtmn_diff = ev_rt_now - mn_now;
1027
1028 io_blocktime = 0.;
1029 timeout_blocktime = 0.;
1030 1634
1031 /* pid check not overridable via env */ 1635 /* pid check not overridable via env */
1032#ifndef _WIN32 1636#ifndef _WIN32
1033 if (flags & EVFLAG_FORKCHECK) 1637 if (flags & EVFLAG_FORKCHECK)
1034 curpid = getpid (); 1638 curpid = getpid ();
1037 if (!(flags & EVFLAG_NOENV) 1641 if (!(flags & EVFLAG_NOENV)
1038 && !enable_secure () 1642 && !enable_secure ()
1039 && getenv ("LIBEV_FLAGS")) 1643 && getenv ("LIBEV_FLAGS"))
1040 flags = atoi (getenv ("LIBEV_FLAGS")); 1644 flags = atoi (getenv ("LIBEV_FLAGS"));
1041 1645
1646 ev_rt_now = ev_time ();
1647 mn_now = get_clock ();
1648 now_floor = mn_now;
1649 rtmn_diff = ev_rt_now - mn_now;
1650#if EV_FEATURE_API
1651 invoke_cb = ev_invoke_pending;
1652#endif
1653
1654 io_blocktime = 0.;
1655 timeout_blocktime = 0.;
1656 backend = 0;
1657 backend_fd = -1;
1658 sig_pending = 0;
1659#if EV_ASYNC_ENABLE
1660 async_pending = 0;
1661#endif
1662#if EV_USE_INOTIFY
1663 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1664#endif
1665#if EV_USE_SIGNALFD
1666 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1667#endif
1668
1042 if (!(flags & 0x0000ffffUL)) 1669 if (!(flags & 0x0000ffffU))
1043 flags |= ev_recommended_backends (); 1670 flags |= ev_recommended_backends ();
1044
1045 backend = 0;
1046 backend_fd = -1;
1047#if EV_USE_INOTIFY
1048 fs_fd = -2;
1049#endif
1050 1671
1051#if EV_USE_PORT 1672#if EV_USE_PORT
1052 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1673 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1053#endif 1674#endif
1054#if EV_USE_KQUEUE 1675#if EV_USE_KQUEUE
1062#endif 1683#endif
1063#if EV_USE_SELECT 1684#if EV_USE_SELECT
1064 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1685 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1065#endif 1686#endif
1066 1687
1688 ev_prepare_init (&pending_w, pendingcb);
1689
1690#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1067 ev_init (&sigev, sigcb); 1691 ev_init (&pipe_w, pipecb);
1068 ev_set_priority (&sigev, EV_MAXPRI); 1692 ev_set_priority (&pipe_w, EV_MAXPRI);
1693#endif
1069 } 1694 }
1070} 1695}
1071 1696
1697/* free up a loop structure */
1072static void noinline 1698static void noinline
1073loop_destroy (EV_P) 1699loop_destroy (EV_P)
1074{ 1700{
1075 int i; 1701 int i;
1702
1703 if (ev_is_active (&pipe_w))
1704 {
1705 /*ev_ref (EV_A);*/
1706 /*ev_io_stop (EV_A_ &pipe_w);*/
1707
1708#if EV_USE_EVENTFD
1709 if (evfd >= 0)
1710 close (evfd);
1711#endif
1712
1713 if (evpipe [0] >= 0)
1714 {
1715 EV_WIN32_CLOSE_FD (evpipe [0]);
1716 EV_WIN32_CLOSE_FD (evpipe [1]);
1717 }
1718 }
1719
1720#if EV_USE_SIGNALFD
1721 if (ev_is_active (&sigfd_w))
1722 close (sigfd);
1723#endif
1076 1724
1077#if EV_USE_INOTIFY 1725#if EV_USE_INOTIFY
1078 if (fs_fd >= 0) 1726 if (fs_fd >= 0)
1079 close (fs_fd); 1727 close (fs_fd);
1080#endif 1728#endif
1104#if EV_IDLE_ENABLE 1752#if EV_IDLE_ENABLE
1105 array_free (idle, [i]); 1753 array_free (idle, [i]);
1106#endif 1754#endif
1107 } 1755 }
1108 1756
1109 ev_free (anfds); anfdmax = 0; 1757 ev_free (anfds); anfds = 0; anfdmax = 0;
1110 1758
1111 /* have to use the microsoft-never-gets-it-right macro */ 1759 /* have to use the microsoft-never-gets-it-right macro */
1760 array_free (rfeed, EMPTY);
1112 array_free (fdchange, EMPTY); 1761 array_free (fdchange, EMPTY);
1113 array_free (timer, EMPTY); 1762 array_free (timer, EMPTY);
1114#if EV_PERIODIC_ENABLE 1763#if EV_PERIODIC_ENABLE
1115 array_free (periodic, EMPTY); 1764 array_free (periodic, EMPTY);
1116#endif 1765#endif
1117#if EV_FORK_ENABLE 1766#if EV_FORK_ENABLE
1118 array_free (fork, EMPTY); 1767 array_free (fork, EMPTY);
1119#endif 1768#endif
1120 array_free (prepare, EMPTY); 1769 array_free (prepare, EMPTY);
1121 array_free (check, EMPTY); 1770 array_free (check, EMPTY);
1771#if EV_ASYNC_ENABLE
1772 array_free (async, EMPTY);
1773#endif
1122 1774
1123 backend = 0; 1775 backend = 0;
1124} 1776}
1125 1777
1778#if EV_USE_INOTIFY
1126void inline_size infy_fork (EV_P); 1779inline_size void infy_fork (EV_P);
1780#endif
1127 1781
1128void inline_size 1782inline_size void
1129loop_fork (EV_P) 1783loop_fork (EV_P)
1130{ 1784{
1131#if EV_USE_PORT 1785#if EV_USE_PORT
1132 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1786 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1133#endif 1787#endif
1139#endif 1793#endif
1140#if EV_USE_INOTIFY 1794#if EV_USE_INOTIFY
1141 infy_fork (EV_A); 1795 infy_fork (EV_A);
1142#endif 1796#endif
1143 1797
1144 if (ev_is_active (&sigev)) 1798 if (ev_is_active (&pipe_w))
1145 { 1799 {
1146 /* default loop */ 1800 /* this "locks" the handlers against writing to the pipe */
1801 /* while we modify the fd vars */
1802 sig_pending = 1;
1803#if EV_ASYNC_ENABLE
1804 async_pending = 1;
1805#endif
1147 1806
1148 ev_ref (EV_A); 1807 ev_ref (EV_A);
1149 ev_io_stop (EV_A_ &sigev); 1808 ev_io_stop (EV_A_ &pipe_w);
1150 close (sigpipe [0]);
1151 close (sigpipe [1]);
1152 1809
1153 while (pipe (sigpipe)) 1810#if EV_USE_EVENTFD
1154 syserr ("(libev) error creating pipe"); 1811 if (evfd >= 0)
1812 close (evfd);
1813#endif
1155 1814
1815 if (evpipe [0] >= 0)
1816 {
1817 EV_WIN32_CLOSE_FD (evpipe [0]);
1818 EV_WIN32_CLOSE_FD (evpipe [1]);
1819 }
1820
1821#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1156 siginit (EV_A); 1822 evpipe_init (EV_A);
1823 /* now iterate over everything, in case we missed something */
1824 pipecb (EV_A_ &pipe_w, EV_READ);
1825#endif
1157 } 1826 }
1158 1827
1159 postfork = 0; 1828 postfork = 0;
1160} 1829}
1161 1830
1162#if EV_MULTIPLICITY 1831#if EV_MULTIPLICITY
1832
1163struct ev_loop * 1833struct ev_loop *
1164ev_loop_new (unsigned int flags) 1834ev_loop_new (unsigned int flags)
1165{ 1835{
1166 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1836 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1167 1837
1168 memset (loop, 0, sizeof (struct ev_loop)); 1838 memset (EV_A, 0, sizeof (struct ev_loop));
1169
1170 loop_init (EV_A_ flags); 1839 loop_init (EV_A_ flags);
1171 1840
1172 if (ev_backend (EV_A)) 1841 if (ev_backend (EV_A))
1173 return loop; 1842 return EV_A;
1174 1843
1175 return 0; 1844 return 0;
1176} 1845}
1177 1846
1178void 1847void
1183} 1852}
1184 1853
1185void 1854void
1186ev_loop_fork (EV_P) 1855ev_loop_fork (EV_P)
1187{ 1856{
1188 postfork = 1; 1857 postfork = 1; /* must be in line with ev_default_fork */
1189} 1858}
1859#endif /* multiplicity */
1190 1860
1861#if EV_VERIFY
1862static void noinline
1863verify_watcher (EV_P_ W w)
1864{
1865 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1866
1867 if (w->pending)
1868 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1869}
1870
1871static void noinline
1872verify_heap (EV_P_ ANHE *heap, int N)
1873{
1874 int i;
1875
1876 for (i = HEAP0; i < N + HEAP0; ++i)
1877 {
1878 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1879 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1880 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1881
1882 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1883 }
1884}
1885
1886static void noinline
1887array_verify (EV_P_ W *ws, int cnt)
1888{
1889 while (cnt--)
1890 {
1891 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1892 verify_watcher (EV_A_ ws [cnt]);
1893 }
1894}
1895#endif
1896
1897#if EV_FEATURE_API
1898void
1899ev_verify (EV_P)
1900{
1901#if EV_VERIFY
1902 int i;
1903 WL w;
1904
1905 assert (activecnt >= -1);
1906
1907 assert (fdchangemax >= fdchangecnt);
1908 for (i = 0; i < fdchangecnt; ++i)
1909 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1910
1911 assert (anfdmax >= 0);
1912 for (i = 0; i < anfdmax; ++i)
1913 for (w = anfds [i].head; w; w = w->next)
1914 {
1915 verify_watcher (EV_A_ (W)w);
1916 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1917 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1918 }
1919
1920 assert (timermax >= timercnt);
1921 verify_heap (EV_A_ timers, timercnt);
1922
1923#if EV_PERIODIC_ENABLE
1924 assert (periodicmax >= periodiccnt);
1925 verify_heap (EV_A_ periodics, periodiccnt);
1926#endif
1927
1928 for (i = NUMPRI; i--; )
1929 {
1930 assert (pendingmax [i] >= pendingcnt [i]);
1931#if EV_IDLE_ENABLE
1932 assert (idleall >= 0);
1933 assert (idlemax [i] >= idlecnt [i]);
1934 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1935#endif
1936 }
1937
1938#if EV_FORK_ENABLE
1939 assert (forkmax >= forkcnt);
1940 array_verify (EV_A_ (W *)forks, forkcnt);
1941#endif
1942
1943#if EV_ASYNC_ENABLE
1944 assert (asyncmax >= asynccnt);
1945 array_verify (EV_A_ (W *)asyncs, asynccnt);
1946#endif
1947
1948#if EV_PREPARE_ENABLE
1949 assert (preparemax >= preparecnt);
1950 array_verify (EV_A_ (W *)prepares, preparecnt);
1951#endif
1952
1953#if EV_CHECK_ENABLE
1954 assert (checkmax >= checkcnt);
1955 array_verify (EV_A_ (W *)checks, checkcnt);
1956#endif
1957
1958# if 0
1959#if EV_CHILD_ENABLE
1960 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1961 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1962#endif
1963# endif
1964#endif
1965}
1191#endif 1966#endif
1192 1967
1193#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1194struct ev_loop * 1969struct ev_loop *
1195ev_default_loop_init (unsigned int flags) 1970ev_default_loop_init (unsigned int flags)
1196#else 1971#else
1197int 1972int
1198ev_default_loop (unsigned int flags) 1973ev_default_loop (unsigned int flags)
1199#endif 1974#endif
1200{ 1975{
1201 if (sigpipe [0] == sigpipe [1])
1202 if (pipe (sigpipe))
1203 return 0;
1204
1205 if (!ev_default_loop_ptr) 1976 if (!ev_default_loop_ptr)
1206 { 1977 {
1207#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
1208 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1979 EV_P = ev_default_loop_ptr = &default_loop_struct;
1209#else 1980#else
1210 ev_default_loop_ptr = 1; 1981 ev_default_loop_ptr = 1;
1211#endif 1982#endif
1212 1983
1213 loop_init (EV_A_ flags); 1984 loop_init (EV_A_ flags);
1214 1985
1215 if (ev_backend (EV_A)) 1986 if (ev_backend (EV_A))
1216 { 1987 {
1217 siginit (EV_A); 1988#if EV_CHILD_ENABLE
1218
1219#ifndef _WIN32
1220 ev_signal_init (&childev, childcb, SIGCHLD); 1989 ev_signal_init (&childev, childcb, SIGCHLD);
1221 ev_set_priority (&childev, EV_MAXPRI); 1990 ev_set_priority (&childev, EV_MAXPRI);
1222 ev_signal_start (EV_A_ &childev); 1991 ev_signal_start (EV_A_ &childev);
1223 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1992 ev_unref (EV_A); /* child watcher should not keep loop alive */
1224#endif 1993#endif
1232 2001
1233void 2002void
1234ev_default_destroy (void) 2003ev_default_destroy (void)
1235{ 2004{
1236#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1237 struct ev_loop *loop = ev_default_loop_ptr; 2006 EV_P = ev_default_loop_ptr;
1238#endif 2007#endif
1239 2008
1240#ifndef _WIN32 2009 ev_default_loop_ptr = 0;
2010
2011#if EV_CHILD_ENABLE
1241 ev_ref (EV_A); /* child watcher */ 2012 ev_ref (EV_A); /* child watcher */
1242 ev_signal_stop (EV_A_ &childev); 2013 ev_signal_stop (EV_A_ &childev);
1243#endif 2014#endif
1244 2015
1245 ev_ref (EV_A); /* signal watcher */
1246 ev_io_stop (EV_A_ &sigev);
1247
1248 close (sigpipe [0]); sigpipe [0] = 0;
1249 close (sigpipe [1]); sigpipe [1] = 0;
1250
1251 loop_destroy (EV_A); 2016 loop_destroy (EV_A);
1252} 2017}
1253 2018
1254void 2019void
1255ev_default_fork (void) 2020ev_default_fork (void)
1256{ 2021{
1257#if EV_MULTIPLICITY 2022#if EV_MULTIPLICITY
1258 struct ev_loop *loop = ev_default_loop_ptr; 2023 EV_P = ev_default_loop_ptr;
1259#endif 2024#endif
1260 2025
1261 if (backend) 2026 postfork = 1; /* must be in line with ev_loop_fork */
1262 postfork = 1;
1263} 2027}
1264 2028
1265/*****************************************************************************/ 2029/*****************************************************************************/
1266 2030
1267void 2031void
1268ev_invoke (EV_P_ void *w, int revents) 2032ev_invoke (EV_P_ void *w, int revents)
1269{ 2033{
1270 EV_CB_INVOKE ((W)w, revents); 2034 EV_CB_INVOKE ((W)w, revents);
1271} 2035}
1272 2036
1273void inline_speed 2037unsigned int
1274call_pending (EV_P) 2038ev_pending_count (EV_P)
2039{
2040 int pri;
2041 unsigned int count = 0;
2042
2043 for (pri = NUMPRI; pri--; )
2044 count += pendingcnt [pri];
2045
2046 return count;
2047}
2048
2049void noinline
2050ev_invoke_pending (EV_P)
1275{ 2051{
1276 int pri; 2052 int pri;
1277 2053
1278 for (pri = NUMPRI; pri--; ) 2054 for (pri = NUMPRI; pri--; )
1279 while (pendingcnt [pri]) 2055 while (pendingcnt [pri])
1280 { 2056 {
1281 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2057 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1282 2058
1283 if (expect_true (p->w))
1284 {
1285 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2059 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2060 /* ^ this is no longer true, as pending_w could be here */
1286 2061
1287 p->w->pending = 0; 2062 p->w->pending = 0;
1288 EV_CB_INVOKE (p->w, p->events); 2063 EV_CB_INVOKE (p->w, p->events);
1289 } 2064 EV_FREQUENT_CHECK;
1290 } 2065 }
1291} 2066}
1292 2067
1293void inline_size
1294timers_reify (EV_P)
1295{
1296 while (timercnt && ((WT)timers [0])->at <= mn_now)
1297 {
1298 ev_timer *w = (ev_timer *)timers [0];
1299
1300 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1301
1302 /* first reschedule or stop timer */
1303 if (w->repeat)
1304 {
1305 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1306
1307 ((WT)w)->at += w->repeat;
1308 if (((WT)w)->at < mn_now)
1309 ((WT)w)->at = mn_now;
1310
1311 downheap (timers, timercnt, 0);
1312 }
1313 else
1314 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1315
1316 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1317 }
1318}
1319
1320#if EV_PERIODIC_ENABLE
1321void inline_size
1322periodics_reify (EV_P)
1323{
1324 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1325 {
1326 ev_periodic *w = (ev_periodic *)periodics [0];
1327
1328 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1329
1330 /* first reschedule or stop timer */
1331 if (w->reschedule_cb)
1332 {
1333 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1334 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1335 downheap (periodics, periodiccnt, 0);
1336 }
1337 else if (w->interval)
1338 {
1339 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1340 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1341 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1342 downheap (periodics, periodiccnt, 0);
1343 }
1344 else
1345 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1346
1347 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1348 }
1349}
1350
1351static void noinline
1352periodics_reschedule (EV_P)
1353{
1354 int i;
1355
1356 /* adjust periodics after time jump */
1357 for (i = 0; i < periodiccnt; ++i)
1358 {
1359 ev_periodic *w = (ev_periodic *)periodics [i];
1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1365 }
1366
1367 /* now rebuild the heap */
1368 for (i = periodiccnt >> 1; i--; )
1369 downheap (periodics, periodiccnt, i);
1370}
1371#endif
1372
1373#if EV_IDLE_ENABLE 2068#if EV_IDLE_ENABLE
1374void inline_size 2069/* make idle watchers pending. this handles the "call-idle */
2070/* only when higher priorities are idle" logic */
2071inline_size void
1375idle_reify (EV_P) 2072idle_reify (EV_P)
1376{ 2073{
1377 if (expect_false (idleall)) 2074 if (expect_false (idleall))
1378 { 2075 {
1379 int pri; 2076 int pri;
1391 } 2088 }
1392 } 2089 }
1393} 2090}
1394#endif 2091#endif
1395 2092
1396void inline_speed 2093/* make timers pending */
2094inline_size void
2095timers_reify (EV_P)
2096{
2097 EV_FREQUENT_CHECK;
2098
2099 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2100 {
2101 do
2102 {
2103 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2104
2105 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2106
2107 /* first reschedule or stop timer */
2108 if (w->repeat)
2109 {
2110 ev_at (w) += w->repeat;
2111 if (ev_at (w) < mn_now)
2112 ev_at (w) = mn_now;
2113
2114 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2115
2116 ANHE_at_cache (timers [HEAP0]);
2117 downheap (timers, timercnt, HEAP0);
2118 }
2119 else
2120 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2121
2122 EV_FREQUENT_CHECK;
2123 feed_reverse (EV_A_ (W)w);
2124 }
2125 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2126
2127 feed_reverse_done (EV_A_ EV_TIMER);
2128 }
2129}
2130
2131#if EV_PERIODIC_ENABLE
2132/* make periodics pending */
2133inline_size void
2134periodics_reify (EV_P)
2135{
2136 EV_FREQUENT_CHECK;
2137
2138 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2139 {
2140 int feed_count = 0;
2141
2142 do
2143 {
2144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2145
2146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2147
2148 /* first reschedule or stop timer */
2149 if (w->reschedule_cb)
2150 {
2151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2152
2153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2154
2155 ANHE_at_cache (periodics [HEAP0]);
2156 downheap (periodics, periodiccnt, HEAP0);
2157 }
2158 else if (w->interval)
2159 {
2160 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2161 /* if next trigger time is not sufficiently in the future, put it there */
2162 /* this might happen because of floating point inexactness */
2163 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2164 {
2165 ev_at (w) += w->interval;
2166
2167 /* if interval is unreasonably low we might still have a time in the past */
2168 /* so correct this. this will make the periodic very inexact, but the user */
2169 /* has effectively asked to get triggered more often than possible */
2170 if (ev_at (w) < ev_rt_now)
2171 ev_at (w) = ev_rt_now;
2172 }
2173
2174 ANHE_at_cache (periodics [HEAP0]);
2175 downheap (periodics, periodiccnt, HEAP0);
2176 }
2177 else
2178 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2179
2180 EV_FREQUENT_CHECK;
2181 feed_reverse (EV_A_ (W)w);
2182 }
2183 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2184
2185 feed_reverse_done (EV_A_ EV_PERIODIC);
2186 }
2187}
2188
2189/* simply recalculate all periodics */
2190/* TODO: maybe ensure that at least one event happens when jumping forward? */
2191static void noinline
2192periodics_reschedule (EV_P)
2193{
2194 int i;
2195
2196 /* adjust periodics after time jump */
2197 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2198 {
2199 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2200
2201 if (w->reschedule_cb)
2202 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2203 else if (w->interval)
2204 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2205
2206 ANHE_at_cache (periodics [i]);
2207 }
2208
2209 reheap (periodics, periodiccnt);
2210}
2211#endif
2212
2213/* adjust all timers by a given offset */
2214static void noinline
2215timers_reschedule (EV_P_ ev_tstamp adjust)
2216{
2217 int i;
2218
2219 for (i = 0; i < timercnt; ++i)
2220 {
2221 ANHE *he = timers + i + HEAP0;
2222 ANHE_w (*he)->at += adjust;
2223 ANHE_at_cache (*he);
2224 }
2225}
2226
2227/* fetch new monotonic and realtime times from the kernel */
2228/* also detect if there was a timejump, and act accordingly */
2229inline_speed void
1397time_update (EV_P_ ev_tstamp max_block) 2230time_update (EV_P_ ev_tstamp max_block)
1398{ 2231{
1399 int i;
1400
1401#if EV_USE_MONOTONIC 2232#if EV_USE_MONOTONIC
1402 if (expect_true (have_monotonic)) 2233 if (expect_true (have_monotonic))
1403 { 2234 {
2235 int i;
1404 ev_tstamp odiff = rtmn_diff; 2236 ev_tstamp odiff = rtmn_diff;
1405 2237
1406 mn_now = get_clock (); 2238 mn_now = get_clock ();
1407 2239
1408 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2240 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1426 */ 2258 */
1427 for (i = 4; --i; ) 2259 for (i = 4; --i; )
1428 { 2260 {
1429 rtmn_diff = ev_rt_now - mn_now; 2261 rtmn_diff = ev_rt_now - mn_now;
1430 2262
1431 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2263 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1432 return; /* all is well */ 2264 return; /* all is well */
1433 2265
1434 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1435 mn_now = get_clock (); 2267 mn_now = get_clock ();
1436 now_floor = mn_now; 2268 now_floor = mn_now;
1437 } 2269 }
1438 2270
2271 /* no timer adjustment, as the monotonic clock doesn't jump */
2272 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1439# if EV_PERIODIC_ENABLE 2273# if EV_PERIODIC_ENABLE
1440 periodics_reschedule (EV_A); 2274 periodics_reschedule (EV_A);
1441# endif 2275# endif
1442 /* no timer adjustment, as the monotonic clock doesn't jump */
1443 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1444 } 2276 }
1445 else 2277 else
1446#endif 2278#endif
1447 { 2279 {
1448 ev_rt_now = ev_time (); 2280 ev_rt_now = ev_time ();
1449 2281
1450 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2282 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1451 { 2283 {
2284 /* adjust timers. this is easy, as the offset is the same for all of them */
2285 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1452#if EV_PERIODIC_ENABLE 2286#if EV_PERIODIC_ENABLE
1453 periodics_reschedule (EV_A); 2287 periodics_reschedule (EV_A);
1454#endif 2288#endif
1455 /* adjust timers. this is easy, as the offset is the same for all of them */
1456 for (i = 0; i < timercnt; ++i)
1457 ((WT)timers [i])->at += ev_rt_now - mn_now;
1458 } 2289 }
1459 2290
1460 mn_now = ev_rt_now; 2291 mn_now = ev_rt_now;
1461 } 2292 }
1462} 2293}
1463 2294
1464void 2295void
1465ev_ref (EV_P)
1466{
1467 ++activecnt;
1468}
1469
1470void
1471ev_unref (EV_P)
1472{
1473 --activecnt;
1474}
1475
1476static int loop_done;
1477
1478void
1479ev_loop (EV_P_ int flags) 2296ev_loop (EV_P_ int flags)
1480{ 2297{
1481 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2298#if EV_FEATURE_API
1482 ? EVUNLOOP_ONE 2299 ++loop_depth;
1483 : EVUNLOOP_CANCEL; 2300#endif
1484 2301
2302 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2303
2304 loop_done = EVUNLOOP_CANCEL;
2305
1485 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2306 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1486 2307
1487 do 2308 do
1488 { 2309 {
2310#if EV_VERIFY >= 2
2311 ev_verify (EV_A);
2312#endif
2313
1489#ifndef _WIN32 2314#ifndef _WIN32
1490 if (expect_false (curpid)) /* penalise the forking check even more */ 2315 if (expect_false (curpid)) /* penalise the forking check even more */
1491 if (expect_false (getpid () != curpid)) 2316 if (expect_false (getpid () != curpid))
1492 { 2317 {
1493 curpid = getpid (); 2318 curpid = getpid ();
1499 /* we might have forked, so queue fork handlers */ 2324 /* we might have forked, so queue fork handlers */
1500 if (expect_false (postfork)) 2325 if (expect_false (postfork))
1501 if (forkcnt) 2326 if (forkcnt)
1502 { 2327 {
1503 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2328 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1504 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1505 } 2330 }
1506#endif 2331#endif
1507 2332
2333#if EV_PREPARE_ENABLE
1508 /* queue prepare watchers (and execute them) */ 2334 /* queue prepare watchers (and execute them) */
1509 if (expect_false (preparecnt)) 2335 if (expect_false (preparecnt))
1510 { 2336 {
1511 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2337 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1512 call_pending (EV_A); 2338 EV_INVOKE_PENDING;
1513 } 2339 }
2340#endif
1514 2341
1515 if (expect_false (!activecnt)) 2342 if (expect_false (loop_done))
1516 break; 2343 break;
1517 2344
1518 /* we might have forked, so reify kernel state if necessary */ 2345 /* we might have forked, so reify kernel state if necessary */
1519 if (expect_false (postfork)) 2346 if (expect_false (postfork))
1520 loop_fork (EV_A); 2347 loop_fork (EV_A);
1527 ev_tstamp waittime = 0.; 2354 ev_tstamp waittime = 0.;
1528 ev_tstamp sleeptime = 0.; 2355 ev_tstamp sleeptime = 0.;
1529 2356
1530 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2357 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1531 { 2358 {
2359 /* remember old timestamp for io_blocktime calculation */
2360 ev_tstamp prev_mn_now = mn_now;
2361
1532 /* update time to cancel out callback processing overhead */ 2362 /* update time to cancel out callback processing overhead */
1533 time_update (EV_A_ 1e100); 2363 time_update (EV_A_ 1e100);
1534 2364
1535 waittime = MAX_BLOCKTIME; 2365 waittime = MAX_BLOCKTIME;
1536 2366
1537 if (timercnt) 2367 if (timercnt)
1538 { 2368 {
1539 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2369 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1540 if (waittime > to) waittime = to; 2370 if (waittime > to) waittime = to;
1541 } 2371 }
1542 2372
1543#if EV_PERIODIC_ENABLE 2373#if EV_PERIODIC_ENABLE
1544 if (periodiccnt) 2374 if (periodiccnt)
1545 { 2375 {
1546 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2376 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1547 if (waittime > to) waittime = to; 2377 if (waittime > to) waittime = to;
1548 } 2378 }
1549#endif 2379#endif
1550 2380
2381 /* don't let timeouts decrease the waittime below timeout_blocktime */
1551 if (expect_false (waittime < timeout_blocktime)) 2382 if (expect_false (waittime < timeout_blocktime))
1552 waittime = timeout_blocktime; 2383 waittime = timeout_blocktime;
1553 2384
1554 sleeptime = waittime - backend_fudge; 2385 /* extra check because io_blocktime is commonly 0 */
1555
1556 if (expect_true (sleeptime > io_blocktime)) 2386 if (expect_false (io_blocktime))
1557 sleeptime = io_blocktime;
1558
1559 if (sleeptime)
1560 { 2387 {
2388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2389
2390 if (sleeptime > waittime - backend_fudge)
2391 sleeptime = waittime - backend_fudge;
2392
2393 if (expect_true (sleeptime > 0.))
2394 {
1561 ev_sleep (sleeptime); 2395 ev_sleep (sleeptime);
1562 waittime -= sleeptime; 2396 waittime -= sleeptime;
2397 }
1563 } 2398 }
1564 } 2399 }
1565 2400
2401#if EV_FEATURE_API
1566 ++loop_count; 2402 ++loop_count;
2403#endif
2404 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1567 backend_poll (EV_A_ waittime); 2405 backend_poll (EV_A_ waittime);
2406 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1568 2407
1569 /* update ev_rt_now, do magic */ 2408 /* update ev_rt_now, do magic */
1570 time_update (EV_A_ waittime + sleeptime); 2409 time_update (EV_A_ waittime + sleeptime);
1571 } 2410 }
1572 2411
1579#if EV_IDLE_ENABLE 2418#if EV_IDLE_ENABLE
1580 /* queue idle watchers unless other events are pending */ 2419 /* queue idle watchers unless other events are pending */
1581 idle_reify (EV_A); 2420 idle_reify (EV_A);
1582#endif 2421#endif
1583 2422
2423#if EV_CHECK_ENABLE
1584 /* queue check watchers, to be executed first */ 2424 /* queue check watchers, to be executed first */
1585 if (expect_false (checkcnt)) 2425 if (expect_false (checkcnt))
1586 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2427#endif
1587 2428
1588 call_pending (EV_A); 2429 EV_INVOKE_PENDING;
1589
1590 } 2430 }
1591 while (expect_true (activecnt && !loop_done)); 2431 while (expect_true (
2432 activecnt
2433 && !loop_done
2434 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2435 ));
1592 2436
1593 if (loop_done == EVUNLOOP_ONE) 2437 if (loop_done == EVUNLOOP_ONE)
1594 loop_done = EVUNLOOP_CANCEL; 2438 loop_done = EVUNLOOP_CANCEL;
2439
2440#if EV_FEATURE_API
2441 --loop_depth;
2442#endif
1595} 2443}
1596 2444
1597void 2445void
1598ev_unloop (EV_P_ int how) 2446ev_unloop (EV_P_ int how)
1599{ 2447{
1600 loop_done = how; 2448 loop_done = how;
1601} 2449}
1602 2450
2451void
2452ev_ref (EV_P)
2453{
2454 ++activecnt;
2455}
2456
2457void
2458ev_unref (EV_P)
2459{
2460 --activecnt;
2461}
2462
2463void
2464ev_now_update (EV_P)
2465{
2466 time_update (EV_A_ 1e100);
2467}
2468
2469void
2470ev_suspend (EV_P)
2471{
2472 ev_now_update (EV_A);
2473}
2474
2475void
2476ev_resume (EV_P)
2477{
2478 ev_tstamp mn_prev = mn_now;
2479
2480 ev_now_update (EV_A);
2481 timers_reschedule (EV_A_ mn_now - mn_prev);
2482#if EV_PERIODIC_ENABLE
2483 /* TODO: really do this? */
2484 periodics_reschedule (EV_A);
2485#endif
2486}
2487
1603/*****************************************************************************/ 2488/*****************************************************************************/
2489/* singly-linked list management, used when the expected list length is short */
1604 2490
1605void inline_size 2491inline_size void
1606wlist_add (WL *head, WL elem) 2492wlist_add (WL *head, WL elem)
1607{ 2493{
1608 elem->next = *head; 2494 elem->next = *head;
1609 *head = elem; 2495 *head = elem;
1610} 2496}
1611 2497
1612void inline_size 2498inline_size void
1613wlist_del (WL *head, WL elem) 2499wlist_del (WL *head, WL elem)
1614{ 2500{
1615 while (*head) 2501 while (*head)
1616 { 2502 {
1617 if (*head == elem) 2503 if (expect_true (*head == elem))
1618 { 2504 {
1619 *head = elem->next; 2505 *head = elem->next;
1620 return; 2506 break;
1621 } 2507 }
1622 2508
1623 head = &(*head)->next; 2509 head = &(*head)->next;
1624 } 2510 }
1625} 2511}
1626 2512
1627void inline_speed 2513/* internal, faster, version of ev_clear_pending */
2514inline_speed void
1628clear_pending (EV_P_ W w) 2515clear_pending (EV_P_ W w)
1629{ 2516{
1630 if (w->pending) 2517 if (w->pending)
1631 { 2518 {
1632 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2519 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1633 w->pending = 0; 2520 w->pending = 0;
1634 } 2521 }
1635} 2522}
1636 2523
1637int 2524int
1641 int pending = w_->pending; 2528 int pending = w_->pending;
1642 2529
1643 if (expect_true (pending)) 2530 if (expect_true (pending))
1644 { 2531 {
1645 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2532 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2533 p->w = (W)&pending_w;
1646 w_->pending = 0; 2534 w_->pending = 0;
1647 p->w = 0;
1648 return p->events; 2535 return p->events;
1649 } 2536 }
1650 else 2537 else
1651 return 0; 2538 return 0;
1652} 2539}
1653 2540
1654void inline_size 2541inline_size void
1655pri_adjust (EV_P_ W w) 2542pri_adjust (EV_P_ W w)
1656{ 2543{
1657 int pri = w->priority; 2544 int pri = ev_priority (w);
1658 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2545 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1659 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2546 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1660 w->priority = pri; 2547 ev_set_priority (w, pri);
1661} 2548}
1662 2549
1663void inline_speed 2550inline_speed void
1664ev_start (EV_P_ W w, int active) 2551ev_start (EV_P_ W w, int active)
1665{ 2552{
1666 pri_adjust (EV_A_ w); 2553 pri_adjust (EV_A_ w);
1667 w->active = active; 2554 w->active = active;
1668 ev_ref (EV_A); 2555 ev_ref (EV_A);
1669} 2556}
1670 2557
1671void inline_size 2558inline_size void
1672ev_stop (EV_P_ W w) 2559ev_stop (EV_P_ W w)
1673{ 2560{
1674 ev_unref (EV_A); 2561 ev_unref (EV_A);
1675 w->active = 0; 2562 w->active = 0;
1676} 2563}
1683 int fd = w->fd; 2570 int fd = w->fd;
1684 2571
1685 if (expect_false (ev_is_active (w))) 2572 if (expect_false (ev_is_active (w)))
1686 return; 2573 return;
1687 2574
1688 assert (("ev_io_start called with negative fd", fd >= 0)); 2575 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2576 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2577
2578 EV_FREQUENT_CHECK;
1689 2579
1690 ev_start (EV_A_ (W)w, 1); 2580 ev_start (EV_A_ (W)w, 1);
1691 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2581 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1692 wlist_add (&anfds[fd].head, (WL)w); 2582 wlist_add (&anfds[fd].head, (WL)w);
1693 2583
1694 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2584 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1695 w->events &= ~EV_IOFDSET; 2585 w->events &= ~EV__IOFDSET;
2586
2587 EV_FREQUENT_CHECK;
1696} 2588}
1697 2589
1698void noinline 2590void noinline
1699ev_io_stop (EV_P_ ev_io *w) 2591ev_io_stop (EV_P_ ev_io *w)
1700{ 2592{
1701 clear_pending (EV_A_ (W)w); 2593 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 2594 if (expect_false (!ev_is_active (w)))
1703 return; 2595 return;
1704 2596
1705 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2597 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2598
2599 EV_FREQUENT_CHECK;
1706 2600
1707 wlist_del (&anfds[w->fd].head, (WL)w); 2601 wlist_del (&anfds[w->fd].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
1709 2603
1710 fd_change (EV_A_ w->fd, 1); 2604 fd_change (EV_A_ w->fd, 1);
2605
2606 EV_FREQUENT_CHECK;
1711} 2607}
1712 2608
1713void noinline 2609void noinline
1714ev_timer_start (EV_P_ ev_timer *w) 2610ev_timer_start (EV_P_ ev_timer *w)
1715{ 2611{
1716 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
1717 return; 2613 return;
1718 2614
1719 ((WT)w)->at += mn_now; 2615 ev_at (w) += mn_now;
1720 2616
1721 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2617 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1722 2618
2619 EV_FREQUENT_CHECK;
2620
2621 ++timercnt;
1723 ev_start (EV_A_ (W)w, ++timercnt); 2622 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1724 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2623 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1725 timers [timercnt - 1] = (WT)w; 2624 ANHE_w (timers [ev_active (w)]) = (WT)w;
1726 upheap (timers, timercnt - 1); 2625 ANHE_at_cache (timers [ev_active (w)]);
2626 upheap (timers, ev_active (w));
1727 2627
2628 EV_FREQUENT_CHECK;
2629
1728 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2630 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1729} 2631}
1730 2632
1731void noinline 2633void noinline
1732ev_timer_stop (EV_P_ ev_timer *w) 2634ev_timer_stop (EV_P_ ev_timer *w)
1733{ 2635{
1734 clear_pending (EV_A_ (W)w); 2636 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 2637 if (expect_false (!ev_is_active (w)))
1736 return; 2638 return;
1737 2639
1738 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2640 EV_FREQUENT_CHECK;
1739 2641
1740 { 2642 {
1741 int active = ((W)w)->active; 2643 int active = ev_active (w);
1742 2644
2645 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2646
2647 --timercnt;
2648
1743 if (expect_true (--active < --timercnt)) 2649 if (expect_true (active < timercnt + HEAP0))
1744 { 2650 {
1745 timers [active] = timers [timercnt]; 2651 timers [active] = timers [timercnt + HEAP0];
1746 adjustheap (timers, timercnt, active); 2652 adjustheap (timers, timercnt, active);
1747 } 2653 }
1748 } 2654 }
1749 2655
1750 ((WT)w)->at -= mn_now; 2656 ev_at (w) -= mn_now;
1751 2657
1752 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
2659
2660 EV_FREQUENT_CHECK;
1753} 2661}
1754 2662
1755void noinline 2663void noinline
1756ev_timer_again (EV_P_ ev_timer *w) 2664ev_timer_again (EV_P_ ev_timer *w)
1757{ 2665{
2666 EV_FREQUENT_CHECK;
2667
1758 if (ev_is_active (w)) 2668 if (ev_is_active (w))
1759 { 2669 {
1760 if (w->repeat) 2670 if (w->repeat)
1761 { 2671 {
1762 ((WT)w)->at = mn_now + w->repeat; 2672 ev_at (w) = mn_now + w->repeat;
2673 ANHE_at_cache (timers [ev_active (w)]);
1763 adjustheap (timers, timercnt, ((W)w)->active - 1); 2674 adjustheap (timers, timercnt, ev_active (w));
1764 } 2675 }
1765 else 2676 else
1766 ev_timer_stop (EV_A_ w); 2677 ev_timer_stop (EV_A_ w);
1767 } 2678 }
1768 else if (w->repeat) 2679 else if (w->repeat)
1769 { 2680 {
1770 w->at = w->repeat; 2681 ev_at (w) = w->repeat;
1771 ev_timer_start (EV_A_ w); 2682 ev_timer_start (EV_A_ w);
1772 } 2683 }
2684
2685 EV_FREQUENT_CHECK;
2686}
2687
2688ev_tstamp
2689ev_timer_remaining (EV_P_ ev_timer *w)
2690{
2691 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1773} 2692}
1774 2693
1775#if EV_PERIODIC_ENABLE 2694#if EV_PERIODIC_ENABLE
1776void noinline 2695void noinline
1777ev_periodic_start (EV_P_ ev_periodic *w) 2696ev_periodic_start (EV_P_ ev_periodic *w)
1778{ 2697{
1779 if (expect_false (ev_is_active (w))) 2698 if (expect_false (ev_is_active (w)))
1780 return; 2699 return;
1781 2700
1782 if (w->reschedule_cb) 2701 if (w->reschedule_cb)
1783 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2702 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1784 else if (w->interval) 2703 else if (w->interval)
1785 { 2704 {
1786 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2705 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1787 /* this formula differs from the one in periodic_reify because we do not always round up */ 2706 /* this formula differs from the one in periodic_reify because we do not always round up */
1788 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2707 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 } 2708 }
1790 else 2709 else
1791 ((WT)w)->at = w->offset; 2710 ev_at (w) = w->offset;
1792 2711
2712 EV_FREQUENT_CHECK;
2713
2714 ++periodiccnt;
1793 ev_start (EV_A_ (W)w, ++periodiccnt); 2715 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1794 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2716 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1795 periodics [periodiccnt - 1] = (WT)w; 2717 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1796 upheap (periodics, periodiccnt - 1); 2718 ANHE_at_cache (periodics [ev_active (w)]);
2719 upheap (periodics, ev_active (w));
1797 2720
2721 EV_FREQUENT_CHECK;
2722
1798 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2723 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1799} 2724}
1800 2725
1801void noinline 2726void noinline
1802ev_periodic_stop (EV_P_ ev_periodic *w) 2727ev_periodic_stop (EV_P_ ev_periodic *w)
1803{ 2728{
1804 clear_pending (EV_A_ (W)w); 2729 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2730 if (expect_false (!ev_is_active (w)))
1806 return; 2731 return;
1807 2732
1808 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2733 EV_FREQUENT_CHECK;
1809 2734
1810 { 2735 {
1811 int active = ((W)w)->active; 2736 int active = ev_active (w);
1812 2737
2738 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2739
2740 --periodiccnt;
2741
1813 if (expect_true (--active < --periodiccnt)) 2742 if (expect_true (active < periodiccnt + HEAP0))
1814 { 2743 {
1815 periodics [active] = periodics [periodiccnt]; 2744 periodics [active] = periodics [periodiccnt + HEAP0];
1816 adjustheap (periodics, periodiccnt, active); 2745 adjustheap (periodics, periodiccnt, active);
1817 } 2746 }
1818 } 2747 }
1819 2748
1820 ev_stop (EV_A_ (W)w); 2749 ev_stop (EV_A_ (W)w);
2750
2751 EV_FREQUENT_CHECK;
1821} 2752}
1822 2753
1823void noinline 2754void noinline
1824ev_periodic_again (EV_P_ ev_periodic *w) 2755ev_periodic_again (EV_P_ ev_periodic *w)
1825{ 2756{
1831 2762
1832#ifndef SA_RESTART 2763#ifndef SA_RESTART
1833# define SA_RESTART 0 2764# define SA_RESTART 0
1834#endif 2765#endif
1835 2766
2767#if EV_SIGNAL_ENABLE
2768
1836void noinline 2769void noinline
1837ev_signal_start (EV_P_ ev_signal *w) 2770ev_signal_start (EV_P_ ev_signal *w)
1838{ 2771{
1839#if EV_MULTIPLICITY
1840 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1841#endif
1842 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
1843 return; 2773 return;
1844 2774
1845 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2775 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1846 2776
2777#if EV_MULTIPLICITY
2778 assert (("libev: a signal must not be attached to two different loops",
2779 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2780
2781 signals [w->signum - 1].loop = EV_A;
2782#endif
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_SIGNALFD
2787 if (sigfd == -2)
1847 { 2788 {
1848#ifndef _WIN32 2789 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1849 sigset_t full, prev; 2790 if (sigfd < 0 && errno == EINVAL)
1850 sigfillset (&full); 2791 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1851 sigprocmask (SIG_SETMASK, &full, &prev);
1852#endif
1853 2792
1854 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2793 if (sigfd >= 0)
2794 {
2795 fd_intern (sigfd); /* doing it twice will not hurt */
1855 2796
1856#ifndef _WIN32 2797 sigemptyset (&sigfd_set);
1857 sigprocmask (SIG_SETMASK, &prev, 0); 2798
1858#endif 2799 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2800 ev_set_priority (&sigfd_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &sigfd_w);
2802 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2803 }
1859 } 2804 }
2805
2806 if (sigfd >= 0)
2807 {
2808 /* TODO: check .head */
2809 sigaddset (&sigfd_set, w->signum);
2810 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2811
2812 signalfd (sigfd, &sigfd_set, 0);
2813 }
2814#endif
1860 2815
1861 ev_start (EV_A_ (W)w, 1); 2816 ev_start (EV_A_ (W)w, 1);
1862 wlist_add (&signals [w->signum - 1].head, (WL)w); 2817 wlist_add (&signals [w->signum - 1].head, (WL)w);
1863 2818
1864 if (!((WL)w)->next) 2819 if (!((WL)w)->next)
2820# if EV_USE_SIGNALFD
2821 if (sigfd < 0) /*TODO*/
2822# endif
1865 { 2823 {
1866#if _WIN32 2824# ifdef _WIN32
2825 evpipe_init (EV_A);
2826
1867 signal (w->signum, sighandler); 2827 signal (w->signum, ev_sighandler);
1868#else 2828# else
1869 struct sigaction sa; 2829 struct sigaction sa;
2830
2831 evpipe_init (EV_A);
2832
1870 sa.sa_handler = sighandler; 2833 sa.sa_handler = ev_sighandler;
1871 sigfillset (&sa.sa_mask); 2834 sigfillset (&sa.sa_mask);
1872 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2835 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1873 sigaction (w->signum, &sa, 0); 2836 sigaction (w->signum, &sa, 0);
2837
2838 sigemptyset (&sa.sa_mask);
2839 sigaddset (&sa.sa_mask, w->signum);
2840 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1874#endif 2841#endif
1875 } 2842 }
2843
2844 EV_FREQUENT_CHECK;
1876} 2845}
1877 2846
1878void noinline 2847void noinline
1879ev_signal_stop (EV_P_ ev_signal *w) 2848ev_signal_stop (EV_P_ ev_signal *w)
1880{ 2849{
1881 clear_pending (EV_A_ (W)w); 2850 clear_pending (EV_A_ (W)w);
1882 if (expect_false (!ev_is_active (w))) 2851 if (expect_false (!ev_is_active (w)))
1883 return; 2852 return;
1884 2853
2854 EV_FREQUENT_CHECK;
2855
1885 wlist_del (&signals [w->signum - 1].head, (WL)w); 2856 wlist_del (&signals [w->signum - 1].head, (WL)w);
1886 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
1887 2858
1888 if (!signals [w->signum - 1].head) 2859 if (!signals [w->signum - 1].head)
2860 {
2861#if EV_MULTIPLICITY
2862 signals [w->signum - 1].loop = 0; /* unattach from signal */
2863#endif
2864#if EV_USE_SIGNALFD
2865 if (sigfd >= 0)
2866 {
2867 sigset_t ss;
2868
2869 sigemptyset (&ss);
2870 sigaddset (&ss, w->signum);
2871 sigdelset (&sigfd_set, w->signum);
2872
2873 signalfd (sigfd, &sigfd_set, 0);
2874 sigprocmask (SIG_UNBLOCK, &ss, 0);
2875 }
2876 else
2877#endif
1889 signal (w->signum, SIG_DFL); 2878 signal (w->signum, SIG_DFL);
2879 }
2880
2881 EV_FREQUENT_CHECK;
1890} 2882}
2883
2884#endif
2885
2886#if EV_CHILD_ENABLE
1891 2887
1892void 2888void
1893ev_child_start (EV_P_ ev_child *w) 2889ev_child_start (EV_P_ ev_child *w)
1894{ 2890{
1895#if EV_MULTIPLICITY 2891#if EV_MULTIPLICITY
1896 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2892 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1897#endif 2893#endif
1898 if (expect_false (ev_is_active (w))) 2894 if (expect_false (ev_is_active (w)))
1899 return; 2895 return;
1900 2896
2897 EV_FREQUENT_CHECK;
2898
1901 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
1902 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2901
2902 EV_FREQUENT_CHECK;
1903} 2903}
1904 2904
1905void 2905void
1906ev_child_stop (EV_P_ ev_child *w) 2906ev_child_stop (EV_P_ ev_child *w)
1907{ 2907{
1908 clear_pending (EV_A_ (W)w); 2908 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2909 if (expect_false (!ev_is_active (w)))
1910 return; 2910 return;
1911 2911
2912 EV_FREQUENT_CHECK;
2913
1912 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2914 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1913 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
1914} 2918}
2919
2920#endif
1915 2921
1916#if EV_STAT_ENABLE 2922#if EV_STAT_ENABLE
1917 2923
1918# ifdef _WIN32 2924# ifdef _WIN32
1919# undef lstat 2925# undef lstat
1920# define lstat(a,b) _stati64 (a,b) 2926# define lstat(a,b) _stati64 (a,b)
1921# endif 2927# endif
1922 2928
1923#define DEF_STAT_INTERVAL 5.0074891 2929#define DEF_STAT_INTERVAL 5.0074891
2930#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1924#define MIN_STAT_INTERVAL 0.1074891 2931#define MIN_STAT_INTERVAL 0.1074891
1925 2932
1926static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2933static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1927 2934
1928#if EV_USE_INOTIFY 2935#if EV_USE_INOTIFY
1929# define EV_INOTIFY_BUFSIZE 8192 2936
2937/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2938# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1930 2939
1931static void noinline 2940static void noinline
1932infy_add (EV_P_ ev_stat *w) 2941infy_add (EV_P_ ev_stat *w)
1933{ 2942{
1934 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2943 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1935 2944
1936 if (w->wd < 0) 2945 if (w->wd >= 0)
2946 {
2947 struct statfs sfs;
2948
2949 /* now local changes will be tracked by inotify, but remote changes won't */
2950 /* unless the filesystem is known to be local, we therefore still poll */
2951 /* also do poll on <2.6.25, but with normal frequency */
2952
2953 if (!fs_2625)
2954 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2955 else if (!statfs (w->path, &sfs)
2956 && (sfs.f_type == 0x1373 /* devfs */
2957 || sfs.f_type == 0xEF53 /* ext2/3 */
2958 || sfs.f_type == 0x3153464a /* jfs */
2959 || sfs.f_type == 0x52654973 /* reiser3 */
2960 || sfs.f_type == 0x01021994 /* tempfs */
2961 || sfs.f_type == 0x58465342 /* xfs */))
2962 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2963 else
2964 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1937 { 2965 }
1938 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2966 else
2967 {
2968 /* can't use inotify, continue to stat */
2969 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1939 2970
1940 /* monitor some parent directory for speedup hints */ 2971 /* if path is not there, monitor some parent directory for speedup hints */
2972 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2973 /* but an efficiency issue only */
1941 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2974 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1942 { 2975 {
1943 char path [4096]; 2976 char path [4096];
1944 strcpy (path, w->path); 2977 strcpy (path, w->path);
1945 2978
1948 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2981 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1949 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2982 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1950 2983
1951 char *pend = strrchr (path, '/'); 2984 char *pend = strrchr (path, '/');
1952 2985
1953 if (!pend) 2986 if (!pend || pend == path)
1954 break; /* whoops, no '/', complain to your admin */ 2987 break;
1955 2988
1956 *pend = 0; 2989 *pend = 0;
1957 w->wd = inotify_add_watch (fs_fd, path, mask); 2990 w->wd = inotify_add_watch (fs_fd, path, mask);
1958 } 2991 }
1959 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2992 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1960 } 2993 }
1961 } 2994 }
1962 else
1963 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1964 2995
1965 if (w->wd >= 0) 2996 if (w->wd >= 0)
1966 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2997 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2998
2999 /* now re-arm timer, if required */
3000 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3001 ev_timer_again (EV_A_ &w->timer);
3002 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1967} 3003}
1968 3004
1969static void noinline 3005static void noinline
1970infy_del (EV_P_ ev_stat *w) 3006infy_del (EV_P_ ev_stat *w)
1971{ 3007{
1974 3010
1975 if (wd < 0) 3011 if (wd < 0)
1976 return; 3012 return;
1977 3013
1978 w->wd = -2; 3014 w->wd = -2;
1979 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3015 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1980 wlist_del (&fs_hash [slot].head, (WL)w); 3016 wlist_del (&fs_hash [slot].head, (WL)w);
1981 3017
1982 /* remove this watcher, if others are watching it, they will rearm */ 3018 /* remove this watcher, if others are watching it, they will rearm */
1983 inotify_rm_watch (fs_fd, wd); 3019 inotify_rm_watch (fs_fd, wd);
1984} 3020}
1985 3021
1986static void noinline 3022static void noinline
1987infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3023infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1988{ 3024{
1989 if (slot < 0) 3025 if (slot < 0)
1990 /* overflow, need to check for all hahs slots */ 3026 /* overflow, need to check for all hash slots */
1991 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3027 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1992 infy_wd (EV_A_ slot, wd, ev); 3028 infy_wd (EV_A_ slot, wd, ev);
1993 else 3029 else
1994 { 3030 {
1995 WL w_; 3031 WL w_;
1996 3032
1997 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3033 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1998 { 3034 {
1999 ev_stat *w = (ev_stat *)w_; 3035 ev_stat *w = (ev_stat *)w_;
2000 w_ = w_->next; /* lets us remove this watcher and all before it */ 3036 w_ = w_->next; /* lets us remove this watcher and all before it */
2001 3037
2002 if (w->wd == wd || wd == -1) 3038 if (w->wd == wd || wd == -1)
2003 { 3039 {
2004 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3040 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2005 { 3041 {
3042 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2006 w->wd = -1; 3043 w->wd = -1;
2007 infy_add (EV_A_ w); /* re-add, no matter what */ 3044 infy_add (EV_A_ w); /* re-add, no matter what */
2008 } 3045 }
2009 3046
2010 stat_timer_cb (EV_A_ &w->timer, 0); 3047 stat_timer_cb (EV_A_ &w->timer, 0);
2015 3052
2016static void 3053static void
2017infy_cb (EV_P_ ev_io *w, int revents) 3054infy_cb (EV_P_ ev_io *w, int revents)
2018{ 3055{
2019 char buf [EV_INOTIFY_BUFSIZE]; 3056 char buf [EV_INOTIFY_BUFSIZE];
2020 struct inotify_event *ev = (struct inotify_event *)buf;
2021 int ofs; 3057 int ofs;
2022 int len = read (fs_fd, buf, sizeof (buf)); 3058 int len = read (fs_fd, buf, sizeof (buf));
2023 3059
2024 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3060 for (ofs = 0; ofs < len; )
3061 {
3062 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2025 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3063 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3064 ofs += sizeof (struct inotify_event) + ev->len;
3065 }
2026} 3066}
2027 3067
2028void inline_size 3068inline_size unsigned int
3069ev_linux_version (void)
3070{
3071 struct utsname buf;
3072 unsigned int v;
3073 int i;
3074 char *p = buf.release;
3075
3076 if (uname (&buf))
3077 return 0;
3078
3079 for (i = 3+1; --i; )
3080 {
3081 unsigned int c = 0;
3082
3083 for (;;)
3084 {
3085 if (*p >= '0' && *p <= '9')
3086 c = c * 10 + *p++ - '0';
3087 else
3088 {
3089 p += *p == '.';
3090 break;
3091 }
3092 }
3093
3094 v = (v << 8) | c;
3095 }
3096
3097 return v;
3098}
3099
3100inline_size void
3101ev_check_2625 (EV_P)
3102{
3103 /* kernels < 2.6.25 are borked
3104 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3105 */
3106 if (ev_linux_version () < 0x020619)
3107 return;
3108
3109 fs_2625 = 1;
3110}
3111
3112inline_size int
3113infy_newfd (void)
3114{
3115#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3116 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3117 if (fd >= 0)
3118 return fd;
3119#endif
3120 return inotify_init ();
3121}
3122
3123inline_size void
2029infy_init (EV_P) 3124infy_init (EV_P)
2030{ 3125{
2031 if (fs_fd != -2) 3126 if (fs_fd != -2)
2032 return; 3127 return;
2033 3128
3129 fs_fd = -1;
3130
3131 ev_check_2625 (EV_A);
3132
2034 fs_fd = inotify_init (); 3133 fs_fd = infy_newfd ();
2035 3134
2036 if (fs_fd >= 0) 3135 if (fs_fd >= 0)
2037 { 3136 {
3137 fd_intern (fs_fd);
2038 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3138 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2039 ev_set_priority (&fs_w, EV_MAXPRI); 3139 ev_set_priority (&fs_w, EV_MAXPRI);
2040 ev_io_start (EV_A_ &fs_w); 3140 ev_io_start (EV_A_ &fs_w);
3141 ev_unref (EV_A);
2041 } 3142 }
2042} 3143}
2043 3144
2044void inline_size 3145inline_size void
2045infy_fork (EV_P) 3146infy_fork (EV_P)
2046{ 3147{
2047 int slot; 3148 int slot;
2048 3149
2049 if (fs_fd < 0) 3150 if (fs_fd < 0)
2050 return; 3151 return;
2051 3152
3153 ev_ref (EV_A);
3154 ev_io_stop (EV_A_ &fs_w);
2052 close (fs_fd); 3155 close (fs_fd);
2053 fs_fd = inotify_init (); 3156 fs_fd = infy_newfd ();
2054 3157
3158 if (fs_fd >= 0)
3159 {
3160 fd_intern (fs_fd);
3161 ev_io_set (&fs_w, fs_fd, EV_READ);
3162 ev_io_start (EV_A_ &fs_w);
3163 ev_unref (EV_A);
3164 }
3165
2055 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3166 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2056 { 3167 {
2057 WL w_ = fs_hash [slot].head; 3168 WL w_ = fs_hash [slot].head;
2058 fs_hash [slot].head = 0; 3169 fs_hash [slot].head = 0;
2059 3170
2060 while (w_) 3171 while (w_)
2065 w->wd = -1; 3176 w->wd = -1;
2066 3177
2067 if (fs_fd >= 0) 3178 if (fs_fd >= 0)
2068 infy_add (EV_A_ w); /* re-add, no matter what */ 3179 infy_add (EV_A_ w); /* re-add, no matter what */
2069 else 3180 else
3181 {
3182 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3183 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2070 ev_timer_start (EV_A_ &w->timer); 3184 ev_timer_again (EV_A_ &w->timer);
3185 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3186 }
2071 } 3187 }
2072
2073 } 3188 }
2074} 3189}
2075 3190
3191#endif
3192
3193#ifdef _WIN32
3194# define EV_LSTAT(p,b) _stati64 (p, b)
3195#else
3196# define EV_LSTAT(p,b) lstat (p, b)
2076#endif 3197#endif
2077 3198
2078void 3199void
2079ev_stat_stat (EV_P_ ev_stat *w) 3200ev_stat_stat (EV_P_ ev_stat *w)
2080{ 3201{
2087static void noinline 3208static void noinline
2088stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3209stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2089{ 3210{
2090 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3211 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2091 3212
2092 /* we copy this here each the time so that */ 3213 ev_statdata prev = w->attr;
2093 /* prev has the old value when the callback gets invoked */
2094 w->prev = w->attr;
2095 ev_stat_stat (EV_A_ w); 3214 ev_stat_stat (EV_A_ w);
2096 3215
2097 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3216 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2098 if ( 3217 if (
2099 w->prev.st_dev != w->attr.st_dev 3218 prev.st_dev != w->attr.st_dev
2100 || w->prev.st_ino != w->attr.st_ino 3219 || prev.st_ino != w->attr.st_ino
2101 || w->prev.st_mode != w->attr.st_mode 3220 || prev.st_mode != w->attr.st_mode
2102 || w->prev.st_nlink != w->attr.st_nlink 3221 || prev.st_nlink != w->attr.st_nlink
2103 || w->prev.st_uid != w->attr.st_uid 3222 || prev.st_uid != w->attr.st_uid
2104 || w->prev.st_gid != w->attr.st_gid 3223 || prev.st_gid != w->attr.st_gid
2105 || w->prev.st_rdev != w->attr.st_rdev 3224 || prev.st_rdev != w->attr.st_rdev
2106 || w->prev.st_size != w->attr.st_size 3225 || prev.st_size != w->attr.st_size
2107 || w->prev.st_atime != w->attr.st_atime 3226 || prev.st_atime != w->attr.st_atime
2108 || w->prev.st_mtime != w->attr.st_mtime 3227 || prev.st_mtime != w->attr.st_mtime
2109 || w->prev.st_ctime != w->attr.st_ctime 3228 || prev.st_ctime != w->attr.st_ctime
2110 ) { 3229 ) {
3230 /* we only update w->prev on actual differences */
3231 /* in case we test more often than invoke the callback, */
3232 /* to ensure that prev is always different to attr */
3233 w->prev = prev;
3234
2111 #if EV_USE_INOTIFY 3235 #if EV_USE_INOTIFY
3236 if (fs_fd >= 0)
3237 {
2112 infy_del (EV_A_ w); 3238 infy_del (EV_A_ w);
2113 infy_add (EV_A_ w); 3239 infy_add (EV_A_ w);
2114 ev_stat_stat (EV_A_ w); /* avoid race... */ 3240 ev_stat_stat (EV_A_ w); /* avoid race... */
3241 }
2115 #endif 3242 #endif
2116 3243
2117 ev_feed_event (EV_A_ w, EV_STAT); 3244 ev_feed_event (EV_A_ w, EV_STAT);
2118 } 3245 }
2119} 3246}
2122ev_stat_start (EV_P_ ev_stat *w) 3249ev_stat_start (EV_P_ ev_stat *w)
2123{ 3250{
2124 if (expect_false (ev_is_active (w))) 3251 if (expect_false (ev_is_active (w)))
2125 return; 3252 return;
2126 3253
2127 /* since we use memcmp, we need to clear any padding data etc. */
2128 memset (&w->prev, 0, sizeof (ev_statdata));
2129 memset (&w->attr, 0, sizeof (ev_statdata));
2130
2131 ev_stat_stat (EV_A_ w); 3254 ev_stat_stat (EV_A_ w);
2132 3255
3256 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2133 if (w->interval < MIN_STAT_INTERVAL) 3257 w->interval = MIN_STAT_INTERVAL;
2134 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2135 3258
2136 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3259 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2137 ev_set_priority (&w->timer, ev_priority (w)); 3260 ev_set_priority (&w->timer, ev_priority (w));
2138 3261
2139#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2140 infy_init (EV_A); 3263 infy_init (EV_A);
2141 3264
2142 if (fs_fd >= 0) 3265 if (fs_fd >= 0)
2143 infy_add (EV_A_ w); 3266 infy_add (EV_A_ w);
2144 else 3267 else
2145#endif 3268#endif
3269 {
2146 ev_timer_start (EV_A_ &w->timer); 3270 ev_timer_again (EV_A_ &w->timer);
3271 ev_unref (EV_A);
3272 }
2147 3273
2148 ev_start (EV_A_ (W)w, 1); 3274 ev_start (EV_A_ (W)w, 1);
3275
3276 EV_FREQUENT_CHECK;
2149} 3277}
2150 3278
2151void 3279void
2152ev_stat_stop (EV_P_ ev_stat *w) 3280ev_stat_stop (EV_P_ ev_stat *w)
2153{ 3281{
2154 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2155 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2156 return; 3284 return;
2157 3285
3286 EV_FREQUENT_CHECK;
3287
2158#if EV_USE_INOTIFY 3288#if EV_USE_INOTIFY
2159 infy_del (EV_A_ w); 3289 infy_del (EV_A_ w);
2160#endif 3290#endif
3291
3292 if (ev_is_active (&w->timer))
3293 {
3294 ev_ref (EV_A);
2161 ev_timer_stop (EV_A_ &w->timer); 3295 ev_timer_stop (EV_A_ &w->timer);
3296 }
2162 3297
2163 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
3299
3300 EV_FREQUENT_CHECK;
2164} 3301}
2165#endif 3302#endif
2166 3303
2167#if EV_IDLE_ENABLE 3304#if EV_IDLE_ENABLE
2168void 3305void
2170{ 3307{
2171 if (expect_false (ev_is_active (w))) 3308 if (expect_false (ev_is_active (w)))
2172 return; 3309 return;
2173 3310
2174 pri_adjust (EV_A_ (W)w); 3311 pri_adjust (EV_A_ (W)w);
3312
3313 EV_FREQUENT_CHECK;
2175 3314
2176 { 3315 {
2177 int active = ++idlecnt [ABSPRI (w)]; 3316 int active = ++idlecnt [ABSPRI (w)];
2178 3317
2179 ++idleall; 3318 ++idleall;
2180 ev_start (EV_A_ (W)w, active); 3319 ev_start (EV_A_ (W)w, active);
2181 3320
2182 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3321 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2183 idles [ABSPRI (w)][active - 1] = w; 3322 idles [ABSPRI (w)][active - 1] = w;
2184 } 3323 }
3324
3325 EV_FREQUENT_CHECK;
2185} 3326}
2186 3327
2187void 3328void
2188ev_idle_stop (EV_P_ ev_idle *w) 3329ev_idle_stop (EV_P_ ev_idle *w)
2189{ 3330{
2190 clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
2192 return; 3333 return;
2193 3334
3335 EV_FREQUENT_CHECK;
3336
2194 { 3337 {
2195 int active = ((W)w)->active; 3338 int active = ev_active (w);
2196 3339
2197 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3340 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2198 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3341 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2199 3342
2200 ev_stop (EV_A_ (W)w); 3343 ev_stop (EV_A_ (W)w);
2201 --idleall; 3344 --idleall;
2202 } 3345 }
2203}
2204#endif
2205 3346
3347 EV_FREQUENT_CHECK;
3348}
3349#endif
3350
3351#if EV_PREPARE_ENABLE
2206void 3352void
2207ev_prepare_start (EV_P_ ev_prepare *w) 3353ev_prepare_start (EV_P_ ev_prepare *w)
2208{ 3354{
2209 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2210 return; 3356 return;
3357
3358 EV_FREQUENT_CHECK;
2211 3359
2212 ev_start (EV_A_ (W)w, ++preparecnt); 3360 ev_start (EV_A_ (W)w, ++preparecnt);
2213 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3361 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2214 prepares [preparecnt - 1] = w; 3362 prepares [preparecnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
2215} 3365}
2216 3366
2217void 3367void
2218ev_prepare_stop (EV_P_ ev_prepare *w) 3368ev_prepare_stop (EV_P_ ev_prepare *w)
2219{ 3369{
2220 clear_pending (EV_A_ (W)w); 3370 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3371 if (expect_false (!ev_is_active (w)))
2222 return; 3372 return;
2223 3373
3374 EV_FREQUENT_CHECK;
3375
2224 { 3376 {
2225 int active = ((W)w)->active; 3377 int active = ev_active (w);
3378
2226 prepares [active - 1] = prepares [--preparecnt]; 3379 prepares [active - 1] = prepares [--preparecnt];
2227 ((W)prepares [active - 1])->active = active; 3380 ev_active (prepares [active - 1]) = active;
2228 } 3381 }
2229 3382
2230 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
2231}
2232 3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_CHECK_ENABLE
2233void 3390void
2234ev_check_start (EV_P_ ev_check *w) 3391ev_check_start (EV_P_ ev_check *w)
2235{ 3392{
2236 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2237 return; 3394 return;
3395
3396 EV_FREQUENT_CHECK;
2238 3397
2239 ev_start (EV_A_ (W)w, ++checkcnt); 3398 ev_start (EV_A_ (W)w, ++checkcnt);
2240 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3399 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2241 checks [checkcnt - 1] = w; 3400 checks [checkcnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
2242} 3403}
2243 3404
2244void 3405void
2245ev_check_stop (EV_P_ ev_check *w) 3406ev_check_stop (EV_P_ ev_check *w)
2246{ 3407{
2247 clear_pending (EV_A_ (W)w); 3408 clear_pending (EV_A_ (W)w);
2248 if (expect_false (!ev_is_active (w))) 3409 if (expect_false (!ev_is_active (w)))
2249 return; 3410 return;
2250 3411
3412 EV_FREQUENT_CHECK;
3413
2251 { 3414 {
2252 int active = ((W)w)->active; 3415 int active = ev_active (w);
3416
2253 checks [active - 1] = checks [--checkcnt]; 3417 checks [active - 1] = checks [--checkcnt];
2254 ((W)checks [active - 1])->active = active; 3418 ev_active (checks [active - 1]) = active;
2255 } 3419 }
2256 3420
2257 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
2258} 3424}
3425#endif
2259 3426
2260#if EV_EMBED_ENABLE 3427#if EV_EMBED_ENABLE
2261void noinline 3428void noinline
2262ev_embed_sweep (EV_P_ ev_embed *w) 3429ev_embed_sweep (EV_P_ ev_embed *w)
2263{ 3430{
2279embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3446embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2280{ 3447{
2281 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3448 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2282 3449
2283 { 3450 {
2284 struct ev_loop *loop = w->other; 3451 EV_P = w->other;
2285 3452
2286 while (fdchangecnt) 3453 while (fdchangecnt)
2287 { 3454 {
2288 fd_reify (EV_A); 3455 fd_reify (EV_A);
2289 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3456 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2290 } 3457 }
2291 } 3458 }
2292} 3459}
2293 3460
3461static void
3462embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3465
3466 ev_embed_stop (EV_A_ w);
3467
3468 {
3469 EV_P = w->other;
3470
3471 ev_loop_fork (EV_A);
3472 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3473 }
3474
3475 ev_embed_start (EV_A_ w);
3476}
3477
2294#if 0 3478#if 0
2295static void 3479static void
2296embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3480embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2297{ 3481{
2298 ev_idle_stop (EV_A_ idle); 3482 ev_idle_stop (EV_A_ idle);
2304{ 3488{
2305 if (expect_false (ev_is_active (w))) 3489 if (expect_false (ev_is_active (w)))
2306 return; 3490 return;
2307 3491
2308 { 3492 {
2309 struct ev_loop *loop = w->other; 3493 EV_P = w->other;
2310 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3494 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2312 } 3496 }
3497
3498 EV_FREQUENT_CHECK;
2313 3499
2314 ev_set_priority (&w->io, ev_priority (w)); 3500 ev_set_priority (&w->io, ev_priority (w));
2315 ev_io_start (EV_A_ &w->io); 3501 ev_io_start (EV_A_ &w->io);
2316 3502
2317 ev_prepare_init (&w->prepare, embed_prepare_cb); 3503 ev_prepare_init (&w->prepare, embed_prepare_cb);
2318 ev_set_priority (&w->prepare, EV_MINPRI); 3504 ev_set_priority (&w->prepare, EV_MINPRI);
2319 ev_prepare_start (EV_A_ &w->prepare); 3505 ev_prepare_start (EV_A_ &w->prepare);
2320 3506
3507 ev_fork_init (&w->fork, embed_fork_cb);
3508 ev_fork_start (EV_A_ &w->fork);
3509
2321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3510 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2322 3511
2323 ev_start (EV_A_ (W)w, 1); 3512 ev_start (EV_A_ (W)w, 1);
3513
3514 EV_FREQUENT_CHECK;
2324} 3515}
2325 3516
2326void 3517void
2327ev_embed_stop (EV_P_ ev_embed *w) 3518ev_embed_stop (EV_P_ ev_embed *w)
2328{ 3519{
2329 clear_pending (EV_A_ (W)w); 3520 clear_pending (EV_A_ (W)w);
2330 if (expect_false (!ev_is_active (w))) 3521 if (expect_false (!ev_is_active (w)))
2331 return; 3522 return;
2332 3523
3524 EV_FREQUENT_CHECK;
3525
2333 ev_io_stop (EV_A_ &w->io); 3526 ev_io_stop (EV_A_ &w->io);
2334 ev_prepare_stop (EV_A_ &w->prepare); 3527 ev_prepare_stop (EV_A_ &w->prepare);
3528 ev_fork_stop (EV_A_ &w->fork);
2335 3529
2336 ev_stop (EV_A_ (W)w); 3530 ev_stop (EV_A_ (W)w);
3531
3532 EV_FREQUENT_CHECK;
2337} 3533}
2338#endif 3534#endif
2339 3535
2340#if EV_FORK_ENABLE 3536#if EV_FORK_ENABLE
2341void 3537void
2342ev_fork_start (EV_P_ ev_fork *w) 3538ev_fork_start (EV_P_ ev_fork *w)
2343{ 3539{
2344 if (expect_false (ev_is_active (w))) 3540 if (expect_false (ev_is_active (w)))
2345 return; 3541 return;
3542
3543 EV_FREQUENT_CHECK;
2346 3544
2347 ev_start (EV_A_ (W)w, ++forkcnt); 3545 ev_start (EV_A_ (W)w, ++forkcnt);
2348 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3546 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2349 forks [forkcnt - 1] = w; 3547 forks [forkcnt - 1] = w;
3548
3549 EV_FREQUENT_CHECK;
2350} 3550}
2351 3551
2352void 3552void
2353ev_fork_stop (EV_P_ ev_fork *w) 3553ev_fork_stop (EV_P_ ev_fork *w)
2354{ 3554{
2355 clear_pending (EV_A_ (W)w); 3555 clear_pending (EV_A_ (W)w);
2356 if (expect_false (!ev_is_active (w))) 3556 if (expect_false (!ev_is_active (w)))
2357 return; 3557 return;
2358 3558
3559 EV_FREQUENT_CHECK;
3560
2359 { 3561 {
2360 int active = ((W)w)->active; 3562 int active = ev_active (w);
3563
2361 forks [active - 1] = forks [--forkcnt]; 3564 forks [active - 1] = forks [--forkcnt];
2362 ((W)forks [active - 1])->active = active; 3565 ev_active (forks [active - 1]) = active;
2363 } 3566 }
2364 3567
2365 ev_stop (EV_A_ (W)w); 3568 ev_stop (EV_A_ (W)w);
3569
3570 EV_FREQUENT_CHECK;
3571}
3572#endif
3573
3574#if EV_ASYNC_ENABLE
3575void
3576ev_async_start (EV_P_ ev_async *w)
3577{
3578 if (expect_false (ev_is_active (w)))
3579 return;
3580
3581 evpipe_init (EV_A);
3582
3583 EV_FREQUENT_CHECK;
3584
3585 ev_start (EV_A_ (W)w, ++asynccnt);
3586 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3587 asyncs [asynccnt - 1] = w;
3588
3589 EV_FREQUENT_CHECK;
3590}
3591
3592void
3593ev_async_stop (EV_P_ ev_async *w)
3594{
3595 clear_pending (EV_A_ (W)w);
3596 if (expect_false (!ev_is_active (w)))
3597 return;
3598
3599 EV_FREQUENT_CHECK;
3600
3601 {
3602 int active = ev_active (w);
3603
3604 asyncs [active - 1] = asyncs [--asynccnt];
3605 ev_active (asyncs [active - 1]) = active;
3606 }
3607
3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
3611}
3612
3613void
3614ev_async_send (EV_P_ ev_async *w)
3615{
3616 w->sent = 1;
3617 evpipe_write (EV_A_ &async_pending);
2366} 3618}
2367#endif 3619#endif
2368 3620
2369/*****************************************************************************/ 3621/*****************************************************************************/
2370 3622
2380once_cb (EV_P_ struct ev_once *once, int revents) 3632once_cb (EV_P_ struct ev_once *once, int revents)
2381{ 3633{
2382 void (*cb)(int revents, void *arg) = once->cb; 3634 void (*cb)(int revents, void *arg) = once->cb;
2383 void *arg = once->arg; 3635 void *arg = once->arg;
2384 3636
2385 ev_io_stop (EV_A_ &once->io); 3637 ev_io_stop (EV_A_ &once->io);
2386 ev_timer_stop (EV_A_ &once->to); 3638 ev_timer_stop (EV_A_ &once->to);
2387 ev_free (once); 3639 ev_free (once);
2388 3640
2389 cb (revents, arg); 3641 cb (revents, arg);
2390} 3642}
2391 3643
2392static void 3644static void
2393once_cb_io (EV_P_ ev_io *w, int revents) 3645once_cb_io (EV_P_ ev_io *w, int revents)
2394{ 3646{
2395 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3647 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3648
3649 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2396} 3650}
2397 3651
2398static void 3652static void
2399once_cb_to (EV_P_ ev_timer *w, int revents) 3653once_cb_to (EV_P_ ev_timer *w, int revents)
2400{ 3654{
2401 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3655 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3656
3657 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2402} 3658}
2403 3659
2404void 3660void
2405ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3661ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2406{ 3662{
2407 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3663 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2408 3664
2409 if (expect_false (!once)) 3665 if (expect_false (!once))
2410 { 3666 {
2411 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3667 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2412 return; 3668 return;
2413 } 3669 }
2414 3670
2415 once->cb = cb; 3671 once->cb = cb;
2416 once->arg = arg; 3672 once->arg = arg;
2428 ev_timer_set (&once->to, timeout, 0.); 3684 ev_timer_set (&once->to, timeout, 0.);
2429 ev_timer_start (EV_A_ &once->to); 3685 ev_timer_start (EV_A_ &once->to);
2430 } 3686 }
2431} 3687}
2432 3688
3689/*****************************************************************************/
3690
3691#if EV_WALK_ENABLE
3692void
3693ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3694{
3695 int i, j;
3696 ev_watcher_list *wl, *wn;
3697
3698 if (types & (EV_IO | EV_EMBED))
3699 for (i = 0; i < anfdmax; ++i)
3700 for (wl = anfds [i].head; wl; )
3701 {
3702 wn = wl->next;
3703
3704#if EV_EMBED_ENABLE
3705 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3706 {
3707 if (types & EV_EMBED)
3708 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3709 }
3710 else
3711#endif
3712#if EV_USE_INOTIFY
3713 if (ev_cb ((ev_io *)wl) == infy_cb)
3714 ;
3715 else
3716#endif
3717 if ((ev_io *)wl != &pipe_w)
3718 if (types & EV_IO)
3719 cb (EV_A_ EV_IO, wl);
3720
3721 wl = wn;
3722 }
3723
3724 if (types & (EV_TIMER | EV_STAT))
3725 for (i = timercnt + HEAP0; i-- > HEAP0; )
3726#if EV_STAT_ENABLE
3727 /*TODO: timer is not always active*/
3728 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3729 {
3730 if (types & EV_STAT)
3731 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3732 }
3733 else
3734#endif
3735 if (types & EV_TIMER)
3736 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3737
3738#if EV_PERIODIC_ENABLE
3739 if (types & EV_PERIODIC)
3740 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3741 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3742#endif
3743
3744#if EV_IDLE_ENABLE
3745 if (types & EV_IDLE)
3746 for (j = NUMPRI; i--; )
3747 for (i = idlecnt [j]; i--; )
3748 cb (EV_A_ EV_IDLE, idles [j][i]);
3749#endif
3750
3751#if EV_FORK_ENABLE
3752 if (types & EV_FORK)
3753 for (i = forkcnt; i--; )
3754 if (ev_cb (forks [i]) != embed_fork_cb)
3755 cb (EV_A_ EV_FORK, forks [i]);
3756#endif
3757
3758#if EV_ASYNC_ENABLE
3759 if (types & EV_ASYNC)
3760 for (i = asynccnt; i--; )
3761 cb (EV_A_ EV_ASYNC, asyncs [i]);
3762#endif
3763
3764#if EV_PREPARE_ENABLE
3765 if (types & EV_PREPARE)
3766 for (i = preparecnt; i--; )
3767# if EV_EMBED_ENABLE
3768 if (ev_cb (prepares [i]) != embed_prepare_cb)
3769# endif
3770 cb (EV_A_ EV_PREPARE, prepares [i]);
3771#endif
3772
3773#if EV_CHECK_ENABLE
3774 if (types & EV_CHECK)
3775 for (i = checkcnt; i--; )
3776 cb (EV_A_ EV_CHECK, checks [i]);
3777#endif
3778
3779#if EV_SIGNAL_ENABLE
3780 if (types & EV_SIGNAL)
3781 for (i = 0; i < EV_NSIG - 1; ++i)
3782 for (wl = signals [i].head; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_SIGNAL, wl);
3786 wl = wn;
3787 }
3788#endif
3789
3790#if EV_CHILD_ENABLE
3791 if (types & EV_CHILD)
3792 for (i = (EV_PID_HASHSIZE); i--; )
3793 for (wl = childs [i]; wl; )
3794 {
3795 wn = wl->next;
3796 cb (EV_A_ EV_CHILD, wl);
3797 wl = wn;
3798 }
3799#endif
3800/* EV_STAT 0x00001000 /* stat data changed */
3801/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3802}
3803#endif
3804
2433#if EV_MULTIPLICITY 3805#if EV_MULTIPLICITY
2434 #include "ev_wrap.h" 3806 #include "ev_wrap.h"
2435#endif 3807#endif
2436 3808
2437#ifdef __cplusplus 3809#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines