ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.346 by root, Thu Oct 14 05:07:04 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
74# endif 98# endif
75 99
100# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
89# endif
90# endif 107# endif
91 108
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
95# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
98# endif 116# endif
99 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
106# endif 125# endif
107 126
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
111# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
114# endif 134# endif
115 135
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
122# endif 143# endif
123 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
130# endif 152# endif
131 153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
165 208
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
167 210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
246
168#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
169# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
170#endif 253#endif
171 254
172#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 257#endif
175 258
176#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
177# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
178#endif 265#endif
179 266
180#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 269#endif
183 270
184#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
185# ifdef _WIN32 272# ifdef _WIN32
186# define EV_USE_POLL 0 273# define EV_USE_POLL 0
187# else 274# else
188# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 276# endif
190#endif 277#endif
191 278
192#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 282# else
196# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
197# endif 284# endif
198#endif 285#endif
199 286
205# define EV_USE_PORT 0 292# define EV_USE_PORT 0
206#endif 293#endif
207 294
208#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 298# else
212# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
213# endif 300# endif
214#endif 301#endif
215 302
216#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 305#endif
223 306
224#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 309#endif
231 310
232#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 314# else
236# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
237# endif 316# endif
238#endif 317#endif
239 318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
241 366
242#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
245#endif 370#endif
259# include <sys/select.h> 384# include <sys/select.h>
260# endif 385# endif
261#endif 386#endif
262 387
263#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
264# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
265#endif 397#endif
266 398
267#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 400# include <winsock.h>
269#endif 401#endif
270 402
271#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
274# ifdef __cplusplus 416# ifdef __cplusplus
275extern "C" { 417extern "C" {
276# endif 418# endif
277int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 420# ifdef __cplusplus
279} 421}
280# endif 422# endif
281#endif 423#endif
282 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
283/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
284 461
285/* 462/*
286 * This is used to avoid floating point rounding problems. 463 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 464 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 465 * to ensure progress, time-wise, even when rounding
292 */ 469 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 471
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 474
299#if __GNUC__ >= 4 475#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
302#else 478#else
309 485
310#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 488#define inline_size static inline
313 489
314#if EV_MINIMAL 490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
315# define inline_speed static noinline 493# define inline_speed static noinline
494#endif
495
496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
316#else 500#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
322 503
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
325 506
326typedef ev_watcher *W; 507typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
329 510
330#define ev_active(w) ((W)(w))->active 511#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 512#define ev_at(w) ((WT)(w))->at
332 513
514#if EV_USE_REALTIME
515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
333#if EV_USE_MONOTONIC 520#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 532#endif
338 533
339#ifdef _WIN32 534#ifdef _WIN32
340# include "ev_win32.c" 535# include "ev_win32.c"
341#endif 536#endif
342 537
343/*****************************************************************************/ 538/*****************************************************************************/
344 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
345static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
346 549
347void 550void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 552{
350 syserr_cb = cb; 553 syserr_cb = cb;
351} 554}
352 555
353static void noinline 556static void noinline
354syserr (const char *msg) 557ev_syserr (const char *msg)
355{ 558{
356 if (!msg) 559 if (!msg)
357 msg = "(libev) system error"; 560 msg = "(libev) system error";
358 561
359 if (syserr_cb) 562 if (syserr_cb)
360 syserr_cb (msg); 563 syserr_cb (msg);
361 else 564 else
362 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
363 perror (msg); 574 perror (msg);
575#endif
364 abort (); 576 abort ();
365 } 577 }
366} 578}
367 579
368static void * 580static void *
369ev_realloc_emul (void *ptr, long size) 581ev_realloc_emul (void *ptr, long size)
370{ 582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
371 /* some systems, notably openbsd and darwin, fail to properly 586 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 587 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 588 * the single unix specification, so work around them here.
374 */ 589 */
375 590
376 if (size) 591 if (size)
377 return realloc (ptr, size); 592 return realloc (ptr, size);
378 593
379 free (ptr); 594 free (ptr);
380 return 0; 595 return 0;
596#endif
381} 597}
382 598
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 600
385void 601void
393{ 609{
394 ptr = alloc (ptr, size); 610 ptr = alloc (ptr, size);
395 611
396 if (!ptr && size) 612 if (!ptr && size)
397 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
399 abort (); 619 abort ();
400 } 620 }
401 621
402 return ptr; 622 return ptr;
403} 623}
405#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
407 627
408/*****************************************************************************/ 628/*****************************************************************************/
409 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
410typedef struct 634typedef struct
411{ 635{
412 WL head; 636 WL head;
413 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
415#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 645 SOCKET handle;
417#endif 646#endif
418} ANFD; 647} ANFD;
419 648
649/* stores the pending event set for a given watcher */
420typedef struct 650typedef struct
421{ 651{
422 W w; 652 W w;
423 int events; 653 int events; /* the pending event set for the given watcher */
424} ANPENDING; 654} ANPENDING;
425 655
426#if EV_USE_INOTIFY 656#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 657/* hash table entry per inotify-id */
428typedef struct 658typedef struct
430 WL head; 660 WL head;
431} ANFS; 661} ANFS;
432#endif 662#endif
433 663
434/* Heap Entry */ 664/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 665#if EV_HEAP_CACHE_AT
666 /* a heap element */
437 typedef struct { 667 typedef struct {
668 ev_tstamp at;
438 WT w; 669 WT w;
439 ev_tstamp at;
440 } ANHE; 670 } ANHE;
441 671
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 672 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 673 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 675#else
676 /* a heap element */
446 typedef WT ANHE; 677 typedef WT ANHE;
447 678
448 #define ANHE_w(he) (he) 679 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 680 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 681 #define ANHE_at_cache(he)
451#endif 682#endif
452 683
453#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
454 685
455 struct ev_loop 686 struct ev_loop
474 705
475 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
476 707
477#endif 708#endif
478 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
479/*****************************************************************************/ 722/*****************************************************************************/
480 723
724#ifndef EV_HAVE_EV_TIME
481ev_tstamp 725ev_tstamp
482ev_time (void) 726ev_time (void)
483{ 727{
484#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
485 struct timespec ts; 731 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 734 }
735#endif
736
489 struct timeval tv; 737 struct timeval tv;
490 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 740}
741#endif
494 742
495ev_tstamp inline_size 743inline_size ev_tstamp
496get_clock (void) 744get_clock (void)
497{ 745{
498#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
500 { 748 {
533 struct timeval tv; 781 struct timeval tv;
534 782
535 tv.tv_sec = (time_t)delay; 783 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537 785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
538 select (0, 0, 0, 0, &tv); 789 select (0, 0, 0, 0, &tv);
539#endif 790#endif
540 } 791 }
541} 792}
542 793
543/*****************************************************************************/ 794/*****************************************************************************/
544 795
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 797
547int inline_size 798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
548array_nextsize (int elem, int cur, int cnt) 801array_nextsize (int elem, int cur, int cnt)
549{ 802{
550 int ncur = cur + 1; 803 int ncur = cur + 1;
551 804
552 do 805 do
569array_realloc (int elem, void *base, int *cur, int cnt) 822array_realloc (int elem, void *base, int *cur, int cnt)
570{ 823{
571 *cur = array_nextsize (elem, *cur, cnt); 824 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 825 return ev_realloc (base, elem * *cur);
573} 826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 830
575#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 832 if (expect_false ((cnt) > (cur))) \
577 { \ 833 { \
578 int ocur_ = (cur); \ 834 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 847 }
592#endif 848#endif
593 849
594#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 852
597/*****************************************************************************/ 853/*****************************************************************************/
854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
598 860
599void noinline 861void noinline
600ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
601{ 863{
602 W w_ = (W)w; 864 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 873 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 874 pendings [pri][w_->pending - 1].events = revents;
613 } 875 }
614} 876}
615 877
616void inline_speed 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 895{
619 int i; 896 int i;
620 897
621 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
623} 900}
624 901
625/*****************************************************************************/ 902/*****************************************************************************/
626 903
627void inline_size 904inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
642{ 906{
643 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
644 ev_io *w; 908 ev_io *w;
645 909
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 914 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
652 } 916 }
653} 917}
654 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
655void 930void
656ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 932{
658 if (fd >= 0 && fd < anfdmax) 933 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
660} 935}
661 936
662void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
663fd_reify (EV_P) 940fd_reify (EV_P)
664{ 941{
665 int i; 942 int i;
666 943
667 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
676 events |= (unsigned char)w->events; 953 events |= (unsigned char)w->events;
677 954
678#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
679 if (events) 956 if (events)
680 { 957 {
681 unsigned long argp; 958 unsigned long arg;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
685 anfd->handle = _get_osfhandle (fd);
686 #endif
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
688 } 961 }
689#endif 962#endif
690 963
691 { 964 {
692 unsigned char o_events = anfd->events; 965 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify; 966 unsigned char o_reify = anfd->reify;
694 967
695 anfd->reify = 0; 968 anfd->reify = 0;
696 anfd->events = events; 969 anfd->events = events;
697 970
698 if (o_events != events || o_reify & EV_IOFDSET) 971 if (o_events != events || o_reify & EV__IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 972 backend_modify (EV_A_ fd, o_events, events);
700 } 973 }
701 } 974 }
702 975
703 fdchangecnt = 0; 976 fdchangecnt = 0;
704} 977}
705 978
706void inline_size 979/* something about the given fd changed */
980inline_size void
707fd_change (EV_P_ int fd, int flags) 981fd_change (EV_P_ int fd, int flags)
708{ 982{
709 unsigned char reify = anfds [fd].reify; 983 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 984 anfds [fd].reify |= flags;
711 985
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
717 } 991 }
718} 992}
719 993
720void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
721fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
722{ 997{
723 ev_io *w; 998 ev_io *w;
724 999
725 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 1004 }
730} 1005}
731 1006
732int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
733fd_valid (int fd) 1009fd_valid (int fd)
734{ 1010{
735#ifdef _WIN32 1011#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 1013#else
738 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
739#endif 1015#endif
740} 1016}
741 1017
745{ 1021{
746 int fd; 1022 int fd;
747 1023
748 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 1025 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
752} 1028}
753 1029
754/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 1031static void noinline
759 1035
760 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1037 if (anfds [fd].events)
762 { 1038 {
763 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
764 return; 1040 break;
765 } 1041 }
766} 1042}
767 1043
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1045static void noinline
773 1049
774 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1051 if (anfds [fd].events)
776 { 1052 {
777 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
1054 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1056 }
780} 1057}
781 1058
1059/* used to prepare libev internal fd's */
1060/* this is not fork-safe */
1061inline_speed void
1062fd_intern (int fd)
1063{
1064#ifdef _WIN32
1065 unsigned long arg = 1;
1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1067#else
1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
1069 fcntl (fd, F_SETFL, O_NONBLOCK);
1070#endif
1071}
1072
782/*****************************************************************************/ 1073/*****************************************************************************/
783 1074
784/* 1075/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 1076 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 1078 * the branching factor of the d-tree.
788 */ 1079 */
789 1080
790/* 1081/*
791 * at the moment we allow libev the luxury of two heaps, 1082 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1084 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1085 * the difference is about 5% with 50000+ watchers.
795 */ 1086 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1087#if EV_USE_4HEAP
798 1088
799#define DHEAP 4 1089#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1092#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1093
824/* away from the root */ 1094/* away from the root */
825void inline_speed 1095inline_speed void
826downheap (ANHE *heap, int N, int k) 1096downheap (ANHE *heap, int N, int k)
827{ 1097{
828 ANHE he = heap [k]; 1098 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1099 ANHE *E = heap + N + HEAP0;
830 1100
831 for (;;) 1101 for (;;)
832 { 1102 {
833 ev_tstamp minat; 1103 ev_tstamp minat;
834 ANHE *minpos; 1104 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1106
837 // find minimum child 1107 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1108 if (expect_true (pos + DHEAP - 1 < E))
839 { 1109 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1114 }
845 else if (pos < E) 1115 else if (pos < E)
846 { 1116 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1123 break;
854 1124
855 if (ANHE_at (he) <= minat) 1125 if (ANHE_at (he) <= minat)
856 break; 1126 break;
857 1127
1128 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1129 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1130
861 k = minpos - heap; 1131 k = minpos - heap;
862 } 1132 }
863 1133
1134 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1135 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1136}
867 1137
868#else // 4HEAP 1138#else /* 4HEAP */
869 1139
870#define HEAP0 1 1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
871 1143
872/* towards the root */ 1144/* away from the root */
873void inline_speed 1145inline_speed void
874upheap (ANHE *heap, int k) 1146downheap (ANHE *heap, int N, int k)
875{ 1147{
876 ANHE he = heap [k]; 1148 ANHE he = heap [k];
877 1149
878 for (;;) 1150 for (;;)
879 { 1151 {
880 int p = k >> 1; 1152 int c = k << 1;
881 1153
882 /* maybe we could use a dummy element at heap [0]? */ 1154 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1155 break;
885 1156
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1158 ? 1 : 0;
910 1159
911 if (w->at <= ANHE_at (heap [c])) 1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1161 break;
913 1162
914 heap [k] = heap [c]; 1163 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1164 ev_active (ANHE_w (heap [k])) = k;
916 1165
920 heap [k] = he; 1169 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1170 ev_active (ANHE_w (he)) = k;
922} 1171}
923#endif 1172#endif
924 1173
925void inline_size 1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
926adjustheap (ANHE *heap, int N, int k) 1198adjustheap (ANHE *heap, int N, int k)
927{ 1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1201 upheap (heap, k);
1202 else
929 downheap (heap, N, k); 1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
930} 1216}
931 1217
932/*****************************************************************************/ 1218/*****************************************************************************/
933 1219
1220/* associate signal watchers to a signal signal */
934typedef struct 1221typedef struct
935{ 1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
936 WL head; 1227 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1228} ANSIG;
939 1229
940static ANSIG *signals; 1230static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1231
957/*****************************************************************************/ 1232/*****************************************************************************/
958 1233
959void inline_speed 1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 1235
971static void noinline 1236static void noinline
972evpipe_init (EV_P) 1237evpipe_init (EV_P)
973{ 1238{
974 if (!ev_is_active (&pipeev)) 1239 if (!ev_is_active (&pipe_w))
975 { 1240 {
976#if EV_USE_EVENTFD 1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
978 { 1247 {
979 evpipe [0] = -1; 1248 evpipe [0] = -1;
980 fd_intern (evfd); 1249 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1250 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1251 }
983 else 1252 else
984#endif 1253# endif
985 { 1254 {
986 while (pipe (evpipe)) 1255 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1256 ev_syserr ("(libev) error creating signal/async pipe");
988 1257
989 fd_intern (evpipe [0]); 1258 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1259 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1261 }
993 1262
994 ev_io_start (EV_A_ &pipeev); 1263 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1265 }
997} 1266}
998 1267
999void inline_size 1268inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1270{
1002 if (!*flag) 1271 if (!*flag)
1003 { 1272 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1005 1275
1006 *flag = 1; 1276 *flag = 1;
1007 1277
1008#if EV_USE_EVENTFD 1278#if EV_USE_EVENTFD
1009 if (evfd >= 0) 1279 if (evfd >= 0)
1011 uint64_t counter = 1; 1281 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t)); 1282 write (evfd, &counter, sizeof (uint64_t));
1013 } 1283 }
1014 else 1284 else
1015#endif 1285#endif
1286 /* win32 people keep sending patches that change this write() to send() */
1287 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1288 /* so when you think this write should be a send instead, please find out */
1289 /* where your send() is from - it's definitely not the microsoft send, and */
1290 /* tell me. thank you. */
1016 write (evpipe [1], &old_errno, 1); 1291 write (evpipe [1], &dummy, 1);
1017 1292
1018 errno = old_errno; 1293 errno = old_errno;
1019 } 1294 }
1020} 1295}
1021 1296
1297/* called whenever the libev signal pipe */
1298/* got some events (signal, async) */
1022static void 1299static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1300pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1301{
1302 int i;
1303
1025#if EV_USE_EVENTFD 1304#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1305 if (evfd >= 0)
1027 { 1306 {
1028 uint64_t counter; 1307 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1308 read (evfd, &counter, sizeof (uint64_t));
1030 } 1309 }
1031 else 1310 else
1032#endif 1311#endif
1033 { 1312 {
1034 char dummy; 1313 char dummy;
1314 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1035 read (evpipe [0], &dummy, 1); 1315 read (evpipe [0], &dummy, 1);
1036 } 1316 }
1037 1317
1038 if (gotsig && ev_is_default_loop (EV_A)) 1318 if (sig_pending)
1039 { 1319 {
1040 int signum; 1320 sig_pending = 0;
1041 gotsig = 0;
1042 1321
1043 for (signum = signalmax; signum--; ) 1322 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 1323 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 1324 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1325 }
1047 1326
1048#if EV_ASYNC_ENABLE 1327#if EV_ASYNC_ENABLE
1049 if (gotasync) 1328 if (async_pending)
1050 { 1329 {
1051 int i; 1330 async_pending = 0;
1052 gotasync = 0;
1053 1331
1054 for (i = asynccnt; i--; ) 1332 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1333 if (asyncs [i]->sent)
1056 { 1334 {
1057 asyncs [i]->sent = 0; 1335 asyncs [i]->sent = 0;
1065 1343
1066static void 1344static void
1067ev_sighandler (int signum) 1345ev_sighandler (int signum)
1068{ 1346{
1069#if EV_MULTIPLICITY 1347#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct; 1348 EV_P = signals [signum - 1].loop;
1071#endif 1349#endif
1072 1350
1073#if _WIN32 1351#ifdef _WIN32
1074 signal (signum, ev_sighandler); 1352 signal (signum, ev_sighandler);
1075#endif 1353#endif
1076 1354
1077 signals [signum - 1].gotsig = 1; 1355 signals [signum - 1].pending = 1;
1078 evpipe_write (EV_A_ &gotsig); 1356 evpipe_write (EV_A_ &sig_pending);
1079} 1357}
1080 1358
1081void noinline 1359void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1360ev_feed_signal_event (EV_P_ int signum)
1083{ 1361{
1084 WL w; 1362 WL w;
1085 1363
1364 if (expect_false (signum <= 0 || signum > EV_NSIG))
1365 return;
1366
1367 --signum;
1368
1086#if EV_MULTIPLICITY 1369#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1370 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1371 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1372
1090 --signum; 1373 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1374 return;
1375#endif
1094 1376
1095 signals [signum].gotsig = 0; 1377 signals [signum].pending = 0;
1096 1378
1097 for (w = signals [signum].head; w; w = w->next) 1379 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1380 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1381}
1100 1382
1383#if EV_USE_SIGNALFD
1384static void
1385sigfdcb (EV_P_ ev_io *iow, int revents)
1386{
1387 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1388
1389 for (;;)
1390 {
1391 ssize_t res = read (sigfd, si, sizeof (si));
1392
1393 /* not ISO-C, as res might be -1, but works with SuS */
1394 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1395 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1396
1397 if (res < (ssize_t)sizeof (si))
1398 break;
1399 }
1400}
1401#endif
1402
1403#endif
1404
1101/*****************************************************************************/ 1405/*****************************************************************************/
1102 1406
1407#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 1408static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 1409
1107static ev_signal childev; 1410static ev_signal childev;
1108 1411
1109#ifndef WIFCONTINUED 1412#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1413# define WIFCONTINUED(status) 0
1111#endif 1414#endif
1112 1415
1113void inline_speed 1416/* handle a single child status event */
1417inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1418child_reap (EV_P_ int chain, int pid, int status)
1115{ 1419{
1116 ev_child *w; 1420 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1421 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1422
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1423 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 1424 {
1121 if ((w->pid == pid || !w->pid) 1425 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 1426 && (!traced || (w->flags & 1)))
1123 { 1427 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1428 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 1435
1132#ifndef WCONTINUED 1436#ifndef WCONTINUED
1133# define WCONTINUED 0 1437# define WCONTINUED 0
1134#endif 1438#endif
1135 1439
1440/* called on sigchld etc., calls waitpid */
1136static void 1441static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1442childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1443{
1139 int pid, status; 1444 int pid, status;
1140 1445
1148 /* make sure we are called again until all children have been reaped */ 1453 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 1454 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1455 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 1456
1152 child_reap (EV_A_ pid, pid, status); 1457 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 1458 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1459 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 1460}
1156 1461
1157#endif 1462#endif
1158 1463
1221 /* kqueue is borked on everything but netbsd apparently */ 1526 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1527 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1528 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1529#endif
1225#ifdef __APPLE__ 1530#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1531 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1532 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1533 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1534#endif
1535#ifdef __FreeBSD__
1536 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 1537#endif
1229 1538
1230 return flags; 1539 return flags;
1231} 1540}
1232 1541
1246ev_backend (EV_P) 1555ev_backend (EV_P)
1247{ 1556{
1248 return backend; 1557 return backend;
1249} 1558}
1250 1559
1560#if EV_FEATURE_API
1251unsigned int 1561unsigned int
1252ev_loop_count (EV_P) 1562ev_iteration (EV_P)
1253{ 1563{
1254 return loop_count; 1564 return loop_count;
1255} 1565}
1256 1566
1567unsigned int
1568ev_depth (EV_P)
1569{
1570 return loop_depth;
1571}
1572
1257void 1573void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1574ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1575{
1260 io_blocktime = interval; 1576 io_blocktime = interval;
1261} 1577}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1580ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1581{
1266 timeout_blocktime = interval; 1582 timeout_blocktime = interval;
1267} 1583}
1268 1584
1585void
1586ev_set_userdata (EV_P_ void *data)
1587{
1588 userdata = data;
1589}
1590
1591void *
1592ev_userdata (EV_P)
1593{
1594 return userdata;
1595}
1596
1597void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1598{
1599 invoke_cb = invoke_pending_cb;
1600}
1601
1602void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1603{
1604 release_cb = release;
1605 acquire_cb = acquire;
1606}
1607#endif
1608
1609/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1610static void noinline
1270loop_init (EV_P_ unsigned int flags) 1611loop_init (EV_P_ unsigned int flags)
1271{ 1612{
1272 if (!backend) 1613 if (!backend)
1273 { 1614 {
1615#if EV_USE_REALTIME
1616 if (!have_realtime)
1617 {
1618 struct timespec ts;
1619
1620 if (!clock_gettime (CLOCK_REALTIME, &ts))
1621 have_realtime = 1;
1622 }
1623#endif
1624
1274#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
1626 if (!have_monotonic)
1275 { 1627 {
1276 struct timespec ts; 1628 struct timespec ts;
1629
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1630 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1631 have_monotonic = 1;
1279 } 1632 }
1280#endif 1633#endif
1634
1635 /* pid check not overridable via env */
1636#ifndef _WIN32
1637 if (flags & EVFLAG_FORKCHECK)
1638 curpid = getpid ();
1639#endif
1640
1641 if (!(flags & EVFLAG_NOENV)
1642 && !enable_secure ()
1643 && getenv ("LIBEV_FLAGS"))
1644 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1645
1282 ev_rt_now = ev_time (); 1646 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1647 mn_now = get_clock ();
1284 now_floor = mn_now; 1648 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now; 1649 rtmn_diff = ev_rt_now - mn_now;
1650#if EV_FEATURE_API
1651 invoke_cb = ev_invoke_pending;
1652#endif
1286 1653
1287 io_blocktime = 0.; 1654 io_blocktime = 0.;
1288 timeout_blocktime = 0.; 1655 timeout_blocktime = 0.;
1289 backend = 0; 1656 backend = 0;
1290 backend_fd = -1; 1657 backend_fd = -1;
1291 gotasync = 0; 1658 sig_pending = 0;
1659#if EV_ASYNC_ENABLE
1660 async_pending = 0;
1661#endif
1292#if EV_USE_INOTIFY 1662#if EV_USE_INOTIFY
1293 fs_fd = -2; 1663 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1294#endif 1664#endif
1295 1665#if EV_USE_SIGNALFD
1296 /* pid check not overridable via env */ 1666 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif 1667#endif
1301
1302 if (!(flags & EVFLAG_NOENV)
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306 1668
1307 if (!(flags & 0x0000ffffU)) 1669 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends (); 1670 flags |= ev_recommended_backends ();
1309 1671
1310#if EV_USE_PORT 1672#if EV_USE_PORT
1321#endif 1683#endif
1322#if EV_USE_SELECT 1684#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1685 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1686#endif
1325 1687
1688 ev_prepare_init (&pending_w, pendingcb);
1689
1690#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 1691 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1692 ev_set_priority (&pipe_w, EV_MAXPRI);
1693#endif
1328 } 1694 }
1329} 1695}
1330 1696
1697/* free up a loop structure */
1331static void noinline 1698static void noinline
1332loop_destroy (EV_P) 1699loop_destroy (EV_P)
1333{ 1700{
1334 int i; 1701 int i;
1335 1702
1336 if (ev_is_active (&pipeev)) 1703 if (ev_is_active (&pipe_w))
1337 { 1704 {
1338 ev_ref (EV_A); /* signal watcher */ 1705 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 1706 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 1707
1341#if EV_USE_EVENTFD 1708#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1709 if (evfd >= 0)
1343 close (evfd); 1710 close (evfd);
1344#endif 1711#endif
1345 1712
1346 if (evpipe [0] >= 0) 1713 if (evpipe [0] >= 0)
1347 { 1714 {
1348 close (evpipe [0]); 1715 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 1716 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 1717 }
1351 } 1718 }
1719
1720#if EV_USE_SIGNALFD
1721 if (ev_is_active (&sigfd_w))
1722 close (sigfd);
1723#endif
1352 1724
1353#if EV_USE_INOTIFY 1725#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 1726 if (fs_fd >= 0)
1355 close (fs_fd); 1727 close (fs_fd);
1356#endif 1728#endif
1380#if EV_IDLE_ENABLE 1752#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 1753 array_free (idle, [i]);
1382#endif 1754#endif
1383 } 1755 }
1384 1756
1385 ev_free (anfds); anfdmax = 0; 1757 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 1758
1387 /* have to use the microsoft-never-gets-it-right macro */ 1759 /* have to use the microsoft-never-gets-it-right macro */
1760 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1761 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1762 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1763#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1764 array_free (periodic, EMPTY);
1392#endif 1765#endif
1401 1774
1402 backend = 0; 1775 backend = 0;
1403} 1776}
1404 1777
1405#if EV_USE_INOTIFY 1778#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1779inline_size void infy_fork (EV_P);
1407#endif 1780#endif
1408 1781
1409void inline_size 1782inline_size void
1410loop_fork (EV_P) 1783loop_fork (EV_P)
1411{ 1784{
1412#if EV_USE_PORT 1785#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1786 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1787#endif
1420#endif 1793#endif
1421#if EV_USE_INOTIFY 1794#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1795 infy_fork (EV_A);
1423#endif 1796#endif
1424 1797
1425 if (ev_is_active (&pipeev)) 1798 if (ev_is_active (&pipe_w))
1426 { 1799 {
1427 /* this "locks" the handlers against writing to the pipe */ 1800 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1801 /* while we modify the fd vars */
1429 gotsig = 1; 1802 sig_pending = 1;
1430#if EV_ASYNC_ENABLE 1803#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1804 async_pending = 1;
1432#endif 1805#endif
1433 1806
1434 ev_ref (EV_A); 1807 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1808 ev_io_stop (EV_A_ &pipe_w);
1436 1809
1437#if EV_USE_EVENTFD 1810#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1811 if (evfd >= 0)
1439 close (evfd); 1812 close (evfd);
1440#endif 1813#endif
1441 1814
1442 if (evpipe [0] >= 0) 1815 if (evpipe [0] >= 0)
1443 { 1816 {
1444 close (evpipe [0]); 1817 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 1818 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 1819 }
1447 1820
1821#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1448 evpipe_init (EV_A); 1822 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1823 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1824 pipecb (EV_A_ &pipe_w, EV_READ);
1825#endif
1451 } 1826 }
1452 1827
1453 postfork = 0; 1828 postfork = 0;
1454} 1829}
1455 1830
1456#if EV_MULTIPLICITY 1831#if EV_MULTIPLICITY
1832
1457struct ev_loop * 1833struct ev_loop *
1458ev_loop_new (unsigned int flags) 1834ev_loop_new (unsigned int flags)
1459{ 1835{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1836 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461 1837
1462 memset (loop, 0, sizeof (struct ev_loop)); 1838 memset (EV_A, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags); 1839 loop_init (EV_A_ flags);
1465 1840
1466 if (ev_backend (EV_A)) 1841 if (ev_backend (EV_A))
1467 return loop; 1842 return EV_A;
1468 1843
1469 return 0; 1844 return 0;
1470} 1845}
1471 1846
1472void 1847void
1478 1853
1479void 1854void
1480ev_loop_fork (EV_P) 1855ev_loop_fork (EV_P)
1481{ 1856{
1482 postfork = 1; /* must be in line with ev_default_fork */ 1857 postfork = 1; /* must be in line with ev_default_fork */
1858}
1859#endif /* multiplicity */
1860
1861#if EV_VERIFY
1862static void noinline
1863verify_watcher (EV_P_ W w)
1864{
1865 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1866
1867 if (w->pending)
1868 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1869}
1870
1871static void noinline
1872verify_heap (EV_P_ ANHE *heap, int N)
1873{
1874 int i;
1875
1876 for (i = HEAP0; i < N + HEAP0; ++i)
1877 {
1878 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1879 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1880 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1881
1882 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1883 }
1884}
1885
1886static void noinline
1887array_verify (EV_P_ W *ws, int cnt)
1888{
1889 while (cnt--)
1890 {
1891 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1892 verify_watcher (EV_A_ ws [cnt]);
1893 }
1894}
1895#endif
1896
1897#if EV_FEATURE_API
1898void
1899ev_verify (EV_P)
1900{
1901#if EV_VERIFY
1902 int i;
1903 WL w;
1904
1905 assert (activecnt >= -1);
1906
1907 assert (fdchangemax >= fdchangecnt);
1908 for (i = 0; i < fdchangecnt; ++i)
1909 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1910
1911 assert (anfdmax >= 0);
1912 for (i = 0; i < anfdmax; ++i)
1913 for (w = anfds [i].head; w; w = w->next)
1914 {
1915 verify_watcher (EV_A_ (W)w);
1916 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1917 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1918 }
1919
1920 assert (timermax >= timercnt);
1921 verify_heap (EV_A_ timers, timercnt);
1922
1923#if EV_PERIODIC_ENABLE
1924 assert (periodicmax >= periodiccnt);
1925 verify_heap (EV_A_ periodics, periodiccnt);
1926#endif
1927
1928 for (i = NUMPRI; i--; )
1929 {
1930 assert (pendingmax [i] >= pendingcnt [i]);
1931#if EV_IDLE_ENABLE
1932 assert (idleall >= 0);
1933 assert (idlemax [i] >= idlecnt [i]);
1934 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1935#endif
1936 }
1937
1938#if EV_FORK_ENABLE
1939 assert (forkmax >= forkcnt);
1940 array_verify (EV_A_ (W *)forks, forkcnt);
1941#endif
1942
1943#if EV_ASYNC_ENABLE
1944 assert (asyncmax >= asynccnt);
1945 array_verify (EV_A_ (W *)asyncs, asynccnt);
1946#endif
1947
1948#if EV_PREPARE_ENABLE
1949 assert (preparemax >= preparecnt);
1950 array_verify (EV_A_ (W *)prepares, preparecnt);
1951#endif
1952
1953#if EV_CHECK_ENABLE
1954 assert (checkmax >= checkcnt);
1955 array_verify (EV_A_ (W *)checks, checkcnt);
1956#endif
1957
1958# if 0
1959#if EV_CHILD_ENABLE
1960 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1961 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1962#endif
1963# endif
1964#endif
1483} 1965}
1484#endif 1966#endif
1485 1967
1486#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1487struct ev_loop * 1969struct ev_loop *
1492#endif 1974#endif
1493{ 1975{
1494 if (!ev_default_loop_ptr) 1976 if (!ev_default_loop_ptr)
1495 { 1977 {
1496#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1979 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 1980#else
1499 ev_default_loop_ptr = 1; 1981 ev_default_loop_ptr = 1;
1500#endif 1982#endif
1501 1983
1502 loop_init (EV_A_ flags); 1984 loop_init (EV_A_ flags);
1503 1985
1504 if (ev_backend (EV_A)) 1986 if (ev_backend (EV_A))
1505 { 1987 {
1506#ifndef _WIN32 1988#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 1989 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 1990 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 1991 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1992 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 1993#endif
1519 2001
1520void 2002void
1521ev_default_destroy (void) 2003ev_default_destroy (void)
1522{ 2004{
1523#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr; 2006 EV_P = ev_default_loop_ptr;
1525#endif 2007#endif
1526 2008
1527#ifndef _WIN32 2009 ev_default_loop_ptr = 0;
2010
2011#if EV_CHILD_ENABLE
1528 ev_ref (EV_A); /* child watcher */ 2012 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev); 2013 ev_signal_stop (EV_A_ &childev);
1530#endif 2014#endif
1531 2015
1532 loop_destroy (EV_A); 2016 loop_destroy (EV_A);
1534 2018
1535void 2019void
1536ev_default_fork (void) 2020ev_default_fork (void)
1537{ 2021{
1538#if EV_MULTIPLICITY 2022#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr; 2023 EV_P = ev_default_loop_ptr;
1540#endif 2024#endif
1541 2025
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 2026 postfork = 1; /* must be in line with ev_loop_fork */
1544} 2027}
1545 2028
1546/*****************************************************************************/ 2029/*****************************************************************************/
1547 2030
1548void 2031void
1549ev_invoke (EV_P_ void *w, int revents) 2032ev_invoke (EV_P_ void *w, int revents)
1550{ 2033{
1551 EV_CB_INVOKE ((W)w, revents); 2034 EV_CB_INVOKE ((W)w, revents);
1552} 2035}
1553 2036
1554void inline_speed 2037unsigned int
1555call_pending (EV_P) 2038ev_pending_count (EV_P)
2039{
2040 int pri;
2041 unsigned int count = 0;
2042
2043 for (pri = NUMPRI; pri--; )
2044 count += pendingcnt [pri];
2045
2046 return count;
2047}
2048
2049void noinline
2050ev_invoke_pending (EV_P)
1556{ 2051{
1557 int pri; 2052 int pri;
1558 2053
1559 for (pri = NUMPRI; pri--; ) 2054 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 2055 while (pendingcnt [pri])
1561 { 2056 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2057 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 2058
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2059 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2060 /* ^ this is no longer true, as pending_w could be here */
1567 2061
1568 p->w->pending = 0; 2062 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2063 EV_CB_INVOKE (p->w, p->events);
1570 } 2064 EV_FREQUENT_CHECK;
1571 } 2065 }
1572} 2066}
1573 2067
1574#if EV_IDLE_ENABLE 2068#if EV_IDLE_ENABLE
1575void inline_size 2069/* make idle watchers pending. this handles the "call-idle */
2070/* only when higher priorities are idle" logic */
2071inline_size void
1576idle_reify (EV_P) 2072idle_reify (EV_P)
1577{ 2073{
1578 if (expect_false (idleall)) 2074 if (expect_false (idleall))
1579 { 2075 {
1580 int pri; 2076 int pri;
1592 } 2088 }
1593 } 2089 }
1594} 2090}
1595#endif 2091#endif
1596 2092
1597void inline_size 2093/* make timers pending */
2094inline_size void
1598timers_reify (EV_P) 2095timers_reify (EV_P)
1599{ 2096{
2097 EV_FREQUENT_CHECK;
2098
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2099 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2100 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2101 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2102 {
2103 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2104
2105 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2106
2107 /* first reschedule or stop timer */
2108 if (w->repeat)
2109 {
2110 ev_at (w) += w->repeat;
2111 if (ev_at (w) < mn_now)
2112 ev_at (w) = mn_now;
2113
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2114 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2115
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2116 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2117 downheap (timers, timercnt, HEAP0);
2118 }
2119 else
2120 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2121
2122 EV_FREQUENT_CHECK;
2123 feed_reverse (EV_A_ (W)w);
1617 } 2124 }
1618 else 2125 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2126
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2127 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 2128 }
1623} 2129}
1624 2130
1625#if EV_PERIODIC_ENABLE 2131#if EV_PERIODIC_ENABLE
1626void inline_size 2132/* make periodics pending */
2133inline_size void
1627periodics_reify (EV_P) 2134periodics_reify (EV_P)
1628{ 2135{
2136 EV_FREQUENT_CHECK;
2137
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2138 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2139 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2140 int feed_count = 0;
1632 2141
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2142 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2143 {
2144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2145
2146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2147
2148 /* first reschedule or stop timer */
2149 if (w->reschedule_cb)
2150 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2152
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2154
1640 ANHE_at_set (periodics [HEAP0]); 2155 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2156 downheap (periodics, periodiccnt, HEAP0);
2157 }
2158 else if (w->interval)
2159 {
2160 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2161 /* if next trigger time is not sufficiently in the future, put it there */
2162 /* this might happen because of floating point inexactness */
2163 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2164 {
2165 ev_at (w) += w->interval;
2166
2167 /* if interval is unreasonably low we might still have a time in the past */
2168 /* so correct this. this will make the periodic very inexact, but the user */
2169 /* has effectively asked to get triggered more often than possible */
2170 if (ev_at (w) < ev_rt_now)
2171 ev_at (w) = ev_rt_now;
2172 }
2173
2174 ANHE_at_cache (periodics [HEAP0]);
2175 downheap (periodics, periodiccnt, HEAP0);
2176 }
2177 else
2178 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2179
2180 EV_FREQUENT_CHECK;
2181 feed_reverse (EV_A_ (W)w);
1642 } 2182 }
1643 else if (w->interval) 2183 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2184
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2185 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2186 }
1656} 2187}
1657 2188
2189/* simply recalculate all periodics */
2190/* TODO: maybe ensure that at least one event happens when jumping forward? */
1658static void noinline 2191static void noinline
1659periodics_reschedule (EV_P) 2192periodics_reschedule (EV_P)
1660{ 2193{
1661 int i; 2194 int i;
1662 2195
1668 if (w->reschedule_cb) 2201 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2202 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2203 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2204 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672 2205
1673 ANHE_at_set (periodics [i]); 2206 ANHE_at_cache (periodics [i]);
2207 }
2208
2209 reheap (periodics, periodiccnt);
2210}
2211#endif
2212
2213/* adjust all timers by a given offset */
2214static void noinline
2215timers_reschedule (EV_P_ ev_tstamp adjust)
2216{
2217 int i;
2218
2219 for (i = 0; i < timercnt; ++i)
1674 } 2220 {
1675 2221 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2222 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2223 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2224 }
1679} 2225}
1680#endif
1681 2226
1682void inline_speed 2227/* fetch new monotonic and realtime times from the kernel */
2228/* also detect if there was a timejump, and act accordingly */
2229inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2230time_update (EV_P_ ev_tstamp max_block)
1684{ 2231{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2232#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2233 if (expect_true (have_monotonic))
1689 { 2234 {
2235 int i;
1690 ev_tstamp odiff = rtmn_diff; 2236 ev_tstamp odiff = rtmn_diff;
1691 2237
1692 mn_now = get_clock (); 2238 mn_now = get_clock ();
1693 2239
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2240 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1720 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2267 mn_now = get_clock ();
1722 now_floor = mn_now; 2268 now_floor = mn_now;
1723 } 2269 }
1724 2270
2271 /* no timer adjustment, as the monotonic clock doesn't jump */
2272 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2273# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2274 periodics_reschedule (EV_A);
1727# endif 2275# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2276 }
1731 else 2277 else
1732#endif 2278#endif
1733 { 2279 {
1734 ev_rt_now = ev_time (); 2280 ev_rt_now = ev_time ();
1735 2281
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2282 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2283 {
2284 /* adjust timers. this is easy, as the offset is the same for all of them */
2285 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2286#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2287 periodics_reschedule (EV_A);
1740#endif 2288#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2289 }
1749 2290
1750 mn_now = ev_rt_now; 2291 mn_now = ev_rt_now;
1751 } 2292 }
1752} 2293}
1753 2294
1754void 2295void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2296ev_loop (EV_P_ int flags)
1770{ 2297{
2298#if EV_FEATURE_API
2299 ++loop_depth;
2300#endif
2301
2302 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2303
1771 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
1772 2305
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2306 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2307
1775 do 2308 do
1776 { 2309 {
2310#if EV_VERIFY >= 2
2311 ev_verify (EV_A);
2312#endif
2313
1777#ifndef _WIN32 2314#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2315 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2316 if (expect_false (getpid () != curpid))
1780 { 2317 {
1781 curpid = getpid (); 2318 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2324 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2325 if (expect_false (postfork))
1789 if (forkcnt) 2326 if (forkcnt)
1790 { 2327 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2328 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1793 } 2330 }
1794#endif 2331#endif
1795 2332
2333#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 2334 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2335 if (expect_false (preparecnt))
1798 { 2336 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2337 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2338 EV_INVOKE_PENDING;
1801 } 2339 }
2340#endif
1802 2341
1803 if (expect_false (!activecnt)) 2342 if (expect_false (loop_done))
1804 break; 2343 break;
1805 2344
1806 /* we might have forked, so reify kernel state if necessary */ 2345 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2346 if (expect_false (postfork))
1808 loop_fork (EV_A); 2347 loop_fork (EV_A);
1815 ev_tstamp waittime = 0.; 2354 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2355 ev_tstamp sleeptime = 0.;
1817 2356
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2357 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1819 { 2358 {
2359 /* remember old timestamp for io_blocktime calculation */
2360 ev_tstamp prev_mn_now = mn_now;
2361
1820 /* update time to cancel out callback processing overhead */ 2362 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100); 2363 time_update (EV_A_ 1e100);
1822 2364
1823 waittime = MAX_BLOCKTIME; 2365 waittime = MAX_BLOCKTIME;
1824 2366
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2376 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2377 if (waittime > to) waittime = to;
1836 } 2378 }
1837#endif 2379#endif
1838 2380
2381 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2382 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2383 waittime = timeout_blocktime;
1841 2384
1842 sleeptime = waittime - backend_fudge; 2385 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2386 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2387 {
2388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2389
2390 if (sleeptime > waittime - backend_fudge)
2391 sleeptime = waittime - backend_fudge;
2392
2393 if (expect_true (sleeptime > 0.))
2394 {
1849 ev_sleep (sleeptime); 2395 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2396 waittime -= sleeptime;
2397 }
1851 } 2398 }
1852 } 2399 }
1853 2400
2401#if EV_FEATURE_API
1854 ++loop_count; 2402 ++loop_count;
2403#endif
2404 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2405 backend_poll (EV_A_ waittime);
2406 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1856 2407
1857 /* update ev_rt_now, do magic */ 2408 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2409 time_update (EV_A_ waittime + sleeptime);
1859 } 2410 }
1860 2411
1867#if EV_IDLE_ENABLE 2418#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 2419 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 2420 idle_reify (EV_A);
1870#endif 2421#endif
1871 2422
2423#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 2424 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2425 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2427#endif
1875 2428
1876 call_pending (EV_A); 2429 EV_INVOKE_PENDING;
1877 } 2430 }
1878 while (expect_true ( 2431 while (expect_true (
1879 activecnt 2432 activecnt
1880 && !loop_done 2433 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2434 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 )); 2435 ));
1883 2436
1884 if (loop_done == EVUNLOOP_ONE) 2437 if (loop_done == EVUNLOOP_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2438 loop_done = EVUNLOOP_CANCEL;
2439
2440#if EV_FEATURE_API
2441 --loop_depth;
2442#endif
1886} 2443}
1887 2444
1888void 2445void
1889ev_unloop (EV_P_ int how) 2446ev_unloop (EV_P_ int how)
1890{ 2447{
1891 loop_done = how; 2448 loop_done = how;
1892} 2449}
1893 2450
2451void
2452ev_ref (EV_P)
2453{
2454 ++activecnt;
2455}
2456
2457void
2458ev_unref (EV_P)
2459{
2460 --activecnt;
2461}
2462
2463void
2464ev_now_update (EV_P)
2465{
2466 time_update (EV_A_ 1e100);
2467}
2468
2469void
2470ev_suspend (EV_P)
2471{
2472 ev_now_update (EV_A);
2473}
2474
2475void
2476ev_resume (EV_P)
2477{
2478 ev_tstamp mn_prev = mn_now;
2479
2480 ev_now_update (EV_A);
2481 timers_reschedule (EV_A_ mn_now - mn_prev);
2482#if EV_PERIODIC_ENABLE
2483 /* TODO: really do this? */
2484 periodics_reschedule (EV_A);
2485#endif
2486}
2487
1894/*****************************************************************************/ 2488/*****************************************************************************/
2489/* singly-linked list management, used when the expected list length is short */
1895 2490
1896void inline_size 2491inline_size void
1897wlist_add (WL *head, WL elem) 2492wlist_add (WL *head, WL elem)
1898{ 2493{
1899 elem->next = *head; 2494 elem->next = *head;
1900 *head = elem; 2495 *head = elem;
1901} 2496}
1902 2497
1903void inline_size 2498inline_size void
1904wlist_del (WL *head, WL elem) 2499wlist_del (WL *head, WL elem)
1905{ 2500{
1906 while (*head) 2501 while (*head)
1907 { 2502 {
1908 if (*head == elem) 2503 if (expect_true (*head == elem))
1909 { 2504 {
1910 *head = elem->next; 2505 *head = elem->next;
1911 return; 2506 break;
1912 } 2507 }
1913 2508
1914 head = &(*head)->next; 2509 head = &(*head)->next;
1915 } 2510 }
1916} 2511}
1917 2512
1918void inline_speed 2513/* internal, faster, version of ev_clear_pending */
2514inline_speed void
1919clear_pending (EV_P_ W w) 2515clear_pending (EV_P_ W w)
1920{ 2516{
1921 if (w->pending) 2517 if (w->pending)
1922 { 2518 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2519 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2520 w->pending = 0;
1925 } 2521 }
1926} 2522}
1927 2523
1928int 2524int
1932 int pending = w_->pending; 2528 int pending = w_->pending;
1933 2529
1934 if (expect_true (pending)) 2530 if (expect_true (pending))
1935 { 2531 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2532 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2533 p->w = (W)&pending_w;
1937 w_->pending = 0; 2534 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2535 return p->events;
1940 } 2536 }
1941 else 2537 else
1942 return 0; 2538 return 0;
1943} 2539}
1944 2540
1945void inline_size 2541inline_size void
1946pri_adjust (EV_P_ W w) 2542pri_adjust (EV_P_ W w)
1947{ 2543{
1948 int pri = w->priority; 2544 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2545 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2546 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2547 ev_set_priority (w, pri);
1952} 2548}
1953 2549
1954void inline_speed 2550inline_speed void
1955ev_start (EV_P_ W w, int active) 2551ev_start (EV_P_ W w, int active)
1956{ 2552{
1957 pri_adjust (EV_A_ w); 2553 pri_adjust (EV_A_ w);
1958 w->active = active; 2554 w->active = active;
1959 ev_ref (EV_A); 2555 ev_ref (EV_A);
1960} 2556}
1961 2557
1962void inline_size 2558inline_size void
1963ev_stop (EV_P_ W w) 2559ev_stop (EV_P_ W w)
1964{ 2560{
1965 ev_unref (EV_A); 2561 ev_unref (EV_A);
1966 w->active = 0; 2562 w->active = 0;
1967} 2563}
1974 int fd = w->fd; 2570 int fd = w->fd;
1975 2571
1976 if (expect_false (ev_is_active (w))) 2572 if (expect_false (ev_is_active (w)))
1977 return; 2573 return;
1978 2574
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2575 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2576 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2577
2578 EV_FREQUENT_CHECK;
1980 2579
1981 ev_start (EV_A_ (W)w, 1); 2580 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2581 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2582 wlist_add (&anfds[fd].head, (WL)w);
1984 2583
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2584 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 2585 w->events &= ~EV__IOFDSET;
2586
2587 EV_FREQUENT_CHECK;
1987} 2588}
1988 2589
1989void noinline 2590void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2591ev_io_stop (EV_P_ ev_io *w)
1991{ 2592{
1992 clear_pending (EV_A_ (W)w); 2593 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2594 if (expect_false (!ev_is_active (w)))
1994 return; 2595 return;
1995 2596
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2597 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2598
2599 EV_FREQUENT_CHECK;
1997 2600
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2601 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
2000 2603
2001 fd_change (EV_A_ w->fd, 1); 2604 fd_change (EV_A_ w->fd, 1);
2605
2606 EV_FREQUENT_CHECK;
2002} 2607}
2003 2608
2004void noinline 2609void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2610ev_timer_start (EV_P_ ev_timer *w)
2006{ 2611{
2007 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
2008 return; 2613 return;
2009 2614
2010 ev_at (w) += mn_now; 2615 ev_at (w) += mn_now;
2011 2616
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2617 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2618
2619 EV_FREQUENT_CHECK;
2620
2621 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2622 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2623 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2624 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2625 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2626 upheap (timers, ev_active (w));
2019 2627
2628 EV_FREQUENT_CHECK;
2629
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2630 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2631}
2022 2632
2023void noinline 2633void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2634ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2635{
2026 clear_pending (EV_A_ (W)w); 2636 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2637 if (expect_false (!ev_is_active (w)))
2028 return; 2638 return;
2029 2639
2640 EV_FREQUENT_CHECK;
2641
2030 { 2642 {
2031 int active = ev_active (w); 2643 int active = ev_active (w);
2032 2644
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2645 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2646
2647 --timercnt;
2648
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2649 if (expect_true (active < timercnt + HEAP0))
2036 { 2650 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2651 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2652 adjustheap (timers, timercnt, active);
2039 } 2653 }
2040
2041 --timercnt;
2042 } 2654 }
2043 2655
2044 ev_at (w) -= mn_now; 2656 ev_at (w) -= mn_now;
2045 2657
2046 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
2659
2660 EV_FREQUENT_CHECK;
2047} 2661}
2048 2662
2049void noinline 2663void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2664ev_timer_again (EV_P_ ev_timer *w)
2051{ 2665{
2666 EV_FREQUENT_CHECK;
2667
2052 if (ev_is_active (w)) 2668 if (ev_is_active (w))
2053 { 2669 {
2054 if (w->repeat) 2670 if (w->repeat)
2055 { 2671 {
2056 ev_at (w) = mn_now + w->repeat; 2672 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2673 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2674 adjustheap (timers, timercnt, ev_active (w));
2059 } 2675 }
2060 else 2676 else
2061 ev_timer_stop (EV_A_ w); 2677 ev_timer_stop (EV_A_ w);
2062 } 2678 }
2063 else if (w->repeat) 2679 else if (w->repeat)
2064 { 2680 {
2065 ev_at (w) = w->repeat; 2681 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2682 ev_timer_start (EV_A_ w);
2067 } 2683 }
2684
2685 EV_FREQUENT_CHECK;
2686}
2687
2688ev_tstamp
2689ev_timer_remaining (EV_P_ ev_timer *w)
2690{
2691 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 2692}
2069 2693
2070#if EV_PERIODIC_ENABLE 2694#if EV_PERIODIC_ENABLE
2071void noinline 2695void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2696ev_periodic_start (EV_P_ ev_periodic *w)
2076 2700
2077 if (w->reschedule_cb) 2701 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2702 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2703 else if (w->interval)
2080 { 2704 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2705 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2706 /* this formula differs from the one in periodic_reify because we do not always round up */
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2707 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2708 }
2085 else 2709 else
2086 ev_at (w) = w->offset; 2710 ev_at (w) = w->offset;
2087 2711
2712 EV_FREQUENT_CHECK;
2713
2714 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2715 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2716 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2717 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2718 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2719 upheap (periodics, ev_active (w));
2092 2720
2721 EV_FREQUENT_CHECK;
2722
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2723 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2724}
2095 2725
2096void noinline 2726void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2727ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2728{
2099 clear_pending (EV_A_ (W)w); 2729 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2730 if (expect_false (!ev_is_active (w)))
2101 return; 2731 return;
2102 2732
2733 EV_FREQUENT_CHECK;
2734
2103 { 2735 {
2104 int active = ev_active (w); 2736 int active = ev_active (w);
2105 2737
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2738 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2739
2740 --periodiccnt;
2741
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2742 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2743 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2744 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2745 adjustheap (periodics, periodiccnt, active);
2112 } 2746 }
2113
2114 --periodiccnt;
2115 } 2747 }
2116 2748
2117 ev_stop (EV_A_ (W)w); 2749 ev_stop (EV_A_ (W)w);
2750
2751 EV_FREQUENT_CHECK;
2118} 2752}
2119 2753
2120void noinline 2754void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w) 2755ev_periodic_again (EV_P_ ev_periodic *w)
2122{ 2756{
2128 2762
2129#ifndef SA_RESTART 2763#ifndef SA_RESTART
2130# define SA_RESTART 0 2764# define SA_RESTART 0
2131#endif 2765#endif
2132 2766
2767#if EV_SIGNAL_ENABLE
2768
2133void noinline 2769void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2770ev_signal_start (EV_P_ ev_signal *w)
2135{ 2771{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
2140 return; 2773 return;
2141 2774
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2775 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 2776
2144 evpipe_init (EV_A); 2777#if EV_MULTIPLICITY
2778 assert (("libev: a signal must not be attached to two different loops",
2779 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 2780
2781 signals [w->signum - 1].loop = EV_A;
2782#endif
2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_SIGNALFD
2787 if (sigfd == -2)
2146 { 2788 {
2147#ifndef _WIN32 2789 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 2790 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 2791 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 2792
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2793 if (sigfd >= 0)
2794 {
2795 fd_intern (sigfd); /* doing it twice will not hurt */
2154 2796
2155#ifndef _WIN32 2797 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2798
2157#endif 2799 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2800 ev_set_priority (&sigfd_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &sigfd_w);
2802 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2803 }
2158 } 2804 }
2805
2806 if (sigfd >= 0)
2807 {
2808 /* TODO: check .head */
2809 sigaddset (&sigfd_set, w->signum);
2810 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2811
2812 signalfd (sigfd, &sigfd_set, 0);
2813 }
2814#endif
2159 2815
2160 ev_start (EV_A_ (W)w, 1); 2816 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 2817 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 2818
2163 if (!((WL)w)->next) 2819 if (!((WL)w)->next)
2820# if EV_USE_SIGNALFD
2821 if (sigfd < 0) /*TODO*/
2822# endif
2164 { 2823 {
2165#if _WIN32 2824# ifdef _WIN32
2825 evpipe_init (EV_A);
2826
2166 signal (w->signum, ev_sighandler); 2827 signal (w->signum, ev_sighandler);
2167#else 2828# else
2168 struct sigaction sa; 2829 struct sigaction sa;
2830
2831 evpipe_init (EV_A);
2832
2169 sa.sa_handler = ev_sighandler; 2833 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 2834 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2835 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2836 sigaction (w->signum, &sa, 0);
2837
2838 sigemptyset (&sa.sa_mask);
2839 sigaddset (&sa.sa_mask, w->signum);
2840 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2173#endif 2841#endif
2174 } 2842 }
2843
2844 EV_FREQUENT_CHECK;
2175} 2845}
2176 2846
2177void noinline 2847void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2848ev_signal_stop (EV_P_ ev_signal *w)
2179{ 2849{
2180 clear_pending (EV_A_ (W)w); 2850 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 2851 if (expect_false (!ev_is_active (w)))
2182 return; 2852 return;
2183 2853
2854 EV_FREQUENT_CHECK;
2855
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 2856 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
2186 2858
2187 if (!signals [w->signum - 1].head) 2859 if (!signals [w->signum - 1].head)
2860 {
2861#if EV_MULTIPLICITY
2862 signals [w->signum - 1].loop = 0; /* unattach from signal */
2863#endif
2864#if EV_USE_SIGNALFD
2865 if (sigfd >= 0)
2866 {
2867 sigset_t ss;
2868
2869 sigemptyset (&ss);
2870 sigaddset (&ss, w->signum);
2871 sigdelset (&sigfd_set, w->signum);
2872
2873 signalfd (sigfd, &sigfd_set, 0);
2874 sigprocmask (SIG_UNBLOCK, &ss, 0);
2875 }
2876 else
2877#endif
2188 signal (w->signum, SIG_DFL); 2878 signal (w->signum, SIG_DFL);
2879 }
2880
2881 EV_FREQUENT_CHECK;
2189} 2882}
2883
2884#endif
2885
2886#if EV_CHILD_ENABLE
2190 2887
2191void 2888void
2192ev_child_start (EV_P_ ev_child *w) 2889ev_child_start (EV_P_ ev_child *w)
2193{ 2890{
2194#if EV_MULTIPLICITY 2891#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2892 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 2893#endif
2197 if (expect_false (ev_is_active (w))) 2894 if (expect_false (ev_is_active (w)))
2198 return; 2895 return;
2199 2896
2897 EV_FREQUENT_CHECK;
2898
2200 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2901
2902 EV_FREQUENT_CHECK;
2202} 2903}
2203 2904
2204void 2905void
2205ev_child_stop (EV_P_ ev_child *w) 2906ev_child_stop (EV_P_ ev_child *w)
2206{ 2907{
2207 clear_pending (EV_A_ (W)w); 2908 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 2909 if (expect_false (!ev_is_active (w)))
2209 return; 2910 return;
2210 2911
2912 EV_FREQUENT_CHECK;
2913
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2914 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2213} 2918}
2919
2920#endif
2214 2921
2215#if EV_STAT_ENABLE 2922#if EV_STAT_ENABLE
2216 2923
2217# ifdef _WIN32 2924# ifdef _WIN32
2218# undef lstat 2925# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 2926# define lstat(a,b) _stati64 (a,b)
2220# endif 2927# endif
2221 2928
2222#define DEF_STAT_INTERVAL 5.0074891 2929#define DEF_STAT_INTERVAL 5.0074891
2930#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 2931#define MIN_STAT_INTERVAL 0.1074891
2224 2932
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2933static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 2934
2227#if EV_USE_INOTIFY 2935#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 2936
2937/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2938# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2229 2939
2230static void noinline 2940static void noinline
2231infy_add (EV_P_ ev_stat *w) 2941infy_add (EV_P_ ev_stat *w)
2232{ 2942{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2943 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 2944
2235 if (w->wd < 0) 2945 if (w->wd >= 0)
2946 {
2947 struct statfs sfs;
2948
2949 /* now local changes will be tracked by inotify, but remote changes won't */
2950 /* unless the filesystem is known to be local, we therefore still poll */
2951 /* also do poll on <2.6.25, but with normal frequency */
2952
2953 if (!fs_2625)
2954 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2955 else if (!statfs (w->path, &sfs)
2956 && (sfs.f_type == 0x1373 /* devfs */
2957 || sfs.f_type == 0xEF53 /* ext2/3 */
2958 || sfs.f_type == 0x3153464a /* jfs */
2959 || sfs.f_type == 0x52654973 /* reiser3 */
2960 || sfs.f_type == 0x01021994 /* tempfs */
2961 || sfs.f_type == 0x58465342 /* xfs */))
2962 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2963 else
2964 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 2965 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2966 else
2967 {
2968 /* can't use inotify, continue to stat */
2969 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 2970
2239 /* monitor some parent directory for speedup hints */ 2971 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2972 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 2973 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2974 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 2975 {
2244 char path [4096]; 2976 char path [4096];
2245 strcpy (path, w->path); 2977 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2981 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2982 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 2983
2252 char *pend = strrchr (path, '/'); 2984 char *pend = strrchr (path, '/');
2253 2985
2254 if (!pend) 2986 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 2987 break;
2256 2988
2257 *pend = 0; 2989 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 2990 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 2991 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2992 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 2993 }
2262 } 2994 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 2995
2266 if (w->wd >= 0) 2996 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2997 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2998
2999 /* now re-arm timer, if required */
3000 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3001 ev_timer_again (EV_A_ &w->timer);
3002 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 3003}
2269 3004
2270static void noinline 3005static void noinline
2271infy_del (EV_P_ ev_stat *w) 3006infy_del (EV_P_ ev_stat *w)
2272{ 3007{
2275 3010
2276 if (wd < 0) 3011 if (wd < 0)
2277 return; 3012 return;
2278 3013
2279 w->wd = -2; 3014 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3015 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 3016 wlist_del (&fs_hash [slot].head, (WL)w);
2282 3017
2283 /* remove this watcher, if others are watching it, they will rearm */ 3018 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 3019 inotify_rm_watch (fs_fd, wd);
2285} 3020}
2286 3021
2287static void noinline 3022static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3023infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 3024{
2290 if (slot < 0) 3025 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 3026 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3027 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 3028 infy_wd (EV_A_ slot, wd, ev);
2294 else 3029 else
2295 { 3030 {
2296 WL w_; 3031 WL w_;
2297 3032
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3033 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 3034 {
2300 ev_stat *w = (ev_stat *)w_; 3035 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 3036 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 3037
2303 if (w->wd == wd || wd == -1) 3038 if (w->wd == wd || wd == -1)
2304 { 3039 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3040 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 3041 {
3042 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 3043 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 3044 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 3045 }
2310 3046
2311 stat_timer_cb (EV_A_ &w->timer, 0); 3047 stat_timer_cb (EV_A_ &w->timer, 0);
2316 3052
2317static void 3053static void
2318infy_cb (EV_P_ ev_io *w, int revents) 3054infy_cb (EV_P_ ev_io *w, int revents)
2319{ 3055{
2320 char buf [EV_INOTIFY_BUFSIZE]; 3056 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 3057 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 3058 int len = read (fs_fd, buf, sizeof (buf));
2324 3059
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3060 for (ofs = 0; ofs < len; )
3061 {
3062 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3063 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3064 ofs += sizeof (struct inotify_event) + ev->len;
3065 }
2327} 3066}
2328 3067
2329void inline_size 3068inline_size unsigned int
3069ev_linux_version (void)
3070{
3071 struct utsname buf;
3072 unsigned int v;
3073 int i;
3074 char *p = buf.release;
3075
3076 if (uname (&buf))
3077 return 0;
3078
3079 for (i = 3+1; --i; )
3080 {
3081 unsigned int c = 0;
3082
3083 for (;;)
3084 {
3085 if (*p >= '0' && *p <= '9')
3086 c = c * 10 + *p++ - '0';
3087 else
3088 {
3089 p += *p == '.';
3090 break;
3091 }
3092 }
3093
3094 v = (v << 8) | c;
3095 }
3096
3097 return v;
3098}
3099
3100inline_size void
3101ev_check_2625 (EV_P)
3102{
3103 /* kernels < 2.6.25 are borked
3104 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3105 */
3106 if (ev_linux_version () < 0x020619)
3107 return;
3108
3109 fs_2625 = 1;
3110}
3111
3112inline_size int
3113infy_newfd (void)
3114{
3115#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3116 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3117 if (fd >= 0)
3118 return fd;
3119#endif
3120 return inotify_init ();
3121}
3122
3123inline_size void
2330infy_init (EV_P) 3124infy_init (EV_P)
2331{ 3125{
2332 if (fs_fd != -2) 3126 if (fs_fd != -2)
2333 return; 3127 return;
2334 3128
3129 fs_fd = -1;
3130
3131 ev_check_2625 (EV_A);
3132
2335 fs_fd = inotify_init (); 3133 fs_fd = infy_newfd ();
2336 3134
2337 if (fs_fd >= 0) 3135 if (fs_fd >= 0)
2338 { 3136 {
3137 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3138 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3139 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3140 ev_io_start (EV_A_ &fs_w);
3141 ev_unref (EV_A);
2342 } 3142 }
2343} 3143}
2344 3144
2345void inline_size 3145inline_size void
2346infy_fork (EV_P) 3146infy_fork (EV_P)
2347{ 3147{
2348 int slot; 3148 int slot;
2349 3149
2350 if (fs_fd < 0) 3150 if (fs_fd < 0)
2351 return; 3151 return;
2352 3152
3153 ev_ref (EV_A);
3154 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3155 close (fs_fd);
2354 fs_fd = inotify_init (); 3156 fs_fd = infy_newfd ();
2355 3157
3158 if (fs_fd >= 0)
3159 {
3160 fd_intern (fs_fd);
3161 ev_io_set (&fs_w, fs_fd, EV_READ);
3162 ev_io_start (EV_A_ &fs_w);
3163 ev_unref (EV_A);
3164 }
3165
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3166 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 3167 {
2358 WL w_ = fs_hash [slot].head; 3168 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3169 fs_hash [slot].head = 0;
2360 3170
2361 while (w_) 3171 while (w_)
2366 w->wd = -1; 3176 w->wd = -1;
2367 3177
2368 if (fs_fd >= 0) 3178 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3179 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3180 else
3181 {
3182 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3183 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 3184 ev_timer_again (EV_A_ &w->timer);
3185 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3186 }
2372 } 3187 }
2373
2374 } 3188 }
2375} 3189}
2376 3190
3191#endif
3192
3193#ifdef _WIN32
3194# define EV_LSTAT(p,b) _stati64 (p, b)
3195#else
3196# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3197#endif
2378 3198
2379void 3199void
2380ev_stat_stat (EV_P_ ev_stat *w) 3200ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3201{
2388static void noinline 3208static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3209stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 3210{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3211 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 3212
2393 /* we copy this here each the time so that */ 3213 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 3214 ev_stat_stat (EV_A_ w);
2397 3215
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3216 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 3217 if (
2400 w->prev.st_dev != w->attr.st_dev 3218 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 3219 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 3220 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 3221 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 3222 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 3223 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 3224 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 3225 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 3226 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3227 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3228 || prev.st_ctime != w->attr.st_ctime
2411 ) { 3229 ) {
3230 /* we only update w->prev on actual differences */
3231 /* in case we test more often than invoke the callback, */
3232 /* to ensure that prev is always different to attr */
3233 w->prev = prev;
3234
2412 #if EV_USE_INOTIFY 3235 #if EV_USE_INOTIFY
3236 if (fs_fd >= 0)
3237 {
2413 infy_del (EV_A_ w); 3238 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3239 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3240 ev_stat_stat (EV_A_ w); /* avoid race... */
3241 }
2416 #endif 3242 #endif
2417 3243
2418 ev_feed_event (EV_A_ w, EV_STAT); 3244 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3245 }
2420} 3246}
2423ev_stat_start (EV_P_ ev_stat *w) 3249ev_stat_start (EV_P_ ev_stat *w)
2424{ 3250{
2425 if (expect_false (ev_is_active (w))) 3251 if (expect_false (ev_is_active (w)))
2426 return; 3252 return;
2427 3253
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3254 ev_stat_stat (EV_A_ w);
2433 3255
3256 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3257 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3258
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3259 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3260 ev_set_priority (&w->timer, ev_priority (w));
2439 3261
2440#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3263 infy_init (EV_A);
2442 3264
2443 if (fs_fd >= 0) 3265 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3266 infy_add (EV_A_ w);
2445 else 3267 else
2446#endif 3268#endif
3269 {
2447 ev_timer_start (EV_A_ &w->timer); 3270 ev_timer_again (EV_A_ &w->timer);
3271 ev_unref (EV_A);
3272 }
2448 3273
2449 ev_start (EV_A_ (W)w, 1); 3274 ev_start (EV_A_ (W)w, 1);
3275
3276 EV_FREQUENT_CHECK;
2450} 3277}
2451 3278
2452void 3279void
2453ev_stat_stop (EV_P_ ev_stat *w) 3280ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3281{
2455 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
2457 return; 3284 return;
2458 3285
3286 EV_FREQUENT_CHECK;
3287
2459#if EV_USE_INOTIFY 3288#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3289 infy_del (EV_A_ w);
2461#endif 3290#endif
3291
3292 if (ev_is_active (&w->timer))
3293 {
3294 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 3295 ev_timer_stop (EV_A_ &w->timer);
3296 }
2463 3297
2464 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
3299
3300 EV_FREQUENT_CHECK;
2465} 3301}
2466#endif 3302#endif
2467 3303
2468#if EV_IDLE_ENABLE 3304#if EV_IDLE_ENABLE
2469void 3305void
2471{ 3307{
2472 if (expect_false (ev_is_active (w))) 3308 if (expect_false (ev_is_active (w)))
2473 return; 3309 return;
2474 3310
2475 pri_adjust (EV_A_ (W)w); 3311 pri_adjust (EV_A_ (W)w);
3312
3313 EV_FREQUENT_CHECK;
2476 3314
2477 { 3315 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3316 int active = ++idlecnt [ABSPRI (w)];
2479 3317
2480 ++idleall; 3318 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3319 ev_start (EV_A_ (W)w, active);
2482 3320
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3321 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3322 idles [ABSPRI (w)][active - 1] = w;
2485 } 3323 }
3324
3325 EV_FREQUENT_CHECK;
2486} 3326}
2487 3327
2488void 3328void
2489ev_idle_stop (EV_P_ ev_idle *w) 3329ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3330{
2491 clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
2493 return; 3333 return;
2494 3334
3335 EV_FREQUENT_CHECK;
3336
2495 { 3337 {
2496 int active = ev_active (w); 3338 int active = ev_active (w);
2497 3339
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3340 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3341 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3342
2501 ev_stop (EV_A_ (W)w); 3343 ev_stop (EV_A_ (W)w);
2502 --idleall; 3344 --idleall;
2503 } 3345 }
2504}
2505#endif
2506 3346
3347 EV_FREQUENT_CHECK;
3348}
3349#endif
3350
3351#if EV_PREPARE_ENABLE
2507void 3352void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3353ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3354{
2510 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2511 return; 3356 return;
3357
3358 EV_FREQUENT_CHECK;
2512 3359
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3360 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3361 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3362 prepares [preparecnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
2516} 3365}
2517 3366
2518void 3367void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3368ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3369{
2521 clear_pending (EV_A_ (W)w); 3370 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3371 if (expect_false (!ev_is_active (w)))
2523 return; 3372 return;
2524 3373
3374 EV_FREQUENT_CHECK;
3375
2525 { 3376 {
2526 int active = ev_active (w); 3377 int active = ev_active (w);
2527 3378
2528 prepares [active - 1] = prepares [--preparecnt]; 3379 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3380 ev_active (prepares [active - 1]) = active;
2530 } 3381 }
2531 3382
2532 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
2533}
2534 3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_CHECK_ENABLE
2535void 3390void
2536ev_check_start (EV_P_ ev_check *w) 3391ev_check_start (EV_P_ ev_check *w)
2537{ 3392{
2538 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2539 return; 3394 return;
3395
3396 EV_FREQUENT_CHECK;
2540 3397
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3398 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3399 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3400 checks [checkcnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
2544} 3403}
2545 3404
2546void 3405void
2547ev_check_stop (EV_P_ ev_check *w) 3406ev_check_stop (EV_P_ ev_check *w)
2548{ 3407{
2549 clear_pending (EV_A_ (W)w); 3408 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3409 if (expect_false (!ev_is_active (w)))
2551 return; 3410 return;
2552 3411
3412 EV_FREQUENT_CHECK;
3413
2553 { 3414 {
2554 int active = ev_active (w); 3415 int active = ev_active (w);
2555 3416
2556 checks [active - 1] = checks [--checkcnt]; 3417 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3418 ev_active (checks [active - 1]) = active;
2558 } 3419 }
2559 3420
2560 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
2561} 3424}
3425#endif
2562 3426
2563#if EV_EMBED_ENABLE 3427#if EV_EMBED_ENABLE
2564void noinline 3428void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3429ev_embed_sweep (EV_P_ ev_embed *w)
2566{ 3430{
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3446embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3447{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3448 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3449
2586 { 3450 {
2587 struct ev_loop *loop = w->other; 3451 EV_P = w->other;
2588 3452
2589 while (fdchangecnt) 3453 while (fdchangecnt)
2590 { 3454 {
2591 fd_reify (EV_A); 3455 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3456 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 } 3457 }
2594 } 3458 }
2595} 3459}
2596 3460
3461static void
3462embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3465
3466 ev_embed_stop (EV_A_ w);
3467
3468 {
3469 EV_P = w->other;
3470
3471 ev_loop_fork (EV_A);
3472 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3473 }
3474
3475 ev_embed_start (EV_A_ w);
3476}
3477
2597#if 0 3478#if 0
2598static void 3479static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3480embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{ 3481{
2601 ev_idle_stop (EV_A_ idle); 3482 ev_idle_stop (EV_A_ idle);
2607{ 3488{
2608 if (expect_false (ev_is_active (w))) 3489 if (expect_false (ev_is_active (w)))
2609 return; 3490 return;
2610 3491
2611 { 3492 {
2612 struct ev_loop *loop = w->other; 3493 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3494 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3496 }
3497
3498 EV_FREQUENT_CHECK;
2616 3499
2617 ev_set_priority (&w->io, ev_priority (w)); 3500 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3501 ev_io_start (EV_A_ &w->io);
2619 3502
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3503 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3504 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3505 ev_prepare_start (EV_A_ &w->prepare);
2623 3506
3507 ev_fork_init (&w->fork, embed_fork_cb);
3508 ev_fork_start (EV_A_ &w->fork);
3509
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3510 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3511
2626 ev_start (EV_A_ (W)w, 1); 3512 ev_start (EV_A_ (W)w, 1);
3513
3514 EV_FREQUENT_CHECK;
2627} 3515}
2628 3516
2629void 3517void
2630ev_embed_stop (EV_P_ ev_embed *w) 3518ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3519{
2632 clear_pending (EV_A_ (W)w); 3520 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3521 if (expect_false (!ev_is_active (w)))
2634 return; 3522 return;
2635 3523
3524 EV_FREQUENT_CHECK;
3525
2636 ev_io_stop (EV_A_ &w->io); 3526 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3527 ev_prepare_stop (EV_A_ &w->prepare);
3528 ev_fork_stop (EV_A_ &w->fork);
2638 3529
2639 ev_stop (EV_A_ (W)w); 3530 ev_stop (EV_A_ (W)w);
3531
3532 EV_FREQUENT_CHECK;
2640} 3533}
2641#endif 3534#endif
2642 3535
2643#if EV_FORK_ENABLE 3536#if EV_FORK_ENABLE
2644void 3537void
2645ev_fork_start (EV_P_ ev_fork *w) 3538ev_fork_start (EV_P_ ev_fork *w)
2646{ 3539{
2647 if (expect_false (ev_is_active (w))) 3540 if (expect_false (ev_is_active (w)))
2648 return; 3541 return;
3542
3543 EV_FREQUENT_CHECK;
2649 3544
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3545 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3546 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3547 forks [forkcnt - 1] = w;
3548
3549 EV_FREQUENT_CHECK;
2653} 3550}
2654 3551
2655void 3552void
2656ev_fork_stop (EV_P_ ev_fork *w) 3553ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3554{
2658 clear_pending (EV_A_ (W)w); 3555 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3556 if (expect_false (!ev_is_active (w)))
2660 return; 3557 return;
2661 3558
3559 EV_FREQUENT_CHECK;
3560
2662 { 3561 {
2663 int active = ev_active (w); 3562 int active = ev_active (w);
2664 3563
2665 forks [active - 1] = forks [--forkcnt]; 3564 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3565 ev_active (forks [active - 1]) = active;
2667 } 3566 }
2668 3567
2669 ev_stop (EV_A_ (W)w); 3568 ev_stop (EV_A_ (W)w);
3569
3570 EV_FREQUENT_CHECK;
2670} 3571}
2671#endif 3572#endif
2672 3573
2673#if EV_ASYNC_ENABLE 3574#if EV_ASYNC_ENABLE
2674void 3575void
2676{ 3577{
2677 if (expect_false (ev_is_active (w))) 3578 if (expect_false (ev_is_active (w)))
2678 return; 3579 return;
2679 3580
2680 evpipe_init (EV_A); 3581 evpipe_init (EV_A);
3582
3583 EV_FREQUENT_CHECK;
2681 3584
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3585 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3586 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3587 asyncs [asynccnt - 1] = w;
3588
3589 EV_FREQUENT_CHECK;
2685} 3590}
2686 3591
2687void 3592void
2688ev_async_stop (EV_P_ ev_async *w) 3593ev_async_stop (EV_P_ ev_async *w)
2689{ 3594{
2690 clear_pending (EV_A_ (W)w); 3595 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3596 if (expect_false (!ev_is_active (w)))
2692 return; 3597 return;
2693 3598
3599 EV_FREQUENT_CHECK;
3600
2694 { 3601 {
2695 int active = ev_active (w); 3602 int active = ev_active (w);
2696 3603
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3604 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3605 ev_active (asyncs [active - 1]) = active;
2699 } 3606 }
2700 3607
2701 ev_stop (EV_A_ (W)w); 3608 ev_stop (EV_A_ (W)w);
3609
3610 EV_FREQUENT_CHECK;
2702} 3611}
2703 3612
2704void 3613void
2705ev_async_send (EV_P_ ev_async *w) 3614ev_async_send (EV_P_ ev_async *w)
2706{ 3615{
2707 w->sent = 1; 3616 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 3617 evpipe_write (EV_A_ &async_pending);
2709} 3618}
2710#endif 3619#endif
2711 3620
2712/*****************************************************************************/ 3621/*****************************************************************************/
2713 3622
2723once_cb (EV_P_ struct ev_once *once, int revents) 3632once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3633{
2725 void (*cb)(int revents, void *arg) = once->cb; 3634 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3635 void *arg = once->arg;
2727 3636
2728 ev_io_stop (EV_A_ &once->io); 3637 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3638 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3639 ev_free (once);
2731 3640
2732 cb (revents, arg); 3641 cb (revents, arg);
2733} 3642}
2734 3643
2735static void 3644static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3645once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3646{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3647 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3648
3649 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3650}
2740 3651
2741static void 3652static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3653once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3654{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3655 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3656
3657 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3658}
2746 3659
2747void 3660void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3661ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3662{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3663 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751 3664
2752 if (expect_false (!once)) 3665 if (expect_false (!once))
2753 { 3666 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3667 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2755 return; 3668 return;
2756 } 3669 }
2757 3670
2758 once->cb = cb; 3671 once->cb = cb;
2759 once->arg = arg; 3672 once->arg = arg;
2771 ev_timer_set (&once->to, timeout, 0.); 3684 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3685 ev_timer_start (EV_A_ &once->to);
2773 } 3686 }
2774} 3687}
2775 3688
3689/*****************************************************************************/
3690
3691#if EV_WALK_ENABLE
3692void
3693ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3694{
3695 int i, j;
3696 ev_watcher_list *wl, *wn;
3697
3698 if (types & (EV_IO | EV_EMBED))
3699 for (i = 0; i < anfdmax; ++i)
3700 for (wl = anfds [i].head; wl; )
3701 {
3702 wn = wl->next;
3703
3704#if EV_EMBED_ENABLE
3705 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3706 {
3707 if (types & EV_EMBED)
3708 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3709 }
3710 else
3711#endif
3712#if EV_USE_INOTIFY
3713 if (ev_cb ((ev_io *)wl) == infy_cb)
3714 ;
3715 else
3716#endif
3717 if ((ev_io *)wl != &pipe_w)
3718 if (types & EV_IO)
3719 cb (EV_A_ EV_IO, wl);
3720
3721 wl = wn;
3722 }
3723
3724 if (types & (EV_TIMER | EV_STAT))
3725 for (i = timercnt + HEAP0; i-- > HEAP0; )
3726#if EV_STAT_ENABLE
3727 /*TODO: timer is not always active*/
3728 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3729 {
3730 if (types & EV_STAT)
3731 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3732 }
3733 else
3734#endif
3735 if (types & EV_TIMER)
3736 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3737
3738#if EV_PERIODIC_ENABLE
3739 if (types & EV_PERIODIC)
3740 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3741 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3742#endif
3743
3744#if EV_IDLE_ENABLE
3745 if (types & EV_IDLE)
3746 for (j = NUMPRI; i--; )
3747 for (i = idlecnt [j]; i--; )
3748 cb (EV_A_ EV_IDLE, idles [j][i]);
3749#endif
3750
3751#if EV_FORK_ENABLE
3752 if (types & EV_FORK)
3753 for (i = forkcnt; i--; )
3754 if (ev_cb (forks [i]) != embed_fork_cb)
3755 cb (EV_A_ EV_FORK, forks [i]);
3756#endif
3757
3758#if EV_ASYNC_ENABLE
3759 if (types & EV_ASYNC)
3760 for (i = asynccnt; i--; )
3761 cb (EV_A_ EV_ASYNC, asyncs [i]);
3762#endif
3763
3764#if EV_PREPARE_ENABLE
3765 if (types & EV_PREPARE)
3766 for (i = preparecnt; i--; )
3767# if EV_EMBED_ENABLE
3768 if (ev_cb (prepares [i]) != embed_prepare_cb)
3769# endif
3770 cb (EV_A_ EV_PREPARE, prepares [i]);
3771#endif
3772
3773#if EV_CHECK_ENABLE
3774 if (types & EV_CHECK)
3775 for (i = checkcnt; i--; )
3776 cb (EV_A_ EV_CHECK, checks [i]);
3777#endif
3778
3779#if EV_SIGNAL_ENABLE
3780 if (types & EV_SIGNAL)
3781 for (i = 0; i < EV_NSIG - 1; ++i)
3782 for (wl = signals [i].head; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_SIGNAL, wl);
3786 wl = wn;
3787 }
3788#endif
3789
3790#if EV_CHILD_ENABLE
3791 if (types & EV_CHILD)
3792 for (i = (EV_PID_HASHSIZE); i--; )
3793 for (wl = childs [i]; wl; )
3794 {
3795 wn = wl->next;
3796 cb (EV_A_ EV_CHILD, wl);
3797 wl = wn;
3798 }
3799#endif
3800/* EV_STAT 0x00001000 /* stat data changed */
3801/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3802}
3803#endif
3804
2776#if EV_MULTIPLICITY 3805#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3806 #include "ev_wrap.h"
2778#endif 3807#endif
2779 3808
2780#ifdef __cplusplus 3809#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines